
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

UNDERGRADUATE THESIS

Predicting the Evolution of Communities with Online
Inductive Logic Programming

Georgios N. Athanasopoulos

Supervisors:

Panagiotis Stamatopoulos, Assistant Professor, NKUA
George Paliouras, Director of Research, NCSR «Demokritos»
Dimitrios Vogiatzis, Collaborating Researcher, NCSR «Demokritos»
Grigorios Tzortzis, Associate Researcher, NCSR «Demokritos»
Nikos Katzouris, Associate Researcher, NCSR «Demokritos»

ATHENS
JANUARY 2018

UNDERGRADUATE THESIS

Predicting the Evolution of Communities with Online Inductive Logic Programming

Georgios N. Athanasopoulos
R.N.: 1115201300002

Supervisors:

Panagiotis Stamatopoulos, Assistant Professor, NKUA
George Paliouras, Director of Research, NCSR «Demokritos»
Dimitrios Vogiatzis, Collaborating Researcher, NCSR «Demokritos»
Grigorios Tzortzis, Associate Researcher, NCSR «Demokritos»
Nikos Katzouris, Associate Researcher, NCSR «Demokritos»

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Πρόβλεψη Εξέλιξης Κοινοτήτων με Ακολουθιακό
Επαγωγικό Λογικό Προγραμματισμό

Γεώργιος Ν. Αθανασόπουλος

Επιβλέποντες:

Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής , ΕΚΠΑ
Γεώργιος Παλιούρας, Διευθυντής Ερευνών, ΕΚΕΦΕ «Δημόκριτος»
Δημήτριος Βογιατζής, Συνεργαζόμενος Ερευνητής, ΕΚΕΦΕ «Δημόκριτος»
Γρηγόριος Τζώρτζης, Ερευνητής, Εξωτερικός Συνεργάτης, ΕΚΕΦΕ «Δημόκριτος»
Νίκος Κατζούρης, Ερευνητής, Εξωτερικός Συνεργάτης, ΕΚΕΦΕ «Δημόκριτος»

ΑΘΗΝΑ
ΙΑΝΟΥΑΡΙΟΣ 2018

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Πρόβλεψη Εξέλιξης Κοινοτήτων με Ακολουθιακό Επαγωγικό Λογικό Προγραμματισμό

Γεώργιος Ν. Αθανασόπουλος
Α.Μ.: 1115201300002

Επιβλέποντες:

Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής , ΕΚΠΑ
Γεώργιος Παλιούρας, Διευθυντής Ερευνών, ΕΚΕΦΕ «Δημόκριτος»
Δημήτριος Βογιατζής, Συνεργαζόμενος Ερευνητής, ΕΚΕΦΕ «Δημόκριτος»
Γρηγόριος Τζώρτζης, Ερευνητής, Εξωτερικός Συνεργάτης, ΕΚΕΦΕ «Δημόκριτος»
Νίκος Κατζούρης, Ερευνητής, Εξωτερικός Συνεργάτης, ΕΚΕΦΕ «Δημόκριτος»

ABSTRACT

Recently, research on dynamic social network analysis has risen because of numerous
data have been available for investigation. Many researchers have started focusing on
predicting events that characterize the evolution of communities over time. Community
evolution prediction is an interesting field, since it can contribute to prevention of racism,
violence and terrorism, revelation new trends and salvage of information that is in danger
to be lost.

In this thesis, we try to predict the evolution of communities in a dynamic social network.
For this prediction we use OLED, an Online Inductive Logic Programming method. OLED
derives a theory which indicates us when an evolutionary event starts and when it stops
to happen. We have adopted the following four evolutionary events in our work: Growth,
Shrinkage, Continuation and Dissolution. As features we use the structural characteristics
(structural features) of each community and the previous states of this community in time
(temporal features). The experiments were executed with real life data from Mathematics
StackExchange. We tried and evaluated various parameters settings on OLED, while also
we permitted the construction two types of rules. These ones that considers only current
time and the other which include elements from previous time in their bodies. Finally, we
present which features participate in prediction of each evolutionary event and which of
them are unrelated with this prediction.

SUBJECT AREA: Social network analysis

KEYWORDS: social network analysis, community evolution prediction, machine learn-
ing, inductive logic programming, event calculus, online learning

ΠΕΡΙΛΗΨΗ

Πρόσφατα, η έρευνα στα δυναμικά κοινωνικά δίκτυα έχει αυξηθεί λόγω των πολυάριθμων
δεδομένων που έχουν γίνει διαθέσιμα για εξερεύνηση. Πολλοί ερευνητές έχουν αρχίσει να
εστιάζουν στη πρόβλεψη γεγονότων τα οποία χαρακτηρίζουν την εξέλιξη των κοινοτήτων
στο χρόνο. Η πρόβλεψη της εξέλιξης των κοινοτήτων είναι ένα ενδιαφέρον πεδίο αφού
μπορεί να συνεισφέρει στην εμπόδιση του ρατσισμού, της βίας και της τρομοκρατίας, στην
αποκάλυψη νέων τάσεων και στην διάδοση πληροφοριών που κινδυνεύουν να χαθούν.

Σε αυτή τη πτυχιακή εργασία προσπαθούμε να προβλέψουμε την εξέλιξη των κοινοτήτων
σε ένα δυναμικό κοινωνικό δίκτυο. Για την πρόβλεψη χρησιμοποιούμε το OLED, μια
ακολουθιακή και επαγωγική λογικού προγραμματισμού μέθοδο. Το OLED παράγει μια
θεωρία η οποία μας δηλώνει πότε ένα εξελικτικό γεγονός αρχίζει και πότε τελειώνει να
συμβαίνει. Έχουμε υιοθετήσει τα ακόλουθα εξελικτικά γεγονότα στην εργασία μας: Αύξηση,
Συρρίκνωση, Συνέχιση, και Διάλυση. Σαν χαρακτηριστικά χρησιμοποιούμε τα δομικά
χαρακτηριστικά κάθε κοινότητας και τις προηγούμενες καταστάσεις αυτής της κοινότητας
(χρονικά χαρακτηριστικά). Τα πειράματα εκτελέστηκαν με πραγματικά δεδομένα από το
Mathematics StackExchange. Δοκιμάσαμε και αξιολογήσαμε διάφορες ρυθμίσεις παρα-
μέτρων στο OLED, ενώ επίσης επιτρέψαμε την κατασκευή δύο τύπων κανόνων. Αυτούς
που λαμβάνουν υπόψιν τους μόνο την τρέχουσα χρονική στιγμή και του άλλους που
περιλαμβάνουν στοιχεία από προηγούμενες χρονικές στιγμές στο σώμα τους. Τελικά
παρουσιάζουμε ποια χαρακτηριστικά συμμετέχουν στην πρόβλεψη κάθε εξελικτικού γεγο-
νότος και ποια από αυτά είναι άσχετα με αυτή τη πρόβλεψη.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανάλυση Κοινωνικών Δικτύων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ανάλυση κοινωνικών δικτύων, πρόβλεψη εξέλιξης κοινοτήτων,
μηχανική μάθηση, επαγωγικός λογικός προγραμματισμός,
λογισμός πράξης, ακολουθιακή μάθηση

To my parents, Nikos and Sofia.

ACKNOWLEDGEMENTS

I would like to thank all supervisors who work together for this thesis. Specifically, they
are Prof. Panagiotis Stamatopoulos, Dr. George Paliouras, Dr. Dimitrios Vogiatzis, Dr.
Grigorios Tzortzis and Dr. Nikos Katzouris. All of them, are individuals with huge scientific
experience on the field that they research. They are committed and want the work to be
done right, that makes them professionals. This characteristic makes them role models
for me. Above all, they have the intention to share their knowledge with others, helping
them to improve. Through procedure of this thesis, I learned to approach and research
better, unknown objects and to reveal new. I’m grateful for guidance, immense support
and excellent collaboration that we had.

Athens, JANUARY 2018
Georgios Athanasopoulos

CONTENTS

1 INTRODUCTION 14
1.1 SOCIAL NETWORKS BACKGROUND . 14

1.2 THESIS CONTRIBUTION . 15

1.3 THESIS ORGANIZATION . 15

2 RELATED WORK 16
2.1 PREPROCESSING . 16

2.2 COMMUNITY EVOLUTION PREDICTION 18

3 OLED BACKGROUND 20
3.1 EVENT CALCULUS . 20

3.2 INDUCTIVE LOGIC PROGRAMMING . 21

3.3 HOEFFDING BOUND . 22

3.4 OLED . 23

4 OUR METHODOLOGY 24
4.1 SEGMENTATION INTO TIME FRAMES & COMMUNITY DETECTION . . 24

4.2 COMMUNITY TRACKING . 25

4.3 COMMUNITY FEATURES . 26

4.3.1 STRUCTURAL FEATURES . 27

4.3.2 TEMPORAL FEATURES . 30

4.4 FEATURES QUANTIZATION . 34

4.5 COMMUNITIY EVOLUTION PREDICTION 35

5 EXPERIMENTS 41
5.1 DATASET DESCRIPTION . 41

5.2 EXPERIMENTAL RESULTS . 42

5.2.1 SURVIVAL EXPERIMENT . 42

5.2.2 EXPERIMENT WITH FIRST QUANTIZATION ALGORITHM 43

5.2.3 EXPERIMENT WITH SECOND QUANTIZATION ALGORITHM . . . 43

5.2.4 EXPERIMENT WITH BEST PRUNING VALUES 44

5.2.5 EXPERIMENT WITH LONG RANGE RULES 45

5.2.6 EXPERIMENT WITH WEIGHTS ON TPs, FPs, FNs 46

6 CONCLUSION 53
6.1 SUMMARY . 53

6.2 FUTURE WORK . 53

ABBREVIATIONS - ACRONYMS 54

REFERENCES 58

LIST OF FIGURES

4.1 Feature’s Values Example . 34

4.2 Learning Architecture . 35

LIST OF TABLES

3.1 The basic predicates of the EC . 21

3.2 The domain-independent axioms of the EC 21

3.3 Input of OLED . 21

3.4 Learned Theory by OLED . 21

4.1 Example of A OLED’s Background Knowledge File 36

4.2 Rules That OLED Learns . 37

4.3 Example of A OLED’s Mode Declarations File 37

5.1 The percentage of each class in our dataset 42

5.2 Survival Experiment . 43

5.3 First Quantization Experiment . 43

5.4 Second Quantization Experiment . 44

5.5 Second Quantization Experiment with Temporal Features 44

5.6 Best Pruning Experiment with Structural Features 45

5.7 Best Pruning Experiment with Temporal Features 45

5.8 New Rules That OLED Learns With Long Range Relationships 46

5.9 Long Range Relationships Experiment . 46

5.10 Best weights for each class in experiment with structural features 47

5.11 Best weights for each class in experiment with temporal features 47

5.12 Weights on TPs,FPs,FNs - Experiment With Structural Features 47

5.13 Weights on TPs,FPs,FNs - Experiment With Temporal Features 47

5.14 Rules that are learned by our best experiment 48

5.15 Rules that are learned by our best experiment 49

5.16 Structural Features Usage For Growth and Shrinkage Events Prediction . . 50

5.17 Structural Features Usage For Continuation and Dissolution Events Predic-
tion . 50

5.18 Temporal Features Usage For Growth Event Prediction 51

5.19 Temporal Features Usage For Shrinkage and Continuation Events Prediction 51

PREFACE

This thesis took place in Athens of Greece between MARCH 2017 and JANUARY 2018.
This work is consisted by three parts, Reading part, Implementation part and Writing part.
During the first part, I had to familiarize with related work and terminology on field of social
network analysis and dynamic communities’ prediction. The implementation phase was
the longer one. It was needed to create a software which takes data of dynamic social
networks, create appropriate structures and derive a file in a format that OLED can use.
This software is created with a general way, so can support every social network. Our
main activity, was the selection of features (structural and temporal) so that we get the
best results during prediction. For prediction we used OLED (Online Learning of Event
Definitions). Because OLED didn’t operate exactly as we wanted, we changed some of its
functionalities. All above code is written in Java and Python. Finally, this text was written
in order to present current work. It’s described detailed both theoretical background and
experiments that are executed. So, the reader can be navigated smoothly in all procedure
of this thesis.

Predicting the Evolution of Communities with Online Inductive Logic Programming

1. INTRODUCTION

1.1 SOCIAL NETWORKS BACKGROUND

A social network is a social structure which contains individuals called nodes, who are
connected with other individuals. The link among them states an interaction which has one
or more type of interdependency such as friendship, kinship, common interest, financial
exchange. For the studding of these networks, they are represented as graphs. Each
user is represented by a node in the graph, and the interaction between two nodes by an
edge. There are two types of graphs, static and dynamic graphs. The static graph does
not change as time passes, unlike with dynamic ones. However, in real life the most of
social networks are dynamic and evolve as time passes.

Social network analysis views social relationships in terms of network theory consisting
of nodes and ties. Nodes are the individual actors within the networks, and ties are the
relationships between the actors. The resulting graph-based structures are often very
complex. There can be many kinds of ties between the nodes. Research in many aca-
demic fields has shown that social networks operate on many levels, from families up to
the level of nations, and play a critical role in determining the way problems are solved,
organizations are run, and the degree to which individuals succeed in achieving their goals

There is a community in graph if the nodes of the network can be easily grouped into
sets of nodes such that each set of nodes is densely connected internally. In dynamic
networks, the communities are influenced over the time by its users’ interaction. This
influence causes changes in structure of communities. Many researchers, consider that
structure of a community contains important information for network evolution. So, it’s
highly imperative to model the dynamic behavior in social networks and try to predict their
evolution.

In this thesis we study the problem of community evolution prediction in dynamic social
networks. For managing it, we use supervised learning task, specifically a classification
algorithm which try to predict four types of evolutionary events. They are growth, shrink-
age, continuation and dissolution of communities. Various features were investigated in
order to understand how they influence the results. Among them, are the structural (recent
and past) and temporal characteristics of communities.

We work as follows:

• We create the network’s graph, then we segment the graph into time frames, and
finally we discover communities per time frame.

• We track the communities through the time by assigning their evolutionary labels to
them.

• We design features to represent each community.

• We create chains of communities as they evolve in time.

G. Athanasopoulos 14

Predicting the Evolution of Communities with Online Inductive Logic Programming

• We create/extract the temporal label for each community, which indicates what the
community will do in the next time frame.

• We train the OLED classifier using the labeled data.

1.2 THESIS CONTRIBUTION

Our contribution in this thesis is:

• Prediction of communities’ evolution. Four evolutionary events (growth, shrinkage,
continuation and dissolution) will be used.

• Communities’ characteristics are represented by structural and temporal features.

• OLED will be used as supervised learning algorithm. This method gives rules that
state the conditions for initiation and termination of the above events.

• Long range temporal rules are extracted from OLED, to evaluate how the features
of previous time effects on results.

• Real-world datasets are used, such as Mathematics StackExchange.

1.3 THESIS ORGANIZATION

The structure of this text is organized as follows:

• In Chapter 1, we describe in brief the background of social network analysis.

• In Chapter 2, we refer the related work to social network analysis.

• In Chapter 3, we analyze our predicting model, OLED and refer its fundamentals.

• In Chapter 4, we present our methodology, which was followed in order to be work
completed.

• In Chapter 5, we present the experiments and results of this thesis.

• In Chapter 6, we discuss some conclusions and what can be done as future work.

G. Athanasopoulos 15

Predicting the Evolution of Communities with Online Inductive Logic Programming

2. RELATED WORK

In recent years, there is an interest in the analysis of communities [43], [9], [34], [24] in dy-
namic social networks. Main research has been on the fields of community detection [44],
[2], [32], [15], community tracking [40], [8], [19], [18], and community evolution prediction
[26], [17], [4].

In bibliography, the social networks are represented as a graph which is consisted of
nodes and edges. Each node is an individual who exists in network. The individuals of
network interact with each other. This interaction is represented by an edge. For example,
if user vi interacts with user vj, then an edge e(i, j) is imported in graph. The graph can
be either directed or undirected, depending on whether we need to know who caused the
interaction.

One common procedure in the study of the evolution of communities is: 1) Community
Detection per time frame and 2) Community Tracking over time. Community Detection is
the procedure in which a group of vertices can be naturally grouped into (potentially over-
lapping) sets such that each set of vertices is densely connected internally. For example,
Ci is the i-th community of the graph whose nodes are more densely interconnected rela-
tively to the rest of the network. Οn the other hand, Community Tracking tries to identify
connections between communities in different, usually sequential, timeframes. Communi-
ties with many connections among them, can be considered as a snapshot of each other
over the time. Noticing the snapshots of communities, we can export the information of
how a community of social network is evolving over time. This information could be used
as ground truth in community evolution prediction.

At Following, we refer related work has been done on community evolution prediction.

2.1 PREPROCESSING

As first step for community evolution prediction, we should detect communities. A lot of
work has been done on this area. Zafarani et al. [45] refers to Modularity Maximization.
Modularity is a metric that quantifies the quality of an assignment of nodes to communities
by evaluating how much more densely connected the nodes within a community are com-
pared to how connected they would be, on average, in a suitably defined random network.
The real communities structure is very different than random structure. The edges in a ran-
dom structure are less because of randomness. The Modularity Maximization algorithm
tries to maximize modularity to find communities far from random structure. Nascimento et
al. [31] proposed a Greedy Randomized Adaptive Search Procedure (GRASP) with path
relinking, for solving the modularity maximization problem in weighted graphs. GRASP
is a randomized multistart local search algorithm which has been applied to a plethora of
combinatorial optimization algorithms with favorable computational results. For overlap-
ping structures of communities, there is the Clique Percolation [1], [16], which correspond
to complete (fully connected) subgraphs of k nodes. Two k-cliques are considered ad-

G. Athanasopoulos 16

Predicting the Evolution of Communities with Online Inductive Logic Programming

jacent if they share k−1 nodes and then belong in same community. This definition of a
community permits overlaps between communities. Tong et al. [41] proposed the fam-
ily of Colibri methods which find low-rank approximations of the adjacency matrix of a
graph. The low-rank approximations can be used to find communities. As unsupervised
learning, clustering can be used for community detection. Chakrabarti et al. [10] pro-
posed a framework for clustering data points which gradually change over time based on
k-means clustering and agglomerative clustering. Chi et al. [11] proposed two frame-
works that incorporate temporal smoothness in evolutionary spectral clustering. Tsironis
et al. [42] investigated a variant of the spectral clustering which can be efficiently paral-
lelized in MapReduce. MapReduce is a framework for processing parallelizable problems
across large datasets using a large number of computers, collectively referred to as a clus-
ter. They studied its effectiveness in finding communities on large-scale social networks.
Their evaluation on both real and synthetic large-scale social networks showed promis-
ing results. Louvain Method [6], which is a heuristic method that is based on modularity
optimization. It is shown to outperform all other known community detection methods in
terms of computation time. Also, the quality of the communities detected is very good, as
measured by modularity. Pujol et al. [36] used the Louvain Method over a Twitter dataset
with 2.4 million nodes and 38 million links. Greene et al. [19] used the Louvain Method in
a Mobile Phone Network with 4 million nodes and 100 million links.

The procedure of identifying two communities that are in different timeframes, is called
community tracking. The two communities are considered as the same community which
evolved over time. This makes possible to observe whether communities grow, shrink,
continue, or dissolve with time. Thus, ground truth for prediction is extracted. Much work
has been done on community tracking. Specifically, Palla et al. [33] proposed clique
percolation method (CPM) that allows to investigate the time dependence of overlapping
communities on a large scale and as such, to uncover basic relationships characterising
community evolution. Some of these relationships are the: growth, contraction, merge,
split, birth and death. Asur et al. [3] developed a framework for capturing and identifying
interesting events from non-overlapping snapshots of interaction graphs. Takaffoli et al.
[39] presented Modec, a framework for modeling community evolution in social networks
by tracking of events (formation, survival, splitting, merging and dissolution). Tracking
is done by a similarity metric. The most similar communities between two timeframes
are considered as same. The assigning of events is done by a set of rules which deter-
mine when formation, survival, splitting, merging or dissolution is happening. Particularity
of Modec is the detection of evolutionary events between non-consecutive timeframes.
GED (Group Evolution Discovery) [7], [8] reveals 7 events: continuing, shrinking, grow-
ing, splitting, merging, dissolving and forming. This method is based on a measure called
inclusion, which allows to evaluate the inclusion of one community in another. The higher
the inclusion between two communities in different timeframes, the most probable that one
is the evolution of the other. The execution is as follows: For each pair of communities
<C1, C2> in consecutive timeframes Fi and Fi+1 inclusion I(C1, C2) of C1 in C2 and I(C2,
C1) of C2 in C1 is computed. Based on inclusions I(C1, C2) and I(C2, C1) and size, the
communities are matched and evolutionary events are detected using the rules below:

G. Athanasopoulos 17

Predicting the Evolution of Communities with Online Inductive Logic Programming

Evolutionary Event Conditions
Growing: I(C1, C2) ≥ α and I(C2, C1) ≥ β and |C1| < |C2| OR

I(C1, C2) ≥ α and I(C2, C1) < β and |C1| ≤ |C2| OR
I(C1, C2) < α and I(C2, C1) ≥ β and |C1| ≤ |C2|
and there is only one match between C1 and communities in
the next timeframe Fi+1

Shrinking: I(C1, C2) ≥ α and I(C2, C1) ≥ β and |C1| > |C2| OR
I(C1, C2) < α and I(C2, C1) ≥ β and |C1| ≥ |C2| OR
I(C1, C2) ≥ α and I(C2, C1) < β and |C1| ≥ |C2|
and there is only one match between C2 and communities in
the previous timeframe Fi

Continuing: I(C1, C2) ≥ α and I(C2, C1) ≥ β and |C1| = |C2|
Dissolving: For C1 in Fi and each community C2 in Fi+1, I(C1, C2) < 10%

and I(C2, C1) < 10%

Constants α and β, α, β ∈ [0, 1] are the GED method parameters, which can be used to
adjust the sensitivity of the method in identifying particular events.

2.2 COMMUNITY EVOLUTION PREDICTION

Two of the most interesting problems in social network prediction are: the prediction of
new interactions among network’s members (link prediction) and the prediction of possi-
ble events at the level of communities (community evolution prediction) such as growing,
shrinking and merging with another community that a community might encounter during
its lifetime.

The problem of new interactions prediction is known as link prediction. Its aim is: Given the
links in a social network at time t or during a time interval Tinterval, to predict the links that will
be added to the network during the later time interval from time t+ i where i > 0 to a given
future time. For prediction different network and group measures are used to determine
which unconnected nodes are ‘close together’ in the topology of the network. Liben-Nowell
et al. [29] assign a connection weight score focused on paths and common neighbours
pairs of nodes, and then produce a ranked list in decreasing order of score values. Nodes
with highest score are predicted to link in the future. Zheleva et al. [46] show that when
there are tightly-knit family circles in a social network, we can improve the accuracy of
link prediction models. Lichtenwalter et al. [30] focuses on other elements of data such
as network observational period, variance reduction, topological causes and degrees of
imbalance. Another approach to link prediction is sign prediction. In this case, apart from
link prediction, we try to predict if the link we predicted has positive or negative semantic.
Symeonidis et al. [37] defined a basic node similarity measure that captures effectively
graph features. Thus, they derived a method that apply in signed networks. Kunegis et
al. [27] considered signed variants of global network characteristics such as the clustering
coefficient, node-level characteristics such as centrality and popularity measures, and link-
level characteristics such as distances and similarity measures to predict the sign of the

G. Athanasopoulos 18

Predicting the Evolution of Communities with Online Inductive Logic Programming

links. Leskovec et al. [28] provided insight into some of the fundamental principles that
drive the formation of signed links in networks, shedding light on theories of balance and
status from social psychology.

The research in community evolution prediction and the events have been proposed, are
extended. In particular, Patil et al. [35] predicted whether a community will disappear or
will survive in the future. They observed that both the level of member diversity and social
activities are critical in maintaining the stability of groups. They also found that certain
’prolific’ members play amore important role in maintaining the group stability. Goldberg et
al. [18] correlated the lifespan of a community with structural parameters of its early time of
evolution. Brodka et al. [17] [7] tried to predict 6 evolutionary events of communities (grow,
shrink, continue, dissolve, merge, split). The features they used are the history of events
of the community in the three preceding timeframes, and the community size in these
timeframes. They found that the prediction based on the simple input features may be
very accurate, some classifiers are more precise than the others. Kairam et al. [22] tried to
understand the factors contributing to the growth and longevity of in a social network. They
investigated the role that two types of growth (Diffusion growth and non-diffusion growth)
play during a group’s formative stages from the perspectives of community. Diffusion
growth is when a community attracts new members through ties to existing members.
Non-diffusion growth is individuals with no prior ties who become members themselves.
Diakidis et al. [13] studied on-line social networks as a supervised learning task with
sequential and non-sequential classifiers. Structural, content and contextual features as
well as the previous states of a community are considered as the features that are involved
in the task of community evolution. The evolution phenomena they tried to predict are the
continuation, shrinking, growth and dissolution.

Takaffoli et al. [38] quantified the changes that may occur for a community as follows:
survive{true, false}, merge{true, false}, split{true, false}, size{expand,shrink}, and cohe-
sion{cohesive, loose}. All these events and transitions are binary. Since size and cohe-
sion transitions only defined for a survival community, they proposed a technique to detect
these two transitions. First, the survival is predicted, then the detection of these transitions
is followed. These response variables are not mutually exclusive and may occur together
at the same time, where different features may trigger them. Hence, separate models are
learned to predict each of them. Ilhan et al. [21] proposed a time series ARIMA model to
predict how particular community features will change in the following time. Distinct time
windows are examined in constituting and analyzing time series. Furthermore, commu-
nity feature values are forecasted with an acceptable error rate. Event prediction using
forecasted feature values substantially match up with actual events.

G. Athanasopoulos 19

Predicting the Evolution of Communities with Online Inductive Logic Programming

3. OLED BACKGROUND

In this thesis, OLED (Online Learning of Event Definitions) [23] was used for community
evolution prediction. This chapter will help the reader to be familiar with the system we
use and learn its fundamentals. OLED is an online Inductive Logic Programming system
for learning logical theories from data streams. It has been designed having in mind the
construction of knowledge bases for event recognition applications. These applications
[14] process sequences of simple events, such as sensor data, and recognize complex
events of interest, i.e. events that satisfy some pattern. Logic-based event recognition typ-
ically uses a knowledge base of first-order rules to represent complex event patterns and
a reasoning engine to detect such patterns in the incoming data. In OLED this knowledge
base is in the form of domain-specific axioms in the Event Calculus, i.e. rules that specify
the conditions under which simple, low-level events initiate or terminate complex events.
The Event Calculus [25] is a temporal logic that has been used as a basis in event recog-
nition applications, providing among others, direct connections to machine learning, via
Inductive Logic Programming (ILP) [12]. OLED is using an online (single-pass) learning
strategy. Online machine learning is a method of machine learning in which data becomes
available in a sequential order and is used to update our best predictor for future data at
each step, as opposed to batch learning techniques which generate the best predictor by
learning on the entire training data set at once. To manage it, the Hoeffding bound [20] for
evaluating clauses on a subset of the input stream, is used. With this approach, significant
speed-ups are obtained in training time.

3.1 EVENT CALCULUS

The Event Calculus is a temporal logic for reasoning about events and their effects. Its on-
tology comprises time points, represented by integers; fluents, i.e. properties which have
certain values in time; and events, i.e. occurrences in time that may affect fluents and alter
their value. The axioms of the EC incorporate the common sense law of inertia, according
to which fluents persist over time, unless they are affected by an event. Specifically, if a
high level event is initiated at time T, it will continue happening in the future until a low
level will fire a termination rule. Respectively, if a high level event is terminated at time T,
it will remain terminated in the future until a low level will fire an initiation rule. The basic
predicates are presented in Table 3.1, while the domain-independent axioms are in Table
3.2. Axiom (1) states that a high level event F is happening at time T if it has been initiated
at the previous time point, while Axiom (2) states that F continues to happen unless it is
terminated.

Table 3.3 presents an example of input which is required by OLED. It is consisting a
narrative and an annotation list. Narratives are the simple events in terms of happensAt/2,
expressing the values of communities’ features. i.e. happensAt(size(c1,3),1). denotes
that community c1 has size 3 in time 1. Annotations are the complex events in terms
of holdsAt/2, expressing the ground truth for our training set. i.e. holdsAt(growth(c1),2).

G. Athanasopoulos 20

Predicting the Evolution of Communities with Online Inductive Logic Programming

Predicate Predicate Meaning
happensAt(E,T) Event E occurs at time T
initiatedAt(F,T) At time T fluent F is initiated
terminatedAt(F,T) At time T fluent F is terminated
holdsAt(F,T) Fluent F holds at time T

Table 3.1: The basic predicates of the EC

Axioms
holdsAt(F,T +1) ←

initiatedAt(F,T). (1)
holdsAt(F, T+1) ←

holdsAt(F,T),
not terminatedAt(F,T). (2)

Table 3.2: The domain-independent axioms of the EC

denotes that community c1 grew in time 2. The non-existence of c1’s annotation in time
1 states that growth event is terminated in time 1. Table 3.4 shows the theory OLED
learned after training. It represents we will begin to have a growth event in time T+1 for
any community, which has size 3 and density 4 in time T. This rule extracted because with
these community features in time 1, we had a growth event in time 2 (Table 3.3).

Timeframe 1 Timeframe 2
Narrative Narrative
happensAt(size(c1,3),1). happensAt(size(c1,5),2).
happensAt(density(c1,4),1). happensAt(density(c1,5),2).
Annotation Annotation

holdsAt(growth(c1),2).

Table 3.3: Input of OLED

initiatedAt(growth(X0),T) ←
happensAt(size(X0,3),T),
happensAt(density(X0,4),T).

Table 3.4: Learned Theory by OLED

3.2 INDUCTIVE LOGIC PROGRAMMING

The goal of OLED is to learn a set of domain-specific axioms specifying complex events.
It manages this using ILP. ILP is a subfield of machine learning which uses logic program-
ming as a uniform representation for examples, background knowledge and hypotheses.

G. Athanasopoulos 21

Predicting the Evolution of Communities with Online Inductive Logic Programming

Given an encoding of the known background knowledge and a set of examples repre-
sented as a logical database of facts, an ILP system will derive a hypothesised logic
program which entails all the positive and none of the negative examples. ILP provides
various techniques for learning logical theories from examples. Here is used the Learning
from Interpretations (LfI) [5] setting in which each training example is an interpretation.
As interpretation we mean the set of narrative and annotation atoms are presented in Ta-
ble 3.3. Given a set of training interpretations I and some background theory B, which in
OLED’s case consists of the domain-independent axioms of the EC, the goal in LfI is to
find a theory. ILP learners typically employ a separate-and-conquer strategy: clauses that
cover subsets of the examples are constructed one by one recursively, until all examples
are covered. Each clause is constructed in a top-down fashion, starting from an overly
general clause and gradually specializing it by adding literals to its body. The process is
guided by a heuristic function G that assesses the quality of each specialization on the
entire training set. At each step, the literal (or set of literals) with the optimal G-score is
selected and the process continues until certain criteria are met.

3.3 HOEFFDING BOUND

Hoeffding bound is a statistical tool that is used as a probabilistic estimator of the gen-
eralization error of a model (true expected error on the entire input), given its empirical
error (observed error on a training subset). Given a random variable X with range in [0,1]
and an observed mean X of its values after n independent observations, the Hoeffding
Bound states that, with probability 1−δ, the true mean X̂ of the variable lies in an interval
(X−ε,X + ε), where ε =

√
ln(1/1−δ)2n . In other words, the true average can be approx-

imated by the observed one with probability 1−δ, given an error margin ε that decreases
with the number of observations n. In our EC dialect, the initiation/termination of complex
events depends only on the simple events and contextual information of the previous time-
point, therefore each interpretation is an independent training instance. This guarantees
the independence of observations that is necessary for using the Hoeffding bound. Here
is how OLED is using Hoeffding bound. Let r be a clause and G a clause evaluation func-
tion (which we present in Section 3.4) with range in [0,1]. Assume also that after n training
instances, r1 is r’s specialization with the highest observed mean G-score G and r2 is the
second best one, i.e. ∆G = G(r1)−G(r2) > 0. Then by the Hoeffding bound we have
that for the true mean of the scores’ difference ∆Ĝ it holds ∆Ĝ > ∆G−ε, with probability
1−δ, where ε =

√
ln(1/1−δ)2n. Hence, if ∆G > ε then ∆Ĝ > 0, implying that r1 is indeed

the best specialization to select at this point, with probability 1−δ. In order to decide which
specialization to select, it thus suffices to accumulate observations from the input stream
until ∆G > ε. Also, because OLED allows to build decision models using only a small
subset of the data, by relating the size of this subset to a user-defined confidence level on
the error margin of not making a (globally) optimal decision, manages to consume small
amounts of memory and time resources.

G. Athanasopoulos 22

Predicting the Evolution of Communities with Online Inductive Logic Programming

3.4 OLED

OLED learns a clause in a top-down fashion, by gradually adding literals to its body. In-
stead of evaluating each candidate specialization on the entire input, it accumulates train-
ing data from the stream, until the Hoeffding bound allows to select the best specialization.
The instances used to make this decision are not stored or reprocessed but discarded as
soon as OLED extracts from them the necessary statistics for clause evaluation.

OLED relaxes the LfI requirement that a hypothesis H covers every training interpretation,
and thus seek for a theory with a good fit in the training data. This implies our theory will
have false predictions, so we introduce the notion of True Positive(TP), False Positive(FP)
and False Negatives(FN). Let B consist of the domain-independent EC axioms, r be a
clause and I an interpretation. We denote by narrative(I) and annotation(I) the narrative
and the annotation part of I respectively (Table 3.3). We denote byMrrI an answer set of
B ∪ narrative(I) ∪ r. Given an annotation atom α we say that:

• α is a true positive (TP) atom clause r, iff α ∈annotation(I) ∩MrrI .

• α is a false positive (FP) atom clause r, iff α ∈ MrrI but α ̸∈ annotation(I).

• α is a false negative (FN) atom clause r, iff α ∈ annotation(I) but α ̸∈ MrrI .

Heuristic clause evaluation function G of OLED is the following:

G(r) =

{
TPr

TPr+FPr
, if r is an initiatedAt clause

TPr

TPr+FNr
, if r is a terminatedAt clause

where TPr, FPr and FNr are the accumulated TP, FP and FN counts of clause r over the
input stream and G for a clause r has range in [0,1].

On the arrival of new interpretations, OLED either expands H, by generating a new clause,
or tries to expand (specialize) an existing clause. Clauses of low quality are pruned, after
they have been evaluated on a sufficient number of examples. Below there is an example
of OLED execution. Initially, processes Linit and Lterm start with two empty hypotheses,
Hinit and Hterm. Assume that the annotation in one of the incoming interpretations dictates
that the growth complex event holds at time 10, while it does not hold at time 9. Since no
clause in Hinit yet exists to initiate growth at time 9, Linit detects the growth instance at time
10 as a FN and proceeds to theory expansion, generating an initiation clause for growth.
Lterm is not concernedwith initiation conditions, so it will take no actions in this case. Then,
a new interpretation arrives, where the annotation dictates that growth holds at time 20
but does not hold at time 21. In this case, since no clause yet exists in Hterm to terminate
growth at time 20, Lterm will detect an FP instance at time 21. It will then proceed to theory
expansion, generating a new termination condition for growth. At the same time, assume
that the initiation clause in Hinit is over-general and erroneously re-initiates growth at time
20, generating an FP instance for the Linit process at time 21. In response to that, Linit will
proceed to clause expansion, penalizing the over-general initiation clause by increasing its
FP count, thus contributing towards its potential replacement by one of its specializations.

G. Athanasopoulos 23

Predicting the Evolution of Communities with Online Inductive Logic Programming

4. OUR METHODOLOGY

In order to predict community evolution using OLED, we need to manipulate the data we
have, so that will be transformed in the form which OLED can parse. For this purpose,
we created a software system that is called OLED Generator (OG) and can take every
social network, analyze it and export a suitable file for OLED. Specifically, OG includes
the following operations that are analyzed in detail at next sections:

• Take the social network data segmented into timeframes and detect the communities
in each timeframe.

• Track the communities evolution across time using its tags to identify their evolution-
ary events and construct the ground truth of the data.

• Assign community features
• Quantize community features

OG has been designed with a generic way so that can preprocess every social network.
Its components are independent of each other. Thus, it’s possible that new components
to be imported easily. Besides of OLED exportation file, new file types can be supported
to be given as input to other machine learning algorithms.

In section 4.5, we present the steps we followed for community evolution prediction and
settings under OLED worked.

4.1 SEGMENTATION INTO TIME FRAMES & COMMUNITY DETECTION

A dynamic social network is timestamped. In order to analyze it, we need to segment its
vertices into time frames based the timestamp of each vertex. Two of the approaches
which can be used are: First, to set a constant number of time frames and an overlap
value between them. Thus, each time frame will have an equal number of nodes and
the overlap will allow for a smooth transition between time frames. The other approach is
having a specific time duration and an overlap value. In this case, we may have a different
number of nodes in each time frame. In the experiments we followed the first approach.
OG accept a json file which has already been split into time frames and extract them to
structures in order to continue the analysis.

The next step is to detect the communities of dynamic social network. Each timeframe
is a graph, where there are vertices and edges. The vertices represent the users of the
network and the edges represent the interaction among users who are in the same time
frame. During the detection of communities, we try to find subgraphs (communities) which
contain densely connected users. There are various algorithms for communities’ detection
as described in Chapter 2. However, in the current work the community labels are known.
In particular, the tags of the original posts effectuated by user, were used to characterize
the communities. For example: When the content of a post is related to Linear Algebra, it
obtains Linear Algebra tag. The user who created this post and the users who replied to

G. Athanasopoulos 24

Predicting the Evolution of Communities with Online Inductive Logic Programming

it, belong to a community that has the tag Linear Algebra. Thus, OG recognize commu-
nities from its input file, subsequently extract them and finally store them in appropriate
structures to manipulate later.

4.2 COMMUNITY TRACKING

After obtaining the community labels, we implement community tracking. Because of the
dynamic form of communities, they are evolving across neighbouring time frames. Some
of the most usual phenomena that can occur to a community between two neighbouring
time frames are:

• New nodes join a community.
• Some nodes may leave.
• The community remains largely intact.
• There is a community Ck in timeframe Fi, but it has dissolved in timeframe Fi+1

because of all members secession.

Thus, for each community Ck in timeframe Fi, there is a community Cm in timeframe Fj

(j>i), which represents the evolution of Ck. To match every community with the corre-
sponding community in next time frames, we implemented a simple community tracking
method. Our methodology assumes each community has its own tag(name) that identify
the communities over the timeframes. Thus, OG looks for a community with the same tag
in every subsequent timeframe of the dataset until the last one. If this community tag is not
found in any of the following timeframes of the dataset, then we set the evolutionary event
of this community as dissolution. It means that the number of users in a community and
their interactions are too reduced to be the community appeared in the timeframe. Thus,
we consider that this community no longer exists. On the other hand, if this community
tag is found in a following (consecutive or not) timeframe of the dataset, then we have
found a matching community that is the evolution of previous community over the time.
The evolutionary event of this community is set as follows:

Let us suppose we aim to set the evolutionary event of community Ci at timeframe Fj and
we have found the first ancestor of community Ci which is the community Cw at timeframe
Fz (where z > j). Also, we introduce the eventthreshold that denotes the community
members difference between two communities. We represent the number of community
members of Ci as |Ci| and Cw as |Cw|. The evolutionary event of community Ci is set as
described below:

• If |Ci|−|Cw| ≥ eventthreshold, then we set the evolutionary event of community Ci

as shrinkage.
• Else if |Cw|−|Ci| ≥ eventthreshold, then we set the evolutionary event of community
Ci as growth.

• Else, we set the evolutionary event of community Ci as continuation.

The evolutionary events are the ground truth of the dataset, for the supervised learning
classification problem. If a community Ci is tracked at a time frame that is not consecutive,

G. Athanasopoulos 25

Predicting the Evolution of Communities with Online Inductive Logic Programming

then we assume that Ci and its ground truth persist in all intermediate timeframes. Thus,
the intermediate timeframes obtain Ci’s ground truth.

4.3 COMMUNITY FEATURES

Many features have been proposed to predict the evolution of dynamic communities in
social networks. In this section, we present the features we chose in our experiments
which are of two kinds, the structural and the temporal. Structural features represent the
physical characteristics of a community such as size, density etc. The temporal features
include structural features and evolutionary events that derived from the states of a dy-
namic community in the past, and relations between properties of a dynamic community
and properties of its previous instances in time.

Let Cki
ti be a community ki at timeframe ti. If C

kj
tj is a state of Cki

ti in the past and C
kj
tj is an

ancestor of Cki
ti . The ancestors of a community don’t need to belong to consecutive time

frames. In the current experiments, each community is tracked in each timeframe until its
dissolution, in which there are situations in which a community disappears at timeframe
ti but it reappears again at timeframe tj, where j − i > 1. Thus, the i-th ancestor of a
community is the i-th appearance of the community in the past, counting form the present.

First let us introduce some notation,

• Gt = (Vt, Et) denotes the graph at time frame Ft

• Vt is the vertex set of Gt graph

• Et is the edge set of Gt graph

• n(Ft) = |Vt| is the size of set Vt

• m(Ft) = |Et| is the size of set Et

• Ct is the set of communities at time frame Ft

• Ck
t is the community k of set Ct

• Gk
t = (V k

t , E
k
t), is a subgraph of Gt which represent community Ck

t

• V k
t = {vkt1, vkt2, ..., vktn(Ck

t)
}, n(Ck

t) = |V k
t |

• Ek
t = {(u, v) ∈ Et : u, v ∈ V k

t },m(Ck
t) = |Ek

t |

• M = {Ck1
t1 , ..., C

kp
tp , ..., C

km
tm } is a sequence of instances of a community over time as

tracking extracted them. Where:

– 1≤t1 < t2 < ... < tm≤T
– ∀ti, t1 < ti≤tm,∃tj < ti, 1≤kj≤ntj , j = 1, ...,m

G. Athanasopoulos 26

Predicting the Evolution of Communities with Online Inductive Logic Programming

• C
kj
tj is the ancestor of Cki

ti , where j < i

Below are the features’ formulas we used:

4.3.1 STRUCTURAL FEATURES

1. Size: The normalized value for the size of a community Ck
t in time frame Ft is for-

mulated as:

Size(Ck
t) =

n(Ck
t)

n(Ft)

where n(Ck
t) is the number of vertices in community Ck

t in frame t and n(Ft) is the
number of vertices present in time frame t.

2. Density: The density of a community Ck
t is defined as

Density(Ck
t) =

m(Ck
t)

n(Ck
t)(n(C

k
t)−1)/2

where the numerator m(Ck
t) is the total number of intra community edges (edges

connecting nodes belonging to the community) and the denominator is the maximum
number of edges this community could have.

3. Cohesion: The Cohesion is defined as

Cohesion(Ck
t) =

2m(Ck
t)(n(Ft)−n(Ck

t))

mout(Ck
t)(n(C

k
t)−1)

where m(Ck
t) is the number of intra community connections, mout(C

k
t) = {(u, v) ∈

Et : u ∈ V k
t , v ̸∈ V k

t } is the number of inter community connections, n(Ck
t) is the

number of vertices in community Ck
t in frame t and n(Ft) is the number of vertices

present in time frame t.

4. Normalized Association: The NormalizedAssociation is defined as

NormalizedAssociation(Ck
t) =

2m(Ck
t)

2m(Ck
t) +mout(Ck

t)

wherem(Ck
t) is the number of intra community connections andmout(C

k
t) is the num-

ber of inter community connections. The denominator equals the sum of the vertex
degrees belonging to community Ck

t .

G. Athanasopoulos 27

Predicting the Evolution of Communities with Online Inductive Logic Programming

5. Ratio Association: The RatioAssociation is defined as

RatioAssociation(Ck
t) =

2m(Ck
t)

n(Ck
t)

wherem(Ck
t) is the number of intra community connections, and n(Ck

t) is the number
of vertices in community Ck

t in time frame t.

6. Ratio Cut: The RatioCut is defined as

RatioCut(Ck
t) =

mout(C
k
t)

n(Ck
t)

where mout(C
k
t) is the number of inter community connections , and n(Ck

t) is the
number of vertices in community Ck

t in time frame t.

7. Normalized Edges Number: The NormalizedEdgesNumber is defined as

NormalizedEdgesNumber(Ck
t) =

m(Ck
t)

m(Ft)

wherem(Ck
t) is the number of intra community connections, andm(Ft) is the number

of edges present in time frame t.

8. Average Path Length: The AveragePathLength is defined as

AveragePathLength(Ck
t) =

∑
v,u∈V k

t ,v ̸=u dist(v, u)

n(Ck
t)(n(C

k
t)−1)

where dist(v, u) indicates the shortest distance between vertices v and u and n(Ck
t)is

the number of vertices in community Ck
t in time frame t. We assume that dist(v, u)

is zero if you can’t be reached from v. Average Path Length refers to the minimum
number of edges two vertices are away from each other, between all pairs of the
vertices in a community Ck

t . Hence, it shows how close on average two random
vertices are to each other.

9. Diameter: The Diameter is defined as

Diameter(Ck
t) = max

u,v∈V k
t ,u̸=v

dist(u, v)

where (u, v) indicates the shortest distance between vertices u and v inCk
t . Diameter

is the maximum shortest path between all pairs of vertices in a community Ck
t and is

a measure that shows the upper bound of how far vertices are in that community.

G. Athanasopoulos 28

Predicting the Evolution of Communities with Online Inductive Logic Programming

10. ClusteringCoefficient: Clustering coefficient for a vertex v in a community Ck
t isdefinedas

ClusteringCoefficient(v) =
2neighE(v)

neigh(v)(neigh(v)−1)

where neigh(v) = |{u : (u, v) ∈ Ek
t }| is the number of neighbours of vertex v and neighE(v) =

|{(u,w) ∈ Ek
t : (u, v) ∈ Ek

t , (w, v) ∈ Ek
t }| is the number of edges among the neighbours

of vertex v. If the neighbours of a vertex are forming a clique, the clustering coefficient of
that vertex would be 1, and if they are not connected at all it is 0. The clustering coefficient
of a vertex shows how well neighbours of this vertex are connected to each other. The
clustering coefficient of a community Ck

t is the average over all its members:

ClusteringCoefficient(Ck
t) =

∑
v∈V k

t
ClusteringCoefficient(v)

n(Ck
t)

where n(Ck
t) is the number of vertices in community Ck

t in time frame t.

11. Closeness Centrality: In complex networks, such as social networks, we are interested in
ranking vertices and finding important vertices. Centrality measures have been introduced
to help us calculate how much a vertex is central (i.e. centre of importance) according to
some criteria.
The Closeness Centrality for a vertex v in a community Ck

t is computed as

ClosenessCentrality(v) =
n(Ck

t)−1∑
u∈V k

t ,u̸=v dist(v, u)

where dist(v, u) indicates the distance between vertices v and u in Ck
t and n(Ck

t) is the
number of vertices in communityCk

t in time frame t. Closeness centrality shows howmuch
a vertex is close to other vertices in the community graph. It counts the average number
of hops a vertex is away from the rest of the graph. Thus if the average distances of a
specific vertex with the rest of the graph is small, the closeness centrality of that vertex is
high and vice versa. Hence, closeness centrality has an inverse relation with distance in
the community graph. The Closeness Centrality of a community Ck

t is the average over
all its members:

ClosenessCentrality(Ck
t) =

∑
v∈V k

t
ClosenessCentrality(v)

n(Ck
t)

where n(Ck
t) is the number of vertices in community Ck

t in time frame t.

12. Betweenness Centrality: Betweenness Centrality for a vertex v in a community Ck
t is

computed as

BetweennessCentrality(v) =

∑
u,w∈Ck

t ,u̸=w ̸=v buw(v)

(n(Ck
t)−1)(n(Ck

t)−2)

G. Athanasopoulos 29

Predicting the Evolution of Communities with Online Inductive Logic Programming

where buw(v) is the probability of v to be on the shortest path between u and w, defined
as the fraction of shortest paths between u and w that pass through v, and n(Ck

t) is the
number of vertices in community Ck

t in time frame t. Betweenness centrality of a vertex
shows the importance of this vertex in controlling the communication between other pairs
of vertices in a community graph. The Betweenness Centrality of a community Ck

t is the
average over all its members:

BetweennessCentrality(Ck
t) =

∑
v∈V k

t
BetweennessCentrality(v)

n(Ck
t)

where n(Ck
t) is the number of vertices in community Ck

t in time frame t.

13. EigenvectorCentrality: Eigenvector centrality is based on the idea that a vertex is more
central if it is connected to central vertices. Therefore, in addition to neighbours of a
vertex, their centrality value is taken into account. Formulating this concept forms a well-
known eigenvalue, eigenvector equation. For a community graph Gk

t with n(Ck
t) vertices

let A ∈ {0, 1}n(Ck
t)×n(Ck

t) be the adjacency matrix of the community graph, i.e. au = 1 if
vertex uk

ti
is linked to vertex vktj , and au = 0 otherwise. The eigenvector centrality score

of vertex uk
ti
can be defined as

xi =

∑n(Ck
t)

j=1 aijxj

λ

where λ is a constant. The above can be written using matrix notation as Ax = λx , giving
rise to an eigenvalue problem. The eigenvector corresponding to the largest eigenvalue
contains the eigenvector centrality scores of the community vertices. The Eigenvector
Centrality of a community Ck

t is the average over all its members:

EigenvectorCentrality(Ck
t) =

∑
v∈V k

t
EigenvectorCentrality(v)

n(Ck
t)

where n(Ck
t) is the number of vertices in community Ck

t in time frame t.

4.3.2 TEMPORAL FEATURES

1. STRUCTURALFEATURESANDEVOLUTIONARYEVENTSOFFIRSTNANCES-
TORS:
Let us assume we want to compute the temporal features of community C

kp
tp , which

belongs to time frame tp and is part of dynamic communityM . One group of temporal
features is all the structural features ,as described above, as well as the evolutionary
events for the first n immediate ancestors of community C

kp
tp . In order to represent

the ancestors’ evolutionary events as temporal features , 1-of-K coding scheme is
used. In our case, where the evolution events we try to predict are the continuation,

G. Athanasopoulos 30

Predicting the Evolution of Communities with Online Inductive Logic Programming

shrinking, growth and dissolution,K = 4. If an ancestor community has evolutionary
event equal to growth, its evolutionary event as a temporal feature of its descendant
is represented as a vector of length K = 4, e = (0, 0, 1, 0)T .

Another group of temporal features concerns pairs of communities formed as: Let us
assume we want to compute the temporal features of community C

kp
tp , which belongs to

time frame tp and is part of dynamic communityM . Having the first n immediate ancestors
of community C

kp
tp we form the following pairs of communities:

• C
kp
tp and first ancestor in time of Ckp

tp

• first ancestor in time of Ckp
tp and second ancestor in time of Ckp

tp

• second ancestor in time of Ckp
tp and third ancestor in time of Ckp

tp

• ...
• (n−1)th ancestor in time of Ckp

tp and (n)th ancestor in time of Ckp
tp

Using the pairs of communities as described above for a given number of ancestors n to
use, we compute the following temporal features:

2. JACCARD SIMILARITY COEFFICIENT OF COMMUNITIES’ SET OF VERTICES:
Given a pair of communities Cki

ti and Cki−1
ti−1 , where Cki−1

ti−1 is the ancestor of Cki
ti , the

jaccard coefficient of the set of vertices is defined as

JaccCoeffV ertices(C
ki
ti
, Cki−1

ti−1
) =

|V ki
ti ∩ V V ki−1

ti−1 |
|V ki

ti ∪ V V ki−1
ti−1 |

where V ki
ti is the set of vertices of community Cki

ti and V ki−1
ti−1 is the set of vertices of

community Cki−1
ti−1 .

3. JACCARD SIMILARITY COEFFICIENT OF COMMUNITIES’ SET OF EDGES:
Given a pair of communities Cki

ti and Cki−1
ti−1 , where Cki−1

ti−1 is the ancestor of Cki
ti , the

jaccard coefficient of the set of edges is defined as

JaccCoeffEdges(C
ki
ti
, Cki−1

ti−1
) =

|Eki
ti ∩ Eki−1

ti−1 |
|Eki

ti ∪ Eki−1
ti−1 |

where Eki
ti is the set of edges of community Cki

ti and Eki−1
ti−1 is the set of edges of

community Cki−1
ti−1 .

4. JACCARD SIMILARITY COEFFICIENT OF COMMUNITIES’ SET OF VERTICES
& EDGES:
Given a pair of communities Cki

ti and Cki−1
ti−1 , where Cki−1

ti−1 is the ancestor of Cki
ti , the

jaccard coefficient of the set of vertices and edges is defined as

G. Athanasopoulos 31

Predicting the Evolution of Communities with Online Inductive Logic Programming

JaccCoeffV ertices&Edges(C
ki
ti
, Cki−1

ti−1
) =

|V ki
ti ∩ V ki−1

ti−1 |+ |Eki
ti ∩ Eki−1

ti−1 |
|V ki

ti ∪ V ki−1
ti−1 |+ |Eki

ti ∪ Eki−1
ti−1 |

where V ki
ti is the set of vertices of community Cki

ti , V ki−1
ti−1 is the set of vertices of

community Cki−1
ti−1 , Eki

ti is the set of edges of community Cki
ti and Eki−1

ti−1 is the set of
edges of community Cki−1

ti−1 .

5. JOIN NODES RATIO:
Given a pair of communities Cki

ti and Cki−1
ti−1 , where Cki−1

ti−1 is the ancestor of Cki
ti , the

Join Nodes Ratio, is defined as

JoinNodesRatio(Cki
ti
, Cki−1

ti−1
) =

|V ki
ti \V

ki−1
ti−1 |

|V ki
ti |

where V ki
ti is the set of vertices of community Cki

ti and V ki−1
ti−1 is the set of vertices of

community Cki−1
ti−1 . Join Nodes Ratio describes the percentage of new nodes joining

the dynamic community as it evolves from time frame ti−1 to time frame ti.

6. LEFT NODES RATIO:
Given a pair of communities Cki

ti and Cki−1
ti−1

, where Cki−1
ti−1

is the ancestor of Cki
ti , the

Left Nodes Ratio is defined as

LeftNodesRatio(Cki
ti
, Cki−1

ti−1
) =

|V ki−1
ti−1

\V ki
ti |

|V ki−1
ti−1

|

where V ki
ti is the set of vertices of community Cki

ti and V ki−1
ti−1

is the set of vertices of
community Cki−1

ti−1
. Left Nodes Ratio describes the percentage of nodes leaving the

dynamic community as it evolves from time frame ti−1 to time frame ti .

7. ACTIVENESS:
Given a pair of communities Cki

ti and Cki−1
ti−1 , where Cki−1

ti−1 is the ancestor of Cki
ti , the

Activeness is defined as

Activeness(Cki
ti
, Cki−1

ti−1
) =

|Eki
ti |−|E

ki
ti \E

ki−1
ti−1 |

|V ki
ti |

where V ki
ti is the set of vertices of communityCki

ti ,E
ki
ti is the set of edges of community

Cki
ti andE

ki−1
ti−1 is the set of edges of communityC

ki−1
ti−1 . Activeness is the ratio of the total

number of connections in current community Cki
ti which also existed in its ancestor

community Cki−1
ti−1 , to the number of vertices in current community Cki

ti . When there
are many connections in current community Cki

ti which also existed in its ancestor

G. Athanasopoulos 32

Predicting the Evolution of Communities with Online Inductive Logic Programming

community Cki−1
ti−1 , the value of the activeness for this pair of communities is also

high. On the contrary, when the current community Cki
ti has many new connections

which did not exist in its ancestor Cki−1
ti−1 , the value of the activeness for this pair of

communities is low.

The last two temporal features are computed for individual communities instead of pairs.
Let us assume we want to compute the temporal features of community C

kp
tp , which be-

longs to time frame tp and is part of dynamic community M . Having the first n immediate
ancestors of community C

kp
tp we compute the following temporal features for the current

community Ckp
tp and all its first n immediate ancestors. The last two temporal features are

described above:

8. LIFESPAN:
Given a community Ckw

tw which is part of dynamic communityM and belongs to time
frame tw, the lifeSpan is defined as

LifeSpan(Ckw
tw) =

|{Ckp
tp ∈ M : p < w}|

tw−1

LifeSpan is the ratio of the number of time frames between the current community
Ckw

tw and the very first instance of the same dynamic community (total number of
ancestors of Ckw

tw) , to the maximum number of ancestors Ckw
tw could have. The

maximum number of ancestors Ckw
tw could have is equal to tw−1 , where tw is the

number of the time frame where Ckw
tw belongs to. In that case there would be an

instance of dynamic community M in every time frame from the very first one until
time frame tw−1.

9. AGING:
Given a community Ckw

tw which is part of dynamic communityM and belongs to time
frame tw, the Aging is defined as: Age values are assigned to every vertex in V kw

tw

according to the formula above: For every vertex v ∈ V kw
tw :

AgeV alue(v) = |{Ckp
tp ∈ M : p ≤ w, v ∈ V

kp
tp }|

Age values start from zero. Every vertex in V kw
tw is looked for in all communities of

dynamic community M starting from the current community Ckw
tw until its first ances-

tor. Every time a vertex of set V kw
tw is found as a member of a community C

kp
tp as

shown above, its age value is increased by 1. After computing the Age values for
every vertex in V kw

tw , the Age values are divided by the maximum value of age a ver-
tex in V kw

tw could have. This maximum value is equal to |{Ckp
tp ∈ M : p < w}| + 1

(total number of ancestors of Ckw
tw plus 1). In that case a vertex would be present in

G. Athanasopoulos 33

Predicting the Evolution of Communities with Online Inductive Logic Programming

current community Ckw
tw and all its ancestors. Therefore Aging of a community Ckw

tw

is given by the following equation:

Aging(Ckw
tw) =

∑
v∈V kw

tw
AgeV alue(v)

(|{Ckp
tp ∈ M : p < w}|+ 1)n(Ckw

tw)

where AgeV alue(v) is the age value of a vertex v in V kw
tw as described above and

n(Ckw
tw) is the number of vertices in community Ckw

tw in time frame tw.

4.4 FEATURES QUANTIZATION

Our prediction method OLED, uses Inductive Logic Programming so given background
knowledge and a set of examples, the system will derive hypothesised logic rules. In
background knowledge, we define variables to recognize some values such as features’
values inside of examples. Because values of variables in logic programming are taken
from a finite domain, we should quantize the features’ values. We implemented two meth-
ods in OG to quantize variables. Let qvalue be the number of quantized values, fv be
the set with values of feature f . In first method, for each feature we split values’ total
range to qvalue intervals and the width of each is max{fv}−min{fv}

qvalue
. Thus the first interval is

(min{fv},min{fv} + qvalue), the second is (min{fv} + qvalue + 1,min{fv} + 2qvalue) and
so on. The quantized value of each feature is the index of the interval it belongs to. For
example, in Figure 4.1 there are four feature’s values: 1,60,80,103. If qvalue is 2 then fist
interval will be (1,51) and the second (52,103). Thus the value 1 is quantized to 1, while
values 60,80,103 is quantized to 2.

The second method sorts feature’s values in a list and creates qvalue sets. Taking one by
one the values from sorted list, begin to fill the qvalue sets with consecutive values until
each set has |fv |

qvalue
feature’s values. In Figure 4.1, if qvalue is 2 then first set will contain

the values 1,60 and second one the values 80,103. So the values 1,60 will be quantized
to 1, and values 60,80,103 to 2. The difference between two methods above is that the
first creates intervals with constant width but not constant number of elements, while the
second creates sets with constant size but not constant length of intervals. Finally, if at
least one feature or tag of community Ck is missing then OG delete the Ck to keep the
program correctness.

Figure 4.1: Feature’s Values Example

G. Athanasopoulos 34

Predicting the Evolution of Communities with Online Inductive Logic Programming

4.5 COMMUNITIY EVOLUTION PREDICTION

OG extracted the ground truth for the evolutionary events of the communities, and repre-
sented each community as a series of a features. Next, we used OLED that is an online
Inductive Logic Programming system for learning logical theories from data streams. We
tried to predict four types of evolutionary events: growth, shrinkage, continuation, disso-
lution. In Figure 4.2 we present the architecture of our prediction system. Initially, training
set together with background knowledge and modes declarations, is imported into OLED’s
training procedure. Subsequently, OLED deduces a logical theory from examples it reads
and applies the rules of this theory to a testing set. Finally, for each example of testing
set, a label is given. That states whether current example’s community is going to grow,
shrink, continue as it is or dissolve at the next timeframe. Note that OLED handles two-
class problems, so it predicts if a community will begin or stop to exist at next timeframe.
Furthermore, OLED estimates its performance using cross-validation technique. Because
for our experiments we use Time Series Cross Validation method, OLED’s technique isn’t
appropriate for us. Thus, we changed some of its core’s functionalities to support Time
Series Cross Validation method. For our experiments, we execute each entity of Figure
4.2 separately. To automate the evaluation procedure of our system, we created a script.

Below every component of Figure 4.2 is discussed detailed.

Figure 4.2: Learning Architecture

The background knowledge comes from Inductive Logic Programming field and is pro-
vided as a logic theory and its use is to construct explanations for data. Its main target is
to take data without any semantics and transform them to objects that have specific mean-
ing in the domain of the problem we study. The system with the background knowledge
tries to recognize some patterns in the data in order to derive new facts. Every clause of
the theory has the following form: H : −B1,…, Bn. where Bi(1 ≤ i ≤ n) is the pattern that

G. Athanasopoulos 35

Predicting the Evolution of Communities with Online Inductive Logic Programming

is sought for recognition. If each Bi is found, then we deduce that H is true. For exam-
ple, let community(X) : −happensAt(size(X, _),_). be clause. if happensAt(size(c4, 3), 2).
is true, then it can be deduced that c4 is a community. The performance of ILP system
may degrade if the background knowledge provided contains large amounts of irrelevant
information so in many realistic problems experts are requested to choose background
knowledge they believe to be useful. OLED imports background knowledge through a
text file. The Table 4.1 presents an example of this file. Taking into account the impor-
tance of background knowledge file, we define the following types of rules in it:

• Rules for community entity recognition.
• Rules for time entity recognition.
• Facts for features’ quantized values recognition.
• Rules for values of ground truth recognition.
• Rules which represent the inertia of Event Calculus, as discussed in Chapter 3.

Background Knowledge File
holdsAt(F ,Te) :-

fluent(F),
initiatedAt(F ,Ts),
Te = Ts + 1,
time(Ts),time(Te).

holdsAt(F ,Te) :-
fluent(F),
holdsAt(F ,Ts),
not terminatedAt(F ,Ts),
Te = Ts + 1,
time(Ts),time(Te). Inertia of Event Calculus

fluent(growth(X)) :- community(X). Ground truth recognition
community(X) :- happensAt(size(X,_),_).
community(X) :- happensAt(density(X,_),_). Community entity recognition
time(X) :- happensAt(size(_,_),X).
time(X) :- happensAt(density(_,_),X). Time entity recognition
value(1..5). Features’ quantized values recognition

Table 4.1: Example of A OLED’s Background Knowledge File

All instances of a community across time, have the same id number. So OLED Generator
takes over the communities’ renaming to be the condition above satisfied. Communities’
names are appeared as c < id >, where < id > is a number denoting the identity. These
names are selected such that don’t conflict with other atoms of domain.

OLED can produce predicates of many forms. For example, an argument of a predicate
can be considered as input or as output. Modes declaration is a language that limits the
forms a predicate can have. OLED imports mode declarations through a text file. The
Table 4.3 presents an example of this file. This file determines how the rules that OLED
will learn, look like. Their form is below:

G. Athanasopoulos 36

Predicting the Evolution of Communities with Online Inductive Logic Programming

Rules
initiatedAt(< predicted_event >(< communityi >),< timej >) :-

happensAt(< feature1 >(< communityi >,< value1 >),< timej >)),
...,
happensAt(< featuren >(< communityi >,< valuen >),< timej >)). (1)

terminatedAt(< predicted_event >(< communityi >),< timej >) :-
happensAt(< feature1 >(< communityi >,< value1 >),< timej >)),
...,
happensAt(< featuren >(< communityi >,< valuen >),< timej >)). (2)

Table 4.2: Rules That OLED Learns

Mode Declarations File
modeh(initiatedAt(growth(+community),+time))
modeh(terminatedAt(growth(+community),+time)) The form of the rule’s head
modeb(happensAt(size(+community,value),+time))
modeb(happensAt(density(+community,value),+time)) The form of the rule’s body

Table 4.3: Example of A OLED’s Mode Declarations File

The body of rule (1) is a list of happensAt predicates as we described in Chapter 3.
featurek(1 ≤ k ≤ n) denotes a feature’s name. communityi is a community’s name and
valuem(1 ≤ m ≤ n) is the quantized value of feature featurek and community communityi.
timej is the integer that represents a specific timeframe. In the head of the rule, predicted_event
is one of labels we try to predict (growth, shrinkage, continuation, dissolution). communityi
and timej are the same with body’s ones. Rules are expressed as if feature feature1 of
community communityi has value value1 at time timej and the same is true for the other
features of list then is fired the initiation of event predicted_event. This means we predict
that predicted_event will start to occur at next time timej + 1. Rule’s body has so many
happensAt predicates as the features are considered that are required for prediction.

On the contrary, if the body of rule (2) is true then is fired the termination of event predicted_event.
This means we predict that predicted_event will stop to occur at next time timej + 1.

As shown in Figure 4.2, our dataset was split into two sets, the training and the testing
set. This method is common practice for supervised learning. The contents of training
and testing file are:

G. Athanasopoulos 37

Predicting the Evolution of Communities with Online Inductive Logic Programming

Training Set: It’s the dataset we have the training data along with a label. This dataset
is usually prepared either by humans or by collecting some data in semi-
automated way. In our case the input data are communities represented
by structural and temporal features and their evolutionary events (these
events are their labels), used for training the OLED.

Testing Set: It’s the dataset you are going to apply your model to. It includes the data
for which you are interested what your model will predict and thus you
don’t have any ”expected” label here yet. In our case it’s a set of com-
munities represented by structural and temporal features along with their
evolutionary event (ground truth), used only to evaluate the performance
of our system, without participating in the training of OLED.

An issue that exists with training and testing sets is how we should split our dataset into
these two files to evaluate our model with best possible way. A well-known method which
resolves this issue is the Cross-Validation. It involves partitioning a sample of data into
subsets, performing the training on all subsets apart from one, and testing on the remain-
ing subset. To reduce variability, multiple rounds of cross-validation are performed using
different subsets for the training, and consequently a different subset for the testing. In
our case, we have a timestamped dataset. Thus the classic edition of Cross-Validation
isn’t suitable. However, there is the Time Series Cross Validation, a variation of Cross-
Validation which takes into account the temporal relationship between the training and
testing sets it creates. Each training set consists only observations that occurred prior to
the observation. As long as we aim to predict the evolutionary events of communities,
which are related with the future of every community, it would be unreasonable if com-
munities of a testing set belonged in preceding in time timeframes in comparison to the
timeframes of the communities that make up the training set.

OLED imports training and testing sets as json files. Each line of json file represents a time
point. Each time point contains the lists of narratives and annotations as they described in
Chapter 3. Narratives contains the low level events, while annotations contain high level
events which are the ground truth. For example, if we have this json file:

{”narrative”:[”happensAt(size(c523,5),2)”], ”annotation”:[”holdsAt(growth(c523),2)”],
”time”:2}

It denotes that at timeframe 2 the community c523 has grown and its current size is 5.

Below we present what every subset (Fold) of training and testing set contains after ap-
plication of Time Series Cross Validation method.

G. Athanasopoulos 38

Predicting the Evolution of Communities with Online Inductive Logic Programming

Fold 1: Training set includes low events of communities from timeframes F1, F2 and
high events of communities in timeframe F2. Testing set includes low events
of communities from timeframe F2 and high events of communities from time-
frames F2, F3.

Fold 2: Training set includes low events of communities from timeframes F1, F2, F3

and high events of communities from timeframe F2, F3. Testing set includes
low events of communities from timeframe F3 and high events of communities
from timeframes F3, F4.

... ...

Fold T-2: Training set includes low events of communities from timeframes F1, F2, ...,
FT−1 and high events of communities from timeframe F2, F3, ..., FT−1. Testing
set includes low events of communities from timeframe FT−1 and high events
of communities from timeframes FT−1, FT .

T is total number of timeframes we have in datasets. Note that the first timeframe has no
evolutionary events (high events) since there is no previous timeframe in the dataset in
order to track the communities’ evolution of the first timeframe. Respectively, the last time-
frame hasn’t features (low events) because there is no next timeframe to predict evolution
of its communities in the dataset. Also, in the training set we comprise the low level events
of the timeframe that we are going to predict so that OLED extracts the time variable for
high level events. That’s the way the OLED works. Finally, notice that in the testing set
we also comprise the high level events of the previous timeframe than that we are going
to predict. It’s required by OLED to initiate the inertia of every community’s event.

Since the training set is imported into OLED, the training process begins. Because OLED
is an online learner, it splits its input into chunks. In our experiments, we choose chunks of
size 2. Thus, the imported timeframes for the training procedure are split into chunks two
by two. We changed the functionality of OLED so that it creates rolling chunks. It means
that first chunk contains the timeframes 1,2, the second one the timeframes 2,3, the third
the timeframes 3,4 and so on. We did it because we, for example, want the timeframe
2 (and each other timeframe) to be in the first and second chunk. In the first chunk, we
need the high level events of timeframe 2 for getting the ground truth. While in the second
chunk we use the low level events of timeframe 2 as features for our supervised learning
classification.

The outline of training process is the following: Initially there is an empty theory. Each time
OLED receives a chunk of training examples and transform the existing theory to satisfy
as good as possible the right prediction of current examples. When the training process
is completed, a logical theory is derived as the learned model. Its form is illustrated in
Table 4.2. Using this theory we predict the evolutionary events of communities which are
in testing set.

To estimate our model, we execute the evaluation procedure where we compare the pre-
dicted labels we obtained from Testing with the known ground truth. These labels refer if

G. Athanasopoulos 39

Predicting the Evolution of Communities with Online Inductive Logic Programming

an example belongs to one class of growth, shrinkage, continuation and dissolution. The
comparison above results into four cases:

1. Test set example predicted correctly as belonging to a class. It’s considered as True
Positive (TP).

2. Test set example predicted mistakenly as belonging to a class. It’s considered as
False Positive (FP).

3. Test set example predicted mistakenly as not belonging to a class. It’s considered
as False Negatives (FN).

4. Test set example predicted correctly as not belonging to a class. It’s considered as
True Negative (TN).

The number of True Positives of a particular class is called True Positives (TPs). Respec-
tively we have False Positives (FPs), False Negatives (FNs) and True Negatives (TNs).
To assess the performance for each one of the four types of evolutionary events we exam-
ine in this thesis, we calculate using TPs, FPs, FNs and TNs the performance measures
below:

Micro_Precision =
TPs

TPs+ FPs

Micro_Recall =
TPs

TPs+ FNs

Micro_Fscore =
2× Precision×Recall

Precision+Recall

These performance measures are Micro Average. Apart from the we also use the Macro
Average. This type of measures is taking into account Precision, Recall and Fscore both
positives and negatives so that we take an average value between them. For example,
we may get high accuracy value on an imbalanced dataset, but it may be misleading in
case where our classifier always predicts correctly the majority class, because there are
a lot examples of this. But the classifier couldn’t predict correctly the negatives examples
because they aren’t a lot. In this Macro Average will reduce rightly the accuracy value of
our model. Macro-averaging allows to accurately measure performance when a dataset
consists of imbalanced classes. So for our imbalanced dataset, Macro Average measures
are required.

Below we present Macro Average measures:

Macro_Precision =
TPs

TPs+FPs
+ TNs

TNs+FNs

2

Macro_Recall =
TPs

TPs+FNs
+ TNs

TNs+FPs

2

Macro_Fscore =
2×Macro_Precision×Macro_Recall

Macro_Precision+Macro_Recall

G. Athanasopoulos 40

Predicting the Evolution of Communities with Online Inductive Logic Programming

5. EXPERIMENTS

5.1 DATASET DESCRIPTION

The data we have are collected from Mathematics Stack Exchange. Mathematics Stack
Exchange is a question and answer site for people studying math at any level and pro-
fessionals in related fields. It’s built and run as part of the Stack Exchange network of
Question and Answer sites. Mathematics Stack Exchange was created with a vision of
building a library of detailed answers to every question about math, with the help of its
users. The primary purpose of Mathematics Stack Exchange is to enable users to post
questions, answer questions posted by other users and comment on the users’ posts.
Users can vote on both answers and questions, and through this process they earn rep-
utation points, which give them the opportunity to unlock new privileges, ranging from the
ability to vote and comment on questions and answers, to the ability to moderate many
aspects of the site. One of the most important features of Mathematics Stack Exchange
is question tagging. All questions are tagged with their subject areas. Each can have up
to 5 tags, since a question might be related to several subjects. Users can choose any
tag to see a list of questions with that tag or navigate to a tag list to browse for topics that
interest them. For our dataset collected 376030 posts from many different topics, 261600
answers and comments between 28-09-2009 and 31-05-2013.

Every Mathematics Stack Exchange user is represented by a vertex in a graph and there
is an edge between two user vertices if one of them posts an answer or a comment on the
other user’s post. TheMathematics Stack Exchange dataset is split into equally sized, with
respect to the number of posts (questions, answers or comments). In particular, we had
10 timeframes with some overlap. Thus, we end up having a graph for every timeframe.
We should note that there is a single edge added between any pair vertices within the
same timeframe and the graph in each timeframe is undirected.

We consider that a group of users belongs in the same community if they make posts
(questions, answers or comments) about the same topic. In particular, we use tags to
determine the communities and since on each post there are multiple tags, thus each
user will be assigned to multiple communities. Answer and comment posts inherit the tag
of the question they correspond to. We should also note that communities with no more
than 3 members are eliminated. New communities are added in time, and most of the old
communities persevere.

We have two types features, structural and temporal. In temporal, the number of ancestors
we use is four. In Mathematics Stack Exchange dataset there are communities which
aren’t appeared in each timeframe, although they may not have been dissolved yet. It
means that a community could be appeared in timeframe i, not appeared in timeframe
i + 1 and appeared again in timeframe i + 1. It happens because communities with few
members in a timeframe are pruned from dataset. So, we’re looking for the evolution of a
community in every timeframe of the dataset and consider a community as dissolved only
after its last appearance. The evolutionary events of dataset are imbalanced. Specifically,

G. Athanasopoulos 41

Predicting the Evolution of Communities with Online Inductive Logic Programming

continuation event is the majority class (90 percent of examples belong to it). The Table
5.1 shows us in detail how is the percentage of each class in our dataset.

Growth Shrinkage Continuation Dissolution
0,05% 0,02% 0,9% 0,03%

Table 5.1: The percentage of each class in our dataset

5.2 EXPERIMENTAL RESULTS

For the execution of our experiments we followed all the steps as they described in Chap-
ter 4. We created the necessary structures of dynamic social network and deliver the data
to OLED in the appropriate format, using OLED Generator. This dataset is split into 10
timeframes and the overlap between consecutive time frames is 60%. The community
labels were obtained as explained in the previous sections, i.e. by considering the posts’
labels. Communities were tracked over the time and their evolutionary events (Growth,
Shrinkage, Continuation, Dissolution) were obtained by a simple threshold. In particular
if the size of the community in the next time frame is more (less) than 30 nodes com-
pared to the size in the current frame then the community grows (shrinks). The features
were quantized as were assigned as low level event to OLED. The high level events are
the evolutionary events. For the quantization, various number of quantized values were
tried but we had best performance with quantization of continuous features’ values into
5 values. Experiments were executed with both structural and temporal features. At the
end, this dataset was split in training and testing sets using Time Series Cross Validation
method. Because our data is highly imbalanced apart from Micro Average measures, we
also use Macro Average values. Below, we present all experiments that took place.

5.2.1 SURVIVAL EXPERIMENT

Firstly, we conducted an experiment with a simple high level event, named survival. As
survival event, we considered all the growth, shrinkage and continuation events. We used
both structural and temporal features. In Table 5.2 we present the results:

We notice that the micro measures are extremely high. It happens because of data’s
imbalance. The survival events are 97% of total data, so OLED initializing the inertia of
survival event on examples, it doesn’t find enough negatives (dissolution events) to fail in
its prediction. However, negatives’ prediction is considerably lower because the algorithm
should derive a more accurate rule which will predict survival terminal correctly. But, neg-
atives’ prediction performance isn’t observable by Micro values. This is a phenomenon
that can mislead us about checking our predictive model. That’s why, there are Macro
measures. Macro measures are taking into account also the value of TNs, so we have
more weighted measures. This appears in our results, since we can see that Macro values
are lower.

G. Athanasopoulos 42

Predicting the Evolution of Communities with Online Inductive Logic Programming

Survival Structural Survival Temporal
Micro Precision 0.9737 0.9882
Micro Recall 0.9949 1.0000
Micro Fscore 0.9842 0.9941

Macro Precision 0.8125 0.9941
Macro Recall 0.6289 0.6765
Macro Fscore 0.7090 0.8051

TPs 5822 1850
FPs 157 22
FNs 30 0
TNs 56 12

Table 5.2: Survival Experiment

5.2.2 EXPERIMENT WITH FIRST QUANTIZATION ALGORITHM

Afterwards, we experimented with the growth, shrinkage, continuation and dissolution
events. Dissolution is an event which has not duration. That is, for an existing com-
munity a dissolution event happens, and then it stops to exist. Dissolution event doesn’t
continue to happen. Thus we are interested for the first presence (initiation) of dissolution
event in each community’s evolution. This is equivalent to termination of negative event
(survival). Consequently, we can evaluate dissolution events by evaluating how accurate
are the termination rules of survival because only then a dissolution event occurs.

For this first experiment we quantized our structural features with first algorithm as it re-
ferred in Chapter 4. Below (Table 5.3) we represent the results:

Growth Shrinkage Continuation Dissolution
Micro Precision 0.2365 0.1915 0.9293 0.2675
Micro Recall 0.3027 0.1570 0.9760 0.3052
Micro Fscore 0.2655 0.1725 0.9521 0.2851

Macro Precision 0.6041 0.5848 0.8066 0.6210
Macro Recall 0.6317 0.5698 0.6939 0.6374
Macro Fscore 0.6176 0.5772 0.7460 0.6291

Table 5.3: First Quantization Experiment

5.2.3 EXPERIMENT WITH SECOND QUANTIZATION ALGORITHM

The results of the second feature quantization method appear in Table 5.4.

We notice that second algorithm for quantization goes better in micro precision of the
dissolution. We use it in each experiment below. In Table 5.5 results, we use the temporal
features with second quantization’s algorithm.

G. Athanasopoulos 43

Predicting the Evolution of Communities with Online Inductive Logic Programming

Growth Shrinkage Continuation Dissolution
Micro Precision 0.2358 0.1884 0.9293 0.6512
Micro Recall 0.3027 0.1512 0.9760 0.2629
Micro Fscore 0.2651 0.1677 0.9521 0.3746

Macro Precision 0.6037 0.5832 0.8066 0.8125
Macro Recall 0.6316 0.5671 0.6939 0.6289
Macro Fscore 0.6174 0.5750 0.7460 0.7090

Table 5.4: Second Quantization Experiment

Growth Shrinkage Continuation
Micro Precision 0.1828 0.1882 0.9182
Micro Recall 0.1828 0.1633 0.9955
Micro Fscore 0.1828 0.1749 0.9553

Macro Precision 0.5730 0.5743 0.9222
Macro Recall 0.5730 0.5649 0.6932
Macro Fscore 0.5730 0.5696 0.7915

Table 5.5: Second Quantization Experiment with Temporal Features

The dataset with temporal features contains the features of the previous 4 instance of
a community, the first timeframe for this dataset is at time 5 because the communities of
previous 4 timeframes don’t have 4 ancestors. The other features in dataset with temporal
features are these we described in Section 4.3.2. The theory which derived from the
experiment for dissolution event was empty. The predictor couldn’t evaluate any rule
with high score because there weren’t many available examples, since the number of
timeframes (6, from F5 to F10) and the communities is small. Without rules for dissolution
events, we can’t predict this event because we can’t terminate survival events that fire
dissolution of communities. That’s why Dissolution results do not appeared in table above.
Growth and shrinkage events with temporal features have lower performance than the best
corresponding events with structural features. But for continuation event, the reverse is
true.

5.2.4 EXPERIMENT WITH BEST PRUNING VALUES

After OLED has derived the learned theory, a pruning method can be applied to it. Specif-
ically, OLED removes the clauses whose score is smaller than a quality threshold Smin.
In previous experiments, Smin was 0.9. Now we try for each event the values 0.5, 0.7,
0.3 as Smin and choose them for which we have the best performance. In the dataset
with the structural features, best pruning value for growth event is 0.7, for shrinkage 0.5,
for continuation 0.9 and for dissolution 0.9. In Table 5.6 we present the results for best
pruning values in dataset with structural features.

In the dataset with temporal features, best pruning value for growth event is 0.7, for shrink-

G. Athanasopoulos 44

Predicting the Evolution of Communities with Online Inductive Logic Programming

Growth Shrinkage Continuation Dissolution
Micro Precision 0.2343 0.2047 0.9293 0.6512
Micro Recall 0.3295 0.1512 0.9760 0.2629
Micro Fscore 0.2739 0.1739 0.9521 0.3746

Macro Precision 0.6035 0.5913 0.8066 0.8125
Macro Recall 0.6431 0.5679 0.6939 0.6289
Macro Fscore 0.6227 0.5794 0.7460 0.7090

Table 5.6: Best Pruning Experiment with Structural Features

age 0.7, and or continuation 0.9. In Table 5.7 we present the results for best pruning values
in dataset with temporal features.

Growth Shrinkage Continuation
Micro Precision 0.1828 0.1951 0.9182
Micro Recall 0.1828 0.1633 0.9955
Micro Fscore 0.1828 0.1778 0.9553

Macro Precision 0.5730 0.5778 0.9222
Macro Recall 0.5730 0.5656 0.6932
Macro Fscore 0.5730 0.5716 0.7915

Table 5.7: Best Pruning Experiment with Temporal Features

5.2.5 EXPERIMENT WITH LONG RANGE RULES

The best pruning value didn’t improve the performance. Because the dataset with tem-
poral features can’t derive accurate rules for growth and shrinkage events, we tried to
change the way rules are formed so that can contain features of communities’ ancestors.
It’s like we use temporal features, but we don’t have their values as different features but
as the same features at different time. In order to change the form of derived rules, as
discussed in Chapter 4, should change modes declaration. So we modified this file so
that the new form of rules contains long range relationships. The new rules are illustrated
in Table 5.8.

In Table 5.8, the form of rule is the same as in Table 4.2 except of< time > value and geqn
/3 predicate. In this form, the rule body’s time value isn’t required to have the same value
with head’s time value. With this we manage to have features of community’s ancestors.
The geqn /3 predicate denotes that the time timek is num1 units higher than timel time.
This show us to what ancestor this feature belongs to. Also because now OLED should
include more than two timeframes in rule’s search, we should increase chunk size. If
chunk size equals to N + 2, then derived rules can contain until N ancestors’ features.
However, very big chunk size means that domain for rules’ searching will be big. Thus
CPU and memory consumption will be increased. For our experiments we selected chunk

G. Athanasopoulos 45

Predicting the Evolution of Communities with Online Inductive Logic Programming

Rules
initiatedAt/terminatedAt(< predicted_event >(< communityi >),< timej >) :-

happensAt(< feature1 >(< communityi >,< value1 >),< time1 >)),
...,
happensAt(< featuren >(< communityi >,< valuen >),< timen >)),
geqn(timek,timel,num1),
...,
geqn(timem,timen,num1).

Table 5.8: New Rules That OLED Learns With Long Range Relationships

size equals to 3, so we obtain rules that contain features of first ancestor. In Table 5.9 are
showed the results:

Growth Shrinkage
Micro Precision 0.2446 0.2016
Micro Recall 0.3487 0.1512
Micro Fscore 0.2875 0.1728

Macro Precision 0.6090 0.5898
Macro Recall 0.6527 0.5678
Macro Fscore 0.6300 0.5786

Table 5.9: Long Range Relationships Experiment

5.2.6 EXPERIMENT WITH WEIGHTS ON TPs, FPs, FNs

Neither this method increased the performance extremely. A problem is that the learned
theories of experiments contains more termination than initiation rules, so we don’t trigger
the initiation of some events when must do it. It means OLED predicts a negative event
(an event that does not occur) for a community at next timeframe but in reality we have a
positive event (event occurs). In this case the FNs frequency of OLED is increased. The
numbers of initiation and termination rules aren’t balanced because OLED evaluate its
rules based on TPs, FPs and FNs values. Using these values, it computes a score which
refers how accurate is a rule. To control score’s value, it’s enough to change TPs, FPs and
FNs values. So the idea is to add weights on TPs, FPs,FNs values during training process.
For example, when we set FNs weight to 10, we mean that each time the number of FNs
will be considered as ten times more than it really is. As a result OLED thinks that there
are more FNs because termination rules stopped event while they shouldn’t. It means that
termination rules overestimate the termination condition. Thus score of termination rules
is getting decreased. With this way we focus more in quality than quantity of termination
rules. This functionality wasn’t supported initially by OLED but changing OLED’s core
code, we added it.

G. Athanasopoulos 46

Predicting the Evolution of Communities with Online Inductive Logic Programming

Trying various values for weights, we found these ones which offer best performance in our
experiments. In Table 5.10, we present the best weights for each class in experiment with
structural features, while in Table 5.11 there are the corresponding values of experiment
with temporal features.

TPs-weight FPs-weight FNs-weight
Growth 1 1 15

Shrinkage 20 1 15
Continuation 1 1 1
Dissolution 1 1 15

Table 5.10: Best weights for each class in experiment with structural features

TPs-weight FPs-weight FNs-weight
Growth 1 5 1

Shrinkage 1 1 1
Continuation 1 1 15

Table 5.11: Best weights for each class in experiment with temporal features

The results are presented in Table 5.12 for the experiments with structural features and
in Table 5.13 for the experiments with temporal features.

Growth Shrinkage Continuation Dissolution
Micro Precision 0.2376 0.1127 0.9247 0.8036
Micro Recall 0.3487 0.8023 0.9845 0.2113
Micro Fscore 0.2826 0.1977 0.9537 0.3346

Macro Precision 0.6055 0.5533 0.9623 0.8878
Macro Recall 0.6519 0.8187 0.6772 0.6047
Macro Fscore 0.6278 0.6603 0.7950 0.7194

Table 5.12: Weights on TPs,FPs,FNs - Experiment With Structural Features

Growth Shrinkage Continuation
Micro Precision 0.2184 0.2459 0.9182
Micro Recall 0.2043 0.1531 0.9955
Micro Fscore 0.2111 0.1887 0.9553

Macro Precision 0.5913 0.6032 0.9222
Macro Recall 0.5857 0.5654 0.6933
Macro Fscore 0.5885 0.5837 0.7915

Table 5.13: Weights on TPs,FPs,FNs - Experiment With Temporal Features

While we were trying various values to weights, we noticed that:

G. Athanasopoulos 47

Predicting the Evolution of Communities with Online Inductive Logic Programming

• If TPs’s weight is increased then in results TPs is increased, FPs is increased and
FNs is decreased because number of initiations rules is increased.

• If FPs’s weight is increased then in results TPs is decreased, FPs is decreased and
FNs is increased because number of initiations rules is decreased.

• If FNs’s weight is increased then in results TPs is increased, FPs is increased and
FNs is decreased because number of termination rules is decreased.

We wanted to grow the small TPs number of our results on testing by setting propriate
weights. But when we were doing it, FPs was also grown. This means that OLED over-
estimates the initiation condition because its initiation rules aren’t specialized enough to
detect correctly in which communities will occur an event. That’s why performance in ex-
periments weren’t improved significantly with weights on metrics. Everything shows that
OLED couldn’t distinguish more accurate positive from negative and thus it has arrived to
bound of its predictive ability for this dataset.

An advantage of OLED as predictionmethod is that the predictivemodel (Theory) it derives
is human-readable. So you can read its rules of theory, analyze and extract interesting
results for them. Some of these rules of our experiment with the best performance are
shown in Tables 5.14 and 5.15. Transferability is also an interesting possibility. We can
evaluate our model (theory) to new datasets without change anything, just importing theory
file to OLED. Noticing the theories we obtained from previous experiments, we discovered
that some features appeared more often in rules of specific evolutionary events than other.
While some of them never appeared in rules’ bodies. In Tables 5.16 and 5.17 we present
for each evolutionary event (growth, shrinkage, continuation, dissolution), which structural
features there are in rules’ bodies that predict these events. Also there is the percentage
of feature’s appearance in corresponding experiment.

Learned Rules
initiatedAt(growth(X0),X1) :-

happensAt(density(X0,1),X1),
happensAt(diameter(X0,2),X1).

terminatedAt(growth(X0),X1) :-
happensAt(ratio_cut(X0,3),X1),
happensAt(average_path_length(X0,3),X1),
happensAt(normalized_edges_number(X0,5),X1).

terminatedAt(growth(X0),X1) :-
happensAt(ratio_cut(X0,3),X1),
happensAt(closeness_centrality(X0,3),X1),
happensAt(normalized_edges_number(X0,5),X1).

terminatedAt(growth(X0),X1) :-
happensAt(cohesion(X0,2),X1),
happensAt(average_path_length(X0,3),X1),
happensAt(diameter(X0,2),X1).

Table 5.14: Rules that are learned by our best experiment

G. Athanasopoulos 48

Predicting the Evolution of Communities with Online Inductive Logic Programming

Learned Rules
terminatedAt(shrinkage(X0),X1) :-

happensAt(ratio_association(X0,3),X1).
terminatedAt(shrinkage(X0),X1) :-

happensAt(average_path_length(X0,2),X1).
terminatedAt(shrinkage(X0),X1) :-

happensAt(closeness_centrality(X0,2),X1),
happensAt(ratio_cut(X0,1),X1).

initiatedAt(shrinkage(X0),X1) :-
happensAt(eigenvector_centrality(X0,1),X1),
happensAt(ratio_association(X0,5),X1).

terminatedAt(survival(X0),X1) :-
happensAt(ratio_association(X0,4),X1),
happensAt(density(X0,2),X1).

terminatedAt(survival(X0),X1) :-
happensAt(ratio_association(X0,3),X1),
happensAt(clustering_coefficient(X0,4),X1).

terminatedAt(survival(X0),X1) :-
happensAt(diameter(X0,3),X1),
happensAt(ratio_cut(X0,3),X1),
happensAt(ratio_association(X0,2),X1).

terminatedAt(survival(X0),X1) :-
happensAt(ratio_association(X0,3),X1),
happensAt(closeness_centrality(X0,3),X1).

terminatedAt(survival(X0),X1) :-
happensAt(clustering_coefficient(X0,1),X1),
happensAt(closeness_centrality(X0,5),X1),
happensAt(cohesion(X0,4),X1).

terminatedAt(survival(X0),X1) :-
happensAt(normalized_edges_number(X0,2),X1),
happensAt(cohesion(X0,2),X1),
happensAt(average_path_length(X0,1),X1).

terminatedAt(survival(X0),X1) :-
happensAt(size(X0,1),X1),
happensAt(betweenness_centrality(X0,1),X1),
happensAt(cohesion(X0,3),X1).

terminatedAt(survival(X0),X1) :-
happensAt(normalized_edges_number(X0,1),X1),
happensAt(cohesion(X0,3),X1),
happensAt(average_path_length(X0,1),X1).

Table 5.15: Rules that are learned by our best experiment

G. Athanasopoulos 49

Predicting the Evolution of Communities with Online Inductive Logic Programming

Growth Percentage Shrinkage Percentage
diameter 17.68% ratio_association 20%
cohesion 13.26% ratio_cut 13.55%
ratio_cut 11.60% cohesion 11.61%

average_path_length 11.60% clustering_coefficient 10.97%
density 8.29% eigenvector_centrality 9.03%

ratio_association 7.73% density 8.39%
clustering_coefficient 7.73% average_path_length 7.10%

size 6.63% closeness_centrality 6.45%
closeness_centrality 6.08% centrality 3.871%
eigenvector_centrality 3.87% diameter 3.87%

normalized_edges_number 2.76% betweenness_centrality 2.58%
centrality 2.76% size 1.29%

normalized_edges_number 1.29%

Table 5.16: Structural Features Usage For Growth and Shrinkage Events Prediction

Continuation Percentage Dissolution Percentage
ratio_cut 16.07% clustering_coefficient 25.93%

ratio_association 15% cohesion 15.74%
clustering_coefficient 10% betweenness_centrality 10.19%

density 9.64% diameter 9.26%
diameter 8.21% size 8.33%

closeness_centrality 8.21% normalized_edges_number 6.48%
eigenvector_centrality 7.14% ratio_association 5.56%

centrality 6.79% closeness_centrality 3.70%
betweenness_centrality 6.43% average_path_length 3.70%
normalized_association 4.64% ratio_cut 2.78%
average_path_length 4.64% normalized_association 2.78%

normalized_edges_number 2.5% centrality 2.78%
size 0.71% density 1.85%

eigenvector_centrality 0.93%

Table 5.17: Structural Features Usage For Continuation and Dissolution Events Prediction

In Table 5.16 we are noticing that features like diameter, cohesion, ratio_cut and aver-
age_path_length affect in prediction of growth event since they are the 54.14 percent of
total features which appeared in rules for growth prediction. On the contrary features
like betweenness_centrality and normalized_association didn’t appear in any rule’s body.
For shrinkage event the most used features are ratio_association, ratio_cut, cohesion
and clustering_coefficient, while there isn’t the normalized_association feature. In Ta-
ble, 5.17 features of continuation and dissolution events are showed. Continuation of an
event seems that is affected from ratio_cut, ratio_association and clustering_coefficient
features and isn’t affected from cohesion feature. While for dissolution event, every fea-

G. Athanasopoulos 50

Predicting the Evolution of Communities with Online Inductive Logic Programming

ture is used in prediction, especially the usage of clustering_coefficient, cohesion and
betweenness_centrality.

In Tables 5.18 and 5.19 we present temporal features which exist in rules of corresponding
experiments.

Growth Percentage
ancestor4_average_path_length 12.5%
activeness_ancestor_2_ancestor3 6.25%

aging_ancestor0 6.25%
ancestor1_diameter 6.25%

ancestor3_closeness_centrality 6.25%
ancestor3_clustering_coefficient 6.25%

ancestor3_diameter 6.25%
ancestor4_centrality 6.25%

ancestor4_clustering_coefficient 6.25%
ancestor4_diameter 6.25%

jaccardCoefficient_ancestor_0_ancestor1 6.25%
jaccardCoefficient_ancestor_2_Ancestor3 6.25%
joinNodesRatio_ancestor_2_ancestor3 6.25%

joinNodesRatio_currentCommunity_ancestor0 6.25%
leftNodesRatio_ancestor_0_ancestor1 6.25%

Table 5.18: Temporal Features Usage For Growth Event Prediction

Shrinkage Percentage
ancestor1_event_is_shrinking 16.66%
ancestor4_clustering_coefficient 16.66%

cohesion 16.66%
eigenvector_centrality 16.66%

joinNodesRatio_currentCommunity_ancestor0 16.66%
ratio_cut 16.66%

Continuation Percentage
cohesion 50%
ratio_cut 50%

Table 5.19: Temporal Features Usage For Shrinkage and Continuation Events Prediction

For growth event prediction the temporal features: ancestor4_average_path_length, ac-
tiveness_ancestor_2_ancestor3, aging_ancestor0, ancestor1_diameter,
ancestor3_closeness_centrality and the other that are illustrated in Table 5.18, are the
same important. Shrinkage event prediction uses the values of ancestor1_event_is_shrinking,
ancestor4_clustering_coefficient, cohesion, eigenvector_centrality,
joinNodesRatio_currentCommunity_ancestor0, ratio_cut. Many temporal features aremiss-
ing from rules’ bodies for both growth and shrinkage event prediction because they didn’t

G. Athanasopoulos 51

Predicting the Evolution of Communities with Online Inductive Logic Programming

help OLED in prediction. That’s why experiments with temporal features didn’t really im-
proved the performance of our prediction. For continuation event prediction features aren’t
important, since only two (cohesion and ratio_cut) are used.

G. Athanasopoulos 52

Predicting the Evolution of Communities with Online Inductive Logic Programming

6. CONCLUSION

6.1 SUMMARY

In this thesis, we tried to predict the evolution of communities in a dynamic social network.
The evolution of a community is consisted of growth, shrinkage, continuation and disso-
lution events. We carried out the prediction using an online Inductive Logic Programming
system (OLED) for learning logical theories from data streams. Initially, we developed a
software system (OLED Generator) which manipulated our dataset so that was converted
in an appropriate form for OLED. Specifically, we built structures of social network such
as timeframes and communities. We tracked the evolution of communities over the time
and obtained the ground truth of evolutionary events. As features we used the structural
characteristics of network graph that are called Structural features. Moreover, we tried
temporal features which also contain the structural features of previous snapshots of so-
cial network. Our features were quantized and assigned as features of communities. Our
dataset contained real life data from Mathematics Stack Exchange. Micro Average and
Macro Average measures of our experiments’ performance are presented because of im-
balanced classes (Growth, Shrinkage, Continuation and Dissolution). Best theory pruning
values were found for every OLED execution. Experiments with temporal features couldn’t
learn many rules, since there weren’t enough timeframes. So, we execute experiments
where OLED learned long range rules. For these rules we used every timeframe and an-
cestors’ features could be included in body of them. Subsequently, weights were applied
to TPs, FPs and FNs values during training procedure to change rules’ scores and try to
control TPs, FPs and FNs values during testing procedure. This was the experiment that
gave us the best results. There we noticed that OLED couldn’t be more accurate. Finally,
we analyzed which features are the most influential in growth, shrinkage continuation and
dissolution of a community.

6.2 FUTURE WORK

Future work could be directed to a range of different fields. Others machine learning
classifiers can be used to predict the evolution of communities (e.g. SVM, Random Forest)
to compare our results. More evolutionary events can be added such as merge or split.
Other types of features (i.e. topics or context of discussions in social networks) could be
studied. Also, another quantization algorithm, which will adapt better the quantized values
into features’ values distribution, may help. Because OLED is an online system, it needs
too many data streams to decide if a rule is trusted. However, our dataset’s timeframes
are just 10. So balanced datasets with more timeframes could be examined. Otherwise
different segmentation of timeframes is possible to be applied because if each timeframe
contains less communities then more timeframes will be created. Finally, it would be very
interesting to test our learned rules in other datasets to notice how relevant they are at
problem of community evolution in general.

G. Athanasopoulos 53

Predicting the Evolution of Communities with Online Inductive Logic Programming

ABBREVIATIONS - ACRONYMS

OLED Online Learning of Event Definitions

EC Event Calculus

ILP Inductive Logic Programming

OG OLED Generator

GRASP Greedy Randomized Adaptive Search Procedure

CPM Clique Percolation Method

GED Group Evolution Discovery

LfI Learning from Interpretations

TP True Positive

FP False Positive

FN False Negatives

TN True Negatives

G. Athanasopoulos 54

Predicting the Evolution of Communities with Online Inductive Logic Programming

REFERENCES

[1] Balázs Adamcsek, Gergely Palla, Illés J. Farkas, Imre Derényi, and Tamás Vicsek.
Cfinder: locating cliques and overlapping modules in biological networks. Bioinfor-
matics, 22(8):1021–1023, 2006.

[2] Hamidreza Alvari, Alireza Hajibagheri, Gita Sukthankar, and Kiran Lakkaraju. Identi-
fying community structures in dynamic networks. Social Network Analysis and Mining,
6(1):77, Sep 2016.

[3] Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. An event-based framework
for characterizing the evolutionary behavior of interaction graphs. ACM Trans. Knowl.
Discov. Data, 3(4):16:1–16:36, December 2009.

[4] Michele Berlingerio, Arisitdes Gionis, Bjoern Bringmann, and Francesco Bonchi.
Learning and predicting the evolution of social networks. IEEE Intelligent Systems,
25:26–35, 2010.

[5] Hendrik Blockeel, Luc De Raedt, Nico Jacobs, and Bart Demoen. Scaling up induc-
tive logic programming by learning from interpretations. Data Mining and Knowledge
Discovery, 3(1):59–93, Mar 1999.

[6] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10):P10008, 2008.

[7] P. Bródka, P. Kazienko, and B. Kołoszczyk. Predicting Group Evolution in the Social
Network. ArXiv e-prints, October 2012.

[8] Piotr Bródka, Stanisław Saganowski, and Przemysław Kazienko. Ged: the method
for group evolution discovery in social networks. Social Network Analysis and Mining,
3(1):1–14, Mar 2013.

[9] Antoni Calvó-Armengol and Yves Zenou. Social networks and crime decisions: The
role of social structure in facilitating delinquent behavior*. International Economic Re-
view, 45(3):939–958, 2004.

[10] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evolutionary clustering.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, pages 554–560, New York, NY, USA, 2006.
ACM.

[11] Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L. Tseng. Evolutionary
spectral clustering by incorporating temporal smoothness. In Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’07, pages 153–162, New York, NY, USA, 2007. ACM.

G. Athanasopoulos 55

Predicting the Evolution of Communities with Online Inductive Logic Programming

[12] L. De Raedt. Logical and Relational Learning. Cognitive Technologies. Springer
Berlin Heidelberg, 2008.

[13] Georgios Diakidis, Despoina Karna, Dimitris Fasarakis-Hilliard, Dimitrios Vogiatzis,
and George Paliouras. Predicting the evolution of communities in social networks.
In Proceedings of the 5th International Conference on Web Intelligence, Mining and
Semantics, WIMS ’15, pages 1:1–1:6, New York, NY, USA, 2015. ACM.

[14] Opher Etzion and Peter Niblett. Event Processing in Action. Manning Publications
Co., Greenwich, CT, USA, 1st edition, 2010.

[15] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75 – 174,
2010.

[16] Wei Gao, Kam-Fai Wong, Yunqing Xia, and Ruifeng Xu. Clique Percolation Method
for Finding Naturally Cohesive and Overlapping Document Clusters, pages 97–108.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[17] Bogdan Gliwa, Piotr Bródka, Anna Zygmunt, Stanislaw Saganowski, Przemyslaw
Kazienko, and Jaroslaw Kozlak. Different approaches to community evolution pre-
diction in blogosphere. In Advances in Social Networks Analysis and Mining 2013,
ASONAM ’13, Niagara, ON, Canada - August 25 - 29, 2013, pages 1291–1298, 2013.

[18] Mark Goldberg, Malik Magdon ismail, Srinivas Nambirajan, and James Thompson.
Tracking and predicting evolution of social communities. ?

[19] Derek Greene, Donal Doyle, and Padraig Cunningham. Tracking the evolution of
communities in dynamic social networks. In Proceedings of the 2010 International
Conference on Advances in Social Networks Analysis and Mining, ASONAM ’10,
pages 176–183, Washington, DC, USA, 2010. IEEE Computer Society.

[20] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[21] Nagehan İlhan and Şule Gündüz Öğüdücü. Predicting community evolution based
on time series modeling. In Proceedings of the 2015 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining 2015, ASONAM ’15, pages
1509–1516, New York, NY, USA, 2015. ACM.

[22] Sanjay Ram Kairam, Dan J. Wang, and Jure Leskovec. The life and death of online
groups: Predicting group growth and longevity. In Proceedings of the Fifth ACM In-
ternational Conference on Web Search and Data Mining, WSDM ’12, pages 673–682,
New York, NY, USA, 2012. ACM.

[23] NIKOS KATZOURIS, ALEXANDER ARTIKIS, and GEORGIOS PALIOURAS. Online
learning of event definitions. Theory and Practice of Logic Programming, 16(5-6):817–
833, 2016.

G. Athanasopoulos 56

Predicting the Evolution of Communities with Online Inductive Logic Programming

[24] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’03, pages 137–146, New
York, NY, USA, 2003. ACM.

[25] Robert Kowalski and Marek Sergot. A Logic-Based Calculus of Events, pages 23–55.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.

[26] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew Tomkins. On the
bursty evolution of blogspace. World Wide Web, 8(2):159–178, Jun 2005.

[27] Jérôme Kunegis, Andreas Lommatzsch, and Christian Bauckhage. The slashdot zoo:
Mining a social network with negative edges. In Proceedings of the 18th International
Conference on World Wide Web, WWW ’09, pages 741–750, New York, NY, USA,
2009. ACM.

[28] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and neg-
ative links in online social networks. In Proceedings of the 19th International Confer-
ence on World Wide Web, WWW ’10, pages 641–650, New York, NY, USA, 2010.
ACM.

[29] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social net-
works. Journal of the American Society for Information Science and Technology,
58(7):1019–1031, 2007.

[30] Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla. New perspectives
and methods in link prediction. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 243–252, New
York, NY, USA, 2010. ACM.

[31] Mariá C.V. Nascimento and Leonidas Pitsoulis. Community detection by modularity
maximization using grasp with path relinking. Computers & Operations Research,
40(12):3121 – 3131, 2013.

[32] M. E. J. Newman. Detecting community structure in networks. The European Phys-
ical Journal B, 38(2):321–330, Mar 2004.

[33] Gergely Palla, Albert-Laszlo Barabasi, and Tamas Vicsek. Quantifying social group
evolution. Nature, 446(7136):664–667, April 2007.

[34] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the over-
lapping community structure of complex networks in nature and society. Nature,
435(7043):814–818, June 2005.

[35] Akshay Patil, Juan Liu, and Jie Gao. Predicting group stability in online social net-
works. In Proceedings of the 22Nd International Conference on World Wide Web,
WWW ’13, pages 1021–1030, New York, NY, USA, 2013. ACM.

G. Athanasopoulos 57

Predicting the Evolution of Communities with Online Inductive Logic Programming

[36] JosepMPujol, Vijay Erramilli, and Pablo Rodriguez. Divide andConquer: Partitioning
Online Social Networks. Technical Report arXiv:0905.4918, Jun 2009. Comments: 7
pages, 4 figures.

[37] Panagiotis Symeonidis, Eleftherios Tiakas, and Yannis Manolopoulos. Transitive
node similarity for link prediction in social networks with positive and negative links. In
Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10,
pages 183–190, New York, NY, USA, 2010. ACM.

[38] Mansoureh Takaffoli, Reihaneh Rabbany, and Osmar R. Zaiane. Community evolu-
tion prediction in dynamic social networks.

[39] Mansoureh Takaffoli, Farzad Sangi, Justin Fagnan, and Osmar Zaiane. Modec —
modeling and detecting evolutions of communities, 2011.

[40] Mansoureh Takaffoli, Farzad Sangi, Justin Fagnan, and Osmar R. Zäıane. Commu-
nity evolution mining in dynamic social networks. Procedia - Social and Behavioral
Sciences, 22(Supplement C):49 – 58, 2011. Dynamics of Social Networks.

[41] Hanghang Tong, Spiros Papadimitriou, Jimeng Sun, Philip S. Yu, and Christos
Faloutsos. Colibri: Fast mining of large static and dynamic graphs. In Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’08, pages 686–694, New York, NY, USA, 2008. ACM.

[42] Serafeim Tsironis, Mauro Sozio, and Michalis Vazirgiannis. Accurate spectral clus-
tering for community detection in mapreduce. 2013.

[43] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications.
Structural Analysis in the Social Sciences. Cambridge University Press, 1994.

[44] Zhao Yang, René Algesheimer, and Claudio Tessone. A comparative analysis of
community detection algorithms on artificial networks. 6, 08 2016.

[45] R. Zafarani, M.A. Abbasi, and H. Liu. Social Media Mining: An Introduction. Cam-
bridge University Press, 2014.

[46] Elena Zheleva, Lise Getoor, Jennifer Golbeck, and Ugur Kuter. Using Friendship
Ties and Family Circles for Link Prediction, pages 97–113. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

G. Athanasopoulos 58

	CONTENTS
	INTRODUCTION
	SOCIAL NETWORKS BACKGROUND
	THESIS CONTRIBUTION
	THESIS ORGANIZATION

	RELATED WORK
	PREPROCESSING
	COMMUNITY EVOLUTION PREDICTION

	OLED BACKGROUND
	EVENT CALCULUS
	INDUCTIVE LOGIC PROGRAMMING
	HOEFFDING BOUND
	OLED

	OUR METHODOLOGY
	SEGMENTATION INTO TIME FRAMES & COMMUNITY DETECTION
	COMMUNITY TRACKING
	COMMUNITY FEATURES
	STRUCTURAL FEATURES
	TEMPORAL FEATURES

	FEATURES QUANTIZATION
	COMMUNITIY EVOLUTION PREDICTION

	EXPERIMENTS
	DATASET DESCRIPTION
	EXPERIMENTAL RESULTS
	SURVIVAL EXPERIMENT
	EXPERIMENT WITH FIRST QUANTIZATION ALGORITHM
	EXPERIMENT WITH SECOND QUANTIZATION ALGORITHM
	EXPERIMENT WITH BEST PRUNING VALUES
	EXPERIMENT WITH LONG RANGE RULES
	EXPERIMENT WITH WEIGHTS ON TPs, FPs, FNs

	CONCLUSION
	SUMMARY
	FUTURE WORK

	ABBREVIATIONS - ACRONYMS
	REFERENCES

