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ABSTRACT 

 

Energy-efficient computing can be largely enabled by fast and accurate identification of 
the pessimistic voltage margins of multicore CPU designs and in particular the unveiling 
of voltage margins variability among cores and among chips. In multi-socketed systems 
with multiple CPUs each of which consists of several cores, the core-to-core and the 
chip-to-chip voltage margin variability can be effectively utilized by software layers for 
diligent power-saving threads scheduling. 
Massive but straightforward characterization of the voltage margins of different CPU 
chips and their different cores is an excessively long and thus unaffordable in most 
cases process if it is naively based on publicly available benchmarks or other in-house 
programs with large execution times. 
In this thesis, we follow a different strategy for the characterization of the voltage 
margins of multicore CPUs and the measurement of the voltage variability among chips 
and cores: we propose the employment of fast targeted programs (diagnostic micro-
viruses) that aim to stress individually the main hardware components of a multicore 
CPU architecture which are known to determine the limits of voltage reduction, i.e. the 
Vmin values. We describe the development of the micro-viruses which target separately 
the three different cache memory levels and the main processing components, the 
integer and the floating-point arithmetic units. The combined execution of the micro-
viruses takes very short time compared to regular programs and extensively stress the 
CPU cores to reveal their voltage limits when they operate below the nominal voltage 
levels. To demonstrate the effectiveness of the synthetic micro-virus programs, we 
compare the safe Vmin reported by the combined micro-viruses characterization against 
the corresponding safe Vmin values of SPEC CPU2006 benchmarks. The micro-viruses 
based characterization flow requires orders of magnitude shorter time while it delivers 
very close results to the excessively characterization campaign (in most cases identical, 
at most 2% divergences) in terms of: (a) Vmin values for the different CPU chips (b) 
Vmin values for the different cores within a chip, (c) core-to-core and chip-to-chip 
voltage margins variability.  
We evaluate the proposed micro-viruses based characterization flow (and compare it to 
the SPEC-based flow) on three different chips (a nominal grade and two corner parts) of 
AppliedMicro’s X-Gene 2 micro-server family (8-core, ARMv8-based CPUs 
manufactured in 28nm); the reported results validate the speed and accuracy of the 
proposed method. 
 
  
 

 

 

SUBJECT AREA: Dependable and energy efficient computer architectures 

KEYWORDS: Design Margins Characterization, Energy-Efficient Computing, Multicore 

CPUs, Undervolting, Diagnostic Viruses, ARMv8 





ΠΕΡΙΛΗΨΗ 
Οι ενεργειακά-αποδοτικοί υπολογισμοί είναι δυνατοί μέσω του γρήγορου και ακριβούς 
προσδιορισμού των δυσοίωνων περιθωρίων τάσης σε σχεδιάσεις πολυπύρηνων 
επεξεργαστών και πιο συγκεκριμένα με την αποκάλυψη της διακύμανσης των 
περιθωρίων τάσης ανάμεσα σε πυρήνες και επεξεργαστές. Σε συστήματα με 
πολλαπλές υποδοχές για πολυπύρηνους επεξεργαστές, με κάθε έναν να διαθέτει 
πολλαπλούς πυρήνες, η μεταβλητότητα των περιθωρίων μεταξύ πυρήνων και μεταξύ 
επεξεργαστών μπορεί να αξιοποιηθεί αποτελεσματικά μέσω στρωμάτων λογισμικού για 
ενεργειακά-αποδοτική χρονοδρομολόγηση των νημάτων. 
Ο μαζικός αλλά ειλικρινής χαρακτηρισμός των περιθωρίων τάσης διαφορετικών 
επεξεργαστών και των πυρήνων τους είναι μια υπερβολικά χρονοβόρα και συνεπώς μη 
προσιτή διαδικασία στις περισσότερες περιπτώσεις, αν αυτή βασιστεί σε δημόσια 
διαθέσιμα προγράμματα αναφοράς με μεγάλους χρόνους εκτέλεσης. 
Στη παρούσα διπλωματική εργασία, ακολουθούμε μια διαφορετική στρατηγική για τον 
χαρακτηρισμό των περιθωρίων τάσης πολυπύρηνων επεξεργαστών και για την 
μέτρηση της διακύμανσης των περιθωρίων αυτών ανάμεσα σε διαφορετικούς 
επεξεργαστές και πυρήνες: προτείνουμε την υιοθέτησή γρήγορων και στοχευμένων 
προγραμμάτων (διαγνωστικοί μικρό-ιοί) των οποίων στόχος είναι να πιέσουν ξεχωριστά 
τα βασικά συστατικά ενός πολυπύρηνου επεξεργαστή τα οποία είναι γνωστό πως 
καθορίζουν τα όρια στην μείωση της τάσης, με άλλα λόγια την ελάχιστη δυνατή τάση 
Vmin. Περιγράφουμε την ανάπτυξη των διαγνωστικών μικρό-ιών που στοχεύουν 
ξεχωριστά τα τρία επίπεδα των κρυφών μνημών και τις βασικές μονάδες επεξεργασίας, 
την αριθμητική μονάδα ακέραιων αριθμών και την αριθμητική μονάδα αριθμών κινητής 
υποδιαστολής. Ο συνδυαστικός χρόνος εκτέλεσης όλων των διαγνωστικών μικρό-ιών 
είναι σημαντικά συντομότερος από αυτών κανονικών προγραμμάτων, με συνέπεια οι 
πυρήνες ενός επεξεργαστή να πιέζονται εκτεταμένα ώστε να αποκαλύψουν τα όρια 
τάσης όταν λειτουργούν κάτω από την ονομαστική τους τάση. Για να επιδείξουμε την 
αποτελεσματικότητα των μικρό-ιών μας, συγκρίνουμε την ελάχιστη δυνατή τάση 
λειτουργίας Vmin που αυτοί προσδιορίζουν με αυτή που προσδιορίζουν υπερβολικά 
χρονοβόρες καμπάνιες προσδιορισμού με τη βοήθεια των προγραμμάτων αναφοράς 
SPEC CPU2006. Οι μικρό-ιοί που αναπτύχθηκαν απαιτούν τάξεις μεγέθους μικρότερο 
χρόνο εκτέλεσης, ενώ την ίδια στιγμή τα αποτελέσματα τους απέχουν ελάχιστα (στις 
περισσότερες περιπτώσεις είναι πανομοιότυπα, με αποκλίσεις της τάξης του 2%) στον 
προσδιορισμό (α) της ελάχιστης τάσης λειτουργίας Vmin για διαφορετικούς επεξεργαστές 
(β) της ελάχιστης τάσης λειτουργίας Vmin  μεταξύ των διαφορετικών πυρήνων του ίδιου 
επεξεργαστή και (γ) της μεταβλητότητας των περιθωρίων τάσης από επεξεργαστή σε 
επεξεργαστή και από πυρήνα σε πυρήνα. 
Τέλος, αξιολογούμε πειραματικά την ροή χαρακτηρισμού με τους προτεινόμενους μικρό-
ιούς (συγκρίνοντας την με αυτή που βασίζεται στα προγράμματα αναφοράς) σε τρεις 
διαφορετικούς επεξεργαστές (έναν με nominal grade και δύο που ανήκουν στα corner 
parts) σε έναν server της οικογένειας X-Gene 2 της εταιρείας AppliedMicro (8 πυρήνες, 
ARMv8 επεξεργαστής  κατασκευασμένος με την διαδικασία 28nm). Τα αποτελέσματα 
επαληθεύουν την ταχύτητα και την ακρίβεια της προτεινόμενης μεθόδου. 
 
ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αρχιτεκτονική Υπολογιστών  
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Χαρακτηρισμός Περιθωρίων Σχεδίασης, Ενεργειακά-Αποδοτικοί 

Υπολογισμοί, Πολυπύρηνοι Επεξεργαστές, Undervolting, 
Διαγνωστικοί Ιοί, ARMv8 
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1. INTRODUCTION 

 

Transistors miniaturization due to the capabilities provided by the modern 
manufacturing process is also accompanied by process variations that affect transistor 
features (length, width, oxide thickness etc.) and consequently, affect their operation. 
Apart from these variations that are classified as static because they remain unchanged 
after the end of the fabrication period, transistor aging and dynamic variations in supply 
voltage caused by different workloads interactions can also affect the functionality of 
modern multicore CPU chips. To protect the chips from such unpredicted phenomena, 
microprocessor architects choose to introduce pessimistic voltage and frequency 
margins that lead to significant energy waste. 
The minimization of such energy waste without sacrificing performance is a primary 
concern of microprocessor designers, but it requires a deep understanding of the 
voltage and frequency margins in order to ensure the correct execution of a chip in off-
nominal conditions. The characterization procedure to identify these margins becomes 
more and more difficult and time consuming in the modern multicore CPU chips, as the 
systems become more and more complex and non-deterministic and the population of 
cores is rapidly increasing. In such multicore CPUs, there are significant opportunities 
for energy savings, because the divergences of the safe margins are remarkable among 
the cores of the same chip, among the different workloads that can be executed on 
different cores of the same chip and among the chips of the same type. 
Trying to benefit from these divergences, several techniques have been proposed until 
now either at the software or at the hardware level aiming to reach the best trade-off 
between energy efficiency and performance. For instance, in Dynamic Voltage and 
Frequency Scaling (DVFS) [1], voltage and frequency are scaled during epochs where 
peak performance is not required, while some other techniques try to predict the safe 
percentage of chip undervolting without corrupting the correct execution of the program 
[2]. Moreover, some system level approaches (that have been evaluated only in 
simulators) propose scheduling algorithms in multicore chips that are based on the 
variation of the lowest safe voltage margin (Vmin) of the different cores of the same chip 
to effectively allocate hardware resources to software tasks [3] [4] [5] [6]. Finally, at the 
hardware level, several methods have been proposed to reach the lowest safe voltage 
limit of the chip, without significant loss of performance [7] [8]. Unfortunately, these 
methods demand significant area, design, test and characterization overheads. None of 
these methods can be implemented without accurate identification of the safe voltage 
and frequency limits that differ from core-to-core, chip-to-chip and workload-to-
workload. 
To accurately identify these limits of a real multicore system requires multiple execution 
of a large number of real workloads in all the cores of the chip (or in all different chips of 
a system), for different voltage and frequency values. For instance, to identify the Vmin of 
each of the eight cores of the AppliedMicro’s (APM) X-Gene 2 micro-server that is the 
experimental vehicle of this study, we used 10 SPEC CPU2006 benchmarks with 20 
minutes (on average) execution time and we repeated each experiment 10 times 
starting from the nominal voltage value (980mV) until their crash voltage value 
(~870mV), we needed about 6 months for a complete characterization for all the cores 
of three different chips. This excessively long time makes the characterization of each 
chip that is ready to be released to the market infeasible, forcing the manufactures to 
introduce the same pessimistic guardband for all the cores of the same multicore chips. 
Therefore, the need to create benchmarks that are able to reveal the Vmin of each core 
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of a multicore chip (or the Vmin of different chips) in short time, in conjunction with all the 
insights needed to understand the behaviour of a system in off-nominal conditions is 
indisputable. 
In this thesis, we propose the development of dedicated programs (diagnostic micro-
viruses) that aim to stress the fundamental hardware components of three different 
chips (one “nominal” and two corner parts) of Applied Micro’s (APM) X-Gene 2 micro-
server family, that are ARMv8-based multicore CPUs manufactured in 28nm. With our 
proposed diagnostic micro-viruses, we effectively stress all the main components of the 
chip:  

a) the caches (the first level data and instruction caches, the unified L2 caches and 
the last level L3 cache of the chip)  

b) two main components of the pipeline (the ALU and the FPU).  
These diagnostic micro-viruses are executed in very short time (4 days for the entire 
massive characterization campaign of the three 8-core chips) compared to normal 
benchmarks such as those of the SPEC CPU2006 suite. The micro-viruses purpose is 
to reveal the safe voltage margins of each core of the multicore chip and also all the 
insights of the behaviour of the chips when they operate in unsafe voltage conditions. 
The rest of the thesis is organized as follows: in Section II, we describe all the details of 
the microprocessor architecture, in Section III we discuss all the details of the diagnostic 
micro-viruses that were developed in this study. Section IV presents our findings and 
the comparison between the SPEC benchmarks and the proposed diagnostic micro-
viruses, Section V presents the side story of developing and porting the diagnostic 
micro-viruses on a Raspberry Pi 3, and finally in the two final sections we present the 
related work and we conclude our study and future works, respectively. 
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2. MICROPROCESSOR ARCHITECTURE 

 
In this section, we present all the details of the system architecture of the APM X-Gene 
2 micro-server (voltage and frequency domains) along with all its microarchitectural 
details. The APM X-Gene 2 micro-server consists of eight 64-bit ARMv8-compliant 
cores. The basic microarchitectural details of the pipeline of each core are summarized 
in Table I. 

 

Table I: Basic Characteristics of X-Gene 2. 

Parameter Configuration 

CPU 8 Cores, 2.4GHz 

ISA ARMv8 (AArch64, AArch32, Thumb) 

Pipeline 64-bit OoO 

Issue Queue 4-issue 

ALU 
1 single & 1 simple/complex integer 

arithmetic instructions 

FPU IEEE 754 (single and double precision) 

Integer physical register file 80 entries, 64-bit 

Floating point and SIMD 
physical register file 

80 entries, 64-bit 

Page Size 4KB 

 
The X-Gene 2 system consists of a Power Management processor (PMpro) and a 
Scalable Lightweight Intelligent Management processor (SLIMpro). The first is a 32-bit 
dedicated processor that provides advanced power management capabilities such as 
multiple power planes and clock gating, thermal protection circuits, Advanced 
Configuration Power Interface (ACPI) power management states and external power 
throttling support, while the latter is a 32-bit dedicated processor that monitors system 
sensors, configures system attributes (e.g. regulate supply voltage, change DRAM 
refresh rate etc.) and accesses all error reporting infrastructure, using an integrated I2C 
controller as the instrumentation interface between the X-Gene 2 cores and this 
dedicated processor. SLIMpro can be accessed by the system’s running Linux Kernel. 
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X-Gene 2 has three independently regulated power domains that are presented in 
Figure I. 
 

1.    PMD (Processor Module): Each PMD contains two ARMv8 cores. Each of the 
two cores has separate instruction and data L1 caches, while they share a 
unified L2 cache. The operating voltage of all four PMDs together can change 
with a granularity of 5mV beginning from 980mV. While PMDs operate at the 
same voltage, each PMD can operate in a different frequency. The frequency 
can range from 300 MHz up to 2.4 GHz with 300 MHz steps. 

2.    PCP (Processor Complex)/SoC: It contains the L3 cache, the DRAM 
controllers, the central switch and the I/O bridge. The PMDs do not belong to the 
PCP/SoC power domain. The voltage of the PCP/SoC domain can be 
independently scaled downwards with a granularity of 5mV beginning from its 
nominal value (950mV). 

3.    Standby Power Domain: This includes the Power Management processor 
(PMpro) and a Scalable Lightweight Intelligent Management processor (SLIMpro) 
microcontrollers and interfaces for I2C buses, which monitor and regulate the 
voltage of the X-Gene 2 microprocessor. 

 

L3

PCP/SoC

0 1

L1I

L1D L1D

L2

PMD 0
L1I

2 3

L1I

L1D L1D

L2

PMD 1
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4 5

L1I

L1D L1D

L2

PMD 2
L1I

6 7

L1I

L1D L1D

L2

PMD 3
L1I

PMpro SLIMpro

MCU MCU MCU MCU

DDR3 SDRAM

PMD

Standby 
Power Domain

 
Figure I: X-Gene 2 micro-server power domains block diagram. The outlines with dashed lines 

present the independent power domains of the chip. 
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The basic features of the all the caches of the X-Gene 2 are summarized in Table II.All 
the characteristics of the X-Gene 2 microprocessor architecture are very important for 
the construction of the diagnostic micro-viruses that we present in the following section. 
 

Table II: X-Gene 2 Caches Characteristics. 

 

Before proceeding to the next section, a quick overview of the above cache 
characteristics is presented for the shake of completeness. 

                                            

1 Physically Indexed, Physically Tagged 

 L1 Instr L1 Data L2 L3 

Size 32 KB 32 KB 256 KB 8 MB 

# of Ways 8 8 32 32 

Block Size 64 B 64 B 64 B 64 B 

# of Blocks 512 512 4096 131,072 

# of Sets 64 64 128 4096 

Write Policy - 
Write-

Through 
Write-Back - 

Write Miss 
Policy 

No-write 

allocate 

No-write 

allocate 
Write allocate - 

Organization PIPT1 PIPT PIPT PIPT 

Prefetcher YES YES YES NO 

Scope Per Core Per Core Per PMD Shared 

Protection 
Parity 

Protected 

Parity 

Protected 

ECC 

Protected 

ECC 

Protected 



Micro-Viruses for Fast and Accurate Characterization of Voltage Margins and Variations in Multicore CPUs 

I. Vastakis   19 

2.1 Cache Entry 

Even when one requests a single memory word, i.e. when accessing the first element of 
an integer array, data are transferred between the main memory and the caches in 
blocks of fixed size, called cache blocks or cache lines (this is the minimum unit of 
information that exists in a cache memory) [34]. When a cache line is copied from the 
main memory into the cache, a cache entry is created; this entry consists of not only the 
actual requested data, but also an upper portion of the requested memory address 
(called tag) and some flag bits (such as the valid bit that indicates whether an entry 
contains a valid address or not). When there is a request for a memory address, the 
CPU has to check for the presence of a corresponding cache entry in the cache. The 
cache checks for the requested data in all the cache lines that might contain it (more on 
this in the next subsection). If the processor finds the corresponding cache entry in the 
cache, a cache hit has occurred (or in other words the request hits the cache) and after 
that the CPU reads the data from the cache. However, if the processor does not find the 
memory location in the cache, a cache miss has occurred (or the request misses the 
cache) and the CPU has to allocate a new entry in the cache in order to copy the data 
from the main memory or from a lower-level cache (allocate-on miss). 

2.2 Associativity 

This is a placement policy that decides where in the cache a copy of a particular entry of 
main memory (block) can reside [34]: 

a) If a block can be placed in any location in the cache, the cache is called fully 
associative (in other words a block in memory may be associated with any entry 
in the cache). To find a given block in a fully associative cache, all the entries in 
the cache must be searched because a block can be placed in any one of them. 
Practically, a parallel search is employed with a comparator associated with each 
cache entry. However, these comparators significantly increase the hardware 
cost, effectively making fully associative placement efficient only for caches with 
small numbers of blocks. 

b) If each entry in main memory can go in just one place in the cache, the cache is 
called direct mapped (in other words there is a direct mapping from any block in 
memory to a single entry in the cache). This placement organization, as each 
location of the main memory can go in only one place in the cache, can also be 
called "one-way set associative". Moreover, a direct mapped cache does not 
have a replacement policy, since there is no choice of which cache entry's 
contents to evict; if two memory addresses map to the same cache entry, they 
will keep knocking each other out. 

c)   The middle range of designs between a direct mapped cache and a fully 
associative cache is called N-way set associative, in which each entry in main 
memory can map to any one of N places in the cache. For instance, an eight-way 
set associative cache can hold up to eight blocks in each set. The number of 
blocks in a set is also known as the cache associativity or set size. Each block in 
each set has a stored tag which identifies each block. First, the (set) index of the 
address of a request is used in order to access the correct set. Then, 
comparators are used to compare all the tags of the selected set with the 
incoming tag from the request. If a match is found, the corresponding location is 
accessed, otherwise, as before, an access to the main memory or lower-level 
caches is made.  
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Based on the above, choosing the right value of associativity involves a trade-off 
between performance efficiency and area cost. If there are eight places to which the 
placement policy could have mapped a memory location, then to check for a 
corresponding cache entry in the cache, eight cache entries must be searched in 
parallel. On the one hand, employing more comparators requires more power and die 
area, while on the other, caches with higher associativity suffer from fewer conflict 
misses and thus offer better performance [34]. 

2.3 Replacement Policy 

In order to make room for a new entry on a cache miss (if the corresponding set is full), 
the cache may have to evict one of the existing entries (of this particular set). The 
heuristic that it uses to choose the entry of the set to evict is called cache replacement 
policy (except for caches with direct mapping, which does not need a replacement 
algorithm) [34]. The basic problem with any replacement policy is that it must predict 
which existing cache entry is least likely to be used in the future. However, predicting 
future access patterns is difficult, so there is no perfect way to choose among the great 
variety of replacement policies available. Nevertheless, a good replacement algorithm 
can yield significantly higher performance than a bad replacement algorithm and thus 
the choice is critical for the cache performance of modern systems. Moreover, the 
replacement mechanism must be implemented totally in hardware, preferably such that 
the selection (of the soon to be evicted block) can be performed before the new block is 
fetched from lower-level caches or the main memory (in order to maintain high 
performance) [34]. 
One of the most popular and widely adopted replacement policies is the so called least-
recently used (LRU), which (as its name suggest) replaces the least recently accessed 
block [34]. The least recently used (LRU) algorithm can only be implemented fully when 
the number of cache blocks is small (more about that in the following paragraphs). 
Another replacement policy, that in practice appears to have good performance is the 
random replacement policy (RR): candidate blocks are randomly selected, possibly 
using some hardware assistance, with no regard to previous memory references or 
previous evictions. The biggest advantage of random replacement policy in comparison 
to the LRU replacement policy is its significantly lower implementation cost while 
preserving a good miss rate (for a two-way set-associative cache, random replacement 
has a miss rate about 1.1 times higher than LRU replacement) [34].  
Due to the high cost of LRU and the lack of solid performance guarantees of random 
replacement, Pseudo-LRU was introduced. Pseudo-LRU (or PLRU) is a family of 
replacement algorithms which improves on the performance of the Least Recently Used 
(LRU) algorithm by selecting which block to evict based on approximate measures of 
age rather than maintaining the exact age of every cache block [34]. On the one hand, 
PLRU typically has a slightly worse miss ratio due to employing approximate measures 
of age, while on the other it has a slightly better latency, consumes slightly less power 
than LRU and imposes lower overheads compared to LRU. One of the many 
implementations of PLRU is Bit-PLRU, which stores one status bit for each cache line; 
these bits are called MRU-bits. Every access to a line sets its corresponding MRU-bit to 
1, indicating that the line was recently used. Whenever the last remaining 0 bit of a set's 
status bits is set to 1, all other bits are reset to 0. At cache misses, the line with lowest 
index whose MRU-bit is 0 is replaced. 
To better understand the aforementioned problem regarding the cost of the LRU, let’s 
assume we have an 8-way set-associative cache: A traditional LRU replacement 
algorithm would essentially be assigning each cache line an exact index in the order of 
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usage. One can also think of that as an "age". So, each of the 8 cache lines in each set 
would require an index of 3 bits (since we need to count 8 distinct ages) stating its 
location in the LRU order - this means 3 bits * 8 ways, per each set of the cache. In the 
general case of n ways, a standard implementation of the LRU replacement policy 
would need log2n bits per line, or n*log2n bits per set. On the contrary, a typical 
implementation of the Bit-Pseudo-LRU replacement policy would only require 8 bits for 
the entire set (1 bit per cache line of the set) in this particular case (or in general: #ways 
bits). All in all, the bigger the associativity of a cache, the more prohibitively expensive is 
the cost of implementing LRU replacement policy. 

2.4 Write Policy 

When a program stores data to the memory, the write policy defines how data 
consistency is maintained among different levels of the memory hierarchy. This is 
typically done by deciding when should the new or updated data be pushed to the lower 
memory levels, offering different performance options [34]. The two basic write policies 
are the following ones: 

a) Write-through: stores update the cache where the request hits and are also 
forwarded to the next memory level, ensuring that there is always an up-to-date 
copy of the data in the lower memory hierarchy. 

b) Write-back (also called write-behind): writes are not immediately mirrored to the 
lower levels of the memory hierarchy; the cache instead tracks which locations 
have been written over, marking them as dirty with the help of the appropriate 
dirty bit. The write to the backing store is delayed until the dirty cache blocks 
containing the updated data are about to be evicted from the cache by new 
cache lines. Based on the above, a read miss in a write-back cache may 
sometimes require not only a read access but also a write access: before reading 
the new block from memory, the cache has to write the evicted dirty block to 
main memory. 

In general, write-back schemes can improve performance when processors can 
generate writes as fast or faster than the writes can be handled by main memory; a 
write-back scheme is, however, more complex to implement than a write-through one 
[34]. 
One should also note that a cache can be write-through, but the writes may be held in 
an intermediate store data queue (also called write buffer), so that multiple stores can 
be processed together (which can improve bus utilization and thus the overall 
performance of a cache subsystem). However, if the rate at which the memory can 
complete writes is less than the rate at which the processor is generating writes, no 
amount of buffering can help, because writes are being generated faster than the 
memory system can accept them [34]. 
Furthermore, apart from the aforementioned write hit policies there are also two 
approaches for situations of write-misses [34]: 

a) Write allocate: the block corresponding to the missed-write memory address is 
copied to the cache and this is followed by a write-hit; thus, write misses are 
treated like read misses in this scheme. 

b) No-write allocate: the block corresponding to the missed-write memory address 
is not copied to cache, and data is forwarded directly to the lower memory level. 
In this approach, writes are not cached until a read operation has been 
performed to this particular cache block.  
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Both write-through and write-back policies can use either of these write-miss policies, 
but usually they are paired in the following way [34]: 

a) A write-back cache employs a write allocate miss policy, hoping for subsequent 
writes to the same location, which is now cached. This will eliminate extra 
memory accesses and results in very efficient execution in comparison to a write-
back cache with no-write allocate. 

b) A write-through cache uses no-write allocate. In this case, subsequent writes 
have no advantage, since they still need to be written directly to the backing 
store. 

2.5 Virtually and Physically Addressed Caches 

Caches can be categorized based on whether the (set) index or tag are derived from 
the physical or the virtual addresses: 

a) Physically indexed, physically tagged (PIPT) caches use the physical address to 
determine both the (set) index and the tag. While this is the simplest organization 
and avoids synonyms problem (where several virtual addresses map to the same 
physical addresses), it is also slow, as the virtual address has to be translated 
into a physical address (which could potentially involve a TLB miss and thus an 
access to main memory) before the cache lookup can take place (even for 
determining the appropriate set). However, this problem is considerably 
alleviated with good TLB hit rates as a successful TLB lookup can be completed 
very fast. A high-level representation of the virtual-to-physical translation that 
takes place before the cache lookup is presented in Figure II. This figure 
assumes 4KB pages, 64-bit virtual addresses and 39-bit physical addresses.  

b) Virtually indexed, virtually tagged (VIVT) caches use the virtual address to 
determine both the (set) index and the tag. On the one hand, this caching 
scheme can result in much faster lookups in comparison to a PIPT one, since the 
Memory Management Unit (MMU) does not need to be consulted first to 
determine the physical address for a given virtual address, while on the other 
VIVT suffers from aliasing problems, where several different virtual addresses 
may refer to the same physical address (i.e. in Unix, executable code is typically 
mapped into a region shared between all processes that execute the same 
program and most multiprocessing systems support the creation of shared 
memory where the same physical memory can be mapped to multiple 
processes). The result of the aforementioned problem is that such addresses 
would incorrectly be cached separately despite referring to the same physical 
memory, causing coherency problems. Another problem in this organizations is 
homonyms, where the same virtual address maps to several different physical 
addresses (which is a standard situation in modern multitasking systems with 
virtual memory). In order to make things even more difficult, it is not possible to 
distinguish these mappings just by looking at the virtual index itself. According to 
the literature, potential solutions for the homonyms problem are among others: 
flushing the entire cache after a context switch (which is pretty costly), forcing 
address spaces to be non-overlapping, tagging the virtual address with an 
address space ID (ASID), or employing physical tags. Additionally, there is a 
problem that virtual-to-physical mappings can gradually change, which would 
require flushing a portion (if not all) of the cache, as the virtual addresses would 
no longer be valid. All in all, there are hardware workarounds for some of these 
problems, but the most efficient solution is to simply use VIPT or PIPT caches. 
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c)   Virtually indexed, physically tagged (VIPT) are a natural evolution of VIVT 
caches. VIPT caches use the virtual address to determine the (set) index and the 
physical address to determine the tag. The main advantage over a PIPT scheme 
is lower latency, as the appropriate set can be resolved in parallel with the virtual 
to physical address translation, however the tag cannot be compared until the 
physical address is available. The advantage over VIVT is that since the tag has 
the physical address, the cache can detect homonyms. In general, this 
organization is a compromise between a PIPT and VIVT organization. 

d) Physically indexed, virtually tagged (PIVT) caches are often claimed in literature 
to be non-existing. However, the MIPS R6000 employs this organization and is 
the sole known implementation of a PIVT cache [38]. The R6000 is implemented 
in emitter-coupled logic, which is an extremely fast technology not suitable for 
large memories such as a TLB. The R6000 solves the issue by putting the TLB 
memory into a reserved part of the second-level cache having a tiny, high-speed 
TLB "slice" on chip. The cache is indexed by the physical address obtained from 
the TLB slice. However, since the TLB slice only translates those virtual address 
bits that are necessary to index the cache and does not use any tags, false 
cache hits may occur, which is solved by tagging with the virtual address [38]. 

ARMv7 and ARMv8 processors have PIPT data caches (or at least are required to 
behave as if they do). That is, they have physically indexed, physically tagged data 
caches, and no page coloring restrictions apply. However, one should note that PIPT 
caches could (in certain situations) still benefit from page coloring as it can improve 
cache line eviction behavior (more on this in the upcoming subsection). Moreover, 
they can employ VIPT instruction caches (i.e. Cortex-A8 and Cortex-A9 both have 
VIPT instruction caches) and even VIVT instruction caches are allowed to an extent. 
Lastly, they can also have PIPT instruction caches. 

A rather interesting case is the one of the ARM Cortex‑A73, where the L1 data 
cache is organized as a Virtually Indexed, Physically Tagged (VIPT) cache. 
However, the ARMv8 technical manual states that "In the L1 data memory 
subsystems, aliases are handled in hardware and from the programmer's point of 
view, the data cache behaves like an eight-way set associative PIPT cache (for 
32KB configurations) and a 16-way set associative PIPT cache (for 64KB 
configurations)." 
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Figure II: Virtual-to-Physical Address Translation 

2.6 Page Coloring 

Page coloring (or cache coloring) is a software technique that operates at the level of 
the operating system (OS) or virtual machine monitor by influencing the translation of 
virtual addresses to physical ones. The color of a physical page is defined as the bits in 
the intersection of the physical page number field and the cache (set) index field of the 
page address. Page coloring aims to provide a uniform distribution of page colors for 
the physical pages assigned to a set of virtual pages, which in turn ensures maximum 
utilization of all the available cache sets (or in other words 100% occupancy) [40].  
Assuming that in the physical address layout we find that the page number field 
overlaps the cache index field by 2 bits, giving 4 possible page colors. If the kernel does 
not implement a page coloring technique and unintentionally mapped virtual pages V0, 
V1, V2, …, VN to physical pages P0, P1, P2, …, P3, respectively, and those physical 
pages happened to be of the same page color, then cache lines underlying pages V0, 
V1, V2, …, VN would reside in just one quarter of the available cache sets, underutilizing 
parts of the cache and creating a “hot spot” in other sectors. Page coloring attempts to 
avoid such unfavorable assignments of physical pages to virtual addresses (i.e. a 
simple page coloring algorithm could achieve the aforementioned goal by enforcing that 
the page color of each virtual page belonging to a set of contiguous virtual pages should 
match the page color of the corresponding physical page). 
As one can easily understand after the example presented above, a virtual memory 
subsystem that lacks cache coloring is less deterministic in terms of cache 
performance, as differences in page allocation from one program run to another can 
lead to significant differences in terms of performance due to variation in conflict misses. 
Afek et al. in [40] identify the problem of inter-block cache index conflict misses arising 
from excessive regularity in addresses returned by memory allocators on a Linux/x64 
Nehalem system and show that the placement policies of malloc (and other related 
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allocators), by virtue of conflict miss rates, can have a significant impact on application 
performance. 
All in all, cache coloring does not alter the way the cache works at all; it is just an 
abstraction to describe a finer-grained control of how the virtual-to-physical memory 
mapping is set up in order to maximize the number of pages cached by the CPU and 
thus make virtual memory as deterministic as possible regarding cache performance. 
However, one should note that a page coloring algorithm adds a significant amount of 
complexity to the virtual memory allocation subsystem. 
While page coloring is employed in some operating systems such as Solaris and 
FreeBSD [39], the Linux community decided not to implement a page coloring algorithm 
in the Linux kernel. According to Linus Torvalds’ emails found in the UseNet archives 
“There have been at least four different major cache coloring trials for the kernel over 
the years. This discussion has been going on since the early nineties. And none of them 
have worked well in practice.” 
Moreover, Larry McVoy, CEO of BitMover (the company that developed BitKeeper, a 
versioning control system that was used from February 2002 to early 2005 to manage 
the source code of the Linux kernel), states in a mail that can be also found in the 
UseNet archives "Linus doesn't like it because it adds cost to the page free/page alloc 
paths, they now have to go put/get the page from the right bucket.  He also says it's 
pointless because the caches are becoming enough associative that there is no need 
and he's mostly right. Life can really suck on small cache systems that are direct 
mapped, as are some embedded systems, but that's life.  It's a tradeoff." 

2.7 Data Prefetching 

Data prefetching is a widely-adopted optimization technique, of the standard demand 
fetching cache algorithm, that aims to improve the cache performance by decreasing 
the number of compulsory misses (or cold start misses) of an executing program. The 
way to achieve the aforementioned goal is by fetching instructions and data from their 
original storage (in slower memory) to a faster cache memory before they are actually 
requested; hence the term prefetch [35]. The source for the prefetch operation is the 
backing store (main memory or lower memory levels in the cache hierarchy). 
There are two main types of cache prefetching [37]: 

a) Hardware based prefetching: Hardware based prefetching is typically 
accomplished by having a dedicated hardware mechanism in the processor that 
observes the stream of instructions or data being requested by the executing 
program, recognizes which instructions or data in nearby memory locations the 
program might access shortly after (spatial locality) and prefetches them into the 
processor's cache. 

b) Software based prefetching: Software based prefetching is solely accomplished 
with the help of the compiler; during the compilation phase of the program, the 
compiler performs some kind of (static) analysis of the code and accordingly 
inserts "prefetch" instructions wherever it deems fit. 

One of the most widely employed hardware based prefetching technique in use these 
days is stream buffers. This technique was originally proposed by Norman Jouppi in 
1990 [36]  and numerous variations and improvements of this method have been 
proposed since. The cornerstone of all these variations is that the cache miss address 
(and k subsequent memory addresses) are fetched into a separate buffer of depth k. 
This buffer is called a stream buffer and is a separate entity from the cache. If the 
address associated with the prefetched blocks matches the requested address 
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generated by the executing program, then the CPU consumes data or instructions from 
the stream buffer.  
Whenever the prefetch mechanism detects a miss on a memory block, say A, it 
allocates a stream to begin prefetching successive blocks from the missed block 
onward. If the stream buffer can hold up to four blocks, then we would prefetch A+1, 
A+2, A+3, A+4 and hold those in the allocated stream buffer. If the processor consumes 
A+1 next, then it shall be moved "up" from the stream buffer to the processor's cache. 
The first entry of the stream buffer would now be A+2 and so on. This pattern of 
prefetching successive blocks is called Sequential Prefetching and it is mainly employed 
when contiguous locations are to be prefetched. For example, it is used when 
prefetching instructions. 
This mechanism can be scaled up by adding multiple stream buffers; each of these 
buffers would maintain a separate prefetch stream. For each new miss, there would be 
a new stream buffer allocated and it would operate in a similar way as described above. 
The ideal depth of the stream buffer is something that is subject to experimentation 
against various benchmarks and depends on the rest of the microarchitecture involved. 
An example of such a mechanism is given in the ARMv8 Manual [32] for ARM Cortex-
A53. According to the manual, the L1 data cache implements an automatic prefetcher 
that monitors cache misses in the core (the L1 data cache is private for each core). 
When an access pattern is detected, the prefetcher starts linefills in the background. 
The prefetcher is able to recognize a sequence of data cache misses at a fixed stride 
pattern that lies in four cache lines, plus or minus. Moreover, any intervening stores or 
loads that hit in the data cache do not interfere with the recognition of the 
aforementioned cache miss pattern. Finally, the prefetcher supports, by default, two 
independent data prefetch streams (the maximum number of independent streams for 
Cortex-A53 is four). 
Having analyzed the most common hardware based prefetching, up next is compiler 
directed prefetching [37]. Compiler directed prefetching is widely used within loops with 
a large number of iterations that access contiguous memory elements. In this technique, 
the compiler predicts future access patterns and inserts a prefetch instruction based on 
the miss penalty and execution time of the instructions. These prefetches are non-
blocking memory operations, i.e. these memory accesses do not interfere with the 
actual memory accesses and they do not change the state of the processor or cause 
page faults (the latter is quite important). The main advantage of software prefetching is 
that it reduces the number of compulsory (or cold-start) cache misses. 
All in all, software prefetching works well only with loops where there is regular array 
access pattern as the programmer or the compiler has to manually insert the prefetch 
instructions. On the contrary, hardware prefetchers work dynamically based on the 
program's runtime behavior and are able to detect even more complex access patterns. 
Moreover, it is widely accepted that hardware prefetching imposes significantly less 
CPU overhead when compared to software prefetching [37]. 

2.8 Error Correction and Error Detection  

Error Detecting Code (EDC) is a code that enables the detection of an error in data, but 
not the precise location and, hence, correction of the error [34]. 
Error Correcting Code (ECC) is a code that is able not only to detect errors in data but 
also correct (some of) them. ECC memory can be found mostly in computers where 
data corruption is not tolerable due to the nature and the importance of the performed 
computations. 
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Typically, ECC memory maintains a memory system immune to single-bit errors: the 
data that is read from each word is guaranteed to be always the same as the data that 
had been written to it, even if one (and sometimes more) stored bits have been flipped 
to the wrong state.  
Most non-ECC memory cannot even detect errors. However, some non-ECC memory 
with parity protection allows error detection but not error correction; a parity bit is an 
extra bit added to a word (or a cache line depending on the implementation) in order to 
ensure that the total number of ones is even or odd. Generally speaking, parity bits are 
used as the simplest form of error detecting code.  
For instance, in the case of a single-bit memory error in the L1 data cache (which is 
parity protected), the entire cache line is invalidated and it is refetched from the L2 
cache or the external memory. However, if there is a two-bit memory error in the L1 
data cache, then the 1-bit parity scheme (like the one in the X-gene 2) will not detect the 
error. (Actually, a 1-bit parity scheme can detect any odd number of errors; however, 
the probability of having three errors is much lower than the probability of having two, 
so, in practice, a 1-bit parity code is limited to detecting a single bit of error.)  
The way a corrected error is displayed in an ARMv8 compliant CPU, like the one in the 
X-Gene 2, is the following: 
 

 
May 7 21:10:54 tigs-c0-021 kernel: {2}[Hardware Error]: Hardware error from APEI 
Generic Hardware Error Source: 8 
May 7 21:10:54 tigs-c0-021 kernel: {2}[Hardware Error]: It has been corrected by h/w 
and requires no further action 
May 7 21:10:54 tigs-c0-021 kernel: {2}[Hardware Error]: event severity: corrected 
May 7 21:10:54 tigs-c0-021 kernel: {2}[Hardware Error]: Error 0, type: corrected 
May 7 21:10:54 tigs-c0-021 kernel: {2}[Hardware Error]: section_type: general 
processor error 
May 7 21:10:54 tigs-c0-021 kernel: {2}[Hardware Error]: error_type: 0x01 
May 7 21:10:54 tigs-c0-021 kernel: {2}[Hardware Error]: cache error 
May 7 21:10:54 tigs-c0-021 kernel: {2}[Hardware Error]: level: 0 
May 7 21:10:54 tigs-c0-021 kernel: {2}[Hardware Error]: processor_id: 
0x0000000000000003 

 
The above messages are part of the output of the dmesg command. Dmesg (display 
message or driver message) is a command on most Unix-like operating systems that 
prints the message buffer of the kernel and the output of this command typically 
contains the messages produced by the device drivers. These messages inform the 
user that a hardware error occurred, it was a cache error with error_type 0x01 and level 
0 and it has been corrected and requires no further action. Based on the level attribute 
the user can infer that this error occurred in the L1 cache (however there is no way to 
tell if the error occurred in the L1 data cache or in the L1 instruction cache). 
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3. DIAGNOSTIC MICRO-VIRUSES OVERVIEW 

For the construction of the proposed micro-viruses we followed two different principles 
for the tests that target the caches and the pipeline respectively: 

1) Caches: For all levels of caches the goal of the developed micro-viruses is to flip 
all the bits of the structures with zeros and ones and to read the same hardware 
entries during the undervolting procedure in order to identify any corruptions of 
the written values compared to the golden values, which are not detected by the 
detection mechanisms of the microprocessor, such as the SECDED ECC. 

2) Pipeline: For the pipeline, we developed dedicated benchmarks that stress: (i) 
the Floating-Point Unit (FPU), (ii) the integer Arithmetic Logical Units (ALUs) and 
(iii) the entire pipeline using a combination of loads, stores, branches, arithmetic 
and floating-point unit operations. The goal is to trigger the critical paths that 
could possibly lead to an error during off-nominal voltage conditions. 

We developed all diagnostic micro-viruses by using a mix of C language and ARMv8 
assembly instructions, to achieve the best execution of the code in the actual hardware 
of the machine. We describe the major aspects of this challenging micro-viruses design 
process in the following sub-sections. Moreover, the source code for all the micro-
viruses can be found in ANNEX Ι. 

3.1 L1 Data Cache 

For the first level data cache of each core, we statically allocate an array in memory with 
the same size as the L1 data cache. As the L1 data cache is no-write allocate, before 
the first write of the desired pattern in all the words of the structure we had to read them 
first in order to bring all the blocks in the first level of data cache. Otherwise, the blocks 
would remain in the L2 cache and we would have only write misses in the L2 cache. 
Moreover, due to the pseudo-LRU policy that is used in the L1 data cache, we had to 
read all the words of the cache three consecutive times (before the test begins), in order 
to ensure that all the blocks with the desired patterns are allocated in the first level data 
cache. We experimentally observed that a safe number of iterations is log2(# of ways) to 
guarantee that the L1 data cache is filled only with the data of the diagnostic micro-
virus. With these steps, we are able to achieve 100% read hit in the L1 data cache 
during the execution of the L1D micro-virus in undervolting conditions. The way we 
measure the L1 data cache accesses and refills (along with other micro-architectural 
events) in order to calculate the above read hit rate is by leveraging the built-in 
performance counter2. 
Performance Monitor Unit (PMU) is a new feature in ARMv8-A architecture and it 
includes a 64-bit cycle counter along with a number of 32-bit event counters and control 
component. From a programmer's point of view, it is a handy tool for low-level 
performance monitoring, as one can easily access the processor status, like cycles, 
instructions executed, branch taken, cache refills and hits for different level of caches 
and many more from these PMU event counters. The PMU uses event ids to identify 
different events which can be categorized into architectural, microarchitectural and 
implementation specific. The actual events which are available is again implementation 
defined and thus one should refer the ARMv8 specification to get the complete list of 
events supported by the PMU. A complete list with an extensive description of the 

                                            
2 We developed a kernel module able to grant us access to the performance counters from user space. 
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architectural and microarchitectural events we monitored during the development of the 
diagnostic micro-viruses can be found in ANNEX ΙΙ. The main advantage of employing 
this technique for performance monitoring over the traditional perf tool lies in the ability 
to monitor a particular piece of code (or various pieces of code) and not necessarily the 
whole program. Moreover, because ARMv8 allows user space access of the PMU 
counters from EL0, we developed a kernel module that enables user-mode access to 
these counters. These PMU counters and their associated control registers are 
accessible in the AArch64 Execution state with MRS and MSR instructions (MRS copies 
the value of a system register into a general-purpose register and MSR copies the value 
of a general-purpose register into a system register). 
The L1 Data diagnostic micro-virus fills the L1 Data cache with three different patterns, 
each of which corresponds to a different virus test. These tests are the all-zeros (Figure 
III), the all-ones (Figure IV), and checkerboard (Figure V), as presented below. The 
checkerboard pattern differs from the all-zeros and all-ones patterns due to the fact that 
each cell’s four neighbors (top, bottom, left, right) have different value from the cell 
itself; thus, with this pattern we can detect bridging faults (bridging faults are a subclass 
of coupling faults where a transition in cell x causes unwanted change in a neighbor cell 
y). To enable the self-checking property of the micro-virus (correctness of execution is 
determined by the virus itself and not externally), at the end of the test we check if each 
fetched word is equal to the expected value (the one stored before the test begins). If 
not, then we have identified Silent Data Corruption (SDC) compared to the program’s 
output during nominal voltage conditions. 

 
Figure III: Cache lines’ 64 bits are zeros 
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Figure IV: Cache lines’ 64 bits are ones. 

 
Figure V: Cache lines with checkerboard pattern 

 

3.2 L1 Instruction Cache 

The concept behind the L1 Instruction Cache micro-virus is to flip all the bits of the 
instruction encoding in the cache line. In the ARMv8 ISA there is no single pair of 
instructions that can be utilized to invert all 32 bits of an instruction word in the cache, 
so to achieve this we had to employ multiple instructions. The instructions listed in Table 
III are able to flip all the bits in the instruction cache from 0 to 1 and vice versa 
according to the Instruction Encoding Section of the ARMv8 Manual [32]. For instance, 
the first two instructions are able to flip all the bits of the immediate field [10:21], all the 
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bits of the destination [0:4] and source [5:9] register, and the fourth most important bit 
which in this case dictates if the instruction is an addition or a subtraction. Having 
flipped the aforementioned bits, the goal is to flip the most significant bits of the 
encoding that are mostly control bits, like bits [22:23] which are the ones that define the 
type of shift in the so called add with shifted register; this instruction adds a register 
value and an optionally-shifted register value, and writes the result to the destination 
register. For an arithmetic right shift these two bits equal to 10, while for a logical shift 
right these two bits equal to 10. 
 

Table III: ARMv8 Instructions used in the L1 Instruction Diagnostic Micro-Virus. The rightmost 
column presents the encoding of each instruction in bit granularity to demonstrate that all the bits 

in the cache line get flipped. 

Instruction Encoding 

add x28, x28, #0x1 1001 0001 00 0000 0000 0001 11100 11100 

sub x3, x3, #0xffe 1101 0001 00 1111 1111 1110 00011 00011 

madd x28, x28, x27, x27 1001 1011 00 0110 1101 1011 11100 11100 

add x28, x28, x27, asr #2 1000 1011 10 0110 1100 0010 11100 11100 

add w28, w28, w27, lsr #2 0000 1011 01 0110 1100 0010 11100 11100 

nop 1101 0101 00 0000 1100 1000 00000 11111 

bics x28, x28, x27 1110 1010 00 1110 1100 0000 11100 11100 

 
Each cache line of the L1 instruction cache is able to hold 16 instructions because each 
instruction is 32-bit in ARMv8 and the L1 Instruction Cache Block Size is 64 bytes. The 
size of each way of the L1 Instruction Cache is 32KB / 8 = 4KB and thus is equal to the 
page size which is 4KB. As a result, there should be no conflict misses when accessing 
a code segment with size equal to the L1 Instruction cache (the same argument holds 
also for the L1 Data Cache). 
The method we perform the self-checking property in the L1 Instruction cache micro-
virus is the following: The L1 cache array holds 8192 instruction (64 sets x 8 ways x 8 
64-bit words in each cache line = 8192 instructions). We use 8177 instructions to hold 
the instructions of our diagnostic micro-virus, and the remaining 15 instructions (8177 + 
15 = 8192) to compose the control logic of the self-checking property and the loop 
control. More specifically, we execute iteratively 8177 instructions and at the end of this 
block of code we expect the destination registers to hold a specific “signature” (the 
signature is the same for each iteration of the same group of instructions, but different 
among different executed instructions). If this “signature” is distorted then the diagnostic 
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micro-virus detects that an error occurred (for instance a bit flip in an immediate 
instruction resulted in the addition of a different value or a bit flip in one of the source 
registers resulted in reading wrong value from the register file) and records the location 
of the faulty instruction as well as the expected and the faulty signature for further 
diagnosis. We iterate this code multiple times and after that we continue with the next 
block of code. 
As in L1 Data cache micro-virus, due to the pseudo-LRU policy that is used also in the 
L1 Instruction cache, we fetch all the instructions three consecutive times (log2(# of 
ways) = log28=3) before the test begins, in order to ensure that all the blocks with the 
desired instruction patterns are allocated in the first level instruction cache. With these 
steps, we achieve 100% read hit in the cache (and thus cache stressing) during the 
undervolting campaign. 

3.3 Unified L2 Cache 

The aim of the L2 diagnostic micro-virus is to stress all the bits of the L2 cache. To 
achieve this, we take into account the microarchitectural characteristics of X-Gene 2 for 
the L2 cache, while developing the code. As we have already discussed in Section 2, 
the L2 cache is a 32-way associative PIPT cache with 128 sets; thus, the bits of the 
physical address that determine the block placement in the L2 cache are bits [12:6] (as 
shown in Figure VI). Moreover, the page size we rely on is 4KB and consequently the 
page offset is consisted of the 12 less significant bits of the physical address. According 
to this, the most significant bit (bit 12) of the set index (see Figure VI) is not a part of the 
page offset. If this bit is equal to 1, then the block is placed in a set of the upper half of 
the cache, and in the same manner if this bit equals to 0, the block is placed in a set of 
the lower half of the cache. Bits [11:6] which are part of page/frame offset determine all 
the available sets for each individual half. 
In order to guarantee the maximum block coverage (meaning to completely fill the L2 
cache array), and thus to fully stress the cache array, the L2 diagnostic micro-virus 
should not depend on the MMU translations that may result in increased conflict misses. 
The way to achieve this (meaning maximum block coverage) is by allocating memory 
that is not only virtually contiguous (as with the standard C memory allocation functions 
used in user space), but also physically contiguous by using kmalloc() function. The 
kmalloc function’s operation is very similar to that of user-space's familiar memory 
allocation functions, with the main difference that the region of physical memory 
allocated by kmalloc() is physically contiguous. The fact that the memory is physically 
contiguous guarantees that in one half of the allocated physical pages, the most 
significant bits of their set index equals to one and in the other half equals to zero.3 
Given that the replacement policy of the L2 cache is also pseudo-LRU, the L2 
diagnostic virus needs to iteratively access five times the allocated data array (log2(# of 
ways) = log232=5), to ensure that all the ways of each set contain the correct pattern. 
Furthermore, due to the fact that the L1 data cache has write-through write policy and 
the L2 cache has write allocate write miss policy, the stored data will reside in the L2 
cache right after the initial writes (the are no write backs). We also perform a check at 
the beginning of the test to guarantee that the allocated array is cache aligned (to be 
block aligned afterwards).  

                                            
3 Our kernel was built with the commonly used page size of 4KB; if the page size was 64KB we could use standard C memory 
allocation functions in user space instead of kmalloc(), due to that the most significant bit of the set index would be a part of the 
page offset like the rest of the set index bits. 
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Another thing that we take into consideration is that the L2 diagnostic micro-virus should 
access the data only from the L2 cache during the test and not from the L1 data cache, 
to completely stress the former one. The solution to this problem is a stride accessing of 
the array with a block stride of one block (meaning 8 words each time). Therefore, in the 
first iteration it accesses the first word of each block, in the second iteration it accesses 
the second word of each block, and so on. Thus, it always misses the L1 Data cache. 
Note that the L1 instruction cache can completely hold all the L2 diagnostic micro-virus’ 
instructions, so the L2 cache holds only the data of our test. 
To verify the above, we isolated all the system processes by forcing them to run in 
different cores from the one that executes the L2 diagnostic micro-virus, by setting the 
system processes’ CPU affinity and interrupts to a different core, and we measured the 
L1 and L2 accesses and misses after we have already “trained” the pseudo-LRU with 
the initial accesses.  
In this particular diagnostic micro-virus, the performance counters show that the L2 
diagnostic micro-virus always misses the L1 Data cache and always hits the L1 
Instruction cache, and it hits the L2 cache in the vast majority of accesses. Specifically, 
the L2 cache has 4096 blocks and the maximum number of block misses we observed 
was 32 at most for each execution of the test. In such a way, we verify that the L2 
micro-virus completely fills and stresses the L2 cache. 
The L2 diagnostic micro-virus fills the L2 cache with three different patterns, each of 
which corresponds to a different virus test. These tests are the all-zeros (Figure III), the 
all-ones (Figure IV), and the checkerboard (Figure V). To enable the self-checking 
property into this micro-virus, at the end of the test we check if each fetched word is 
equal to the expected value (the one stored before the test begins). 
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Figure VI: A 256KB 32-way set associative L2 cache 

 
Finally, we measured the number of L2 misses, during the testing phase, in a user-
space variation of the L2 diagnostic micro-virus (we replaced the call to kmalloc with a 
call to malloc) in the X-Gene 2 for 4KB and 64KB physical pages for different executions 
of the micro-virus. The reason behind this particular experiment is to prove our theory 
about MMU translations affecting the block coverage in different executions of our 
program when we employ 4KB physical pages; this is not the case when we employ 
larger physical pages i.e. 64KB physical pages. As one can easily see, the number of 
L2 block refills presented in Table IV support our aforementioned theory; there is 
significantly large variation in the number of L2 cache block refills when employing 4KB 
physical pages due to the lack of a cache coloring algorithm in our kernel; this is not the 
case when employing 64KB physical pages. We should also note that we performed 
more than twenty executions for both page sizes (in order to have a statistically 
significant sample) and the results are similar to the ones presented in the table below. 
 

Table IV: L2 Cache Blocks Refills for 4KB and 64KB physical pages of a user-space variation of 
the L2 cache micro-virus during test phase. 
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Execution 4KB physical page 64KB physical page 

1 1400 29 

2 3789 32 

3 2983 26 

4 1143 31 

5 2092 28 

6 3252 19 

7 3476 25 

8 2255 19 

9 2289 25 

10 3435 27 

11 473 30 

12 1340 29 

13 4294 27 

14 3391 32 

15 4312 29 

16 3169 19 

17 2255 22 

18 2791 27 

19 2604 25 

20 1283 29 

 

3.4 Unified L3 Cache 

As in the L2 diagnostic micro-virus, the aim of the L3 diagnostic micro-virus is to stress 
and test all the bits of the L3 cache (shared among the eight cores). For the 
development of this test we take into consideration the microarchitectural characteristics 
for the L3 cache of the X-Gene 2. The L3 cache is a 32-way associative PIPT cache 
with 4096 sets and is organized in 32 banks; so, each bank has 128 sets and 32 ways. 
Moreover, the bits of the physical address that determine the block placement in the L3 
cache are the bits [12:6] (for choosing the set in a particular bank) and the bits [19:15] 
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for choosing the correct bank. Based on the above, in order to fill the L3 cache we 
allocate physically contiguous memory with kmalloc() (as we described in subsection 
3.3). 
However, kmalloc() has an upper limit of 128 KB in older kernels and 4MB in newer 
kernels (like the one we are using). This upper limit is a function of the page size and 
the number of buddy system freelists (MAX_ORDER). The workaround to this problem 
is to allocate two arrays with two calls to kmalloc() and each array’s size should be half 
the size of the L3 cache. The reason that this workaround will result in full block 
coverage in the L3 cache is that 4MB chunks of physically contiguous memory gives us 
contiguously the 22 less significant bits, while we need contiguously only the 20 less 
significant (for the set index and the bank index). 
Moreover, we should highlight that the L3 cache behaves as a non-inclusive victim 
cache. In response to an L2 cache miss from one of the PMDs, agents forward data 
directly to the L2 cache of the requestor, bypassing the L3 cache. Afterwards, if the 
corresponding fill replaces a line in the L2 cache, a write-back request is issued, and the 
evicted line is allocated into the L3 cache. On a request that hits the L3 cache, the L3 
cache forwards the data and invalidates its copy, freeing up space for future evictions. 
Since data may be forwarded directly from any L2 cache, without passing through the 
L3 cache, the behavior of the L3 cache increases the effective caching capacity in the 
system. 
Based on the above, and the fact that, like in the L2, the replacement policy is pseudo-
LRU it designed accordingly the write and read operations (five sequential writes to “fix” 
the ways, and the read operations are performed by stride of 1 block). The L3 
diagnostic micro-virus fills the L3 cache with three different patterns, each of which 
corresponds to a different virus test. These tests are the all-zeros (Figure III), the all-
ones (Figure IV), and the checkerboard (Figure V). To enable the self-checking property 
into this micro-virus, at the end of the test we check if each fetched word is equal to the 
expected value (the one stored before the test begins). 
However, in contrast to the L2 diagnostic micro-virus we do not have the necessary 
tools to prove our thesis (full coverage of the L3 cache) due to the fact that there are no 
built-in performance counters that correspond to the L3 accesses and misses; with the 
events that correspond to the L1 and L2 accesses, misses and write backs what we can 
prove is that all the requests are refills in the L1 and L2 cache. Finally, we should 
highlight that the shared nature of the L3 cache encouraged us to try to minimize the 
number of the running daemons in the system in order to reduce the noise in the L3 
cache from their access to it. 

3.5 ALU 

X-Gene 2 features a 4-issue out-of-order superscalar microarchitecture. It has one 
integer scheduler and two different integer pipelines, a Simple Integer Pipeline and a 
Simple and Complex Integer pipeline. The integer scheduler can issue two integer 
operations per cycle; each of the other schedulers can issue one operation per cycle 
(the integer scheduler can issue 2 simple integer operations per cycles; for instance, 2 
additions, or 1 simple and 1 complex integer operation; for instance, 1 multiplication and 
1 addition).  
The execution units are fully pipelined for all operations, including multiplications and 
multiply-add instructions. Simple ALU operations are single-cycle. The fetch stage can 
fetch up to 4 instructions from the 64-byte fetch buffer (that has the same size as a 
cache line) per cycle. The fetch buffer contains 16 instructions from the same cache line 
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and its contents are cache-block aligned. These 16 instructions (or cache block) are 
read from the instruction cache before being available for processing by the pipeline.  
After taking into account the aforementioned, we developed a self-testing micro-virus, 
which avoids data and control hazards and iterates 1000 times over a block of 16 
aligned instructions (that resides in the fetch buffer, and thus the L1 instruction and data 
cache are not involved in the stress testing process) and after completing 1000 
iterations, it checks the value of the registers involved in the calculations (by comparing 
them with the expected values). After re-initializing the values of the registers, we repeat 
the same test 35M times, which is approximately 30 seconds of total execution. 
Therefore, we execute code that resides in the instruction buffer for 1000 iterations of 
our loop and then we execute code that resides in 1 block of the cache after the end of 
these 1000 iterations. 
The cache block that is placed in the fetch buffer is consisted of 15 arithmetic and 
logical instructions (multiplication, addition, subtraction, bitwise logical and, bitwise 
exclusive or, bitwise inclusive or, bitwise exclusive or not and logical shift left) and one 
conditional branch in the end of it for controlling the number of the iterations. 
Because the instructions are issued and categorized in groups of 4 (X-Gene 2 issues 4 
instructions), and the integer scheduler can issue 2 of them per cycle we can’t achieve 
the theoretical optimal IPC of 4 instructions per cycle only with integer operations. 
Furthermore, we try to have in each group of 4 instructions, instructions that “stress” all 
the units of all the issue queues like the adder, the shifter and the multiplier. Specifically, 
the IPC of this test is 1.95, and it consists of 94% integer operations and 6% branches. 
The fact the IPC is close to 2 (which is the theoretical optimal for this particular micro-
virus because we only stress the ALU that is able to issue 2 instructions per cycles) 
suggests that the chosen combination of instructions and registers avoids data hazards 
and keeps the involved computation units stressed as much as possible throughout the 
execution of the micro-virus (one needs to take into consideration that complex integer 
instructions like multiply may need more operations in order to calculate their result in 
comparison to simple integer instructions like addition). 
Finally, we ensure that the first instruction of the execution block is cache aligned, so we 
ensure that a cache block is located to the instruction buffer each time. 

3.6 FPU 

To completely stress and diagnose the Floating-Point Unit (FPU), we perform a mix of 
diverse floating-point operations, by avoiding data hazards (as much as possible) 
among the instructions and using different inputs to test as many bits and combinations 
as possible. To implement the self-checking property of the micro-virus, we execute the 
floating-point operations twice, with the same input registers and different result 
registers. If the destination registers of these two similar operations have different result, 
our self-test notifies that an error occurred during the computations. For every iteration, 
the values of the registers (for all of the FPU operations) are increased by a non-fixed 
stride that is based on the calculations that take place. The values in the registers of 
each loop are distinct between them and between every loop. 
Moreover, due to the restriction imposed by the size of the instruction buffer, the choice 
of the involved floating point instructions is even more important. For this reason, we 
employ instructions like floating multiply add, floating division and floating square root 
that traditionally involve complex computations and units for the calculation of their 
result. Based more on intuition rather than solid proofs, errors in such floating-point 
computations are harder to be cascaded due to the nature of the involved instructions 
(the same error has to occur twice in the same iteration in two individual instructions in 
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order to be cascaded). One should also note that if the instruction buffer was able to 
hold even more cache lines, we would be able to perform the same floating operations 
thrice in order to decrease even further the chances of encountering cascading errors 
(that we would otherwise miss). 
Finally, we ensure that the first instruction of the execution block is cache aligned, so we 
ensure that a cache block is located to the instruction buffer each time. 

3.7 Pipeline 

Apart from the dedicated micro-viruses that stress only the ALU and the FPU of the X-
Gene 2, we have also constructed a diagnostic micro-virus to stress simultaneously all 
the issue queues of the pipeline. 
The idea is the following: between two consecutive “heavy” (high activity) floating-point 
instructions of the FPU test (like the consecutive multiply add, or the fsqrt which follows 
the fdiv) we add a small iteration over 24 array elements of an integer array and a 
floating-point array. To this end, during these iterations, the “costly” instructions such as 
multiply add have more than enough cycles to calculate their result, while at the same 
time we perform load, store, integer multiplication, exclusive or, subtractions and 
branches. All instructions and data of this micro-virus are located in L1 cache in order to 
fetch them at the same cycle to avoid high cache access latency. As a result, the 
“pipeline” micro-virus has a great variety of instructions which stress in parallel all 
integer and floating-point units. 
The pipeline micro-virus has a low IPC equal to 0.86. This virus consists of 65% integer 
operations and 23.1% floating point operations, while the rest are loads, stores and 
branches. All in all, this particular micro-virus has the greatest diversity in terms of 
executed instructions among all the ones we developed. 
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4. EXPERIMENTAL EVALUATION 

For the evaluation of the micro-viruses, we used three different chips: TTT, TFF, and 
TSS from the AppliedMicro’s (APM) X-Gene 2 micro-server family. The TTT part is the 
nominal graded part. The TFF is the fast corner part, which has high leakage but at the 
same time can operate at higher frequency. The TSS part is also corner part which has 
low leakage and works at lower frequency. All chips can operate with maximum 
frequency at 2.4GHz. Using the I2C controller we decrease the voltage of the domains 
of the PMDs and the SoC with a step of 5mV, until the highest voltage point (safe Vmin) 
before the occurrence of any error (corrected and uncorrected – reported by the 
hardware ECC mechanisms), SDC (Silent Data Corruption – output mismatch) or 
Crash. We repeat the experiments 10 times and we select the highest Vmin of this set of 
experiments.  
We experimentally obtained also the safe Vmin values of the 10 SPEC CPU2006 
benchmarks (bwaves, dealII, leslie3d, milc, soplex, cactusADM, gromacs, mcf, namd, 
zeusmp) on the three X-Gene 2 chips (TTT, TFF, TSS), running the entire time-
consuming undervolting experiment 10 times for each benchmark. These experiments 
were performed during a period of 6 months on a single X-Gene 2 machine. We also 
ran our diagnostic micro-viruses, with the same setup for the 3 different chips, as for the 
SPEC CPU2006 benchmarks. This part of our study focuses on: 

1.   the quantitative analysis of the safe Vmin for three significantly different chips of 
the same architecture in order to expose the potential guardbands of each chip, 

2.   the measurement of the core-to-core and chip-to-chip variability, and 
3.   the demonstration of the voltage value provided by our diagnostic micro-viruses 

that stress the individual components, and finally reveal virtually the same 
voltage guardbands compared to benchmarks. 
 

The voltage guardband for each program (benchmark or diagnostic micro-virus) is 
defined as the safe operation zone between the nominal voltage of the microprocessor 
and its safe Vmin (where no errors or other abnormal behavior occur). 
 

4.1 Benchmarks vs Diagnostic Micro-Viruses 

As we discussed earlier, to expose these voltage margins and variations among cores 
in the same chip and among the three different chips by using the 10 SPEC CPU2006 
benchmarks, we spent 6 months of characterization. On the contrary, the same 
experimentation by using the diagnostic micro-viruses took only 4 days to expose the 
corresponding safe Vmin for each core. In Figure VII, Figure VIII, and Figure IX we 
present that the benchmarks and diagnostic micro-viruses have similar safe Vmin using 
the three chips of our study (the difference between them is at most 2%).  
We also observed divergences of the Vmin values as shown in Figure VII, Figure VIII, 
and Figure IX. For a significant number of programs (benchmarks and diagnostic 
viruses), we can see variations among different cores and different chips. Figure VII, 
Figure VIII, and Figure IX represent the maximum safe Vmin for each core and chip 
among all the benchmarks (blue line) and all diagnostic micro-viruses (orange line). 
Considering that the nominal voltage in PMD voltage domain (where these experiments 
are executed) for the X-Gene 2 is 980mV, we can observe that the Vmin values of the 
diagnostic micro-viruses are very close to the corresponding safe Vmin provided by 
benchmarks. 
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We also notice in Figure VII, Figure VIII, and Figure IX that the core-to-core and chip-to-
chip variation remains the same across the SPEC benchmarks and the proposed 
diagnostic micro-viruses; however, there is a relative variation among the three chips. 
Both SPEC CPU2006 benchmarks and diagnostic micro-viruses provide the same 
observations for core-to-core and chip-to-chip variation. For instance, in TTT and TFF 
chip, cores 4 and 5 are the most robust cores, and in TSS chip, core 3 is the most 
sensitive. This property holds in all programs but can be revealed by the micro-viruses 
in several orders of magnitude shorter characterization time. 
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Figure VII: Maximum Vmin among 10 SPEC CPU2006 benchmarks and the proposed Diagnostic 
Micro-Viruses for TTT (nominal) chip 
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Figure VIII: Maximum Vmin among 10 SPEC CPU2006 benchmarks and the proposed Diagnostic 
Micro-Viruses for TFF (corner part) chip 
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Figure IX: Maximum Vmin among 10 SPEC CPU2006 benchmarks and the proposed Diagnostic 
Micro-Viruses for TSS (corner part) chip 
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Figure X: Maximum Vmin among 10 SPEC CPU2006 benchmarks and the proposed L3 Diagnostic 
Micro-Viruses for all chips. Undervolting experiments occurred in SoC domain where the L3 cache 

takes place 

 

In Figure X we present the undervolting campaign in the SoC voltage domain (which is 
the focus of the L3 cache micro-virus). As we described in Section 2, in X-Gene 2 there 
are 2 different voltage domains: the PMD and the SoC domain. The SoC voltage 
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domain includes the L3 cache. Therefore, Figure X presents the comparison of the L3 
diagnostic micro-virus with the 10 SPEC CPU 2006 benchmarks that were executed by 
reducing the voltage only in the SoC voltage domain. Note that the nominal voltage for 
the SoC domain is 950mV. In Figure X also, we can notice that there are again very 
small differences between SPEC and L3 micro-virus reported Vmin. 
 

 
Figure XI: Detailed Maximum Vmin among 10 SPEC CPU2006 benchmarks and the proposed 

Diagnostic Cache Micro-Viruses for TFF (corner part) chip 

 
Figure XII: Detailed Maximum Vmin among 10 SPEC CPU2006 benchmarks and all the proposed 

Diagnostic Micro-Viruses for TFF (corner part) chip 
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Figure XIII: Maximum Vmin for the proposed L1 Instruction Cache Micro-Virus for TFF (corner 

part) chip and two different CPU frequencies 

 
Figure XI represents the maximum safe Vmin for each core for the TFF (corner part) chip 
among all the benchmarks (deep blue line) and all the diagnostic cache micro-viruses 
(rest of the lines). The most interesting observation is that the highest Vmin for each core 
among the diagnostic cache micro-viruses is obtained by the L1 instruction cache 
micro-virus (apart from core 1 in which case it is obtained by the L1 data cache micro-
virus). Moreover, the L3 cache micro-virus has among all cores the lowest Vmin which 
can be attributed to the really low IPC of the micro-virus (during the testing phase all the 
accesses miss the L1 and L2 data cache and hit the L3 cache which has significantly 
higher access time). Finally, one can attribute the higher Vmin of the L1 instruction cache 
micro-virus to the fact this particular micro-virus performs a lot of ALU operations apart 
from stressing this particular cache. 
Figure XII represents the maximum safe Vmin for each core for the TFF (corner part) 
chip among all the benchmarks (deep blue line) and all the diagnostic micro-viruses 
(including the ALU and FPU micro-viruses). The most interesting observation is that the 
ALU micro-virus has constantly higher Vmin across all the cores in comparison to the L2 
and L3 micro-viruses (as we have already mentioned before this can be explained by 
the lower IPC of the micro-viruses for lower level of memories, while at the same time 
the ALU micro-virus has an IPC that is close to two). Furthermore, a really instresting 
observation is the high deviance of the FPU micro-virus across diferent cores (in 
comparison to the other micro-viruses). 
Figure XIII represents the maximum safe Vmin for each core for the TFF (corner part) 
chip for the L1 instruction cache micro-virus for two different CPU frequencies (2.4GHz 
and 1.2GHz). Based on the blue line (that corresponds to 2.4GHz frequency), cores 4 
and 5 of PMD 2 are the most robust ones, as we have already mentioned before, (they 
have the lower maximum safe Vmin) and core 3 of PMD 1 is the most sensitive one (it 
has the highest maximum safe Vmin). 
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Figure XIV: Guardband for all chips and all cores based on SPEC CPU 2006 benchmarks 

 

 
Figure XV: Guardband for all chips and all cores based on the proposed micro-viruses 

Figure XIV and Figure XV represent the voltage guardbands for all chips and all cores 
based on the SPEC benchmarks and the proposed micro-viruses respectively. As we 
have already mentioned, the voltage guardband is defined as the safest voltage margin 
between the nominal voltage of the microprocessor and its safe Vmin (where no errors or 
other abnormal behavior occur). 

4.2 Observations  

We present a detailed study of the safe Vmin for all benchmarks and cores of the three 
chips in comparison to the safe Vmin of the diagnostic micro-viruses. By using the 
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proposed diagnostic micro-viruses, we can detect accurately (divergences have short 
range, at most 2%) the safe voltage margins for each chip and core, instead of running 
time-consuming benchmarks. For the specific ARMv8 design, we find and discuss the 
core-to-core and chip-to-chip variation, which are important to reduce the power 
consumption of the microprocessor. 
Core-to-Core Variation: There are significant divergences among the cores due to 
process variation. Process variations can affect transistor dimensions (length, width, 
oxide thickness etc.) which have direct impact on the threshold voltage of a MOS 
device, and thus, on the guardband of each core. We demonstrate that with the 
proposed diagnostic micro-viruses we can reveal virtually the same guardbands and 
expose the variations among the cores of the same chip as by using time-consuming 
benchmarks. 
Chip-to-Chip Variation: As Figure VII, Figure VIII, and Figure IX present, PMD 2 (cores 
4 and 5) is the most robust PMD for all three chips (up to 3.6% compared to the most 
sensitive cores). We can notice that (on average among all cores of the same chip) the 
TFF chip has lower Vmin points than the TTT chip, in contrast to TSS (the chip with lower 
leakage), which has higher Vmin points than the other two chips, and thus, can deliver 
smaller power savings. 
Error Reporting: By using the diagnostic micro-viruses we can also determine if and 
where an error or a silent data corruption (SDC) occurred. Through this component-
focused stress process we have observed the following: 

1. SDCs occur when the pipeline gets stressed (ALU and FPU tests), and 
2. the cache bit-cells operate safely at higher voltages (the caches tests crash in 

lower voltages than the ALU and FPU tests). 
Both observations lead us to conclude that there are more timing errors in X-Gene 2, 
which occur in higher voltages that any bit-cell error in the cache arrays. Note that in our 
experimental analysis we present the safe Vmin, which is the safe voltage level where a 
program operates all times without any abnormal behavior (error detected or corrected 
by ECC or SDCs). 
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5. MICRO-VIRUS DEVELOPMENT & VALIDATION ON RASPBERRY PI  

In this section, we present an additional aspect of the initial development of the 
proposed L1 data cache micro-virus, the L1 instruction cache micro-virus and the L2 
cache micro-virus for the Raspberry Pi 3 Model B.  
The Raspberry Pi 3 Model B consists of four 64-bit ARMv8-compliant cores. The basic 
microarchitectural details of the pipeline of each core are summarized in Table V. 
 

Table V: Basic Characteristics of Raspberry Pi 3 Model B. 

Parameter Configuration 

CPU 4 Cores, 1.2GHz 

ISA ARMv8 (AArch64, AArch32) 

Pipeline 64-bit In-Order 

Issue Queue 2-way superscalar 

ALU 
1 single & 1 simple/complex integer 

arithmetic instructions 

FPU 1x64-bit 

Page Size 4KB 

 
Raspberry Pi 3 Model B is the first 64-bit version of the popular barebones computer, 
yet despite its processor upgrade (in comparison to the ARMv7 compliant CPU of its 
predecessor), there is not an official 64-bit OS available for it (the Raspberry Pi 
foundation does not yet provide a 64-bit version of Raspbian, the official OS for 
Raspberry Pi). That is because the Raspberry Pi Foundation has instead focused on 
making its Raspbian OS run on all generations of Pi. 
After encountering compatibility problems with OpenSUSE (one of the unofficial 64-bit 
kernels that were available at the moment) we decided to build a 64-bit kernel for the 
Raspberry Pi 3 Model B based on the instructions found in an online developer blog 
[33]. The Raspberry Pi foundation maintains their own fork of the Linux Kernel which is 
especially tailored for their devices, while upstream gets merged regularly. There are 
two main methods for building a 64-bit kernel; we can build the kernel locally on a 
Raspberry Pi, which will take a long time or we can cross-compile the kernel, which is 
much quicker, but requires more setup.  
However, for this particular case we cannot use the local building method as it would 
require a 64-bit Raspberry Pi, which we obviously do not have yet. So, we were forced 
to cross-compile it; Ubuntu is the recommended OS for this. 
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After installing a few build tools and the aarch64 cross-compiler, one can download the 
Linux Kernel sources and then build the kernel with the following commands: 

 
> make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- bcmrpi3_defconfig 
> make -j 4 ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- 

 
The basic features of all the caches of the Raspberry Pi 3 Model B are summarized in 
Table VI. All the characteristics of the Raspberry Pi 3 Model B microprocessor 
architecture are very important for the construction of the diagnostic micro-viruses we 
present in the following section. 

Table VI: Raspberry Pi 3 Model B Caches Characteristics. 

                                            
4 Virtually Indexed, Physically Tagged 

 L1 Instr L1 Data L2 L3 

Size 16 KB 16 KB 512 KB - 

# of Ways 2 4 16 - 

Block Size 64 B 64 B 64 B - 

# of Blocks 256 256 8192 - 

# of Sets 128 64 512 - 

Write Policy - Write-Back Write-Back - 

Write Miss 
Policy 

No-write 

allocate 

Write 

allocate 

Write  

allocate 
- 

Organization VIPT4 PIPT PIPT - 

Prefetcher YES YES YES - 

Scope Per Core Per Core Shared - 

Protection 
Parity 

Protected 

ECC 

Protected 

ECC 

Protected 
- 
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5.1 L1 Data Cache 

For the first level data cache of each core, we defined statically an array in memory with 
the same size as the L1 data cache (same approach as the respective X-Gene 2 micro-
virus). Based on Table II and Table VI, the size of the L1 data cache of the Raspberry Pi 
3 Model B is half the size of the L1 data cache of the X-Gene 2.  
Moreover, as the L1 data cache is write allocate, before the first write of the desired 
pattern in all the words of the structure we did not have to read them first in order to 
bring all the blocks in the first level of data cache (this was not the case for the X-Gene 
2 L1 data cache micro-virus due to the fact that the L1 data cache employed a no-write 
allocate write miss policy).  
If our main goal was to develop portable micro-viruses that are able to run in different 
ARMv8-compliant CPUs with the minimum amount of changes, then for the L1 data 
cache micro-virus we should always read all the words of the structure in order to bring 
all the blocks in the first level of data cache, before performing any write operation. 
Finally, due to the pseudo-LRU policy that is also employed in the L1 data cache of the 
Raspberry Pi 3 Model B, we had to read all the words of the cache two consecutive 
times (before the test begins), in order to ensure that all the blocks with the desired 
patterns are allocated in the first level data cache. As we have already mentioned 
before, we experimentally observed that a safe number of iterations is log2(# of ways) to 
guarantee that the L1 data cache is filled only with the data of the diagnostic micro-
virus. With these steps, we achieve 100% read hit in the cache during the execution of 
the L1D micro-virus in undervolting conditions. 

5.2 L1 Instruction Cache 

The concept behind the Raspberry Pi 3 Model B L1 Instruction Cache micro-virus is 
exactly the same as the one in X-Gene 2, because both of the machines feature 
ARMv8-compliant CPUs. The only difference in this particular micro-virus lies in the fact 
that the size of the L1 instruction cache of the Raspberry Pi 3 Model B is the half the 
size of the L1 instruction cache of the X-Gene 2. As a result, we were able to fill the 
cache with 4096 instructions in comparison to the 8192 needed in the case of X-Gene 
(we also had to adapt the signatures that we are using for self-checking). 

5.3 Unified L2 Cache 

Once again, the aim of the L2 diagnostic micro-virus is to stress all the bits of the L2 
cache. To achieve this, we take into account the microarchitectural characteristics of 
Raspberry Pi 3 Model B for the L2 cache, while developing the code. Based on Table VI 
the L2 cache is a 16-way associative PIPT cache with 512 sets; thus, the bits of the 
physical address that determine the block placement in the L2 cache are bits [14:6]. 
Moreover, the page size we rely on is 4KB and consequently the page offset is 
consisted of the 12 less significant bits of the physical address. According to this, the 
three most significant bits [14:12] of the set index are not a part of the page offset. 
In order to guarantee the maximum block coverage (meaning to completely fill the L2 
cache array), and thus to fully stress the cache array, the L2 diagnostic micro-virus 
should not depend on the MMU translations that may result in increased conflict misses. 
In the same fashion, as in the X-Gene 2, the way to achieve this is by allocating 
memory that is not only virtually contiguous (as with the standard C memory allocation 
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functions used in user space), but also physically contiguous by using kmalloc() 
function. 
Furthermore, due to the fact that the L1 data cache has write-back policy and the L2 
cache has write allocate on miss policy, all the stored data will not reside in the L2 
cache right after the initial writes; we need to perform a read traversal after the writes in 
our structure in order to force write-backs for all the dirty blocks of the L1 data cache 
(after the writes the L1 data cache is filled with 256 dirty blocks that have not been 
written back to the L2 cache). 
Finally, we have to take into consideration that the L2 diagnostic micro-virus should 
access the data only from the L2 cache during the test and not from the L1 data cache, 
to completely stress the former one. The solution to this problem in the respective X-
Gene 2 micro-virus was a stride accessing of the array with a block stride of one block 
(meaning 8 words each time). Therefore, in the first iteration we were accessing the first 
word of each block, in the second iteration the second word of each block, and so on. 
Thus, it always missed the L1 Data cache.  
However, this is not the case for the Raspberry Pi 3 Model B L2 micro-virus; according 
to the Cortex-A53 manual, the L1 data cache implements an automatic prefetcher that 
monitors cache misses in the core. When a pattern is detected, the automatic prefetcher 
starts linefills in the background. The prefetcher recognizes a sequence of data cache 
misses at a fixed stride pattern that lies in four cache lines, plus or minus. 
Table VII presents the number of L1 Data Accesses and L1 Data Refills for both 
systems, for the L2 cache micro-virus with a stride accessing of the array with a block 
stride of one block during the self-checking phase. As one can see, the X-Gene 2 L2 
micro-virus always misses the L1 data cache during the test phase (as we have already 
mentioned in Section 3.3), however this is not the case for the Raspberry Pi 3 Model B 
L2 micro-virus (if we port the micro-virus without any changes apart from changing the 
size of the allocated array).  
 

Table VII: L1 Data Accesses and Refills for X-Gene 2 and Raspberry Pi 3 Model B L2 micro-virus 
with a stride accessing of the array with a block stride of one block. 

 
 
 
 
 
 
 
 
 

 
In order to deal with this problem, we performed a change in the stride accessing of the 
array; we increased the block stride in order to bypass the L1 data hardware prefetcher. 
Instead of accessing the first word of the second block in the second iteration, we 
access the first word of the eighth block. Then, instead of accessing the first word of the 

 X-Gene 2 
Raspberry Pi 3 

Model B 

L1 Data Accesses 32801 64985 

L1 Data Refills 32776 2450 



Micro-Viruses for Fast and Accurate Characterization of Voltage Margins and Variations in Multicore CPUs 

I. Vastakis   50 

third block in the third iteration, we access the first word of the sixteenth block, and so 
on. All in all, we increased the block stride by performing a rounding to the next power 
of 2 for the prefetcher stride (the L2 cache is 32 times larger than the L1 data cache so 
theoretically we could have picked even a 32-block stride). 
In order to shed more light on the aforementioned striding access of the array, Table 
VIII presents the blocks accessed during the stride accessing of the array for block 
stride of one block and block stride of eight blocks (for simplicity reasons we assume 
that our array is consisted of sixty-four blocks in total and we only show the first sixteen 
of the sixty-four total iterations that are needed to access the first word of each block of 
the array). 
 

Table VIII: Block Accessed for block stride of one block and eight blocks 

Iteration Block Accessed 
Block Stride = 1 block 

Block Accessed  
Block Stride = 8 blocks 

1 0 0 

2 1 8 

3 2 16 

4 3 24 

5 4 32 

6 5 40 

7 6 48 

8 7 56 

9 8 1 

10 9 9 

11 10 17 

12 11 25 

13 12 33 

14 13 41 

15 14 49 

16 16 57 

 
 
 



Micro-Viruses for Fast and Accurate Characterization of Voltage Margins and Variations in Multicore CPUs 

I. Vastakis   51 

 
Bellow we cite a generic skeleton of code that implements the stride accessing of an 
array. The two parameters for this code is WORDS_PER_BLOCKS (when block size 
equals sixty-four bytes WORDS_PER_BLOCKS equals eight) and BLOCK_STRIDE 
(when a prefetcher recognizes a sequence of data cache misses at a fixed stride 
pattern that lies in four cache lines, plus or minus, BLOCK_STRIDE equals eight). 

 
1.       i = 0; 
2. stride: 
3.       size = 0; 
4. prev: 
5.       if (arr[(size+i)%(size_init+1)+WORDS_PER_BLOCK*((size+i)/(size_init+1))]!= 0x0)return -1; 
6.       size += BLOCK_STRIDE * WORDS_PER_BLOCK; 
7.       if (size==BLOCK_STRIDE*(size_init+1)) goto read; 
8.       goto prev; 
9. read: 
10.       i++; 
11.       if(i == WORDS_PER_BLOCK) goto end; 
12.       goto stride; 

 
 
Table IX presents the number of L1 Data Accesses and L1 Data Refills of the 
Raspberry Pi 3 Model B L2 cache micro-virus with a stride accessing of the array with a 
block stride of eight blocks during the test phase. As one can see, the updated version 
of the micro-virus always misses the L1 data cache during the self-checking phase 

 

Table IX: L1 Data Accesses and Refills L2 micro-virus of Raspberry Pi 3 Model B with a stride 
accessing of the array with a block stride of eight blocks. 

 
 Raspberry Pi 3 Model B 

L1 Data Accesses 64985 

L1 Data Refills 64984 
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6. RELATED WORK 

The studies that aim on energy efficiency using real hardware chips are very limited [9] 
[10] [11] [12] [13]. Whatmough et al. [14] [15] used an on-chip voltage monitoring circuit 
to characterize supply voltage droops in a dual-core ARM Cortex-A57 cluster operating 
at 1.2 GHz.  
There are many recent approaches that focus on energy efficiency by studying the 
voltage noise limits of the chips. For example, Ketkar et al. in [16], and Kim et al. in [17] 
[18] propose methods to maximize voltage droops in single core and multicore chips. 
Furthermore, Gupta et al. in [19] and Reddi et al. in [2] focus on the prediction of critical 
parts of benchmarks where significant voltage noise effects are very likely to occur. 
Several studies either in the hardware or in the software level were presented to 
mitigate the effects of voltage noise [20] [21] [22] [23] [24] or to recover from them after 
their occurrence [25]. Moreover, many studies propose methods to design dedicated 
energy efficient cores, like Gopireddy et al. in [26].  
Some other studies are mainly concentrated on the caches. For instance, Wilkerson et 
al. [27], Chishti et al. [28] and Duwe et al. [29] propose several microarchitectural 
approaches to ensure the correct operation of caches in ultra-low voltage conditions. 
Finally, Bacha et al. [11] [12] focus on the observation of the errors manifested on 
caches of a commercial Intel Itanium processor during the execution of benchmarks 
with off-nominal voltage value. None of all the aforementioned studies is focused on the 
development of diagnostic micro-viruses for fast characterization of voltage margins and 
variations in real commercial multicore CPUs, which is the scope of our study.  
Finally, several software based techniques were used to validate caches, ALU and FPU 
units from manufacturing defects [30] [31], but none of these methods was used to 
boost energy efficiency by identifying the chip’s safe voltage margins. 
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7. CONCLUSION AND FUTURE WORK 

In this thesis, we proposed fast targeted programs (diagnostic micro-viruses) that aim to 
stress individually the fundamental hardware components (they are known to determine 
the limits of voltage reduction – Vmin values) of a multicore CPU architecture. We 
described the development of the diagnostic micro-viruses which target the three 
different cache memory levels and the main processing components, the integer and 
the floating-point arithmetic units. The combined execution of the micro-viruses takes 
very short time and thus the CPU cores can be extensively stressed to reveal their 
voltage limits when they operate below the nominal levels. 
We demonstrated the effectiveness of the synthetic micro-viruses based program by 
comparing the Vmin values it reports to the corresponding Vmin values that an 
excessively long characterization campaign with SPEC CPU2006 benchmarks reports. 
The micro-viruses based characterization flow requires orders of magnitude shorter time 
while it delivers very close (in most cases identical): (a) Vmin values for the different CPU 
chips. (b) Vmin values for the different cores within a chip, (c) core-to-core and chip-to-
chip voltage margins variability.  
We evaluated the proposed diagnostic micro-viruses based characterization flow (and 
compare it to the SPEC-based flow) on three different chips (a nominal grade and two 
corner parts) of AppliedMicro’s X-Gene 2 micro-server family (8-core, ARMv8-based 
CPUs manufactured in 28nm); the reported results validate the speed and accuracy of 
the proposed method. Our characterization revealed large voltage margins that can be 
translated into significant power savings and also large Vmin variation among the 8 cores 
of the chip, among 3 different chips (a nominal rated and two sigma chips). 
As for future work, it is essential to study how the proposed diagnostic micro-viruses 
can contribute to increase the safe voltage margins (by entering to the zone with 
corrected and/or uncorrected ECC errors reported by the hardware). The reason is that 
the proposed micro-viruses are developed in such a way (due to their self-checking 
property) to expose in which memory address the error occurred. They can also report, 
when an SDC occurred, the correct and the faulty returned value. In such a way, we can 
further diagnose in finer-granularity the sources of weak paths and components of the 
microprocessor. Therefore, having these information, software or hardware techniques 
can be proposed to overcome these errors, and thus, to achieve better power efficiency. 
Moreover, employing even more test patterns for the data caches, apart from the 
aforementioned ones, could possibly lead to the discovery of errors that we weren’t able 
to detect with the ones we used. 
Finally, a code generator could be implemented in order to automatically generate the 
diagnostic micro-viruses for other ARMv8-compliant CPUs according to their caches’ 
characteristics; the generator could possibly try to discover these characteristics in 
order to generate the diagnostic micro-viruses. Among other things the generator could 
take decisions such as the following ones: 

1) Based on the way size and the page size of the system, the generator could 
decide if a cache diagnostic micro-virus should be implemented in user space 
(with a call to malloc) or in kernel space (with one or multiple calls to kmalloc 
depending on the cache size, the page size and the number of buddy system 
freelists). 

2) Based on the prefetcher stride and the block size, the generator could determine 
the correct stride traversal that is required in order to bypass higher level caches 
during the test phase. 
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3) Based on the replacement policy the generator could decide the number of 
traversals required before the self-checking phase (as we have already 
discussed in Section 3 a Pseudo-LRU replacement policy obliges us to traverse 
the array more than once in order to ensure that the block accesses hit the 
desired data cache). 
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ABBREVIATIONS - ACRONYMS 

PIPT  Physically Indexed Physically Tagged 

VIVT  Virtually Indexed Virtually Tagged 

VIPT Virtually Indexed Physically Tagged 

PIVT Physically Indexed Virtually Tagged 

TLB Translation Lookaside Buffer 

MMU Memory Management Unit 

ECC Error Correction Code 

ISA Instruction Set Architecture 

ALU Arithmetic Logic Unit 

FPU Floating Point Unit 

PMD Processor Module 

MCU Memory Control Unit 

MCB Memory Controller Bridge 
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ANNEX Ι 

The code of the developed micro-viruses can be found in this annex. Every source file 
should be compiled without any optimization flag (by default gcc’s optimization level is 
set to zero). 
 

 
L1 Data Cache Zero-One Pattern 

 
 

1. #include <stdio.h> 
2. #include <stdint.h> 
3. #include <stdlib.h> 
4. #include <fcntl.h> 
5. #include <unistd.h> 
6.   
7. #define size_init       4095 
8.   
9. register uint32_t  size     asm ("r28"); 
10. register uint64_t  k        asm ("r27"); 
11. register uint64_t *arr      asm ("r26"); 
12. register uint32_t  j        asm ("r25"); 
13.   
14. uint64_t  __attribute__((section (".myArrSection"))) array[size_init+1] __attribute__ ((aligned (64))); 
15.   
16. int main(void) { 
17.   
18.     arr = array; 
19.     j = 0; 
20.   
21. begin: 
22.     size = size_init; 
23. prev: 
24.     k = arr[size]; 
25.     arr[size] = (uint64_t)0x0; 
26.     if (!--size) goto read; 
27.     goto prev; 
28. read: 
29.     k = arr[size]; 
30.     arr[size] = (uint64_t)0x0; 
31.   
32. prev1: 
33.     k = arr[size]; 
34.     arr[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
35.     if (++size==size_init) goto read1; 
36.     goto prev1; 
37. read1: 
38.     k = arr[size]; 
39.     arr[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
40.   
41. prev2: 
42.     k = arr[size]; 
43.     if(j==0){ 
44.         arr[size] = (uint64_t)0x0; 
45.     } 
46.     else{ 
47.         arr[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
48.     } 
49.     if (!--size) goto read2; 
50.     goto prev2; 
51. read2: 
52.     k = arr[size]; 
53.     if(j==0){ 
54.         arr[size] = (uint64_t)0x0; 
55.     } 
56.     else{ 
57.         arr[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
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58.     } 
59.   
60. again: 
61.     if(j==0){ 
62.         if ( arr[size] != (uint64_t)0x0 ) return -1; 
63.     } 
64.     else{ 
65.         if ( arr[size] != (uint64_t)0xFFFFFFFFFFFFFFFF ) return -1; 
66.     } 
67.     if (++size==size_init) goto next; 
68.     goto again; 
69. next: 
70.     if(j==0){ 
71.         if ( arr[size] != (uint64_t)0x0 ) return -1; 
72.     } 
73.     else{ 
74.         if ( arr[size] != (uint64_t)0xFFFFFFFFFFFFFFFF ) return -1; 
75.     } 
76.   
77.     if(j==0){ 
78.         j = 1; 
79.     } 
80.     else{ 
81.         j = 0; 
82.     } 
83.   
84.     goto begin; 
85.   
86.     return 0; 
87. } 

 
 

L1 Data Cache Checkerboard Pattern 
 

 
1. #include <stdio.h> 
2. #include <stdint.h> 
3. #include <stdlib.h> 
4. #include <fcntl.h> 
5. #include <unistd.h> 
6.   
7. #define size_init       4095 
8.   
9. register uint32_t  size         asm ("r28"); 
10. register uint64_t  k            asm ("r27"); 
11. register uint64_t *arr          asm ("r26"); 
12. register uint32_t  j            asm ("r25"); 
13. register uint64_t  block_size   asm ("r21"); 
14.   
15. uint64_t  __attribute__((section (".myArrSection"))) array[size_init+1] __attribute__ ((aligned (64))); 
16.   
17. int main(void) { 
18.   
19.     arr = array; 
20.     j = 0; 
21.     block_size = 8; // block size in words 
22.   
23. begin: 
24.     size = size_init; 
25. prev: 
26.     k = arr[size]; 
27.     arr[size] = (uint64_t)0x0; 
28.     if (!--size) goto read; 
29.     goto prev; 
30. read: 
31.     k = arr[size]; 
32.     arr[size] = (uint64_t)0x0; 
33.   
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34. prev1: 
35.     k = arr[size]; 
36.     arr[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
37.     if (++size==size_init) goto read1; 
38.     goto prev1; 
39. read1: 
40.     k = arr[size]; 
41.     arr[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
42.   
43. prev2: 
44.     k = arr[size]; 
45.     if(j==0){ 
46.         if((size/block_size)%2==0){ 
47.             arr[size] = (uint64_t)0x5555555555555555; 
48.         } 
49.         else{ 
50.             arr[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
51.         } 
52.     } 
53.     else{ 
54.         if((size/block_size)%2==0){ 
55.             arr[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
56.         } 
57.         else{ 
58.             arr[size] = (uint64_t)0x5555555555555555; 
59.         } 
60.   
61.     } 
62.     if (!--size) goto read2; 
63.     goto prev2; 
64. read2: 
65.     k = arr[size]; 
66.     if(j==0){ 
67.         if((size/block_size)%2==0){ 
68.             arr[size] = (uint64_t)0x5555555555555555; 
69.         } 
70.         else{ 
71.             arr[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
72.         } 
73.     } 
74.     else{ 
75.         if((size/block_size)%2==0){ 
76.             arr[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
77.         } 
78.         else{ 
79.             arr[size] = (uint64_t)0x5555555555555555; 
80.         } 
81.   
82.     } 
83.   
84. again: 
85.     if(j==0){ 
86.         if((size/block_size)%2==0){ 
87.             if ( arr[size] != (uint64_t)0x5555555555555555 ) return -1; 
88.         } 
89.         else{ 
90.             if ( arr[size] != (uint64_t)0xaaaaaaaaaaaaaaaa ) return -1; 
91.         } 
92.     } 
93.     else{ 
94.         if((size/block_size)%2==0){ 
95.             if ( arr[size] != (uint64_t)0xaaaaaaaaaaaaaaaa ) return -1; 
96.         } 
97.         else{ 
98.             if ( arr[size] != (uint64_t)0x5555555555555555 ) return -1; 
99.         } 
100.     } 
101.     if (++size==size_init) goto next; 
102.     goto again; 
103. next: 
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104.     if(j==0){ 
105.         if((size/block_size)%2==0){ 
106.             if ( arr[size] != (uint64_t)0x5555555555555555 ) return -1; 
107.         } 
108.         else{ 
109.             if ( arr[size] != (uint64_t)0xaaaaaaaaaaaaaaaa ) return -1; 
110.         } 
111.     } 
112.     else{ 
113.         if((size/block_size)%2==0){ 
114.             if ( arr[size] != (uint64_t)0xaaaaaaaaaaaaaaaa ) return -1; 
115.         } 
116.         else{ 
117.             if ( arr[size] != (uint64_t)0x5555555555555555 ) return -1; 
118.         } 
119.     } 
120.   
121.   
122.     if(j==0){ 
123.         j = 1; 
124.     } 
125.     else{ 
126.         j = 0; 
127.     } 
128.   
129.     goto begin; 
130.   
131.     return 0; 
132. } 

 
 

L1 Instruction Cache 
 

 
1. #include <stdio.h> 
2. #include <stdint.h> 
3.   
4. #define INSTRA04()   asm volatile("add x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;") 
5. #define INSTRA07()   asm volatile("add x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;add 

x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;") 
6. #define INSTRA10()   asm volatile("add x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;add 

x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;add x28,x28,0x1;") 
7. #define INSTRA70()   INSTRA10();INSTRA10();INSTRA10();INSTRA10();INSTRA10();INSTRA10();INSTRA10(); 
8. #define INSTRA100() 

 INSTRA10();INSTRA10();INSTRA10();INSTRA10();INSTRA10();INSTRA10();INSTRA10();INSTRA10();INSTRA10();IN
STRA10(); 

9. #define INSTRA1000() 
INSTRA100();INSTRA100();INSTRA100();INSTRA100();INSTRA100();INSTRA100();INSTRA100();INSTRA100();INST
RA100();INSTRA100(); 

10.   
11. #define INSTRB05()   asm volatile("sub x3,x3,0xffe;sub x3,x3,0xffe;sub x3,x3,#0xffe;sub x3,x3,0xffe;sub x3,x3,0xffe;") 
12. #define INSTRB10()   asm volatile("sub x3,x3,0xffe;sub x3,x3,0xffe;sub x3,x3,#0xffe;sub x3,x3,0xffe;sub x3,x3,0xffe;sub 

x3,x3,0xffe;sub x3,x3,#0xffe;sub x3,x3,0xffe;sub x3,x3,0xffe;sub x3,x3,0xffe;") 
13. #define INSTRB70()   INSTRB10();INSTRB10();INSTRB10();INSTRB10();INSTRB10();INSTRB10();INSTRB10(); 
14. #define INSTRB100() 

 INSTRB10();INSTRB10();INSTRB10();INSTRB10();INSTRB10();INSTRB10();INSTRB10();INSTRB10();INSTRB10();IN
STRB10(); 

15. #define INSTRB1000() 
INSTRB100();INSTRB100();INSTRB100();INSTRB100();INSTRB100();INSTRB100();INSTRB100();INSTRB100();INST
RB100();INSTRB100(); 

16.   
17. #define INSTRC04()   asm volatile("madd x28,x28,x27,x27;madd x28,x28,x27,x27;madd x28,x28,x27,x27;madd 

x28,x28,x27,x27;") 
18. #define INSTRC06()   asm volatile("madd x28,x28,x27,x27;madd x28,x28,x27,x27;madd x28,x28,x27,x27;madd 

x28,x28,x27,x27;madd x28,x28,x27,x27;madd x28,x28,x27,x27;") 
19. #define INSTRC10()   INSTRC04();INSTRC06(); 
20. #define INSTRC70()   INSTRC10();INSTRC10();INSTRC10();INSTRC10();INSTRC10();INSTRC10();INSTRC10(); 
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21. #define INSTRC100() 
 INSTRC10();INSTRC10();INSTRC10();INSTRC10();INSTRC10();INSTRC10();INSTRC10();INSTRC10();INSTRC10();I
NSTRC10(); 

22. #define INSTRC1000() 
INSTRC100();INSTRC100();INSTRC100();INSTRC100();INSTRC100();INSTRC100();INSTRC100();INSTRC100();INST
RC100();INSTRC100(); 

23.   
24. #define INSTRD04()   asm volatile("add x28,x28,x27,asr 2;add x28,x28,x27,asr 2;add x28,x28,x27,asr 2;add 

x28,x28,x27,asr 2;") 
25. #define INSTRD06()   asm volatile("add x28,x28,x27,asr 2;add x28,x28,x27,asr 2;add x28,x28,x27,asr 2;add 

x28,x28,x27,asr 2;add x28,x28,x27,asr 2;add x28,x28,x27,asr 2;") 
26. #define INSTRD10()   INSTRD04();INSTRD06(); 
27. #define INSTRD70()   INSTRD10();INSTRD10();INSTRD10();INSTRD10();INSTRD10();INSTRD10();INSTRD10(); 
28. #define INSTRD100() 

 INSTRD10();INSTRD10();INSTRD10();INSTRD10();INSTRD10();INSTRD10();INSTRD10();INSTRD10();INSTRD10();I
NSTRD10(); 

29. #define INSTRD1000() 
INSTRD100();INSTRD100();INSTRD100();INSTRD100();INSTRD100();INSTRD100();INSTRD100();INSTRD100();INST
RD100();INSTRD100(); 

30.   
31. #define INSTRE04()   asm volatile("add w28,w28,w27,lsr 2;add w28,w28,w27,lsr 2;add w28,w28,w27,lsr 2;add 

w28,w28,w27,lsr 2;") 
32. #define INSTRE06()   asm volatile("add w28,w28,w27,lsr 2;add w28,w28,w27,lsr 2;add w28,w28,w27,lsr 2;add 

w28,w28,w27,lsr 2;add w28,w28,w27,lsr 2;add w28,w28,w27,lsr 2;") 
33. #define INSTRE10()   INSTRE04();INSTRE06(); 
34. #define INSTRE70()   INSTRE10();INSTRE10();INSTRE10();INSTRE10();INSTRE10();INSTRE10();INSTRE10(); 
35. #define INSTRE100() 

 INSTRE10();INSTRE10();INSTRE10();INSTRE10();INSTRE10();INSTRE10();INSTRE10();INSTRE10();INSTRE10();IN
STRE10(); 

36. #define INSTRE1000() 
INSTRE100();INSTRE100();INSTRE100();INSTRE100();INSTRE100();INSTRE100();INSTRE100();INSTRE100();INST
RE100();INSTRE100(); 

37.   
38. #define INSTRF04()   asm volatile("bics x28,x28,x27;bics x28,x28,x27;bics x28,x28,x27;bics x28,x28,x27;") 
39. #define INSTRF06()   asm volatile("bics x28,x28,x27;bics x28,x28,x27;bics x28,x28,x27;bics x28,x28,x27;bics 

x28,x28,x27;bics x28,x28,x27;") 
40. #define INSTRF10()   INSTRF04();INSTRF06(); 
41. #define INSTRF70()   INSTRF10();INSTRF10();INSTRF10();INSTRF10();INSTRF10();INSTRF10();INSTRF10(); 
42. #define INSTRF100() 

 INSTRF10();INSTRF10();INSTRF10();INSTRF10();INSTRF10();INSTRF10();INSTRF10();INSTRF10();INSTRF10();INS
TRF10(); 

43. #define INSTRF1000() 
INSTRF100();INSTRF100();INSTRF100();INSTRF100();INSTRF100();INSTRF100();INSTRF100();INSTRF100();INSTR
F100();INSTRF100(); 

44.   
45. #define INSTRG04()   asm volatile("nop;nop;nop;nop") 
46. #define INSTRG06()   asm volatile("nop;nop;nop;nop;nop;nop") 
47. #define INSTRG10()   INSTRG04();INSTRG06(); 
48. #define INSTRG70()   INSTRG10();INSTRG10();INSTRG10();INSTRG10();INSTRG10();INSTRG10();INSTRG10(); 
49. #define INSTRG100() 

 INSTRG10();INSTRG10();INSTRG10();INSTRG10();INSTRG10();INSTRG10();INSTRG10();INSTRG10();INSTRG10();
INSTRG10(); 

50. #define INSTRG1000() 
INSTRG100();INSTRG100();INSTRG100();INSTRG100();INSTRG100();INSTRG100();INSTRG100();INSTRG100();INS
TRG100();INSTRG100(); 

51.   
52.   
53. register uint64_t  i    asm ("r28"); 
54. register uint64_t  j    asm ("r27"); 
55. register uint64_t  k    asm ("r26"); 
56. register uint64_t  l    asm ("r25"); 
57. register uint64_t  m    asm ("r24"); 
58. register uint64_t  n    asm ("r22"); 
59.   
60. int main(int argc,char** argv) { 
61.   
62. begin: 
63.     // Main Prologue is 3 Instructions... 
64.     n = 0; 
65.     j = 0xfff; 
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66.     k = 0xfff; 
67.     l = 0xfff; 
68.     m = 0xfff; 
69.     asm volatile("nop;nop;nop;nop;nop;nop;nop;nop"); 
70. Loop1: 
71.     i = 0; 
72.     INSTRA1000(); 
73.     INSTRA1000(); 
74.     INSTRA1000(); 
75.     INSTRA1000(); 
76.     INSTRA1000(); 
77.     INSTRA1000(); 
78.     INSTRA1000(); 
79.     INSTRA1000(); 
80.     INSTRA100(); 
81.     INSTRA70(); 
82.     INSTRA07(); 
83.     if(i!=8177) { 
84.         printf("Loop1 Silent Data Corruption i = %lld\n",i); 
85.         return -1; 
86.     } 
87.     n++; 
88.     if(n<20) goto Loop1; 
89.     n = 0; 
90.   
91. Loop2: 
92.     asm volatile("add x3,xzr,xzr"); 
93.     INSTRB1000(); 
94.     INSTRB1000(); 
95.     INSTRB1000(); 
96.     INSTRB1000(); 
97.     INSTRB1000(); 
98.     INSTRB1000(); 
99.     INSTRB1000(); 
100.     INSTRB1000(); 
101.     INSTRB100(); 
102.     INSTRB70(); 
103.     INSTRB05(); 
104.     asm volatile("add x28,x3,xzr"); 
105.     if(i!=(-33468450)){ 
106.         printf("Loop2 Silent Data Corruption i = %d\n",i); 
107.         return -1; 
108.     } 
109.     n++; 
110.     if(n<20) goto Loop2; 
111.     n = 0; 
112.   
113. Loop3: 
114.     i = 0; 
115.     j = 1; 
116.     INSTRC1000(); 
117.     INSTRC1000(); 
118.     INSTRC1000(); 
119.     INSTRC1000(); 
120.     INSTRC1000(); 
121.     INSTRC1000(); 
122.     INSTRC1000(); 
123.     INSTRC1000(); 
124.     INSTRC100(); 
125.     INSTRC70(); 
126.     INSTRC06(); 
127.     if(i!=8176) { 
128.         printf("Loop3 Silent Data Corruption i = %d\n",i);      
129.         return -1; 
130.     } 
131.     n++; 
132.     if(n<20) goto Loop3; 
133.     n = 0; 
134.   
135. Loop4: 
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136.     i = 0; 
137.     j = 4; 
138.     INSTRD1000(); 
139.     INSTRD1000(); 
140.     INSTRD1000(); 
141.     INSTRD1000(); 
142.     INSTRD1000(); 
143.     INSTRD1000(); 
144.     INSTRD1000(); 
145.     INSTRD1000(); 
146.     INSTRD100(); 
147.     INSTRD70(); 
148.     INSTRD06(); 
149.     if(i!=8176) { 
150.         printf("Loop4 Silent Data Corruption i = %d\n",i); 
151.         return -1; 
152.     } 
153.     n++; 
154.     if(n<20) goto Loop4; 
155.     n = 0; 
156.   
157. Loop5: 
158.     i = 0; 
159.     j = 4; 
160.     INSTRE1000(); 
161.     INSTRE1000(); 
162.     INSTRE1000(); 
163.     INSTRE1000(); 
164.     INSTRE1000(); 
165.     INSTRE1000(); 
166.     INSTRE1000(); 
167.     INSTRE1000(); 
168.     INSTRE100(); 
169.     INSTRE70(); 
170.     INSTRE06(); 
171.     if(i!=8176) { 
172.         printf("Loop5 Silent Data Corruption i = %d\n",i); 
173.         return -1; 
174.     } 
175.     n++; 
176.     if(n<20) goto Loop5; 
177.     n = 0; 
178.   
179. Loop6: 
180.     i = 0xabcd; 
181.     j = 0xffff; 
182.     INSTRF1000(); 
183.     INSTRF1000(); 
184.     INSTRF1000(); 
185.     INSTRF1000(); 
186.     INSTRF1000(); 
187.     INSTRF1000(); 
188.     INSTRF1000(); 
189.     INSTRF1000(); 
190.     INSTRF100(); 
191.     INSTRF70(); 
192.     INSTRF04(); 
193.     if(i!=0x0) { 
194.         printf("Loop6 Silent Data Corruption i = %x\n",i); 
195.         return -1; 
196.     } 
197.     n++; 
198.     if(n<20) goto Loop6; 
199.     n = 0; 
200.   
201. Loop7: 
202.     INSTRG1000(); 
203.     INSTRG1000(); 
204.     INSTRG1000(); 
205.     INSTRG1000(); 
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206.     INSTRG1000(); 
207.     INSTRG1000(); 
208.     INSTRG1000(); 
209.     INSTRG1000(); 
210.     INSTRG100(); 
211.     INSTRG70(); 
212.     INSTRG10(); 
213.     INSTRG04(); 
214.     n++; 
215.     if(n<20) goto Loop7; 
216.     n = 0; 
217.   
218.     goto begin; 
219.     return 0; 
220. } 

 
 

 
L2 Data Cache Zero-One Pattern 

 
 

1. #include <linux/module.h> 
2. #include <linux/kernel.h> 
3. #include <linux/vmalloc.h> 
4. #include <linux/slab.h> 
5. #include "armpmu_lib.h" 
6.   
7. #define size_init   32767 
8.   
9. register uint32_t  size asm ("r28"); 
10. register uint64_t  k    asm ("r27"); 
11. register uint64_t *arr  asm ("r26"); 
12. register uint32_t  i    asm ("r25"); 
13. register uint32_t  j    asm ("r24"); 
14. register uint64_t it    asm ("r20"); 
15.   
16. int init_module() { 
17.   
18.     uint64_t *ptr; 
19.     arr = kmalloc((size_init+1+64)*sizeof(uint64_t), GFP_KERNEL); 
20.     if(arr) { 
21.         printk(KERN_INFO "InfTest --> Allocated address:%p\n",arr); 
22.     } 
23.     else { 
24.         printk(KERN_INFO "InfTest --> Allocation failed\n"); 
25.         return -1; 
26.     } 
27.   
28.     ptr = arr; 
29.     while(((int)arr & ~(int)(0x3F))!=(int)arr) { 
30.         arr++; 
31.     } 
32.   
33.     // Infinent Loop Start 
34.     j = 0; 
35.     it = 425000; 
36. inf: 
37.     // First Read 
38.     size = 0; 
39. prev: 
40.     k = arr[size]; 
41.     if (++size==size_init) goto read; 
42.     goto prev; 
43. read: 
44.     k = arr[size]; 
45.   
46.     // Second Read 
47.     size = 0; 
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48. prev1: 
49.     k = arr[size]; 
50.     if (++size==size_init) goto read1; 
51.     goto prev1; 
52. read1: 
53.     k = arr[size]; 
54.   
55.     // Third Read 
56.     size = 0; 
57. prev2: 
58.     k = arr[size]; 
59.     if (++size==size_init) goto read2; 
60.     goto prev2; 
61. read2: 
62.     k = arr[size]; 
63.   
64.     // Fourth Read 
65.     size = 0; 
66. prev3: 
67.     k = arr[size]; 
68.     if (++size==size_init) goto read3; 
69.     goto prev3; 
70. read3: 
71.     k = arr[size]; 
72.   
73.     // Fifth Read 
74.     size = 0; 
75. prev4: 
76.     k = arr[size]; 
77.     if (++size==size_init) goto read4; 
78.     goto prev4; 
79. read4: 
80.     k = arr[size]; 
81.   
82.     // Write 
83.     size = 0; 
84. prev5: 
85.     k = arr[size]; 
86.     if(j==0){ 
87.         arr[size] = (uint64_t)0x0; 
88.     } 
89.     else { 
90.         arr[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
91.     } 
92.     if (++size==size_init) goto read5; 
93.     goto prev5; 
94. read5: 
95.     k = arr[size]; 
96.     if(j==0){ 
97.         arr[size] = (uint64_t)0x0; 
98.     } 
99.     else{ 
100.         arr[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
101.     } 
102.   
103.     // Stride = 1 Block 
104.     i = 0; 
105. stride: 
106.     size = 0; 
107. prev6: 
108.     if(j==0){ 
109.         if ( arr[size+i] != (uint64_t)0x0 ){ 
110.             printk(KERN_INFO "L2 --> SDC Iteration : %lld Expected : 0x0 Actual: 0x%llx Index: %d \n",(425000-

it),arr[size+i],(size+i)); 
111.         } 
112.     } 
113.     else{ 
114.         if ( arr[size+i] != (uint64_t)0xFFFFFFFFFFFFFFFF ){ 
115.             printk(KERN_INFO "L2 --> SDC Iteration : %lld Expected : 0xFFFFFFFFFFFFFFFF Actual: 0x%llx Index: 

%d \n",(425000-it),arr[size+i],(size+i)); 
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116.         } 
117.     } 
118.     size += 8; // 8 words per block * 1 block stride 
119.     if (size==(size_init+1)) goto read6; 
120.     goto prev6; 
121. read6: 
122.     i++; 
123.     if(i == 8) goto end; 
124.     goto stride; 
125. end: 
126.     if(j==0){ 
127.         j = 1; 
128.     } 
129.     else { 
130.         j = 0; 
131.     } 
132.   
133.     it--; 
134.     if(it!=0) goto inf; 
135.   
136.     if(ptr) { 
137.         kfree(ptr); 
138.         printk(KERN_INFO "InfTest --> After kfree call\n"); 
139.     } 
140.     else { 
141.         printk(KERN_INFO "InfTest --> Nothing to deallocate\n"); 
142.     } 
143.     return 0; 
144. } 
145.   
146. void cleanup_module(void) { 
147.   
148.     printk(KERN_INFO "InfTest --> Unloading module\n"); 
149. } 
150.   
151. MODULE_AUTHOR("Giannos"); 
152. MODULE_DESCRIPTION("Selftest"); 
153. MODULE_LICENSE("GPL"); 

 
 
 
 
 
 

 
L2 Data Cache Checkerboard Pattern 

 
 

1. #include <linux/module.h> 
2. #include <linux/kernel.h> 
3. #include <linux/vmalloc.h> 
4. #include <linux/slab.h> 
5. #include "armpmu_lib.h" 
6.   
7. #define size_init   32767 
8.   
9. register uint32_t  size asm ("r28"); 
10. register uint64_t  k    asm ("r27"); 
11. register uint64_t *arr  asm ("r26"); 
12. register uint32_t  i    asm ("r25"); 
13. register uint32_t  j    asm ("r24"); 
14. register uint64_t it    asm ("r20"); 
15. register uint64_t block_size asm("r19"); 
16.   
17. int init_module() { 
18.   
19.     uint64_t *ptr; 
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20.     arr = kmalloc((size_init+1+8)*sizeof(uint64_t), GFP_KERNEL); 
21.     if(arr) { 
22.         printk(KERN_INFO "InfTest --> Allocated address:%p\n",arr); 
23.     } 
24.     else { 
25.         printk(KERN_INFO "InfTest --> Allocation failed\n"); 
26.         return -1; 
27.     } 
28.   
29.     ptr = arr; 
30.     while(((int64_t)arr & ~(int64_t)(0x3F))!=(int64_t)arr) { 
31.         arr++; 
32.     } 
33.   
34.     // Infinent Loop Start 
35.     j = 0; 
36.     it = 176000; 
37.     block_size = 8; // block size in words 
38. inf: 
39.     // First Read 
40.     size = 0; 
41. prev: 
42.     k = arr[size]; 
43.     if (++size==size_init) goto read; 
44.     goto prev; 
45. read: 
46.     k = arr[size]; 
47.   
48.     // Second Read 
49.     size = 0; 
50. prev1: 
51.     k = arr[size]; 
52.     if (++size==size_init) goto read1; 
53.     goto prev1; 
54. read1: 
55.     k = arr[size]; 
56.   
57.     // Third Read 
58.     size = 0; 
59. prev2: 
60.     k = arr[size]; 
61.     if (++size==size_init) goto read2; 
62.     goto prev2; 
63. read2: 
64.     k = arr[size]; 
65.   
66.     // Fourth Read 
67.     size = 0; 
68. prev3: 
69.     k = arr[size]; 
70.     if (++size==size_init) goto read3; 
71.     goto prev3; 
72. read3: 
73.     k = arr[size]; 
74.   
75.     // Fifth Read 
76.     size = 0; 
77. prev4: 
78.     k = arr[size]; 
79.     if (++size==size_init) goto read4; 
80.     goto prev4; 
81. read4: 
82.     k = arr[size]; 
83.   
84.     // Write 
85.     size = 0; 
86. prev5: 
87.     k = arr[size]; 
88.     if(j==0){ 
89.         if((size/block_size)%2==0){ 
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90.             arr[size] = (uint64_t)0x5555555555555555; 
91.         } 
92.         else{ 
93.             arr[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
94.         } 
95.     } 
96.     else{ 
97.         if((size/block_size)%2==0){ 
98.             arr[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
99.         } 
100.         else{ 
101.             arr[size] = (uint64_t)0x5555555555555555; 
102.         } 
103.     } 
104.     if (++size==size_init) goto read5; 
105.     goto prev5; 
106. read5: 
107.     k = arr[size]; 
108.     if(j==0){ 
109.         if((size/block_size)%2==0){ 
110.             arr[size] = (uint64_t)0x5555555555555555; 
111.         } 
112.         else{ 
113.             arr[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
114.         } 
115.     } 
116.     else{ 
117.         if((size/block_size)%2==0){ 
118.             arr[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
119.         } 
120.         else{ 
121.             arr[size] = (uint64_t)0x5555555555555555; 
122.         } 
123.     } 
124.   
125.     // Stride = 1 Block 
126.     i = 0; 
127. stride: 
128.     size = 0; 
129. prev6: 
130.     if(j==0){ 
131.         if(((size+i)/block_size)%2==0){ 
132.             if ( arr[size+i] != (uint64_t)0x5555555555555555 ) { 
133.                 printk(KERN_INFO "L2 --> SDC Iteration : %lld Expected : 0x5555555555555555 Actual: 0x%llx Index: 

%d \n",(176000-it),arr[size+i],(size+i)); 
134.             } 
135.         } 
136.         else{ 
137.             if ( arr[size+i] != (uint64_t)0xaaaaaaaaaaaaaaaa ) { 
138.                 printk(KERN_INFO "L2 --> SDC Iteration : %lld Expected : 0xaaaaaaaaaaaaaaaa Actual: 0x%llx Index: 

%d \n",(176000-it),arr[size+i],(size+i)); 
139.             } 
140.         } 
141.     } 
142.     else{ 
143.         if(((size+i)/block_size)%2==0){ 
144.             if ( arr[size+i] != (uint64_t)0xaaaaaaaaaaaaaaaa ) { 
145.                 printk(KERN_INFO "L2 --> SDC Iteration : %lld Expected : 0xaaaaaaaaaaaaaaaa Actual: 0x%llx Index: 

%d \n",(176000-it),arr[size+i],(size+i)); 
146.             } 
147.         } 
148.         else{ 
149.             if ( arr[size+i] != (uint64_t)0x5555555555555555 ) { 
150.                 printk(KERN_INFO "L2 --> SDC Iteration : %lld Expected : 0x5555555555555555 Actual: 0x%llx Index: 

%d \n",(176000-it),arr[size+i],(size+i)); 
151.             } 
152.         } 
153.     } 
154.     size += 8; // 8 words per block * 1 block stride 
155.     if (size==(size_init+1)) goto read6; 
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156.     goto prev6; 
157. read6: 
158.     i++; 
159.     if(i == 8) goto end; 
160.     goto stride; 
161. end: 
162.     if(j==0){ 
163.         j = 1; 
164.     } 
165.     else { 
166.         j = 0; 
167.     } 
168.   
169.     it--; 
170.     if(it!=0) goto inf; 
171.   
172.     if(ptr) { 
173.         kfree(ptr); 
174.         printk(KERN_INFO "InfTest --> After kfree call\n"); 
175.     } 
176.     else { 
177.         printk(KERN_INFO "InfTest --> Nothing to deallocate\n"); 
178.     } 
179.     return 0; 
180. } 
181.   
182. void cleanup_module(void) { 
183.   
184.     printk(KERN_INFO "InfTest --> Unloading module\n"); 
185. } 
186.   
187. MODULE_AUTHOR("Giannos"); 
188. MODULE_DESCRIPTION("Selftest"); 
189. MODULE_LICENSE("GPL"); 

 
 
 
 
 
 

 
L3 Data Cache Zero-One Pattern 

 
 

1. #include <linux/module.h> 
2. #include <linux/kernel.h> 
3. #include <linux/vmalloc.h> 
4. #include <linux/slab.h> 
5. #include <asm/io.h> 
6.   
7. #define size_init   1048575 
8. #define sub_size     524287 
9.   
10. register uint32_t  size  asm ("r28"); 
11. register uint64_t  k     asm ("r27"); 
12. register uint32_t  i     asm ("r26"); 
13. register uint32_t  j     asm ("r25"); 
14. register uint64_t it     asm ("r24"); 
15. register uint64_t *arr1  asm ("r21"); 
16. register uint64_t *arr2  asm ("r20"); 
17.   
18. int init_module() { 
19.   
20.     printk(KERN_INFO "L3 --> Allocating Memory : %d kB\n",(size_init+1)*8/1024); 
21.     arr1 = kmalloc((size_init+1)/2*sizeof(uint64_t),GFP_KERNEL); 
22.     arr2 = kmalloc((size_init+1)/2*sizeof(uint64_t),GFP_KERNEL); 
23.   
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24.     if(arr1==NULL){ 
25.         printk(KERN_INFO "L3 --> Allocation failed\n"); 
26.         return -1; 
27.     } 
28.     else{ 
29.         printk(KERN_INFO "L3 --> Array1 Virtual Address:%p\n",arr1); 
30.         printk(KERN_INFO "L3 --> Array1 Physical Address:%llx\n",virt_to_phys(arr1)); 
31.     } 
32.   
33.     if(arr2==NULL){ 
34.         printk(KERN_INFO "L3 --> Allocation failed\n"); 
35.         return -1; 
36.     } 
37.     else{ 
38.         printk(KERN_INFO "L3 --> Array2 Virtual Address:%p\n",arr2); 
39.         printk(KERN_INFO "L3 --> Array2 Physical Address:%llx\n",virt_to_phys(arr2)); 
40.     } 
41.   
42.     j=0; 
43.     it = 9600; 
44. begin: 
45.     // Write without read 
46.     size = 0; 
47. prev5: 
48.     if(j==0){ 
49.         arr1[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
50.         arr2[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
51.     } 
52.     else{ 
53.         arr1[size] = (uint64_t)0x0; 
54.         arr2[size] = (uint64_t)0x0; 
55.     } 
56.     if (++size==sub_size) goto read5; 
57.     goto prev5; 
58. read5: 
59.     if(j==0){ 
60.         arr1[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
61.         arr2[size] = (uint64_t)0xFFFFFFFFFFFFFFFF; 
62.     } 
63.     else{ 
64.         arr1[size] = (uint64_t)0x0; 
65.         arr2[size] = (uint64_t)0x0; 
66.     } 
67.   
68.     // First Read 
69.     size = 0; 
70. prev: 
71.     k = arr1[size]; 
72.     k = arr2[size]; 
73.     if (++size==sub_size) goto read; 
74.     goto prev; 
75. read: 
76.     k = arr1[size]; 
77.     k = arr2[size]; 
78.   
79.     // Second Read 
80.     size = 0; 
81. prev1: 
82.     k = arr1[size]; 
83.     k = arr2[size]; 
84.     if (++size==sub_size) goto read1; 
85.     goto prev1; 
86. read1: 
87.     k = arr1[size]; 
88.     k = arr2[size]; 
89.   
90.     // Third Read 
91.     size = 0; 
92. prev2: 
93.     k = arr1[size]; 
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94.     k = arr2[size]; 
95.     if (++size==sub_size) goto read2; 
96.     goto prev2; 
97. read2: 
98.     k = arr1[size]; 
99.     k = arr2[size]; 
100.   
101.     // Fourth Read 
102.     size = 0; 
103. prev3: 
104.     k = arr1[size]; 
105.     k = arr2[size]; 
106.     if (++size==sub_size) goto read3; 
107.     goto prev3; 
108. read3: 
109.     k = arr1[size]; 
110.     k = arr2[size]; 
111.   
112.     // Fifth Read 
113.     size = 0; 
114. prev4: 
115.     k = arr1[size]; 
116.     k = arr2[size]; 
117.     if (++size==sub_size) goto read4; 
118.     goto prev4; 
119. read4: 
120.     k = arr1[size]; 
121.     k = arr2[size]; 
122.   
123.     // Stride = 8 Blocks 
124.     i = 0; 
125. stride: 
126.     size = 0; 
127. prev6: 
128.     if(j==0){ 
129.         if ( arr1[size+i] != (uint64_t)0xFFFFFFFFFFFFFFFF ){ 
130.             printk(KERN_INFO "L3 --> SDC Arr1 Iteration : %lld Expected : 0xFFFFFFFFFFFFFFFF Actual: 0x%llx Index: 

%d \n",(9600-it),arr1[size+i],(size+i)); 
131.         } 
132.   
133.         if ( arr2[size+i] != (uint64_t)0xFFFFFFFFFFFFFFFF ){ 
134.             printk(KERN_INFO "L3 --> SDC Arr2 Iteration : %lld Expected : 0xFFFFFFFFFFFFFFFF Actual: 0x%llx Index: 

%d \n",(9600-it),arr2[size+i],(size+i)); 
135.         } 
136.     } 
137.     else{ 
138.         if ( arr1[size+i] != (uint64_t)0x0 ){ 
139.             printk(KERN_INFO "L3 --> SDC Arr1 Iteration : %lld Expected : 0x0 Actual: 0x%llx Index: %d \n",(9600-

it),arr1[size+i],(size+i)); 
140.         } 
141.   
142.         if ( arr2[size+i] != (uint64_t)0x0 ){ 
143.             printk(KERN_INFO "L3 --> SDC Arr2 Iteration : %lld Expected : 0x0 Actual: 0x%llx Index: %d \n",(9600-

it),arr2[size+i],(size+i)); 
144.         } 
145.     } 
146.     size += 8; // 8 words per block * 1 block stride 
147.     if (size==(sub_size+1)) goto read6; 
148.     goto prev6; 
149. read6: 
150.     i++; 
151.     if(i == 8) goto end; 
152.     goto stride; 
153. end: 
154.   
155.     if(j==0){ 
156.         j = 1; 
157.     } 
158.     else { 
159.         j = 0; 
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160.     } 
161.   
162.     it--; 
163.     if(it!=0) goto begin; 
164.   
165.     if(arr1) { 
166.         kfree(arr1); 
167.     } 
168.     if(arr2) { 
169.         kfree(arr2); 
170.     } 
171.   
172.     return 0; 
173. } 
174.   
175.   
176.   
177. void cleanup_module(void) { 
178.   
179.     printk(KERN_INFO "L3 --> Unloading module\n"); 
180. } 
181.   
182. MODULE_AUTHOR("Giannos"); 
183. MODULE_DESCRIPTION("Selftest"); 
184. MODULE_LICENSE("GPL"); 
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L3 Data Cache Checkerboard Pattern 

 
 

1. #include <linux/kernel.h> 
2. #include <linux/vmalloc.h> 
3. #include <linux/slab.h> 
4. #include <asm/io.h> 
5.   
6. #define size_init   1048575 
7. #define sub_size     524287 
8.   
9. register uint32_t  size  asm ("r28"); 
10. register uint64_t  k     asm ("r27"); 
11. register uint32_t  i     asm ("r26"); 
12. register uint32_t  j     asm ("r25"); 
13. register uint64_t it     asm ("r24"); 
14. register uint64_t *arr1  asm ("r21"); 
15. register uint64_t *arr2  asm ("r20"); 
16. register uint64_t block_size asm("r19"); 
17.   
18. int init_module() { 
19.   
20.     printk(KERN_INFO "L3 --> Allocating Memory : %d kB\n",(size_init+1)*8/1024); 
21.     arr1 = kmalloc((size_init+1)/2*sizeof(uint64_t),GFP_KERNEL); 
22.     arr2 = kmalloc((size_init+1)/2*sizeof(uint64_t),GFP_KERNEL); 
23.   
24.     if(arr1==NULL){ 
25.         printk(KERN_INFO "L3 --> Allocation failed\n"); 
26.         return -1; 
27.     } 
28.     else{ 
29.         printk(KERN_INFO "L3 --> Array1 Virtual Address:%p\n",arr1); 
30.         printk(KERN_INFO "L3 --> Array1 Physical Address:%llx\n",virt_to_phys(arr1)); 
31.     } 
32.   
33.     if(arr2==NULL){ 
34.         printk(KERN_INFO "L3 --> Allocation failed\n"); 
35.         return -1; 
36.     } 
37.     else{ 
38.         printk(KERN_INFO "L3 --> Array2 Virtual Address:%p\n",arr2); 
39.         printk(KERN_INFO "L3 --> Array2 Physical Address:%llx\n",virt_to_phys(arr2)); 
40.     } 
41.   
42.     j=0; 
43.     it = 8000; 
44.     block_size = 8; // block size in words 
45. begin: 
46.     // Write without read 
47.     size = 0; 
48. prev5: 
49.     if(j==0){ 
50.         if((size/block_size)%2==0){ 
51.             arr1[size] = (uint64_t)0x5555555555555555; 
52.             arr2[size] = (uint64_t)0x5555555555555555; 
53.         } 
54.         else{ 
55.             arr1[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
56.             arr2[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
57.         } 
58.     } 
59.     else{ 
60.         if((size/block_size)%2==0){ 
61.             arr1[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
62.             arr2[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
63.         } 
64.         else{ 
65.             arr1[size] = (uint64_t)0x5555555555555555; 
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66.             arr2[size] = (uint64_t)0x5555555555555555; 
67.         } 
68.     } 
69.     if (++size==sub_size) goto read5; 
70.     goto prev5; 
71. read5: 
72.     if(j==0){ 
73.         if((size/block_size)%2==0){ 
74.             arr1[size] = (uint64_t)0x5555555555555555; 
75.             arr2[size] = (uint64_t)0x5555555555555555; 
76.         } 
77.         else{ 
78.             arr1[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
79.             arr2[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
80.         } 
81.     } 
82.     else{ 
83.         if((size/block_size)%2==0){ 
84.             arr1[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
85.             arr2[size] = (uint64_t)0xaaaaaaaaaaaaaaaa; 
86.         } 
87.         else{ 
88.             arr1[size] = (uint64_t)0x5555555555555555; 
89.             arr2[size] = (uint64_t)0x5555555555555555; 
90.         } 
91.     } 
92.   
93.     // First Read 
94.     size = 0; 
95. prev: 
96.     k = arr1[size]; 
97.     k = arr2[size]; 
98.     if (++size==sub_size) goto read; 
99.     goto prev; 
100. read: 
101.     k = arr1[size]; 
102.     k = arr2[size]; 
103.   
104.     // Second Read 
105.     size = 0; 
106. prev1: 
107.     k = arr1[size]; 
108.     k = arr2[size]; 
109.     if (++size==sub_size) goto read1; 
110.     goto prev1; 
111. read1: 
112.     k = arr1[size]; 
113.     k = arr2[size]; 
114.   
115.     // Third Read 
116.     size = 0; 
117. prev2: 
118.     k = arr1[size]; 
119.     k = arr2[size]; 
120.     if (++size==sub_size) goto read2; 
121.     goto prev2; 
122. read2: 
123.     k = arr1[size]; 
124.     k = arr2[size]; 
125.   
126.     // Fourth Read 
127.     size = 0; 
128. prev3: 
129.     k = arr1[size]; 
130.     k = arr2[size]; 
131.     if (++size==sub_size) goto read3; 
132.     goto prev3; 
133. read3: 
134.     k = arr1[size]; 
135.     k = arr2[size]; 
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136.   
137.     // Fifth Read 
138.     size = 0; 
139. prev4: 
140.     k = arr1[size]; 
141.     k = arr2[size]; 
142.     if (++size==sub_size) goto read4; 
143.     goto prev4; 
144. read4: 
145.     k = arr1[size]; 
146.     k = arr2[size]; 
147.   
148.     // Stride = 8 Blocks 
149.     i = 0; 
150. stride: 
151.     size = 0; 
152. prev6: 
153.     if(j==0){ 
154.         if(((size+i)/block_size)%2==0){ 
155.             if ( arr1[size+i] != (uint64_t)0x5555555555555555 ) { 
156.                 printk(KERN_INFO "L3 --> SDC Arr1 Iteration : %lld Expected : 0x5555555555555555 Actual: 0x%llx Index: 

%d \n",(7980-it),arr1[size+i],(size+i)); 
157.             } 
158.             if ( arr2[size+i] != (uint64_t)0x5555555555555555 ) { 
159.                 printk(KERN_INFO "L3 --> SDC Arr2 Iteration : %lld Expected : 0x5555555555555555 Actual: 0x%llx Index: 

%d \n",(7980-it),arr2[size+i],(size+i)); 
160.             } 
161.         } 
162.         else{ 
163.             if ( arr1[size+i] != (uint64_t)0xaaaaaaaaaaaaaaaa ) { 
164.                 printk(KERN_INFO "L3 --> SDC Arr1 Iteration : %lld Expected : 0xaaaaaaaaaaaaaaaa Actual: 0x%llx Index: 

%d \n",(7980-it),arr1[size+i],(size+i)); 
165.             } 
166.             if ( arr2[size+i] != (uint64_t)0xaaaaaaaaaaaaaaaa ) { 
167.                 printk(KERN_INFO "L3 --> SDC Arr2 Iteration : %lld Expected : 0xaaaaaaaaaaaaaaaa Actual: 0x%llx Index: 

%d \n",(7980-it),arr2[size+i],(size+i)); 
168.             } 
169.         } 
170.     } 
171.     else{ 
172.         if(((size+i)/block_size)%2==0){ 
173.             if ( arr1[size+i] != (uint64_t)0xaaaaaaaaaaaaaaaa ) { 
174.                 printk(KERN_INFO "L3 --> SDC Arr1 Iteration : %lld Expected : 0xaaaaaaaaaaaaaaaa Actual: 0x%llx Index: 

%d \n",(7980-it),arr1[size+i],(size+i)); 
175.             } 
176.             if ( arr2[size+i] != (uint64_t)0xaaaaaaaaaaaaaaaa ) { 
177.                 printk(KERN_INFO "L3 --> SDC Arr1 Iteration : %lld Expected : 0xaaaaaaaaaaaaaaaa Actual: 0x%llx Index: 

%d \n",(7980-it),arr2[size+i],(size+i)); 
178.             } 
179.         } 
180.         else{ 
181.             if ( arr1[size+i] != (uint64_t)0x5555555555555555 ) { 
182.                 printk(KERN_INFO "L3 --> SDC Arr1 Iteration : %lld Expected : 0x5555555555555555 Actual: 0x%llx Index: 

%d \n",(7980-it),arr1[size+i],(size+i)); 
183.             } 
184.             if ( arr2[size+i] != (uint64_t)0x5555555555555555 ) { 
185.                 printk(KERN_INFO "L3 --> SDC Arr1 Iteration : %lld Expected : 0x5555555555555555 Actual: 0x%llx Index: 

%d \n",(7980-it),arr2[size+i],(size+i)); 
186.             } 
187.         } 
188.     } 
189.     size += 8; // 8 words per block * 1 block stride 
190.     if (size==(sub_size+1)) goto read6; 
191.     goto prev6; 
192. read6: 
193.     i++; 
194.     if(i == 8) goto end; 
195.     goto stride; 
196. end: 
197.   
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198.     if(j==0){ 
199.         j = 1; 
200.     } 
201.     else { 
202.         j = 0; 
203.     } 
204.   
205.     it--; 
206.     if(it!=0) goto begin; 
207.   
208.     if(arr1) { 
209.         kfree(arr1); 
210.     } 
211.     if(arr2) { 
212.         kfree(arr2); 
213.     } 
214.     return 0; 
215. } 
216.   
217.   
218.   
219. void cleanup_module(void) { 
220.   
221.     printk(KERN_INFO "L3 --> Unloading module\n"); 
222. } 
223.   
224. MODULE_AUTHOR("Giannos"); 
225. MODULE_DESCRIPTION("Selftest"); 
226. MODULE_LICENSE("GPL"); 

 
 

ALU 
 

 
1. #include <stdio.h> 
2. #include <stdint.h> 
3. #include <time.h> 
4.   
5. register uint64_t  i    asm ("r28"); 
6. register uint64_t  j    asm ("r27"); 
7. register uint64_t  k    asm ("r26"); 
8. register uint64_t  l    asm ("r25"); 
9. register uint64_t  m    asm ("r24"); 
10. register uint64_t  n    asm ("r22"); 
11. register uint64_t it    asm ("r21"); 
12.   
13. __attribute__(( aligned(64) )) int main(int argc,char **argv){ 
14.   
15.     time_t timer; 
16.     char buffer[26]; 
17.     struct tm* tm_info; 
18.   
19.     FILE *fp = fopen("log-alu.txt", "a"); 
20.     if (fp == NULL) { 
21.         printf("Error opening file!\n"); 
22.         return -1; 
23.     } 
24.   
25.     it = 35200000; 
26.   
27. inf: 
28.     i = 1000;   //x28 
29.     j = 105;    //x27 
30.     k = 90;     //x26 
31.     l = 40;     //x25 
32.     m = 0x5c0482a;  //x24 
33.     n = 0x3f2f2e0;  //x22 
34.   
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35.     asm volatile("nop;nop;nop"); 
36. start: 
37.     asm volatile("mul x0,x27,x25"); 
38.     asm volatile("sub x1,x27,x26"); 
39.     asm volatile("add x2,x27,x26"); 
40.     asm volatile("eon x3,x24,x22"); 
41.   
42.     asm volatile("mul x5,x1,x2"); 
43.     asm volatile("lsl x24,x24,12"); 
44.     asm volatile("orr x4,x24,x22"); 
45.     asm volatile("sub x28,x28,1"); // i--; 
46.   
47.     asm volatile("sub x6,x0,x5"); 
48.     asm volatile("lsl x3,x3,8"); 
49.     asm volatile("and x22,x5,x4"); 
50.     asm volatile("add x26,x26,20"); 
51.   
52.     asm volatile("add x27,x27,30"); 
53.     asm volatile("eor x24,x6,x3"); 
54.     asm volatile("add x25,x25,10"); 
55.   
56.     asm volatile goto ("cbnz %0, %l[start];" 
57.             : 
58.             : "r" (i) 
59.             : 
60.             : start); 
61.   
62.     if ((j!=30105)||(k!=20090)||(l!=10040)||(m!=(0x33e482255b70f0a5))||(n!=(0x1dc05000))){ 
63.         time(&timer); 
64.         tm_info = localtime(&timer); 
65.         strftime(buffer, 26, "%d-%m-%Y %H:%M:%S", tm_info); 
66.         fprintf(fp,"%s Error in Iteration = %d Expected : j=30105 k=20090 l=10040 m=0x33e482255b70f0a5 

n=0x1dc05000" 
67.                 "Actual : j : %llu k : %llu l : %llu m : 0x%llx n : 0x%llx\n",buffer,(35200000-it),j,k,l,m,n); 
68.         fflush(fp); 
69.     } 
70.   
71.     it--; 
72.     if(it!=0) goto inf; 
73.     fclose(fp); 
74.     return 0; 
75. } 

 
 

FPU 
 

 
 

1. #include <stdio.h> 
2. #include <stdint.h> 
3. #include <time.h> 
4.   
5. register uint64_t  i    asm ("r28"); 
6.   
7. __attribute__(( aligned(64) )) int main(int argc,char** argv) { 
8.   
9.     time_t timer; 
10.     char buffer[26]; 
11.     struct tm* tm_info; 
12.   
13.     register double    j    asm ("d8"); 
14.     register double    k    asm ("d9"); 
15.     register double    l    asm ("d10"); 
16.     register double    t1   asm ("d11"); 
17.     register double    t2   asm ("d12"); 
18.     register double    t3   asm ("d13"); 
19.     register double    t4   asm ("d14"); 
20.   
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21.     register double    x1   asm ("d15"); 
22.     register double    x2   asm ("d16"); 
23.     register double    x3   asm ("d17"); 
24.   
25.     FILE *fp = fopen("log-fpu.txt", "a"); 
26.     if (fp == NULL) { 
27.         printf("Error opening file!\n"); 
28.         return -1; 
29.     } 
30.     fprintf(fp,"Foo\n"); 
31.   
32.     i = 1100000000; 
33.     j = 16.250;         // d8 
34.     k = 56364902889004.243; // d9 
35.     l = 12.133;         // d10 
36.     t1 = 0.0;       // d11 
37.     t2 = 0.0;       // d12 
38.     t3 = 0.0;       // d13 
39.     t4 = 1.25;      // d14 
40.   
41.     x1 = 0.0;       // d15 
42.     x2 = 0.0;       // d16 
43.     x3 = 0.0;       // d17 
44.   
45.     asm volatile("nop;nop;nop;nop;nop;nop;nop;nop"); 
46. start: 
47.     asm volatile("fmadd  d11,d9,d14,d8"); 
48.     asm volatile("fmadd  d12,d10,d14,d8"); 
49.     asm volatile("fdiv   d13,d11,d12"); 
50.     asm volatile("fsqrt  d13,d13"); 
51.   
52.     asm volatile("fmadd  d15,d9,d14,d8"); 
53.     asm volatile("fmadd  d16,d10,d14,d8"); 
54.     asm volatile("fdiv   d17,d15,d16"); 
55.     asm volatile("fsqrt  d17,d17"); 
56.   
57.     asm volatile("fcmp d13,d17"); 
58.     asm volatile goto ("b.ne %l[error];" 
59.             : 
60.             : 
61.             : 
62.             : error); 
63.   
64. cont: 
65.     asm volatile("fadd  d8,d8,d13"); 
66.     asm volatile("fadd  d9,d9,d13"); 
67.     asm volatile("fadd  d10,d10,d13"); 
68.     asm volatile("fadd  d14,d14,d13"); 
69.   
70.     asm volatile("sub x28,x28,1"); 
71.     asm volatile goto ("cbnz %0, %l[start];" 
72.             : 
73.             : "r" (i) 
74.             : 
75.             : start); 
76.   
77.   
78.     return 0; 
79.   
80. error: 
81.     time(&timer); 
82.     tm_info = localtime(&timer); 
83.     strftime(buffer, 26, "%d-%m-%Y %H:%M:%S", tm_info); 
84.     fprintf(fp,"%s SDC --> %f != %f\n",buffer,t3,x3); 
85.     fflush(fp); 
86.     goto cont; 
87.   
88. } 
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Pipeline 

 
 
 

1. #include <stdio.h> 
2. #include <stdint.h> 
3. #include <time.h> 
4.   
5. #define size_init 255 
6.   
7. register uint64_t  i    asm ("r28"); 
8. register uint64_t  *arr asm ("r27"); 
9. register uint64_t  k    asm ("r26"); 
10. register uint64_t  size asm ("r25"); 
11. register uint64_t  r24  asm ("r24"); 
12. register uint64_t  r22  asm ("r22"); 
13. register uint64_t  r21  asm ("r21"); 
14. register uint64_t  r20  asm ("r20"); 
15.   
16. register double   *arr2 asm ("r19"); 
17.   
18. __attribute__(( aligned(64) )) int main(int argc,char** argv) { 
19.   
20.     time_t timer; 
21.     char buffer[26]; 
22.     struct tm* tm_info; 
23.   
24.     uint64_t array[size_init+1]; 
25.     double array2[size_init+1]; 
26.   
27.     register double    d8    asm ("d8"); 
28.     register double    d9    asm ("d9"); 
29.     register double    d10   asm ("d10"); 
30.     register double    d11   asm ("d11"); 
31.     register double    d12   asm ("d12"); 
32.     register double    d13   asm ("d13"); 
33.     register double    d14   asm ("d14"); 
34.     register double    d15   asm ("d15"); 
35.     register double    d16   asm ("d16"); 
36.     register double    d17   asm ("d17"); 
37.     register double    d18   asm ("d18"); 
38.   
39.     FILE *fp = fopen("log-pipeline.txt", "a"); 
40.     if (fp == NULL) { 
41.         printf("Error opening file!\n"); 
42.         return -1; 
43.     } 
44.     fprintf(fp,"Pipeline\n"); 
45.   
46.     arr = array; 
47.     arr2 = array2; 
48.   
49.     i = 3000000; //1100000000; 
50.     d8 = 16.250; 
51.     d9 = 56364902889004.243; 
52.     d10 = 12.133; 
53.     d11 = 0.0; 
54.     d12 = 0.0; 
55.     d13 = 0.0; 
56.     d14 = 1.25; 
57.     d15 = 0.0; 
58.     d16 = 0.2; 
59.     d17 = 0.0; 
60.   
61.     r24 = 29; 
62.     r22 = 27; 
63.     r21 = 22; 
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64.     r20 = 16; 
65.   
66.     size = 0; 
67. prev: 
68.     k = arr[size]; 
69.     arr[size] = 0x0; 
70.     d11 = arr2[size]; 
71.     arr2[size]= 0.01; 
72.     if (++size==size_init) goto next; 
73.     goto prev; 
74. next: 
75.   
76. prev1: 
77.     k = arr[size]; 
78.     arr[size] = 0x0; 
79.     d11 = arr2[size]; 
80.     arr2[size]= 0.01; 
81.     if (!--size) goto next1; 
82.     goto prev1; 
83. next1: 
84.   
85. prev2: 
86.     k = arr[size]; 
87.     arr[size] = 0x0; 
88.     d11 = arr2[size]; 
89.     arr2[size]= 0.01; 
90.     if (++size==size_init) goto next2; 
91.     goto prev2; 
92. next2: 
93.   
94. start: 
95.     asm volatile("fmadd d11,d9,d14,d8"); 
96.   
97.     size = 0; 
98. prev3: 
99.     d18 = arr2[size]; 
100.     arr2[size] = d9 - (double) (size + i); 
101.     k = arr[size]; 
102.     arr[size] = (size * i) ^ (size - i); 
103.     if (++size==25) goto next3; 
104.     goto prev3; 
105. next3: 
106.   
107.     asm volatile("fmadd d12,d10,d14,d8"); 
108.   
109.     size = 25; 
110. prev4: 
111.     d18 = arr2[size]; 
112.     arr2[size] = d9 - (double) (size + i); 
113.     k = arr[size]; 
114.     arr[size] = (size * i) ^ (size - i); 
115.     if (++size==49) goto next4; 
116.     goto prev4; 
117. next4: 
118.   
119.     asm volatile("fdiv d13,d11,d12"); 
120.   
121.     size = 49; 
122. prev5: 
123.     d18 = arr2[size]; 
124.     arr2[size] = d9 - (double) (size + i); 
125.     k = arr[size]; 
126.     arr[size] = (size * i) ^ (size - i); 
127.     if (++size==73) goto next5; 
128.     goto prev5; 
129. next5: 
130.   
131.     size = 73; 
132. prev6: 
133.     d18 = arr2[size]; 
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134.     arr2[size] = d9 - (double) (size + i); 
135.     k = arr[size]; 
136.     arr[size] = (size * i) ^ (size - i); 
137.     if (++size==97) goto next6; 
138.     goto prev6; 
139. next6: 
140.   
141.     asm volatile("fsqrt  d13,d13"); 
142.   
143.     size = 73; 
144. prev7: 
145.     d18 = arr2[size]; 
146.     arr2[size] = d9 - (double) (size + i); 
147.     k = arr[size]; 
148.     arr[size] = (size * i) ^ (size - i); 
149.     if (++size==121) goto next7; 
150.     goto prev7; 
151. next7: 
152.   
153.     asm volatile("fmadd  d15,d9,d14,d8"); 
154.   
155.     size = 121; 
156. prev8: 
157.     d18 = arr2[size]; 
158.     arr2[size] = d9 - (double) (size + i); 
159.     k = arr[size]; 
160.     arr[size] = (size * i) ^ (size - i); 
161.     if (++size==145) goto next8; 
162.     goto prev8; 
163. next8: 
164.   
165.     asm volatile("fmadd  d16,d10,d14,d8"); 
166.   
167.     size = 145; 
168. prev9: 
169.     d18 = arr2[size]; 
170.     arr2[size] = d9 - (double) (size + i); 
171.     k = arr[size]; 
172.     arr[size] = (size * i) ^ (size - i); 
173.     if (++size==169) goto next9; 
174.     goto prev9; 
175. next9: 
176.   
177.     asm volatile("fdiv   d17,d15,d16"); 
178.   
179.     size = 169; 
180. prev10: 
181.     d18 = arr2[size]; 
182.     arr2[size] = d9 - (double) (size + i); 
183.     k = arr[size]; 
184.     arr[size] = (size * i) ^ (size - i); 
185.     if (++size==193) goto next10; 
186.     goto prev10; 
187. next10: 
188.   
189.     asm volatile("fsqrt  d17,d17"); 
190.   
191.     size = 193; 
192. prev11: 
193.     d18 = arr2[size]; 
194.     arr2[size] = d9 - (double) (size + i); 
195.     k = arr[size]; 
196.     arr[size] = (size * i) ^ (size - i); 
197.     if (++size==217) goto next11; 
198.     goto prev11; 
199. next11: 
200.   
201.     asm volatile("fcmp d13,d17"); 
202.   
203.     size = 217; 
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204. prev12: 
205.     d18 = arr2[size]; 
206.     arr2[size] = d9 - (double) (size + i); 
207.     k = arr[size]; 
208.     arr[size] = (size * i) ^ (size - i); 
209.     if (++size==241) goto next12; 
210.     goto prev12; 
211. next12: 
212.   
213.     asm volatile goto ("b.ne %l[error1];" 
214.             : 
215.             : 
216.             : 
217.             : error1); 
218.   
219. cont1: 
220.   
221.     size = 0; 
222. prev13: 
223.     if ( arr[size] != ((size * i) ^ (size - i))) goto error2; 
224. cont2: 
225.     if ( arr2[size] != (d9 - (double) (size + i))) goto error3; 
226. cont3: 
227.     if (++size==241) goto next13; 
228.     goto prev13; 
229. next13: 
230.   
231.     asm volatile("fadd  d8,d8,d13"); 
232.     asm volatile("fadd  d9,d9,d13"); 
233.     asm volatile("fadd  d10,d10,d13"); 
234.     asm volatile("fadd  d14,d14,d13"); 
235.   
236.     asm volatile("sub x28,x28,1"); 
237.     asm volatile goto ("cbnz %0, %l[start];" 
238.             : 
239.             : "r" (i) 
240.             : 
241.             : start); 
242.   
243.     return 0; 
244.   
245. error1: 
246.     time(&timer); 
247.     tm_info = localtime(&timer); 
248.     strftime(buffer, 26, "%d-%m-%Y %H:%M:%S", tm_info); 
249.     fprintf(fp,"%s SDC --> %f != %f\n",buffer,d13,d17); 
250.     fflush(fp); 
251.     goto cont1; 
252. error2: 
253.     time(&timer); 
254.     tm_info = localtime(&timer); 
255.     strftime(buffer, 26, "%d-%m-%Y %H:%M:%S", tm_info); 
256.     fprintf(fp,"%s SDC --> %llx != %llx\n",buffer,arr[size],((size * i) ^ (size - i))); 
257.     fflush(fp); 
258.     goto cont2; 
259. error3: 
260.     time(&timer); 
261.     tm_info = localtime(&timer); 
262.     strftime(buffer, 26, "%d-%m-%Y %H:%M:%S", tm_info); 
263.     fprintf(fp,"%s SDC --> %f != %f\n",buffer,arr2[size],(d9 - (double) (size + i))); 
264.     fflush(fp); 
265.     goto cont3; 
266. } 
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ANNEX ΙΙ 

This annex is part of a subsection of the ARMv8 Manual [32] that describes some of the 
architectural and microarchitectural events we counted with help of the performance 
counters while developing the diagnostic micro-viruses along with their associated event 
numbers and mnemonics. 
 

I.   0x001, L1I_CACHE_REFILL, Attributable Level 1 instruction cache refill 
 

The counter counts Attributable instruction memory accesses that cause a refill 
of at least the Level 1 instruction or unified cache. This includes each instruction 
memory access that causes a refill from outside the cache. It excludes accesses 
that do not cause a new cache refill but are satisfied from refilling data of a 
previous miss. A refill includes any access that causes data to be fetched from 
outside the cache, even if the data is ultimately not allocated into the cache. For 
example, data might be fetched into a buffer but then discarded, rather than 
being allocated into a cache. These buffers are treated as part of the cache. The 
counter does not count cache maintenance instructions. 

 
II.   0x003, L1D_CACHE_REFILL, Attributable Level 1 data cache refill 

 
The counter counts each Attributable memory-read operation or Attributable 
memory-write operation that causes a refill of at least the Level 1 data or unified 
cache from outside the Level 1 cache. Each access to a cache line that causes a 
new linefill is counted, including those from instructions that generate multiple 
accesses, such as load or store multiples, and PUSH and POP instructions. In 
particular, the counter counts accesses to the Level 1 cache that cause a refill 
that is satisfied by another Level 1 data or unified cache, or a Level 2 cache, or 
memory. A refill includes any access that causes data to be fetched from outside 
the cache, even if the data is ultimately not allocated into the cache. For 
example, data might be fetched into a buffer but then discarded, rather than 
being allocated into a cache. These buffers are treated as part of the cache.  
The counter does not count: 

• Accesses that do not cause a new Level 1 cache refill but are satisfied 
from refilling data of a previous miss. 

• Accesses to a cache line that generate a memory access but not a new 
linefill, such as write-through writes that hit in the cache. 

• Cache maintenance instructions. 
• A write that writes an entire line to the cache and does not fetch any data 

from outside the Level 1 cache, for example: 
— A write of a full cache line from a coalescing buffer. 
— A DC ZVA operation. 

• A write that misses in the cache, and writes through the cache without 
allocating a line. 

 
III.   0x004, L1D_CACHE, Attributable Level 1 data cache access 

 
The counter counts each Attributable memory-read operation or Attributable 
memory-write operation that causes a cache access to at least the Level 1 data 
or unified cache. Each access to a cache line is counted including the multiple 
accesses of instructions, such as LDM or STM. Each access to other Level 1 
data or unified memory structures, for example refill buffers, write buffers, and 
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write-back buffers, is also counted. The counter does not count cache 
maintenance instructions. 

 
IV.   0x011, CPU_CYCLES, Cycle 

 
The counter increments on every cycle. All counters are subject to changes in 
clock frequency, including when a WFI or WFE instruction stops the clock. This 
means that it is CONSTRAINED UNPREDICTABLE whether or not 
CPU_CYCLES continues to increment when the clocks are stopped by WFI and 
WFE instructions. 

 
V.   0x014, L1I_CACHE, Attributable Level 1 instruction cache access 

 
The counter counts Attributable instruction memory accesses that access at least 
the Level 1 instruction or unified cache. Each access to other Level 1 instruction 
memory structures, such as refill buffers, is also counted. 

 
VI.   0x016, L2D_CACHE, Attributable Level 2 data cache access 

 
The counter counts Attributable memory-read or Attributable memory-write 
operations, that the PE made, that access at least the Level 2 data or unified 
cache. Each access to a cache line is counted including refills of and write-backs 
from the Level 1 data, instruction, or unified caches. Each access to other Level 
2 data or unified memory structures, such as refill buffers, write buffers, and 
write-back buffers, is also counted. 

  The counter does not count: 
• Operations made by other PEs that share this cache. 
• Cache maintenance instructions. 

 
VII.   0x017, L2D_CACHE_REFILL, Attributable Level 2 data cache refill 

 
The counter counts Attributable memory-read or Attributable memory-write 
operations, that the PE made, that access at least the Level 2 data or unified 
cache and cause a refill of a Level 1 data, instruction, or unified cache or of the 
Level 2 data or unified cache. Each read from or write to the cache that causes a 
refill from outside the Level 1 and Level 2 caches is counted. 
A refill includes any access that causes data to be fetched from outside the 
cache, even if the data is ultimately not allocated into the cache. For example, 
data might be fetched into a buffer but then discarded, rather than being 
allocated into a cache. These buffers are treated as part of the cache. 
For example, the counter counts: 

• Accesses to the Level 2 cache that cause a refill that is satisfied by 
another Level 2 cache, a Level 3 cache, or memory. 

• Refills of and write-backs from any Level 1 data, instruction or unified 
cache that cause a refill from outside the Level 1 and Level 2 caches. 

• Accesses to the Level 2 cache that cause a refill of a Level 1 cache from 
outside of the Level 1 and Level 2 caches, even if there is no refill of the 
Level 2 cache. 

The counter does not count, as events on this PE: 
• Accesses that do not cause a new cache refill but are satisfied from 

refilling data of a previous miss. 
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• Accesses to the Level 2 cache that generate a memory access but not a 
new linefill, such as write-through writes that hit in the Level 2 cache. 

• Accesses to the Level 2 cache that are part of a Level 1 cache refill or 
write-back that hit in the Level 2 cache so do not cause a refill from 
outside of the Level 1 and Level 2 caches. 

• Operations made by other PEs that share this cache. 
• Cache maintenance instructions. 
• A write that writes an entire line to the cache and does not fetch any data 

from outside the Level 1 and Level 2 caches, for example: 
— A write-back from a Level 1 cache to a Level 2 cache. 
— A write from a coalescing buffer of a full cache line. 
— A DC ZVA operation. 

• A write that misses in the cache, and writes through the cache without 
allocating a line. 

 
VIII.   0x018, L2D_CACHE_WB, Attributable Level 2 data cache write-back 

 
The counter counts every write-back of data from the Level 2 data or unified 
cache that occurs as a result of an operation by this PE. It counts each write-
back that causes data to be written from the Level 2 cache to outside the Level 1 
and Level 2 caches. For example, the counter counts: 

• A write-back that causes data to be written to a Level 3 cache or memory. 
• A write-back of a recently fetched cache line that has not been allocated to 

the Level 2 cache. 
Each write-back is counted once, even if it requires multiple accesses to 
complete the write-back. 
It is IMPLEMENTATION DEFINED whether the counter counts: 

• A transfer of data from the Level 2 cache to outside the Level 1 and Level 
2 cache made as a result of a coherency request. 

• Write-backs made as a result of Cache maintenance instructions. 
The counter does not count: 

• The invalidation of a cache line without any write-back to a Level 3 cache 
or memory. 

• Writes from the PE or Level 1 data or unified cache that write through the 
Level 2 cache to outside the Level 1 and Level 2 caches. 

• Transfers of data from the Level 2 cache to a Level 1 cache, to satisfy a 
Level 1 cache refill. 

An Unattributable write-back event occurs when a requestor outside the PE 
makes a coherency request that results in write-back. If the cache is shared, then 
an Unattributable write-back event is not counted. If the cache is not shared, then 
the event is counted. 
It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is 
not the result of the eviction of a line from the cache, is counted. For example, 
this applies when the PE determines streaming writes to memory and does not 
allocate lines to the cache, or by a DC ZVA operation. 
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