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ABSTRACT 

 

The task of robust regression is of particular importance in signal processing, statistics and 
machine learning. Ordinary estimators, such as the Least Squares (LS) one, fail to achieve 
sufficiently good performance in the presence of outliers. Although the problem has been 
addressed many decades ago and several methods have been established, it has recently 
attracted more attention in the context of sparse modeling and sparse optimization 
techniques. The latter is the line that has been followed in the current dissertation. The 
reported research, led to the development of a novel approach in the context of greedy 
algorithms. The model adopts the decomposition of the noise into two parts: a) the inlier 
noise and b) the outliers, which are explicitly modeled by employing sparse modeling 
arguments. Based on this rationale and inspired by the popular Orthogonal Matching 
Pursuit (OMP), two novel efficient greedy algorithms are established, one for the linear and 
another one for the nonlinear robust regression task. 

The proposed algorithm for the linear task, i.e., Greedy Algorithm for Robust 
Denoising (GARD), alternates between a Least Squares (LS) optimization criterion and an 
OMP selection step, that identifies the outliers. The method is compared against state-of-
the-art methods through extensive simulations and the results demonstrate that: a) it 
exhibits tolerance in the presence of outliers, i.e., robustness, b) it attains a very low 
approximation error and c) it has relatively low computational requirements. Moreover, due 
to the simplicity of the method, a number of related theoretical properties are derived. 
Initially, the convergence of the method in a finite number of iteration steps is established. 
Next, the focus of the theoretical analysis is turned on the identification of the outliers. The 
case where only outliers are present has been studied separately; this is mainly due to the 
following reasons: a) the simplification of technically demanding algebraic manipulations 
and b) the “articulation” of the method’s interesting geometrical properties. In particular, a 
bound based on the Restricted Isometry Property (RIP) constant guarantees that the 
recovery of the signal via GARD is exact (zero error). Finally, for the case where outliers as 
well as inlier noise coexist, and by assuming that the inlier noise vector is bounded, a 
similar condition that guarantees the recovery of the support for the sparse outlier vector is 
derived. If such a condition is satisfied, then it is shown that the approximation error is 
bounded, and thus the denoising estimator is stable. 

For the robust nonlinear regression task, it is assumed that the unknown nonlinear 
function belongs to a Reproducing Kernel Hilbert Space (RKHS). Due to the existence of 
outliers, common techniques such as the Kernel Ridge Regression (KRR), or the Support 
Vector Regression (SVR) turn out to be inadequate. By employing the aforementioned 
noise decomposition, sparse modeling arguments are employed so that the outliers are 
estimated according to the greedy approach. The proposed robust scheme, i.e., Kernel 
Greedy Algorithm for Robust Denoising (KGARD), alternates between a KRR task and an 
OMP-like selection step. Theoretical results regarding the identification of the outliers are 
provided. Moreover, KGARD is compared against other cutting edge methods via 
extensive simulations, where its enhanced performance is demonstrated. Finally, the 
proposed robust estimation framework is applied to the task of image denoising, where the 
advantages of the proposed method are unveiled. The experiments verify that KGARD 
improves the denoising process significantly, when outliers are present. 

 



SUBJECT AREA: Signal Processing  

KEYWORDS: robust regression, greedy algorithm for robust denoising GARD, robust 
nonlinear regression in RKHS, kernel greedy algorithm for robust denoising 
KGARD, image denoising 

  



ΠΕΡΙΛΗΨΗ 

 

Η εύρωστη παλινδρόμηση κατέχει έναν πολύ σημαντικό ρόλο στην Επεξεργασία Σήματος, 
τη Στατιστική και τη Μηχανική Μάθηση. Συνήθεις εκτιμητές, όπως τα «Ελάχιστα 
Τετράγωνα», αποτυγχάνουν να εκτιμήσουν σωστά παραμέτρους, όταν στα δεδομένα 
υπεισέρχονται ακραίες παρατηρήσεις, γνωστές ως “outliers”. Το πρόβλημα αυτό είναι 
γνωστό εδώ και δεκαετίες,  μέσα στις οποίες διάφορες μέθοδοι έχουν προταθεί. Παρόλα 
αυτά, το ενδιαφέρον της επιστημονικής κοινότητας για αυτό αναζωπυρώθηκε όταν 
επανεξετάστηκε υπό το πρίσμα της αραιής μοντελοποίησης και των αντίστοιχων τεχνικών, 
η οποία κυριαρχεί στον τομέα της μηχανικής μάθησης εδώ και δύο δεκαετίες. Αυτή είναι και 
η κατεύθυνση η οποία ακολουθήθηκε στην παρούσα διατριβή. Το αποτέλεσμα αυτής της 
εργασίας ήταν η ανάπτυξη μιας νέας προσέγγισης, βασισμένης σε άπληστες τεχνικές 
αραιής μοντελοποίησης. Το μοντέλο που υιοθετείται βασίζεται στην ανάλυση του θορύβου 
σε δύο συνιστώσες: α) μια για το συμβατικό (αναμενόμενο) θόρυβο και β) μια για τις 
ακραίες παρατηρήσεις (outliers), οι οποίες θεωρήθηκε ότι είναι λίγες (αραιές) σε σχέση με 
τον αριθμό των δεδομένων. Με βάση αυτή τη μοντελοποίηση και τον γνωστό άπληστο 
αλγόριθμο “Orthogonal Matching Pursuit” (OMP), δύο νέοι αλγόριθμοι αναπτύχθηκαν, ένας 
για το γραμμικό και ένας για το μη γραμμικό πρόβλημα της εύρωστης παλινδρόμησης. 

Ο προτεινόμενος αλγόριθμος για τη  γραμμική παλινδρόμηση ονομάζεται “Greedy 
Algorithm for Robust Demoising” (GARD) και εναλλάσσει τα βήματά του μεταξύ της 
μεθόδου Ελαχίστων Τετραγώνων (LS) και της αναγνώρισης των ακραίων παρατηρήσεων, 
τεχνικής που βασίζεται στον OMP. Στη συνέχεια, ακολουθεί η σύγκριση της νέας μεθόδου 
με ανταγωνιστικές της. Συγκεκριμένα, από τα αποτελέσματα παρατηρείται ότι ο GARD: α) 
δείχνει ανοχή σε ακραίες τιμές (εύρωστος), β) καταφέρνει να προσεγγίσει τη λύση με πολύ 
μικρό λάθος και γ) απαιτεί μικρό υπολογιστικό κόστος. Επιπλέον, προκύπτουν σημαντικά 
θεωρητικά ευρήματα, τα οποία οφείλονται στην απλότητα της μεθόδου. Αρχικά, 
αποδεικνύεται ότι η μέθοδος συγκλίνει σε πεπερασμένο αριθμό βημάτων. Στη συνέχεια, η 
μελέτη επικεντρώνεται στην αναγνώριση των ακραίων παρατηρήσεων. Το γεγονός ότι η 
περίπτωση απουσίας συμβατικού θορύβου μελετήθηκε ξεχωριστά, οφείλεται κυρίως στα 
εξής: α) στην απλοποίηση απαιτητικών πράξεων και β) στην ανάδειξη σημαντικών 
γεωμετρικών  ιδιοτήτων. Συγκεκριμένα, προέκυψε κατάλληλο φράγμα για τη σταθερά της 
συνθήκης «Περιορισμένης Ισομετρίας» (“Restricted Isometry Property” - (RIP)), το οποίο 
εξασφαλίζει ότι η ανάκτηση του σήματος μέσω του GARD είναι ακριβής (μηδενικό σφάλμα). 
Τέλος, για την περίπτωση όπου ακραίες τιμές και συμβατικός θόρυβος συνυπάρχουν και 
με την παραδοχή ότι το διάνυσμα του συμβατικού θορύβου είναι φραγμένο, προέκυψε μια 
αντίστοιχη συνθήκη η οποία εξασφαλίζει την ανάκτηση του φορέα του αραιού διανύσματος 
θορύβου (outliers). Δεδομένου ότι μια τέτοια συνθήκη ικανοποιείται, αποδείχθηκε ότι το 
σφάλμα προσέγγισης είναι φραγμένο και άρα ο εκτιμητής GARD ευσταθής. 

Για το πρόβλημα της εύρωστης μη γραμμικής παλινδρόμησης, θεωρείται, επιπλέον, 
ότι η άγνωστη μη γραμμική συνάρτηση ανήκει σε ένα χώρο Hilbert με αναπαραγωγικούς 
πυρήνες (RKHS). Λόγω της ύπαρξης ακραίων παρατηρήσεων, τεχνικές όπως το Kernel 
Ridge Regression (KRR) ή το Support Vector Regression (SVR) αποδεικνύονται 
ανεπαρκείς. Βασισμένοι στην προαναφερθείσα ανάλυση των συνιστωσών του θορύβου και 
χρησιμοποιώντας την τεχνική της αραιής μοντελοποίησης, πραγματοποιείται η εκτίμηση 
των ακραίων παρατηρήσεων σύμφωνα με τα βήματα μιας άπληστης επαναληπτικής 
διαδικασίας. Ο προτεινόμενος αλγόριθμος ονομάζεται “Kernel Greedy Algorithm for Robust 
Denoising” (KGARD), και εναλλάσσει τα βήματά μεταξύ ενός εκτιμητή KRR και της 



αναγνώρισης ακραίων παρατηρήσεων, με βάση τον OMP. Αναλύεται θεωρητικά η 
ικανότητα του αλγορίθμου να αναγνωρίσει τις πιθανές ακραίες παρατηρήσεις. Επιπλέον, ο 
αλγόριθμος KGARD συγκρίνεται με άλλες μεθόδους αιχμής μέσα από εκτεταμένο αριθμό 
πειραμάτων, όπου και παρατηρείται η σαφώς καλύτερη απόδοσή του. Τέλος, η 
προτεινόμενη μέθοδος για την εύρωστη παλινδρόμηση εφαρμόζεται στην αποθορύβωση 
εικόνας, όπου αναδεικνύονται τα σαφή πλεονεκτήματα της μεθόδου. Τα πειράματα 
επιβεβαιώνουν ότι ο αλγόριθμος KGARD βελτιώνει σημαντικά την διαδικασία της 
αποθορύβωσης, στην περίπτωση όπου στον θόρυβο υπεισέρχονται ακραίες 
παρατηρήσεις. 
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ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: εύρωστη γραμμική παλινδρόμηση, άπληστος αλγόριθμος για εύρωστη 
γραμμική παλινδρόμηση, εύρωστη μη γραμμική παλινδρόμηση σε 
χώρους Hilbert με αναπαραγωγικούς πυρήνες, άπληστος αλγόριθμος 
για εύρωστη γραμμική παλινδρόμηση σε χώρους Hilbert με 
αναπαραγωγικούς πυρήνες, αποθορύβωση εικόνας 

 



To my beloved wife and child...





Acknowledgements

This dissertation would have not been possible without the help of many people who supported
me during the demanding process.

Foremost, I would like to express my sincere gratitude to my supervisor, Prof. Sergios
Theodoridis, for introducing me to the “world” of scientific research and giving me the oppor-
tunity to pursue a doctoral degree. His knowledge and continuous guidance during the time of
research and the writing of the thesis has been a significant learning experience to me. I feel
extremely fortunate that I have worked with him and I will always be inspired by his amount
of enthusiasm, patience and motivation for research.

Besides my supervisor, I am also grateful to Dr. Pantelis Bouboulis for the continuous
support. His expertise improved my research skills and also prepared me for new challenges.

My sincere thanks also goes to the rest of my thesis committee: Prof. Leoni Euaggelatou-
Dalla, who was the spark for me to start out, and Prof. Nikolaos Kalouptsidis for his insightful
comments that kept me busy for quite some time.

My work has also benefited from my collaboration with Dr. Yannis Kopsinis, with whom
I have had numerous long discussions over several topics. I would also like to thank Dr. Kon-
stantinos Themelis for his assistance with the Bayesian codes.

Finally, I would like to thank my friends and colleagues, Dr. Symeon Chouvardas and Dr.
Dimitris Manatakis, with whom I have spent countless pleasant hours working in the lab.





List of Publications

Refereed Journal Papers

1. G. Papageorgiou, P. Bouboulis, and S. Theodoridis, “Robust Linear Regression Analysis
- A Greedy Approach”, IEEE Transactions on Signal Processing, Vol. 63, Issue: 15, p.
3872-3887, 2015.

2. G. Papageorgiou, P. Bouboulis, and S. Theodoridis, “Robust non-linear Regression: A
Greedy Approach Employing Kernels”, under review, IEEE Transactions on Signal Pro-
cessing, 2016.

Refereed Conference Papers

1. G. Papageorgiou, P. Bouboulis, and S. Theodoridis, “Robust Regression in RKHS - An
Overview”, In Proceedings of the European Signal Processing Conference (EUSIPCO),
Nice, Cote d’Azur, France, 31st August – 4th September, 2015.

2. G. Papageorgiou, P. Bouboulis, and S. Theodoridis, “Robust Linear Regression Analysis
The Greedy Way”, In Proceedings of the European Signal Processing Conference (EU-
SIPCO), Lisbon, Portugal, September 1 – 5, 2014 (among the top five shortlisted for best
paper award).

3. P. Bouboulis, G. Papageorgiou, and S. Theodoridis, “Robust Image Denoising in RKHS
via Orthogonal Matching Pursuit”, International Workshop on Cognitive Information Pro-
cessing (CIP), Copenhagen, Denmark, May 26 – 28, 2014.

4. G. Papageorgiou, P. Bouboulis, and S. Theodoridis, “Robust Kernel-Based Regression
Using Orthogonal Matching Pursuit”, IEEE International Workshop on Machine Learning
for Signal Processing (MLSP), Southampton, United Kingdom, September 22 – 25, 2013.





Συνοπτική Παρουσίαση της
Διδακτορικής Διατριβής

Η ανάλυση παλινδρόμησης ή απλά παλινδρόμηση βρίσκεται στην καρδιά της Μηχανικής
Μάθησης. Σε ένα κλασσικό πρόβλημα παλινδρόμησης, δίνεται ένα σύνολο δεδομένων
εκπαίδευσης, όπου στόχος είναι η εκμάθηση μιας σειράς από άγνωστες παραμέτρους.
Αυτό έχει ως αποτέλεσμα να μπορούμε να πραγματοποιήσουμε προβλέψεις ή να εξά-
γουμε χρήσιμες πληροφορίες σχετικά με το βαθμό εξάρτησης μεταξύ της ανεξάρτητης και
της εξαρτημένης μεταβλητής. Η σχέση αυτή μπορεί βεβαίως να είναι γραμμική ή μη γραμ-
μική, που είναι και η πιο γενική κατηγορία.

Η πρώτη γραμμική παλινδρόμηση πραγματοποιήθηκε με τη μέθοδο «Ελαχίστων Τε-
τραγώνων», η οποία δόθηκε στη δημοσιότητα από τον Legendre το 1805 και από τον
Gauss το 1809. Δεδομένου ότι η πραγματική διαδικασία παραγωγής των δεδομένων είναι
γενικά άγνωστη, η ανάλυση παλινδρόμησης εξαρτάται συχνά και σε μεγάλο βαθμό από τις
υποθέσεις μας σχετικά με αυτή τη διαδικασία. Αν και κάποιες μέθοδοι χρησιμοποιούνται
ακόμα σε περιπτώσεις όπου κάποιες υποθέσεις παραβιάζονται μερικώς, η ακρίβεια τους
δεν είναι καλή. Ο πιο σημαντικός παράγοντας που επηρεάζει την απόδοση μιας μεθόδου
εκτίμησης παραμέτρων, υπό την προϋπόθεση ότι το μοντέλο είναι σωστό, είναι το είδος
του θορύβου που υπεισέρχεται στις παρατηρήσεις μας. Για παράδειγμα, στη γραμμική
παλινδρόμηση και παρουσία λευκού Gaussian θορύβου, η μέθοδος Ελαχίστων Τετραγώ-
νων είναι βέλτιστη, υπό την έννοια της μέγιστης πιθανοφάνειας (ML). Δυστυχώς όμως,
αυτό δεν είναι ισχύει στην περίπτωση που ο θόρυβος ακολουθεί άλλες κατανομές, όπως
για παράδειγμα μια κατανομή με μακριές ουρές. Σε μια τέτοια περίπτωση, ο εκτιμητής
Ελαχίστων Τετραγώνων αποτυγχάνει σημαντικά να δώσει αξιόπιστη εκτίμηση. Συνεπώς,
η απόδοση μιας μεθόδου δεν μπορεί να εξασφαλιστεί κάτω από οποιεσδήποτε συνθήκες.

Μια από τις σημαντικότερες προκλήσεις για το πρόβλημα της παλινδρόμησης είναι η
ανάπτυξη εύρωστων (robust) μεθόδων, δηλαδή βασισμένων σε τεχνικές οι οποίες δεν είναι
ευάλωτες σε σημαντικά εσφαλμένες μετρήσεις, οι οποίες ονομάζονται «ακραίες παρατη-
ρήσεις» (outliers). Παραδόξως, αν και όλα αυτά τα χρόνια έχει γίνει προσπάθεια να δοθεί
ένας ακριβής ορισμός για τις ακραίες παρατηρήσεις, αυτό δεν κατέστη δυνατό, καθότι είναι
άμεσα εξαρτώμενο από τα δεδομένα. Ο πιο συνηθισμένος χαρακτηρισμός για μια ακραία
παρατήρηση είναι ότι μοιάζει αταίριαστη με το υπόλοιπο σύνολο δεδομένων ή το γενικό
μοτίβο κατανομής τους. Θεωρούνται ως εσφαλμένες μετρήσεις οι οποίες προήλθαν από
διαφορετική πηγή και συχνά παρεκκλίνουν σημαντικά από τις υπόλοιπες παρατηρήσεις.

Οι μέθοδοι που έχουν αναπτυχθεί για την επίλυση προβλημάτων εύρωστης παλιν-
δρόμησης χωρίζονται σε δύο σημαντικές κατηγορίες: α) τις τεχνικές Διάγνωσης και β) εκεί-
νες της Εύρωστης Παλινδρόμησης. Παρόλο που οι δύο αυτές τεχνικές έχουν κοινό στόχο,
αυτός προσεγγίζεται με την αντίστροφη σειρά. Με τη χρήση διαγνωστικών εργαλείων, αρ-
χικά προσπαθούμε να αναγνωρίσουμε και να εξαιρέσουμε τις ακραίες παρατηρήσεις από
το σύνολο των δεδομένων, ώστε στη συνέχεια να εκτιμήσουμε τις παραμέτρους με μια



κλασσική μέθοδο, π.χ. Ελαχίστων Τετραγώνων. Από την άλλη πλευρά, μια μέθοδος εύ-
ρωστης παλινδρόμησης πρώτα ταιριάζει κατά προσέγγιση τα δεδομένα χρησιμοποιώντας
κάποιο εκτιμητή, και στη συνέχεια εκμεταλλεύεται την αρχική αυτή εκτίμηση για τον εντο-
πισμό των ακραίων παρατηρήσεων. Και οι δύο κατηγορίες έχουν μελετηθεί συστηματικά
για πάνω από μισό αιώνα και αποτελούν τα θεμέλια της Εύρωστης Στατιστικής.

Στο επίκεντρο αυτής της διατριβής βρίσκεται η μελέτη του προβλήματος της γραμ-
μικής και μη γραμμικής παλινδρόμησης και η ανάπτυξη εύρωστων αλγορίθμων, υπό το
πρίσμα των νέων τεχνικών αραιής μοντελοποίησης. Για πάνω από μια δεκαετία, η επιστη-
μονική κοινότητα της Επεξεργασίας Σήματος εστίασε το ενδιαφέρον της στην αραιή μοντε-
λοποίηση, η οποία ακόμα και σήμερα εξακολουθεί να είναι μια ερευνητικά ενεργή περιοχή.
Η αραιότητα σχετίζεται στενά με την επάρκεια για μια οικονομική αναπαράσταση, έναν
μηχανισμό που εναρμονίζεται με τη φύση, η οποία τείνει να είναι φειδωλή. Τα προβλήματα
βελτιστοποίησης με αραιές αναπαραστάσεις χωρίζονται σε δύο βασικές κατηγορίες. Στην
πρώτη κατηγορία ανήκουν εκείνες οι μέθοδοι που επιδιώκουν την ελαχιστοποίηση της
ℓ0(ψεύδο)-νόρμας, η οποία ισούται με τον αριθμό των μη μηδενικών συντεταγμένων ενός
διανύσματος. Λόγω ότι η ℓ0(ψεύδο)-νόρμα είναι μη κυρτή, έχει αποδειχθεί ότι τα προβλή-
ματα αυτά δεν επιλύονται σε πολυωνυμικό χρόνο (NP-Hard). Ωστόσο, έχουν αναπτυχθεί
τεχνικές οι οποίες μπορούν να παρακάμψουν τη συνδυαστική φύση αυτών των προβλη-
μάτων και κάτω υπό ορισμένες προϋποθέσεις να οδηγήσουν στη λύση τους. Μια πολύ
σημαντική τέτοια τεχνική είναι αυτή των «άπληστων» (greedy) αλγορίθμων. Η δεύτερη
κατηγορία η οποία είναι και δημοφιλέστερη, αποτελείται από κυρτά προβλήματα ελαχι-
στοποίησης της ℓ1-νόρμας.

H συνεισφορά της εργασίας που ακολουθεί είναι η ανάπτυξη μια νέας προσέγγισης
για την εύρωστη παλινδρόμηση, η οποία βασίζεται στην αξιοποίηση «άπληστων» τεχνικών
αραιής μοντελοποίησης. Θεωρώντας ότι οι ακραίες παρατηρήσεις είναι αραιές, δηλαδή
λίγες σε σχέση με το σύνολο των δεδομένων, πραγματοποιείται η ανάλυση του διανύσμα-
τος του θορύβου σε δύο συνιστώσες, μια για τον αναμενόμενο θόρυβο, που αναπόφευκτα
υπεισέρχεται στις μετρήσεις μας, και μια για τις ακραίες παρατηρήσεις που ενδέχεται να
υπάρχουν. Συγκεκριμένα, αναπτύχθηκαν δύο αλγόριθμοι βασισμένοι στον βασικό άπλη-
στο (greedy) αλγόριθμο Orthogonal Matching Pursuit (OMP). Ένας για τη γραμμική και
ένας δεύτερος για τη μη γραμμική παλινδρόμηση, όπου έγινε και χρήση χώρων Hilbert με
αναπαραγωγικούς πυρήνες. Η μελέτη και για τα δύο προβλήματα έγινε τόσο σε θεωρητικό
όσο και σε πρακτικό επίπεδο. Τέλος, ο δεύτερος αλγόριθμος που υλοποιήθηκε για το μη
γραμμικό πρόβλημα, εφαρμόστηκε για την αποθορύβωση εικόνας.

Εύρωστη Γραμμική Παλινδρόμηση

Για το πρόβλημα της γραμμικής παλινδρόμησης θεωρήσαμε ότι στα δεδομένα εξόδου
υπεισέρχεται αναμενόμενος θόρυβος και ακραίες παρατηρήσεις, τις οποίες θεωρούμε λί-
γες σε σχέση με τον αριθμό των δεδομένων. Επιπλέον, υποθέσαμε έναν ικανοποιητικό
αριθμό, N , από δεδομένα, μεγαλύτερο των άγνωστων παραμέτρων προς εκτίμηση, M . Η
προτεινόμενη μέθοδος για την εύρωστη γραμμική παλινδρόμηση βασίστηκε στο επανα-
ληπτικό σχήμα του άπληστου αλγόριθμου OMP. Ο νέος αλγόριθμος, Greedy Algorithm for
Robust Denoising (GARD), εναλλάσσεται μεταξύ ενός βήματος Ελάχιστων Τετραγώνων
και της αναγνώρισης και επιλογής μιας μόνο ακραίας παρατήρησης, μέσα από το υπό-
λοιπο της μεθόδου Ελαχίστων Τετραγώνων. Πρόκειται για έναν αποδοτικό αλγόριθμο, ο
οποίος συνδυάζει τις τεχνικές της διάγνωσης και της εύρωστης παλινδρόμησης.
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(α): Διάσταση αγνώστου M = 100. (β): Διάσταση αγνώστου M = 100.

Σχήμα 1: (α): Το μέσο τετραγωνικό σφάλμα (MSE) σε λογαριθμική κλίμακα συναρτήσει του ποσοστού
ακραίων παρατηρήσεων στα δεδομένα εξόδου. (β): Λογαριθμική κλίμακα του μέσου χρόνου σύγκλισης κάθε
μεθόδου για το ίδιο πείραμα. Ο αριθμός κάθε δείγματος αποτελείται από N = 600 παρατηρήσεις.

Η απλότητα του νέου αλγόριθμου GARD πηγάζει από τον OMP, και αποδείχθηκε
κλειδί για την εκτενή μελέτη των ιδιοτήτων του. Συγκεκριμένα, τα θεωρητικά αποτελέσματα
που προέκυψαν είναι τα εξής:

• H απόδειξη της σύγκλισης του GARD σε πεπερασμένο αριθμό βημάτων.

• Για την περίπτωση όπου μόνο ακραίες παρατηρήσεις υπεισέρχονται στις μετρήσεις
μας, η απόδειξη μιας (ανισοτικής) συνθήκης-φράγματος για τη σταθερά της συνθή-
κης Περιορισμένης Ισομετρίας (Restricted Isometry Property - (RIP)), η οποία εξα-
σφαλίζει ότι η μέθοδος επιτυγχάνει με επιτυχία να αναγνωρίσει τις ακραίες παρα-
τηρήσεις, όπου εμφανίζονται. Επιπλέον, στην περίπτωση αυτή, εξασφαλίζεται ότι ο
GARD καταφέρνει να ανακτήσει την ακριβή λύση του προβλήματος, χωρίς σφάλμα.

• H θεμελίωση ενός δεύτερου φράγματος για τη σταθερά της συνθήκης Περιορισμέ-
νης Ισομετρίας (RIP), το οποίο εξασφαλίζει ότι η μέθοδος επιτυγχάνει με επιτυχία
να αναγνωρίσει τις ακραίες παρατηρήσεις, παρουσία και αναμενόμενου θορύβου, η
ενέργεια του οποίου όμως είναι φραγμένη.

• Για την προηγούμενη περίπτωση, προέκυψε, επιπλέον, ένα φράγμα για το σφάλμα
της προσέγγισης, το οποίο μας εξασφαλίζει τη σταθερότητα του αλγόριθμου GARD.

Αξίζει να σημειωθεί ότι, η ανάκτηση των θέσεων των ακραίων παρατηρήσεων μέσα από
το παραπάνω φράγμα είναι ένα αποτέλεσμα που προέκυψε για πρώτη φορά στα πλαίσια
της εύρωστης παλινδρόμησης.

Στη συνέχεια, ακολούθησε μια σειρά από εκτεταμένα πειράματα στα οποία ο GARD
συγκρίθηκε με ανταγωνιστικούς του αλγόριθμους. Για κάθε μέθοδο, μετρήθηκε το μέσο τε-
τραγωνικό σφάλμα (MSE) και ο χρόνος σύγκλισης, συναρτήσει του ποσοστού των ακραίων
παρατηρήσεων που υπεισέρχονται στα δεδομένα εξόδου. Παρατηρήθηκε ότι ο αλγόριθ-
μος GARD:

• Προσεγγίζει τη λύση του προβλήματος παλινδρόμησης με το χαμηλότερο μέσο τε-
τραγωνικό σφάλμα (MSE).

• Παρουσιάζει τη μεγαλύτερη ευρωστία από κάθε άλλη μέθοδο.
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(α): Μόνο ακραίες παρατηρήσεις. (β): Ακραίες παρατηρήσεις και θόρυβος φραγμένης ενέργειας.

Σχήμα 2: Η αναγνώριση των ακραίων παρατηρήσεων και η συσχέτιση με το θεωρητικό φράγμα της συνθήκης
Περιορισμένης Ισομετρίας δS . (α): Ο θόρυβος αποτελείται μόνο από ακραίες παρατηρήσεις. (β): Ο θόρυβος
αποτελείται από ακραίες παρατηρήσεις και συμβατικό φραγμένης ενέργειας. Δίνεται επίσης το εκτιμώμενο
και το πραγματικό σφάλμα της προσέγγισης που επιτυγχάνει ο GARD (κάτω δεξιά).
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(α): Διάσταση αγνώστου M = 100. (β): Μετάβαση από την επιτυχία στην αποτυχία με πιθανότητα 50%.

Σχήμα 3: (α): Η πιθανότητα για σωστή εκτίμηση σε σχέση με το ποσοστό των ακραίων παρατηρήσεων.
(β): Καμπύλες μετάβασης από σωστή σε λανθασμένη εκτίμηση, συναρτήσει του αριθμού των αγνώστων για
σταθερό αριθμό N = 600 παρατηρήσεων.

• Απαιτεί το μικρότερο μέσο χρόνο σύγκλισης.

Στο Σχήμα 1, παρατηρείται η απόδοση του προτεινόμενου αλγόριθμου, KGARD, σε σχέση
με άλλες μεθόδους αιχμής, ενώ στο Σχήμα 2 παρουσιάζεται η ανάκτηση των θέσεων των
ακραίων παρατηρήσεων από τον GARD.

Στο Σχήμα 3 (α), διαμορφώνεται η πιθανότητα για σωστή εκτίμηση για κάθε μέθοδο,
καθώς αυξάνεται το ποσοστό των ακραίων παρατηρήσεων. Στο Σχήμα 3 (β), δίνονται οι
καμπύλες μετάβασης από σωστή σε λανθασμένη εκτίμηση για το ποσοστό 50%, μετα-
βάλλοντας τον αριθμό των αγνώστων. Δηλαδή, για παράδειγμα στη διάσταση M = 100
(Σχήμα (α)), η οριζόντια ευθεία που διέρχεται από το 0.5 δίνει τα αντίστοιχα ποσοστά των
ακραίων παρατηρήσεων που βρίσκονται από τα σημεία τομής των καμπύλων και της κα-
τακόρυφης ευθείας που περνά από τη διάσταση 100 του Σχήματος 3 (β). Είναι εμφανές ότι
ο αλγόριθμος GARD, εκμεταλλεύεται τον διαθέσιμο αριθμό των παρατηρήσεων καλύτερα
από τις άλλες μεθόδους.

Τέλος, στον Πίνακα 1 δίνεται το μετρούμενο μέσο τετραγωνικό σφάλμα για κάθε μέ-
θοδο, με τον θόρυβο να ακολουθεί μια πιο γενική κατανομή. Στις στήλες A, B και C ο
θόρυβος προκύπτει από μια κατανομή με μακριές ουρές, την alpha-stable της Lévy, ενώ
στη στήλη D χρησιμοποιήθηκε θόρυβος με ακραίες παρατηρήσεις και αναμενόμενος, προ-
ερχόμενος από δύο ανεξάρτητες Gaussian κατανομές.



Πίνακας 1: Το μετρούμενο μέσο τετραγωνικό σφάλμα (MSE) για πιο γενικές περιπτώσεις θορύβου. Για της
στήλες A,B και C ο θόρυβος προκύπτει από μια κατανομή με μακριές ουρές, την alpha-stable της Lévy. Για
την στήλη D χρησιμοποιήθηκε θόρυβος που αποτελείται από ακραίες παρατηρήσεις και επιπλέον από δύο
ανεξάρτητες Gaussian κατανομές.

Algorithm Test A Test B Test C Test D
GARD 0.1772 0.0180 0.0586 0.690
M-est 0.2248 0.2859 1.844e+06 0.704
SOCP 0.4990 0.3502 5.852e+05 1.011
SBL 0.9859 58.3489 2.165e+06 1.292
ROMP 0.2248 0.2859 1.844e+06 0.704

Εύρωστη Μη Γραμμική Παλινδρόμηση

Για τη μελέτη της εύρωστης μη γραμμικής παλινδρόμησης θεωρήσαμε ότι η συνάρτηση η
οποία παράγει τα δεδομένα χωρίς θόρυβο ανήκει σε ένα χώρο Hilbert με αναπαραγωγι-
κούς πυρήνες (RKHS). Χρησιμοποιώντας τους πυρήνες, καταφεύγουμε σε απλές πράξεις
(γραμμικές) με την αντικατάσταση της μήτρας παλινδρόμησης από μια μήτρα πυρήνων.
Με αυτό τον τρόπο και κάνοντας χρήση του Θεωρήματος Αναπαράστασης (Representer
Theorem), καταλήξαμε σε ένα επαναληπτικό σχήμα, επίσης βασισμένο στον αλγόριθμο
OMP. Αξίζει να σημειωθεί, ότι το πρόβλημα αυτό είναι μη παραμετρικό, σε αντίθεση με το
αντίστοιχο γραμμικό πρόβλημα. Συνεπώς, ο προτεινόμενος αλγόριθμος διαφέρει σημα-
ντικά από τον GARD για το γραμμικό μοντέλο. Τέλος, στο μοντέλο που χρησιμοποιήσαμε
για το μη γραμμικό πρόβλημα θεωρήσαμε ότι στις μετρήσεις μας υπεισέρχεται αναμενό-
μενος θόρυβος (π.χ. Gaussian) και λίγες ακραίες παρατηρήσεις (αραιές).

Ο προτεινόμενος αλγόριθμος ονομάστηκε Kernel Greedy Algorithm for Robust De-
noising (KGARD) και εναλλάσσεται μεταξύ ενός βήματος Ελαχίστων Τετραγώνων με αντι-
σταθμιστή και ενός βήματος αναγνώρισης και επιλογής μιας ακραίας παρατήρησης μέσα
από το υπόλοιπο. Η προσθήκη του όρου αντιστάθμισης στο μοντέλο οδηγεί σε μια πιο
σύνθετη θεωρητική ανάλυση, αλλά είναι αναπόφευκτη, λόγω της αναζήτησης για μια σχε-
τικά ομαλή συνάρτηση. Παρόλα αυτά, προέκυψαν σημαντικά θεωρητικά ευρήματα για τον
αλγόριθμο KGARD, τα οποία συνοψίζονται ακολούθως:

• Η λύση του προβλήματος Ελαχίστων Τετραγώνων με αντισταθμιστή σε κάθε βήμα
είναι μοναδική.

• Αποδείχθηκε ένα φράγμα της μέγιστης ιδιάζουσας τιμής (singular value) του πίνακα
των πυρήνων, το οποίο, αν ικανοποιείται, εξασφαλίζει ότι η μέθοδος πρώτα θα ανα-
γνωρίσει τις σωστές θέσεις των ακραίων παρατηρήσεων, στην περίπτωση όπου δεν
υπεισέρχεται άλλος θόρυβος στις μετρήσεις μας.

Η ανάλυση πραγματοποιήθηκε για την περίπτωση όπου στο θόρυβο υπεισέρχονται μόνο
ακραίες παρατηρήσεις. Εντούτοις, όπως παρατηρείται στα πειράματα, η μέθοδος επιτυγ-
χάνει να ανακτήσει τη σωστές θέσεις των ακραίων παρατηρήσεων και σε πολλές περι-
πτώσεις όπου το θεωρητικό αποτέλεσμα δεν ισχύει. Αυτό οδηγεί στο συμπέρασμα ότι
η συνθήκη αυτή είναι αυστηρή. Στην πράξη, όταν στις μετρήσεις υπεισέρχεται επιπλέον
και αναμενόμενος θόρυβος, η μέθοδος καταφέρνει να αναγνωρίσει την πλειοψηφία των
θέσεων των ακραίων παρατηρήσεων. Ο λόγος για τον οποίο η ανάλυση δεν πραγματο-
ποιείται για την περίπτωση αυτή είναι η δυσκολία των υπολογισμών, καθότι η ανάλυση
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(α): Παρατηρήσεις με θόρυβο. (β): Εκτίμηση με Ελάχιστα Τετράγωνα με αντισταθμιστή. (γ): Εκτίμηση με τον αλγόριθμο KGARD.

Σχήμα 4: Ο ρόλος της εύρωστης μη γραμμικής παλινδρόμησης. (α): Δεδομένα με Gaussian θόρυβο και
ακραίες παρατηρήσεις. (β): Η εκτίμηση μέσω μιας μη εύρωστης τεχνικής (κόκκινη διακεκομμένη γραμμή)
απέχει σημαντικά από την πραγματική μη γραμμική συνάρτηση (μαύρη γραμμή). Το μέσο τετραγωνικό
σφάλμα υπολογίζεται στο 10.79. (γ): Η εκτίμηση μέσω του KGARD (πράσινη διακεκομμένη γραμμή) είναι
πολύ πιο ακριβής και το μέσο τετραγωνικό σφάλμα υπολογίζεται στο 1.21.

γίνεται ιδιαίτερα σύνθετη. Η απουσία του αναμενόμενου θορύβου καθιστά την ανάλυση
ευκολότερη και δίνει έμφαση σε θεωρητικές πτυχές που καταδεικνύουν τους λόγους για
τους οποίους η μέθοδος λειτουργεί. Τέλος, αξίζει να σημειωθεί ότι μια τέτοια θεωρητική
ανάλυση παρουσιάζεται για πρώτη φορά στη σχετική βιβλιογραφία. Η σπουδαιότητα της
εύρωστης μη γραμμικής παλινδρόμησης φαίνεται στο Σχήμα 4, όπου γίνεται σύγκριση του
αλγορίθμου με τον εκτιμητή Ελαχίστων Τετραγώνων με αντισταθμιστή.

Στη συνέχεια ελέγξαμε την απόδοση του αλγόριθμου KGARDπειραματικά, μέσα από
μια σειρά μετρήσεων. Οι ανταγωνιστικοί αλγόριθμοι με τους οποίους συγκρίθηκε επίσης
βασίζονται σε αραιές αναπαραστάσεις και χρησιμοποιούν αναπαραγωγικούς πυρήνες χώ-
ρων Hilbert. Η μέθοδος RAM βασίζεται στην ελαχιστοποίηση της ℓ1-νόρμας ενός διανύ-
σματος, ενώ η μέθοδος RB-RVM κάνει χρήση Bayesian modeling τεχνικών. Στον Πίνακα
2, παρουσιάζεται το εκτιμώμενο μέσο τετραγωνικό σφάλμα (MSE) για την προσέγγιση της
συνάρτησης f(x) = 20sinc(2πx). Επιπλέον, δίνονται το ποσοστό σωστών και λάθος θέ-
σεων που κάθε μέθοδος καταχώρισε ως ακραία παρατήρηση και ο μέσος χρόνος σύγκλι-
σης, για κάθε επίπεδο αναμενόμενου Gaussian θορύβου (σε dB) και ποσοστό ακραίων
παρατηρήσεων. Παρατηρείται ότι για τις περισσότερες περιπτώσεις, εκτός από την περί-
πτωση ισχυρού θορύβου με 20% ακραίες παρατηρήσεις, ο KGARD παρουσιάζει τη μικρό-
τερη τιμή τετραγωνικού σφάλματος, ενώ παράλληλα καταφέρνει με επιτυχία να αναγνωρί-
σει τις θέσεις των ακραίων παρατηρήσεων. Τέλος, αξίζει να σημειωθεί ότι η απόδοση της
μεθόδου ήταν ανάλογη και για την περίπτωση όπου τα δεδομένα εισόδου ανήκουν στον
R2.



Πίνακας 2: Μετρούμενο μέσο τετραγωνικό σφάλμα (MSE) για την προσέγγιση της συνάρτησης f(x) =
20sinc(2πx) για x ∈ R, για τα σύνολα εκπαίδευσης και επιβεβαίωσης. Επιπλέον, δίνονται το ποσοστό σω-
στών και λάθος θέσεων που κάθε μέθοδος καταχώρισε ακραία παρατήρηση και ο μέσος χρόνος σύγκλισης,
για κάθε επίπεδο αναμενόμενου Gaussian θορύβου (σε dB) και ποσοστό ακραίων παρατηρήσεων.

Algorithm MSEtr MSEval Cor. ind. Wr. ind. MIT (sec) Inlier - Outlier
RB-RVM 0.0850 0.0851 - - 0.298 20 dB - 5%

RAM (λ = 0.07, µ = 2.5) 0.0344 0.0345 100 % 0.2 % 0.005 20 dB - 5%
KGARD (λ = 0.2, ε = 10) 0.0285 0.0285 100 % 0 % 0.004 20 dB - 5%

RB-RVM 0.0911 0.0912 - - 0.298 20 dB - 10%
RAM (λ = 0.07, µ = 2.5) 0.0371 0.0372 100 % 0.1 % 0.007 20 dB - 10%
KGARD (λ = 0.2, ε = 10) 0.0305 0.0305 100 % 0 % 0.008 20 dB - 10%

RB-RVM 0.0992 0.0994 - - 0.299 20 dB - 15%
RAM (λ = 0.07, µ = 2) 0.0393 0.0393 100 % 0.6 % 0.008 20 dB - 15%

KGARD (λ = 0.3, ε = 10) 0.0330 0.0330 100 % 0 % 0.012 20 dB - 15%
RB-RVM 0.1189 0.1184 - - 0.305 20 dB - 20%

RAM (λ = 0.07, µ = 2) 0.0421 0.0422 100 % 0.4 % 0.010 20 dB - 20%
KGARD (λ = 1, ε = 10) 0.0626 0.0626 100 % 0 % 0.017 20 dB - 20%

RB-RVM 0.3630 0.3631 - - 0.327 15 dB - 5%
RAM (λ = 0.15, µ = 5) 0.1035 0.1036 100% 0.7 % 0.005 15 dB - 5%

KGARD (λ = 0.3, ε = 15) 0.0862 0.0862 100 % 0.1 % 0.005 15 dB - 5%
RB-RVM 0.3828 0.3830 - - 0.319 15 dB - 10%

RAM (λ = 0.15, µ = 5) 0.1117 0.1118 100% 0.4 % 0.006 15 dB - 10%
KGARD (λ = 0.3, ε = 15) 0.0925 0.0925 100 % 0 % 0.008 15 dB - 10%

RB-RVM 0.4165 0.4166 - - 0.317 15 dB - 15%
RAM (λ = 0.15, µ = 5) 0.1186 0.1186 100% 0.3 % 0.007 15 dB - 15%

KGARD (λ = 0.3, ε = 15) 0.1001 0.1003 100 % 0 % 0.012 15 dB - 15%
RB-RVM 0.4793 0.4798 - - 0.312 15 dB - 20%

RAM (λ = 0.15, µ = 4) 0.1281 0.1282 100% 1.4 % 0.008 15 dB - 20%
KGARD (λ = 0.7, ε = 15) 0.1340 0.1349 100 % 0 % 0.016 15 dB - 20%

Εφαρμογή στην αποθορύβωση Εικόνας

Τέλος, έμφαση δόθηκε σε εφαρμογές της μεθόδου KGARD για την αποθορύβωση εικό-
νας, παρουσία ακραίων τιμών. Ο θόρυβος που χρησιμοποιήθηκε είναι Gaussian για τον
αναμενόμενο και αλάτι-πιπέρι (salt and pepper noise) για τις ακραίες παρατηρήσεις.

Η συμβολή μας στην εύρωστη αποθορύβωση ήταν μέσω του αλγόριθμου KGARD.
Συγκεκριμένα, προτείνονται δύο διαφορετικές μέθοδοι αποθορύβωσης για αυτό το είδος
του θορύβου. Η πρώτη βασίζεται άμεσα στον αλγόριθμο KGARD. Η δεύτερη μέθοδος
ολοκληρώνεται σε δύο στάδια: αρχικά πραγματοποιείται ο εντοπισμός και η απομάκρυνση
των ακραίων παρατηρήσεων μέσω του KGARD. Στη συνέχεια ακολουθεί η αφαίρεση του
εναπομείναντος θορύβου μέσω μιας μεθόδου αιχμής βασισμένης σε wavelets (BM3D).
Τα αποτελέσματα που προέκυψαν είναι βάσει του μετρούμενου PSNR (Peak singal-to-
noise-ratio). Στον Πίνακα 3 δίνονται ορισμένες τιμές για την αποθορύβωση της εικόνας
της Lena και στο Σχήμα 5 παρατηρείται το αποτέλεσμα. Τέλος, στον Πίνακα 4 δίνονται
οι σημαντικότερες τιμές για το μετρούμενο PSNR στην αποθορύβωση της εικόνας του
καραβιού boat. Στο Σχήμα 6 παρατηρούμε ότι η συνδυαστική μέθοδος KGARD-BM3D
δίνει ένα πολύ καλό αποτέλεσμα.



(α) (β)

(γ) (δ)

Σχήμα 5: (α): Η εικόνα της Lena με 20 dB Gaussian θορύβου και 10% ακραίες παρατηρήσεις (salt and
pepper noise). (β): Αποθορύβωση με τη wavelet μέθοδο BM3D (PSNR=30.66 dB). (γ) Αποθορύβωση με τον
αλγόριθμο KGARD (PSNR=31.94 dB). (δ) Αποθορύβωση με τον αλγόριθμο KGARD-BM3D (PSNR=33.81
dB).



Πίνακας 3: Αφαίρεση θορύβου από την εικόνα Lena για διάφορα επίπεδα Gaussian θορύβου και ποσοστά
ακραίων παρατηρήσεων. Σύγκριση των μεθόδων BM3D, RB-RVM, KGARD και KGARD-BM3D.

Method Parameters Gaussian Noise Impulses (±100) PSNR
BM3D s = 30 25 dB 10% 30.84 dB
RB-RVM σ = 0.3 25 dB 10% 31.25 dB
KGARD σ = 0.3, λ = 1 25 dB 10% 33.49 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 10% 35.67 dB
BM3D s = 35 20 dB 10% 30.66 dB
RB-RVM σ = 0.4 20 dB 10% 29.09 dB
KGARD σ = 0.3, λ = 1 20 dB 10% 31.94 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 15 20 dB 10% 33.81 dB
BM3D s = 40 15 dB 10% 29.94 dB
RB-RVM σ = 0.4 15 dB 10% 25.85 dB
KGARD σ = 0.3, λ = 2 15 dB 10% 28.47 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 25 15 dB 10% 30.77 dB

Πίνακας 4: Αφαίρεση θορύβου από την εικόνα boat για διάφορα επίπεδα Gaussian θορύβου και ποσοστά
ακραίων παρατηρήσεων, για τις μεθόδους BM3D και KGARD-BM3D.

Method Parameters Gaussian Noise Impulses (±100) PSNR
BM3D s = 25 25 dB 5% 30.57 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 5% 34.61 dB
BM3D s = 35 20 dB 10% 28.97 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 15 20 dB 10% 31.52 dB
BM3D s = 50 20 dB 20% 27.49 dB

KGARD-BM3D σ = 0.4, λ = 1, s = 15 20 dB 20% 29.7 dB

(α) (β) (γ)

Σχήμα 6: (α): Η εικόνα boat με 20 dB Gaussian θορύβου και 10% ακραίες παρατηρήσεις. (β): Αφαίρεση θο-
ρύβου με τη μέθοδο BM3D (PSNR=28.97 dB). (γ): Αφαίρεση θορύβου με τη συνδιασμένη μέθοδο KGARD-
BM3D (PSNR=31.52 dB).
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Notation

The following mathematical notation has been used throughout the thesis. The symbols are
summarized:

• Scalars are denoted with lowercase or uppercase italics, e.g., ε or N .

• The floor function of any non-negative real number x is denoted as bxc and is equal to
the largest integer less than or equal to x.

• Sets are denoted with capital calligraphic letters, e.g., S, where Sc denotes the complement
of S and |S| denotes its cardinality.

• Vectors are denoted with boldface lowercase letters, e.g., θ (column vector). Moreover,
the i-th element of vector θ is denoted by θi.

• Matrices are denoted with boldface capital letters, e.g., X, and the symbol ·T denotes
the transpose of the respective matrix/vector. In addition, the j-th column of matrix X
is denoted by xj and the element of the i-th row and j-th column of matrix X by xij.

• Functions/operators are denoted with lowercase or uppercase roman letters (english -
greek), e.g., f or F - ψ or Ψ, except for the expectation operator, where E[·] is employed
and the probability of a random variable, which is denoted by p(·).

• The operator supp(u) is reserved for the support set of the vector u.

• The operator diag(a) denotes the respective square diagonal matrix (this matrix has the
vector’s coefficients on its diagonal, while all other entries are equal to zero).

• An arithmetic index in parenthesis, i.e., (k), k = 0, 1, . . . , is reserved to declare an iterative
(algorithmic) process, e.g., on matrix X and vector r the iteratively generated matrix and
vector are denoted by X(k) and r(k), respectively. Following this rationale, r(k),i is reserved
for the i-th element of the iteratively generated vector r(k).

• The identity matrix of dimension N×N will be denoted as IN where ej is its j-th column
vector. The zero matrix of dimension N ×K is denoted as ON×K , while the vector of zero
elements, for appropriate dimension, as 0.

• The matrix that comprises the columns ofX whose indices belong to the ordered index set
S = {j1, . . . , jS} is denoted by XS . As a special case, the columns of matrix IN restricted
over the set S, as IS . Moreover, for an augmented matrix of the form A = [B C] the
notation A:|S is reserved for the restriction of columns over its second part only, i.e.,



matrix C, over the set S. For example, let A = [X IN ]; the restriction implies that
A:|S = [X IS ]. In other words, all the columns of the first matrix are included and only
the columns of the second one are restricted. Finally, the submatrix that comprises rows
and columns of X over the set, S, is denoted by XS,S .

• The notation W(S) denotes the dependency of the matrix W on the given set, S. Thus,
it should be not confused with the restriction of its columns where no parenthesis is
employed.

• The linear operator FS(v) := ISI
T
S v is used on a vector v of RN over the index set

S ⊆ J = {1, . . . , N} and has identical coordinates with v in all indices of S and zero
everywhere else. It is clear that for the sparse vector u with support set S, leads to
FS(u) = ISI

T
Su = u. Moreover, for the set S with |S| = S ≤ N , vS denotes the

restriction of the vector v ∈ RN over the set. Thus, vS ∈ RS is a (lower dimensional)
vector with entries the elements of v in indices that belong to the set S; that is, vS = ITS v.
Hence, FS(v) = ISvS , directly follows.
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Chapter 1

Introduction

1.1 Regression in Machine Learning

Learning from data is not only at the heart of any scientific field, but it is also closely associated
to what we call human intelligence. From our early days of birth, a large part of our life is
devoted to (mostly empirical) learning. Besides, not only humans learn. Other entities, such
as mammals, also rely on their ability to “learn” and adapt to their environment in order to
survive.

In sciences, the need of humans to learn from data is what led to the development of differ-
ent techniques that unveil the hidden structures and patterns associated with their generation
mechanism. This information, in turn, provides us with an understanding of the nature of the
data and paves the way to take actions or make predictions for the future. Machine Learning
revolves around the development of efficient algorithms and techniques pointing in such direc-
tion. Although Machine Learning has its roots mainly in mathematical disciplines that have
been established over centuries ago, it is only recently, over the last few decades, that has found
widespread applications due to the advent and advances in computers. Nowadays, it comprises
a major part in various disciplines such as Statistics, Pattern Recognition, Biostatistics, Signal
and Image Processing, Computer Science, Industrial Automation and Computer-Aided Medical
Diagnosis, just to name a few. The common and principal goal for any ML method is to use a
computer (machine) in order to to first learn from the available data and then use the acquired
“knowledge” to perform prediction.

At the heart of Machine Learning is the task of regression or regression analysis . In
a classic regression task, given a set of training data, the goal is to learn a set of unknown
parameters in order to make predictions. In simple words, the task could be seen as a curve
fitting problem. Consider a set of training points (yi,xi), yi ∈ R and xi ∈ RM for i = 1, . . . , N.
The task is to estimate a function, f, whose graph fits the data. The target function, f, of the
independent variables, x, is called the regression function. The difference between regression
and classification is that in regression the dependent variable belongs to an interval in the real
axis (or region in the complex plane), while in classification it is a discrete variable, see[1].

Regression analysis is widely used for prediction and forecasting. It is also used as a means
to extract information concerning the degree of dependence among the dependent (output) and
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(a) (b)

Figure 1.1: Given the training data (gray dots), the task of regression is to learn the underlying
structure, i.e., the regression function f. In (a) the regression function is linear, while in (b) the
regression function is nonlinear.

the independent (input) variables. Thus, useful information and related implications of such
dependencies can be revealed.

The earliest form of regression was the method of Least Squares (LS), which was published
by Legendre in 1805 and by Gauss in 1809, see [2], [3]. Legendre and Gauss both applied the
method to the problem of determining the orbits of comets, based on astronomical observations.
Gauss published a further development of the theory of the LS in 1821 including a version of
the Gauss-Markov theorem, see [4].

Many techniques that perform regression analysis have been developed, since then. Fa-
miliar methods such as linear regression and ordinary Least Squares regression belong to the
parametric class of learning techniques; that is, the model function is defined in terms of a finite
number of unknown parameters that are estimated from the data, as demonstrated in Figure 1.1
(a). In contrast, nonparametric regression refers to techniques that bypass the need for explicit
parameterization of the unknown functional dependence. For example, the regression function
can be assumed to lie in a specific set of functions, which may also be infinite-dimensional. A
popular example, that will be adopted in the current thesis, is to assume that the regression
function lies in a Reproducing Kernel Hilbert Space (RKHS), as shown in Figure 1.1 (b).

The performance of regression analysis methods in practice depends on the form of the
data generating process and how this relates to the regression model being used. Since the true
form of the data-generating process is generally unknown, regression analysis often depends, to
a large extent, on making assumptions concerning this process. Regression models, that are
designed for prediction, are often useful even when the assumptions are moderately violated,
although they may not perform optimally. However, if our goal is to make accurate predictions,
we should look for a model/method that is robust enough, i.e., it can tolerate abnormalities on
the data so that the estimation is not significantly affected.
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Figure 1.2: A data set contaminated by outliers (red dots).

1.2 Estimation in the Presence of Outliers

We have already pointed out that the accuracy of the estimation in a regression model strongly
depends on the data generating process. Undoubtedly, the most common threat that reflects
to the performance of an estimation method is the type of noise, that corrupts the data. For
example, in the task of linear regression, the Least Squares (LS) estimator is optimal, in the
Maximum Likelihood (ML) sense, if the noise is white Gaussian. Unfortunately, this is not the
case if the noise follows other distributions, such as a heavy tailed one. Thus, it is not expected
that a specific model will work under any circumstances. Indeed in some cases, where the data
are contaminated by heavy-tailed noise, certain methods collapse. Thus, the direction we should
take is to seek for robust methods, which match the problem at hand.

The notion of robustness, i.e., the efficiency of a method to solve a learning task from data
under noise uncertainties of various types, has been a major issue in the scientific community for
over half a century [5, 6]. Regardless the nature of the problem, e.g., classification or regression,
the goal is to minimize the effect of the observations that have been corrupted by unexpected
high values of noise, known as outliers . A typical example of observations that are contaminated
by outliers is given in Figure 1.2. Surprisingly, no exact definition of an outlier exists, although
many authors have attempted to give a definition over the years. A few typical characterizations
are:

• “An outlier is an observation that deviates so much from other observations as to arouse
suspicions that is was generated by a different mechanism” (Hawkins, 1980), [7].

• “An outlier is an observation which appears to be inconsistent with the remainder of the
data set” (Barnet and Lewis, 1994), [8].

• “An outlier is an observation that lies outside the overall pattern of a distribution” (Moore
and McCabe, 1999), [9].

• “An outlier in a set of data is an observation or a point that is considerably dissimilar or
inconsistent with the remainder of the data” (Ramasmawy, 2000), [10].
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• “Outliers are those data records that do not follow any pattern in an application” (Chen,
2002), [11, 12, 13].

Outliers are often regarded as erroneous measurements that deviate greatly from the rest
of the observations. This is due to the fact that: either its values are heavily influenced by
another source or that these observations are generated by a different distribution. The focus
of this dissertation is the establishment of reliable estimates for the regression task in the
presence of outliers, both in its parametric (linear) and non-parametric (nonlinear) formulations.
Furthermore, emphasis is given on the application front in the context of the image denoising
task.

In such tasks, classic estimators, e.g., the Least Squares, are known to fail to perform well,
see [14]. This problem was originally addressed since the 1950s, in [5, 6] and it was actually solved
more than a decade later by Huber, in [15, 14, 16, 17]. Eventually, this led to the development
of a new field in Statistics, known as Robust Statistics . However, the need for development of
robust estimators was not only limited within the Statistics scientific community. Similar tasks
(involving robust estimators) emerged in the context of many fields such as Physics, Medicine,
Biology, Engineering and Computer Science, to name a few.

1.2.1 Robust Regression versus Outlier Diagnostics

The variety of methods that have been developed to handle outliers can be classified into two
major categories. The first one includes tools that rely on the use of diagnostics , whereas the
second direction is based on robust regression methods. Diagnostics and robust regression have
the same goals, only obtained in the opposite order. When using diagnostic tools, one first
tries to delete the outliers and then to fit the “good” data by a common estimator, e.g., Least
Squares. On the other hand, a robust regression (or regression analysis) method first fits the
data, using a rough approximation, and then exploits the original estimation to identify the
outliers as those points which possess large residuals. Both approaches have a long history in
field of Robust Statistics.

Diagnostics are statistics generally based on classical estimates that aim at giving numer-
ical or graphical clues for the detection of data points that “deviate” significantly from the
assumed model. There is a considerable literature on outlier diagnostics, and a good outlier
diagnostic is clearly better than doing nothing. However, these methods present two drawbacks.
The first is that, they are in general not very reliable in detecting outliers. The other is that,
once suspicious observations have been flagged, the actions to be taken with them remain the
analyst’s personal decision, and thus there is no objective way to establish the properties of the
result of the overall procedure.

Methods developed under the robust regression framework attempt to device estimators
that are not so strongly affected by outliers. The first great steps forward occurred in the
1960s, and the early 1970s with the fundamental work of John Tukey (1960, 1962), Peter Huber
(1964, 1967) and Frank Hampel (1971, 1974). One of the pioneering research works at that
time was the development of Huber’s M-est, which is a fairly good estimator with relatively low
computational requirements, see [18, 19, 14]. This is accomplished via the use of appropriate
(robust) functions of the residual norm (instead of the square function), in order to penalize
large values of the residual. The applicability of the new robust methods proposed by these
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researchers accelerated by the increased speed and accessibility of computers.

Another approach under the robust regression framework was the development of combina-
torial optimization algorithms, such as Hampel’s Least Median of Squares Regression (LMedS)
[20], Rousseeuw’s Least Trimmed Squares (LTS) [19, 20] and Fischler’s - Bolles’s RANdom
SAmple Consensus (RANSAC) [21]. Combinatorial optimization methods seemed to display
enhanced robustness at that time. However, they were never adopted by the community, due to
the increased computational requirements. In contrast, the desire for low complexity efficient
algorithms has constantly been rising. Nowadays, where the dimensionality of the data can be
inherently large, combinatorial methods are prohibited.

1.2.2 Robust Regression via Sparse Modeling

The revolution of sparse modeling and optimization techniques, marked a major research path
in the machine learning and signal processing communities, since the 2000s. The recent de-
velopment of methods in the spirit of robust analysis owes a lot to the emergence of sparse
optimization methods, during the past decade.

Sparsity-aware learning and related optimization techniques have been at the forefront
of the research in signal processing, encompassing a wide range of topics, such as compressed
sensing, signal denoising and approximation techniques, see [22, 23, 24, 25, 26, 1]. The at-
tribute of sparsity seems to fit in many more applications than initially anticipated. Sparsity
is closely related to sufficiency or economy of a representation, a mechanism that harmonizes
with nature, which tends to be parsimonious. Despite the fact that similar techniques, such
as the minimization of cost functions involving `1-norms, have been used since the 1970s, it
is only recently that it has become the focus of attention of a massive volume of research in
the context of compressed sensing. At the heart of this problem lies an underdetermined set of
linear equations, which, in general, accepts an infinite number of solutions. Imposing sparsity,
is interpreted as seeking for a solution where only a few of the unknown coordinates, which we
attempt to estimate, are nonzero.

There are two major paths, towards modeling sparse vectors/signals. The first one focuses
on minimizing the `0(pseudo)-norm of a vector, which equals the number of its nonzero coordi-
nates. However, since this is a non-convex optimization task, approximate methods have been
established. The family of algorithms that have been developed to address problems involving
the `0 (pseudo)-norm, comprises greedy methods, which have been shown to provide the solu-
tion of the related minimization task, under certain reasonable assumptions, [27, 28, 29, 30, 31].
Even though, in general, this is an NP-Hard task, it has been shown that such methods can
efficiently recover a solution in polynomial time. On the other hand, the family of algorithms
developed around the methods that employ the `1-norm, embraces convex optimization, provid-
ing a broader set of tools and stronger guarantees for convergence [29, 22, 32, 23, 33, 1]. Both
methods have been shown to generate sparse solutions.

A more recent application of sparse modeling and optimization methods, which is also the
focus of this work, is that of signal denoising. There, one is interested in recovering the original
signal, which apart from the standard inlier noise, e.g., Gaussian, has also been corrupted by
outliers. The key to this modeling is to assume that the outliers comprise only a small fraction
of the entire data set, thus the outlier vector is modeled as a sparse one.
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1.3 Contributions and Novelty of the Thesis

The scientific contributions that appear in the present work exhibit a novel approach to the
robust regression task. Our first contribution is the development of a greedy scheme that
can be used for the task of robust linear regression. The proposed algorithm is called Greedy
Algorithm for Robust Denoising (GARD) and is published in [34, 35]. Following this path,
an efficient estimator for the task of robust nonlinear regression is proposed, where it is also
assumed that the (unknown) nonlinear function lies in a Reproducing Kernel Hilbert Space
(RKHS). The estimator, called Kernel Greedy Algorithm for Robust Denoising (KGARD), is
published in [36, 37, 34, 38]. Both of these methods are based on one among the most popular
greedy schemes; that is, the Orthogonal Matching Pursuit (OMP). However, they exhibit many
dissimilarities, due to the specific nature of the two regression tasks (parametric for the linear
task vs nonparametric for the nonlinear).

For the task of linear regression the main results are: (a) the proof of convergence for
the GARD scheme in a finite number of steps, (b) the establishment of a bound based on the
Restricted Isometry Property (RIP) constant, see [39, 40], which guarantees that the proposed
robust scheme (after convergence) successfully identifies the sparse outlier vector’s support for
the case where the data are contaminated by outlier and bounded inlier noise and (c) the
establishment of performance bounds on the approximation. It should be noted that, (b) is a
result that has been derived for the first time in the robust regression framework. Finally, the
case where only outliers are present (no inlier noise) is also treated separately. In such a case,
it has also been proven that GARD succeeds to recover both the exact regression solution and
the sparse outlier vector, under the existence and uniqueness conditions. Although this result is
mostly of theoretical importance, it justifies the reasons of the method’s obtained performance.
It should also be noted that, in the early years at the respective literature of linear regression,
there has been an argument about the adequacy of the Least Squares estimator to detect
outliers. As a matter of fact, this assessment was valid, although it was not clear when or why
the detection could fail. Within this work, via the bounds based on the RIP condition, we
believe to have shed some further light into this matter. The derived bounds are strong and
unveil the hidden geometrical structures, which enables us to perform a detection based on the
residual of the Least Squares estimate.

In the sequel, a significant amount of effort was invested on the performance evaluation of
KGARD for the task of robust nonlinear regression employing kernels. Typically, by assuming
that the function to be estimated lies in an RKHS, we resort to simple manipulations by replacing
the regression matrix with a kernel one. However, since this is a nonparametric estimation task,
the proposed algorithm had to be modified again (with respect to GARD). The proposed scheme
alternates between a Kernel Ridge Regression (KRR) task and an OMP-like selection step. The
addition of a regularization term at the estimation steps was inevitable and eventually led to a
more complex theoretical analysis for the method. Thus, a different path, than the previously
reported one for the linear case, had to be followed. The obtained results are: (a) the proof of
the method’s convergence in a finite number of steps, and (b) the establishment of a bound on
the maximum singular value of the kernel matrix, which guarantees that the method identifies
the correct locations of all the outliers, first. The analysis has been carried out for the case
where only outliers exist in the noise. However, as demonstrated in the experiments, the method
manages to recover the correct support of the sparse outlier vector in many cases where the

George K. Papageorgiou 48



Robust Algorithms for Linear and Nonlinear Regression via Sparse Modeling Methods: Theory, Algorithms
and Applications to Image Denoising

Figure 1.3: The Lena image contaminated by outliers (salt and pepper noise).

theoretical result does not hold. This leads to the conclusion that the provided conditions can
be loosen up significantly in the future. Moreover, in practice, where inlier noise also exists, the
method succeeds to correctly identify the majority of the outliers. The reason that the analysis
is carried out for the case where inlier noise is not present is due to the fact that the analysis gets
highly involved. The absence of the inlier noise makes the analysis easier and it highlights some
theoretical aspects on why the method works. It must be emphasized that, such a theoretical
analysis appears for the first time in the related bibliography.

Finally, a lot of effort was invested in the application of KGARD to the task of image
denoising. In Figure 1.3 the popular image of Lena, which is widely used in the field of image
processing since 1973, is corrupted by Gaussian noise plus salt and pepper noise (white and
black pixels). The task of image denoising resorts to successfully removing the noise from
the image. However, since salt and pepper noise is regarded as outliers, the task requires
a more careful handling. Typical methods that have been already proposed to address the
image denoising task include: (a) the wavelet-based image denoising methods, which have
dominated the research in recent years [41, 42, 43], (b) methods based on Partial Differential
Equations [44], (c) neighborhood filters and (d) methods of nonlinear modeling using local
expansion approximation techniques, [45]. The majority of these methods assume a specific
type of noise model and work based on this assumption. In fact, most of them require some sort
of a priori knowledge of the noise distribution. In contrast to this approach, the more recently
introduced denoising methods based on kernel ridge regression (KRR) make no assumptions on
the underlying noise model and thus they can effectively treat more complex models, see [46].
Our contribution is the application of the KGARD algorithmic scheme to the image denoising
task, for cases where the noise model includes outliers. In particular, two different denoising
methods that deal with this type of noise are proposed. The first one is directly based on
KGARD algorithmic scheme. The second method splits the denoising procedure into two parts:
the identification and removal of the impulses, which is first carried out via the KGARD, and
finally the removal of the remaining component from the intermediate output via a cutting edge
wavelet based denoising method. The obtained denoising results (measured in PSNR) of the
second method demonstrate the superior performance of the proposed scheme, which is based
on the combination of the KGARD and a popular wavelet-based one.
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1.4 Outline of the Thesis

The remaining chapters of the thesis are organized as follows.

In Chapter 2 a brief overview of the Least Squares (LS) method, with an emphasis on the
associated problematic estimation in the presence of outliers, is given. Moreover, the challenges
that arise in an attempt to detect a possible outlier via the LS residual are discussed. Finally,
some classical methods on robust estimation are discussed.

Chapter 3 presents an overview of the basics of sparse modeling. Next, the two major
paths, that lead to sparse solutions/representations, are discussed; that is, the greedy methods
and the `1-norm minimization ones. In the context of sparse modeling, the respective tasks of
robust linear regression are formulated and recently established methods are also presented.

In Chapter 4 the proposed robust scheme for linear regression, i.e., GARD, is introduced.
An analysis of the scheme follows and additional tools for optimizing the method are also
provided. Next, the method’s theoretical study is provided, which is where the main results of
this work are included. Moreover, extensive experiments that verify the overall advantages of
the proposed scheme against other competitive methods are performed.

Chapter 5 departs from the linear regression task and proceeds to the nonlinear one. The
study is performed in the framework of the Reproducing Kernel Hilbert Spaces (RKHS), the
basics of which are discussed at the beginning of the chapter. Next, the classic Kernel Ridge
Regression (KRR) task is reviewed and the problems that arise when performing an estimation
in the presence of outliers are stated. Finally, recently established robust methods are also
presented.

In Chapter 6 the novel robust scheme, i.e., Kernel Greedy Algorithm for Robust Denoising
(KGARD), is introduced. The properties of the method are presented and a theoretical analysis
is also provided, in terms of convergence and the method’s capability in identifying the outliers,
followed by an extensive set of experiments performed with synthetic data.

The objective of Chapter 7 is to present some applications of the proposed method, i.e.,
KGARD, in the context of image denoising. To this end, the method has been slightly modified
and adapted to the task, so that no tuning parameters are involved; instead, the parameters are
automatically tuned by the method. As a result, two new parameter-free methods are proposed
for the task of robust denoising: a) a direct KGARD implementation that can perform the
estimation and b) a KGARD scheme combined with a popular wavelet method, which performs
first the identification and estimation of the outliers and then it removes the remaining of the
noise.

Finally, Chapter 8 provides a summary and the conclusions of the research work in the
context of the thesis and outlines some possible future research directions.
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Chapter 2

Robust Methods for Linear Regression

2.1 Introduction

Our goal in this chapter is to introduce the concept of robustness. Initially, since the Least
Squares (LS) estimator is not a robust one, we turn our attention to the LS residual as a means
to identify outliers. From the provided analysis, it turns out that certain general assumptions
should be imposed on the input data matrix. Moreover, the basic challenges associated with
the task of robust estimation are discussed.

In this chapter, the basic robust regression method for the linear task is reviewed; that is,
the core of the Maximum Likelihood type estimates (M-est), for various robust cost functions.
Finally, since the M-est is primarily used for robust estimation with noise on the output data,
other methods that deal with noise on the input data are also discussed. These are: the
Generalized M-est (GM-est), the Least Median of Squares (LMedS), the Least Trimmed Squares
and the Random Sample Consensus (RANSAC). However, due to their heavy computational
requirements, there are only given indicatively.

2.2 Least Squares and the Quest for Robust Methods

In a typical linear regression task, we are interested in estimating the linear relation between
two variables, x ∈ RM and y ∈ R, i.e., y = xTθ, when several noisy instances are known. To
this end, given a training set, D = {(yi,xi)}Ni=1, we adopt the following regression modeling

yi = xTi θ¯
+ νi, i = 1, ..., N, (2.1)

where νi is some observation noise. Hence, our goal is to estimate θ
¯
∈ RM from the given

training dataset of N observations. In matrix notation, (2.1) can be written as follows:

y = Xθ
¯

+ ν, (2.2)

where y = (y1, . . . , yN)T , ν = (ν1, . . . , νN)T and X = [x1, . . . ,xN ]T ∈ RN×M .
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Applying a regression estimator to the given data set D yields

θ̂ =

 θ̂1
...

θ̂M

 , (2.3)

where the estimates θ̂i are called the regression estimates. Thus, the predicted/estimated value
of the observation yi is given by ŷi = xTi θ̂ and the residual value, between the observation and
the estimate, is given by:

ri = yi − ŷi. (2.4)

The most popular regression estimator is the Least Squares (LS) one (see [2], [1]) and corre-
sponds to the estimate given by:

θ̂LS = argmin
θ

N∑
i=1

r2
i = argmin

θ
‖y −Xθ‖2

2 . (2.5)

The respective LS regression estimate is obtained from

ŷ = Xθ̂LS = X
(
XTX

)−1
XTy = Hy, (2.6)

and the corresponding LS residual is

r = y − ŷ = y(IN −H), (2.7)

where
H := X

(
XTX

)−1
XT . (2.8)

As it is common in regression analysis, we consider that the number of observations exceeds
the number of unknowns, i.e., N > M . Moreover, in order to obtain a unique solution, we
should assume that X is a full rank matrix, i.e., rank(X) = M . For the case where N < M
(underdetermined system of linear equations1), an additional constraint/condition should be
imposed, if one wishes to recover the vector of the unknowns.

The matrix H in (2.8) is often called “hat matrix” (since it puts a hat (ŷ) on the vector
of observations) and plays an important role to the task of robust estimation, as it will be
demonstrated later. H depends on the design matrix,X, and it is a symmetric N×N projection
matrix, i.e., H2 = H . Moreover, it has M eigenvalues equal to 1 and N −M eigenvalues equal
to 0. Thus,

tr(H) =
N∑
i=1

hii = M, (2.9)

and hence the average value for hii’s is h̄ = M/N. We will return to the properties of the hat
matrix, after a more in depth discussion on the properties of the LS estimator.

The LS estimator satisfies some important properties, under certain assumptions on the
statistical nature of the noise samples νi. Assuming that the noise vector ν is zero mean and
independent on the input data leads to the fact that the LS estimator is unbiased. Furthermore,
by assuming that the source generating the noise samples is white, i.e., E[ννT ] = σ2

νIN , the
following properties hold for the estimator:

1An infinite number of solutions exist.
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• Its covariance matrix tends asymptotically to zero.

• It is the best linear unbiased estimator (BLUE).

Moreover, under the assumption of white Gaussian noise the estimator becomes minimum vari-
ance unbiased estimator (MVUE). This a strong result, which guarantees that, under the as-
sumption of additive white Gaussian noise (AWGN), no other unbiased estimator will do better
than the LS one, see [1]. However, this is not the case in the presence of outliers or when the
noise distribution exhibits long tails. It is well known that even a single outlier can cause the LS
estimator to collapse, see [19], [18], [16, 17]. Let us now provide a more in-depth investigation
of this issue.

In the following a classic measure of robustness is presented.

Definition 2.1. Consider a data set D = {(yi,xi)}Ni=1 and let T be a regression estimator such
that T (D) = θ̂. Next, consider all possible corrupted samples D′ that are obtained by replacing
any K of the original N data points by arbitrary values and let

bias(K; T,D) := sup
D′
‖T(D′)− T(D)‖2 .

The finite sample breakdown point of the estimator T at the sample D is defined as

εN(T,D) := min

{
K

N
: bias(K; T,D) is infinite

}
. (2.10)

The Definition 2.1 states that if bias(K; T,D) is infinite, then K outliers can have an
arbitrarily large effect on the estimator T, which is expressed by saying that the estimator
“breaks down”. In other words, εN(T,D) is the smallest fraction of contamination that can
cause the estimator T to take on values arbitrarily far from T(D). For the LS estimator the
breakdown point is

εN(T,D) =
1

N
. (2.11)

Thus, it can be said that the LS estimator is very sensitive to outliers and hence it is not advised
to rely on estimations performed by the LS method whenever the the data set is suspicious to
outliers. However, as it is shown in the following analysis, it seems that this holds mainly for the
case where the input matrix has certain characteristics or if the input data is also contaminated
with outliers. The sensitivity of the LS estimator to a single outlier, in either x or y direction,
is demonstrated in Figure 2.1.

Since the LS estimator cannot provide any reliable solutions, the question raised is whether
outliers can be identified by looking at the LS residuals in (2.7) or not. At first glance, this seems
natural. One would expect that outliers in certain locations would produce large (positive or
negative) residuals, so that they could easily be detected/diagnosed from (2.7). Unfortunately,
this is not entirely true. The i-th element of the residual for the LS estimator can be viewed as

ri = (1− hii)yi −
N∑
j=1
j 6=i

hijyj. (2.12)
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(a) (b)

Figure 2.1: Estimation performed for a data set of five points via the LS method. The blue line
is the LS estimate for the outlier-free data set (gray points). A single outlier may cause the LS
estimator to collapse. (a) The outlier in the y direction (green dot) affects the LS estimation
(green dashed line), but not significantly. (b) The outlier in the x direction (red dot) greatly
affects the estimation (red dashed line). The estimator is said to “break down” and thus the
method is rendered unreliable.

From Equation (2.12), it is evident that the diagonal of the hat matrix contains extremely
useful information ([18], [17]). More importantly, it characterizes whether or not an outlier in
the observations is detectable via the LS residual. By employing some of the properties of the
hat matrix, we also have

hii = h2
ii +

N∑
j=1
j 6=i

h2
ij, for i = 1, . . . , N. (2.13)

Also observe in (2.13) that its diagonal elements, i.e., hii, satisfy

0 ≤ hii ≤ 1, (2.14)

see [18]. Also, if hii → 0 then hij → 0 for all j. Thus, it follows directly from (2.12) that it is
safe to decide on whether an observation yi is contaminated by an outlier or not. On the other
hand, if hii → 1 notice that hij → 0 for all j 6= i in (2.13), which according to (2.12) leads
to ri → 0. Hence, the evaluation can be misleading, due to the fact that the residual of the
i-th observation is very small. Points with large hii are by definition leverage points and trigger
effects known as masking and swamping of the outliers, see [18], [19], [20], [47]. However, the
limits are not always indicative of when hii is considered large. Due to the established properties
of the hat matrix, many authors suggest that a reasonable rule of thumb is if hii > 2h̄ = 2M/N ,
see [48]. However, this is only a rough estimate. Finally, the ratio h̄ = M/N indicates that
the dimension of the unknowns and the number of data should be distant. If the number of
data (for a fixed dimension of unknown parameters) is insufficient, all of the elements in the
diagonal of the hat matrix acquire large values (since M ' N) and the process of the estimation
is meaningless.

Notice in Figure 2.1 (b) that the outlier in the x direction (red dot) produces a relatively
small residual, whilst other samples (gray dots) that correspond to outlier-free data are now
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considered as outliers. Of course, this is something that could also occur with an outlier in the
y direction for a different data sample. On the other hand, this effect is more dominant in the
former case and requires a different handling. In the following chapters, only the case where
outliers occur in the outputs (y values) is considered. Thus, for some methods (with minimal
breakdown point) many authors assume that the diagonal elements of the hat matrix H are
uniformly small, i.e.,

max
1≤i≤N

hii = h << 1. (2.15)

However, the analysis based on (2.12) is not very informative. Since hii → 1 is an extreme
case, it does not provide any answers in the case, for example, hii ' 0.5. Is the identification
still unreliable or can it be trusted depending on other factors too? As it will be shown in
Chapter 4, the entire analysis on this issue can be established from a different point of view.

At this point, it should also be stated that, although the breakdown point provides a
measure of robustness, it is a very rough one. For example, it does not provide us with any
information on the number of outliers that a method can handle if no leverage points exist. To
this end, the breakdown point is not employed in the following chapters.

Remark 2.1. If outlier noise errors exist also in the inputs, i.e., xi’s, it is likely that the
condition (2.15) is violated. Thus, in such case, a different handling/model is required. Hence,
from here on, only the case where outliers occur in the outputs (y values) is considered. Besides,
in an outlier-free data set, even if inlier noise errors occur in the inputs as well as the outputs,
the Total Least Squares (TLS) is known to outperform the ordinary LS approach [1], [49].

2.3 Robust Methods

We have already discussed that the LS estimator is not a robust one. Thus, an alternative
path is to replace the squared-error loss function with a different cost function. A step forward
towards another estimator came from Edgeworth in [50] back in 1887, where he proposed the
Least Absolute Values (LAV) regression estimator, which is determined by

min
θ

N∑
i=1

|ri| .

This technique is often referred to as the `1-regression. However, the estimator is not unique
and also, it does not profit a better breakdown point than the LS estimator. The replacement
of the squared-loss function for the residuals by other robust costs is what finally led to the
development of the entire field of Robust Statistics.

2.3.1 Maximum Likelihood Type Estimates (M-est)

The concept of using a robust function of the residuals in order to perform the minimization
is known as the task of robustizing the LS approach and it is attributed to Huber, back in
1973. The Maximum Likelihood type estimates (M-est) are very flexible and they generalize in
a straightforward way to multiparameter problems. In the following, an overview of the M-est
is given and various types of robust loss functions are also listed.
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Assuming a symmetric function ρ, i.e., ρ(−t) = ρ(t) for all t with a unique minimum at
zero, the M-est approach attempts to perform the following minimization:

min
θ

N∑
i=1

ρ(ri) =
N∑
i=1

ρ

(
yi −

M∑
j=1

xijθj

)
, (2.16)

or after taking derivatives, solves
N∑
i=1

ψ(ri)xi = 0, (2.17)

where ψ = ρ′. The common approach is to assume that the ρ function is convex, so that the
two approaches, i.e., (2.16) and (2.17), are equivalent. Moreover, a scaling parameter2, σ̂, is
often used so that the residuals are standardized, see [19]. This is accomplished by defining the
robust function as ρ := ρ (ri/σ̂), which leads to the scaled version of M-est:

N∑
i=1

ψ
(ri
σ̂

)
xi = 0. (2.18)

Next, by defining w(r) = ψ(r)/r, and wi = w (ri/σ̂), the set of normal equations is cast as

N∑
i=1

wirixi = 0, (2.19)

which is the basic version for the M-est. However, the method still remains vulnerable to
leverage points. Besides, this is the reason that led Huber in [18] to the assumption of (2.15)
for the M-est.

The robust cost function ρ in (2.16) can be selected from a list of various types of func-
tions. The most significant ones are listed in Table 2.1 with their respective derivatives given.
Moreover, in Table 2.2 the respective weight functions are also provided. Finally, in Figure 2.2,
all the respective plots are depicted for the 2-dimensional case.

An alternative way to interpret the M-est in (2.19), is by solving a Weighted Least Squares
(WLS) task, i.e.,

min
θ

N∑
i=1

wir
2
i ⇔ min

θ

∥∥W 1/2(y −Xθ)
∥∥2

2
, (2.20)

where the diagonal weight matrix W assigns the weights, whose values depend on the robust
selected function, e.g., in Table 2.2. In simple words, it penalizes large residuals in order to
minimize their effect on the solution. However, the weighted LS task is more general, since other
weights (not only robust weights) can be used too, depending on the application. Also, notice
that for W = IN in (2.20), the scheme resorts to the ordinary Least Squares solution. The
task in (2.20) is solved by the so called Iteratively Reweighted Least Squares (IRLS) algorithmic
scheme, with updates given by:

θ̂(k) =
(
XTW(k−1)X

)−1
XTW(k−1)y, (2.21)

2The scale parameter corresponds to a robust function with respect to the values of the residual vector.
Usually, the normalized mean absolute deviation is employed, i.e., MADN(x) := Med (|x−Med (x)|) /0.675.
This dispersion estimate offers a measure similar to what the standard deviation is to the normal distribution.
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(a): Huber’s loss for c = 1

(b): Tukey’s bisquare for c = 3

(c): Hampel’s loss for a = 1, b = 2, c = 4

(d): Andrews loss

(e): Cauchy for c = 1.5

(f): Welsch for c = 2

Figure 2.2: Robust loss function graphs for various types. From left to right, the ρ(r), the ψ(r)
and the w(r) = ψ(r)/r (weight) functions.
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Table 2.1: Various types of robust cost functions, ρ, with their derivatives, ψ = ρ′, given.

Estimator type Function ρ(r) Function ψ(r)

Huber’s

{
1
2
r2, for |r| ≤ c

c|r| − 1
2
c2, for |r| > c

{
r, for |r| ≤ c
c sgn(r), for |r| > c

Tukey’s bisquare

{
(c2/6)[1−

(
1− (r/c)2

)3
], for |r| ≤ c

c2/6, for |r| > c

{
r[1− (r/c)2]2, for |r| ≤ c
0, for |r| > c

Hampel’s


1
2
r2, for |r| ≤ a

a|r| − a2/2, for a < |r| ≤ b
(a/2)[2b− a+ (|r| − b)(1 +

c−|r|
c−b )], for b < |r| ≤ c

a
2

(b− a+ c), for |r| > c


r, for |r| ≤ a
a sgn(r), for a < |r| ≤ b
a sgn(r)(c− |r|)/(c− b), for b < |r| ≤ c
0, for |r| > c

Andrews

{
1− cos r, for |r| ≤ π
2, for |r| > π

{
sin r, for |r| ≤ π
0, for |r| > π

Cauchy c2

2
ln[1 + (r/c)2] r

1+(r/c)2

Welsch c2

2

(
1− e−(r/c)2

)
re−(r/c)2

Table 2.2: The respective weight functions.

Estimator type Weight function w(r)

Huber’s

{
1, for |r| ≤ c
c
|r| , for |r| > c

Tukey’s bisquare

{
[1− (r/c)2]2, for |r| ≤ c
0, for |r| > c

Hampel’s


1, for |r| ≤ a
a
|r| , for a < |r| ≤ b
a
|r| (c− |r|)/(c− b), for b < |r| ≤ c
0, for |r| > c

Andrews

{
sin r
r
, for |r| ≤ π

0, for |r| > π

Cauchy 1
1+(r/c)2

Welsch e−(r/c)2

where w(0),i = 1.

Finally, it should be noted that the breakdown point of the M-est is not improved, thus
it remains 1/N . In order to overcome this issue, a different approach is required, as we will see
in the following section.

2.3.2 Robust Estimators with Higher Breakdown Point

At this point, we have presented robust methods that are vulnerable to gross errors on the input
data, therefore attaining a small breakdown point. Thus, the question raised is whether we can
develop robust estimators with a higher breakdown point. The answer is to the affirmative;
however, this is obtained at the expense of increased computational effort.

In this section, the basic methods that address this issue are discussed. However, due to
the fact that their computational load is heavy, they are limited within theoretical interest only.
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Generalized M-est (GM-est)

A few years after the development of the M-est, an improved model, that gained ground in
terms of robustness and without the assumption of (2.15), was proposed. The authors in
[51, 52], introduced the Generalized M-est (GM-est), by considering the weights w as a function
of xi’s, i.e., replacing (2.18) by

N∑
i=1

w(xi)ψ(ri/σ̂)xi = 0, or

N∑
i=1

w(xi)ψ

(
ri

w(xi)σ̂

)
xi = 0.

These estimators were proposed with the goal of bounding the influence of a single outlying
observation, the effect of which can be measured by means of the so-called influence function.
However, the breakdown point diminishes with an increasing dimension of unknown coefficients,
i.e., M , see [20]. This fact is quite unsatisfactory, since in such dimensions there are more chances
for outliers to occur. Moreover, not all of the estimators achieve the same breakdown point and
some of them are not even defined for dimension of M > 2.

Least Median of Squares (LMedS)

The Least Median of Squares (LMedS) method estimates the parameters by solving the mini-
mization problem:

min
θ

Med
i

r2
i .

That is, the estimator yields the smallest value for the median of squared residuals computed
for the entire data set. It turns out that this method is very robust to false matches as well as
to outliers due to bad localization. In particular, the attained breakdown point of this method
is (bN/2c −M + 2)/N ; the best ratio, to be achieved, is only for dimension of the unknown
M = 2 and corresponds to the value 50% (asymptotically), see [20].

Unfortunately, the LMedS perform poorly from a point of view of asymptotic efficiency.
Unlike the M-est, the LMedS problem cannot be reduced to a weighted LS problem. In fact, it
is probably impossible to write down a straightforward formula for the LMedS estimator. On
the contrary, it must be solved by a search in the space of all possible estimates generated from
the data. Since this space is too large, only a randomly chosen subset of data can be analyzed.
Thus, the method is not applicable to any of the modern practical problems, where large data
sizes are often the norm.

Least Trimmed Squares (LTS)

Another robust estimator that is very similar to the ordinary LS ones is the Least Trimmed
Squares (LTS) estimator:

min
θ

L∑
i=1

{r2
i }1:N , (2.22)
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where {r2
i }1:N represents the ordered squared residuals (first squared then ordered). The main

difference with respect to the ordinary LS method is that the largest squared residuals are not
used in the summation. It should be noted that the so-called trimming constant, L, satisfies
N/2 < L ≤ N . It also determines the breakdown point of the LTS estimator, whose maximum
breakdown point is (b(N −M)/2c+ 1) /N , attained for L = bN/2c + b(M + 1)/2c, see [20].
Finally, it is evident that if L = N the LTS corresponds to the LS estimator with breakdown
point equal to 1/N .

However, the disadvantage of the LTS is its computational complexity. Searching for a
solution requires a combinatorial search for every subset, thus we have

(
N
L

)
candidates for this

estimator. Of course, since the exact solution is not easily computed, several approximation
methods exist. However, there are no theoretical assurances on the quality of the resulting fit.

RANdom SAmple Consensus (RANSAC)

The RANdom SAmple Consensus (RANSAC) algorithm was proposed by Fischler and Bolles
in [21] and was used in order to solve the Location Determination Problem (LDP). It is a non-
deterministic algorithm in the sense that it produces a reasonable result only with a certain
probability, which is increasing with respect to the number of the iterations that are allowed.
This general parameter estimation approach is designed to cope with a large proportion of
outliers in the input data. Unlike many of the common robust estimation techniques, such as
the M-est or the LMedS that have been adopted by the computer vision community from the
statistics literature, RANSAC was developed in the computer vision community.

RANSAC is a resampling technique that generates candidate solutions by using the min-
imum number of observations (data points) required to estimate the underlying model param-
eters. Unlike conventional sampling techniques, that use as much of the data as possible to
obtain an initial solution and then proceed to prune outliers, RANSAC uses the smallest set
possible and proceeds to enlarge this set with consistent data points. The basic algorithm is
summarized as follows:

Algorithm 1 RANdom SAmple Consensus: RANSAC

1: Select randomly the minimum number of points required to determine the model parameters.
2: Solve for the parameters of the model.
3: Determine how many points from the set of all points fit with a predefined tolerance ε.
4: if the fraction of the number of inliers over the total number points in the set exceeds a

predefined threshold τ then
5: re-estimate the model parameters using all the identified inliers and terminate.
6: else
7: repeat steps 1 through 4 (maximum of k times).

The number of iterations, k, is chosen to be high enough to ensure, with probability p
(usually set to 0.99), that at least one of the sets of random samples does not include an outlier.
Finally, it should be noted that this method attains an asymptotically breakdown point greater
than 50%, which is the upper bound for many methods.

However, the gains of this method too do not appear without a trade-off. The shortcomings
of the RANSAC method are:
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• There is no upper bound on the time it takes to compute the parameters (except exhaus-
tion); moreover, if the number of iterations computed is limited then the obtained solution
may not be optimal.

• It requires the setting of problem-specific thresholds.
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Chapter 3

Robust Linear Regression via Sparse
Modeling: Greedy Methods and
`1-norm Minimization

3.1 Introduction

The recent developments of methods in the spirit of robust analysis owes a lot to the emergence
of sparse optimization methods.

In this chapter, the reader is introduced to the fundamentals of sparse optimization tech-
niques. To this end, two basic paths are discussed: a) the task is formulated so that to min-
imize the `0(pseudo)-norm of a vector and b) the minimization is built around the `1-norm.
The latter is the closest convex relaxation to the `0(pseudo)-norm, and it turns out that both
approaches generate sparse solutions. Although the methods that employ the `0-norm are by
nature NP-Hard (combinatorial), several variants have established suboptimal solutions to the
task, bypassing its combinatorial nature. Moreover, under certain assumptions, such techniques
guarantee the optimal solution. At the core of these methods lies the Orthogonal Matching
Pursuit (OMP), which belongs to the greedy family of methods. The OMP is presented in
detail, since it is the motivation for our proposed robust scheme for signal denoising, which is
introduced in the next chapter.

Finally, the formulation of the robust regression task via sparse modeling is presented and
the recently established methods are reviewed. This includes: a) the Second Order Cone Pro-
gramming (SOCP) technique, b) the Alternating Direction Method of Multipliers (ADMM), c)
the Sparse Bayesian Learning (SBL) robust scheme, which employs sparse Bayesian optimiza-
tion techniques to deal with the task and d) the so-called Robust Orthogonal Matching Pursuit
ROMP, which is based on both the OMP and the M-est.
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Figure 3.1: The function f(s) = |s|p for various values of p. As p→ 0, f approaches the indicator
function, which is 0 for s = 0 and 1 elsewhere. Convexity is retained for p ≥ 1, while for p < 1
the epigraph is non-convex.

3.2 Searching for Sparse Representations

Let A ∈ RN×M , with N < M , be a full-rank matrix, b ∈ RN and s ∈ RM . Since A is an
overcomplete dictionary, the linear system of equations b = As is known to have infinitely
many solutions. Hence, if we wish to restrict the set of all possible solutions and narrow the
choice to a well-defined one, an additional constraint is required. One way to accomplish this
is by employing the corresponding `p-norm, i.e.,

‖s‖p :=

(
M∑
i=1

|si|p
)1/p

, (3.1)

for p ≥ 1. The most frequently used norm is defined for the choice of p = 2 and the respective
minimization task becomes:

min
s
‖s‖2

2, subject to b = As, (3.2)

which corresponds to the so-called minimum-norm solution. This norm defines a strictly convex
function, which guarantees the uniqueness of the solution. However, the `2-norm is a measure
of energy and it does not designate sparse representations; if we are interested in generating
sparse solutions a different measure is required.

Although the definition of a norm implies that 1 ≤ p ≤ +∞, it turns out that the
interesting range of p for imposing sparsity is 0 < p < 1. However, if we let 0 < p < 1
in equation (3.1), the resulting function does not define a norm (the triangular inequality is
violated). An even more interesting case is for p→ 0, leading to the following definition for the
`0(pseudo)-norm:

‖s‖0 := lim
p→0+

‖s‖pp = lim
p→0+

M∑
i=1

|si|p = # {i : si 6= 0} . (3.3)

The definition in (3.3) does not imply an actual norm (the positive homogeneous property is
not satisfied). In simple words, it represents the number of nonzero coefficients for a vector. In
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Figure 3.2: The 2-dimensional unit balls for the `p-norms: a) p = +∞ (max-norm), b) p = 2,
c) p = 1, d) p = 0.5 and e) p = 0 (`0-norm). As p→ 0 the unit sphere covers the axes with the
exception of the center (0, 0). Observe that for p < 1 the unit balls are non-convex.

Figure 3.1, the graph of | · |p demonstrates the contribution of each component of a vector to
the `p-norm, for various values of p. As p→ 0, the function approaches the indicator function.
Although not truly a norm (the `0), in the sparsity-aware learning literature it is still referred
to as a norm or a (pseudo)-norm.

The heart of the sparse modeling methods beats around the following optimization task:

min
s
‖s‖0, subject to b = As, (3.4)

which seeks for the sparsest solution of the underdetermined system of linear equations1. Ac-
cordingly, if it is assumed that b = As + η, where η is a noise vector of bounded energy, i.e.,
‖η‖2 ≤ ε, the task is formulated as:

min
s
‖s‖0, subject to ‖b−As‖2

2 ≤ ε, (3.5)

which is known as the task of sparse denoising in the respective literature [53], [1]. This is a
task of major importance, since noise is also involved, something that almost always occurs in
practice. It should be noted that, the value of the parameter ε > 0 is used for controlling the
noise level2. Also, notice that, if ε = 0 the task in (3.5) resorts to (3.4).

Unfortunately, in [54], it was proven that the task in (3.5) is NP-Hard (combinatorial -
not solvable in polynomial time). Moreover, the solution is not always unique. However, there
exist methods that under reasonable assumptions manage to overcome the stated problems, see
[53].

1Recall that the number of columns exceed the number of rows for matrix A.
2It is obvious that ε = ε2 is considered.
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3.2.1 Greedy Methods - Orthogonal Matching Pursuit (OMP)

One among the most popular algorithms that attempts to solve the task in (3.4) or (3.5) is
the Orthogonal Matching Pursuit (OMP) and it belongs to the core of the greedy family of
methods, see [55, 56, 27]. The iterative scheme is an offspring of the classic Matching Pursuit
method, which was proposed for signal compression, see [57, 58, 29], although it was already
known to the Statisticians. Under certain assumptions imposed, e.g., on the spark, the mutual
coherence, the ERC in [59, 1, 56], the OMP algorithm is guaranteed to recover the sparsest
representation for the noiseless case, in (3.4), or to provide sufficiently good sparse estimates
for the noisy one, in (3.5). Apart from the OMP, other variants also exist [60, 30, 31, 61, 62],
although they fall out of the scope of this dissertation.

The OMP algorithm is summarized in Algorithm 2. Initializing at the zero solution and the
respective residual, the vector b, the scheme sequentially selects columns from matrix A (called
atoms) that correspond to nonzero elements for the sparse vector estimate ŝ. In particular, at
the selection step 6, the method identifies the column from matrix A which is more correlated
to the residual up to this point. Next, the set of active columns, i.e., S̃ (associated with indices
of previously selected columns), is augmented by the newly selected column. Finally, at step 8,
the LS minimization task is performed by projecting on the subspace that originates from the
columns aj of A that belong to the set S̃ of active columns, i.e., the column vectors of matrix

AS̃ . In fact, the set S̃ forms the support for the sparse vector estimate, ŝ.

The scheme also preserves an interesting geometric interpretation. Under the assumption
of certain conditions, which guarantee that the columns of matrix A approximately form an
orthogonal system, e.g., bounds on the Restricted Isometry Property (RIP) constant in [39],
the spark or the mutual coherence in [53], the method successfully selects the atoms that are
more informative to the representation of the signal vector, b. Moreover, because of the orthog-
onalization, once an atom is selected, it can never be selected again in subsequent iterations.

Algorithm 2 Orthogonal Matching Pursuit: OMP

1: procedure OMP(A, b, ε)
2: ŝ← 0
3: r ← b−Aŝ = b
4: S̃ ← ∅
5: while ‖r‖2 > ε do

6: jk := argmaxj
|〈r,aj〉|
‖aj‖22

. Selection step.

7: S̃ ← S̃ ∪ {jk}
8: ŝ := argmins ‖b−AS̃s‖2

2 . Least Squares solution step.
9: r ← b−Aŝ

10: Output: a sparse vector ŝ.

3.2.2 Convex Relaxation to the `1-norm

An alternative to the greedy selection methods is the relaxation of the `0-norm to its closest
convex one, i.e., the `1-norm. The task of interest in (3.5) is reshaped to:

min
s
‖s‖1, subject to ‖b−As‖2

2 ≤ ε, (3.6)
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or equivalently to its Lagrangian formulation

min
s

{
1

2
‖b−As‖2

2 + λ‖s‖1

}
, (3.7)

which is known as the Basis Pursuit (BP) in the Signal Processing literature and as the Least
Absolute Shrinkage and Selection Operator (LASSO) in the Statistics literature.

3.3 Sparse Outlier Modeling for Robust Linear

Regression

Now that the previous fundamental formulations of sparse modeling have been discussed, the
direction taken is to apply the aforementioned techniques to the robust linear regression task.

While for the standard linear regression task it is assumed that the observations are gen-
erated via (2.1), for the robust task, the noise variable is expressed as a sum of two independent
components, i.e., νi = u

¯i
+ ηi, and the model transforms into:

yi = xTi θ¯
+ u

¯i
+ ηi. (3.8)

Moreover, since the compact form of the noise model decomposition is:

ν = u
¯

+ η, (3.9)

sparsity constraints are imposed to u
¯
∈ RN . Thus, if S is the support set for the sparse outlier

noise vector, it is assumed that |S| ≤ S << N . Thus, (3.8) results in the following compact
robust linear regression form:

y = Xθ
¯

+ u
¯

+ η, (3.10)

where u
¯

is a sparse (unknown) vector. Furthermore, if we assume that η is a bounded vector
of inlier noise, the respective robust minimization task, according to (3.5), is formulated as:

min
θ,u
||u||0, subject to ||y −Xθ − u||22 ≤ ε. (3.11)

On the other hand, the respective robust minimization task, according to (3.5), is given via:

min
θ,u
||u||1, subject to ||y −Xθ − u||22 ≤ ε, (3.12)

or in its equivalent formulation

min
θ,u

{
1

2
||y −Xθ − u||22 + λ||u||1

}
, (3.13)

where λ is a tuning parameter (depending on the selection of ε) that controls the amount of
regularization. It is clear that the task in (3.13) shares resemblance to the Ridge Regression
(RR) task. However, although the latter has a solution obtained in closed form, this is not the
case for the task in (3.13). Recall that the `1-norm is not a differentiable function; to this end,
one has to resort to sub-differential techniques.
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As expected, the task in (3.11) is also NP-Hard, in general, while its relaxation is a convex
one, solvable with the use of a variety of methods. Moreover, if certain conditions/assumptions
are considered, the solution is unique and a solution is readily obtained.

Finally, it should be noted that in the majority of the linear regression tasks, the vector
of unknowns, θ

¯
, is considered as a dense (without non-zero coefficients) vector. However, if

one considers that the observations admit a sparse representation then both vectors θ
¯

and u
¯

are sparse. Consequently, this leads to the original sparse denoising task presented in (3.5) for

the observation vector y, the augmented matrix A = [X IN ] and vector s =

(
θ
¯
u
¯

)
, which is

assumed to be sparse.

3.4 Related Works

The existing works that deal with the robust regression task are divided into three major
categories. The first one consists of methods that employ convex optimization techniques in
order to minimize the `1-norm of the sparse outlier vector. The methods that are presented
here are based on a) the so-called Basis Pursuit (BP) formulation in (3.12) and b) the LASSO
formulation in (3.13). The second approach is probabilistic and it is based on sparse Bayesian
inferring techniques. The final one revolves around the core greedy scheme, i.e., the OMP,
albeit via the weighted LS minimization path. All of these method are reviewed in the following
section.

3.4.1 Robust Denoising via the Minimization of the `1-norm

Although several algorithms are established for the minimization tasks in (3.12) or (3.13), e.g.,
the Least Angle Regression (LARS), the forward stagewise, the pathwise coordinate descent
e.t.c., we present two of the most commonly used in practice, i.e., the convex optimizer via the
Second Order Cone and the Alternating Direction Method of Multipliers (ADMM), which have
been employed in previously published research, related to the robust regression task.

Second Order Cone Programming (SOCP)

The task in (3.12) is also known as Basis Pursuit for Robust Regression-(BPRR) and it can be
solved via quadratic optimization methods, read [63, 64]. In particular, by expressing it as a
Second Order Cone Programming (SOCP) task, leads to:

ĉ := argmin
c
gTc, subject to BT

c c ≥ 0, y −Acc ∈ CN+1
ε (3.14)

where c =

θu
ω

, g =

0
0
1

 ∈ RM+2N , Bc =

OM×N OM×N
−IN IN
IN IN

 , Ac = [X IN ON×N ] and

CN+1
ε is the unit second order (convex) cone of dimension N + 1 and ε is the bound for the
`2-norm of the noise vector.
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Generalized LASSO and the Alternating Direction Method of Multipliers
(ADMM)

The convex optimization task in (3.13) can also be expressed in its more general form; that is,
the Generalized LASSO one. Its solution is given by

ẑ := argmin
z
{1

2
||y −Az||22 + λ||GLz||1}, (3.15)

where z =

(
θ
u

)
, A = [X IN ] and GL = [ON×M IN ]. The GL matrix is related to the

formulated task, thus other choices are available too; for example, for GL = IN+M one obtains
the standard LASSO form.

The ADMM is a technique established for obtaining a solution to (3.15) for appropriate
multiplier values λ > 0 and was studied in the 1970s and 1980s, as a good alternative to
penalty methods, although it was originally established as a method to solve partial differential
equations, [65, 66]. An application in the context of robust denoising was proposed in [67, 68, 69].
According to (3.15), the task is expressed via a linear constraint as

ẑ := argmin
z
{1

2
||y −Az||22 + λ||u||1}, subject to GLz = u, (3.16)

and its solution is given by Algorithm 3. The Soft-thresholding operator in 8-th row of Algorithm
3 is defined as: Sµ(vi) := sgn(vi)(|vi|−µ)+, where (x)+ := max{x, 0}. Finally, it should be noted
that various additional termination criteria could also be adopted. For example, the iteration
loop could also be terminated (prior to the maximum number of iterations) if the estimate is
not significantly altered (in the `2-norm sense) from one iteration to the next.

Algorithm 3 Alternating Direction Methods of Multipliers: ADMM

1: procedure ADMM(X, y, λ, ρ, nmax)
2: n← 0
3: A = [X IN ], GL = [ON×M IN ]
4: û(0) ← randomly chosen, o(0) ← 0, ρ(0) ← ρ
5: while n < nmax do
6: n← n+ 1
7: ẑ(n) ← (ATA+ ρ(n−1)G

T
LGL)−1(ATy + ρ(n−1)G

T
Lû(n−1) −GT

Lo(n−1))
8: û(n) ← S λ

ρ(n−1)

(GLẑ(n) + o(n−1)/ρ(n−1))

9: o(n) ← o(n−1) + ρ(n−1)(GLẑ(n) − û(n))
10: ρ(n) ← min{5, 1.1ρ(n−1)}
11: Output: ẑ(nmax) = (θ̂T(nmax), û

T
(nmax))

T .

3.4.2 A Probabilistic Approach for the Robust Denoising Task

Another path that has been exploited in the respective literature for the Robust denoising task
is via Sparse Bayesian Learning (SBL) techniques [70, 71], [72, 73, 71, 1].
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Algorithm 4 Sparse Bayesian Learning: SBL

procedure SBL(X, y, kmax)
k ← 0
θ̂(0), σ̂

2
(0) and γ(0),i for i = 1, . . . , N randomly chosen

Γ(0) ← diag(γ(0),1, . . . , γ(0),N)
while k < kmax do

k ← k + 1
û(k) ← (IN + σ2

(k−1)Γ
−1
(k−1))

−1(y −Xθ̂(k−1))

Û ′(k) ← û(k)û
T
(k) + (σ−2

(k−1)IN + Γ−1
(k−1))

−1

γ(k),i ← û′(k),ii

σ2
(k) ← 1

N
||y −Xθ(k−1)||22 + 1

N
tr(Û ′(k))− 2

N
(y −Xθ(k−1))

T û(k)

θ̂(k) ← (XTX)−1XT (y − û(k))

Output: θ̂(kmax)

Sparse Bayesian Learning (SBL)

The model is based on equation (3.10). The development, analysis and experimental study of
the original SBL for sparse signal recovery has been extensively discussed in [72, 73, 74].

To this end, it is assumed that u
¯i

is a random variable with prior distribution u
¯i
∼ N (0, γi),

where γi is the hyperparameter that controls the variance of each u
¯i

and has to be learnt. The
hyperparameters are stored in a vector γ and the diagonal matrix Γ := diag(γ1, . . . , γN) is also
involved. If γi = 0, then u

¯i
= 0, i.e., no outlier is identified. In contrast, a positive value of γi

corresponds to an outlier in the i-th observation, yi. The regression coefficients are estimated,
by jointly searching for

(θ̂, γ̂, σ̂2) = argmax
θ,γ,σ2

p(y|X,θ,γ, σ2), (3.17)

where γ := (γ1, . . . , γN)T and ηi ∼ N (0, σ2). The posterior estimation of u
¯

, follows, from:

û = E[u
¯
|X, θ̂, γ̂, σ̂2]. (3.18)

At each iteration, the method obtains the current estimate of the outlier components and then
it performs an ordinary LS estimation on the corrected data, i.e., y − û. The termination of
the scheme could be set either when the number of iteration reaches a user-defined threshold or
when successive iterations no longer offer significant gains in term of estimation. The scheme
is described in Algorithm 4.

Finally, it should also be noted that, the authors in [72, 73] suggest that the hyperparam-
eters, γ(k),i, that are smaller than a predefined threshold, are pruned from future iterations.

3.4.3 A Combined OMP Selection-based and M-est Method

Robust Orthogonal Matching Pursuit (ROMP)

The Robust Orthogonal Matching Pursuit (ROMP) method, that the authors have developed
in [75], is based on a combination of the popular OMP algorithm with the M-est. The key
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Algorithm 5 Robust Orthogonal Matching Pursuit: ROMP

1: procedure ROMP(X, y, ε)
2: k ← 0
3: T0 ← ∅, θ̂(0) = 0, r(0) = y

4: X̃ =
[
x1/‖x1‖2, . . . ,xM/‖xM‖2

]
5: while ‖r(k)‖2 > ε do
6: k ← k + 1
7: σ̂ ← MAD(r(k−1)), r˜(k−1) ← ψ(r(k−1)/σ̂) and a(k−1) ← r˜T(k−1)X̃

8: ik ← argmaxi
∣∣a(k−1)

∣∣, Tk ← Tk−1 ∪ ik
9: θ̂(k) ← argminθ ||W 1/2

r (y −XTkθ)||22
10: r(k) ← y −XTk θ̂(k)

11: Output: θ̂(k)

aspect of the algorithm, which is also the feature that introduces robustness, is the execution of
a weighted LS step (M-est), instead of an ordinary one, each time the support set is augmented
by an atom.

As presented in Algorithm 5, the main procedure starts with the computation of the
Median Absolute Deviation3, σ̂ = MAD(r), and the residual pseudo-values r˜; ψ is a robust
function that could be selected from Table 2.1. At the selection step, the atom is chosen from
matrix X based on the maximum correlation between its normalized columns and the residual
pseudo-values. At the weighted Least Squares step, 9, the diagonal elements of matrix Wr

(weights) are assigned according to the selected ψ function. The difference to (2.20) is that at
each k-th step, XTk includes only the columns of X that have been selected until the current
step. Unfortunately, no theoretical justifications are established, either on the selection of the
atom based on the residual pseudo-values or on the iterative employment of the M-est. Although
a variety of termination criteria exist, we let the algorithm terminate, as soon as the length of
the residual vector drops below a predefined threshold.

3MAD(x) = Medi(|xi −Medi(xi)|).
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Chapter 4

Greedy Algorithm for Robust
Denoising

4.1 Introduction

The basic methods that deal with the linear regression task via sparse modeling have already
been addressed in Chapter 3. The focus of this chapter is to introduce a novel robust scheme
for the task of linear regression, which is based on the popular Orthogonal Matching Pursuit
(OMP). The method combines the two approaches of regression and diagnostics, in order to
perform a single-outlier detection step iteratively.

The path taken here is to split the noise into two components: a) the inlier noise and b)
the outliers, which are explicitly modeled by employing sparsity arguments, according to (3.9).
Based on this model, an efficient algorithm, i.e., the Greedy Algorithm for Robust Denoising
(GARD), is derived. The method alternates between a Least Squares (LS) optimization cri-
terion and an Orthogonal Matching Pursuit (OMP) selection step, that identifies the outliers.
Furthermore, efficient implementations are proposed for the method. Next, the evaluation of the
algorithm in terms of its convergence is studied, where it is proved that it converges in a finite
number of iterations. The establishment of conditions/bounds, based on the Restricted Isome-
try Property, which guarantee the recovery of the sparse outlier vector’s support, follow. The
case where only outliers are present has been studied separately; it is derived that the recovery
of the original signal via GARD is exact. Moreover, for the case of additional inlier bounded
noise, results concerning the recovery of the sparse outlier vector’s support and the error of
the approximation are given. Finally, extensive experimentation demonstrates the comparative
advantages of the new iterative scheme.

4.2 Greedy Algorithm for Robust Denoising (GARD)

The proposed algorithmic scheme attempts to solve problem (3.11) by using the split noise
model of (3.9). It is built around the celebrated Orthogonal Matching Pursuit (OMP) rationale
and alternates between a Least Squares minimization task and an OMP selection technique.
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Algorithm 6 Greedy Algorithm for Robust Denoising: GARD

1: procedure GARD(X, y, ε)
2: k ← 0
3: S̃0 ← {1, ...,M}, Sc0 ← {1, ..., N}, A = [X IN ]
4: ẑ(0) ← (AT

S̃0
AS̃0)

−1AT
S̃0
y . Initial LS solution step.

5: r(0) ← y −AS̃0 ẑ(0)

6: while ‖r(k)‖2 > ε do
7: k ← k + 1
8: jk ← argmaxj∈Sck−1

|r(k−1),j|, ik = jk + |S̃0| . Selection step.

9: S̃k ← S̃k−1 ∪ {ik}, Sck ← Sck−1 \ {jk}
10: ẑ(k) ← (AT

S̃k
AS̃k)

−1AT
S̃k
y . LS solution step.

11: r(k) ← y −AS̃k ẑ(k)

12: Output: ẑ(k) = (θ̂T(k), û
T
(k))

T after k iterations.

Thus, it generates sparse solutions in a greedy way, in line with the standard OMP.

The task in (3.11) can readily be expressed in the form:

min
θ,u
||u||0, subject to

∥∥∥∥y −A(θu
)∥∥∥∥2

2

≤ ε, (4.1)

where A = [X IN ] ∈ RN×N+M is the augmented matrix. The key feature of the proposed
scheme is the restriction of the greedy-selection over atoms of the second half of matrix A, i.e.,
matrix IN = [e1 e2 ... eN ], where ei are the vectors of the standard Euclidean basis of RN . As it
is demonstrated, the improved performance of the proposed scheme is due to the orthogonality
between the columns of IN .

The method is described best, via the use of subsets, corresponding to a set of active
and inactive columns of matrix A. The active set, S̃k, which contains the indices of the active
columns from A at the k-th step, and the inactive set, S̃ck, which contains the remaining ones,
i.e., those that do not participate in the representation. Moreover, the set of indices that refers
to the selected columns of the identity matrix, IN , and with respect to the set S̃, is defined as:

Sk :=

{ {
j − |S̃0| : j ∈ S̃k \ S̃0

}
for k = 1, 2, . . .

∅ for k = 0
, (4.2)

where |S̃0| denotes the cardinality of the set S̃0 and S̃k \ S̃0 := {j : j ∈ S̃k and j /∈ S̃0}. The
set Sk is of great importance, since it indicates the support for the sparse outlier estimate. Also
note that, Sck is used for its complementary set. For example, at the initial step, S0 = ∅, the first
selection of an index is performed over the set Sc0 = {1, . . . , N}. Suppose now that the index
j1 = 2 is selected; according to the selection step 8 of GARD, the update for the active set is
S̃1 = {1, . . . ,M,M + 2}, which results to S1 = {2}. At the second iteration of the algorithm,
the next index is selected from the set Sc1 = Sc0 \ {2}. The algorithmic scheme is provided in
Algorithm 6, see [35].

In simple words, following OMP’s rationale, we have that:

• Initially, the method performs a LS minimization by projecting the measurement vector y
onto the subspace formed by the columns of matrix X and computes the initial residual.
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• At each subsequent step, it selects that atom of matrix IN , which is more correlated with
the current residual (corresponding to an outlier identification) and augments the set of
(active) columns that participate in the representation by the newly selected one. The
correlation is measured with respect to the angle, which in turn leads to the maximization
of
∣∣〈r(k), ei〉

∣∣ =
∣∣r(k),i

∣∣ for an index i = 1, . . . , N .

• Finally, it performs a new LS minimization step over the current set of active columns and
updates the residual. The procedure is repeated until the residual drops below a specific
predefined threshold.

Remark 4.1. In the following, in order to keep the notation as simple as possible, A(k) is used

for the restriction of active columns of matrix A over the set S̃k, instead of using AS̃k . The
numerical index, (k), also refers to the current iteration of the algorithmic scheme.

The complexity of the algorithm is O
(
(M + k)3 + 2N(M + k)2

)
at each k-th step; although

k << N (there are only few outliers compared to the number of data), it is considered barely
adequate. Thus, an improvement should be considered for large dimensionality. Since at each
step the method solves a standard LS task, the complexity could be further reduced by using:
a) a Cholesky decomposition, b) a QR factorization or c) the Matrix Inversion Lemma (MIL).
For details on those implementations of the classic OMP, see [76]. Playing with all schemes, the
most efficient implementation was found to be the Cholesky decomposition, as described below:

• Replace the initial (k := 0) solution step 4 of Algorithm 6 with:

Factorization step: XTX = L(0)L
T
(0).

Solve L(0)L
T
(0)z = XTy using:

– forward substitution L(0)q = XTy

– backward substitution LT(0)ẑ(0) = q.

• Replace the update (k := k + 1) solution step 10 of Algorithm 6, with:

Compute v such that: L(k−1)v = AT
(k−1)ejk

Compute: b =
√

1− ||v||22
Matrix Update: L(k) =

(
L(k−1) 0
vT b

)
Solve L(k)L

T
(k)z = AT

(k)y using:

– forward substitution L(k)p = AT
(k)y

– backward substitution LT(k)ẑ(k) = p.

This modification leads to a squared cost for the main iteration steps. Analytically, the
cost at the initial factorization plus that of the forward and backward substitution is O(M3/3+
(N +1)M2). At each subsequent step, neither inversion nor factorization is required. The lower
triangular matrix L(k) is updated, only with a minimal cost of square-dependence. Furthermore,
the cost required for solving the linear system using forward and backward substitution at the
k-th step is O(3(M + k)2/2 + N(M + k)), for k = 1, 2, . . . . Thus, the total complexity of the
efficient GARD implementation via the Cholesky decomposition is

O
(
M3/3 + k3/2 +M2(N + 1 + 3k/2) + k2(N + 3M)/2 + kMN

)
.
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Remark 4.2. The algorithm begins with a LS solution to obtain ẑ(0). Thus, if no outliers exist,
GARD solves the ordinary LS problem; it provides the Maximum Likelihood (ML) estimator,
assuming that the noise is Gaussian.

Remark 4.3. Since a LS task is implemented at each step, the new residual, r(k), is orthogonal
to each column that participates in the representation. Specifically, for the inner product between
the residual and the identity matrix (the second part of matrix A) it holds that 〈r(k), ejk〉 =
r(k),jk = 0, for every jk ∈ Sk. Thus, the column vector ejk of matrix IN cannot be selected in
subsequent iterations.

Remark 4.4. Considering the complexity of the efficient implementation of GARD, the algo-
rithm speeds up in cases where the fraction of the outliers is very low, i.e., the outlier vector is
very sparse (S << N).

Remark 4.5. The proposed scheme should not be confused with other OMP-based schemes, such
as Robust OMP in [75]; although both are OMP-based, they perform in a distinctive manner
and for dissimilar purposes. As both the selection step as well as the minimization step work
quite different, GARD selects a column, based on the residual and performs an ordinary LS
procedure. On the other hand, ROMP selects a column based on the residual pseudo-values and
then solves a weighted LS minimization task. However, the major drawback of the ROMP is
that the scheme does not perform any kind of outlier identification.

4.3 Theoretical Analysis

This section is devoted to the study of the basic properties that the novel iterative robust
scheme, GARD, satisfies. First, the convergence properties of the proposed scheme are derived.
In the sequel, it is shown that GARD recovers the exact solution (if this is unique), under the
condition of a derived bound in terms of the Restricted Isometry Property (RIP) constant and
in the presence of outlier noise only. Finally, for the case of both inlier and outlier noise, bounds
on the recovery of the sparse outlier support and the reconstruction error are also presented.

4.3.1 General Results

Lemma 4.1. At every k ≤ N −M step, GARD selects a column vector ejk from matrix IN ,
that is linearly independent of all the column vectors of matrix A(k−1). Hence, A(k) has full
rank and the solution to the Least Squares task at each step is unique.

Proof. The proof relies on mathematical induction. At the initial step, the matrix A(0) = X
has been assumed to be full rank, hence the solution of the LS task is unique. Suppose that at
(k − 1)-th step (k ∈ N∗), matrix A(k−1) is full rank, hence let ẑ(k−1) denote the unique solution
of the LS task and r(k−1) = y −A(k−1)ẑ(k−1), the respective residual. Assume that at the k-th
step, the jk-th column of matrix IN is selected from the set Sck−1. It is readily seen that the
columns of the augmented matrix at this step, i.e., the columns of matrix A(k) = [A(k−1) ejk ],
are linearly independent. Notice here that r(k−1),jk 6= 0, otherwise either the index would have
not been selected or the residual vector would be equal to zero. Next, we assume that the
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columns of matrix A(k) are linearly dependent, i.e., there exists v 6= 0 such that ejk = A(k−1)v.
Also let z(k−1) = ẑ(k−1) + r(k−1),jkv. Thus, it is readily obtained that

||r(k−1)||2 = ||y −A(k−1)z(k−1)||2 =

= ||y −A(k−1)ẑ(k−1) − r(k−1),jkA(k−1)v||2 =

= ||r(k−1) − r(k−1),jkejk ||2 < ||r(k−1)||2,

which contradicts the fact that the residual of the LS solution attains the smallest norm. Thus,
all the selected columns of matrix A(k) are linearly independent.

Theorem 4.1. The norm of GARD’s residual vector

r(k) = y −A(k)ẑ(k)

is strictly decreasing. Moreover, the algorithm will always converge.

Proof. Let ẑ(k−1) denote the unique LS solution (Lemma 4.1) and r(k−1) = y−A(k−1)ẑ(k−1) the
respective residual at the (k− 1)-th step. At the next step, the algorithm selects the column jk
and augments matrix A(k−1) by the column ejk in order to form matrix A(k). Let ẑ(k) denote
the unique solution of the LS task at the k-th step (Lemma 4.1) and r(k) = y −A(k)ẑ(k) the
respective residual. Moreover, let P(k)(z) = ||y −A(k)z||2, be a cost function defined for every
vector z ∈ RM+k at the k-th step. Thus,

||r(k)||2 = P(k)(ẑ(k)) ≤ P(k)(z), (4.3)

holds for every z ∈ RM+k. Finally, let z(k) = (ẑT(k−1), r(k−1),jk)
T , where r(k−1),jk is the jk-th

coordinate of the residual r(k−1). Hence, it is obtained that

P(k)(z(k)) = ||y −A(k)z(k)||2 =

= ||y −A(k−1)ẑ(k−1) − r(k−1),jkejk ||2 =

= ||r(k−1) − r(k−1),jkejk ||2 < ||r(k−1)||2. (4.4)

Combining (4.3) and (4.4) leads to

||r(k)||2 < ||r(k−1)||2. (4.5)

Since y ∈ RN , the residual equals zero as soon as N −M columns are selected. However, since
the noise bound is a positive value, the algorithm terminates at the first step k < N−M , where
the residual’s norm drops below ε.

4.3.2 The Presence of Outliers Only

The scenario where the signal is corrupted only by outliers is treated separately. This leads to a
simplification of the provided analysis and an attractive presentation of the derived properties,
compared to the noisy case. Moreover, the established results, pave the way for the study of
the more complex case where inlier noise is also present.

In order to simplify the notation and reduce the size of the subsequent proofs, we or-
thonormalize X by the reduced QR decomposition, i.e., X = QR, where Q is a N×M matrix,
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whose columns form an orthonormal basis of the column space of X, i.e., span(X), and R is a
M ×M upper triangular matrix. Since X has full column rank, the decomposition is unique;
moreover, the matrix R is invertible. By using this decomposition, the split noise modeling
described in equation (3.10) for η = 0 (noiseless case) is expressed as

y = Qw
¯

+ u
¯

= [Q IN ]

(
w
¯
u
¯

)
, (4.6)

where w
¯

= Rθ
¯
. If w

¯
is recovered, the unknown vector θ

¯
can also be recovered from θ

¯
= R−1w

¯
.

Also, by defining
Φ = [Q IN ], (4.7)

Equation (4.6) can be cast as y = Φz
¯
, where z

¯
=

(
w
¯
u
¯

)
.

In this section, the goal is to solve the following `0-norm minimization task with equality
constraint:

min
w,u
||u||0, subject to y = Qw + u. (4.8)

It is further assumed that the vector u
¯

is sparse over the support subset S ⊂ J := {1, . . . , N},
with |S| = S << N ; that is, u

¯i
6= 0 for i ∈ S and u

¯i
= 0, for all i 6∈ S. Moreover, S < N/2

should also be satisfied; if S ≥ N/2, it seems unlikely that the task is solvable, see [32]. Also,
let

Φ:|S = [Q IS ], (4.9)

denote the restriction of columns from the augmented matrix Φ over its second part only, i.e.,
the identity matrix, over the set S. Obviously, Equation (4.6) could also be written as

y = Φ:|Sz
¯:|S , (4.10)

where

z
¯:|S =

(
w
¯
u
¯S

)
. (4.11)

Equation (4.10) and in particular matrix Φ:|S reveals the hidden geometrical structure of the
robust regression task. It should also be noted that, while u

¯
∈ RN has N − S zero elements,

the vector u
¯S
∈ RS and has no zero entries.

In the following, the notion of the smallest principal angle between subspaces is employed.
Given the information concerning the index subset S (i.e., assuming that the support of the
outlier vector is known), w

¯
can be recovered if and only if the matrix Φ:|S has full rank. The

latter assumption can also be expressed in terms of the smallest principal angle,
�
ωS, between

the subspace spanned by the columns of the regression matrix, i.e., span(Q) and the subspace
spanned by the columns of IS, i.e., span(IS).

Definition 4.1. Let
�
δS be the smallest number that satisfies the inequality

|〈w,u〉| ≤
�
δS||w||2||u||2,

for all w ∈ span(Q) and u ∈ span(IS). Then
�
ωS = arccos(

�
δS) is the smallest principle angle

between the spaces span(Q) and span(IS).
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However, since the support set of the outlier vector, u
¯

, is in general unknown to us, we
resort to a generalized form of Definition 4.1, i.e.,

δS = max
S

{
�
δS, for S ∈ T JK , K ≤ S

}
, (4.12)

where the T JK denotes the set of all possible K-th cardinality combinations of subsets over
J = {1, . . . , N} for K = 1, . . . , S. Thus, the smallest principal angle between the regression
subspace, span(Q), and all the at most S-dimensional outlier subspaces, span(IS) for all possible
combinations of S such that |S| ≤ S, is defined as follows:

ωS = arccos(δS). (4.13)

It can readily be seen that δS can be defined by employing only the value K = S instead of all
K ≤ S. Furthermore, for any w ∈ span(Q) and any at most S-sparse vector u (regardless of
its support) the important property holds:

|〈w,u〉| ≤ δS||w||2||u||2. (4.14)

Remark 4.6. The quantity δS ∈ [0, 1] (or equivalently ωS ∈ [0◦, 90◦]) is a measure of how well
separated the regression subspace is from all the S-dimensional outlier subspaces.

The following condition, which is also known as the Restricted Isometry Property (RIP),
plays a central role in sparse optimization methods, [39]. Although the definition can be ex-
pressed with a more general matrix we present it with a specific one.

Definition 4.2 (Restricted Isometry Property-RIP). For an orthonormal matrix Q the constant
µS > 0, S = 1, 2, ..., N , is defined as the smallest number such that for the matrix defined in
(4.9)

(1− µS)||α:|S ||22 ≤ ||Φ:|Sα:|S ||22 ≤ (1 + µS)||α:|S ||22, (4.15)

for all vectors α and every set S with cardinality at most S.

Simply stated, the condition ensures that the matrix involved, is approximately an isometry. In
[40] (Lemma III.1), it has been proved that for a matrix of the form in (4.9) and Q orthonormal,
the smallest principal angle constant coincides with the one defined in the RIP condition, i.e.,
δS = µS, S = 1, 2, ..., N . Finally, the following theorem guarantees the uniqueness of the
decomposition, see [32, 40].

Theorem 4.2. Assume that the vector y ∈ RN can be decomposed as follows:

y = Qw
¯

+ u
¯
,

where w
¯
∈ RM and u

¯
is an at most S-sparse vector. If δ2S < 1 the decomposition is unique and

the `0-norm minimization task has a unique solution.

One of the main theoretical results, established in this work is the following theorem,
which guarantees the recovery of the support for the sparse outlier vector for the noiseless case.
Moreover, it turns out that both the vector of unknowns and the outliers are recovered with
zero error.

79 George K. Papageorgiou



Robust Algorithms for Linear and Nonlinear Regression via Sparse Modeling Methods: Theory, Algorithms
and Applications to Image Denoising

Theorem 4.3. Let X be a full column rank matrix and assume that the vector of observations
has a unique decomposition y = Xθ

¯
+ u

¯
, such that ||u

¯
||0 ≤ S (at most S outliers exist in the

y variable). If

δS <

√
min |u

¯
|

2||u
¯
||2
, (4.16)

where min |u
¯
| is the smallest absolute value of the sparse vector u

¯
over the nonzero coordinates.

Then, GARD guarantees that the unknown vector θ
¯

and the sparse outlier vector u
¯

are recovered
exactly, with no error.

Remark 4.7. Since matrix X is assumed to be full rank, equation y = Xθ
¯

+ u
¯

could be
transformed into (4.6). Thus, the smallest principal angle defined in (4.13) is now involved.

Remark 4.8. The condition under which the measurement vector y can be uniquely decomposed
into parts Qw

¯
plus u

¯
, is given in Theorem 4.2 (see also [32, 40]).

Remark 4.9. The bound that appears in (4.16) has also an interesting geometrical interpreta-
tion. The ratio, min |u

¯
|/||u

¯
||2, corresponds to the cosine of the largest direction angle of vector

u
¯

. Moreover, it can be readily seen that this ratio is no greater than 1 (attained only for 1-sparse
vectors), which leads to the fact that the right hand side of (4.16) is bounded by

√
2/2. In other

words, the condition of Theorem 4.3 forces ωS to lie within the interval (45◦, 90◦].

Rather than delving into the main arguments of the proof, it is first required to establish
the following proposition and lemmas.

Proposition 4.1. Let Q be the orthonormal matrix of the reduced QR decomposition of the full
rank matrix X and δS the smallest principal angle constant between the subspace spanned by
span(Q) and the subspace spanned by all the S-dimensional outlier subspaces. Then,

||QTv||2 ≤ δS||v||2 (4.17)

holds for every vector v ∈ RN with ||v||0 ≤ S.

Proof. The proof is straightforward by the definition of δS and (4.14):

‖QTv‖2
2 = |〈v,QQTv〉| ≤ δS‖v‖2‖QQTv‖2 ≤ δS‖v‖2‖Q‖2‖QTv‖2 = δS‖v‖2‖QTv‖2,

which leads to (4.17).

Lemma 4.2. Let the assumptions of Proposition 4.1 be satisfied and S be any non-empty subset
of J = {1, . . . , N} with cardinality |S| = K ≤ S < N . Then

||QTIS ||2 ≤ δS (4.18)

holds for every such set S.

Proof. Let v˜ 6= 0 be a vector of RK , K ≤ S. It is clear that ISv˜ = v ∈ RN , with ||v||0 ≤ S and
||v˜||2 = ||v||2. Hence, it holds that

||QTISv˜||2 = ||QTv||2 ≤ δS||v˜||2,
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due to Proposition 4.1. Since the matrix 2-norm is subordinate, by definition we have

||QTIS||2 = max
v˜ 6=0

||QTISv˜||2||v˜||2 .

Since it is proved that ||QTISv˜||2/||v˜||2 ≤ δs for every v˜ 6= 0 inequality (4.18) directly follows.

The importance of Lemma 4.2 is twofold. First of all, it is a bound on the 2-norm of the
matrix QTIS . Moreover, since ||ITSQQTIS ||2 = ||QTIS ||22 and assuming that (4.16) is satisfied,
we have that

||ITSQQTIS ||2 ≤ δ2
S < 1/2, (4.19)

which leads to the fact that the matrix

W(S) = IK − ITSQQTIS (4.20)

is invertible (see Appendix A). The matrix W(S) is specified by the set, S, on which the columns
of the identity matrix are restricted, and its cardinality, |S| = K ≤ S. The matrix notation
with the index of the set in parenthesis is adopted in order to distinguish from the notation of
the restriction of its columns over the set. Furthermore, the following bound is obtained

||W−1
(S)||2 ≤ (1− ||ITSQQTIS ||2)−1 < 2, (4.21)

due to a very popular lemma of linear algebra (see Appendix A).

Lemma 4.3. Let the assumptions of Lemma 4.2 be satisfied. Then

||ITSQQTv||2 ≤ δ2
S||v||2 (4.22)

holds for every vector v ∈ RN , with ||v||0 ≤ S.

Proof. Let S ′ denote the support set of the vector v, with |S ′| = K ≤ S. The tricky part
of the proof is that the support of the K-sparse vector v ∈ RN does not necessarily coincide
with the set S; however, both sets, S,S ′, are S-sparse at most. Thus, by using vS′ ∈ RK to
denote the non-sparse vector we have v = IS′vS′ (notice that ‖v‖2 = ‖vS′‖2). Hence, due to
the sub-multiplicative property of the matrix 2-norm, we have

‖ITSQQTv‖2 = ‖ITSQQTIS′vS′‖2 ≤ ‖ITSQ‖2‖QTIS′‖2‖vS′‖2 ≤ δ2
S||v||2,

where we have used ||ITSQ||2 = ||QTIS ||2 and both the results of Proposition 4.1 and Lemma
4.2.

Remark 4.10. For the simplification of the calculations in the following proofs, we make use
of an equivalent GARD implementation. Instead of taking into account equation (3.10) and
letting GARD(X,y, ε) run, we employ the QR decomposition of X, i.e., X = QR, so that
y = Qw

¯
+ u

¯
+ η and let GARD(Q,y, ε) run. Since for the two implementations, H = QQT ,

the respective residuals at each step are equal; however, their solutions are not, albeit related.

Thus, running GARD with the regression matrix X and solution ẑ(k) :=

(
θ̂(k)

û(k)

)
is equivalent

to running GARD with the regression matrix Q and respective solution ẑ(k) :=

(
ŵ(k)

û(k)

)
, taking

into account that at each step, θ̂(k) = R−1ŵ(k).
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Proof of the main Theorem 4.3

Proof. Since the matrix X is full rank, the observation vector, y, can be uniquely decomposed
as in (4.6) via the QR decomposition, X = QR. Suppose we let GARD run with ε = 0 and the
replacement of matrix X by matrix Q (Φ is also used instead of A), which serves the purposes
of the proof. Moreover, let S = supp(u

¯
) ⊂ J denote the support set for the sparse outlier

vector, with |S| ≤ S.

At the initial step of GARD, the LS solution, ŵ(0), is computed over the columns of matrix
Q. The corresponding residual is r(0) = y −Qŵ(0) = y −QQTy. The matrix PQ := QQT is
the projection matrix onto the range of matrix Q. Thus, taking into account (4.6), the residual
is expressed as

r(0) = (IN −QQT )u
¯
,

due to the fact that (IN − PQ)Qw
¯

= 0.

At the first step, in order to ensure a selection from the correct subset, S, we impose

|r(0),i| > |r(0),j|, ∀ i ∈ S and j ∈ Sc. (4.23)

The basic concept of the proof is to obtain lower and upper bounds for the left and right part
of equation (4.23). Employing Lemma 4.3, the left part is bounded below by

|r(0),i| = |〈r(0), ei〉| = |〈u
¯
−QQTu

¯
, ei〉| ≥

≥ |u
¯i
| − |〈QQTu

¯
, ei〉| = |u

¯i
| − |eTi QQTu

¯
| ≥

≥ min |u
¯
| − δ2

S||u¯ ||2. (4.24)

Following similar steps, the right part is upper bounded by

|r(0),j| = |〈r(0), ej〉| = |〈u
¯
−QQTu

¯
, ej〉| =

= |eTj QQTu
¯
| ≤ δ2

S||u¯ ||2, (4.25)

using that 〈u
¯
, ej〉 = 0, since j ∈ Sc.

Hence, by imposing
min |u

¯
| − δ2

S||u¯ ||2 > δ2
S||u¯ ||2,

condition (4.23) is guaranteed and one of the correct columns, i.e., j1, is bound to be selected
at the first step (note that the selection does not necessarily correspond to the largest valued
outlier).

Considering S1 = {j1} ⊂ S, the matrix of active columns, Φ(1) = [Q ej1 ], is augmented
and the new residual is computed with the requirement of the inversion of

ΦT
(1)Φ(1) =

[
IM QTej1
eTj1Q 1

]
.

Taking into account that IM is invertible and β = 1 − ||QTej1 ||22 > 1/2 (inequality (4.19) for
|S| = 1) and using the Matrix Inversion Lemma (MIL) in block form (see Appendix B), we
obtain:

(ΦT
(1)Φ(1))

−1 =

[
IM +QTej1e

T
j1
Q/β −QTej1/β

−eTj1Q/β 1/β

]
.
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After a few elementary algebra calculations

Φ(1)(Φ
T
(1)Φ(1))

−1ΦT
(1) = QQT +QQTej1e

T
j1
QQT/β − ej1eTj1QQT/β −QQTej1e

T
j1
/β + ej1e

T
j1
/β.

Hence, the new residual, r(1) = y −Φ(1)(Φ
T
(1)Φ(1))

−1ΦT
(1)y, is cast as

r(1) = (IN −QQT −QQTej1e
T
j1
QQT/β + ej1e

T
j1
QQT/β +QQTej1e

T
j1
/β − ej1eTj1/β)u

¯
.

(4.26)

The relation in (4.26) is further simplified by the use of the following decomposition for the
outlier vector:

u
¯

= FS1(u¯
) + FS\S1(u¯

), (4.27)

where FS1(u¯
) = u

¯j1
ej1 and FS\S1(u¯

) is the vector which has the same elements as u
¯

over the
set S \ S1 and zero at its j1-th coordinate. Obviously, the second term in the right hand side of
(4.27) is an (S − 1)-sparse vector at most and its support is a subset of S. Thus, we have:

r(1) = (IN −QQT −QQTej1e
T
j1
QQT/β + ej1e

T
j1
QQT/β)FS\S1(u¯

) = u(1) −QQTu(1), (4.28)

where

u(1) = FS\S1(u¯
) +

1

β

(
eTj1QQ

TFS\S1(u¯
)
)
· ej1 , (4.29)

It should also be noted that supp(u(1)) = supp(u
¯

) = S; however, their values at the j1-th
coordinate are not equal. Following a similar rational, for the next step, we impose |r(1),i| >
|r(1),j| for all i ∈ S \ S1 and j ∈ Sc. Hence, using lower and upper bounds leads to

|r(1),i| = |〈r(1), ei〉| = |〈u(1) −QQTu(1), ei〉| ≥
≥ |u

¯i
| − |eTi QQTu(1)| ≥ min |u

¯
| − δ2

S||u(1)||2, (4.30)

where it is employed that 〈ej1 , ei〉 = 0 for every i ∈ S \ S1. Moreover

|r(1),j| = |〈r(1), ej〉| = |〈u(1) −QQTu(1), ej〉| =
= |eTj QQTu(1)| ≤ δ2

S||u(1)||2, (4.31)

where the relationship 〈u(1), ej〉 = 0 is used, for every j ∈ Sc, as well as Lemma 4.3. By
imposing min |u

¯
| − δ2

S||u(1)||2 > δ2
S||u(1)||2, leads equivalently to

δS <

√
min |u

¯
|

2||u(1)||2
. (4.32)

Although (4.32), seems inadequate, it can be proved indeed that it always holds true, provided
(4.16) is satisfied. One needs to prove that ||u

¯
||2 > ||u(1)||2, which is equivalent to showing that

|
(
eTj1QQ

TFS\S1(u¯
)
)
/β| < |u

¯j1
|, using the aforementioned decompositions of u

¯
, u(1) and the

Pythagorean Theorem. Thus, it is obtained that

|
(
eTj1QQ

TFS\S1(u¯
)
)
/β| ≤ 2δ2

S||FS\S1(u¯)||2 < min |u
¯
| ≤ |u

¯j1
|,

due to β > 1/2, (4.22), (4.16) and the fact that the inequality ||FS\S1(u¯)||2 < ||u
¯
||2 holds for

any non-empty set S1. Hence, it is guaranteed that a second index which belongs to the support
set S is selected.
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At the k-th step Sk = {j1, j2, ..., jk} ⊂ S and the matrix that corresponds to the set, S̃k,
of active columns is Φ(k) = [Q ISk ]. Once again, by the use of the MIL for the inversion of
ΦT

(k)Φ(k) the new residual is expressed as follows:

r(k) =
(
IN −QQT −QQTISkW

−1
(Sk)I

T
SkQQ

T + ISkW
−1
(Sk)I

T
SkQQ

T
)

FS\Sk(u¯
) =

= u(k) −QQTu(k), (4.33)

where (4.20) and the following identities are employed:

u
¯

= FSk(u¯
) + FS\Sk(u¯

), (4.34)

u(k) = ISkW
−1
(Sk)I

T
SkQQ

TFS\Sk(u¯
) + FS\Sk(u¯

). (4.35)

It is readily seen that supp(u(k)) = supp(u
¯

) = S still holds. For a correct outlier index selection
from the set S, at the (k+ 1)-th step, one needs to impose |r(k),i| > |r(k),j| for all i ∈ S \Sk and
j ∈ Sc. Using lower and upper bounds on the inner products, one obtains relations similar to
(4.30), (4.31) with u(k) instead of u(1), which leads to

δS <

√
min |u

¯
|

2||u(k)||2
. (4.36)

The proof ends, by showing that the last bound is looser than that of inequality (4.16),
simply by proving that ||u(k)||2 < ||u

¯
||2 for all k = 1, 2, ..., S − 1. Using the decomposi-

tions of these vectors (4.34), (4.35) and the Pythagorean Theorem, it suffices to show that
||W−1

(Sk)I
T
SkQQ

TFS\Sk(u¯
)||2 < ||FSk(u¯)||2, which follows from the fact that

||W−1
(Sk)I

T
SkQQ

TFS\Sk(u¯
)||2 ≤ ||W−1

(Sk)||2||ITSkQQ
TFS\Sk(u¯

)||2 < min |u
¯
| ≤ ||FSk(u¯)||2, (4.37)

where we employed the sub-multiplicative property of the matrix 2-norm, inequality (4.21),
Lemma 4.3 and (4.16).

Thus, at the final selection step, k + 1 = S, the final index, jk+1, that belongs to the
set S is selected and the correct support is recovered; that is, Sk+1 = S. Hence, the linear
subspace, onto which the measurement vector y lies, is formed. In turn, this results to a LS
solution of zero error for GARD, i.e., ẑ(k+1) = z

¯:|S ; hence, it follows that θ̂(k+1) = R−1w
¯

= θ
¯

and û(k+1) = u
¯S

.

4.3.3 The Presence of Both Inlier and Outlier Noise

In the following section, the theoretical results regarding the performance of GARD for the case
both inlier bounded noise and outliers exist are provided.

Theorem 4.4. Let X be a full column rank matrix and assume that y = Xθ
¯

+ u
¯

+ η, such
that ||u

¯
||0 ≤ S (at most S outliers exist in the y variable) and ‖η‖2 ≤ ε. If

δS <

√
min |u

¯
| − (2 +

√
6)ε

2||u
¯
||2

, (4.38)

where min |u
¯
| is the smallest absolute value of the sparse vector u

¯
over the nonzero coordinates.

Then, GARD guarantees that the support of the sparse outlier vector u
¯

is recovered.
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Proof of Theorem 4.4

Since Theorem 4.4 is the generalization of Theorem 4.3 (notice that if ε = 0 (4.38) resorts to
(4.16)), some intermediate results regarding the proof presented in Section 4.3.2 are also used
here. Moreover, once again, for the simplification of the following proof, we let GARD run with
matrix Q, from the QR decomposition of X. On the other hand, the technical parts that share
obvious similarities are omitted.

Proof. Due to the QR decomposition of matrix X the equation (3.10) is expressed as:

y = Qw
¯

+ u
¯

+ η, (4.39)

where w
¯

= Rθ
¯
. Since GARD initially performs a LS step, where the columns that participate

in the representation are only those of matrix Q, the obtained residual is r(0) = (IN −QQT )y.
However, taking into account (4.39), we have the following expression for the initial residual:

r(0) = u
¯

+ η −QQTu
¯
−QQTη, (4.40)

where the extra terms are due to the existence of the noise vector η. Once again, we should
impose (4.23). Also, recall in Theorem 4.3, that1 δs <

√
2/2. Thus, we have:

|r(0),i| ≥ |u
¯i
| − |〈QQTu

¯
, ei〉| − |〈η, ei〉| − |〈QQTη, ei〉| ≥ min |u

¯
| − δ2

S||u¯ ||2 − ε− εδS >

> min |u
¯
| − δ2

S||u¯ ||2 − ε−
ε√
2
> min |u

¯
| − δ2

S||u¯ ||2 − ε− ε
√

3

2

and

|r(0),j| ≤ ε+ δ2
S||u¯ ||2 + εδS < ε+ δ2

S||u¯ ||2 +
ε√
2
< ε+ δ2

S||u¯ ||2 + ε

√
3

2
,

for every i ∈ S and j ∈ Sc, respectively. Thus, inequality (4.38) follows for the initial step. From
this point, we proceed with the general k-th selection step. The second one is omitted, since it
could be viewed as a special case of the general step; it was included in the proof of Theorem
4.3 for comprehension reasons only. It should also be noted, that the matrices augmented and
inverted at each step, are those presented in the proof of Theorem 4.3. However, this is not the
case for the solution and the residual, which is of our greatest interest.

The condition in (4.38) guarantees that at each selection step the support of our sparse out-
lier estimate is a subset of the sparse outlier vector, u

¯
. Simply stated Sk ⊂ S and Φ(k) = [Q ISk ]

is the matrix that corresponds to the set of active columns. Employing familiar techniques, we
have the expression for the residual after the LS solution of the k-th step:

r(k) = u(k) + η(k) −QQTu(k) −QQTη(k), (4.41)

where u(k) is the vector defined in (4.35) and

η(k) = ISkW
−1
(Sk)I

T
SkQQ

TFJ\Sk(η) + FJ\Sk(η), (4.42)

1In the noiseless case,
√

2/2 is the upper bound for the left hand part of (4.16), which is achieved only
for 1-sparse outlier vectors. Thus, if δS exceeds this bound, GARD has little chance in recovering the correct
support, even in the presence of outlier noise only.
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where J = {1, 2, . . . , N}; simply stated, the vector is decomposed into two disjoint subsets
(recall that the noise vector η is not sparse). From (4.42), it is clear that the only difference
between η(k) and η lies solely on the elements indexed as j ∈ Sk, i.e, indices that GARD has
selected as outliers. Prior to completing the proof, it is required to establish appropriate bounds
for the inner products

∣∣〈ei,QQTη(k)〉
∣∣ and

∣∣〈ei,η(k)〉
∣∣. Due to the Pythagorean Theorem, (4.18)

and (4.21) ∥∥η(k)

∥∥2

2
=
∥∥FJ\Sk(η)

∥∥2

2
+
∥∥∥W−1

(Sk)I
T
SkQQ

TFJ\Sk(η)
∥∥∥2

2
≤ ε2 + 2ε2 = 3ε2.

Hence, ∣∣eTi QQTη(k)

∣∣ ≤ δS
∥∥η(k)

∥∥
2
≤ δSε

√
3 < ε

√
3

2
,

where we have also used the maximum bound for the smallest principal angle, i.e., that δS <√
2/2. Also, for all i ∈ J \ Sk, it holds that

∣∣〈ei,η(k)〉
∣∣ =

∣∣〈ei,FJ\Sk(η)〉
∣∣ ≤ ε. Thus, adopting

bounds on the absolute value of the inner products we obtain

|r(k),i| ≥ |u
¯i
| − |〈QQTu(k), ei〉| − |〈η(k), ei〉| − |〈QQTη(k), ei〉| >

> min |u
¯
| − δ2

S||u(k)||2 − ε− ε
√

3

2

and

|r(k),j| < δ2
S||u(k)||2 + ε+ ε

√
3

2
,

for i ∈ S \ Sk and j ∈ Sc, respectively. Thus, imposing |r(k),i| > |r(k),j|, leads to

δS <

√
min |u

¯
| − (2 +

√
6)ε

2||u(k)||2
,

which is satisfied, supposing (4.38) holds true. This is due to the fact that
∥∥u(k)

∥∥
2
< ‖u

¯
‖2 for

all k = 1, 2, ..., S − 1. Thus, the selection of the final index, jk+1, that belongs to the set S, is
guaranteed. The procedure ends with the projection of the measurements’ vector y onto the
subspace originating from the columns of matrix Φ:|S , which produces an error ‖r(k+1)‖2 ≤ ε.

Now that the bound on the support for the sparse outlier estimate is established the goal
is to evaluate the error of the approximation.

Lemma 4.4. Assume that there exists 0 ≤ δS < 1, such that the RIP condition holds. It stems
directly that the smallest singular value σmin of the matrix Φ:|S = [Q IS ] is lower bounded by

σmin ≥
√

1− δS. (4.43)

Proof. Let vmin be the eigenvector which is associated with the smallest singular value of Φ:|S ,
then ∥∥Φ:|Svmin

∥∥2

2
= σ2

min ‖vmin‖2
2 .

Since (4.15) holds for every vector, (4.43) follows.
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Theorem 4.5. If the conditions of Theorem 4.4 are satisfied, GARD approximates θ
¯

, with
estimate θ̂, acquiring an error

||θ̂ − θ
¯
||2 ≤

ε

τ
√

1− δS
. (4.44)

where τ is the smallest singular value of matrix X.

Proof. The proof follows the same concepts as the stability result of Theorem 5.1 in [77]. Theo-
rem 4.4 guarantees that the support is recovered at the last iteration step of GARD. Thus, the
corresponding solution of GARD (Q,y, ε) is2:

ẑ =

(
ŵ
ûS

)
:= argmin

z
||y −Φ:|Sz||22 = Φ†:|Sy,

where Φ†:|S denotes the Moore-Penrose pseudoinverse of matrix Φ:|S in (4.9). Thus, according

to (4.11), y = Φ:|Sz
¯:|S + η and the estimated solution is expressed as:

ẑ = Φ†:|Sy = z
¯:|S + Φ†:|Sη.

Finally,

||ẑ− z
¯:|S ||2 ≤ ||Φ†:|Sη||2 ≤ ||Φ

†
:|S ||2 · ||η||2

≤ σ−1
minε ≤ ε/

√
1− δS, (4.45)

where we have also used that ||Φ†:|S ||2 is bounded, engaging the smaller singular value σmin of

matrix Φ:|S , as well as (4.43). However, the original approximation process is performed with
the regression matrix X, instead of the orthonormal Q, which was used for the simplification
of the calculations. Hence, the result of the theorem follows from the fact that

‖θ̂ − θ
¯
‖2 ≤ ‖R−1‖2‖ŵ −w

¯
‖2 ≤ ‖R−1‖2‖ẑ− z

¯:|S‖2,

where ‖R−1‖2 is the spectral norm of R−1 equal to σmin(R)−1. Since X = QR, the smallest
singular value of R equals3 the smallest singular value, τ = σmin(X), of X, thus the proof is
complete.

At this point, it is interesting to recall the discussion in Chapter 2, related to the leverage
points. It is evident from (4.40) that the relation similar to (2.12) is:

ri = (1− hii)νi −
N∑
j=1
j 6=i

hijνj, (4.46)

where νi = u
¯i

+ ηi. This is the general case for the initial residual, while specifically for the
noiseless case it is considered that ηi = 0. At each subsequent iteration, a similar condition
holds and it is obtained with the replacement of νi by ν(k),i. Although the general feeling is that
the LS residual is an unreliable source for the detection of the outliers, this is not entirely true.
In order to justify our claim, the following analysis is provided.

2The indices referred to the iterative process are omitted.
3Matrices X and R share the same singular values.
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First of all, there exist other values too, e.g., hii ' 0.5, for which the analysis based on
(4.46) is blur. Secondly, the fact that the detection also depends on other aspects too, e.g., the
dimension of the unknowns versus the number of observations, should also be considered. On
the other hand, in the analysis provided via the perspective of sparse modeling and optimization,
the whole issue is investigated from another point of view. The bounds derived in (4.16) and
(4.38), where the values of the outliers are also taken into consideration, are greater guarantees
for a safe detection via the residual. Thus, if such conditions are satisfied, the detection of an
outlier is valid, despite the fact that leverage points may exist (possibly not in extreme sense of
hii = 1). However, our humble opinion is that, if such abnormalities exist, it is rather unlikely
that the derived conditions/bounds are satisfied.

Remark 4.11. Let

c =

√
min |u

¯
| − (2 +

√
6)ε

2||u
¯
||2

.

Although c is readily computed, recall that δS is not, since it inherits the combinatorial nature of
the problem for all the possible subsets of cardinality at most S. As a consequence, inequalities
(4.16), (4.38), (4.43) and (4.44), cannot be verified in practice; nonetheless, they all serve
significant theoretical purposes.

Remark 4.12. Combining (4.44) with (4.38), we also have the following bound for the approx-
imation of θ

¯
: ∥∥∥θ̂ − θ

¯

∥∥∥
2
≤ ε

τ
√

1− c, (4.47)

which due to its immediacy will be tested and verified later, in section 6.4. However, it is looser
than that of (4.44).

Remark 4.13. The bound c in (4.38) clearly depends on the sparsity level, the values of the
outlier vector and finally the level, ε, of the inlier noise. Also notice that, ε = 0 leads to the
bound of δS for the noiseless case, i.e., in (4.16). Since in (4.38) more terms affect the bound,
we cannot expect to recover the support perfectly in the case of both dense outlier noise and
heavy inlier noise. Such a scenario would imply the bound on δS to be extremely tight, thus it
is likely not satisfied. Finally, notice that min |u

¯
| should be greater than (2 +

√
6)ε, if we would

like (4.38) to be valid.

4.4 Experiments

In this section, GARD is directly compared against its competitors in various experiments. The
set-up for each one of the methods established prior to GARD, is the following:

• M-est: The Tukey’s biweight (or bisquare) robust (but nonconvex) function is employed,
see Tables 2.1, 2.2 and Figure 2.2. This option is included in the MATLAB function
“robustfit”; for σ̂, we have used the default parameter value (unless otherwise stated), see
[20, 19].

• SOCP: For the (SOCP) formulation the MATLAB function “SeDuMi” is employed; this is
included in the optimization package “CVX” of Stanford University, (CVX RESEARCH:
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Table 4.1: Computational costs for the methods that deal with the linear regression task. For
GARD, k is the number of times the algorithm identifies an outlier. For GARD and SOCP
total complexity is given, while for the rest of the methods the total complexity depends on
the number of iterations for convergence. For ROMP, many parameters are involved, thus its
complexity is not readily computable in closed form.

Algorithm Complexity
GARD O

(
M3/3 + k3/2 +M2(N + 1 + 3k/2) + k2(N + 3M)/2 + kMN

)
, k << N

M-est O
(
M3/3 +NM2

)
/step

SOCP O
(
(N +M)2.5N

)
ADMM O

(
(N +M)3/3 +N(N +M)2

)
/step

SBL O
(
M3/3 +NM2

)
/step

ROMP -

http://cvxr.com/ (6/02/2016)). The input parameter for SeDuMi is the bound of the
inlier noise that is used for the definition of the second order cone.

• ADMM: For this method, the parameter λ is given for each experiment. Furthermore, the
parameter, ρ, that is used for the soft- thresholding operator is also given initially (low)
at ρ = 10−4 and adapts at each step via ρ(n) = min{5, 1.1ρ(n−1)}. Finally, a termination
criterion is employed, when the norm of the estimate undergoes changes from one step to
the next, less than the predefined threshold of 10−4.

• SBL: The input parameters, σ2
(0), θ(0) and γ(0),i are initialized. Following [72, 73], we have

also pruned the hyperparameters γ(k),i from future iterations, if they become smaller than
a predefined threshold (set low to 10−5). Although the computational cost for SBL is
O(M3/3 + NM2) per step, the total cost depends on other variables too; such are the
number of hyperparameters that are pruned from future iterations, as well as the number
of iterations until convergence. This is also the case for other methods, too.

• ROMP: Since the method employs an IRLS algorithm at each step, its complexity is
not given in closed form. The Tukey’s biweight function “robustfit” (with the default
parameter settings unless stated) is used, once again, as in the M-est. The algorithm is
chosen to terminate once the residual error drops below the bound of the inlier noise ε.

In the current section, we have tested and analyzed the performance of each related algo-
rithm. The computational cost for each method is depicted in Table 4.1; it is observed that the
total cost is computable in closed form only for SOCP and GARD. The experimental set-up
parallels that of [40]. Our data (yi,xi), i = 1, 2, ..., N , xi ∈ RM is generated via equation (3.8);
for the case where no inlier noise exists, we have set ηi = 0. The xi’s, i.e., the rows of matrix
X, are obtained by uniformly sampling an M -dimensional Latin hypercube centered around
the origin. Finally, θ

¯
∈ RM are random vectors with values chosen from the normal distribution

with mean value 0 and standard deviation set to 5.
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4.4.1 Mean-Square-Error (MSE) Estimation

In the first experiment, all methods are compared with respect to the mean-square-error (MSE),
which is computed as the average, over 100 independent realizations at each outlier vector
density, of the squared norm of the difference between the estimated vector θ̂ and the unknown
vector θ

¯
. In parallel, the Mean Implementation Time (MIT) (in sec), that is required for each

method in order to complete the estimation task, is measured for each outlier density. Aiming
for detail, the given plots of the results are presented in a logarithmic scale, for each dimension,
M = 50, 100, 170, of the unknown vector/signal θ

¯
.

The values of the outliers are equal to ±25, in S indices, uniformly sampled over N
coordinates (S < N). Although outlier vectors are in general considered sufficiently sparse, in
some experiments the density level is extended, so that each method is tested to its limits. The
inlier noise vector has elements drawn from the standard Gaussian distribution, with σ = 1 and
inlier noise bound ε.

The input parameter for GARD, SOCP and ROMP is the inlier noise bound ε. For ADMM,
the regularization parameter is set to λ = 1.2. Note that all methods are carefully tuned so
that their performance is optimized. For the SBL, a major drawback is its sensitivity to the
choice of the initial values. Recall that, this is a non-convex method, which cannot guarantee
that the global minimum is attained for each dimension M , while the time required for each
implementation cannot be assured, since the number of iterations until convergence strongly
depends on those parameters. Hence, for this method, random initialization is performed a
number of times and the best solution is selected. Finally, it should be noted that the M-est
does not require any predefined parameters.

In Figure 4.1 (a), (c) and (e), the MSE (in dBs) versus the fraction of the sparse outlier
vector is depicted, for various dimensions of the unknown vector θ

¯
. The Mean Implementation

Time (MIT) is also plotted in logarithmic scale (right column) in Figure 4.1, for each dimensions
of the unknown vector. Although the complexity for each method is already discussed in Table
4.1, in certain algorithms, the number of iterations until convergence greatly influences the
required total implementation time. Observe that GARD attains the lowest MSE among the
competitive methods for outlier fraction lower than 40%, 35% and 25% for dimensionality
M = 50, 100, 170, respectively. The performance of M-est and ROMP is also notable, since
both methods also attain a low MSE. However, this is only possible for outlier fraction of less
than 25%, 20% and 15% (MSE equal to that of GARD). In particular, it appears that M-est
and ROMP have identical performance, albeit ROMP combines two methods, which results to
a higher computational cost.

It should also be noted that, in Figure 4.1 (c) and (e), the performance of GARD’s
competitors deteriorates for lower outlier fractions. However, the interesting zone of outlier
vector density, in practice, is between 0% and 20% of the sample set size. Hence, GARD attains
the lowest MSE within this sensitive zone. Finally, the experiments show that ADMM and
SOCP attain similar performance, as expected, due to the fact that both address the same task.

Besides its superior performance with respect to the approximation error, GARD’s com-
putational requirements remain low. As shown in Figure 4.1 (b), (d) and (f), GARD appears
to operate with the lower computational effort among its competitors, for outlier fraction less
than 20%.
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(a): M = 50 (b): M = 50
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(c): M = 100 (d): M = 100
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(e): M = 170 (f): M = 170

Figure 4.1: (a), (c) and (e): The attained MSE versus the outlier fraction, for various dimensions
of the unknown vector θ

¯
. (b), (d) and (f): Log-scale of the Mean Implementation Time (MIT)

versus the outlier fraction for each dimension of the unknown vector. For all dimensions, N =
600 observations are used.
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(a): M = 100 (b): M = 100

Figure 4.2: (a): The attained MSE for the dimension M = 100 of the unknown vector, θ
¯
, versus

the fraction of the outliers, with their values drawn randomly from the set [−50,−25]∪ [25, 50].
(b): The respective Mean Implementation Time (MIT) in logarithmic scale. The number of
data is N = 600.

Finally, we have performed a similar experiment (as described above), for the dimension
M = 100 of the unknown vector, measuring the MSE versus fraction of the outliers, with their
values drawn uniformly at random from the set [−50,−25] ∪ [25, 50]. We have chosen not to
include values within the interval (−25, 25) in order to distinguish the outlier from the inlier
noise; thus, the percentage at the x-axis corresponds to true fractions of outliers (otherwise the
true fraction could not be determined). In Figure 4.2 (a), the MSE versus the fraction of the
outliers is depicted, for each method. In parallel, in Figure 4.2 (b), we have measured the Mean
Implementation Time (MIT) for each method. Compared to Figure 4.1 (c), it is observed that
GARD achieves enhanced robustness, since it attains the lowest MSE for the fraction of outliers
up to 35%.

4.4.2 Complexity Evaluation for Large Data Sets

In the current section, the evaluation of the Mean Implementation Time (MIT) for the most
computationally efficient methods is carried out. The comparison is performed for all methods
except for ADMM and ROMP, for the case where the number of generated data grows signif-
icantly compared to the dimension of the unknown vector θ

¯
. As presented in Table 4.1, the

ADMM algorithm does not handle efficiently large numbers of samples. On the other hand,
although ROMP performs exactly as M-est, this comes at a higher computational cost, therefore
it seems impractical to put it to test.

Once again, equation (3.8) is used for generating our data. The dimension of θ
¯

is set at
M = 100 and the density of the outlier noise vector at 10% with values ±25 spread uniformly
over N coordinates. Finally the inlier noise vector has elements drawn from the standard
Gaussian distribution, with σ = 1 and inlier noise bound ε. For each number of observations,
N , 100 independent experiments have been performed and the results have been averaged.

In Figure 4.3, the Mean Implementation Time (MIT) (in logarithmic scale) is evaluated
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Figure 4.3: Large scale complexity test for dimension of the unknown vector set at M = 100.
While varying the number of observations, the MSE (top) and the Mean Implementation Time
(MIT) in log-scale (bottom), is shown for each method. It is clear that GARD attains the lowest
MSE, whilst being the most efficient.

for each method (bottom), while the total MSE is measured in parallel (top), for each varying
number of data, N . It is clear that, even for significantly large values of N , GARD excels.
Whilst attaining the lowest MSE, its convergence rate is very fast.

4.4.3 Support Recovery Test

The goal of this section is to bridge the gap between the theoretical properties of Section 4.3 and
the experimental performance of GARD. The results of Section 4.4.1, showcase the performance
of GARD. However, it would be premature to conclude that the support of the sparse outlier
vector is correctly identified in cases where the algorithm attains a low MSE, a matter that we
would like to address here. Although the recovery of the sparse outlier support is desirable,
since it guarantees the smallest MSE possible, it should be noted that GARD performs well
(with respect to the MSE), even in cases where the recovery of the support is not exact; e.g., one
of the most common cases is to identify a few extra indices (that do not belong to the support
of u

¯
) as outlying elements.

For all of the support recovery simulations, the dimension of the unknown vector θ
¯

is set
at M = 100 and the original data is corrupted by outliers in S < N indices, uniformly sampled
over N = 600 measurements. Also, for each fraction of outliers, i.e., (S/N) · 100%, we have
performed 10000 Monte-Carlo runs.

According to the theoretical analysis, Sk denotes the support set of the sparse estimate
û and S the support set of the sparse outlier vector u

¯
. In the following figures, the green line

(pointing up) corresponds to the percentage of correct indices that the proposed scheme has
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Figure 4.4: Recovery of the support and relation to the bound of δS, for the noiseless case. For
outlier fraction of less than 14%, the bound for δS in (4.16), is guaranteed, hence the recovery
is exact.

recovered, i.e., indices i ∈ Sk ⊆ S, while the orange line (pointing down) corresponds to the
extra indices that the method has incorrectly identified as outliers, i.e., indices j ∈ J \ S. In
addition, since the constant of the smallest principal angle cannot be computed directly, the
bound of c > δS is tracked for the evaluation of the theoretical results reported in Section 4.3.2.
The vertical line corresponds to the largest outlier fraction, that the proposed scheme succeeds
in recovering the sparse outlier vector support, one to one element.

The presence of outliers only

The scenario in which our original data is corrupted by outlier values only, is treated separately.
Our data are generated via equation (3.8), for ηi = 0 and outlier values4 ±25, in S indices,
uniformly sampled over N coordinates. In Figure 4.4, the recovery of the exact support versus
the fraction of the outliers is demonstrated. It is clear that for fraction of less than 14%,
the bound for δS, as Theorem 4.3 suggests, is guaranteed, thus the recovery of the support is
exact and also the approximation of θ

¯
is of zero error. It should also be pointed out that, the

approximation error is also very small, in cases where only a few extra indices, that belong to
Sc are imported into the support set Sk.

The presence of both inlier and outlier noise

In the current section, the focus is turned on the empirical validation of (4.38) and (4.47), where
two separate tests have been performed.

4In the noiseless case, arbitrarily small outlier values, are always identified; thus the performance of GARD
is not affected by a particular selection of those values.
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Figure 4.5: Recovery of the support and relation to the bound of δS, for the case inlier and outlier
noise coexist. For an outlier fraction of less than 13%, the bound for δS (4.16) is guaranteed,
hence the recovery of the support is exact, while the computed MSE is valid under the bound
that inequality (4.47) suggests.

In the first test, the maximum bound for the norm of the inlier noise vector is fixed at
ε = 28, while the fraction of outliers varies. In order to achieve this, the MATLAB’s random
generator for the Gaussian distribution, with standard deviation depending on ε, is used, while
the largest elements (in the absolute sense) are cut off if required, so that the norm of the inlier
noise vector always remains bounded by ε. Also, recall on Remark 4.13, that the minimum
element of the absolute value of the outlier vector should be larger than (2 +

√
6)ε, in order

(4.38) to be valid. Thus, the outlier values have been set at ±150, while the values of the
original outputs, Xθ

¯
, range at 170 − 180. In Figure 4.5, we have plotted the recovery of the

support for GARD and its relation to the bound c of the smallest principal angle (or RIP)
constant δS, for each outlier fraction. As one could observe, for fraction of outliers less than
13%, the bound for δS, as Theorem 4.4 proposes, is guaranteed, thus the recovery of the support
is exact. In parallel, we have computed the MSE between θ

¯
and θ̂ and tracked the relation to

the theoretical bound5 of (4.47).

In the second test, the capability of GARD to deal with heavy noise is demonstrated.
The outlier values were set at ±150 and the bound of ε was increased, so that the inlier noise
corresponds to a noise level of 20 dB. In such a case, the bounds established in (4.38) and (4.47)
are violated, however GARD manages to cope with. In Figure 4.6, the recovery of the support
versus the outlier fraction is demonstrated. We conclude that, although the method does not
succeed to recover the sparse outlier support 100%, the MSE is relatively low, at least for low
fraction of outliers, i.e., below 10%.

5Since the MSE is a squared norm between θ
¯

and θ̂, the bound is the squared right hand side of (4.47).
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Figure 4.6: Recovery of the support for GARD, in the case where outlier and heavy inlier noise
of approx. 20 dB coexist. Although, the support is not entirely recovered, the MSE is relatively
low.

4.4.4 Evaluating the Probability of an Accurate Estimation

In this experiment, the probability of successful estimation is evaluated. Since ADMM and
ROMP require higher computational loads and also perform very similar to other methods, we
limited our efforts to test the rest of the methods, i.e., GARD, SOCP, M-est and SBL. Two
sets of simulations are performed for a fixed number of data at N = 600. The noise comprises
inlier AWGN with σ = 1 and outliers with values equal to 25 or −25, in S indices, uniformly
sampled over N coordinates (S < N).

Figure 4.7 (a) demonstrates the probability of recovery for each method tested, while
varying the fraction of outliers. The dimension of the unknown vector θ

¯
is fixed at M = 100. For

each density of the sparse outlier vector, we have computed the probability over 200 Monte-Carlo
runs. For each method, we have assumed that the solution is obtained, if ||θ̂−θ

¯
||2/||θ

¯
||2 ≤ 0.03.

The major result is that, for fraction of outliers under 25%, GARD succeeds in recovering the
solution, with probability p = 1. For M-est, the percentage drops below 20%, while for the rest
of the methods the percentage is even lower. For SBL, the probability to recover the solution
is not guaranteed, even for the lowest fractions of outliers.

Figure 4.7 (b) demonstrates the phase transition curves for each method. For each dimen-
sion of the unknown vector θ

¯
, we have computed the fraction of outliers for which the method

transits from success to failure with probability p = 0.5. Experiments were carried over 200
Monte-Carlo runs. Once again, we have assumed that the solution is obtained, using the crite-
rion as in Figure 4.7 (a). We observe that for each fixed dimension of the unknown vector, the
probability for each method to recover the solution (always within a given tolerance) increases
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(a): Probability of recovery for M = 100 (b): Transition from success to failure.

Figure 4.7: (a): The probability of recovery while varying the fraction of outliers, for the the
dimension M = 100 of the unknown vector, θ

¯
, and N = 600 observations. As the fraction of

the outliers increases, the probability for an accurate estimation drops. (b): Transition from
success to failure with probability p = 0.5. A vertical line at M = 100 indicates the percentage of
outliers (for each method respectively) that correspond to the values of the x-axis for probability
p = 0.5, in (a).

for fractions of the outliers below each phase transition curve (where the fraction of outliers de-
creases). Contrariwise, the probability decreases as we move above the phase transition curves.
Here, it is clear that up to M = 200, GARD succeeds to recover the solution with the highest
probability from the rest of the methods. However, for larger dimensionality values, the number
of data (here N = 600) seems pretty “poor” to allow GARD to preserve its good performance
(in the sense that more data is required), although it is not worse than that of the `1-norm
minimization techniques.

4.4.5 Experiments with Noise of More General Forms

In the current section, we have performed a set of experiments involving more general noise
models for the described methods. To this end, simulations with various noise forms are carried
out and the MSE, over an average of 100 Monte-Carlo runs, is measured. Equation (2.2)
describes our model, where we produce (N = 600) measurements corrupted by different types
of noise. The dimension of the unknown vector, θ

¯
, is M = 100. For all tests, the ADMM was

excluded from the last set of experiments, since the method proved weak to handle different
orders of noise values simultaneously, thus failed to converge for all tests.

• Tests A, B and C. The noise vector is drawn from the Lévy alpha-stable distribution,
S(α, β, γ, δ), with pdf expressed in closed form only for special cases of the involved
parameters. The distribution’s parameters β and δ, that control symmetry were set to
zero (results to a symmetric distribution without skewness) for all three experiments. For
test A, the distribution’s parameters were set to α = 0.45 and γ = 0.3; the parameters for
each method were set to ε = 3 for GARD and SOCP, σ̂ = 1.2 for M-est and ROMP (we
have altered the parameter value of “robustfit”), while the hyperparameters for SBL were
initialized to 10−4. In Table 4.2, it is observed that almost all methods perform quite well
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Table 4.2: Computed MSE, for various experiments. In tests A, B and C, the noise is drawn
from the heavy-tailed distribution alpha-stable of Lévy distribution. In test D, noise consists of
a sum of two vectors, drawn from 2 independent Gaussian distributions with different variance,
plus an outlier noise vector of impulsive noise.

Algorithm Test A Test B Test C Test D
GARD 0.1772 0.0180 0.0586 0.690
M-est 0.2248 0.2859 1.844e+06 0.704
SOCP 0.4990 0.3502 5.852e+05 1.011
SBL 0.9859 58.3489 2.165e+06 1.292

ROMP 0.2248 0.2859 1.844e+06 0.704

(low MSE), with GARD appearing to perform better. For test B, α = 0.4, γ = 0.1; for
GARD ε = 3, for SOCP ε = 2, for M-est and ROMP σ̂ = 1 (“robustfit” parameter), while
for SBL the hyperparameters were initialized at random (Gaussian) with variance equal
to 10−5, although fails to converge, for all values of the paramaters tested. Once again,
it can be readily seen that GARD attains the lowest MSE. Finally, for the experiment
C, α = 0.3, γ = 0.1, resulting to a greater frequency of large values of noise; for GARD
ε = 3, for SOCP ε = 2, for M-est and ROMP σ̂ = 1, while for SBL the hyperparameters
were initialized at random (Gaussian) with variance equal to 10−6. The attained MSE for
GARD is significantly lower than in tests A and B; thus, we conclude that the method
manages to handle better large values of outlier noise with respect to the other methods.

• Test D. The noise consists of a sum of two vectors, drawn from two independent Gaussian
distributions N (0, 0.62) and N (0, 0.82), plus an outlier noise vector of 10% density (indices
chosen uniformly at each repetition) with values ±25. The parameters required for each
method are: the default tuning parameter for both M-est and ROMP; for GARD and
SOCP max{ε1, ε2} is required, where ε1, ε2 are the bounds of each inlier noise vector,
while for SBL an initialization at random with variance of 10−6 was performed. The
model of the noise is now more complicated, hence the task mode complex to be solved
for all of the methods. Once again, it is clear that GARD copes with this mixed type of
noise too.
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Chapter 5

Nonlinear Regression in RKHS and the
Pursuit for Robustness

5.1 Introduction

In this chapter, an overview of the basic definitions and theorems concerning Reproducing Kernel
Hilbert Spaces (RKHS) is given. RKHS play a central role in the task of learning nonlinear
models. The approach consists of mapping the input variables of the original lower dimensional
space to a higher dimensional one, such that the nonlinear task is transformed into a linear one.
The main advantage of such spaces is that inner product operations are performed in a very
efficient way, with complexity independent of the dimensionality of the respective RKHS.

The task of robust learning of nonlinear models in RKHS is also introduced. Robust
methods in the context of RKHS have already been proposed for the nonlinear regression task
and include: a) a Bayesian probabilistic approach and b) a deterministic sparsity-aware learning
technique based on the minimization of the `1-norm. Both of these formulations are presented
and discussed. Finally, the `0-norm formulation, on which our method is based for the respective
robust estimation task, is also introduced.

5.2 Reproducing Kernel Hilbert Spaces (RKHS)

Consider a linear space H, of real-valued functions defined on a set of points X . Typically, X
is a compact subset of RK , with K ∈ N∗. Furthermore, suppose that H is a Hilbert space,
i.e., a space equipped with a dot product operation 〈·, ·〉H, that defines a corresponding norm
‖ · ‖H :=

√
〈·, ·〉H and H is complete with respect to this norm.

Definition 5.1. A Hilbert space, H, is called Reproducing Kernel Hilbert Space (RKHS), if
there exists a function κ : X × X 7→ R, with the following properties:

• For every x ∈ X , κ(·,x) belongs to H.

• κ(·, ·) has the so-called reproducing property, that is,

f(x) = 〈f, κ(·,x)〉H, for every f ∈ H and every x ∈ X . (5.1)

99 George K. Papageorgiou



Robust Algorithms for Linear and Nonlinear Regression via Sparse Modeling Methods: Theory, Algorithms
and Applications to Image Denoising

Figure 5.1: The mapping from the original low-dimensional input space X to a linear one in the
high-dimensional RKHS H. Employing the kernel trick, inner product operations are efficiently
performed via function evaluations on the original low-dimensional space X .

Definition 5.2. Let H be an RKHS, associated with a kernel function κ(·, ·) and X a set of
elements. Then, for every x ∈ X the mapping

x 7→ φ(x) := κ(·,x) ∈ H, (5.2)

is known as the feature map and the space, H, the feature space.

In other words, if X is a set of vectors, the feature mapping maps each vector from the
original space to a high-dimensional RKHS H, as demonstrated in Figure 5.1. Note that, in
general, H can be of infinite dimension and that its elements could also be functions. In special
cases only, where H becomes a (finite dimensional) Euclidean space, for example RL, the image
is a vector φ(x) ∈ RL.

As a direct consequence of Definitions 5.1 and 5.2, the inner product of the respective
mappings of two points x,x′ ∈ X , results to

〈φ(x′),φ(x)〉H = 〈κ(·,x′), κ(·,x)〉H = κ(x,x′) : Kernel Trick. (5.3)

Simply expressed, by employing this mapping, we can perform inner product operations,
via function evaluations performed in the original low-dimensional space. This property, is

George K. Papageorgiou 100



Robust Algorithms for Linear and Nonlinear Regression via Sparse Modeling Methods: Theory, Algorithms
and Applications to Image Denoising

known as the kernel trick and it greatly simplifies the involved computations. As a result, such
computations promote their usage in algorithmic procedures.

5.3 Properties of RKHS

In this section, an overview of some of the basic properties of the RKHS is provided. For more
details, also read [78, 79, 80, 1, 81].

Definition 5.3. Given a function κ : X × X → R and x1, . . . ,xN ∈ X , the square matrix K,
with elements κnm = κ(xn,xm) for n,m = 1, . . . , N , is called Gram matrix or kernel matrix of
the function κ with respect to x1, . . . ,xN .

Definition 5.4. The function κ is called a positive definite kernel, if

αTKα =
N∑
n=1

N∑
m=1

αnαmκ(xn,xm) ≥ 0 : Positive Definite Kernel, (5.4)

for all α ∈ RN , points xn,xm ∈ X and any N ∈ N∗.

At this point, it should be noted that, although (5.4) is the definition for a positive
semidefinite matrix in the linear algebra literature, historically, the positive definite kernels
in (5.4) were originally introduced by Mercer [82], in the context of integral equations. The
connection to RKHS was developed later on. To this end, the term positive definite is adopted
for (5.4) and should be distinguished from the positive definite matrix in the context of matrix
analysis, which is a strict inequality.

Remark 5.1. Generally, for a reproducing kernel, the respective Gram matrix is strictly pos-
itive definite. However, if not, there exists a non-zero vector α = [α1, . . . , αN ]T , such that∥∥∥∑N

n=1 αnκ(·,xn)
∥∥∥2

H
= 0. Hence, for every f ∈ H, we have that

N∑
n=1

αnf(xn) =

〈
f,

N∑
n=1

αnκ(·,xn)

〉
H

= 0,

which results to the existence of an equation with linear dependence between the values of every
function in H at some finite set of points. Although such examples exist (e.g., Sobolev spaces),
this is not a standard case. In most cases, the reproducing kernels define Gram matrices that
are always strictly positive definite and thus invertible!

Proposition 5.1. The reproducing kernel of H, is symmetric, i.e.,

κ(x′,x) = κ(x,x′).

Lemma 5.1. The reproducing kernel, associated with H, is a positive definite kernel.

The proofs of Proposition 5.1 and Lemma 5.1 can be found in [83, 1].
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Definition 5.5. Given a linear subspace S of a Hilbert space H, let

S⊥ = {w ∈ H|〈w, v〉H = 0 for all v ∈ S} .

S⊥ is called the orthogonal complement of S.

It is clear from the above definition and the continuity of the inner product that the
orthogonal complement is always a closed linear subspace, due to the continuity of the inner
product. Next, we present one of the most important theorems in Hilbert spaces.

Theorem 5.1 (Projection Theorem). Let H be a Hilbert space, u ∈ H and S a closed subspace
of H. Then

1. There exists a unique element u∗ ∈ S (called the projection of u onto S), such that

‖u− u∗‖H = inf
v∈S
‖u− v‖H

2. u∗ is uniquely characterized by
(u− u∗) ∈ S⊥.

Theorem 5.1 obviously holds for an RKHS too, however it has a wider usage in more
general Hilbert spaces, see [84].

Theorem 5.2. Let S be a closed linear subspace of H. Then

H = S ⊕ S⊥,

where ⊕ denotes the direct sum.

Lemma 5.2. Let H be a RKHS on the set X with reproducing kernel κ(·, ·). Then the linear
span of the function κ(·,x), x ∈ X is dense in H, that is,

H = span {κ(·,x),x ∈ X}. (5.5)

Theorem 5.2 is a direct consequence of the Projection Theorem. In Lemma 5.2 it is stated
that, H can be constructed by all possible linear combinations of the kernel function computed
in X , as well as the limit points of the set. In other words, H can be fully generated from the
knowledge of the kernel κ. For a more in depth view, also read [83, 1, 80].

5.3.1 Examples of Kernel Functions

In this subsection, we present the most commonly (application-wise) used kernel functions,
defined on X × X , X ⊆ RK , as:
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Figure 5.2: (a) The Gaussian kernel for X = R and σ = 1.5. (b) The element φ(0) = κ(·, 0) for
different values of σ.

• The Gaussian Radial Basis Function (RBF)

κ(x,x′) = exp

(
−‖x− x

′‖2
2

σ2

)
, (5.6)

where σ > 0 is the kernel’s parameter. In Figures 5.2 and 5.3, the shape of the Gaussian
RBF is shown, for various X and values of σ. The dimensionality of the RKHS associated
with the Gaussian kernel is infinite, see [85].

• The Laplacian RBF
κ(x,x′) = exp (−t‖x− x′‖2) , (5.7)

where t > 0 is a parameter. In Figures 5.4 and 5.6, the shape of the Laplacian RBF is
shown, for various X and values of t. The dimensionality of the RKHS associated with
the Laplacian kernel is also infinite.

• The inhomogeneous polynomial kernel is given by

κ(x,x′) =
(
xTx′ + c

)d
, (5.8)

where c ≥ 0 and d are parameters. For c = 0, the homogeneous polynomial kernel
follows. In Figure 5.5, the shape of the polynomial kernel function is shown, for X = R
and different values of c, d. Finally, it should be stated, that the dimensionality of the
polynomial kernels is finite.

• The spline kernel is given by

κ(x,x′) = B2p+1

(
‖x− x′‖2

2

)
, (5.9)

where the Bn spline is defined via the n+ 1 convolutions of the unit interval [−1
2
, 1

2
], that

is, Bn := ⊗n+1
i=1 I[− 1

2
, 1
2

](·), where I[− 1
2
, 1
2

](·) is the characteristic function on the respective
interval, i.e., equal to one if the variable belongs to the interval and zero otherwise.
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Figure 5.3: The element φ(0) = κ(·, 0) of the Gaussian kernel for X = R2 and for various values
of the parameter σ. (a) σ = 0.7, (b) σ = 1, (c) σ = 1.5, (d) σ = 2.
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Figure 5.4: The element φ(0) = κ(·, 0) of the Laplacian kernel for X = R2 and for various
values of the parameter t. (a) t = 0.5, (b) t = 1, (c) t = 1.5, (d) t = 2.
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Figure 5.5: The polynomial kernel for X = R: (a) inhomogeneous d = 1, c = 3, (c) inhomo-
geneous d = 2, c = 3 and (e) homogeneous d = 2, c = 0. (b), (d), (f) The respective element
φ(x0) = κ(·, x0) for various values of x0.
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Figure 5.6: (a) The Laplacian kernel for X = R and t = 1. (b) The element φ(0) = κ(·, 0) of
for different values of t.

Although a large variety from which to choose a kernel function exists, in many applications
the Gaussian RBF in (5.6) for x,x′ ∈ RK is preferred, due to its desired properties. The most
important property is provided in the following theorem, see [80], [1].

Theorem 5.3 (Full Rank of Gaussian RBF Gram Matrix). Suppose that x1,x2, ...,xN ⊂ X
where X ⊆ RK are distinct points and σ > 0. The matrix K, given by

κij := exp(−||xi − xj||
2
2

σ2
),

i, j = 1, . . . , N has full rank.

The significance of the theorem is that the points κ(·,x1), ...,κ(·,xN) ∈ H are linearly
independent, i.e. span the N -dimensional subspace of H, see [79]. In the following, κ is adopted
to denote the Gaussian RBF.

5.3.2 Basic Theorems

The following theorem is of major importance and it allows us to perform empirical loss function
optimization, based on a finite set of training points, in a very efficient way, even if the function
to be estimated belongs to a very high dimensional space H. For more details, also see [80], [1].

Theorem 5.4 (Representer Theorem). Let Ω : [0,+∞)→ R be a strictly monotonic increasing
function, X a nonempty set and L : R2 → R ∪ {∞} an arbitrary loss function. Then, each
minimizer f ∈ H of the regularized minimization problem:

min
f∈H

{
L
(
{(yn, f(xn))}Nn=1

)
+ λΩ

(
||f||2H

)}
, (5.10)

admits a representation of the form

f =
N∑
n=1

αnκ(·,xn), (5.11)
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with αn ∈ R for all n = 1, . . . , N .

In simple words, Thoerem 5.4 states, that the solution of any regularized ridge regression
optimization task lies in the span of N particular kernels. However, in many applications, a
bias term c is often included to the aforementioned expansion; in other words, we assume that
the desired solution admits the following representation:

f =
N∑
n=1

αnκ(·,xn) + c. (5.12)

In practice, the use of a bias term turns out to improve performance. First, it enlarges the
class of functions in which we seek for a solution and second, the minimizer forces the values,
which the function takes at the training points, to smaller ones, due to the penalization imposed
by the regularization term. Finally, the use of the bias factor is theoretically justified by the
Semi-parametric Representer Theorem [80, 1].

Theorem 5.5 (Semi-Parametric Representer Theorem). Let us assume that in addition to the
assumptions adopted in Theorem 5.4, we are given a set of real-valued functions

ψm : X 7→ R, m = 1, . . .M,

with the property that the N × M matrix with elements (ψm(xn))nm , n = 1, . . . , N , m =
1, . . . ,M, has rank M . Then, any

g = f + h, f ∈ H, h ∈ span {ψm, m = 1, . . . ,M},

solving the minimization task

min
g

{
L
(
{(yn, g(xn))}Nn=1

)
+ λΩ

(
||f||2H

)}
, (5.13)

admits the following representation:

g =
N∑
n=1

αnκ(·,xn) +
M∑
m=1

bmψm(·), (5.14)

with αn, bm ∈ R for all n = 1, . . . , N, m = 1, . . . ,M .

Obviously, the use of a bias term is a special case of the expansion in (5.14). An example
of application of this theorem was demonstrated in [46].

5.4 Kernel Ridge Regression (KRR)

The regression task has already been discussed in Chapter 2 for the linear case. Here, the task
is stated in its more general form, i.e., in an RKHS. Note that searching for a model function in
an RKHS is a typical task of nonparametric modeling; that is, the minimization is performed
with respect to functions that are constrained to belong to a specific space, which is infinite
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dimensional. In the following, we state the regression task, which has been already developed
for linear models, to the more general nonlinear form in the RKHS case.

The task of nonlinear regression is typically described as follows: given a data set of the
form D = {(yi,xi)}Ni=1, we aim to estimate the input-output relation between xi and yi, i.e.,
a function f, such that f(xi) is “close” to yi, for all i. This is usually achieved by employing
a loss function, i.e., a function L(yi, f(xi)), that measures the difference between the observed
values, yi, and the predicted values, f(xi), and minimizing the so called empirical risk , i.e.∑N

i=1 L(yi, f(xi)). For example, in the least squares regression, one adopts the squared error,
i.e., L`2(yi, f(xi)) := (yi − f(xi))

2 and minimizes a quadratic function. Moreover, in order to
avoid a solution that overfits the data, we usually attempt to minimize a regularized version,
i.e.,

min
f

{
N∑
i=1

L(yi, f(xi)) + λρ(f)

}
, (5.15)

where L can be any loss function, e.g., the quadratic, the absolute value, the Vapnik’s ε-sensitive
loss, e.t.c. and ρ an appropriately chosen regularization functional (also see [86]).

In the classic regression task, we assume that the generation mechanism of the data,
represented by the training set D, is modeled via the nonlinear mechanism

yi = f
¯
(xi) + νi, i = 1, ..., N, (5.16)

where f
¯

is the original function that generates the uncorrupted data and νi’s are random noise
variables.

Naturally, the choice for the estimate of f
¯
, strongly depends on the underlying true model.

Assuming that this function belongs to an RKHS and motivated by the Representer Theorem,
we adopt the linear expansion in (5.11) for the desired solution. According to the kernel ridge
regression (KRR) approach, the unknown coefficients are estimated by solving the following
(convex) optimization task

α̂ = argmin
α

J(α),

J(α) :=
N∑
n=1

(
yn −

N∑
m=1

αmκ(xn,xm)

)2

+ λ‖f‖2
H, (5.17)

where λ is the regularization parameter and f is given in (5.11). The cost function J of (5.17),
can be equivalently written as

J(α) = (y −Kα)T (y −Kα) + λαTKTα, (5.18)

where K is the kernel Gram matrix (Definition 5.3) and y = [y1, . . . , yN ]T ,α = [α1, . . . , αN ]T .
Next, minimization of J with respect to α, leads to(

KTK + λKT
)
α̂ = KTy,

where α̂ is the vector of estimates or

(K + λIN) α̂ = y, (5.19)
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where KT = K has been assumed invertible1.

Next, by solving the linear system of equations (5.19), the corresponding prediction value
of the dependent variable is given by

ŷi =
N∑
n=1

α̂nκ(xi,xn) = α̂Tκ(xi), i = 1, . . . , N, (5.20)

where κ(xi) = [κ(xi,x1), . . . ,κ(xi,xN)]T is the vectorised i-th row of the kernel matrix K.
Finally, combining (5.20) with (5.19), we obtain

ŷi = yT (K + λIN)−1
κ(xi), i = 1, . . . , N. (5.21)

Alternatively, if we wish to adopt the method with the use of the bias term as the Semi-
Representer Theorem suggests, i.e., in (5.12), the cost function is now expressed as

Jb(α) := (y −Kα− c1)T (y −Kα− c1) + λαTKTα, (5.22)

and minimizing accordingly with respect to both α and c, leads to[
K + λIN 1

1TK N

]
θ̂ =

(
y

1Ty

)
, (5.23)

where θ̂ =

(
α̂
ĉ

)
is the vector of the estimated kernel coefficient estimates augmented by the

estimated bias term, [1].

5.5 The Pursuit for Robustness - Robust Kernel Ridge

Regression (RKRR)

The importance of robustness has already been addressed for the linear regression task. In
this section, our goal is to pave the way in order to extend our proposed method, i.e., the
GARD scheme, to the nonlinear case by employing kernels. This specific modeling lies in the
framework of Robust Kernel Ridge Regression (RKRR). Although, initially, it seems that the
two tasks (linear and nonlinear) share similarities, there is a major difference that should be
emphasized. Searching for a (nonlinear) solution in an RKHS is a typical nonparametric task,
as opposed to the linear case. Additionally, the regularization term which should be included in
the optimization function for the nonlinear case, is due to the fact that data overfitting issues
occur, since any function that interpolates the data is a solution. However, the purpose served
is twofold, as it is demonstrated in the next chapter, where the proposed method is introduced.

Undeniably, the KRR method seems a logical choice, for a model in the presence of white
Gaussian noise, see [80], [1]. However, when outliers are present or when the noise distribution
exhibits long tails, the aforementioned method fails. It should be noted that, in principle,
both Support Vector Regression (SVR) and KRR can be employed to address the KRR task.

1This is true, since the Gaussian kernel has been adopted.
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Figure 5.7: (a) Noisy data of 17 dB inlier noise and 10% outliers. (b) Black line: the uncorrupted
data and red dashed line: the estimated data. Estimation is performed with the classic KRR
method. It is clear that the performance of the estimation is greatly affected by the presence
of outliers (MSE = 10.79).

However, the presence of outliers reduces significantly their performance due to overfitting,
[46, 87], even for the case where no inlier noise exists (outliers only). Of course, in SVR,
this effect is not as dominant as in the standard KRR, due to the `1-loss, that it is employed;
however its performance remains rather poor and it falls short of the expectations. The challenge
of robustizing the KRR task has been mainly studied over the last few years.

The problematic estimation in the presence of outliers via the KRR is demonstrated in
Figure 5.7. The original data (black line) in Figure 5.7(b) is contaminated by white Gaussian
noise of 17 dB and 10 % outliers, uniformly distributed with values equal to 40 or −40. The
noisy observations are shown as blue dots in Figure 5.7(a). The attained MSE is 10.79 (measured
over 1000 independent runs), which clearly demonstrates the poor performance of the estimator.
Hence, if we wish to improve the estimation, an alternative treatment is required.

As already discussed in Chapter 2, sparsity is the key feature that characterizes the outliers.
In other words, it is assumed that the outlier noise contaminates only a small fraction of the
output data. To this end, the random noise variable is decomposed into two parts and the
model equation in (5.16) is cast as

yi = f
¯
(xi) + u

¯i
+ ηi, i = 1, . . . , N, (5.24)

where f
¯
∈ H, u

¯i
represents a possible outlier and ηi a noise component. In a more compact

form, this can be cast as y = f
¯

+ u
¯

+ η, where f
¯

= [f
¯
(x1), . . . , f

¯
(xN)]T and u

¯
= [u

¯1, . . . , u¯N
]T

is the sparse outlier vector. The decomposition was introduced in the framework of RKRR in
[70]. Since u

¯i
’s are adopted to denote the outliers, most of its values equal zero, except for a

few indices. Let J = {1, . . . , N} be the set of coordinates for a vector in RN . Assuming that
the outlier vector u

¯
∈ RN is sparse, the support set of u

¯
is denoted as S ⊂ J , with cardinality

|S| = S << N. Hence, the fraction of outliers equals S/N .

Our goal is to estimate the input-output relation f
¯

from the noisy observations of the
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data set D. This can be interpreted as the task of of simultaneously estimating both a sparse
vector u and as well as a function f ∈ H, that maintains a low squared error for L(D, f,u) =∑N

i=1 (yi − f(xi)− ui)2. Hence, the respective task for the Robust Kernel Ridge Regression
(RKRR) task can be cast as:

min
u,f∈H

‖u‖0

subject to
∑N

i=1 (yi − f(xi)− ui)2 + λ‖f‖2
H ≤ ε,

(5.25)

for some user-defined parameters λ and ε. Moreover, adopting the linear expansion in (5.11),
the optimization task in (5.25) can be written in a more compact form as:

min
u,a∈RN

‖u‖0

subject to ‖y −Ka− u‖2
2 + λaTKTa ≤ ε,

(5.26)

whereK is the corresponding kernel Gram matrix. Although our task is now formulated, we are
now faced with another challenge. The optimization task in (5.26) is not only non-convex, but
combinatorial, due to the nature of the employed `0(pseudo)-norm. Thus, in order to overcome
such an obstacle, recently established works seek for an alternative path.

Despite the fact that several methods exist for the linear method, only two methods have
been recently established for the nonlinear kernel-based regression task. Both methods adopt
the decomposition of the noise variable into two parts.

5.6 Related Works

5.6.1 Convex Relaxation: Refined Alternating Directions Method
of Multipliers (RAM)

In order to achieve stable solutions and mobilize the rich toolbox of convex optimization, many
authors prefer to consider the convex relaxation technique of the `0-norm. The method that
was introduced in [69] relies on the substitution of the `0-norm of the sparse outlier vector u
by its closest convex norm, i.e., the `1-norm, see [67, 68]. Such a relaxation is closely related
to the original minimization problem (5.25), since the `1-norm also preserves parsimonious
representations. Thus, the task in (5.25) leads to the following alternative convex formulation:

min
u,f∈H

‖u‖1

subject to
∑N

i=1 (yi − f(xi)− ui)2 + λ‖f‖2
H ≤ ε,

(5.27)

for ε, λ > 0, . Considering the linear representation (5.11) (no bias term c proposed by the
authors), the constraint task in (5.27) is equivalent to

min
α,u∈RN

{
‖y −Kα− u‖2

2 + λαTKTα+ µ||u||1
}
, (5.28)

for values of µ > 0, that correspond to the values of ε > 0. The convex minimization form in
(5.28) is known as the (generalized) LASSO task [24, 33], which is solvable by a large variety of
methods, e.g., using the Alternating Direction Method of Multipliers (ADMM) or its efficient
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Algorithm 7 Weighted Alternating directions solver: WAM

1: procedure WAM(K, y, λ, µ, w)
2: û(0) ← 0
3: for k = 1, 2, ... do
4: α̂(k) ← [K + λIN ]−1 (y − û(k−1)

)
5: r(k) ← y −Kα̂(k), û(k),i ← S

(
r(k),i,

wiµ
2

)
, i = 1, ...N

6: Output: α̂(k) and û(k) after k iterations.

Algorithm 8 Refined AM solver: RAM

1: procedure RAM(K, y, λ, µ, δ)
2:

[
α̂(0), û(0)

]
←WAM(K,y, λ, µ,1)

3: for k = 1, 2, ... do
4: w(k),i = (|û(k−1),i|+ δ)−1, i = 1, ..., N ,
5:

[
α̂(k), û(k)

]
←WAM(K,y, λ, µ,w(k))

6: Output: α̂(k) and û(k) after k iterations.

implementation, i.e., the so-called AM solver, as proposed in [69]. Although existing works on
based on the `1-norm minimization techniques provide guarantees of a fairly good approxima-
tion, in practice, the relaxation certainly compromises for something less, at least in terms of
the achieved MSE.

Additionally, inspired by the work in [88], the authors have proposed in [69] an improve-
ment of the optimization task (5.28). This has been achieved by using a non-convex relaxation
technique of the task in (5.26), that attempts to solve

min
α,u∈RN

{
‖y −Kα− u‖2

2 + λαTKTα+ µ
N∑
i=1

log (|ui|+ δ)

}
, (5.29)

for δ > 0 sufficiently small in order to avoid numerical instability. Since the additional regu-
larization term is now concave, the overall problem is non-convex. However, the last term in
(5.29) could be replaced by the local linear approximation of the logarithmic function via the
use of the reweighted `1-norm minimization technique proposed in [88], leading to the following
iteration for k = 0, 1, . . .

[â(k), û(k)] := argmin
α,u

{
‖y −Kα− u‖2

2 + λαTKTα+ µ

N∑
i=1

w(k),i|ui|
}
, (5.30)

where the elements of the vector of weights, w(k), are given by:

w(k),i :=
(∣∣u(k−1),i

∣∣+ δ
)−1

, i = 1, ..., N. (5.31)

The procedure could also be viewed as a refinement step of the AM solver (RAM solver)
and the scheme is summarized in Algorithms 8 and 7, where S denotes the soft-thresholding
operator2. It should also be noted that, the original AM solver (an improved implementation of

2Soft-thresholding operator: S(z, γ) := sgn(z) ·max{0, |z| − γ}.
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ADMM), could be obtained from Algorithm 7, for weights equal to one, i.e., by setting w = 1;
the WAM solver is a more general scheme. For example, if for some reason the weights are set
not equal to one, but to other values, one may establish a better performance scheme for certain
types of problems. Notable is also the fact that, the scheme could be implemented more effi-
ciently, by applying the Cholesky factorization (with cost O(N2) after the factorization) instead
of an inversion, since matrix [K + λIN ] remains unchanged. The aforementioned refinement
step improves the performance of the original AM solver [69], significantly. Moreover, it should
be noted that, in practice, more than two iterations do not offer significant improvements on its
performance. Furthermore, we should emphasize that the optimum parameters (λ∗, µ∗) to be
used with RAM (in terms of MSE), are not identical to the parameters (λ, µ) of AM solver in
(5.28) (WAM with w = 1). Thus, for µ∗ > µ the convergence speed of the RAM scheme is also
improved. Finally, theoretical properties of the method indicate that for small values of δ > 0,
the method attempts to approximate the `0-norm of the sparse outlier vector u.

5.6.2 Sparse Bayesian learning: Robust Relevance Vector Machine
(RB-RVM)

Relevance vector machines (RVM) have recently attracted much interest in the research commu-
nity, because they provide a number of advantages. They are based on a Bayesian formulation
of a linear model with an appropriate prior that results in a sparse representation. As a conse-
quence, they can generalize well and provide inferences at low computational cost. The Sparse
Bayesian Learning (SBL) scheme has already been presented in Chapter 2. As an extension of
this work for the kernel-based nonlinear regression task, the Robust Bayesian-RVM (RB-RVM)
is an RVM modified scheme that employees the use of hyperparameters to impose sparsity on
the outlier estimates [70, 72, 1].

Assuming that f admits the linear representation in (5.12), the authors suggest the input-
output relation of the form:

y = Kα
¯

+ c
¯
1 + u

¯
+ η = Az

¯
+ η, (5.32)

where A = [K 1 IN ], z
¯

=

(
θ
¯
u
¯

)
and θ

¯
=

(
α
¯
c
¯

)
, which is the vector of the unknown coefficients

augmented by the bias term. Adopting the Gaussian assumption for the inlier noise, the joint
posterior distribution of θ

¯
and u

¯
(assumed to be independent) is estimated via:

p(θ
¯
,u
¯
|y) =

p(θ
¯
)p(u

¯
)p(y|θ

¯
,u
¯

)

p(y)
,

where the likelihood term is given by

p(y|θ
¯
,u
¯

) = N (Az
¯
, σ2IN), (5.33)

where σ2 is the inlier Gaussian noise variance. Next, priors which ‘promote sparsity’ are assigned
to the vectors θ

¯
and u

¯
. To this end,

p(v|h) =
N∏
i=0

N (vi|0, h−1) (5.34)
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holds for vectors θ
¯

and u
¯

, with hyperparameters β = [β1, . . . , βN+1]T and δ = [δ1, . . . , δN ]T ,
respectively, where each of the hyperparameters follows a uniform distribution. Next, follows
the inference stage.

Following the RVM inference rationale, we first find point-estimates for the hyperparam-
eters β, δ and the inlier noise variance σ2, by maximizing

p
(
y|β, δ, σ2

)
=

∫
p
(
y|θ

¯
,u
¯
, σ2
)
p(θ

¯
|β)p(u

¯
|δ)dθ

¯
du

¯
.

Since, all the distributions in the right hand side are Gaussian with zero mean, it can be
shown that p(y|β, δ, σ2) is a zero-mean Gaussian distribution with covariance matrix σ2IN +
ATCA, where C := diag

(
βT , δT

)
. The maximization of p(y|β, δ, σ2) is performed by the EM

algorithm3 and the parameters β̂, δ̂ and σ̂2 are estimated. With this point estimation of the
hyperparameters and the noise variance, the (conditional) posterior distribution is given by

p(θ
¯
,u
¯
|y, β̂, δ̂, σ̂2) =

p(y|θ
¯
,u
¯
, σ̂2)p(θ

¯
|β̂)p(u

¯
|δ̂)

p(y|β̂, δ̂, σ̂2)
.

Since, all the terms in the numerators are Gaussian, it can be shown that this is again a Gaussian
distribution with covariance and mean given by

Σ̂ =
(
σ−2ATA+ Ĉ

)−1

and µ̂ = σ−2Σ̂ATy, (5.35)

where Ĉ := diag
(
β̂1, ..., β̂N+1, δ̂1, ..., δ̂N

)
. To obtain the posterior distribution p(θ

¯
,u
¯
|y), an

approximation is used and thus we obtain

p(θ
¯
,u
¯
|y) = p(θ

¯
,u
¯
|y, β̂, δ̂, σ̂2).

The desired posterior distribution of θ
¯
,u
¯

is a Gaussian distribution with the posterior covariance
and mean given by (5.35).

Finally, prediction is accomplished by using (5.12) as well as the covariance and mean of
the posterior distribution in (5.35). The predictive distribution of ŷ is given by

p(ŷ|y, β̂, σ̂2) =

∫
p(ŷ|θ

¯
, σ̂2)p(θ

¯
|y, β̂)dθ

¯
, (5.36)

where the posterior distribution of θ
¯
, i.e., p(θ

¯
|y, β̂), can be obtained from the joint poste-

rior distribution p(θ
¯
,u
¯
|y, β̂, δ̂, σ̂2). This is a Gaussian distribution with mean and covariance

corresponding to the first part, θ
¯
, of the z

¯
vector, i.e.,

Σ̂θ
¯

= Σ̂J ,J and µ̂θ
¯

= µ̂J . (5.37)

where J = {1, . . . , N + 1}. The difference of the scheme, with respect to the classical RVM
formulation is that instead of inferring just the parameter vector θ

¯
to the RVM algorithm, it

also infers the joint parameter-outlier vector z
¯
. This is accomplished by replacing the matrix

[K 1] by the matrix [K 1 IN ]. The (MATLAB) code for the method can be found in:
http://www.vectoranomaly.com/downloads/downloads.htm.

3EM stands for Expectation Maximization methods.
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Chapter 6

Robust Nonlinear Regression: A
Greedy Approach Employing Kernels

6.1 Introduction

Our main goal in this chapter is to extend the established work for the robust linear regression
task to the more general case of nonlinear models in RKHS. To this end, we resort to the
original problem formulation in (5.25) and attempt to solve the task via a modified Orthogonal
Matching Pursuit (OMP) scheme.

Moreover, theoretical properties of the proposed scheme regarding the identification of
the outliers for the case only outlier noise exists are established. Finally, an extended set of
experiments is reported, in which our theoretical findings are verified. The new scheme is
tested against its competitors, i.e., the RB-RVM and RAM methods, which have already been
described in Chapter 5.

6.2 Kernel Greedy Algorithm for Robust Denoising

(KGARD)

Our focus here is turned on attempting to solve the RKRR task via a greedy optimization
technique, which is inspired by the Orthogonal Matching Pursuit (OMP).

Although our motivation was originally driven by (5.26), we have also introduced and
worked with a variant, concerning the regularization term. This is because, we have found that,
in practice, this alternative leads to an enhanced performance. In the first of the two versions
the regularization is performed with the use of the H-norm. Additionally, a bias term (see the
linear expansion in (5.12)) is also included:

min
u,a∈RN ,c∈R

‖u‖0

subject to ‖y −Ka− c1− u‖2
2 + λaTKTa ≤ ε.

(6.1)

In the alternative formulation, the regularization is performed via the use of the `2-norm of the
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unknown parameters, which is a standard regularization technique, [86]. Thus, the problem is
now formulated as

min
u,a∈RN ,c∈R

‖u‖0

subject to ‖y −Ka− c1− u‖2
2 + λ ‖a‖2

2 + λc2 ≤ ε,
(6.2)

Obviously, the difference lies solely on the regularization term.

Since both tasks (6.1) and (6.2) are combinatorial, due to the minimization of the `0-norm,
a straightforward computation of a solution is impossible. To bypass this obstacle, we will derive
a modified version of the OMP algorithm, that attempts to solve (6.1) and (6.2), see [38].

First, one should notice that in both cases, the quadratic inequality constraints could also
be written in a more compact form as follows:

J(z) = ‖y −Az‖2
2 + λzTBz ≤ ε, (6.3)

where

A =
[
K 1 IN

]
, z =

αc
u

 , (6.4)

and for the choice of matrix B either one of the following matrices could be used:

B =

KT 0 ON

0T 0 0T

ON 0 ON

 or

 IN 0 ON

0T 1 0T

ON 0 ON

 , (6.5)

depending on whether the model (6.1) or (6.2) is adopted, respectively. The process adopted is
similar to the one for the linear case. The 2N + 1 column vectors of the matrix A are divided
into two complementary subsets: the active set, S̃k, which contains the indices of the active
columns of the matrix at the k-th step, and the inactive set, S̃ck, which contains the remaining

ones. Thus, AS̃k denotes the column vectors of matrix A restricted over the subset S̃k. For B
defined in (6.5), at each k-th step, BS̃k,S̃k comprises the first N + 1 + k rows and columns of
the matrix. Moreover, the set, Sk, defined in (4.2) is adopted for denoting the support for the
sparse vector estimate and refers strictly to columns of the identity matrix; however, here, the
cardinality of the initial set, S̃0, is N + 1.

Initially, only the first N + 1 columns of matrix A are activated. Thus, k = 0 leads to the
initialization of the active set S̃0 = {1, 2, . . . , N + 1} with the corresponding initial matrices:

AS̃0 = [K 1],

and

BS̃0,S̃0 =

[
KT 0
0T 0

]
or IN+1,

depending on the model selection, i.e., (6.1) or (6.2), respectively. Hence, the solution to the
initial LS problem is given by

ẑ(0) := argmin
z

J(0)(z) =
(
AT
S̃0
AS̃0 + λBS̃0,S̃0

)−1

AT
S̃0
y.
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Algorithm 9 Kernel Greedy Algorithm for Robust Denoising: KGARD

1: procedure KGARD(K, y, λ, ε)
2: k ← 0
3: S̃0 ← {1, 2, ..., N + 1}, Sc0 ← {1, ..., N}, A = [K 1 IN ], B in (6.5)

4: ẑ(0) ←
(
AT
S̃0
AS̃0 + λBS̃0,S̃0

)−1

AT
S̃0
y . Initial reg. LS solution step.

5: r(0) ← y −AS̃0 ẑ(0)

6: while ‖r(k)‖2 > ε do
7: k ← k + 1
8: jk ← argmaxj∈Sck−1

|r(k−1),j|, ik = jk + |S̃0| . Selection step.

9: S̃k ← S̃k−1 ∪ {ik}, Sck ← Sck−1 \ {jk}
10: ẑ(k) ←

(
AT
S̃k
AS̃k + λBS̃k,S̃k

)−1

AT
S̃k
y . Reg. LS solution step.

11: r(k) ← y −AS̃k ẑ(k)

12: Output: ẑ(k) =
(
α̂T(k), ĉ(k), û

T
(k)

)T
after k iterations.

Next, the method computes the initial residual, r(0) = y−AS̃0 ẑ(0), and identifies an outlier1, as
the most prominent value of the residual vector. The selected index, say j1 ∈ Sc0, corresponds
to another index i1 = j1 + N + 1, which is then added into the set of active columns, i.e.,
S̃1 = S̃0 ∪ {i1}. Thus, the matrix AS̃0 is augmented by the column vector, ej1 , drawn from
matrix IN to form matrix AS̃1 . Accordingly, the matrix BS̃0,S̃0 is augmented by a zero row and
a zero column, forming BS̃1,S̃1 . The new LS task is solved again (over the matrices AS̃1 , BS̃1,S̃1)
and the new residual, r(1), is computed. The process, summarized in Algorithm 9, is repeated
until the residual drops below a predefined threshold.

Simply stated, the algorithm alternates between a regularized LS task and a column
selection step that enlarges the solution subspace iteratively, in order to minimize the residual
error. Although it shares resemblance to its predecessor for the linear regression task, i.e.,
GARD, it is different in many ways. The basic differences are:

• A regularized LS problem is solved instead of a LS task; that is,

min
z

J(k)(z) = min
z

{
‖y −AS̃kz‖

2
2 + λzTBS̃k,S̃kz

}
, (6.6)

where k is the current step index.

• The initialization for the set of active columns of matrix A is different. Besides, we should
take into account that the number of the data is less than the number of unknowns.

These differences, which are imposed by the different structure of the problem which is for-
mulated in an RKHS, lead to a completely distinct performance analysis for the method with
respect to its predecessor for the linear case, i.e., GARD.

The gain of the robust estimation with KGARD over the standard KRR task is demon-
strated in Figure 6.1. We consider our input data as 400 equidistant points over the interval
[0, 1) and generate the uncorrupted data via a nonlinear function f

¯
∈ H as a (sparse) linear

1If outliers are not present the algorithm terminates and no outlier estimate exists in the solution ẑ0.
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Figure 6.1: The significance of robust estimation: (a) Data corrupted by both inlier and 10%
of outlier noise. (b) The black and the red dashed lines correspond to the uncorrupted data
and the non-robust estimation performed, respectively. The MSE over the training set is 10.79.
(c) The black and the green dashed lines correspond to the uncorrupted data and the robust
estimation performed with KGARD, respectively. The MSE over the training set is 1.21.

combination of Gaussian kernels with σ = 0.1 centered at a small number (i.e., 8 to 35) of those
points (randomly selected). Next, the data is separated into two sets, the training and the vali-
dation (testing) subsets. The training subset consists of the 200 odd indexed points of the entire
set (first, third, e.t.c.) and the validation subset includes the remaining ones (even indices).
The noisy data emerge from (5.32), where the inlier noise η ∼ N (0, 42IN) and the vector of
outliers u

¯
has non-zero values equal to 40 or −40 uniformly distributed over N coordinates

at a fraction of 10%. Finally, the MSE is measured over 1000 Monte-Carlo runs (independent
experiments) for both the training and the validation set (more details on the experiment can
be found in Section 6.4.2).

In Figure 6.1(a), we have plotted the noisy data (blue dots) of the training set (for a specific
simulation). The red dashed line in Figure 6.1(b) corresponds to the estimation performed by
the simple KRR task. Figure 6.1(c) corresponds to the robust estimation, performed via the
KGARD. Comparing the two figures the advantages of the KGARD method are clear. Although
both versions (6.1) and (6.2) are suitable for dealing with the sparse minimization task, in
practice, the selection of the task in (6.2) turns out to be a better choice. In order to justify our
claim, we have performed a comparative evaluation for the precedent experiment. The MSE
attained via the H-norm regularization is MSE = 1.35, over both the training and validation
set. However, when performing the estimation with the `2-norm regularization, the respective
value is reduced to MSE = 1.21, a performance improved by 10.4%. Hence, in the following, B
will be adopted to denote the matrix used with the regularization performed with the `2-norm
(defined in (6.5)). Finally, it should be noted that all λ and ε parameters have been chosen to
correspond to the values resulting to the best performance, after extensive experimentation.

Remark 6.1. In order to simplify the notation, in the following we adopt A(k) and B(k) to
refer to the matrices AS̃k and BS̃k,S̃k , respectively, at the k-th step.

Remark 6.2. Once a column has been selected at the k-th step, it cannot be selected again in
any subsequent step, since the corresponding residual coordinate is zero. In other words, the
algorithm always selects a column from the last part of A, i.e., matrix IN , that is not included
in Sk.
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Remark 6.3. For the following the implementation based on (6.2) is adopted, due to the im-
proved performance. Thus, B denotes the respective matrix defined in (6.5).

6.2.1 Efficient Implementations

As we have already discussed for GARD, faster implementations are also possible for KGARD.
Initially, the inversion of matrix AT

(0)A(0) + λB(0) plus the multiplication of AT
(0)y requires

(N+1)3 flops. At each of the steps, the required complexity is O ((N + k + 1)3), while the total
cost for the method is

O
(
3(k + 1)N3 + (3/2)N2k2 + (5/3)Nk3 + k4/4

)
.

Such a cost is acceptable, since k << N is assumed2. However, the complexity of the method
could be further reduced, since a large part of the inverted matrix, at each of the subsequent
steps, remains unchanged. To this end, several methods could be employed [76].

The first technique, which has been applied to the proposed scheme, is the Matrix Inversion
Lemma (MIL) (see Appendix B). The initial computational cost requirement is cubic, due to
the inversion of the matrix

M(0) := AT
(0)A(0) + λB(0) =

[
KTK + λIN KT1

1TK N + λ

]
. (6.7)

At each step, the column vector ejk is selected from matrix IN and matrices A(k−1), B(k−1)

are augmented, forming A(k) and B(k). Next, follows the inversion of the new matrix M(k).
However, with the application of the MIL, the inversion at each step is avoided, due to the
computation of

M(k) := (AT
(k)A(k) + λB(k)) =

[
M(k−1) AT

(k−1)ejk
eTjkA(k−1) 1

]
. (6.8)

and its inverse, recursively. Thus, the required cost for this update drops to O ((N + 1 + k)2)
per iteration. However, since the inversion of matrix M(0) could not be avoided, the total cost
after k steps becomes now:

O
(
2N3 + 2kN2 + k3/3 + (3/2)k2N

)
.

An alternative technique, which also offers an efficient implementation is the Cholesky
decomposition for matrix M(k). This is summarized in the following steps:

• Replace the initial regularized Least Squares solution step 4 of Algorithm 9, with:

Factorization step: M(0) = L(0)L
T
(0)

Solve L(0)L
T
(0)ẑ(0) = AT

(0)y using:

– forward substitution L(0)q = AT
(0)y

– backward substitution LT(0)ẑ(0) = q

2The k step reflects on the detection of an outlier, which in most applications is relatively low, since the
outlier vector is assumed to be sparse.
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Complexity: O ((N + 1)3/3 + (N + 1)2)

• Replace the regularized Least Squares solution step 10 of Algorithm 9, with:

Compute d such that: L(k−1)d = AT
(k−1)ejk

Compute: b =
√

1− ||d||22
Matrix Update: L(k) =

[
L(k−1) 0
dT b

]
Solve L(k)L

T
(k)ẑ(k) = AT

(k)y using:

– forward substitution L(k)p = AT
(k)y

– backward substitution LT(k)ẑ(k) = p

Complexity: O ((5/2)N2 + 4kN + (3/2)k2) per iteration.

Employing the Cholseky decomposition plus the update step leads to a reduction of the total
computational cost to

O
(
(N + 1)3/3 + k3/2 +N2(5k/2 + 1)

)
,

which is the implementation adopted throughout this work for KGARD (recall that k << N).
Finally, another technique that could also be applied is the QR factorization. However, this
leads to a slightly more demanding implementation compared to the Cholesky decomposition.

6.2.2 Further Improvements on KGARD’s Performance

In order to simplify the theoretical analysis and reduce the number of the corresponding equa-
tions, the proposed algorithm employs the same regularization parameter for all kernel coeffi-
cients. However, one may employ a more general scheme as follows:

min
a,u∈RN ,c∈R

‖u‖0

subject to ‖y −Ka− c1− u‖2
2 + ‖Ψa‖2

2 + λc2 ≤ ε,
(6.9)

where Ψ is a more general regularization matrix (Tikhonov matrix), [86]. For example, as the
accuracy of the kernel based methods usually drops near the border of the input domain, it
is reasonable to increase the regularization effect at these points. This can be easily achieved
by employing a diagonal matrix with positive elements on the diagonal and increasing the
regularization factors that correspond to the points near the border. This is demonstrated in
the experimental Section 6.4.

6.3 Theoretical Analysis

Our main focus in this section is to study the theoretical properties of the proposed algorithmic
scheme. In particular: a) we prove that the inversion matrix is non-singular and thus the
solution to the Least Squares task at each step is unique and b) we provide the necessary
condition which guarantees that the proposed method identifies first the correct locations of all
the outliers, for the case where only outliers exist in the noise. The reason that, the analysis is
carried out for the case where inlier noise is not present, is due to the fact that the analysis gets
highly involved. The absence of the inlier noise makes the analysis easier and it highlights some
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theoretical aspects on why the method works. It must be emphasized that, such a theoretical
analysis is carried out for the first time and it is absent in the previously published works.
However, as it is demonstrated in the experiments, the method succeeds in identifying outlier
locations in many more cases even when the theoretical result does not hold. This leads to the
conclusion that the provided condition can be loosen up significantly in the future. Note that
this is in line with most bounds and conditions that have been derived in the context of sparse
models. In practice, even in the more extreme cases, where inlier and outlier noise coexist, the
method manages to identify the majority of the outliers.

6.3.1 Non-singularity of the Inversion Matrix

In the current section, we are interested in the properties of the proposed scheme, i.e., KGARD.
It will be shown that, the matrix inverted at each step is non-singular thus the solution at each
step is unique. To this end, it is first required to establish expressions equivalent to the task in
(6.6) for the regularized Least Squares task that is solved at each iteration’s k-th step.

First, it can be readily seen that the minimization of Jk in (6.6) for all k = 0, 1, 2, . . . is
equivalent to the following set of normal equations3:

M(k)z = AT
(k)y, (6.10)

for λ > 0. Next, follows a lemma that guarantees the inversion of the matrix in (6.10) and
hence the existence of a unique solution for the task in (6.6).

Lemma 6.1. The matrix M(k) in (6.8) is (strictly) positive definite for every λ > 0, hence
invertible.

Proof. Consider a non-zero vector z ∈ R2N+1, so that z =
(
αT , β,γT

)T
is decomposed, such

that α ∈ RN , β ∈ R and γ ∈ Rk. Then, it is easy to show that

zTM(k)z = ‖Kα+ β1 + ISkγ‖2
2 + λ ‖α‖2

2 + λβ2 > 0,

which implies that M(k) is a (strictly) positive definite matrix.

Moreover, the task in (6.6) is equivalent to:

min
z

J(k)(z) = min
z

∥∥∥∥(y0
)
−D(k)z

∥∥∥∥2

2

, (6.11)

where D(k) =

[
A(k)√
λB(k)

]
. It is well established that, problem (6.11) has a unique solution if

and only if the null spaces of A(k) and B(k) intersect only trivially, i.e., N (A(k)) ∩ N (B(k)) =
{0} [89, 90, 92]. Since M(k) is (strictly) positive definite, the columns of D(k) are linearly
independent and the minimizer ẑ(k) ∈ RN+1+k of (6.11) (or equivalently (6.6)) is unique, [91].

3Notice that matrix B (hence every B(k)) is a projection matrix.
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6.3.2 Robust Enhancement via the Regularization Term

This section is devoted to the presentation of an important property that enhances robustness
for the proposed method, i.e., KGARD. Recall the analysis provided in Chapter 2, where we
discussed about the problems associated with the identification of the outliers via the residual.
In the following analysis, it will be shown that the regularization term reduces the values of
the hat matrix in the diagonal. In other words, the effect of leverage points is significantly
reduced. Although the proof is carried out for the initial step, it could also be extended to
every subsequent step.

At the initialization of KGARD, A(0) = [K 1] and B(0) = IN+1. The following analysis
(which is also adopted for the proof of the outlier identification) is based on the Singular Value
Decomposition (SVD) (see Appendix C) for matrix A(0) = [K 1], i.e., A(0) = QSV T . The
matrices Q,V are orthogonal, while S is the matrix of dimension N × (N + 1) of the form
S =

[
Σ 0

]
. The matrix AT

(0)A(0) is positive semi-definite, thus all of its eigenvalues are non-
negative. Hence, Σ is the diagonal matrix with entries the singular values of matrix A(0), i.e.,
σi ≥ 0, i = 1, ..., N .

If no regularization was performed, according to the ordinary LS task, the hat matrix
would equal H = QQT , see (2.8). However, since at every step a regularized LS task is solved
(instead of an ordinary LS one)

AT
(0)A(0) + λIN+1 = V

[
Σ2 + λIN 0

0T λ

]
︸ ︷︷ ︸

Λ

V T = V ΛV T , (6.12)

and the new hat matrix is expressed as

H̃ = A(0)(A
T
(0)A(0) + λIN+1)−1AT

(0) = QGQT , (6.13)

where

G = Σ(Σ2 + λIN)−1Σ is a diagonal matrix with entries gii =
σ2
i

σ2
i + λ

, i = 1, 2, ..., n, (6.14)

where λ > 0 is the regularization parameter and σi the i-th singular value of the matrix A(0).

Thus, this leads to a residual expression similar to (2.12), simply by replacing matrix H , by H̃ .
Hence, from (6.13), it is a matter of simple manipulations to establish for the diagonal elements
of the new hat matrix that they satisfy

h̃ii =
σ2
i

σ2
i + λ

hii. (6.15)

In simple words, the regularization performed down-weights the diagonal elements of the hat
matrix. Equation (6.15) is of great importance, since it guarantees that h̃ii < hii for any λ > 0.
Furthermore, it is readily seen that as λ→ 0 the detection of outlier via the residual is forbidden
(recall that here h ' 1), while as λ→∞ then h̃ii → 0 and thus occurrences of leverage points
tend to disappear. In simple words, the regularization performed on the specific task guards
the method against occurrences of leverage points. Of course, this fact alone does not guarantee
that one could safely detect an outlier via the residual. This is due to the following two reasons:
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a) the outliers values could be too small (engaging with the inlier noise) or b) the fraction
of outliers contaminating the data could be enormously large; in such cases the summation
term in (2.12) could easily be the dominant one. Based on the previous discussion, we adopt
the assumptions that the outliers are relatively few (the vector u

¯
is sparse) and also that the

outlier values are (relatively) large. From a practical point of view, the latter assumption is
natural, since we want to detect values that greatly deviate from healthy measurements. The
first assumption is, also, in line with the use of the greedy approach. It is well established by
now that greedy techniques work well for relatively small sparsity levels. These assumptions
are also verified by the obtained experimental results. Finally, it should be stressed here that a
condition similar to (2.9) does no longer hold (nor does the corresponding discussion), since for

the new hat matrix, H̃ , the idempotent property is no longer satisfied.

6.3.3 Identification of the Outliers for the Noiseless Case

The following theorem establishes a bound on the largest singular value of matrix A(0), which
guarantees that the method first identifies the correct locations of all the outliers, for the case
where only outliers exist in the noise. However, since the ε parameter controls the number of
iterations for which the method identifies an outlier, it is not guaranteed that it will stop once
all the outliers are identified, unless the correct value is somehow given. Thus, it is possible
that a few other locations that correspond to healthy measurements are classified as outliers.

Theorem 6.1. Let K be a full rank, square, real valued matrix. Suppose, that

y = [K 1]

(
α
¯
c
¯

)
︸ ︷︷ ︸
θ
¯

+u
¯
,

where u
¯

is a sparse (outlier) vector. KGARD is guaranteed to identify first the correct locations
of all the outliers4, if the maximum singular value of matrix A(0) := [K 1], satisfies:

σmax(A(0)) < γ
√
λ, (6.16)

where

γ =

√
min |u

¯
| −
√

2λ||θ
¯
||2

2||u
¯
||2 −min |u

¯
|+
√

2λ||θ
¯
||2
, (6.17)

min |u
¯
| is the smallest absolute value of the sparse vector over the non-zero coordinates and

λ > 0 is a sufficiently large5 regularization parameter for KGARD.

Proof. The proof is based on the SVD decomposition (see Appendix C) for matrix A(0). For
simplification, the notation σM will be used to denote its maximum singular value.

The proposed method attempts to solve at each step the regularized Least Squares (LS)
task in (6.6), which is equivalent to (6.11). Thus, the regularized LS solution at each k-th step

4However, the theorem does not guarantee that only the locations of the outliers will be identified. If the
value of ε is too small, then KGARD will select locations that do not correspond to true outlier indices.

5Since the regularization parameter is defined by the user, such a value can be achieved.
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is expressed as:

ẑ(k) = (DT
(k)D(k))

−1DT
(k)

(
y
0

)
= (AT

(k)A(k) + λB(k))
−1AT

(k)y, (6.18)

and the respective residual of the lower dimensional space as

r(k) = y −A(k)ẑ(k) = y −A(k)(A
T
(k)A(k) + λB(k))

−1AT
(k)y. (6.19)

Step k = 0:
Initially, S̃0 = {1, . . . , N + 1} (no index has been selected for the outlier estimate), thus A(0) =
[K 1] and B(0) = IN+1. Hence, the expression for the initial regularized LS solution ẑ0 is
obtained from equation (6.18) for k = 0. Combining (6.19) for k = 0 with (6.12) leads to

r(0) = y −QGQTy, (6.20)

Furthermore, since y = A(0)θ
¯

+ u
¯

, substituting in (6.20) leads to

r(0) = u
¯

+QFV Tθ
¯
−QGQTu

¯
, (6.21)

where F = S −GS = [Σ−GΣ︸ ︷︷ ︸
F̆

0] and G is defined in (6.14). Matrix F̆ is also diagonal with

values

f̆ii =
λσi

σ2
i + λ

, i = 1, 2, ..., N.

At this point, it is required to explore some of the unique properties of matrices G and F .
Recall that the (matrix) 2-norm of a diagonal matrix is equal to the maximum absolute value
of the diagonal entries. Hence, it is clear that

||G||2 = σ2
M/(σ

2
M + λ) and ||F ||2 = ||F̆ ||2 ≤

√
λ/2, (6.22)

since g(σ) = σ2

σ2+λ
is a strictly increasing function of σ ≥ 0 and f̆(σ) = λσ

σ2+λ
receives a unique

maximum, which determines the upper bound for the matrix 2-norm.

Finally, it should be noted that if no outliers exist in the noise, the algorithm terminates
due to the fact that the norm of the initial residual is less than (or equal to) ε. However, this
scenario is rather insignificant, since no robust modeling is required. Thus, if our goal is for the
method to be able to handle various types of noise that includes outliers (e.g. Gaussian noise
plus impulses), we assume that ‖r(0)‖2 > ε. In such a case, KGARD will select an outlier index
from the set Sc0 = {1, 2, ..., N}.

At the first selection step, as well as at all subsequent steps, we should impose a condition
so that the method identifies and selects an index that belongs to the support of the sparse
outlier vector. To this end, let S denote the non-empty support set for the sparse outlier vector
u
¯

. In order for KGARD to select an atom ei, from columns of the matrix IN that belongs to
S, we should impose

|r(0),i| > |r(0),j|, for all i ∈ S and j ∈ Sc. (6.23)

The key is to establish appropriate bounds, which guarantee the selection of a correct index
that belongs to S. Therefore, we first need to develop bounds on the following inner products.
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Using (6.22), the Cauchy-Schwarz inequality and the fact that Q,V are orthonormal, it is easy
to verify that

|〈el,QFV Tθ
¯
〉| =

∣∣(QTel)
TFV Tθ

¯

∣∣ ≤ ∥∥QTel
∥∥

2

∥∥FV Tθ
¯

∥∥
2
≤

≤ ‖F ‖2

∥∥V Tθ
¯

∥∥
2
≤
√
λ

2
‖θ

¯
‖2 (6.24)

as well as

|〈el,QGQTu
¯
〉| =

∣∣(QTel)
TGQTu

¯

∣∣ ≤ ∥∥QTel
∥∥

2

∥∥GQTu
¯

∥∥
2
≤

≤ ‖G‖2

∥∥QTu
¯

∥∥
2

=
σ2
M

σ2
M + λ

‖u
¯
‖2 , (6.25)

for all l = 1, 2, ..., N . Thus, we have that

|r(0),i| = |〈r(0), ei〉| = |〈u
¯

+QFV Tθ
¯
−QGQTu

¯
, ei〉| ≥

≥ |u
¯i
| − |〈ei,QFV Tθ

¯
〉| − |〈ei,QGQTu

¯
〉| ≥

≥ min |u
¯
| −
√
λ

2
‖θ

¯
‖2 −

σ2
M

σ2
M + λ

‖u
¯
‖2 >

> min |u
¯
| −
√

2λ

2
‖θ

¯
‖2 −

σ2
M

σ2
M + λ

‖u
¯
‖2 , (6.26)

for any i ∈ S and

|r(0),j| = |〈r(0), ej〉| = |〈QFV Tθ
¯
−QGQTu

¯
, ej〉| ≤

≤ |〈ej,QFV Tθ
¯
〉|+ |〈ej,QGQTu

¯
〉| ≤

≤
√
λ

2
‖θ

¯
‖2 +

σ2
M

σ2
M + λ

‖u
¯
‖2 <

<

√
2λ

2
‖θ

¯
‖2 +

σ2
M

σ2
M + λ

‖u
¯
‖2 , (6.27)

for all j ∈ Sc, where equation (6.21) and inequalities (6.24) and (6.25) have also been used.
Hence, imposing (6.23) leads to (6.16). It should be noted that, a reason that could lead to
the violation of (6.16) is for the term min |u

¯
| −
√

2λ ‖θ
¯
‖2 to be non-positive. Thus, since the

regularization parameter is fine tuned by the user we should select a value for λ, such that
λ < (min |u

¯
|/ ‖θ

¯
‖2)2 /2. If the condition is guaranteed, then at the first selection step a column

indexed as j1 ∈ S is selected. The set of active columns that participate in the LS solution of

the current step is then S1 = {j1} ⊆ S and thus A(1) =
[
A(0) ej1

]
and B(1) =

[
IN+1 0
0T 0

]
.

After the selection of the first column the inversion of the following matrix is performed:

DT
(1)D(1) = AT

(1)A(1) + λB(1) =

[
AT

(0)A(0) + λIN+1 AT
(0)ej1

eTj1A(0) 1

]
.

Applying the Matrix Inversion Lemma combined with (6.12) leads to

(DT
(1)D(1))

−1 =

[
V Λ−1V T + 1

β
V ΓTQTej1e

T
j1
QΓV T − 1

β
V ΓTQTej1

− 1
β
eTj1QΓV T 1

β

]
,
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where Γ = [Σ(Σ2 +λIN)−1 0] and β = 1−eTj1QGQTej1 = 1−
∥∥G1/2QTej1

∥∥2

2
. The regularized

LS solution is obtained from (6.18) for k = 1 and after substitution into (6.19) leads to the new
residual vector:

r(1) = y −A(1)ẑ(1) = P(1)u
¯

+ P(1)QFV
Tθ

¯
− P(1)QGQ

Tu
¯
, (6.28)

where P(1) = IN + 1
β
QGQTej1e

T
j1
− 1

β
ej1e

T
j1

.

The process of the augmentation of the active set (by the selection of an atom/column),
continues, until the norm of the residual vector drops below the user-defined threshold. Thus,
in order for KGARD to select an index from the set S and as long as the ε parameter is tuned
sufficiently small we should impose

|r(1),i| > |r(1),j|, for all i ∈ S \ S1 and j ∈ Sc.

In order to simplify (6.28) we need to decompose the sparse vector u
¯

into two parts.
Based on (4.27) and with the use of simple linear algebra, we obtain P(1)(u

¯
− QGQTu

¯
) =

ũ(1) −QGQT ũ(1), where

ũ(1) = FS\S1(u¯
) +

1

β

(
eTj1QGQ

TFS\S1(u¯
)
)
· ej1 . (6.29)

Hence, the final form of the residual at step k = 1 is:

r(1) = ũ(1) + P(1)QFV
Tθ

¯
−QGQT ũ(1). (6.30)

Notice here that, supp(u
¯

) = supp(ũ(1)) = S and that the first and third terms of the residual
in (6.30) are independent of matrix P(1). Next, we focus on taking bounds on every term of
the right-hand part in (6.30). Recall that the matrix P(1) was not present in (6.21). The fact
that it could not be excluded from the second term of the residual in (6.30) adds some extra
difficulty to the task. However, we could overcome such an obstacle simply by noticing that
there is no need to establish bounds on the matrix P(1) after using the sub-multiplicative norm
property on the product P(1)QFV

T . Instead, we are only interested in establishing a bound on
the norm of the vector P T

(1)el for every l 6= j1. Therefore, the l-th row of the matrix P(1), i.e.,

P T
(1)el = el + ω · ej1 ,

is a 2-sparse vector with ω = 1
β

(
eTj1QGQ

Tel
)
. Moreover, it is readily seen that,

|ω| ≤ 1

β
‖G‖2 ≤

σ2
M

λ
< 1, (6.31)

since 1/β ≤ (σ2
M + λ)/λ and σM <

√
λ as observed from (6.16) and (6.17) (γ < 1). Thus, we

have that ∥∥P T
(1)el

∥∥
2

=
√

1 + |ω|2 <
√

2. (6.32)

Exploiting the latter bound we have that

|〈el,P(1)QFV
Tθ

¯
〉| =

∣∣(QTP T
(1)el)

TFV Tθ
¯

∣∣ ≤ ∥∥P T
(1)el

∥∥
2

∥∥FV Tθ
¯

∥∥
2
<

<
√

2 ‖F ‖2 ‖θ¯‖2 ≤
√

2λ

2
‖θ

¯
‖2 . (6.33)
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Moreover,∣∣∣∣ 1βeTj1QGQTFS\S1(u¯
)

∣∣∣∣ ≤ σ2
M

λ
‖FS\S1(u¯)‖2 <

min |u
¯
|

‖u
¯
‖2

‖FS\S1(u¯)‖2 < min |u
¯
| ≤

∣∣u
¯j1
∣∣ ,

which according to (6.29) leads to ∥∥ũ(1)

∥∥
2
< ‖u

¯
‖2 . (6.34)

Similarly, we have that

|r(1),i| = |〈r(1), ei〉| = |〈ũ(1) + P(1)QFV
Tθ

¯
−QGQT ũ(1), ei〉| ≥

≥ |u
¯i
| − |〈ei,P(1)QFV

Tθ
¯
〉| − |〈ei,QGQT ũ(1)〉| >

> min |u
¯
| −
√

2λ

2
‖θ

¯
‖2 −

σ2
M

σ2
M + λ

∥∥ũ(1)

∥∥
2
>

> min |u
¯
| −
√

2λ

2
‖θ

¯
‖2 −

σ2
M

σ2
M + λ

‖u
¯
‖2 , (6.35)

for any i ∈ S \ S1 and

|r(1),j| = |〈r(1), ej〉| = |〈P(1)QFV
Tθ

¯
−QGQT ũ(1), ej〉| ≤

≤ |〈ej,P(1)QFV
Tθ

¯
〉|+ |〈ej,QGQT ũ(1)〉| <

<

√
2λ

2
‖θ

¯
‖2 +

σ2
M

σ2
M + λ

∥∥ũ(1)

∥∥
2
<

<

√
2λ

2
‖θ

¯
‖2 +

σ2
M

σ2
M + λ

‖u
¯
‖2 , (6.36)

for all j ∈ Sc, where (6.25), (6.30), (6.33) and (6.34) are used. Thus, once more, by imposing
that the lower bound in (6.35) has to be greater than the upper bound in (6.36) we are led to
(6.16). Hence, it is guaranteed that at the current step the column indexed j2 ∈ S is selected
and thus S2 = {j1, j2} ⊆ S. Now that we have demonstrated how the method works for the
first simple step, we present the general selection step analysis for KGARD.

General k-th step:
At the k-th step, Sk = {j1, j2, ..., jk} ⊆ S and thus

A(k) =
[
A(0) ISk

]
and B(k) =

[
IN+1 O(N+1)×k

OT
(N+1)×k Ok

]
.

The LS step requires the inversion of the matrix

DT
(k)D(k) = AT

(k)A(k) + λB(k) =

[
AT

(0)A(0) + λIN+1 AT
(0)ISk

ITSkA(0) Ik

]
.

Applying the Matrix Inversion Lemma combined with (6.12) leads to

(DT
(k)D(k))

−1 =

[
V Λ−1V T + V ΓTQTISkW̃

−1
(Sk)I

T
SkQΓV T −V ΓTQTISkW̃

−1
(Sk)

−W̃−1
(Sk)I

T
SkQΓV T W̃−1

(Sk)

]
,
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where W̃(Sk) = Ik − ITSkQGQTISk . In turn, substitution into (6.19) leads to:

r(k) = P(k)u
¯

+ P(k)QFV
Tθ

¯
− P(k)QGQ

Tu
¯
, (6.37)

where P(k) = IN +QGQTISkW̃
−1
(Sk)I

T
Sk −ISkW̃

−1
(Sk)I

T
Sk . If we would like for the method to select

an index from the set S, we should impose

|r(k),i| > |r(k),j|, for all i ∈ S \ Sk and j ∈ Sc.

Now P(k)(u
¯
−QGQTu

¯
) = ũ(k) −QGQT ũ(k), where

ũ(k) = ISkW̃
−1
(Sk)I

T
SkQGQ

TFS\Sk(u¯
) + FS\Sk(u¯

). (6.38)

Hence, the final form for the residual is:

r(k) = ũ(k) + P(k)QFV
Tθ

¯
−QGQT ũ(k). (6.39)

Following a similar path for l /∈ Sk we conclude that

P T
(k)el = el + ISkW̃

−1
(Sk)I

T
SkQGQ

Tel,

is a (k + 1)-sparse vector. Furthermore, it is readily seen that∥∥∥W̃−1
(Sk)I

T
SkQGQ

Tel

∥∥∥
2
≤ σ2

M

λ
< 1, (6.40)

which leads to
∥∥∥P T

(k)el

∥∥∥
2
<
√

2. Moreover,

|〈el,P(k)QFV
Tθ

¯
〉| <

√
2λ

2
‖θ

¯
‖2 and ‖ũ(k)‖2 < ‖u

¯
‖2. (6.41)

The bounds for the residual are now expressed as

|r(k),i| = |〈r(k), ei〉| > min |u
¯
| −
√

2λ

2
‖θ

¯
‖2 −

σ2
M

σ2
M + λ

‖u
¯
‖2 , (6.42)

for any i ∈ S \ Sk, and

|r(k),j| = |〈r(k), ej〉| <
√

2λ

2
‖θ

¯
‖2 +

σ2
M

σ2
M + λ

‖u
¯
‖2 , (6.43)

for all j ∈ Sc, where (6.39) and (6.41) are used. Finally, by imposing the lower bound of (6.42)
to be greater than the upper bound of (6.43) leads to the inequality (6.16). At the k-th step,
it is proved that unless the residual length is below the predefined threshold the algorithm will
select another correct atom from the identity matrix and the procedure is repeated until Sk = S.
At this point, if the ε parameter is carefully tuned the residual of KGARD drops below the user-
defined threshold and the procedure terminates. If not, then extra indices that correspond to
healthy observations are classified as outliers and S ⊂ Sk.
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Careful tuning of the ε parameter seems to play an important role regarding the perfor-
mance of KGARD. This is the user-defined parameter that controls the number of iterations for
the method (thus the convergence speed) and also the sparsity for the outlier estimate vector.
Assuming that the ε value is set to a relatively small value, the algorithm will first select the
correct locations of the outliers and then continue until all columns of IN are selected (in such
case k = N is the maximum number of iterations for KGARD). Consequently, we can easily see
that the norm of the residual vector will eventually drop below ε > 0 (and if all columns are
selected r(k) = 0). Simply stated, the procedure will continue and model other samples (not
originating from a noisy source) as outliers filling up the outlier estimate vector û, which will
no longer be sparse. On the contrary, if ε is set to relatively large values, the algorithm will stop
within a few only iterations, which leads to the identification of only a few of the true outliers
in the dataset. Hence, sensible tuning of ε should be applied. Finally, it should be stated that
the algorithm is not very sensitive to the choice of ε, i.e., small changes in its value do not affect
the sparsity level of the outlier estimate.

In principal, the analysis for the case where inbound noise is present can be carried out
in a way similar to the the one provided for the noiseless case. However, this turns out to be
excessively algebraically complex.

6.4 Experiments

For the entire section of experiments, the Gaussian kernel is employed and all results are av-
eraged over 1000 Monte-Carlo runs (independent simulations). At each experiment, the pa-
rameters are optimized (via cross-validation) and the respective parameter values are given (for
each method) so that results are reproducible. The specific (MATLAB) code can be found in
http://bouboulis.mysch.gr/kernels.html.

6.4.1 Testing the Recovery of the Sparse Outlier vector’s Support

In the current section, our main concern is to test on the validity of the condition (6.16), in
practice. To this end, we have performed the following test for the case where only outliers exist
in the noise.

We consider N = 100 equidistant points over the interval [0, 1] and generate the output
data via f

¯
(xi) =

∑N
j=1 α¯j

κ(xi, xj), where κ is the Gaussian kernel with σ = 0.1 and the vector
of coefficients α

¯
= [α

¯1, . . . , α¯N
] is a sparse vector with the number of non-zero coordinates

ranging between 2 and 23 and their values drawn from N (0, 0.52). Since no inlier noise exists,
our corrupted data is generated via (5.24) for ηi = 0 and outlier values ±u

¯
. Moreover, since

the condition (6.16) is valid for fixed values of the parameters involved, we have measured the
capability of KGARD to recover the support of the sparse outlier vector, i.e., S = supp(u

¯
),

while varying the values of the outliers. In Figure 6.2, KGARD’s capability to identify the exact
sparse outlier vector support is demonstrated, for a fraction of outliers at 10%. On the vertical
axis we have measured the percentage of correct and wrong indices recovered, while varying the
value u

¯
of the outliers. In parallel, the bar chart demonstrates the validity of the introduced

condition (6.16). It is clear that, if the condition holds, KGARD identifies the correct support
of the sparse outlier vector successfully. However, even if the condition is rarely satisfied, e.g.,
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Figure 6.2: Percentage of the correct (green pointing up) and wrong (orange pointing down)
indices that KGARD has selected, while varying the values ±u

¯
of the outliers at the fixed

fraction of 10%. Although the condition (6.16) is valid only for values greater than ±600 (and
with high probability valid for values 400-599), the support of the sparse outlier vector has been
correctly identified for much smaller values of outlier noise, too.

for u
¯

= 100, the method still manages to identify the correct support. This fact leads to the
conclusion that the condition imposed by (6.16) is rather strict.

Finally, in Table 6.1, the previous experiment has been performed for various fractions of
outliers. In the second and third column, we have listed the percentage of correct and wrong
indices selected by KGARD, for all values of outliers ranging from 50 to 1000. Moreover, in the
final column, the minimum value of outliers, which renders the condition valid, is shown. For
example, in the second row and for fraction of outliers at 10% the condition is valid only for
values greater than 600 (last column in Table 6.1). However, the method manages to correctly
identify the support (one-to-one index for columns two and three), not only for values u

¯
greater

than 600, but for all outlier values, ranging from the minimum value of 50 to the maximum
value of 1000. It should also be noted that, experiments have been performed with the use of
various nonlinear functions and results were similar to the ones presented here.

Table 6.1: Percentage of correct and wrong indices that KGARD has selected, for outlier values
u
¯

ranging from 50 to 1000. The correct support (second column) corresponds to true outliers
(indices in S), while the wrong support (third column) corresponds to locations which are
wrongly classified as outliers (thus do not belong to S). In the final column the minimum value
u
¯

of outliers for which the support recovery condition is valid, is listed.

Outlier fraction Correct support Wrong support Outlier value u
5 % 100 % 0 % 450
10 % 100 % 0 % 600
15 % 100 % 0 % 650
20 % 100 % 0 % 700
25 % 100 % 0 % 750
30 % 100 % 0 % 950
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Table 6.2: Computed MSE for f
¯
(x) = 20sinc(2πx) over the training and validation set. Addi-

tionally, the percentage of correct and wrong indices that each method has classified as outliers
and the Mean Implementation Time (MIT), for various levels of inlier and outlier noise, are
evaluated.

Algorithm MSEtr MSEval Cor. ind. Wr. ind. MIT (sec) Inlier - Outlier

RB-RVM 0.0850 0.0851 - - 0.298 20 dB - 5%
RAM (λ = 0.07, µ = 2.5) 0.0344 0.0345 100 % 0.2 % 0.005 20 dB - 5%
KGARD (λ = 0.2, ε = 10) 0.0285 0.0285 100 % 0 % 0.004 20 dB - 5%

RB-RVM 0.0911 0.0912 - - 0.298 20 dB - 10%
RAM (λ = 0.07, µ = 2.5) 0.0371 0.0372 100 % 0.1 % 0.007 20 dB - 10%
KGARD (λ = 0.2, ε = 10) 0.0305 0.0305 100 % 0 % 0.008 20 dB - 10%

RB-RVM 0.0992 0.0994 - - 0.299 20 dB - 15%
RAM (λ = 0.07, µ = 2) 0.0393 0.0393 100 % 0.6 % 0.008 20 dB - 15%

KGARD (λ = 0.3, ε = 10) 0.0330 0.0330 100 % 0 % 0.012 20 dB - 15%

RB-RVM 0.1189 0.1184 - - 0.305 20 dB - 20%
RAM (λ = 0.07, µ = 2) 0.0421 0.0422 100 % 0.4 % 0.010 20 dB - 20%
KGARD (λ = 1, ε = 10) 0.0626 0.0626 100 % 0 % 0.017 20 dB - 20%

RB-RVM 0.3630 0.3631 - - 0.327 15 dB - 5%
RAM (λ = 0.15, µ = 5) 0.1035 0.1036 100% 0.7 % 0.005 15 dB - 5%

KGARD (λ = 0.3, ε = 15) 0.0862 0.0862 100 % 0.1 % 0.005 15 dB - 5%

RB-RVM 0.3828 0.3830 - - 0.319 15 dB - 10%
RAM (λ = 0.15, µ = 5) 0.1117 0.1118 100% 0.4 % 0.006 15 dB - 10%

KGARD (λ = 0.3, ε = 15) 0.0925 0.0925 100 % 0 % 0.008 15 dB - 10%

RB-RVM 0.4165 0.4166 - - 0.317 15 dB - 15%
RAM (λ = 0.15, µ = 5) 0.1186 0.1186 100% 0.3 % 0.007 15 dB - 15%

KGARD (λ = 0.3, ε = 15) 0.1001 0.1003 100 % 0 % 0.012 15 dB - 15%

RB-RVM 0.4793 0.4798 - - 0.312 15 dB - 20%
RAM (λ = 0.15, µ = 4) 0.1281 0.1282 100% 1.4 % 0.008 15 dB - 20%

KGARD (λ = 0.7, ε = 15) 0.1340 0.1349 100 % 0 % 0.016 15 dB - 20%

6.4.2 Evaluation of the Method: Mean-Square-Error (MSE)

In the current section, the previously established methods that deal with the robust nonlinear
estimation with kernels, i.e., the Bayesian approach, RB-RVM, and the weighted `1-norm ap-
proximation method, RAM, are compared against KGARD in terms of the mean-square-error
(MSE). Additionally, the evaluation includes the listing of the percentage of indices that each
method has identified as outliers, for all methods, except for the Bayesian approach. Moreover,
the Mean Implementation Time (MIT) is measured for each experiment. Finally, as already
discussed in Section 6.2.2, we have increased the regularization value λ of KGARD near the
borders for the first two experiments, as a means to increase the performance. In particular,
at the first and last five points (borders), the regularizer is automatically multiplied by the
factor of 5, with respect to the predefined value λ, which is set on the interior points. It should
also be noted that, the observation data are generated via equation (5.24) for the rest of the
experiments in the current section. The experiments and their results are analyzed next.

For the first experiment, we have selected the sinc function, which is well known in the
machine learning community for its properties. We consider 398 equidistant points over the
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Table 6.3: Performance evaluation for each method, where f
¯
∈ H is considered as a linear

combination of a few kernels with the input data lying on the 1-dimensional space. The inlier
noise is considered random Gaussian with σ = 4 and for various fractions of outliers we have
computed: the training and validation MSE, the percentage of correct and wrong indices that
each method has classified as outliers and the Mean Implementation Time (MIT).

Algorithm MSEtr MSEval Cor. ind. Wr. ind. MIT (sec) Outliers

RB-RVM 3.3405 3.3436 - - 0.309 5%
RAM (λ = 0.15, µ = 33) 1.2459 1.2473 100% 0 % 0.005 5%

KGARD (λ = 0.3, ε = 57) 1.1567 1.1580 99.8 % 1.2 % 0.004 5%

RB-RVM 3.6111 3.6176 - - 0.308 10%
RAM (λ = 0.15, µ = 31) 1.3085 1.3100 100% 0.1 % 0.005 10%

KGARD (λ = 0.3, ε = 55) 1.2110 1.2120 99.9 % 0.9 % 0.008 10%

RB-RVM 3.7902 3.7950 - - 0.308 15%
RAM (λ = 0.15, µ = 28) 1.3945 1.3972 100% 0.2 % 0.006 15%

KGARD (λ = 0.3, ε = 53) 1.2922 1.2942 100 % 0.8 % 0.012 15%

RB-RVM 4.0685 4.0705 - - 0.307 20%
RAM (λ = 0.15, µ = 24) 1.5110 1.5109 100% 0.8 % 0.007 20%

KGARD (λ = 0.3, ε = 52) 1.5173 1.5262 99.9 % 0.4 % 0.016 20%

interval [−0.99, 1) for the input values and generate the uncorrupted output values via f
¯
(xi) =

20sinc(2πxi). Next, the set of points is split into two subsets, the training and the validation
subset. The training subset, with points denoted by (yi, xi), consists of the N = 199 odd indexed
points (first, third, e.t.c.), while the validation subset comprises the remaining points, which
are denoted as (y′i, x

′
i). The original data of the training set, is then contaminated by noise,

as (5.24) suggests. The inlier part is considered to be random Gaussian noise of appropriate
variance (measured in dB), while the outlier part consists of various fractions of outliers with
constant values ±15, distributed uniformly over the support set. Finally, the kernel parameter
σ has been set equal to σ = 0.15.

Table 6.2 depicts each method’s performance, where the best results are marked in bold.
In terms of the computed MSE, it is clear that KGARD attains the lower MSE for both the
training and the validation error for all fractions of outliers, except for the fraction of 20%.
This fact is also in line with what is known concerning the performance of the sparse greedy
methods in practice; that is, their performance boosts as the sparsity level of the approximation
is low. On the other hand, the RAM solver seems more suitable for larger fractions of outliers.
Moreover, the computational cost is comparable for both methods (RAM and KGARD) and for
small fractions of outliers. Regarding the identification of the sparse outlier vector’s support,
although both methods correctly identify the correct indices belonging to the true support, i.e.,
S, RAM incorrectly classifies more indices compared to KGARD.

For the second experiment, the performance for each method is evaluated for the following
set-up. The input data consists of 400 equidistant points over the interval [0, 1). The uncor-
rupted observations are generated via f

¯
(xi) =

∑400
j=1 α¯j

κ(xj, xi) by the Gaussian kernel with
parameter σ = 0.1 and a sparse coefficient vector, α

¯
, with non-zeros ranging between 4% and

18% and their values randomly drawn from the Gaussian distribution N (0, 202). In the sequel,
the set of points is split into two subsets, the training and the validation subset. Similar to the
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Table 6.4: Performance evaluation for each method, where f
¯
∈ H is considered as a linear

combination of a few kernels with the input data lying on the 2-dimensional space. The inlier
noise is considered white Gaussian with σ = 3 and for various fractions of outliers we have
computed: the training and validation MSE,the percentage of correct and wrong indices that
each method has classified as outliers and the Mean Implementation Time (MIT).

Algorithm MSEtr MSEval Cor. ind. Wr. ind. MIT (sec) Outliers

RB-RVM 3.9825 3.6918 - - 0.416 5%
RAM (λ = 0.2, µ = 22) 2.0534 1.8592 100% 0.1 % 0.010 5%

KGARD (λ = 0.15, ε = 46) 1.7381 1.5644 100 % 0.3 % 0.009 5%

RB-RVM 4.2382 3.8977 - - 0.419 10%
RAM (λ = 0.2, µ = 18) 2.2281 1.9926 100% 0.9 % 0.013 10%

KGARD (λ = 0.15, ε = 44) 1.8854 1.6750 100 % 0.5 % 0.016 10%

RB-RVM 4.5749 4.2181 - - 0.418 15%
RAM (λ = 0.2, µ = 17) 2.5944 2.2846 100% 1.6 % 0.016 15%

KGARD (λ = 0.2, ε = 42) 2.1968 1.9375 99.9 % 0.9 % 0.024 15%

RB-RVM 5.7051 5.0540 - - 0.418 20%
RAM (λ = 0.2, µ = 16) 3.0593 2.6703 99.9% 2.3 % 0.020 20%

KGARD (λ = 0.4, ε = 42) 3.0293 2.6113 99.9 % 1 % 0.033 20%

first experiment, the training subset consists of the N = 200 odd indexed points (first, third,
e.t.c.), while the remaining (even indices) correspond to the validation/test subset. The uncor-
rupted observations of the training set is contaminated by white Gaussian noise with variance
equal to 16. Finally, various fractions of outliers have been used (distributed uniformly over the
training points) with values 40 or −40.

In Table 6.3, the performance for each method is depicted. Once again, KGARD attains
the lowest MSE for all fractions of outliers up to 15%. It is readily seen that this holds, despite
the fact that the support of the sparse outlier vector is not fully recovered (due to the existence
of heavy inlier noise). Also notice that, for the case where 20% of outlier values are present, the
MSE for RAM is lower than KGARD’s, for both the training and the validation set. This comes
at no surprise, since it is in line with what is the more general experience, in practice, concerning
the comparative performance of `1-norm based optimization and the greedy algorithms.

For the final pilot experiment, KGARD’s performance is tested for the case where the
input data lies on a 2-dimensional subspace. To this end, we consider 31 points in [0, 1] and
split these points to form the training set, which comprises 16 odd indices and the rest 15
forming the validation set. Next, the 312 points are distributed over a squared lattice in plane

[0, 1] × [0, 1], where each uncorrupted measurement is generated by f
¯
(xi) =

∑312

j=1 α¯j
κ(xi,xj),

(σ = 0.2) and a sparse coefficient vector α
¯

= [α
¯1, . . . , α¯312 ] with non-zero values ranging between

4% and 17.5% and their values randomly drawn from N (0, 25.62). Thus, the training subset
consists of N = 162 points, while the remaining 152 correspond to the validation/test subset.
Next, the original observations of the training set are corrupted by inlier noise originating from
N (0, 32) and outlier values ±40. The results are presented in Table 6.4 for various fractions
of outliers, with the best values of the MSE marked in bold. It is evident that for the 2-
dimensional nonlinear denoising task, KGARD’s performance outperforms its competitors (in
terms of MSE), for all fractions of the outliers.
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Finally, it should also be noted that, although the RB-RVM method does not perform at
the highest level, it utilizes the advantage that no tuning of parameters is required; however,
this comes at substantially increased computational cost. On the contrary, the pair of tuning
parameters for RAM, renders the method extremely difficult to be fully optimized (in terms of
MSE), in practice. However, taking into account the physical interpretation of ε and λ associated
with KGARD in the noise denoising task, we have developed a method for automatic user-free
choice, as it is demonstrated in the next chapter.
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Chapter 7

Applications to Image Denoising

7.1 Introduction

In this chapter, in order to test and verify the performance of the proposed algorithmic scheme,
in practice, we use the KGARD framework to address one of the most popular problems in the
field of image processing: the task of removing noise from a digital image.

First, we demonstrate how the proposed KGARD algorithmic scheme can be used to treat
the image denoising task in cases where the noise model includes outliers. This is accomplished
by diving the noisy image into smaller regions of interest (ROIs) and applying the robust scheme
separately. However, since it requires the tuning of the algorithm’s two parameters at each ROI,
automatic selection of both λ and ε is established.

Next, two different denoising methods that deal with outlier noise are presented. The first
one is directly based on KGARD algorithmic scheme. The second method splits the denoising
procedure into two parts: the identification and removal of the impulses, which is first carried
out via the KGARD, and finally the removal of the remaining component from the intermediate
output via a cutting edge wavelet-based denoising method.

7.2 Modeling the Image and the Noise

The source of noise in a digital image can either be errors of the imaging system itself (e.g.,
hardware or software errors, transmission errors, quantization errors), errors that occur due to
limitations of the imaging system (e.g., small size of the sensor) or errors that are generated by
the environment (e.g., low light, heat, e.t.c.).

Typically, the noisy image is modeled as follows:

g(x, x′) = g
¯
(x, x′) + ν(x, x′),

where x, x′ ∈ [0, 1] correspond to the normalized pixel coordinates, g
¯

is the original noise free
image and ν the additive noise. Given the noisy image, g, the objective of any image denoising
method is to obtain an estimate ĝ of the original image g

¯
. In most cases, we assume that
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(a) (b)

Figure 7.1: (a) A square N ×N region of intest (ROI). (b) Rearranging the pixels of a ROI.

the image noise is Gaussian additive, independent at each pixel, and independent of the signal
intensity and/or that it contains spikes or impulses (i.e., salt and pepper noise). However, there
are cases where the noise model follows other, than Gaussian, probability density functions (e.g.,
the Poisson distribution or the uniform distribution).

7.2.1 Dividing the Image into ROIs

In the proposed denoising method, we adopt the well known and popular strategy of dividing
the noisy image into smaller N × N square regions of interest (ROIs), as illustrated in Figure
7.1. Then, we rearrange the pixels so that it forms a row vector. Instead of applying the
denoising process to the entire image, we process each ROI individually in a sequential order.
This is done for two reasons: (a) first, the time needed to solve the involved optimization tasks
increases polynomially with N2 and (b) working in each ROI separately enables us to change
the parameters of the model in an adaptive manner in order to account for the different level
of details in each ROI. Note that, the rearrangement shown in Figure 7.1 implies that the pixel
(i, j) (i.e., i-th row, j-th column) is placed at the n-th position of the respective vector, where
n = (i− 1) ·N + j.

7.2.2 Robust Modeling

In kernel ridge regression denoising methods, one assumes that each ROI represents the points on
the surface of a continuous function, g

¯
, of two variables defined on [0, 1]× [0, 1]. The pixel values

of the clean and the noisy digitized ROIs are represented as ζ
¯ij

= g
¯
(xi, x

′
j) and ζij respectively

(both taking values in the interval [0, 255]), where xi = (i− 1)/(N − 1), x′j = (j − 1)/(N − 1),
for i, j = 1, 2, ..., N . Moreover, as the original image g

¯
is a relatively smooth function (with the

exception on the edges) we assume that it lies in an RKHS induced by the Gaussian kernel, i.e.,
g
¯
∈ H, for some σ > 0. Specifically, in order to be consistent with the Representer Theorem,
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we will assume that g
¯

takes the form of a finite linear representation of kernel functions, i.e.,

g
¯

=
N∑

i,j=1

α
¯ij
κ(·, (xi, x′j)). (7.1)

After pixel rearrangement, equation (7.1) can be cast as:

g
¯

=
N2∑
n=1

α
¯n
κ(·,xn),

where n = (i− 1) ·N + j and xn = (xi, x
′
j). Hence, the intensity of the n-th pixel is given by

ζ
¯n

= g
¯
(xn) =

N2∑
m=1

α
¯m
κ(xn,xm). (7.2)

The model considered in this paper assumes that the intensity of the pixels of the noisy
ROI can be decomposed as follows:

ζij = ζ
¯ij

+ u
¯ij

+ ηij,

for i, j = 1, 2, ..., N , where ηij denotes the inlier noise component and u
¯ij

a possible outlier at
that pixel. In vector notation (after rearrangement) we can write:

ζ = ζ
¯

+ u
¯

+ η, (7.3)

where ζ
¯
, ζ,u

¯
,η,∈ RN2

and u
¯

is a sparse vector. Moreover, as the elements of ζ
¯

take the form
(7.2), we can write ζ

¯
= K · α

¯
, where κnm = κ(xn,xm). In this context, we can model the

denoising task as the following optimization problem:

min
a,u∈RN2 ,c∈R

‖u‖0

subject to ‖ζ −Ka− c1− u‖2
2 + λ‖a‖2

2 + λc2 ≤ ε,
(7.4)

for some predefined λ, ε > 0. In a nutshell, problem (7.4) solves for the sparsest outlier’s vector
u and the respective a (i.e., the coefficients of the kernel expansion) that keep the error low;
at the same time the regularization parameter λ controls the smoothness of the solution. The
larger the λ is, the smoother the solution, i.e., ζ̂ = Kα̂, tends to become.

7.2.3 Implementation

The main mechanism of both algorithms, that are presented in this section, is simple. The image
is divided into N×N ROIs and the KGARD algorithm is applied sequentially in each individual
ROI. However, as the reconstruction accuracy of KRR methods drops near the borders of the
respective domain, we have chosen to discard their values. This means that although KGARD
is applied to the N ×N ROI only the L× L values are used in the final reconstruction (those
that are around the center of the ROI). In the sequel, we will name the L×L centered region as
the “reduced ROI” or rROI for sort. Alternatively, one may consider that the image is actually
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Figure 7.2: Two consecutive N ×N ROIs. Observe that the two ROIs overlap.

(a) (b)

Figure 7.3: (a) The algorithm has reached the right end of the image, hence it moves L pixels
below. (b) In this example, L = 8, N = 12. The image has been padded using 2 pixels in all
dimensions. The Figure shows the 8 first rROIs.

divided into L× L non-overlapping regions (the rROIs) and those regions are extended to the
size N ×N . This means that the ROIs contain overlapping parts. We will also assume that the
dimensions of the image are multipliers of L (if they are not we can add dummy pixels to the
end) and select N so that N − L is an even number.

After the reconstruction of a specific rROI, the algorithm moves to the next one, i.e., it
moves L pixels to the right (see Figure 7.2), or, if the algorithm has reached the right end of
the image it moves at the beginning of the line, which is placed L pixels below (see Figure
7.3(a)). Observe that, for this procedure to be valid the image has to be padded by adding
(N − L)/2 pixels along all dimensions. In this paper, we chose to pad the image by repeating
border elements1. For example, if we select L = 8 and N = 12, to apply this procedure on an
image with dimensions2 32× 32, we will end up with a total of 16 overlapping ROIs, 4 per line

1This can be done with the ’replicate’ option of MatLab’s function padarray.
2Observe that L divides 32.
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Algorithm 10 Selection of the regularization parameter λ

1: Assume a user defined value λ0.
2: Compute the magnitude of the gradient T given in (7.5), at each pixel.
3: Compute the mean gradient of each ROI, i.e., the mean value of the gradient’s magnitude

of all pixels that belong to the ROI.
4: Compute the mean value, m, and the standard deviation, s, of the aforementioned mean

gradients.
5: ROIs with mean gradient larger than m + s are assumed to be areas with fine details and

the algorithm sets λ = λ0.
6: All ROIs with mean gradient lower than m− s/10 are assumed to be smooth areas and the

algorithm sets λ = 15λ0.
7: For all other ROIs the algorithm sets λ = 5λ0.

(see Figure 7.3(b)).

Another important aspect of the denoising algorithm is the automated selection of the
parameters λ and ε that are involved with KGARD. This an important feature, as these pa-
rameters largely control both the quality of the estimation and the correct identification of the
outliers. Thus, careful tuning at each specific ROI is required. Naturally, it would have been
intractable to require a user pre-defined pair of values (i.e., λ, ε) for each specific ROI. Hence,
we devised simple methods to adjust these values in each ROI depending on its features.

Automatic selection of the regularization parameter λ

This parameter controls the smoothing operation of the denoising process. The user enters a
specific λ value, e.g. λ0, so that it controls the strength of the smoothening. Then the algorithm
adjusts this value at each ROI separately, so that λ is small at ROIs that contain a lot of “edges”
and large at ROIs that contain smoother areas. The specific values given in Algorithm 10 are
the result of extensive experimentation.

In order to extract information from images, we have used an image gradient ; this is a
directional change in the intensity or color of an image. In our case, the magnitude of the
gradient is computed via the Sobel (Sobel-Feldman) operator, which is a discrete differentiation
operator that computes an approximation of the gradient of the image intensity function, [93].
The operator uses two 3 × 3 kernels which are convolved with the original image to calculate
approximations of the derivatives - one for the horizontal and one for the vertical changes, i.e.,
Tx and Ty, respectively. The gradient magnitude T is then computed with values

τij =
√
τxij + τyij . (7.5)

Whether a ROI has edges or not, is determined by the mean magnitude of the gradient at each
pixel. The rationale is described in Algorithm 10.

Automatic computation of the termination parameter ε

The stopping criterion for KGARD, that has been adopted for the image denoising task, is
slightly different than the one employed in Algorithm 9. In this case, instead of requiring the
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Figure 7.4: Histograms of the residual vectors used in the automatic computation of ε.

norm of the residual vector to drop below ε, i.e., ‖r(k)‖2 ≤ ε, we require the maximum absolute
valued coordinate of r(k) to drop below ε (

∥∥r(k)

∥∥
∞ ≤ ε). The estimation of ε for each particular

ROI is carried out as follows. Initially, a user defined parameter E0 is selected. At each step,
a histogram chart of the values |r(k),i| is generated, using bN2

10
c + 1 equally spaced bins along

the x-axis, between the minimum and maximum values of the coordinates. Let h denote the
heights of the bars of the histogram and hmin be the minimum height of the histogram bars.
Next, two real numbers, i.e., E1, E2, are assigned. In particular, the number E1 represents the
left endpoint of the first occurrence of a minimum-height bar (i.e., the first bar with height
equal to hmin, moving from left to right). The number E2 represents the left endpoint of
the first bar, `, with height h` (moving from left to right) that satisfies both h` − h`−1 ≥ 1
and h`−1 ≤ hmin + 5, ` ≥ 2. This roughly corresponds to the first increasing bar, which in
parallel is next to a bar with height close to the minimum height. Figure 7.4 demonstrates some
typical examples regarding the computation of these numbers. Both E1 and E2 are reasonable
choices for the value of ε (meaning that the bars to the right of these values may be assumed
to represent outliers). Finally, the algorithm determines whether the histogram can be clearly
divided into two parts, where one represents the errors due to outliers by using a simple rule:
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Algorithm 11 KGARD for image denoising

1: Input: the original noisy image I and the parameters λ0, σ, E0, N , L.
2: Build the kernel matrix K.
3: if the dimensions of the original image are not multiplies of L then
4: Add initial padding

5: Form Î and Ô so that they have the same dimensions as I.
6: Add padding with size N − L around the image.
7: Divide the image into N ×N ROIs and compute the regularization parameters of each ROI

according to Algorithm 10.
8: for each ROI R do
9: Rearrange the pixels of R to form the vector ζ.

10: Run the modified KGARD algorithm on the set ζ with parameter λ (obtained from
Algorithm 10) and stoping criterion as given in (7.6).

11: Let â, û be the estimated solution according to KGARD algorithm.
12: Compute the denoised vector ζ̂ = Kα̂.
13: Rearrange the elements of ζ̂ to form the denoised ROI R̂.
14: Extract the centered L× L rROI from R̂.
15: Use the values of the rROI to set the values of the corresponding pixels in Î.
16: Rearrange the elements of û to form the outliers’ ROI.
17: Extract the centered L× L values of the outliers’ ROI.
18: Use these values to set the values of the corresponding outliers in Ô.
19: Move to the next ROI.
20: Remove the initial padding on Î and Ô (if needed).
21: Output: the denoised image Î and the outliers’ image Ô.

if

√
var(h(k))

mean(h(k))
> 0.9 then we assume that this is trivial (e.g., Figure 7.4(a)-(c)), otherwise it is

harder to distinguish these areas (e.g., figure 7.4(d)). Note that, we use the notation h(k) to
refer to the heights of the histogram bar at the k step of the algorithm. The final computation
of ε (at step k) is carried out as follows:

ε(k) =

{
min{E0, E1, E2}, if

√
var(h(k))

mean(h(k))
> 0.9

min{E0, E1}, otherwise.
(7.6)

It should be noted that, the user defined parameter E0 has little importance in the evaluation of
ε. One may set it constantly to a value near 40 (as we did in all provided simulations). However,
in cases where the image is corrupted by outliers only, a smaller value may be advisable although
it does not have a great impact on the reconstruction quality.

Direct KGARD implementation

The first denoising method, which we call “Kernel GARD Denoising” (or KGARD for short),
is described in Algorithm 11. The algorithm requires five user defined parameters: (a) the
regularization parameter, λ0, (b) the Gaussian kernel width, σ, (c) the E0 threshold for the
automatic computation of the termination parameter, (d) the size of the ROI, N and (e) the
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Figure 7.5: The KGARD-BM3D denoising method. First the KGARD applied to the noisy
image extracts the outliers and then the BM3D removes the remaining of the noise.

size of the rROIs, that are used in the reconstruction, i.e., L. Nevertheless, these parameters
are somehow interrelated. We will discuss these issues in the next sections.

KGARD combined with BM3D (KGARD-BM3D)

The second denoising method is actually a two-step procedure which combines the outliers
detection properties of KGARD with the denoising capabilities of a standard off-the-shelf de-
noising method. The KGARD algorithm is applied onto the noisy image, but this time the
produced denoised image Î is discarded and only the positions and values of the reconstructed
outliers are taken into consideration. These are subtracted from the original noisy image and
a cutting edge wavelet-based method with the name BM3D (Block Matching and 3-D filtering)
is applied to the result, [43]. In this setting, (which is the one we propose) the KGARD is
actually used to detect the outliers and remove their contribution (estimate), while the BM3D
methods takes over afterwards to clean the remaining of the noise. Figure 7.5 illustrates this
procedure. This method requires the same parameters as KGARD, plus the parameter s, which
is involved in the BM3D algorithm. The BM3D filter is built upon the assumption that the
image is corrupted by Gaussian noise. Hence, the parameter s is the variance of that Gaussian
noise and is either known a-priori or it is given as a user-defined estimate. Moreover, it has
been demonstrated that BM3D can also efficiently remove other types of noise, if s is adjusted
properly, [46].

7.2.4 Parameter Selection

This section is devoted to prove guidelines for the selection of the user defined parameters for
the proposed denoising algorithms. Typical values of N range between 8 and 16. In most cases,
values near 8 or even lower increase the time required to complete the denoising process with
no significant improvements. However, if the image contains a lot of “fine details” this may be
advisable. In such case, smaller values for the width of the Gaussian kernel, σ, may also enhance
the results since the regression task is more robust to abrupt changes. However, we should note
that σ is inversely associated with the size of the ROI, N , thus if one increases N , one should
decrease σ proportionally, i.e., keeping the product N · σ constant. For example, if N = 12
and σ = 0.3, then the kernel width covers 3.6 pixels. It is straightforward to see that, if N
decreases to say 8, then the kernel width that will provide a coverage of 3.6 pixels is σ = 0.45.
We have observed that the values N = 12 and σ = 0.3 (which result to a product equal to
N · σ = 3.6) are adequate to remove moderate noise from a typical image. In cases where the
image has many details and edges, N and σ should be adjusted to provide a lower product (e.g.,
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N = 12 and σ = 0.15, so that N · σ = 1.8). For images corrupted by high noise, this product
should become larger. Finally, the λ value controls the regularization on the final result. Large
values imply a strong smoothing operation, while smaller ones (close to zero) reduce the effect
of regularization leading to a better fit, but also may lead to overfitting.

For the experiments presented in this paper, we fixed the size of the ROIs using N = 12
and L = 8. These are reasonable choices that provide fast3 results with high reconstruction
accuracy. Hence, only the values of σ and λ0 need to be adjusted according to the density of the
details in the image and the amount of noise. We have found that the values of σ that provide
adequate results range between 0.1 and 0.4. Similarly, typical values of λ0 range from 0.1 to 1.
Finally, the constant E0 was set equal to 40 for all cases.

The s parameter of the BM3D method is adjusted according to the amount of noise that
is presented at each image. It ranges between very small values (e.g, s = 10), when only a small
amount of noise is present, to significantly larger values (e.g., s = 25 or s = 50) if the image is
highly corrupted.

7.3 Experiments on Images Corrupted by Synthetic

Noise

In this section, we present an extensive set of experiments on grayscale images that have been
corrupted by mixed noise, which comprises a Gaussian component and a set of impulses (±100).
The intensity of the Gaussian noise ranges between 15 dB and 25 dB and the percentage of
impulses between 5% and 20%. The tests are performed on three very popular images in
greyscale: the Lena, the boat and the Barbara images that are included in Waterloo’s image
repository. The images are 512× 512 pixels in size. Each test has been performed 50 times and
the respective mean PSNRs are reported, where

PSNR = 10 log10

(
Max2

I

MSE

)
,

where MaxI is the maximum possible pixel value (here 255) of an image P1 × P2 in size (here
P1 = P2 = 512) and

MSE =
1

P1P2

P1∑
i=1

P2∑
j=1

[I(i, j)− Î(i, j)]2,

with I and Î corresponding to the “clean” image and its noisy approximation, respectively. The
parameters have been tuned so that to provide the best result for each method (in terms of
MSE).

In Table 7.1, the two proposed methods are applied to the Lena image and they are
compared with BM3D (the state-of-the-art wavelet-based method) and an image denoising
method based on RB-RVM. For the latter, we chose a simple implementation, similar to the
one we propose in our methods: the image is divided into ROIs and the RB-RVM algorithm
is applied to each ROI sequentially. The parameters were selected to provide the best possible

3A typical denoising task using either KGARD or KGARD-BM3D implemented in MATLAB takes less than
a minute on a moderate computer.
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results in terms of PSNR. The size of the ROIs for the Lena image has been set to N = 12 and
L = 8.

In Tables 7.2 and 7.3, the results of the BM3D and the KGARD-BM3D methods applied
to the boat and Barbara images, respectively, are displayed. The size of the ROIs has been set
to N = 12 and L = 8 for the boat image, whereas N = 12 and L = 4 for the Barbara image
since it has more finer details (e.g., the stripes of the pants). Moreover, one can observe that
for this image we have used a lower value for σ and λ as indicated in Section 7.2.4.

Figures 7.6, 7.7 and 7.8 show the obtained denoised images on a specific experiment
(20 dB Gaussian noise and 10% outliers). The experiments show that the proposed method
(KGARD-BM3D) enhances significantly the denoising capabilities of BM3D, especially for low
and moderate intensities of the Gaussian noise. If the Gaussian component becomes prominent
(e.g., at 15 dB) then the two methods provide similar results.

Finally, it should be noted that, we chose not to include RAM or any `1-based denoising
method, as this would require efficient techniques to adaptively control its parameters, i.e., λ, µ
at each ROI (similar to the case of KGARD). Such an action remains an open issue. Having to
play with both parameters, makes the tuning computationally demanding. This is because the
number of iterations for the method to converge to a reasonable solution increases substantially,
once the parameters are moved away from their optimal (in terms of MSE) values. For example,
if the parameters are not optimally tuned, the denoising process may take more than an hour
to complete in MATLAB on a moderate computer.
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Table 7.1: Denoising performed on the Lena image corrupted by various types and intensities
of noise using the proposed methods, the robust RVM (RB-RVM) approach and the state-of-
the-art wavelet method BM3D.

Method Parameters Gaussian Noise Impulses (±100) PSNR

BM3D s = 30 25 dB 5% 32.2 dB
RB-RVM σ = 0.3 25 dB 5% 31.78 dB
KGARD σ = 0.3, λ = 1 25 dB 5% 33.91 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 5% 36.12 dB

BM3D s = 30 25 dB 10% 30.84 dB
RB-RVM σ = 0.3 25 dB 10% 31.25 dB
KGARD σ = 0.3, λ = 1 25 dB 10% 33.49 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 10% 35.67 dB

BM3D s = 45 25 dB 20% 29.28 dB
RB-RVM σ = 0.4 25 dB 20% 30.3 dB
KGARD σ = 0.4, λ = 1 25 dB 20% 32.04 dB

KGARD-BM3D σ = 0.4, λ = 1, s = 15 25 dB 20% 33.69 dB

BM3D s = 30 20 dB 5% 31.83 dB
RB-RVM σ = 0.4 20 dB 5% 29.3 dB
KGARD σ = 0.3, λ = 1 20 dB 5% 32.35 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 15 20 dB 5% 34.24 dB

BM3D s = 35 20 dB 10% 30.66 dB
RB-RVM σ = 0.4 20 dB 10% 29.09 dB
KGARD σ = 0.3, λ = 1 20 dB 10% 31.94 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 15 20 dB 10% 33.81 dB

BM3D s = 50 20 dB 20% 29.86 dB
RB-RVM σ = 0.4 20 dB 20% 28.29 dB
KGARD σ = 0.4, λ = 1 20 dB 20% 30.72 dB

KGARD-BM3D σ = 0.4, λ = 1, s = 15 20 dB 20% 32.06 dB

BM3D s = 35 15 dB 5% 30.87 dB
RB-RVM σ = 0.6 15 dB 5% 26.74 dB
KGARD σ = 0.3, λ = 1.5 15 dB 5% 29.12 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 25 15 dB 5% 31.18 dB

BM3D s = 40 15 dB 10% 29.94 dB
RB-RVM σ = 0.4 15 dB 10% 25.85 dB
KGARD σ = 0.3, λ = 2 15 dB 10% 28.47 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 25 15 dB 10% 30.77 dB

BM3D s = 40 15 dB 20% 28.78 dB
RB-RVM σ = 0.4 15 dB 20% 25 dB
KGARD σ = 0.4, λ = 3 15 dB 20% 27.87 dB

KGARD-BM3D σ = 0.4, λ = 1, s = 35 15 dB 20% 29.66 dB
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(a) (b)

(c) (d)

Figure 7.6: (a) The Lena image corrupted by 20 dB of Gaussian noise and 10% outliers. (b)
Denoising with BM3D (30.66 dB). (c) Denoising with KGARD (31.94 dB). (d) Denoising with
joint KGARD-BM3D (33.81 dB).
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Table 7.2: Denoising performed on the boat image corrupted by various types and intensities of
noise using the state-of-the-art wavelet method BM3D with and without outlier detection.

Method Parameters Gaussian Noise Impulses (±100) PSNR

BM3D s = 25 25 dB 5% 30.57 dB
KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 5% 34.61 dB

BM3D s = 30 25 dB 10% 29.41 dB
KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 10% 33.86 dB

BM3D s = 45 25 dB 20% 27.64 dB
KGARD-BM3D σ = 0.4, λ = 1, s = 15 25 dB 20% 31.62 dB

BM3D s = 30 20 dB 5% 30.16 dB
KGARD-BM3D σ = 0.3, λ = 1, s = 10 20 dB 5% 32.19 dB

BM3D s = 35 20 dB 10% 28.97 dB
KGARD-BM3D σ = 0.3, λ = 1, s = 15 20 dB 10% 31.52 dB

BM3D s = 50 20 dB 20% 27.49 dB
KGARD-BM3D σ = 0.4, λ = 1, s = 15 20 dB 20% 29.7 dB

BM3D s = 35 15 dB 5% 29.1 dB
KGARD-BM3D σ = 0.3, λ = 1, s = 25 15 dB 5% 28.54 dB

BM3D s = 40 15 dB 10% 28.13 dB
KGARD-BM3D σ = 0.3, λ = 1, s = 25 15 dB 10% 28.11 dB

BM3D s = 50 15 dB 20% 27.07 dB
KGARD-BM3D σ = 0.4, λ = 1, s = 40 15 dB 20% 26.99 dB

(a) (b) (c)

Figure 7.7: (a) The boat image corrupted by 20 dB of Gaussian noise and 10% outliers. (b)
Denoising with BM3D (28.97 dB). (c) Denoising with joint KGARD-BM3D (31.52 dB).
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Table 7.3: Denoising performed on the Barbara image corrupted by various types and intensities
of noise using the state-of-the-art wavelet method BM3D with and without outlier detection.

Method Parameters Gaussian Noise Impulses (±100) PSNR

BM3D s = 25 25 dB 5% 31.06 dB
KGARD-BM3D σ = 0.15, λ = 0.1, s = 15 25 dB 5% 33.45 dB

BM3D s = 30 25 dB 10% 29.4 dB
KGARD-BM3D σ = 0.15, λ = 0.1, s = 20 25 dB 10% 31.25 dB

BM3D s = 45 25 dB 20% 27.78 dB
KGARD-BM3D σ = 0.15, λ = 0.2, s = 30 25 dB 20% 28.03 dB

BM3D s = 25 20 dB 5% 30.69 dB
KGARD-BM3D σ = 0.15, λ = 0.1, s = 15 20 dB 5% 32.24 dB

BM3D s = 35 20 dB 10% 29.2 dB
KGARD-BM3D σ = 0.15, λ = 0.1, s = 20 20 dB 10% 30.43 dB

BM3D s = 50 20 dB 20% 27.68 dB
KGARD-BM3D σ = 0.15, λ = 0.15, s = 30 20 dB 20% 27.48 dB

BM3D s = 30 15 dB 5% 29.71 dB
KGARD-BM3D σ = 0.15, λ = 0.1, s = 25 15 dB 5% 29.97 dB

BM3D s = 40 15 dB 10% 28.41 dB
KGARD-BM3D σ = 0.15, λ = 0.1, s = 30 15 dB 10% 28.73 dB

BM3D s = 50 15 dB 20% 27.27 dB
KGARD-BM3D σ = 0.15, λ = 0.1, s = 45 15 dB 20% 26.39 dB

(a) (b) (c)

Figure 7.8: (a) The Barbara image corrupted by 20 dB of Gaussian noise and 10% outliers. (b)
Denoising with BM3D (29.2 dB). (c) Denoising with joint KGARD-BM3D (30.43 dB).
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Chapter 8

Summary of the Thesis and
Conclusions

In the preceding chapters, we have addressed the task of robust linear and nonlinear regression
via sparse modeling methods, within the context of machine learning. The proposed methods
are built on the popular Orthogonal Matching Pursuit algorithm (OMP) by imposing sparsity
constraints on the outliers. The results of this novel approach are summarized in this final
chapter and conclusions are also provided.

8.1 The Linear Regression Task

The novel iterative scheme, i.e., Greedy Algorithm for Robust Denoising (GARD), was de-
veloped as a robust tool for the task of linear regression and it is based on the popular OMP
algorithm, which has been introduced for sparse modeling optimization tasks. GARD alternates
between an OMP selection step, which identifies the outliers, and a Least Squares estimation,
that attempts to fit the data. Thus, it establishes a bridge between the Outlier Diagnostics and
the Robust Regression approaches.

The simplicity of the proposed algorithm contributed to the establishment of sound theo-
retical results. First, it was proved that the algorithm always converges to a solution in a finite
number of iteration steps. However, this, by itself, is not a strong evidence for the method’s
performance. To this end, the focus was turned on establishing results concerning the identifi-
cation of the outliers; two scenarios were treated separately. In the first one, we assumed that
no inlier noise exists (only outliers exist in the noise) and we established that under a sufficient
bound/condition on the RIP constant that: a) the outliers are identified and b) GARD’s solu-
tion is exact (zero error). Although, at first, it seems that this is of limited interest in practice,
as a matter of fact, it paves the way to establish the more complex condition for the noisy case.
In the second scenario, where both outlier and bounded inlier noise are present, a condition is
accordingly established for the recovery of the sparse outlier vector’s support. It should be noted
that such a condition is derived for the first time in the robust regression framework. Moreover,
if this condition is satisfied, it also follows that the method is stable, i.e., that the estimation
error is bounded by a term depending on the RIP constant. In fact, this is an improvement
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upon previously established results; the contribution is that the latter bound is independent
of the methods’ capability to estimate the outliers (in terms of both support and values), thus
it is constant. On the contrary, in [40], the authors take into account the mismatch between
the estimated and the true outlier vector, since the recovery of the outlier vector’s support is
not guaranteed. Hence, if the estimator does not succeed to correctly identify the outliers, the
bound could reach arbitrary large values. Our results prove that GARD:

• Correctly identifies the outliers according to Theorem 4.4.

• At the end of the process, the associated error defined in (4.44) is well bounded. Thus,
the solution is stable.

The experiments performed with the GARD algorithm indicate the overall advantages of
the method. In particular, GARD: a) has an overall enhanced tolerance to the outliers, compared
to its competitors, b) it performs an improved estimation (attains the lowest MSE) and c) it
has low computational requirements. Finally, the experiments verify that it outperforms the `1-
norm minimization schemes, for low sparsity levels; however, when the fraction of outliers that
contaminates the data increases beyond a level (depending on the dimensionality of the unknown
vector and the number of data), `1-norm minimization techniques demonstrate greater tolerance,
something which is inline with the experimental evidence concerning the greedy optimization
methods that are developed for sparse signal recovery.

Moreover, the study of GARD’s properties, provided some answers towards several issues
regarding the ordinary LS estimator. In Chapter 2, we have pointed out the direction taken by
Statisticians, i.e., to analyze the residual according to the diagonal elements of the hat matrix,
which led to the definition of leverage points. Although the existence of a single leverage point
was known to put a threat to the LS estimator or an attempt to detect outliers via its residual,
many questions remained unanswered. For example, when do leverage points occur and if so is
it certain that they lead to erroneous data (recall that “good” leverage points may not affect
the estimation at all)? Moreover, what are the conditions that should be satisfied so that
occurrences of leverage points are limited or even prohibited? Also, is it possible for an outlier
to be identified via the residual in cases where medium leverage points exist? Finally, since
leverage points arise in the input data, is it valid to expect from a model that is designed for
the removal of noise in the outputs (low breakdown point estimator) to detect them?

Our gained knowledge indicates that the occurrence of leverage points is limited or even
prohibited if the number of data is sufficiently larger than the number of unknowns. The claim
is justified in the analysis of Section 2.2 in Chapter 2. Of course, this is only for the case where
no outlier noise exists in the input data. Thus, the LS residual is granted as a reliable source
for detecting a single outlier, which is also theoretically justified by the result of Theorem 4.4.
The obtained bound with respect to the RIP constant is stronger than the analysis based on
the residual. This is due to the following reasons:

1. According to Remark 4.13, it takes into account the separation between the outliers and
the inlier noise.

2. It guarantees the identification of an outlier regardless of the diagonal values of the hat
matrix, since the values (in the absolute sense) of the outliers are also taken into consid-
eration.
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8.2 The Nonlinear Regression Task

The study of the respective kernel-based nonlinear regression task was introduced in Chapter
6. Since it could not be viewed as a generalization of the linear regression task, the modeling
was modified. Besides, this is also the reason that for the analysis a different path had to be
followed and eventually led to the bound of the maximum singular value in Theorem 6.1. Recall
that we assumed that the unknown nonlinear function belongs to an RKHS, thus we have dealt
with a nonparametric task, in contrast to the linear one, which is a parametric one. Since in
such models overfitting issues occur, the incorporation of a regularization term ensures that the
estimated nonlinear function is relatively smooth. The resulting algorithm, KGARD, alternates
between an OMP selection step and a Kernel Ridge Regression (KRR) step at each iteration.

The study of this greedy-based selection scheme led to some interesting results:

• The solution to the regularized Least Squares task at each step is unique.

• For the case where only outliers exist in the noise, the bound on the maximum singular
value of the matrix A(0) = [K 1] guarantees that the method identifies the outliers, first.

However, since a regularization term is also involved, KGARD’s termination parameter ε is not
directly related to the noise level. Recall that for the linear task, the noiseless case implies
that ε = 0; however, for the nonlinear one, since each projection is oblique, one should set
for ε > 0. Hence, unless perfect tuning of the parameter is performed, it is not guaranteed
that no other extra indices, i.e., those corresponding to healthy observations, are classified as
outliers. Unfortunately, an additional condition could not be derived for the noisy case, since
it was technically demanding. On the other hand, it should be noted that such a result (on the
identification for the noiseless case) has not been ever established in the respective literature.
Although the authors in [69] deal with a convex task for the AM solver and an approximation
to the `0-norm minimization one for the RAM solver (which performs better), there are no
theoretical justifications that these method succeed in identifying the outliers. Also in [70],
where the authors follow a Bayesian approach model, no such results are derived.

We have already discussed the influence of leverage points in any LS-based estimation
method; indeed, KGARD also seems to be highly affected by such abnormalities. Although
the conditions that guarantee the outlier identification are derived for the linear case (both
noiseless and noisy) with GARD, for the KGARD no such condition is derived although it has
been seriously attempted for the case both inlier and outlier noise are present. This seems
discouraging at first, since it puts the proposed method at risk. However, from the analysis
provided in Section 6.3.2, it follows that the occurrences of leverage points are limited if not
prohibited. Notice in (6.15), by performing a regularization and for any parameter λ > 0, that
the elements of the hat matrix are always downweighted. Hence, one could always find such a
value, so that the average of hii’s, i.e., h̄, is relatively small. Albeit we would have preferred the
establishment of better guarantees, unfortunately this was not possible and it remains an open
problem.

On the experimental section, various simulations were performed designating the overall
advantages of KGARD against its competitors. First, in Section 6.3.3, the validity of the
established bound in (6.16) was verified. Next, various tests with synthetic data were performed,
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while we have measured the MSE, the Mean Implementation Time (MIT) and the number of
correct and wrong indices that each method has classified as outliers. There it was shown that,
KGARD attains a low MSE with the exception of cases where heavy noise exists (both inlier
and outlier); there, RAM does slightly better. It is also evident that KGARD’s computational
requirements are very low, especially for cases where the outliers are only few. Finally, the
robust greedy-based framework was applied to the task of image denoising in Chapter 7, for
the removal of salt and pepper noise. In such cases, classical methods, such as wavelets display
limited performance. To this end, two novel methods were derived; the first one is exclusively
based on KGARD, while the second one first employs KGARD to identify the outliers and
remove their contribution and then a wavelet-based method in order to remove the remaining
noise components. The experiments, which were performed with salt and pepper noise plus
inlier noise, indicate the gains of the two proposed algorithms. The results on the combined
KGARD-BM3D method exhibit gains in terms of PSNR, which are significantly increased for
lower fractions of outliers; on the other hand, when the fraction of the outliers increases, we may
still benefit from the cooperation of the two methods, unless the level of the inlier noise is also
high. In such an extreme case, the KGARD algorithm does not contribute to the improvement
of the denoising process.

8.3 Future Directions

Greatly influenced by the simplicity and the performance of the proposed robust scheme, at
this final section we present several possible directions for future work.

8.3.1 Generalization of the Method with Noise in the Input Data

Most of the methods that are developed for the robust regression task assume that outlier noise
most commonly occurs in the outputs, i.e., the yi’s. However, if leverage points exist, which
is often related to noise on the inputs (not always), these methods become unreliable. Thus,
inspired by the performance and simplicity of the proposed schemes, an extension of GARD (or
KGARD) for this demanding task would be an interesting direction. Since the residual of the
LS estimator could not be used any further due to the existence of leverage points, one could
resort to other more robust signle-outlier detection-based residuals, such as the (internally or
externally) studentized residuals in [20] or the Cook’s distance in [94]. The estimation part
could either remain unchanged (LS-based) or performed according to another estimator, such
as the Total Least Squares (TLS) one. The fact that the implementation of such a scheme
is simple and thus the computational requirements low, would also be a great advantage, in
contrast to most of the existing methods, which, in general, operate with high computational
efforts.

8.3.2 GARD in a Distributed Network Environment

Another interesting research direction is the development of a model, based on the proposed
greedy scheme, that makes cooperative usage of the estimated parameters in order to improve the
estimation in a distributed environment. The method should simultaneously be able to detect
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the outliers that may arise within the sensing network and also enhance the performance of the
estimator, compared to the model with a single sensor. However, several modeling scenarios
could be used, depending on the application. Moreover, other issues, such as termination
criteria, which are application dependent, should be taken into account, accordingly.
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Abbreviations

ADMM Alternating Direction Method of Multipliers
AM Alternating direction Method
AWGN Additive White Gaussian Noise
BLUE Best Linear Unbiased Estimator
BM3D Block Matching and 3-D filtering
BP Basis Pursuit
EM Expectation Maximization
GARD Greedy Algorithm for Robust Denoising
GM-est Generalized Maximum Likelihood estimator
IRLS Iteratively Reweighted Least Squares
KGARD Kernel Greedy Algorithm for Robust Denoising
KRR Kernel Ridge Regression
LASSO Least Absolute Shrinkage and Selection Operator
LAV Least Absolute Values
LMedS Least Median of Squares Regression
LS Least Squares
LTS Least Trimmed Squares
M-est Maximum likelihood estimator
MIL Matrix Inversion Lemma
MIT Mean Implementation Time
ML Maximum Likelihood
MSE Mean-square-error
MVUE Minimum Variance Unbiased Estimator
OMP Orthogonal Matching Pursuit
PSNR Peak signal-to-noise ratio
RAM Refined Alternating directions Method of Multipliers
RANSAC RANndom SAmple Consensus
RBF Radial Basis Function
RB-RVM Robust Relevance Vector Machine
RIP Restricted Isometry Property
RKHS Reproducing Kernel Hilbert Space
RKRR Robust Kernel Ridge Regression
ROI Region Of Interest
ROMP Robust Orthogonal Matching Pursuit
RR Robust Regression
rROI Reduced Region Of Interest
RVM Relevance Vector Machine
SBL Sparse Bayesian Learning
SOCP Second Order Cone Programming
SVR Support Vector Regression
WAM Weighted Alternating directions Method of Multipliers
WLS Weighted Least Squares
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Appendix

A. The Inversion of Matrix IN −A

The geometric series with ratio r

∞∑
k=0

rk = 1 + r + r2 + · · · = 1

1− r , if |r| < 1

and diverges if |r| ≥ 1.

Lemma. For a matrix A ∈ RN×N if ‖A‖2 < 1, then the matrix IN −A is non-singular and∥∥(IN −A)−1
∥∥

2
≤ 1

1− ‖A‖2

.

Proof. The first part of the proof relies on contradiction. Suppose that matrix IN − A is
singular; that is, there exists x 6= 0 such that (IN −A)x = 0 which leads to ‖Ax‖2 = ‖x‖2.
However, ‖x‖2 = ‖Ax‖2 ≤ ‖A‖2‖x‖2 < ‖x‖2, which is a contradiction. Hence, the N × N
matrix IN −A is non-singular.

Furthermore, consider the obvious identity(
N∑
k=0

Ak

)
(IN −A) = IN −AN+1.

However, ‖Ak‖2 ≤ ‖A‖k2, and since ‖A‖2 < 1, we have that Ak → ON×N as k → ∞. As a
result,

lim
N→∞

(
N∑
k=0

Ak

)
(IN −A) = IN ,

so that the Neumann series (IN −A)−1 =
∑∞

k=0A
k converges. Thus, it is obtained that

∥∥(IN −A)−1
∥∥

2
=

∥∥∥∥∥
∞∑
k=0

Ak

∥∥∥∥∥
2

≤
∞∑
k=0

∥∥Ak
∥∥

2
≤

∞∑
k=0

‖A‖k2 =
1

1− ‖A‖2

,

by employing the geometric series and the proof is complete.
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B. Matrix Inversion Lemma

Let A and D − CA−1B be non-singular matrices; then the Matrix Inversion Lemma (MIL)
(also known as the Woodbury matrix identity) is the following formula:(

A−BD−1C
)−1

= A−1 +A−1B
(
D −CA−1B

)−1
CA−1.

A very useful application of the Matrix Inversion Formula is for the inversion of the matrix

M =

[
A B
C D

]
,

which is given in block form. If the N × N and K ×K matrices, A and D, respectively, are
invertible, then

M−1 =

[
(A−BD−1C)−1 −A−1B(D −CA−1B)−1

−D−1C(A−BD−1C)−1 (D −CA−1B)−1

]
.

As a special case, if K = 1 and for the form

M =

[
A b
bT c

]
,

the inverse of M is

M−1 =

[(
A− bbT

c

)−1

− 1
β
A−1b

− 1
β
bTA−1 1

β

]
=

[
A−1 + 1

β
A−1bbTA−1 − 1

β
A−1b

− 1
β
bTA−1 1

β

]
,

where β = c− bTA−1b.

C. Matrix Decomposition

QR factorization

A N ×M matrix A with rank(A) = M, (M < N) may be decomposed as

A = QR,

where Q is orthogonal and R is an upper triangular matrix with positive diagonal elements.

Cholesky decomposition

A symmetric, positive definite matrix X may be decomposed as

X = LLT ,

where L is a lower triangular matrix with positive diagonal elements.
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Singular Value Decomposition (SVD)

The Singular Value Decomposition of a N ×M , with N < M , full rank matrix A is given by

A = USV T ,

where U and V are orthogonal, i.e., UTU = UUT = IN and V TV = V V T = IM . The matrix
S is of dimension N ×M of the form S = [Σ 0], where Σ is the diagonal matrix with entries
the singular values of matrix A.
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