NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Re-engineering Nomothesi@ APl Web Application:
Improvements and Support of new features

Georgios C. Apostolopoulos

Supervisors: Manolis Koubarakis, Professor
llias Chalkidis, PhD Candidate

ATHENS

JUNE 2018

EONIKO KAI KAIMOAIZTPIAKO NANENIZTHMIO AOGHNON

2XOAH OETIKQN ENIZTHMON
TMHMA NAHPO®OPIKHZ KAI THAEMNIKOINQNIQN

NTYXIAKH EPTAZIA

Avadiopydvwon Tng AladikTuakig NMAat@dépuag Nopobeoi@
API: BeAtiwoeig kai MpooBnkn véwv AsiToupyiwv

Mewpylog X. ATTOOTOAGTTOUAOG

EmiBAérovreg: MavoAng Kouptrapdkng, Kabnyntrg
HAiag XaAkidng, Ytmowneiog AidAKTwp

AOHNA

IOYNIOZ 2018

BSc THESIS

Re-engineering Nomothesi@ APl Web Application: Improvements and Support of new
features

Georgios C. Apostolopoulos
S.N.: 1115201200006

Supervisors: Manolis Koubarakis, Professor
llias Chalkidis, PhD Candidate

NTYXIAKH EPTAZIA

Avadiopydvwaon g Aladiktuaknig MNMAat@dpuag NopoBeoi@ API: BeATiwaoeig Kal
MpocBrkn VEWV AEITOUpYIWV

lewpylog X. ATTooTOAOTTOUAOG
A.M.: 1115201200006

EmiBAétTOovTEG: MavoAng Kouptrapdkng, Kabnyntig
HAiag XaAkidng, Ytmowneiog AIdAKTwp

ABSTRACT

The purpose of this thesis is to radically re-engineer Nomothesi@ API web platform and
to add new features. The starting point was the previous works titled "Nomothesi@:
Greek Legislation Platform" (2014) and "Nomothesi@ APIl: Re-engineering the
Electronic Platform" (2015). The existing platform, based on a consolidated legal
XML/RDF template, presented inaccuracies in both the presentation of legal documents
and the functionality it provided to the user. This work emphasizes on replacing the
storage of legal documents in classes, by a N-ary tree structure in each level. This
replacement, as well as all the other minor modifications, were made possible as a
result of the new ontology that was created, always based on the European Legislation
Identifier (ELI). Simultaneously, features were added to extend user's interaction with
the application and to transmit a larger amount of information. The most important
addition is the insertion of entities that allow the user to obtain further information about
a person, a place, etc. Thus, this thesis contributes more to the European Union's effort
to enhance e-Government by its member states, through the open publication of the
whole of the Greek legislative act. It essentially develops a new way of storing
information, as it is derived from the RDF data schema and it introduces innovative
ideas on how to make use of it, providing additional features.

SUBJECT AREA: Semantic Web, Linked Data, Artificial Intelligence, Web Applications

KEYWORDS: RDF/OWL Metadata, Legal Document, E-Government, XML,
N-ary Tree, Entities, References

NEPIAHWYH

2KOTTOG TNG OUYKEKPIYEVNG €pyaoiag e€ival n pIdik avadlopydvwon Tou TPOTTOU
Aeitoupyiag Tng diadiktuakng TTAat@opuag Nomothesi@ APl kai n TpooBnkn véwv
Asitoupyiwv. Bdon ekkivnong atmoTéAECAV Ol TTPOYEVEOTEPEG €EPYAOIEG ME TITAOUG
“‘NopoBeai@: MAatpopua yia Tnv EAAnvikA vouoBeaia” (2014) [1] kai “NopoBeci@ API:
Avadiopydvwon TG HAektpovikng TAateopuag” (2015) [2]. H dn umdpyouoa
NAEKTPOVIKA TTAQT@QOPMA, N oTroia oTtnpifeTal o€ €va evotroinuévo vouikd XML/RDF
TPOTUTIO, TTapouaciale TTpoBARuara, TG00 OTNV TTAPOUCIACN TWV VOUIKWY gyypAaQwy,
000 Kal OTIG AEITOUPYIEG TTOU TTAPEIXE OTO XPNOTN. ZTNV £pyacia auTh, 660nke Eupacn
oTnNV avrikataotaon TG amoBnikeuong o€ KAAOEIG TOU VOMPIKOU gyypd@ou, ato £va
ouoTnua 1o oTroio atroTeAsital atrd pia devdpikh doun N KOUBwvY o€ KABe eTTiTred0. 2TNV
TTpaypaTotroinon autig TG oAAayAg aAAG kal OAwvV TwV UTTOAOITTWV HIKPOTEPWV
TPOTTOTTOINCEWY, OUVEBOAE n véa ovioAoyia TTou dnuioupyndnke, €Xoviag TTAvVTa wg
Baon 1o European Legislation Identifier (ELI) [3]. Tautdxpova, TTpooTEONKaV AEITOUPYiES
TTOU OKOTTO €ixav va emmekTeivouv 10 BaBud aAAnAemmidpacng Tou xproTn ME TNV
EQApPOYN Kal va Tou peTaddoouv TTANBwpa TTAnpogopiwyv. H BaoikdTtepn TTPOoOAKN
TToU €AaBE Xwpa €ival auT TwV OVTOTATWY, Ol OTTOIEG ETTITPETTOUV OTO XPHOTN va AGBel
TTANPOYOPIa TTEPAITEPW TWV VOPIKWY BEUATWY, OXETIKA WE KATTOIO TTPOCWTTO, KATTOIOV
TOTTO KATT. Katd Tov TpOTTO auTo, N gpyacia ouuBAaAel eupUTepa oTnv TTPOCTTABEIO TNG
EupwTtraikig ‘Evwong yia evioxuon TnNG nAEKTPOVIKNAG dlakuBEpvnong atrd Ta KPATN-PEAN
NG [4], p€ow TNG avoixTg dnuoacicuong TNG EAANVIKNAS VOUOBETIKAG TTPAENG OTO GUVOAO
TNG. YTTOQEIKVUEI, OUCIAOTIKA, £vav VEO TPOTTO aTTOBNKEUONG TTANPOYOPIAG, OTTWG QUTA
AapBaverar amdé 10 RDF oxAua Ocdopévwv Kal €I0AYEl KAIVOTOUES I0EEC yIa TNV
aglotroinon NG, TTaPEXOVTAG ETTITTAEOV AEITOUPYIEG OTO XPNOTN.

OEMATIKH TMEPIOXH: Xnuaocioloyikdg 016G, Alacuvdedepéva Aecdopéva, Texvnth
Nonuoouvn, E@apupoyég AladikTuou

AEZEIX KAEIAIA: RDF/OWL Metadedopéva, Nopikd ‘Eyypago, HAEKTPOVIKNA
AlakuBépvnon, XML, Aévdpo N kéupwyv, OvtoTnTeg, AVaQOopES

AKNOWLEDGMENTS

To my family, for being my personal life coach since the day | was born. Thank you for
your unceasing encouragement and support!

Having finished this thesis, | would like to express my sincere gratitude to my supervisor
Prof. Manolis Koubarakis for his assistance and careful guidance through the whole
writing process.

| am also grateful to llias Chalkidis, PhD Candidate and Researcher in the Dpt. of
Informatics and Telecommunications of National Kapodistrian University of Athens. | am
thankful for his choice to believe in me and allow me to be a part of the project he has
started.

Finally, | place on record my sense of gratitude to one and all, who directly or indirectly,
have lemt their hand in this venture.

CONTENTS

1. INTRODUCTION..... .o sssr s sss s s s mmm s s e s e s e e n e e nnmmmmnnnnnnnns 11
1.1 Nomothesi@ in contemporary SocCiety.........cccccciiiiiiiiimmmne 11
1.2 Objectives of the thesis........ccccceieeiiii i 1
1.3 Nomothesi@ ONtology.......cccccimrriiiiiiiiierrrr 12
1.4 Thesis StrUCLUre........ee s s n s e nes 13
2. N-ARY TREE IMPLEMENTATION.......ooiieeiiemmrre s s sss s sssmmssns s s s s s s s s s s s s s e e s e e e e ennnnnes 14
2.1 Old storing SYyStem iSSUES........ccccirmmmmrrriiiiiiissssssrrrr s an s s n s annnas 14
2.2 How is a N-ary Tree beneficial........cccooorrreiiirie e, 17
2.3 Tree Implementation........ccccciiiiiiiiiiii i ——— 19
2.3.1 LegislatioNTreeNOde.coooiiiiiiiee e 20
2.3.2 Brief explanation of the two main functions..............cccccooiiiiiiiiinii s 21
2.3.2.1 The getByld(...) method.............coooiiiiiiiii 21
2.3.2.2 The getUpdatedByld(...) method..........cccccoiiiiiiiiiiiii e 22

2.3.3 Modification NOAES........coiviiiiiiiiiieeeeeeeeeeeee ettt aeaees 22
2.3.3.1 Modification type: INSertion.............ooovviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 23
2.3.3.2 Modification type: SUbStIUtION............oeeiiiiiie 23

B R 0 N 25
3.1 What is a reference and how it WOrks.........cccccoiiiiiiiiininnnnnnnnnsnrcsss e 25
B 2 111 A o 1= 26
3.2.1 Person €Ntycoueiiieiiiiiee e 26
3.2.2 Landmark @Nntity.........oooiiiiiiiii e 27
3.2.3 Geopolitical €NtitY.......cceeeieeiee e 28
3.2.4 0Organization €Ntity...........eeeiiiiiiii 29
3.3 ENtity QUEIIES. ... eeeeeiecre i cceie s ssre s s s e s s s s ssnn e s e e s s s s s mmnmnn e e e e e e s 30
3.4 Entity search page........cccceiiiiiiiiiiieiinn s 32
4. MINOR ADDITIONS AND NEW FUNCTIONALITIES.........ccccomrrrrrnnnnnmnnenenennnnnnes 34
5. GENERAL MODIFICATIONS.......cooiiiiiiiiicccssrrree s ssssssssssssssse s s sssssssssssssssssssssssnsnnnnnn 39
6. CONCLUSION.......cooi i sssss s mmn e s e e s s s ammnn e e e e e e s s s s s nnnnnnnnnnnns 42
ABBREVIATIONS — ACRONYMS.......coi i cccmmrrrrrrrrssssssssssssss s s sssssssssssssnsssssssssssssssnsssnns 43
TECHNOLOGIES — LIBRARIES USED.......ccooommiririiissmnrss s s ssssssssssssnnnns 44

REFERENCGES........ooo et 45

LIST OF FIGURES

Figure 1: Nomothesi@ Ontology for the Greek legislation..............cccccoeiiiiiiiiiiineenn. 12
Figure 2: Legal Document representation in unsorted format..............ccccviieeinnnnnn. 18
Figure 3: Legal Document representation after being sorted............ccccccvveviiiiiiininnnn.en. 18
Figure 4: Simple modification in tree representation.............ccccoeeviiii 19
Figure 5: Modification insertion eXample.............ooooiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 23
Figure 6: Legislation Tree Node before and after substitution................ccccccciiiiiii. 24
Figure 7: Reference example...........ooooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee et 25
Figure 8: Person entity @Xample Page.......coooiiiiiiiiiiiii e 27
Figure 9: Landmark entity example page..........coooviiiiiiiiiiii it 28
Figure 10: Geopolitical entity example Page........ccoooiiiiiiiiiiiiiii e 29
Figure 11: Organization entity sample page............cccoooo i 30
Figure 12: Entity SEArch Page.......coo o 33
Figure 13: References found inside the document sample page...........ccceeeeiieiieeene. 34
Figure 14: Legal resources' references to the current legal document........................... 35
Figure 15: Ministry stats graph............oooi i 36
Figure 16: Ministries in signers tab (page screenshot)............cccccoieiiiiiiiiiiiiiiiiiiiis 37
Figure 17: Insertion in tiMeliNe............ooo i 38
Figure 18: Substitution in tiMeliNe.............cooiiii e 38
Figure 19: PDF file SAMPIE........uuuiii e e e e 39
Figure 20: Statistics graph sample..........ooooii 40
Figure 21: Modification appearance in the document..............cccooovviiiiiiiiiiiiiiic, 40

Figure 22: Legal document main web page..........cccoooiiiiiiiiiiiiii 41

LIST OF TABLES

Table 1: Legislation Tree Node attributes.............cccooiiiiiiiiiiiiiii e 20
Table 2: Greek Local Government architecture based on "Kallikratis Plan"................... 28
Table 3: Libraries used for the bUIlders.............cooioiiiiii e 39
Table 4: Table of abbreviations..............oo 43

Table 5: Libraries used in the project............ooo i 44

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

1. INTRODUCTION

1.1 Nomothesi@ in contemporary society

Nowadays, it has been clarified in many ways, that law enforcement can be assisted by
technology [5]. Observing the technological growth over the past decades, anyone can
understand the necessity of developing online platforms and tools that simplify
legislation services. Therefore, legislative act should not be used only by lawyers, but
also support a wider group of people in their jobs and, most importantly, in their lives.
Nomothesi@'s objective has been our ambition to establish justice, starting by bringing
the public closer to legislation.

1.2 Objectives of the thesis

The main objective of this thesis is the implementation of a database-free web
application, based upon Linked Data and the Semantic Web [6]. A previous platform
had been developed in order to achieve this goal, but even though it was on the right
direction, the details were insufficient at some points, leading to incorrect outcomes.

To overcome this problem, we decided to develop a more efficient storing system for
the law components, because the old one, in which every part of the law belonged to a
different class, didn't produce the expected results. Therefore, we came up with the idea
of keeping all the components in the same class, in a manner that would maintain its
consistency, but also link them properly. Using a N-ary tree’ seemed to be a reliable
solution, since every law component has its subparts as a list of children nodes and the
component it belongs to as a parent node. The main advantage of this implementation
is that every single part of the law is characterized by the same attributes with its parent
and its children.

Furthermore, we wanted to provide additional information to the user, not only about the
the law, but also about what is referenced in the document. We found it would be useful
for someone to learn details about a person, a place, or even about an organization. For
this purpose, we inserted the concept of the entities. An entity has specific attributes,
depending on what it refers to.

Finally, we focused on adding some new functionalities to the platform and improving
some that didn't work properly. Thus, we have asked ourselves what we'd like to be
included in the application and what is malfunctioning. This motivated us to find
innovative ideas on what a user would need to be offered and how it should be
implemented.

" A tree with no more than N children for each node.

G. Apostolopoulos 1M

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

1.3 Nomothesi@ Ontology

Recently the European Council introduced the European Legislation Identifier (ELI) as a
framework which has to be adopted by the national legal publishing systems in order to
link national legislation with European legislation. ELI proposes a URI schema for the
identification of legal resources on the web and it also provides an OWL ontology, which
is used for expressing metadata of legal documents and legal events. ELI, like MetalLex,
has to be extended to capture the particularities of national legislation systems. In our
project, ELI is used for encoding Greek legislation, expressing its metadata and
analyzing legislative modifications acting upon legal documents [7].

For better undestanding the functionalities mentioned in this thesis, we provide our
ontology's schema. This chart contains basic information for the comprehension of the
manner that data is linked.

Act
Act of Ministerial Cabinet
Agreement
Announcement
Constitution
Decision
EUDirective
GOCRegulation
Legislative Act
Legislative Decree
Mandatory Law
Presidential Decree
Royal Decree

LegalResource

elihas_part eli:cites elizhas_part

BibliographicCitation Container

leg:has_reference

Reference

leg:relevant for

Nomothesi(@ elizpublished_in

GovernmentGazette

Landmark

published by

Person Organization

Paragraph

elihas part lizamends

elichas part
\-‘ LegislativeModification

Figure 1: Nomothesi@ Ontology for the Greek legislation

G. Apostolopoulos 12

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

1.4 Thesis structure

This thesis is separated into six chapters, with the first and the last one being the
introduction and the conclusion respectively. Chapter B refers to the N-ary tree and
analyzes both the issues that the old implementation had and how the tree deals with
them. Finally, it scrutinizes its implementation. Chapter C mentions the entities,
clarifying their necessity, their categories and how they are developed in terms of code.
Chapters D and E make reference to additions and modifications that have been made,
with regard to minor, but important, functionalities.

G. Apostolopoulos 13

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

2. N-ARY TREE IMPLEMENTATION

In this chapter, we will be discussing the necessity of replacing the old storing method
by a new one which will be based on a N-ary tree. More precisely, we will mention the
insufficiencies of the previous storage system and we will explain in detail how the tree
will help us overcome those issues. Finally, we will examine the implementation of the
tree in terms of code.

2.1 Old storing system issues

The previous storing system had been keeping information in classes which had been
different for every subpart type. An Article, for example, belonged to a different class
than a Paragraph, a Part was a different class than a Chapter and so on. However, we
have noticed that apart from the different sense of those legal resource components,
the main information they hold is the same and they can easily be differenciated by their
URI.

In most cases, RDF registrations are randomly distributed in the file. It is therefore
difficult for the system to determine whether a class is a part of another. Linked data
need to be carefully structured to let us know the plot of a legal document. The problem
occurs when in the data file, there is a triple that refers to a legal part and then, after
putting references to other components, it refers to this part again. For instance,
consider the following set of triples:

<http://legislation.di.uoa.gr/eli/pd/2016/72/article/1>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/pd/2016/72/article/1/paragraph/1>

<http://legislation.di.uoa.gr/eli/pd/2016/126/article/17>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/pd/2016/126/article/17/paragraph/3>

<http://legislation.di.uoa.gr/eli/law/2016/38/article/1/paragraph/1>
<http://data.europa.eu/eli/ontology#has_part>
<lhttp://legislation.di.uoa.gr/eli/law/2016/38/article/1/paragraph/1/linea/2>

<http://legislation.di.uoa.gr/eli/pd/2016/72/article/1/paragraph/1>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/pd/2016/72/article/1/paragraph/1/linea/1>

We can observe that the first triple sets paragraph 1 to be a part of article 1 of the
Presidential Decree 72 of 2016. A couple of triples follow and then, in the fourth triple,
linea 1 is set to be a part of the previously mentioned paragraph. This, however, seems

hard to manage in terms of code, as we must keep track of every single class instance
in order to add new parts and link them with the existing ones. This explains the lack of

G. Apostolopoulos 14

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

consistency that can occur, especially when we deal with a large amount of randomly
placed RDF registrations.

Furthermore, sorting elements used to be a problematic task because of the fact that
they were not stored using the same class. For example, based on the URI, we can
note that <http://legislation.di.uoa.gr/eli/law/2016/4441/part/1/article/12> would go first
compared to <http://legislation.di.uoa.gr/eli/law/2016/4441/article/3>, because 12 is
before 3 alphabetically. However, even after solving this issue, we realized that this
solution wasn't always reliable. In case we had to compare the URI
<http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2> with the URI of a
subpart, e.g <http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2/article/28>,
the second one would go first. But this leads to a result that doesn't make sense. Taking
into consideration the titles of those URIs can help clarify the issue. More specifically:

<http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2/article/28>

<http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2>
<http://data.europa.eu/eli/ontology#title>

"AIATA=ZEIZ APMOAIOTHTAZ YTMOYPTEIOY MMOAITIEMOY KAl AGAHTIZEMOY
2E EOAPMOIH ZYZTAXEQN EPTAAEIOOHKHZ TOY OOZA"

<http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2/article/28>
<http://data.europa.eu/eli/ontology#title>
"KarapynTikég diatageic”

After printing the sorted legal document we would expect the following outcome:

AIATA=ZEIZ APMOAIOTHTAZ YTOYPIEIOY MOAITIZMOY KAl AGAHTIZMOY
2E EGPAPMOIH ZYZTAZEQN EPITAAEIOOHKHZ TOY OOZA

KatapynTikég dI0TAEEIG

However, we would be given the exact opposite, which, in terms of legal
comprehension, seems meaningless.

Additionally, we must mention the insufficiency that occurs due to the fact that we used
to have the modifications in a different class than the other parts. Modifications are parts
of a legal document and can be a single part of the law, or multiple parts combined. For
instance, a passage can be a modification itself and an article can be a modification
along with its subcomponents. Thus, it is obvious that it would be beneficial to use a
universal class that can be manipulated in any case. Handling modifications can be
quite complicated. For instance, consider the following triple:

G. Apostolopoulos 15

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

<http://legislation.di.uoa.gr/eli/law/2014/4268/article/5/paragraph/2/passage/1/
modification/7>

<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/law/2014/4268/article/5/paragraph/2/passage/1/
modification/7/paragraph/9>

This triple indicates that modification/7 contains paragraph/9. It would be rather easy if
modification had multiple subcomponents, but what happens in case paragraph/9 had
its own children? This scenario is actually what happens almost every time. As a matter
of fact, in our case:

<http://legislation.di.uoa.gr/eli/law/2014/4268/article/5/paragraph/2/passage/1/
modification/7/paragraph/9>

<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/law/2014/4268/article/5/paragraph/2/passage/1/
modification/7/paragraph/9/passage/1>

We would have to find the URI of the modification and then search to find all its
subparts recursively until no other component existed. But even if we could do it
reliably, it would be of great cost to sort all the parts in each level and for every single
modification. Above this issue of course, comes the first problem we have mentioned in
this section, that there can be various triples between the ones that refer to the same
modification. It is worth noting, however, that there could be a reliable solution to this
problem, but it wouldn't be the optimal one, as it is programmatically inefficient to
include multiple different classes in another class. Besides, as we have previously
commented, a modification is nothing more than a legal part along with its subparts.

Another problem that indicates the lack of efficiency of the old storing system is that
there is not a methodical programming way to store the legal parts in their super
classes. To illustrate this issue, notice this single triple:

<http://legislation.di.uoa.gr/eli/agr/2016/1_10.08.2016/article/2>
<http://data.europa.eu/eli/ontology#has_part>
<htto://leaislation.di.uoa.ar/eli/aar/2016/1 10.08.2016/article/2/paraaranh/1>

Now, imagine what a program must do to store paragraph/1 in article/2. The Article
class contains a list of Paragraphs, in which this paragraph must be added. This means
we have to search and find the specific Article class instance, which means we have to
find the parent instance of this article and probably level up further.

There can be a vast amount of cases to link properly every part with its parent class. It
is worth mentioning that in the previous implementation the function that used to deal
with this task cosisted of more than 1200 lines of code, full of if-else statements and
lead to an absolute confusion when debugging was needed. This issue also occured in
the case of the .jsp page that previewed the legal document. This page had to take a
huge number of decisions in order to determine the type of the legal part. The
partitioning, used to be a complicated work, especially for larger legal documents.

G. Apostolopoulos 16

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

Therefore, anyone can realize the necessity of developing a new storing system, which
could definetely reduce coding complexity. Nomothesi@ needed a fresh, brand new
implementation and this is how we came up with the idea of storing the data into a N-ary
Tree.

2.2 How is a N-ary Tree beneficial

The most important characteristic of every component is to be able to keep track of both
its subcomponents and its parent. Having knowledge of those two attributes, we can
easily form the legal document's structure, no matter if it's a Law, a Presidential Decree
or any other type of legislation.

Using a tree, simplifies the comprehension of a legal document's structure. Every time
we need to add a new part to the document, we insert a new node to its predecessor
(a.k.a parent node). The only thing we need to know is the URI of its parent to be able
to insert the new node. This is easily implemented by a simple DFS traversal on the
tree, searching each node for a matching URI with the one of the parent, which is
accessible by a SPARQL query.

For example, the following triple indicates a parent-child relationship between two legal
document's components:

<http://legislation.di.uoa.gr/eli/law/2016/4360/part/2/article/23/paragraph/1>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/law/2016/4360/part/2/article/23/paragraph/1/linea/2>

This triple is accessible by the following query:

select ?p ?c
where {

?p eli:has_part ?c .
}

Two tree nodes will be connected. The first node will represent the parent node and will
have URI <http://legislation.di.uoa.gr/eli/law/2016/4360/part/2/article/23/paragraph/1>.
It will also have a list of children, in which there will be a node possessing the URI
<http://legislation.di.uoa.gr/eli/law/2016/4360/part/2/article/23/paragraph/1/linea/2> and
it will keep track of its parent node.

Thus, it becomes easy to obtain the whole structure of the legal document using a
SPARQL query and then create the tree by inserting new children by implementing DFS
algorithm to search for its parent and add the newly created node to its children list. This
can be helpful, especially if we consider the fact that the document will be finely
structured even if the query returns the ftriples in a totally random order. Thanks to the
DFS algorithm, our system's reliability is granted, as well as efficiency, having noticed
that this algorithm is used in many major web applications and computer softwares.

Furthermore, sorting the legal document is a simple task. There is a node comparator
that compares the URIs of all the nodes that are on the same level and it repeats the
process for the whole tree. For this reason, a legal document can be easily sorted by

G. Apostolopoulos 17

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

ordering the nodes on each level, traversing the tree using DFS. To make it more clear,
we can consider the following unsorted tree:

../pd/2016/133/part/2

.../pd/2016/133/part/2/article/8 .../pd/2016/133/part/2/article/5

...[pd/2016/133/part/2/article/8/paragraph/3 ...[pd/2016/133/part/2/article/8/paragraph/5

Figure 2: Legal Document representation in unsorted format

After being sorted, the legal document will appear like the image below:

...[pd/2016/133/part/2

../pd/2016/133/part/2/article/S .../pd/2016/133/part/2/article/8

...Ipd/2016/133/part/2/article/8/paragraph/3 ...Ipd/2016/133/part/2/article/8/paragraph/5

Figure 3: Legal Document representation after being sorted

As a result of the tree being easily used, it becomes much easier to convert java code
into HTML and show the legal document on a web page. Once the legal resource is
finally sorted, applicating a DFS traversal is enough to preview the whole structure of
the document. The same applies also on the PDF and XML builders, as they follow the
same procedure in order to be generated. Therefore, the 1200 lines of code that we
have noted in the previous section have now been replaced by a function that consists
of only 200 lines approximately. In those lines, we have furthermore managed to reduce

G. Apostolopoulos 18

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

the number of cases and if-else statements by more than 90%. This constitutes a great
achievement, considering the fact that we managed to diminish code complexity
significantly and make our application even faster, preserving reliability and efficiency.

Finally, the tree has changed our entire perception as far as the modifications are
concerned. Modifications, as we have already noted, used to be a separate class, but
now they are simple trees, like every legal document part. It has been our primary goal
to create a universal type of modification that can be applied in any type of legal
resource component. Therefore, a tree seems to be a perfect structure to achieve this
objective. Providing a snapshot of how a modification can be illustrated in the current
implementation, can be quite convincing:

<http://legislation.di.uoa.gr/eli/law/2016/4361/.../modification/1>

<http://legislation.di.uoa.gr/eli/law/2016/4361/.../modification/1/paragraph/3>

<http://legislation.di.uoa.gr/eli/law/2016/4361/.../modification/1/paragraph/3/linea/1>

Figure 4: Simple modification in tree representation

A modification is usually referenced in another legal document's passage. Then, we
form the structure as a tree. Now, the modification has a complete body and the
program is fully aware of the replacement or the Insertion that must be executed. We
will thoroughly explain how modifications work in the next part.

2.3 Tree Implementation

The N-ary tree we have chosen to implement for storing the legal document's structure,
consists basically of one class acting as a tree node. This node contains a list of its
children and also keeps track of its parent. This way, consistency is achieved for the
whole document, as long as the linking of the nodes seems to be a rather simple
process.

On the first part, we will indicate the basic attributes of the node. Additionally we will
mention the modification nodes and in the final subsection we will explain everything
about the tree nodes.

G. Apostolopoulos 19

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

2.3.1LegislationTreeNode

The tree node consists of the following attributes:

Table 1: Legislation Tree Node attributes

String URI

String id

String text

String title

Boolean isMod

List <LegislationTreeNode>
children

List <Reference> references

LegislationTreeNode parent

List <LegislationTreeNode>
previousEditions

String patient

String patientType

String modType

String pubDate

String fek

G. Apostolopoulos

Node's URI (e.g. .../paragraph/2)
Node's id (e.g. .../paragraph/4 has id=4)

Node's text. May be empty (e.g. Sections don't

have text normally)

Node's title. May be empty (e.g. Passages don't

have title normally)

True in case of Modification Node

List of node's children

List of referenced nodes and parts

Node's parent node

Every list item is a tree that contains a previous
edition of this node. When a modification occurs,
a new entry is inserted

For modification nodes. Patient node's URI
For modification nodes. Patient node's type

For modification nodes. Can be either
Substitution or Insertion

For modification nodes. Publication date

The FEK in which the modification is published

20

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

As we have already stated, those attributes can be acquired by a single SPARQL query.
This query is provided below and the parameters decisionType, year and id are used by
a function depending on the user's choice:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>\n+
PREFIX leg: <http://legislation.di.uoa.gr/ontology#>

PREFIX eli: <http://data.europa.eu/eli/ontology#>

SELECT DISTINCT ?part ?parent ?text ?ref ?reflabel ?legreftitle ?start ?end ?
entity ?type ?title ?filename
WHERE({
<http://legislation.di.uoa.gr/eli/decisionType/year/id> eli:has_part+ ?part.
?parent eli:has_part ?part.
?part rdf:type ?type.
OPTIONAL{ ?part leg:has_text ?text.
OPTIONAL{?part leg:has_reference ?ref.
?ref leg:starts ?start.
?ref leg:ends ?end.
?ref rdfs:label ?reflabel.
OPTIONAL({ ?ref eli:title ?legretftitle.}.
?ref leg:relevant_for ?entity. } }.
OPTIONAL({ ?part eli:title ?title.}.
OPTIONAL({ ?part leg:imageName ?filename.}.

}
ORDER BY ?vart

2.3.2 Brief explanation of the two main functions

In the process of developing an efficient tree structure, we have also implemented two
important functions to make sure data is stored correctly in the nodes. The code for
these two is significantly big and, therefore, we will explain briefly their functionalities.

2.3.2.1 The getByld(...) method

This functions forms the legal resource structure, or basically, the tree. The main
iteration behind this work is the following:

e |t executes a SPARQL query that provides the legal parts.
e If the tree is empty, it creates the root node.
e |t creates a node including the information given by the query (e.g. Uri, id, etc.).
e |t searches for the parent of this node inside the tree.
¢ |tinserts the nodes in the parent's children list.
e |t adds the references
In the end, when the process is finished, it sorts the tree.

G. Apostolopoulos 21

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

2.3.2.2 The getUpdatedByld(...) method
This function applies the modifications upon the tree.
e |t creates a list of LegislationTreeNodes which includes modification nodes.

e |t executes a query for the modifications and forms small modification trees,
which adds to the list.

e |t sorts the list.

e For every Ilist item (a.kk.a modification) it applies one of either
addModificationTree(...) function, or replaceModificationTree(...) function.

2.3.3 Modification Nodes

A Modification Node is a LegislationTreeNode that acts as a modification. Therefore, the
boolean value of isMod is set to True. A modification has the structure that is indicated
in the figure 4. Once we have discovered the word “modification” in the URI, then, we
must set True the “isMod” attribute of the node characterized by the wanted uri (e.g.
<http://legislation.di.uoa.gr/eli/law/2016/4361/part/2/article/11/paragraph/1/linea/1/
modification/1>). Every child is returned by a SPARQL query using the eli:has_part (e.g.
<http://legislation.di.uoa.gr/eli/law/2016/4361/part/2/article/11/paragraph/1/linea/1/
modification/1/paragraph/3>). Thus, we can link those two nodes together and every
other node that follows the same pattern, in order to form a little modification tree. This
tree is, nothing more than a N-ary tree like the one we use to form the legal document.

Once the modification tree is ready, the application uses the patient variable of the
node. This is a String variable that keeps the URI of the node in which this modification
is going to act. There are two basic actions that can take place using a modification tree
and they are expressed by the variable modType. It can either be an Insertion, or a
substitution. Both modification types can be explained in three steps. We first notice the
patient's uri. Then, we search the legal document in which the patient is published, to
find the node that is characterized by this URI. We will now explain through code the
different handling for those two modification types.

First of all, we quote the function that we use to search based on the node's URI.

public static LegislationTreeNode search(String name, LegislationTreeNode node) {
if (node.getUri().equals(name)) {
return node;
¥

LegislationTreeNode res = null;
for (LegislationTreeNode ch: node.getChildren()) {
res = search(name, ch);
if(res!=null) {
return res;
¥
}

return null;

G. Apostolopoulos 22

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

2.3.3.1 Modification type: Insertion

Having found the patient's URI we insert the new node in its children's list.

public static void addModificationTree(LegislationTreeNode root,
LegislationTreeNode position, LegislationTreeNode newroot) {
LegislationTreeNode s = search(position.getUri(), root);
s.getChildren().add(newroot);
sortTree(root);

This function adds the modification tree (newroot) to the legal resource's tree (root) in
the patient (position) children's list. By example, consider the following imaginary URIs,
in which, the dotted line expresses the newly added node:

<http://legislation.di.uoa.gr/eli/law/2014/3300/article/23/paragraph/2> which already has
children, is modified by:
<http://legislation.di.uoa.gr/eli/law/2017/2222/article/2/paragraph/1/linea/2/modification/
31> which has part:

<http://legislation.di.uoa.gr/eli/law/2017/2222/article/2/paragraph/1/linea/2/modification/
31/linea/4>

<http://legislation.di.uoa.gr/eli/law/2014/3300/article/23/paragraph/2>

- <http:/Nlegislation.di.uoa.gr/eli/law/2017/2222/article/2/paragraph/1/linea/2/modification/31/linea/4>

Figure 5: Modification insertion example

2.3.3.2 Modification type: Substitution

In this case we want to insert the new node in its patient's parent and remove the
replaced node.

public static void replaceModificationTree(LegislationTreeNode
root, LegislationTreeNode position, LegislationTreeNode newroot) {
LegislationTreeNode s = search(position.getUri(), root);
LegislationTreeNode p = s.getParent();
newroot.getPreviousEditions().add(s);
p.getChildren().add(newroot);
sortTree(root);

G. Apostolopoulos 23

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

This function adds the new modification tree (newroot) to its patient's parent (position)
children list. It also stores in a list the node that will be replaced to keep it as a previous
edition.

In this case we quote two graphs to explain how this process works. First of all, we have
<http://legislation.di.uoa.gr/eli/law/2016/4361/part/2/article/11/paragraph/1/linea/1/
modification/1> which replaces: <http://legislation.di.uoa.gr/eli/law/2003/3205/article/51/
paragraph/3> with: <http://legislation.di.uoa.gr/eli/law/2016/4361/part/2/article/11/
paragraph/1/linea/1/modification/1/paragraph/3> and all its subparts.

<http://legislation.di.uoa.gr/eli/law/2003/3205/article/51>

<http://legislation.di.uoa.gr/eli/law/2003/3205/article/51/paragraph/3>

<http://legislation.di.uoa.gr/eli/law/2003/3205/article/51>

<http://legislation.di.uoa.gr/eli/law/2016/4361/.../modification/1/paragraph/3>

Figure 6: Legislation Tree Node before and after substitution

Being able to apply substitutions but also keep track of the older structure of each legal
resource, permits a better statistical analysis over the general information concerning
the Greek legislative act.

G. Apostolopoulos 24

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

3. ENTITIES

In this chapter, we introduce a brand new concept. The idea was conceived in our effort
to offer more valuable information to the user, which doesn't only specialize in legal data
but also in more general knowledge. Occasionally we have found ourselves wondering
“‘who is this President that signed all those Presidential Decrees?”, or “where is this
place to which this paragraph is refered?”. To answer this kind of questions we
developed the entities and a smart system that provides the information needed from
inside the legal resource. At first, we will mention the types of entities that are currently
supported by our application. Additionally, we will provide basic functionalities that act
upon the entities and finally, we will examine through code how they work. But in the
beginning, we must discuss briefly about the references, which are included in the
node's attributes.

3.1 What is a reference and how it works

A reference, in legal terms, is the act of mentioning or citating one document (as a
statute) in another [8]. References can be highly important to understand the meaning
of the legal resource, especially in cases where the document refers to another without
repeating the statements. Most commonly a reference appears as follows:

ApBpo 18 "Metapatikic Slatdtels”

1. EKKpEWEIG KoTd TV EvaipEn (OYU0G TOU TMOPOVTOS VOPOU PETATAEELS, VIO 71 OTIOIEG EITE EXEL EKBOBEI EYKPITIKN
AMOQUOn cUPQwva PE TI¢ Slatdbelg e map. 1 tou dpBpou 68 tou N. 4002/2011 (A" 180) eite éxel exbobei
cvaKoivwar - TpOoKANan, EiTe, TPoKE PEvoy yia Béoeig oe OTA, £xel umoBAnGEl aitnon umahAfAou pEypL Evav (1)
pva Mply amé T Snpodievon tou vopou, SUvatal va oAokAnpwolv péypt Tig 30.6.2017, olpguva PE TIG
LTYUOUTES, HEXPL TNV EVapEn 10y U0G TOU TIapovTog, SIATALELS.

Figure 7: Reference example

In RDF format, this reference is activated with the triple below:

<http://legislation.di.uoa.gr/eli/law/2016/4440/chapter/1/article/18/paragraph/1/linea/1>
<http://legislation.di.uoa.gr/ontology#has_reference>
<http://legislation.di.uoa.gr/eli/law/2016/4440/chapter/1/article/18/paragraph/1/linea/1/
reference/lea/1>

To enable a hyperlink with this reference we need to know where it starts, where it ends
and it's original label. In this example case, those values are provided by the following
triples:

<http://legislation.di.uoa.gr/eli/law/2016/4440/chapter/1/article/18/paragraph/1/linea/1/
reference/leg/1>

<http://legislation.di.uoa.gr/ontology#starts>

169

G. Apostolopoulos 25

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

<http://legislation.di.uoa.gr/eli/law/2016/4440/chapter/1/article/18/paragraph/1/linea/1/
reference/leg/1>

<http://legislation.di.uoa.gr/ontology#ends>

181

<http://legislation.di.uoa.gr/eli/law/2016/4440/chapter/1/article/18/paragraph/1/linea/1/
reference/leg/1>

<http://legislation.di.uoa.gr/ontology#has_original_label>

"N. 4002/2011"

In order to obtain this valuable information, we have developed a tool to recognize the
references inside the text. Therefore, data is stored in triples and then the application
uses it respectively.

3.2 Entity types
Entities become available using references. An entity can be either:

e A person (e.g. <http://legislation.di.uoa.gr/entity/person/2>)

e Alandmark (e.g. <http://legislation.di.uoa.gr/entity/landmark/38>)

e A geopolitical entity (e.g. <http://legislation.di.uoa.gr/entity/gpe/5>)

e An organization (e.g. <http://legislation.di.uoa.gr/entity/org/2016_2016_18>)
Those entities are connected with references in the RDF schema. For instance:

<http://legislation.di.uoa.gr/eli/pd/2016/14/citation/3/reference/landmark/1>

<http://legislation.di.uoa.gr/ontology#relevant_for>
<htto://leaislation.di.uoa.ar/entitv/landmark/38>

An entity can be found in the document by the entity recognizer and is stored in a triple
in the format above. This means that this particular reference is relevant for the
landmark entity with id=38. The reference keeps track of the previously mentioned
values (start, end, label), with which the landmark is saved in the system.

3.2.1 Person entity

This entity stores data for a specific person. For this reason, we have linked our system
with dbpedia®. The process to retrieve information for the person we are interested in, is
to connect the dbpedia page that keeps it's data to the entity that our system develops.
Thus, after recognizing the reference in the document and linking it with the entity, the
connection occurs like in the instance below:

<http://legislation.di.uoa.gr/entity/person/2>
<http://www.w3.0rg/2002/07/owl#sameAs>
<htto://el.dbbedia.ora/resource/lMookd6TTNC MauAdTTOUAOC>

" See http://el.dbpedia.org/

G. Apostolopoulos 26

http://el.dbpedia.org/

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

The outcome of this specific page is the following:

MAnpoopieg ovidtnrag

Dvopa: MPOKOMHZ NAYAOMNOYAOZ

Tumog: http://legislation.di.uoa.gr/ontology#Person
Emypapn: MPOKOMHZ NAYAONOYAOZ

Tomog Mévunang: http:/fel.dbpedia.org/resource/KaA apata
MoALTike Koy pa: [NA, Néar Anpokpaicr, N.A.

Eupwmalike Moittikd Kop pat: [Evpwmaika Adikd Koppa, EAK]

Figure 8: Person entity example page

3.2.2 Landmark entity

For the landmark entities, we link our system with geographical linked open data®. For
example:

<http://legislation.di.uoa.gr/entity/landmark/2>
<http://legislation.di.uoa.gr/ontology#belongs_to>
<http://geo.linkedopendata.gr/gag/id/9121>

<http://legislation.di.uoa.gr/entity/landmark/2>
<http://legislation.di.uoa.gr/ontology#belongs_to>
<http://legislation.di.uoa.gr/entity/gpe/9121>

This is beneficial because we want to create a relationship between a landmark and a
gpe entity. Therefore, we notice that <http://legislation.di.uoa.gr/entity/landmark/2>, also
belongs to a geopolitical entity developed by our system.

A sample page for the landmark appears as follows:

' See e.g. http://geo.linkedopendata.gr/gag/page/id/9187

G. Apostolopoulos 27

http://geo.linkedopendata.gr/gag/page/id/9187

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

OIKIZMOZ KONYBATQN

MAnpoopieg ovtotntag

Ovopat: OIKIZMOZ KOAYBATQN

Tumog: http://legislation.di.uoa.gr/ontology#LocalDistrict
‘ s Avrke! o€: AHMOZ AEYKAAAZ

AvopEpeTal Attd
Tithog Kwbikog Huepopnvia
Enmavaoiataon tng Avépwag lepag Kowopiakng Movrig Ayiou Mewpyiow, tng lepag MntpomdAews Asukddog Kail 18akng, mov | Mpoedpikd 2016
BpioKe Tl gTOUG TPOTIOSE S TWV «ZKApWY», ToU olKIgpoU KoAuBatwy, g Tomknig Kowatntag AAeEdvépou, the AnpoTikgg Adraypa

Kowotrag Asukdédas, g Anpotikrig Evotntag Asukddac, tou Afpou Asukddac, tou Nopou Aeukadad. (M.A)71

Figure 9: Landmark entity example page

3.2.3 Geopolitical entity

In this thesis, we endeavor to familiarize ourselves and the public with Geospatial
Linked Data which refers to an extension of the Semantic Web in order to provide
geographical information for real life entities [9].

Greek geopolitical structure is based upon “Kallikratis plan” ' [10]. Therefore, we have
included in our dataset the file “kallikratis.ttl” which contains triples that store information
according to the Law 3852/2010, that explain the architecture of the Greek local
government. The main structure is available on the next table:

Table 2: Greek Local Government architecture based on "Kallikratis Plan™

Degree Locg:g(a;z;/zeartril;rrr‘ent Subdivision
o e Municipal Unit
a' Municipality)
o Community
b' Administrative Region Regional Unit

Apart from those subdivisions, it is worth mentioning that Greece is also divided into
seven Decentralized Administrations [11], which are administration units with activities
particularly in state audit and executive tasks within the area of their responsibility.

' See https://www.kallikratis.org/

G. Apostolopoulos 28

https://www.kallikratis.org/

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

Data is linked with triples like the following:

<http://legislation.di.uoa.gr/entity/gpe/5>
<http://www.w3.0rg/2002/07/owl#sameAs>
<http://aeo.linkedopendata.ar/aaa/id/5>

Geopolitical entities are linked, thus, with URIs from “kallikratis.ttl”. Below (figure 10), we
can observe a screenshot from the entity's view.

MEPIPEPEIA OEZZANIAZ

Faotoph Blpawa

QEganiov|]

NAnpoopieg ovtotnTag

Emypapn: MNEPI$EPEIA ©EZZANAZ
Tumog: http://geo.linkedopendata.gr/gagiontologyMe plpépe Lo
Emypaepn: MNEPI$EPEIA OEZZANIAZ

NAnBuopee: 722343

btk n Avrikel og: ANOKENTPQMENH AIOIKHIH ©EZZANAZ-ZTEPEAT EAMMAAAS

Avadepetal Ao

Tithog Kwbikog Huepopnvia
Tpomomoinagig g U cplBy. 61/1975 KavoviaTikng slatatews «Mepi S101KAOE WG KAl SIAYE IPITEWS Tou lEpOD Kavoviopog 2016
Mpookuvipartog Ayia Napaokeurns Tepmoves, g lepag MntpomoAcwe Aapiong ke Tupvapou. (K.E.O.E.)/291_2016

Figure 10: Geopolitical entity example page

3.2.4 Organization entity

Organizations are commonly used by our platform as legal document signers, along
with persons and most commonly they refer to Ministries.

They are relevant for entities in the following way:

<http://legislation.di.uoa.gr/eli/law/2016/4363/signer/org/8>
<http://legislation.di.uoa.gr/ontology#relevant_for>
<http://legislation.di.uoa.gr/entity/org/2016_2016_18>

A screenshot from a sample page is provided:

G. Apostolopoulos 29

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

NAnpogopieg oviatntag

Emypapr: YTOYPIEIO NAYTIAIAZ KAl NHEZIQTIKHE NOAITIKHZ

M Tumog: http://legislation.di.uoa.gr/ontology#Organization
|

YTIOYEYPUUUEVD VOULKS EVYROdX

30

20

0 —

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 11: Organization entity sample page

3.3 Entity Queries

1. Landmark query:

SELECT * WHERE{
OPTIONAL({ < uri > rdf:type ?type. }
OPTIONAL{
SELECT ?label
WHERE{
?ref leg:relevant_for < uri >.
?ref rdfs:label ?label .
ILIMIT 1
}
OPTIONAL{ ?ref leg:relevant_for < uri >. ?ref rdfs:label ?reflabel. }
OPTIONAL({ < uri > leg:belongs_to ?entity .
?entity rdfs:label ?entlabel.

}
}

G. Apostolopoulos 30

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

2. Person query:

SELECT *
WHERE{
OPTIONAL{ < uri > rdf:type ?type. }
OPTIONAL{
SELECT ?label
WHERE{
?ref leg:relevant_for < uri >.
?ref rdfs:label ?label.
LIMIT 1
}
OPTIONAL{
< uri > owl:sameAs ?dbentity .
?dbentity rdf:itype dbpedia-owl:Politician .
OPTIONAL
{ ?dbentity rdfs:label ?dblabel }
OPTIONAL
{ ?dbentity dbpedia-owl:birthYear ?by }
OPTIONAL
{ ?dbentity dbpedia-owl:birthPlace ?bp }
OPTIONAL

?dbentity dbpedia-owl:party ?party .
?party rdfs:label ?party_name .

}
OPTIONAL
{
?party dbpedia-owl:europeanAffiliation ?affil .
?affil rdfs:label ?affil_name .
}
}
OPTIONAL
{ ?dbentity foaf:depiction ?img }
OPTIONAL

{ ?dbentity dbpprop-el:uikpnlepiypagn ?desc }}

3. Organization query:

SELECT *

WHERE({

< ministry uri > rdf:type ?type.

?ref leg:relevant_for < ministry uri > .
?ref rdfs:label ?label.

}
LIMIT 1

G. Apostolopoulos

31

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features
4. GPE query:

SELECT *
WHERE({
OPTIONAL{ < uri > rdf:type ?type. }
OPTIONAL{
SELECT ?label
WHERE({
?ref leg:relevant_for < uri >.
?ref rdfs:label ?label.
LIMIT 1

¥
OPTIONAL
{ < uri >owl:sameAs ?entity .
?entity rdf:type ?gagtype

OPTIONAL

{ ?entity rdfs:label ?gaglabel }
OPTIONAL

{ ?entity gag:éxel_mAnBuopod ?gagpop }
OPTIONAL

{ ?entity gag:avnkel_oe ?gagbelongs }
OPTIONAL

{ ?entity gag:€xel_yewpeTpia ?gaggeom }
OPTIONAL
{ ?gagbelongs rdfs:label ?gagbelongslabel }

}
}

We can notice that both GPE and Person entity queries refer to Kallikratis and Dbpedia
datasets respectively. They obtain information and finally provide it to the application
user.

3.4 Entity search page

As we have already commented, the application uses a recognizer to produce a large
dataset of entity triples. This large amount of knowledge needs to be available to the
user in order to facilitate the way he collects important data. But, having a large dataset
requires to be able to manipulate the results, so as not to get confuzed by unecessary
information. Therefore, the API offers a search page specifically designed for entities.
The main idea behind this work had been originally implemented in the legislation
search page. Entity search basically follows the same concept. There is a Lucene’
index pointing on the dataset, a method that searches the index and a .jsp page that
produces the outcome. Below (figure 12), we can see the results after demanding GPE
entities.

" See http://lucene.apache.org/

G. Apostolopoulos 32

http://lucene.apache.org/

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

T Ovopa Oviotntdg Tomog Oviétntag
FewmoA Tk OvtéTta (FTI0) AHMOZ AZNPOMYPr OY FewmoAtikr OvidtnTe
mo
Mpoawto (mo)
Znueio Avagopdg AHMOZ AZTYTANAIAZ FewmoALtikg Ovidtnta
Opyaviapac (OPT) (rno)
A e AHMOZ AXAPNQN FewmoAtTikg Oviétntal
AHMOZ BEPOIAZ lewmoALTkr Oviatnte
(F10)
AHMOZ BOABHZ FewmoATIK OvidThTe
(rMoy

LA P P G A I

Figure 12: Entity search page

Concluding, we can state that entities introduce a new era for the application. Not only
they offer important data to the public, but also they produce a great amount of
opportunities to expand the platform into new services. Aiming to this goal, some tools
have already been developed and they will be presented in the next chapter.

G. Apostolopoulos 33

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

4. MINOR ADDITIONS AND NEW FUNCTIONALITIES

Apart from implementing the N-ary Tree to store the legal resources and referencing
Entities to obtain further information, in this chapter, we will indicate various tools that
we have constructed to add new functionalities to the API. Apparently, the entities form
the most significant new service supported by the platform. However, noticing the
previous edition we have agreed that there was a need to add new features to the
project, that would arguably bring it a level further in knowledge production. We have to
also note that those additions were made possible as a result of the tree implementation
and the enrichment of our ontology.

To begin with, signers constitute an entity and they are no longer indicated as plain text.
This may be a minor change but it has aided in creating triples and enhancing the
dataset. This way, we can connect a signer with a person or organization entity, which
has lead the application to perceive the signer as an object and not as a character
sequence. A signer is linked with Legislation Ontology with a triple that appears like in
the following example:

<http://legislation.di.uoa.gr/eli/lamc/2016/4_22-2-2016/signer/person/
1>

<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://legislation.di.uoa.gr/ontology#Signer>

Additionally, we have added a table in the legal document's page, that indicates both
the references it contains and the legal resources that refer to it. Below (figures 13,14)
we quote two sample screenshots from this table.

Eviciio ZUotnuo KivnTikotntag otn Anpooio Aloiknon Kol Tnv ToTikr Autodloiknon, UToOX PEWOELG
TWV TPOOWTWVY Tov SopiCovtal oTIg BETELG Twv dpBpwv 6 Kot 8 tou N. 4369/2016, aovpBifaocta
Kol TpoANYIn TwWv TEPITTWOEWY TUYKPOUONS OUUWPEPOVTWY KAl AOITTEG SIOITALELG.

MEPIEXOMEMNA MAPAMOMMNEX XPOMOAIAT PAMMA ANADOPEZ ONTOTHTEZ EIKONEZ

Nop kEg Avcipopég AvapépeTan Amo

TitAog Kwbkog Hupepopnvia
AMNO$AZH 201 1/AIAK/KTTIVOIK.21588 Amdpaan (ANO$.)/ AIAK_KTMN_OIK_21588 2011
ANOC+AZH 2015/AIAK/OIK.35181 Amdgpaan (ANO$.)/AIAK_OIK_35181 2015
ANO$AZH 2016/AINAAN/G K./73/0IK.20325 Amogaan (ANO$.)/AINAAA ¢ K 73 OIK 20325 2016
NOMOZ 1980/1069 Nopog (N.)/1089 1980

Figure 13: References found inside the document sample page

G. Apostolopoulos 34

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

Eviaio Zuotnua Kivntikétntog otn Anpoaia Awoiknon kKot Tnv Tomkr Autodloiknaon, VTTOX PEWCELG
TWV TPOOWTWV ToU SlopifovTall OTIg BECEILG Twv apBpwv 6 Kot 8 Tou N. 4369/2016, aovpBipaota
KoL TpOANYN TWV MEPITTTWOEWY OUYKPOUONG CUH@EPOVTWY KOl AOLTIEG SIATAL ELG.

MEPIEXOMENA MNAPAMOMIMEZ XPOMNOAIAT PAMMA ANAGOPEZ ONTOTHTEZ EIKONEZ

Mo piKeég AvaipopeEs

TitAog Kw8ikog Hpepopnvia
Efvikog Mnyavigpog Zuvtoviopou, MNoapakoAolBnaong kol A loAdynong Twv MoAltikww Nopog 2016
Kowwwvikrg Evtagng kot Kowwvikhng Zuvoxnc, puBpige s yiot TNV KO WWVIKH SAANAEY YUN (N.)/4445

KOl EPUPUOTTIKES S1ATAEE LG Tow V. 4387/2016 (A’ B5) Kol dAAEG SlaTAEELS.

XWp KOG OXESIAONOG - Buuoipn avamtuin Kol dAAES SlaTdaEelg. Nopog 2016
(M.)/4447

Figure 14: Legal resources’ references to the current legal document

The “Referenced By” tab is structured by applying the following SPARQL query:

SELECT DISTINCT ?legref ?reflabel ?legreftitle
WHERE({ ?ref rdf:type leg:Reference .

?ref rdfs:label ?reflabel .

?ref leg:relevant_for < uri >.

?part leg:has_reference ?ref.

?legref eli:published_in ?gaz.

OPTIONAL{ ?legref eli:title ?legreftitle.}

?legref eli:has_part ?part.

Furthermore, the current APl version supports statistics concerning Ministries'
legislative act. The query to select this data is:

SELECT ?minlabel ?lawtype ?year (COUNT (?law) as ?sum)
WHERE{?law leg:published_by ?min.
?law eli:date_publication ?date.
BIND (year(?date) as ?year).
?law rdf:type ?lawtype.
?min leg:relevant_for ?minent.
?minent rdf:type leg:Organization.
?min rdfs:label ?minlabel.
}GROUP BY ?minlabel ?lawtype ?year
ORDER BY ?minlabel ?lawtype ?year

The feature provides a graph for each ministry, indicating the amount of legal
documents that were signed, sorted by year. A sample image from this graphical
environment is presented below:

G. Apostolopoulos 35

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

TTOTIOTIKE avd YToupyelo

YMNOYPIEIO MNAIAEIAL, EPEYNAZ KAl @PHIKEYMATQN
30

20

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

W Andgacn (ANOD.) [Nopog (N.) M Mpoedpikd Adraypa (M.4.)

YNOYPLEIQ NAIAEIAZ, EPEYNAZ KAl @PHZKEYMATQN j

Figure 15: Ministry stats graph

Using the dropdown menu, we can choose the Ministry we are interested in.

Following our main goal to offer more data to the user, we added one more signers'
table, containing the Organizations. As we have noted earlier in the thesis, a signer can
be either a person or an Organization (mostly a Ministry). The query that brings the
signers is almost identical to the old one, but having modified the ontology, a signer can
also be a Ministry.

SELECT DISTINCT ?signer ?entity ?label ?type ?sameas ?dblabel
WHERE({
< uri > leg:published_by ?signer.
?signer rdfs:label ?label.
?signer leg:relevant_for ?entity.
?entity rdf:type ?type.
OPTIONAL {
?entity owl:sameAs ?sameas .
?sameas rdfs:label ?dblabel.
}
} ORDER BY 7?sianer
The table looks like the one we use for the persons. A modification we have made,
however, is that we have added links to the signers to link them to their entities' pages
(see figures 8,11). More specifically:

G. Apostolopoulos 36

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

YTIOMPASPONTEZ o i)
ApBpo 2 "Opuopoi (apBpo 2 tng O&nyioctg 2014/
VOOUWTONL WG

KOQNEZTANTINOEZ TABPOI AOY
ApBpo 3 "EBvikO mAcigw moATikAg (GpBpo 3 tng O

MNIKOAAOEZ KOTZIAZ
LINKS ApBpo 4 "E@oSIHOPOG HE NAEKTPIKI EVEPYELX YLIC

EYRAEIAHZ TZA TO= PpBpo 5 "EWOoSIOONOG HE USPOYOVO YIO OSIKEG ME

FEQPMIOE ETASAKHE ApBpo 6 "EWOoSIOONOG HE PUOLIKS SEPLO YIOL TIG HE

|}<.F'HZ|’OE 2MIPTZH= I ApBpo 7 "EvnUEpwan Twy xpnotuww (apBpo 7 tng O

NANAFIQTHE KOYPOYMMAHE 1. Me tnv emepioiain tou M. 4062/2012 (A° 70).

AvamTuEng, Slao@oaAifouy oOTL SlaTiBEvTol o)
MY COWVOKIVTO OXMHaTS TS OTIoicl TpowodoTouvt
ayopd f avepodlalovtal 08 onUEict AVEWoSIOd)
TWY PN CWVOKIVTWY OXNUAaTtwy, oTo Onueict ove:

YTIOYPIEIA

YTIOYPIEIO YTIOACOMON, OE CWTITRPOOWMEIES HNYCOVOKIVATWY OXMHAaTWY ¢
METAPOPQN KAl AIKTY QN OXAHATA KOl TS EYXELPISIO PN COVOKIVNTWY 0XI
2016.

YTIOYPIEIC QIKONOMIKQN - MINISTRIES

2. H mmopoxr MANpo@op o TNg mopoypdgpou 1 Boo
TN CUPHOp@PWon TwY KOUUTiHwY HE To EUPLTIC
Tumomoinong (EEYTVEMADT), 1o omoic maBopiCouw 1
COVSHPEPOVTOL OE YP O LK Hopgpr], MEp LA C U Baiva
EIVoil CETTAT], EUKOAC KOITOWONTH KOl EVSIAKP LT .

Cf. OTIG OWTIOTOLXESG GVWTAIEG KOl OTO oKpOogpL
MO TO KU TIBEWTO OTNY Hvood.

Figure 16: Ministries in signers tab (page screenshot)

YTIOYPIEIO OIKOMNOMIAZ KA
ANAMNTY=HZ

YTIOYPIEIO AMPOTIKHE
ANANTY=HZ KAl TPO$IMOMN

Concluding, the most important functionality that has been added in the recent platform
is the timeline tab. This tab contains every modification that have acted over the legal
resource, indicating the document in which it has been published. The query is the
following:

SELECT ?mod 7?parent “?part Z?parttype ?text ?type 7?patient ?
timelinedate ?timelinetitle ?timelinegaz ?work
WHERE {

< uri> eli:has_part ?patient.

?mod eli:amends ?patient.

?mod rdf:type ?type.

?mod eli:has_part ?part.

?parent eli:has_part ?part.

?part rdf:type ?parttype.

?work eli:has_part ?mod.

?work eli:date_publication ?timelinedate.

?work eli:published_in ?gaz.

OPTIONAL {?gaz dc:title ?timelinegaz . }

OPTIONAL {?work eli:title ?timelinetitle . }

OPTIONAL {?part leg:has_text ?text . }

G. Apostolopoulos 37

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

The method that deals with constructing the timeline follows this pattern:

e |t creates a modification list for every legal document. This lists consists of
timeline nodes (class TimelineNode).

e The first node inserted in the list is the legal document itself.

e It parses query results and constructs the timeline node.

¢ |f a modification occurs, it inserts the timeline node into the list.

Timeline is a part of legal document's metadata and therefore is created inside the
function that stores the metadata of the resource. Below (figures 16,17) we provide two
screenshots as sample images of the timeline table.

EBvikog My avigpég Zuvtovio pou, MNMapakoAouBnong kot A oAdynang Twv MoAttikwy Kolwwwviknhg
‘Evtaing Kot Kowwvikng Zuvox g, puBHICELS YO TNV KOWWVIKA XAANAEY YUN KOl EQOPUOTTIKEG
Slatabelg Tov v. 4387/2016 (A’ 85) kall AAAEG SI1ATAEELG.

MEPIEXOMEMNA MNAPANOMNER XPONOAIAT PAMMA ANASOPEZ ONTOTHTEZ EIKONEZ

Huepounviar TitAog $EK

2016-12-19 Efvikog Mnyawviopdg Zuvtovigpou, NapakoAolBnang Kot A oAdynong Twv MoAiTikwv A/2016/236
Kowwwikrig Evtaing Kol Kowwwvikhg Zuvoynig, puBpigels yid TNV KoWWVIKG aAANAEY YU
Kotl EQOpHOOTIKESG SIATAEE LS Tou V. 4387/2016 (A" B85) Kol AAAEg S1ATAgE LS.

2016-12-23 XwpKOE OXESIGONAE - BUOGIPN cuamTuEn Kol dAAES Slatateic. @ A/2016/241
Tpomomoinon Tuimog
H epamal oovouiK EVIGYUON TNS Tapayeapou 1 Tou Tapdvtos aplpou Eivall oipopoAayntn, SEv npouBﬁKn

UMOKELTS O OMo1 oS TOTE KpaTnan, SEV KATAOKETE 0OTE au piniletan pe Adn BEfoiwpive Ypin Tpag
O ANPAmo | MOTWTIKD 1ISpUPcTol Kol SEV UTIOAOYITETON OT0l EVOOSNUOTIKG Gpiot Yo TNV Kotoifo A
OMOLOUSATOTE EMSI POTOC N MOPOKNE KOWIVIKOD /| TROVOLOKOD XOIDOKTApOL.

Figure 17: Insertion in timeline

EBvikd Mntpwo EmMTeEAIKWY ZTEAEX WV ANpooiag Aloiknong, BaBuoAoy ki S1apBpwaon BETEL
CUOTAHOTA X I0AOYNONG, TTRPOOY WY WV KOl ETTIACY NG TTPOIOTAHEVWY (SlapdveLla - o loKpa
KOl XTMOTEAEC HATIKOTNTA TNG AnUoociag AloiKnong) Kol AAAEG SlaTageLg.

NEPIEXOMEMNA NAPANOMMNEZ XKPONOAIAT PAMMA ANAGOPEZ ONTOTHTEZ EIKOMEZ

Hpepopnuia TitAog S EK
2016-02-27 EBvikd MnTpwo EMTE A KWWY ZTEAE YWV ANpooiog Aloiknong, BaBuoioyikrh swapBpworn BEgeww, A20°
TUOTHR TS SELOASYNONG, TTROCY WY WY KOl ETAOYAG TRPOITTAHEVWY (S1opave Lo -

CEIOKDCITIO KOl HTMOTEAETUATIKOTATO TNG Anuaoioc A0IKNONG) Kol AAAES SIATAEE LG,

2016-05-27 Emeiyoudes SIATALELS YIS TNV EQUPHOYH TNS OUHPVicts SNUOTIOVO M IKLOVY OTOY WY Kol AS20°
SlapBpwTIKIV ETXPPUBNITEWY Kal dAAES Siatafeig. @

2016-03-07 Zuotipota Eyyonong KataBigewv (Evowpatwaon Oényiog 2014/49/EE), Tapeio Eyyunang Af20-
KataBEoe wv Kot EmevSioewv kot dAAeg SiatdEeic. @

Tpomwomoinon Tumog

H wvoyog tng StatmEng tng mop. 1 Tow apfpou T2 tow w. 4342/2015 (A" 143) TopoTENVETON SWE TV ﬁ“lKﬂ‘ﬂmaUﬂ
28n Ampidiow 2016 .

Figure 18: Substitution in timeline

G. Apostolopoulos 38

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

5. GENERAL MODIFICATIONS

In the fifth chapter of this thesis, we will be citing some minor but important
modifications we have applied to the previous edition of the APIl. Those changes
became necessary either because some functionalities didn't work properly or because
we discovered more efficient ways to implement them.

Firstly, we coded the PDF, XML, RDF and JSON builders. All four of them didn't
function properly because it used to be inefficient to structure the document. However,
in the current edition, the PDF and XML files are built using the same logic that is used
in the case of the .jsp pages, utilizing the facilities offered by the tree structure. On the
contrary, JSON is built converting straight from XML to JSON and the RDF file is
produced by a describe query.

Table 3: Libraries used for the builders

PDF iText 7.0.3"

XML dom4j 1.6.12

The PDF now looks perfect, whereas, in the old edition it used to be mixed up. An
example part of the PDF appears as follows:

KEDAAAIO 2T
AMAOYZTEYZH MAAIZIOY A2ZKHZHZ METAMOIHTIKON KAI ZYNADON APAZ THPIOTHTON
TPO®IMON KAITIOTON

ApBpo 17
Medio epopUoyYNG

1. Z7o medio epapuoyng Tou mapdvTog Kepahaiou euminTouv of SpaoTnpIO TNTEG HETAMOINONG TROPIHWY KOl
noTtwv pe Kndikolc ApiBpolc ApaotnpioTnTtac (KAA) 10 kan 11 mou nepihappdvovtal atnv 3n opdda Tou
NoapapTiuaToc, KaBuc kKol o1 «BPOOTNPIOTNTEC Cuokeuaoiocy pe KAA 8292 tnc 1Ing ouddac aTig
MEQITTWOEIC TOU 0PopolV TROPIUG KOl TOTA.

Figure 19: PDF file sample

' See https://itextpdf.com
2 See https://dom4j.github.io/

G. Apostolopoulos 39

https://dom4j.github.io/
https://itextpdf.com/

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

Moreover to the builders, we realized that general statistics concerning the Greek
legislative act should be provided dynamically. Consequently, we have used the library
canvas.js® to offer statistics that user can define by scrolling a scrollbar to choose the
date range. Additionally, the user can select the legal resource type, as long as the
Ministry he wishes (see figure 15). In the example screenshot below (figure 20), we can
mention that we have diminished the date range between 2015 and 2018, but the
dataset we have used is for testing only, so it contains data from various years and, in
this range, it contains data only from 2016.

‘Evtaon vopuoBeTikoU £pyou KATETOG

250

200

100
50
0

2015 2016 2017 2018

Il SUMMARY [l AGR ANNOUNCEMENT | AMC [l DEC LAW EPD W GOCREG

Figure 20: Statistics graph sample

One more change that is worth being noticed is the fact that we have improved the
functionality and the appearance of the legal substitution modifications inside the
document. More specifically, the old part is contained inside a red area, while the newly
added is part of a large green container, like in the image that follows:

9. Av Koww.Z.Em. fj Zuvetaiplopog Epyalopévw Siaypagolv amd To MnTtpwo JE MpwtoPouiic TAE AloiKNONG, OUH QW
HE TIG MPpOoPBAEPELG TOU TAPSEVYTOG APBPOU, OYEIAOUY EVTOE EVEVAVTA (90) NUEPWY CTd TNV KOIVOTOINGN O auToug
e MRAgng Slaypaynic, Vol EVERYHTOUN TN VOPLPN HETaTpoT Tng KowwZ.Em. rj Tov Zuvetaipiopou Epyalopivuy g
popepr] EMXEIpNONG TMoU Ta PEAN EMBLpoLY 1| va Tpofouv oTn Aldn TNG. Ze KABE MEPIMTWON, HETA TN AdOn TP TN
HETOTPOM OE dAAN VOUIKA Hopwpr, TIBETH O EKKaBdplon, CUPN@WVA PJE To dpBpo 22 Tou Mapovtog. Ol avwTEpw
EVEPYEIEC OWEIAOUV VOl YVWOTOTOOUVTAL aemd TNV Koww.Z.Em. 1] 10 ZUveTallplopyo Epyaopévwy ato Mntpwo fopéwv
Kotvwwikrg kot AAAnAéyyuag Oikovopiog.

p
o

Av Kow.Z.Em.] Zuvetaiplopog Epyalopévwy Slaypawolv amd 10 MNTpwo YLl oTolovsimoTE AGY0, OWEIAOUY EVTOG
TRIdVTA (30) NUEPWNY QMO TNV KOWOTIOINGN O auTolg NG TPAENg SIaypaeng, VO EVERYHOOUY TN VAU IHN HETXTROTT
TOUG OE POpPYr EMXEPNONG ToOU Tat HEAN EMBUPOUV KAl VO KATAXWPHTouY TN HETHTpOT) autr fj vo mpofolv o
SIOKOTI EpY OOV OTNY app6sia AOY.

O cvw TEpw EVEPYELEG TRETEL Vot YVwaTomolodvTal oto Mntple.

ApBpo 12 "EBvikr Emitpom yiot TNV Kolvwwikn Kol AAANAEyyua Olkovopio™

Figure 21: Modification appearance in the document

3 See https://canvasjs.com/

G. Apostolopoulos 40

https://canvasjs.com/

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

As far as anyone can notice, there is a small blue icon that opens the deleted part when
clicked.

Apart from the statistics, we have also ameliorated the appearance of the legal
document in our main legislation web page. The main structure remains the same, but
we have added some functionalities that have already been noted. An image is provided
below to show the legal resource presentation page:

FENIKA ZTOIXEIA PUBpOon Tou eTTaly YEAHUOITOG TOU SICIXEIPLOTH CIPEPEY YUOTNTAG.

TYNOZ
MEPIEXOMENA NAPANOMMNEZ XPONOAIAI PAMMA ANADOPEZ ONTOTHTEZ EIKONEZ

MNpoedp ks Alataypea (M.A)

KQAIKOZ PEK Epcpavion o AOKANpou Tou Yy pagou ¥
2018/133 A/2016/242
MEPOZ NMPQTO
HMEPOMHNIA 2016-12-29 FENIKES AIATASEIS
HMEPOMHNIA 2016-12-29
E®APMOTHZ ApBpo 1 "Ekomog"
C;(E';,ZL:P;A 2016-12-20 Aplpo2 "Opiopoi”

BpBpo 3 "Mesio eqpappoyrig”
YINOrPA®ONTEZ
1. To MooV EPAPUPOTETAIL OTIG SIASIKATIEG CPEPEYYUSTNTAG, 6TIWG KUTEG OpIfovVTal OTO GpBpo 2 TOU TAPGVTOG Kol

Yl Ta EISIKGTEpO BEP TS Tat oToia pUBRITEL
NPOKOMIOZ NAYACMOYAOZ

AHMOZ NANAAHMHTPIOY 2. Efcipouvtal ofld 10 TESD E@UpUOyig TOU TApovTog ol SIASIKAOIES PEPEYYUSTNTAG OXETIKG HE TIG
ATPAAITTIKEG ETYE IPATEIG KX TA MOTWTIKG IEPUPATA, TIG EMYEIPHTELG EMEVEUTEWY TIG MOPEXOUTES UTNPETIES
ZTAYPOZ KONTONHZ TMOU CUVETIAYOVTOL KATOX KEQ@UAQiWY 1| KINTOV afudv Tpitwy, KaBlg Kol ToUG OpYavIoPoUg CGUAAOYIKWY

EMEVBUOEWY. Q¢ TPOG TI§ WG G SIUSIKUTIEG HPEPEYYUSTNTAG IOXUOUVY Ol EISIKEG PUBHICELG TIou TpOBAETOVTON
QUTITTOIX S TS TIG SIATAEE LS TwV dpBpwy 220 £, Tow V. 4364/2016 (A’ 18), 1 €., 44, 56, 145 em. Tou . 4261/2014 (A’

YMOYPIEIA 107) keet 1 €1, 22 £, 50 Tou v, 3606/2007 (A’ 245) KCll TOUG KAVGVE G TOU EVWOLAKOD SIKA0U.
YTMOYPIEIO OIKONOMIAZ KAI ApBpo 4 "Emtpom Alayeiplang AQEpPEYYUATNTOG"
ANAMNTY=HZ

Figure 22: Legal document main web page

Additionally, we have fixed the search page to produce the correct results. The
philosophy behind the page construction remained the same and no technologies were
changed since the last update. Page structure is the same, so the main alteration is the
repair of the search by date which didn't work properly. In the screenshot below
(llustration 23), we can observe the search results when date range is confined
between 2016-09-07 and 2016-09-09.

G. Apostolopoulos 41

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

6. CONCLUSION

The idea to bring the public closer to the Greek legislative act seemed more topical than
ever. Nowadays, people use technology for the majority of their daily tasks. Therefore,
we figured it would be rational to facilitate people's lives, helping them to understand our
country's legislation utilizing the web and other technological tools. It is a matter of vital
importance for people, not only to know their rights but also to be aware of their
obligations. This application aims to each and every citizen of Greece and it is not
specifically designed for lawyers and judges, because is a consequent of a well
informed public.

Our mission is to publish Greek legislation data electronically as a part of Linked Data,
following the example of other countries like the UK' [12] and the Netherlands?®. Open
Data is massively grown over the last years. It is our major belief that data should be
available to the public opinion for use or simple knowledge. Our country has done
significant steps on this road to release data to the public. Developing Diavgeia® has
been the fundamental effort to achieve transparency by the mandatory disclosure of all
government's decisions and acts. Diavgeia is a portal that aids public administration, in
which government's decisions are modeled in OWL and queried using SPARQL [13].
Thus, having Diavgeia as a motive, we have realized it is crucial to develop an
application that will totally make good use of open data.

In this thesis, we indicated and explained the updates that we have applied on the
previous edition of Nomothesi@ API. Our task was to radically modify and improve the
platform to guarantee its proper and efficient work. The changes refered to altering the
storing system of the legal parts and inserting new functionalities to the system, fixing
minor issues that had occured in the old web application. We believe that we have
achieved a significant level of efficiency and reliability using the tree structure to link the
legal document's components. Additionally, entities introduction has been a major
extension that allowed us to offer information that is not limited to legislation. We have
expanded knowledge production using open data from large dataset sources like
dbpedia. Finally, we have fixed various issues that complicated the use of the
application and have developed minor additional features to improve the general
function of the platform.

Concluding, we must note that the main idea behind our project belongs to a larger
concept to bring free data to the public. Data is information and information is
knowledge. Knowledge refers to a theoretical or practical understanding of a subject.
Being able to understand various subjects leads to a society of justice, trust, peace,
altruism, respect, freedom, solidarity and many more values and principles.

' See https://data.gov.uk

2 See https://data.overheid.nl

3 See https://diavgeia.gov.gr/

G. Apostolopoulos 42

https://diavgeia.gov.gr/
https://data.overheid.nl/
https://data.gov.uk/

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

G. Apostolopoulos

ABBREVIATIONS — ACRONYMS

Table 4: Table of abbreviations

API Application Programming Interface

CEN European Committee for Standardization
CSS Cascading Style Sheets

DFS Depth-First Search

ELI European Legislative Identifier

GPE Geo-Political Entity

HTML HyperText Markup Language

JSON JavaScript Object Notation

PDF Portable Document Format

OWL Web Ontology Language

RDF Resource Description Framework
SPARQL | SPARQL Protocol and RDF Query Language
URI Universal Resource Identifier

XML Extensible Markup Language

43

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

TECHNOLOGIES - LIBRARIES USED

Nomothesi@ API is implemented in Spring Web MVC Framework'. The Model — View —
Controller framework [14] supports application division in three components. The model
contains the functionalities and data of the used classes. The controller handles user
input and the view displays data to the user. Therefore, an MVC framework separates
the Ul (controller and view) from the data (model), simoultaneously providing
consistency between those three components.

Table 5: Libraries used in the project

Java

8 (or greater)

Spring Framework

4.2.7.RELEASE

Apache Maven 4.0.0
Apache Tomcat 7.0.55
Eclipse RDF4J 2.3.0
Apache Lucene 554
iText PDF 7.0.3
dom4j 1.6.1
Bootstrap 3.3.1
jQuery 1.8 & 1.11.1
jQuery DataTable [1.10.15
jQuery Calendar 1.12.4
CanvasJS 21
OpenLayers 4.6.5

" See https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html

G. Apostolopoulos

44

https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html

Re-engineering Nomothesi@ APl Web Application: Improve and Support new features

[1]
[2]
[3]
[4]
[5]
[6]
[7]

[8]
[9]

REFERENCES

Chalkidis I. (2014). Nomothesi@: Greek Legislation Platform. B.Sc Thesis. National and Kapodistrian
University of Athens.

Soursos P. (2015). Nomothesi@ API: Re-engineering the Electronic Platform. B.Sc Thesis. National
and Kapodistrian University of Athens.

ELI Task Force (2015). ELI A Technical Implementation Guide. Publications Office of the European
Union.

European Commision. (2016). eGovernment in the European Union.

Lodder A.R, Oskamp A. (eds. 2006). Information Technology & Lawyers. Springer. Chap. 1 & 7.

Tim Berners-Lee. (2006). Linked Data. Design Issues.

Chalkidis ., Nikolaou C., Soursos P., Koubarakis M. (2017). Modeling and Querying Greek
Legislation using Semantic Web Technologies. National and Kapodistrian University of Athens.
Reference [Def.1]. Merriam-Webster Online.

Karalis A. (2012). Greek Linked Data Applications for Smartphones using Geospatial Data. Aristotle
University of Thessaloniki.

[10]N. 3852/2010. Néa Apxitektovikn Tng Autodioiknong kai Tng ATokevipwuévng Aloiknong -

Mpdypauua KaAAikpatng. PEK 87/A/7-6-2010.

[11] Counsil of Europe. (2012). Structure and Operation of Local and Regional Democracy.
[12] Sheridan J. (2010). Legislation.gov.uk .

[13]Beris T., Koubarakis M. (2018). Modeling and Preserving Greek Government Decisions using

Semantic Web Technologies and Permissionless Blockchains.

[14]Sarker I., Apu K. (2014). MVC Architecture Driven Design and Implementation of Java Framework for

Developing Desktop Application. International Journal of Information Technology.

G. Apostolopoulos 45

https://www.researchgate.net/publication/291098214_MVC_Architecture_Driven_Design_and_Implementation_of_Java_Framework_for_Developing_Desktop_Application
https://www.researchgate.net/publication/291098214_MVC_Architecture_Driven_Design_and_Implementation_of_Java_Framework_for_Developing_Desktop_Application
http://cgi.di.uoa.gr/~koubarak/publications/2018/diavgeia-ESWC2018.pdf
http://cgi.di.uoa.gr/~koubarak/publications/2018/diavgeia-ESWC2018.pdf
https://blog.law.cornell.edu/voxpop/2010/08/15/legislationgovuk/
https://www.eetaa.gr/en_pages/Structure_and_operation_Greece_2012.pdf
http://www.kedke.gr/uploads2010/N38522010_KALLIKRATIS_FEKA87_07062010.pdf
http://www.kedke.gr/uploads2010/N38522010_KALLIKRATIS_FEKA87_07062010.pdf
http://ikee.lib.auth.gr/record/131379/files/GRI-2013-10122.pdf
https://www.merriam-webster.com/dictionary/reference#legalDictionary
http://cgi.di.uoa.gr/~koubarak/publications/2017/eswc17-legislation.pdf
http://cgi.di.uoa.gr/~koubarak/publications/2017/eswc17-legislation.pdf
https://www.w3.org/DesignIssues/LinkedData.html
https://joinup.ec.europa.eu/sites/default/files/inline-files/eGovernment_Factsheet_European_Union_June_2016_v_7_04.pdf
https://publications.europa.eu/documents/2050822/2138819/ELI+-+A+Technical+Implementation+Guide.pdf/

	1. INTRODUCTION
	1.1 Nomothesi@ in contemporary society
	1.2 Objectives of the thesis
	1.3 Nomothesi@ Ontology
	1.4 Thesis structure

	2. N-ARY TREE IMPLEMENTATION
	2.1 Old storing system issues
	2.2 How is a N-ary Tree beneficial
	2.3 Tree Implementation
	2.3.1 LegislationTreeNode
	2.3.2 Brief explanation of the two main functions
	2.3.2.1 The getById(...) method
	2.3.2.2 The getUpdatedById(...) method

	2.3.3 Modification Nodes
	2.3.3.1 Modification type: Insertion
	2.3.3.2 Modification type: Substitution

	3. ENTITIES
	3.1 What is a reference and how it works
	3.2 Entity types
	3.2.1 Person entity
	3.2.2 Landmark entity
	3.2.3 Geopolitical entity
	3.2.4 Organization entity

	3.3 Entity Queries
	3.4 Entity search page

	4. MINOR ADDITIONS AND NEW FUNCTIONALITIES
	5. GENERAL MODIFICATIONS
	6. CONCLUSION
	ABBREVIATIONS – ACRONYMS
	TECHNOLOGIES – LIBRARIES USED
	REFERENCES

