
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Re-engineering Nomothesi@ API Web Application:
Improvements and Support of new features

Georgios C. Apostolopoulos

Supervisors: Manolis Koubarakis, Professor
Ilias Chalkidis, PhD Candidate

ATHENS

JUNE 2018

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αναδιοργάνωση της Διαδικτυακής Πλατφόρμας Νομοθεσί@
API: Βελτιώσεις και Προσθήκη νέων λειτουργιών

Γεώργιος Χ. Αποστολόπουλος

Επιβλέποντες: Μανόλης Κουμπαράκης, Καθηγητής
Ηλίας Χαλκίδης, Υποψήφιος Διδάκτωρ

ΑΘΗΝΑ

ΙΟΥΝΙΟΣ 2018

BSc THESIS

Re-engineering Nomothesi@ API Web Application: Improvements and Support of new
features

Georgios C. Apostolopoulos

S.N.: 1115201200006

Supervisors: Manolis Koubarakis, Professor
Ilias Chalkidis, PhD Candidate

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αναδιοργάνωση της Διαδικτυακής Πλατφόρμας Νομοθεσί@ API: Βελτιώσεις και
Προσθήκη νέων λειτουργιών

Γεώργιος Χ. Αποστολόπουλος

Α.Μ.: 1115201200006

Επιβλέποντες: Μανόλης Κουμπαράκης, Καθηγητής
Ηλίας Χαλκίδης, Υποψήφιος Διδάκτωρ

ABSTRACT

The purpose of this thesis is to radically re-engineer Nomothesi@ API web platform and
to add new features. The starting point was the previous works titled "Nomothesi@:
Greek Legislation Platform" (2014) and "Nomothesi@ API: Re-engineering the
Electronic Platform" (2015). The existing platform, based on a consolidated legal
XML/RDF template, presented inaccuracies in both the presentation of legal documents
and the functionality it provided to the user. This work emphasizes on replacing the
storage of legal documents in classes, by a N-ary tree structure in each level. This
replacement, as well as all the other minor modifications, were made possible as a
result of the new ontology that was created, always based on the European Legislation
Identifier (ELI). Simultaneously, features were added to extend user's interaction with
the application and to transmit a larger amount of information. The most important
addition is the insertion of entities that allow the user to obtain further information about
a person, a place, etc. Thus, this thesis contributes more to the European Union's effort
to enhance e-Government by its member states, through the open publication of the
whole of the Greek legislative act. It essentially develops a new way of storing
information, as it is derived from the RDF data schema and it introduces innovative
ideas on how to make use of it, providing additional features.

SUBJECT AREA: Semantic Web, Linked Data, Artificial Intelligence, Web Applications

KEYWORDS: RDF/OWL Metadata, Legal Document, E-Government, XML,
N-ary Tree, Entities, References

ΠΕΡΙΛΗΨΗ

Σκοπός της συγκεκριμένης εργασίας είναι η ριζική αναδιοργάνωση του τρόπου
λειτουργίας της διαδικτυακής πλατφόρμας Nomothesi@ API και η προσθήκη νέων
λειτουργιών. Βάση εκκίνησης αποτέλεσαν οι προγενέστερες εργασίες με τίτλους
“Νομοθεσί@: Πλατφόρμα για την Ελληνική νομοθεσία” (2014) [1] και “Νομοθεσί@ API:
Αναδιοργάνωση της Ηλεκτρονικής Πλατφόρμας” (2015) [2]. Η ήδη υπάρχουσα
ηλεκτρονική πλατφόρμα, η οποία στηρίζεται σε ένα ενοποιημένο νομικό XML/RDF
πρότυπο, παρουσίαζε προβλήματα, τόσο στην παρουσίαση των νομικών εγγράφων,
όσο και στις λειτουργίες που παρείχε στο χρήστη. Στην εργασία αυτή, δόθηκε έμφαση
στην αντικατάσταση της αποθήκευσης σε κλάσεις του νομικού εγγράφου, από ένα
σύστημα το οποίο αποτελείται από μια δενδρική δομή Ν κόμβων σε κάθε επίπεδο. Στην
πραγματοποίηση αυτής της αλλαγής αλλά και όλων των υπολοίπων μικρότερων
τροποποιήσεων, συνέβαλε η νέα οντολογία που δημιουργήθηκε, έχοντας πάντα ως
βάση το European Legislation Identifier (ELI) [3]. Ταυτόχρονα, προστέθηκαν λειτουργίες
που σκοπό είχαν να επεκτείνουν το βαθμό αλληλεπίδρασης του χρήστη με την
εφαρμογή και να του μεταδόσουν πληθώρα πληροφοριών. Η βασικότερη προσθήκη
που έλαβε χώρα είναι αυτή των οντοτήτων, οι οποίες επιτρέπουν στο χρήστη να λάβει
πληροφορία περαιτέρω των νομικών θεμάτων, σχετικά με κάποιο πρόσωπο, κάποιον
τόπο κλπ. Κατά τον τρόπο αυτό, η εργασία συμβάλει ευρύτερα στην προσπάθεια της
Ευρωπαϊκής Ένωσης για ενίσχυση της ηλεκτρονικής διακυβέρνησης από τα κράτη-μέλη
της [4], μέσω της ανοιχτής δημοσίευσης της ελληνικής νομοθετικής πράξης στο σύνολο
της. Υποδεικνύει, ουσιαστικά, έναν νέο τρόπο αποθήκευσης πληροφορίας, όπως αυτή
λαμβάνεται από το RDF σχήμα δεδομένων και εισάγει καινοτόμες ιδέες για την
αξιοποίηση της, παρέχοντας επιπλέον λειτουργίες στο χρήστη.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Σημασιολογικός Ιστός, Διασυνδεδεμένα Δεδομένα, Τεχνητή
Νοημοσύνη, Εφαρμογές Διαδικτύου

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: RDF/OWL Μεταδεδομένα, Νομικό Έγγραφο, Hλεκτρονικήλεκτρονική
Διακυβέρνηση, XML, Δένδρο Ν κόμβων, Οντότητες, Αναφορές

AKNOWLEDGMENTS

To my family, for being my personal life coach since the day I was born. Thank you for
your unceasing encouragement and support!

Hλεκτρονικήaving finished this thesis, I would like to express my sincere gratitude to my supervisor
Prof. Manolis Koubarakis for his assistance and careful guidance through the whole
writing process.

I am also grateful to Ilias Chalkidis, PhD Candidate and Researcher in the Dpt. of
Informatics and Telecommunications of National Kapodistrian University of Athens. I am
thankful for his choice to believe in me and allow me to be a part of the project he has
started.

Finally, I place on record my sense of gratitude to one and all, who directly or indirectly,
have lemt their hand in this venture.

CONTENTS

1. INTRODUCTION..11

1.1 Nomothesi@ in contemporary society...11

1.2 Objectives of the thesis...11

1.3 Nomothesi@ Ontology...12

1.4 Thesis structure...13

2. N-ARY TREE IMPLEMENTATION..14

2.1 Old storing system issues...14

2.2 How is a N-ary Tree beneficial...17

2.3 Tree Implementation...19

2.3.1 LegislationTreeNode..20

2.3.2 Brief explanation of the two main functions...21

2.3.2.1 The getById(...) method...21

2.3.2.2 The getUpdatedById(...) method...22

2.3.3 Modification Nodes...22

2.3.3.1 Modification type: Insertion..23

2.3.3.2 Modification type: Substitution...23

3. ENTITIES..25

3.1 What is a reference and how it works..25

3.2 Entity types...26

3.2.1 Person entity..26

3.2.2 Landmark entity..27

3.2.3 Geopolitical entity...28

3.2.4 Organization entity...29

3.3 Entity Queries...30

3.4 Entity search page..32

4. MINOR ADDITIONS AND NEW FUNCTIONALITIES...34

5. GENERAL MODIFICATIONS..39

6. CONCLUSION..42

 ABBREVIATIONS – ACRONYMS...43

 TECHNOLOGIES – LIBRARIES USED..44

 REFERENCES...45

LIST OF FIGURES

Figure 1: Nomothesi@ Ontology for the Greek legislation..12

Figure 2: Legal Document representation in unsorted format...18

Figure 3: Legal Document representation after being sorted..18

Figure 4: Simple modification in tree representation...19

Figure 5: Modification insertion example...23

Figure 6: Legislation Tree Node before and after substitution..24

Figure 7: Reference example..25

Figure 8: Person entity example page...27

Figure 9: Landmark entity example page..28

Figure 10: Geopolitical entity example page...29

Figure 11: Organization entity sample page..30

Figure 12: Entity search page..33

Figure 13: References found inside the document sample page....................................34

Figure 14: Legal resources' references to the current legal document...........................35

Figure 15: Ministry stats graph..36

Figure 16: Ministries in signers tab (page screenshot)...37

Figure 17: Insertion in timeline..38

Figure 18: Substitution in timeline...38

Figure 19: PDF file sample..39

Figure 20: Statistics graph sample..40

Figure 21: Modification appearance in the document...40

Figure 22: Legal document main web page..41

LIST OF TABLES

Table 1: Legislation Tree Node attributes...20

Table 2: Greek Local Government architecture based on "Kallikratis Plan"...................28

Table 3: Libraries used for the builders...39

Table 4: Table of abbreviations...43

Table 5: Libraries used in the project..44

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

1. INTRODUCTION

1.1 Nomothesi@ in contemporary society

Nowadays, it has been clarified in many ways, that law enforcement can be assisted by
technology [5]. Observing the technological growth over the past decades, anyone can
understand the necessity of developing online platforms and tools that simplify
legislation services. Therefore, legislative act should not be used only by lawyers, but
also support a wider group of people in their jobs and, most importantly, in their lives.
Nomothesi@'s objective has been our ambition to establish justice, starting by bringing
the public closer to legislation.

1.2 Objectives of the thesis

The main objective of this thesis is the implementation of a database-free web
application, based upon Linked Data and the Semantic Web [6]. A previous platform
had been developed in order to achieve this goal, but even though it was on the right
direction, the details were insufficient at some points, leading to incorrect outcomes.

To overcome this problem, we decided to develop a more efficient storing system for
the law components, because the old one, in which every part of the law belonged to a
different class, didn't produce the expected results. Therefore, we came up with the idea
of keeping all the components in the same class, in a manner that would maintain its
consistency, but also link them properly. Using a N-ary tree1 seemed to be a reliable
solution, since every law component has its subparts as a list of children nodes and the
component it belongs to as a parent node. The main advantage of this implementation
is that every single part of the law is characterized by the same attributes with its parent
and its children.

Furthermore, we wanted to provide additional information to the user, not only about the
the law, but also about what is referenced in the document. We found it would be useful
for someone to learn details about a person, a place, or even about an organization. For
this purpose, we inserted the concept of the entities. An entity has specific attributes,
depending on what it refers to.

Finally, we focused on adding some new functionalities to the platform and improving
some that didn't work properly. Thus, we have asked ourselves what we'd like to be
included in the application and what is malfunctioning. This motivated us to find
innovative ideas on what a user would need to be offered and how it should be
implemented.

1 A tree with no more than N children for each node.

G. Apostolopoulos 11

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

1.3 Nomothesi@ Ontology

Recently the European Council introduced the European Legislation Identifier (ELI) as a
framework which has to be adopted by the national legal publishing systems in order to
link national legislation with European legislation. ELI proposes a URI schema for the
identification of legal resources on the web and it also provides an OWL ontology, which
is used for expressing metadata of legal documents and legal events. ELI, like MetaLex,
has to be extended to capture the particularities of national legislation systems. In our
project, ELI is used for encoding Greek legislation, expressing its metadata and
analyzing legislative modifications acting upon legal documents [7].

For better undestanding the functionalities mentioned in this thesis, we provide our
ontology's schema. This chart contains basic information for the comprehension of the
manner that data is linked.

G. Apostolopoulos 12

Figure 1: Nomothesi@ Ontology for the Greek legislation

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

1.4 Thesis structure

This thesis is separated into six chapters, with the first and the last one being the
introduction and the conclusion respectively. Chapter B refers to the N-ary tree and
analyzes both the issues that the old implementation had and how the tree deals with
them. Finally, it scrutinizes its implementation. Chapter C mentions the entities,
clarifying their necessity, their categories and how they are developed in terms of code.
Chapters D and E make reference to additions and modifications that have been made,
with regard to minor, but important, functionalities.

G. Apostolopoulos 13

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

2. N-ARY TREE IMPLEMENTATION

In this chapter, we will be discussing the necessity of replacing the old storing method
by a new one which will be based on a N-ary tree. More precisely, we will mention the
insufficiencies of the previous storage system and we will explain in detail how the tree
will help us overcome those issues. Finally, we will examine the implementation of the
tree in terms of code.

2.1 Old storing system issues

The previous storing system had been keeping information in classes which had been
different for every subpart type. An Article, for example, belonged to a different class
than a Paragraph, a Part was a different class than a Chapter and so on. Hλεκτρονικήowever, we
have noticed that apart from the different sense of those legal resource components,
the main information they hold is the same and they can easily be differenciated by their
URI.

In most cases, RDF registrations are randomly distributed in the file. It is therefore
difficult for the system to determine whether a class is a part of another. Linked data
need to be carefully structured to let us know the plot of a legal document. The problem
occurs when in the data file, there is a triple that refers to a legal part and then, after
putting references to other components, it refers to this part again. For instance,
consider the following set of triples:

We can observe that the first triple sets paragraph 1 to be a part of article 1 of the
Presidential Decree 72 of 2016. A couple of triples follow and then, in the fourth triple,
linea 1 is set to be a part of the previously mentioned paragraph. This, however, seems
hard to manage in terms of code, as we must keep track of every single class instance
in order to add new parts and link them with the existing ones. This explains the lack of

G. Apostolopoulos 14

<http://legislation.di.uoa.gr/eli/pd/2016/72/article/1>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/pd/2016/72/article/1/paragraph/1>

<http://legislation.di.uoa.gr/eli/pd/2016/126/article/17>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/pd/2016/126/article/17/paragraph/3>

<http://legislation.di.uoa.gr/eli/law/2016/38/article/1/paragraph/1>
<http://data.europa.eu/eli/ontology#has_part>
<lhttp://legislation.di.uoa.gr/eli/law/2016/38/article/1/paragraph/1/linea/2>

<http://legislation.di.uoa.gr/eli/pd/2016/72/article/1/paragraph/1>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/pd/2016/72/article/1/paragraph/1/linea/1>

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

consistency that can occur, especially when we deal with a large amount of randomly
placed RDF registrations.

Furthermore, sorting elements used to be a problematic task because of the fact that
they were not stored using the same class. For example, based on the URI, we can
note that <http://legislation.di.uoa.gr/eli/law/2016/4441/part/1/article/12> would go first
compared to <http://legislation.di.uoa.gr/eli/law/2016/4441/article/3>, because 12 is
before 3 alphabetically. Hλεκτρονικήowever, even after solving this issue, we realized that this
solution wasn't always reliable. In case we had to compare the URI
<http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2> with the URI of a
subpart, e.g <http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2/article/28>,
the second one would go first. But this leads to a result that doesn't make sense. Taking
into consideration the titles of those URIs can help clarify the issue. More specifically:

After printing the sorted legal document we would expect the following outcome:

Hλεκτρονικήowever, we would be given the exact opposite, which, in terms of legal
comprehension, seems meaningless.

Additionally, we must mention the insufficiency that occurs due to the fact that we used
to have the modifications in a different class than the other parts. Modifications are parts
of a legal document and can be a single part of the law, or multiple parts combined. For
instance, a passage can be a modification itself and an article can be a modification
along with its subcomponents. Thus, it is obvious that it would be beneficial to use a
universal class that can be manipulated in any case. Hλεκτρονικήandling modifications can be
quite complicated. For instance, consider the following triple:

G. Apostolopoulos 15

ΔΙΑΤΑΞΕΙΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΥΠΟΥΡΓΕΙΟΥ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ
ΣΕ ΕΦΑΡΜΟΓΗ ΣΥΣΤΑΣΕΩΝ ΕΡΓΑΛΕΙΟΘΗΚΗΣ ΤΟΥ ΟΟΣΑ

Καταργητικές διατάξεις

<http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2/article/28>

<http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2>
<http://data.europa.eu/eli/ontology#title>
"ΔΙΑΤΑΞΕΙΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΥΠΟΥΡΓΕΙΟΥ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ
ΣΕ ΕΦΑΡΜΟΓΗ ΣΥΣΤΑΣΕΩΝ ΕΡΓΑΛΕΙΟΘΗΚΗΣ ΤΟΥ ΟΟΣΑ"

<http://legislation.di.uoa.gr/eli/law/2016/4441/part/3/chapter/2/article/28>
<http://data.europa.eu/eli/ontology#title>
"Καταργητικές διατάξεις"

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

This triple indicates that modification/7 contains paragraph/9. It would be rather easy if
modification had multiple subcomponents, but what happens in case paragraph/9 had
its own children? This scenario is actually what happens almost every time. As a matter
of fact, in our case:

We would have to find the URI of the modification and then search to find all its
subparts recursively until no other component existed. But even if we could do it
reliably, it would be of great cost to sort all the parts in each level and for every single
modification. Above this issue of course, comes the first problem we have mentioned in
this section, that there can be various triples between the ones that refer to the same
modification. It is worth noting, however, that there could be a reliable solution to this
problem, but it wouldn't be the optimal one, as it is programmatically inefficient to
include multiple different classes in another class. Besides, as we have previously
commented, a modification is nothing more than a legal part along with its subparts.

Another problem that indicates the lack of efficiency of the old storing system is that
there is not a methodical programming way to store the legal parts in their super
classes. To illustrate this issue, notice this single triple:

Now, imagine what a program must do to store paragraph/1 in article/2. The Article
class contains a list of Paragraphs, in which this paragraph must be added. This means
we have to search and find the specific Article class instance, which means we have to
find the parent instance of this article and probably level up further.

There can be a vast amount of cases to link properly every part with its parent class. It
is worth mentioning that in the previous implementation the function that used to deal
with this task cosisted of more than 1200 lines of code, full of if-else statements and
lead to an absolute confusion when debugging was needed. This issue also occured in
the case of the .jsp page that previewed the legal document. This page had to take a
huge number of decisions in order to determine the type of the legal part. The
partitioning, used to be a complicated work, especially for larger legal documents.

G. Apostolopoulos 16

<http://legislation.di.uoa.gr/eli/agr/2016/1_10.08.2016/article/2>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/agr/2016/1_10.08.2016/article/2/paragraph/1>

<http://legislation.di.uoa.gr/eli/law/2014/4268/article/5/paragraph/2/passage/1/
modification/7/paragraph/9>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/law/2014/4268/article/5/paragraph/2/passage/1/
modification/7/paragraph/9/passage/1>

<http://legislation.di.uoa.gr/eli/law/2014/4268/article/5/paragraph/2/passage/1/
modification/7>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/law/2014/4268/article/5/paragraph/2/passage/1/
modification/7/paragraph/9>

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

Therefore, anyone can realize the necessity of developing a new storing system, which
could definetely reduce coding complexity. Nomothesi@ needed a fresh, brand new
implementation and this is how we came up with the idea of storing the data into a N-ary
Tree.

2.2 How is a N-ary Tree beneficial

The most important characteristic of every component is to be able to keep track of both
its subcomponents and its parent. Hλεκτρονικήaving knowledge of those two attributes, we can
easily form the legal document's structure, no matter if it's a Law, a Presidential Decree
or any other type of legislation.

Using a tree, simplifies the comprehension of a legal document's structure. Every time
we need to add a new part to the document, we insert a new node to its predecessor
(a.k.a parent node). The only thing we need to know is the URI of its parent to be able
to insert the new node. This is easily implemented by a simple DFS traversal on the
tree, searching each node for a matching URI with the one of the parent, which is
accessible by a SPARQL query.

For example, the following triple indicates a parent-child relationship between two legal
document's components:

This triple is accessible by the following query:

Two tree nodes will be connected. The first node will represent the parent node and will
have URI <http://legislation.di.uoa.gr/eli/law/2016/4360/part/2/article/23/paragraph/1>.
It will also have a list of children, in which there will be a node possessing the URI
<http://legislation.di.uoa.gr/eli/law/2016/4360/part/2/article/23/paragraph/1/linea/2> and
it will keep track of its parent node.

Thus, it becomes easy to obtain the whole structure of the legal document using a
SPARQL query and then create the tree by inserting new children by implementing DFS
algorithm to search for its parent and add the newly created node to its children list. This
can be helpful, especially if we consider the fact that the document will be finely
structured even if the query returns the triples in a totally random order. Thanks to the
DFS algorithm, our system's reliability is granted, as well as efficiency, having noticed
that this algorithm is used in many major web applications and computer softwares.

Furthermore, sorting the legal document is a simple task. There is a node comparator
that compares the URIs of all the nodes that are on the same level and it repeats the
process for the whole tree. For this reason, a legal document can be easily sorted by

G. Apostolopoulos 17

select ?p ?c
where {

?p eli:has_part ?c .
}

<http://legislation.di.uoa.gr/eli/law/2016/4360/part/2/article/23/paragraph/1>
<http://data.europa.eu/eli/ontology#has_part>
<http://legislation.di.uoa.gr/eli/law/2016/4360/part/2/article/23/paragraph/1/linea/2>

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

ordering the nodes on each level, traversing the tree using DFS. To make it more clear,
we can consider the following unsorted tree:

After being sorted, the legal document will appear like the image below:

As a result of the tree being easily used, it becomes much easier to convert java code
into HλεκτρονικήTML and show the legal document on a web page. Once the legal resource is
finally sorted, applicating a DFS traversal is enough to preview the whole structure of
the document. The same applies also on the PDF and XML builders, as they follow the
same procedure in order to be generated. Therefore, the 1200 lines of code that we
have noted in the previous section have now been replaced by a function that consists
of only 200 lines approximately. In those lines, we have furthermore managed to reduce

G. Apostolopoulos 18

Figure 2: Legal Document representation in unsorted format

Figure 3: Legal Document representation after being sorted

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

the number of cases and if-else statements by more than 90%. This constitutes a great
achievement, considering the fact that we managed to diminish code complexity
significantly and make our application even faster, preserving reliability and efficiency.

Finally, the tree has changed our entire perception as far as the modifications are
concerned. Modifications, as we have already noted, used to be a separate class, but
now they are simple trees, like every legal document part. It has been our primary goal
to create a universal type of modification that can be applied in any type of legal
resource component. Therefore, a tree seems to be a perfect structure to achieve this
objective. Providing a snapshot of how a modification can be illustrated in the current
implementation, can be quite convincing:

A modification is usually referenced in another legal document's passage. Then, we
form the structure as a tree. Now, the modification has a complete body and the
program is fully aware of the replacement or the Insertion that must be executed. We
will thoroughly explain how modifications work in the next part.

2.3 Tree Implementation

The N-ary tree we have chosen to implement for storing the legal document's structure,
consists basically of one class acting as a tree node. This node contains a list of its
children and also keeps track of its parent. This way, consistency is achieved for the
whole document, as long as the linking of the nodes seems to be a rather simple
process.

On the first part, we will indicate the basic attributes of the node. Additionally we will
mention the modification nodes and in the final subsection we will explain everything
about the tree nodes.

G. Apostolopoulos 19

Figure 4: Simple modification in tree representation

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

2.3.1 LegislationTreeNode

The tree node consists of the following attributes:

G. Apostolopoulos 20

Table 1: Legislation Tree Node attributes

String URI Node's URI (e.g. .../paragraph/2)

String id Node's id (e.g. .../paragraph/4 has id=4)

String text
Node's text. May be empty (e.g. Sections don't

have text normally)

String title
Node's title. May be empty (e.g. Passages don't

have title normally)

Boolean isMod True in case of Modification Node

List <LegislationTreeNode>
children

List of node's children

List <Reference> references List of referenced nodes and parts

LegislationTreeNode parent Node's parent node

List <LegislationTreeNode>
previousEditions

Every list item is a tree that contains a previous
edition of this node. When a modification occurs,

a new entry is inserted

String patient For modification nodes. Patient node's URI

String patientType For modification nodes. Patient node's type

String modType
For modification nodes. Can be either

Substitution or Insertion

String pubDate For modification nodes. Publication date

String fek The FEK in which the modification is published

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

As we have already stated, those attributes can be acquired by a single SPARQL query.
This query is provided below and the parameters decisionType, year and id are used by
a function depending on the user's choice:

2.3.2 Brief explanation of the two main functions

In the process of developing an efficient tree structure, we have also implemented two
important functions to make sure data is stored correctly in the nodes. The code for
these two is significantly big and, therefore, we will explain briefly their functionalities.

2.3.2.1 The getById(...) method

This functions forms the legal resource structure, or basically, the tree. The main
iteration behind this work is the following:

 It executes a SPARQL query that provides the legal parts.

 If the tree is empty, it creates the root node.

 It creates a node including the information given by the query (e.g. Uri, id, etc.).

 It searches for the parent of this node inside the tree.

 It inserts the nodes in the parent's children list.

 It adds the references

In the end, when the process is finished, it sorts the tree.

G. Apostolopoulos 21

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n+
PREFIX leg: <http://legislation.di.uoa.gr/ontology#>
PREFIX eli: <http://data.europa.eu/eli/ontology#>

SELECT DISTINCT ?part ?parent ?text ?ref ?reflabel ?legreftitle ?start ?end ?
entity ?type ?title ?filename
WHλεκτρονικήERE{

<http://legislation.di.uoa.gr/eli/decisionType/year/id> eli:has_part+ ?part.
?parent eli:has_part ?part.

 ?part rdf:type ?type.
 OPTIONAL{ ?part leg:has_text ?text.
 OPTIONAL{?part leg:has_reference ?ref.
 ?ref leg:starts ?start.
 ?ref leg:ends ?end.
 ?ref rdfs:label ?reflabel.
 OPTIONAL{ ?ref eli:title ?legreftitle.}.
 ?ref leg:relevant_for ?entity. } }.
 OPTIONAL{ ?part eli:title ?title.}.
 OPTIONAL{ ?part leg:imageName ?filename.}.
}
ORDER BY ?part

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

2.3.2.2 The getUpdatedById(...) method

This function applies the modifications upon the tree.

 It creates a list of LegislationTreeNodes which includes modification nodes.

 It executes a query for the modifications and forms small modification trees,
which adds to the list.

 It sorts the list.

 For every list item (a.k.a modification) it applies one of either
addModificationTree(...) function, or replaceModificationTree(...) function.

2.3.3 Modification Nodes

A Modification Node is a LegislationTreeNode that acts as a modification. Therefore, the
boolean value of isMod is set to True. A modification has the structure that is indicated
in the figure 4. Once we have discovered the word “modification” in the URI, then, we
must set True the “isMod” attribute of the node characterized by the wanted uri (e.g.
<http://legislation.di.uoa.gr/eli/law/2016/4361/part/2/article/11/paragraph/1/linea/1/
modification/1>). Every child is returned by a SPARQL query using the eli:has_part (e.g.
<http://legislation.di.uoa.gr/eli/law/2016/4361/part/2/article/11/paragraph/1/linea/1/
modification/1/paragraph/3>). Thus, we can link those two nodes together and every
other node that follows the same pattern, in order to form a little modification tree. This
tree is, nothing more than a N-ary tree like the one we use to form the legal document.

Once the modification tree is ready, the application uses the patient variable of the
node. This is a String variable that keeps the URI of the node in which this modification
is going to act. There are two basic actions that can take place using a modification tree
and they are expressed by the variable modType. It can either be an Insertion, or a
substitution. Both modification types can be explained in three steps. We first notice the
patient's uri. Then, we search the legal document in which the patient is published, to
find the node that is characterized by this URI. We will now explain through code the
different handling for those two modification types.

First of all, we quote the function that we use to search based on the node's URI.

G. Apostolopoulos 22

public static LegislationTreeNode search(String name, LegislationTreeNode node) {
if (node.getUri().equals(name)) {

return node;
}
LegislationTreeNode res = null;
for (LegislationTreeNode ch: node.getChildren()) {

res = search(name, ch);
if(res!= null) {

return res;
}

}
return null;

}

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

2.3.3.1 Modification type: Insertion

Hλεκτρονικήaving found the patient's URI we insert the new node in its children's list.

This function adds the modification tree (newroot) to the legal resource's tree (root) in
the patient (position) children's list. By example, consider the following imaginary URIs,
in which, the dotted line expresses the newly added node:

<http://legislation.di.uoa.gr/eli/law/2014/3300/article/23/paragraph/2> which already has
children, is modified by:
<http://legislation.di.uoa.gr/eli/law/2017/2222/article/2/paragraph/1/linea/2/modification/
31> which has part:
<http://legislation.di.uoa.gr/eli/law/2017/2222/article/2/paragraph/1/linea/2/modification/
31/linea/4>

2.3.3.2 Modification type: Substitution

In this case we want to insert the new node in its patient's parent and remove the
replaced node.

G. Apostolopoulos 23

public static void addModificationTree(LegislationTreeNode root,
LegislationTreeNode position, LegislationTreeNode newroot) {

LegislationTreeNode s = search(position.getUri(), root);
s.getChildren().add(newroot);
sortTree(root);

}

Figure 5: Modification insertion example

public static void replaceModificationTree(LegislationTreeNode
root, LegislationTreeNode position, LegislationTreeNode newroot) {

LegislationTreeNode s = search(position.getUri(), root);
LegislationTreeNode p = s.getParent();
newroot.getPreviousEditions().add(s);
p.getChildren().add(newroot);
sortTree(root);

}

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

This function adds the new modification tree (newroot) to its patient's parent (position)
children list. It also stores in a list the node that will be replaced to keep it as a previous
edition.

In this case we quote two graphs to explain how this process works. First of all, we have
<http://legislation.di.uoa.gr/eli/law/2016/4361/part/2/article/11/paragraph/1/linea/1/
modification/1> which replaces: <http://legislation.di.uoa.gr/eli/law/2003/3205/article/51/
paragraph/3> with: <http://legislation.di.uoa.gr/eli/law/2016/4361/part/2/article/11/
paragraph/1/linea/1/modification/1/paragraph/3> and all its subparts.

Being able to apply substitutions but also keep track of the older structure of each legal
resource, permits a better statistical analysis over the general information concerning
the Greek legislative act.

G. Apostolopoulos 24

Figure 6: Legislation Tree Node before and after substitution

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

3. ENTITIES

In this chapter, we introduce a brand new concept. The idea was conceived in our effort
to offer more valuable information to the user, which doesn't only specialize in legal data
but also in more general knowledge. Occasionally we have found ourselves wondering
“who is this President that signed all those Presidential Decrees?”, or “where is this
place to which this paragraph is refered?”. To answer this kind of questions we
developed the entities and a smart system that provides the information needed from
inside the legal resource. At first, we will mention the types of entities that are currently
supported by our application. Additionally, we will provide basic functionalities that act
upon the entities and finally, we will examine through code how they work. But in the
beginning, we must discuss briefly about the references, which are included in the
node's attributes.

3.1 What is a reference and how it works

A reference, in legal terms, is the act of mentioning or citating one document (as a
statute) in another [8]. References can be highly important to understand the meaning
of the legal resource, especially in cases where the document refers to another without
repeating the statements. Most commonly a reference appears as follows:

In RDF format, this reference is activated with the triple below:

To enable a hyperlink with this reference we need to know where it starts, where it ends
and it's original label. In this example case, those values are provided by the following
triples:

G. Apostolopoulos 25

Figure 7: Reference example

<http://legislation.di.uoa.gr/eli/law/2016/4440/chapter/1/article/18/paragraph/1/linea/1>
<http://legislation.di.uoa.gr/ontology#has_reference>
<http://legislation.di.uoa.gr/eli/law/2016/4440/chapter/1/article/18/paragraph/1/linea/1/
reference/leg/1>

<http://legislation.di.uoa.gr/eli/law/2016/4440/chapter/1/article/18/paragraph/1/linea/1/
reference/leg/1>
<http://legislation.di.uoa.gr/ontology#starts>
169

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

In order to obtain this valuable information, we have developed a tool to recognize the
references inside the text. Therefore, data is stored in triples and then the application
uses it respectively.

3.2 Entity types

Entities become available using references. An entity can be either:

 A person (e.g. <http://legislation.di.uoa.gr/entity/person/2>)

 A landmark (e.g. <http://legislation.di.uoa.gr/entity/landmark/38>)

 A geopolitical entity (e.g. <http://legislation.di.uoa.gr/entity/gpe/5>)

 An organization (e.g. <http://legislation.di.uoa.gr/entity/org/2016_2016_18>)

Those entities are connected with references in the RDF schema. For instance:

An entity can be found in the document by the entity recognizer and is stored in a triple
in the format above. This means that this particular reference is relevant for the
landmark entity with id=38. The reference keeps track of the previously mentioned
values (start, end, label), with which the landmark is saved in the system.

3.2.1 Person entity

This entity stores data for a specific person. For this reason, we have linked our system
with dbpedia1. The process to retrieve information for the person we are interested in, is
to connect the dbpedia page that keeps it's data to the entity that our system develops.
Thus, after recognizing the reference in the document and linking it with the entity, the
connection occurs like in the instance below:

1 See http://el.dbpedia.org/

G. Apostolopoulos 26

<http://legislation.di.uoa.gr/eli/law/2016/4440/chapter/1/article/18/paragraph/1/linea/1/
reference/leg/1>
<http://legislation.di.uoa.gr/ontology#ends>
181

<http://legislation.di.uoa.gr/eli/law/2016/4440/chapter/1/article/18/paragraph/1/linea/1/
reference/leg/1>
<http://legislation.di.uoa.gr/ontology#has_original_label>
"Ν. 4002/2011"

<http://legislation.di.uoa.gr/eli/pd/2016/14/citation/3/reference/landmark/1>
<http://legislation.di.uoa.gr/ontology#relevant_for>
<http://legislation.di.uoa.gr/entity/landmark/38>

<http://legislation.di.uoa.gr/entity/person/2>
<http://www.w3.org/2002/07/owl#sameAs>
<http://el.dbpedia.org/resource/Προκόπης_Παυλόπουλος>

http://el.dbpedia.org/

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

The outcome of this specific page is the following:

3.2.2 Landmark entity

For the landmark entities, we link our system with geographical linked open data 1. For
example:

This is beneficial because we want to create a relationship between a landmark and a
gpe entity. Therefore, we notice that <http://legislation.di.uoa.gr/entity/landmark/2>, also
belongs to a geopolitical entity developed by our system.

A sample page for the landmark appears as follows:

1 See e.g. http://geo.linkedopendata.gr/gag/page/id/9187

G. Apostolopoulos 27

Figure 8: Person entity example page

<http://legislation.di.uoa.gr/entity/landmark/2>
<http://legislation.di.uoa.gr/ontology#belongs_to>
<http://geo.linkedopendata.gr/gag/id/9121>

<http://legislation.di.uoa.gr/entity/landmark/2>
<http://legislation.di.uoa.gr/ontology#belongs_to>
<http://legislation.di.uoa.gr/entity/gpe/9121>

http://geo.linkedopendata.gr/gag/page/id/9187

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

3.2.3 Geopolitical entity

In this thesis, we endeavor to familiarize ourselves and the public with Geospatial
Linked Data which refers to an extension of the Semantic Web in order to provide
geographical information for real life entities [9].

Greek geopolitical structure is based upon “Kallikratis plan” 1 [10]. Therefore, we have
included in our dataset the file “kallikratis.ttl” which contains triples that store information
according to the Law 3852/2010, that explain the architecture of the Greek local
government. The main structure is available on the next table:

Table 2: Greek Local Government architecture based on "Kallikratis Plan"

Degree
Local Government

Organization
Subdivision

a' Municipality
 Municipal Unit

 Community

b' Administrative Region Regional Unit

Apart from those subdivisions, it is worth mentioning that Greece is also divided into
seven Decentralized Administrations [11], which are administration units with activities
particularly in state audit and executive tasks within the area of their responsibility.

1 See https://www.kallikratis.org/

G. Apostolopoulos 28

Figure 9: Landmark entity example page

https://www.kallikratis.org/

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

Data is linked with triples like the following:

Geopolitical entities are linked, thus, with URIs from “kallikratis.ttl”. Below (figure 10), we
can observe a screenshot from the entity's view.

3.2.4 Organization entity

Organizations are commonly used by our platform as legal document signers, along
with persons and most commonly they refer to Ministries.

They are relevant for entities in the following way:

A screenshot from a sample page is provided:

G. Apostolopoulos 29

<http://legislation.di.uoa.gr/entity/gpe/5>
<http://www.w3.org/2002/07/owl#sameAs>
<http://geo.linkedopendata.gr/gag/id/5>

Figure 10: Geopolitical entity example page

<http://legislation.di.uoa.gr/eli/law/2016/4363/signer/org/8>
<http://legislation.di.uoa.gr/ontology#relevant_for>
<http://legislation.di.uoa.gr/entity/org/2016_2016_18>

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

3.3 Entity Queries

1. Landmark query:

G. Apostolopoulos 30

<http://legislation.di.uoa.gr/eli/law/2016/4363/signer/org/
8>
<http://legislation.di.uoa.gr/ontology#relevant_for>

Figure 11: Organization entity sample page

SELECT * WHλεκτρονικήERE{
 OPTIONAL{ < uri > rdf:type ?type. }
 OPTIONAL{
 SELECT ?label
 WHλεκτρονικήERE{
 ?ref leg:relevant_for < uri >.
 ?ref rdfs:label ?label .
 }LIMIT 1
 }
 OPTIONAL{ ?ref leg:relevant_for < uri >. ?ref rdfs:label ?reflabel. }
 OPTIONAL{ < uri > leg:belongs_to ?entity .
 ?entity rdfs:label ?entlabel.
 }
}

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

2. Person query:

3. Organization query:

G. Apostolopoulos 31

SELECT *
WHλεκτρονικήERE{
OPTIONAL{ < uri > rdf:type ?type. }
OPTIONAL{

SELECT ?label
 WHλεκτρονικήERE{
 ?ref leg:relevant_for < uri > .
 ?ref rdfs:label ?label.
 }LIMIT 1
}
OPTIONAL{

< uri > owl:sameAs ?dbentity .
?dbentity rdf:type dbpedia-owl:Politician .

 OPTIONAL
 { ?dbentity rdfs:label ?dblabel }
 OPTIONAL
 { ?dbentity dbpedia-owl:birthYear ?by }
 OPTIONAL
 { ?dbentity dbpedia-owl:birthPlace ?bp }

OPTIONAL
 {

?dbentity dbpedia-owl:party ?party .
 ?party rdfs:label ?party_name .

}
 OPTIONAL
 {

?party dbpedia-owl:europeanAffiliation ?affil .
 ?affil rdfs:label ?affil_name .
 }

}
 OPTIONAL
 { ?dbentity foaf:depiction ?img }
 OPTIONAL
 { ?dbentity dbpprop-el:μικρηΠεριγραφη ?desc }}
}

SELECT *
WHλεκτρονικήERE{
< ministry uri > rdf:type ?type.
?ref leg:relevant_for < ministry uri > .
?ref rdfs:label ?label.
}
LIMIT 1

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

4. GPE query:

We can notice that both GPE and Person entity queries refer to Kallikratis and Dbpedia
datasets respectively. They obtain information and finally provide it to the application
user.

3.4 Entity search page

As we have already commented, the application uses a recognizer to produce a large
dataset of entity triples. This large amount of knowledge needs to be available to the
user in order to facilitate the way he collects important data. But, having a large dataset
requires to be able to manipulate the results, so as not to get confuzed by unecessary
information. Therefore, the API offers a search page specifically designed for entities.
The main idea behind this work had been originally implemented in the legislation
search page. Entity search basically follows the same concept. There is a Lucene1

index pointing on the dataset, a method that searches the index and a .jsp page that
produces the outcome. Below (figure 12), we can see the results after demanding GPE
entities.

1 See http://lucene.apache.org/

G. Apostolopoulos 32

SELECT *
WHλεκτρονικήERE{
OPTIONAL{ < uri > rdf:type ?type. }
OPTIONAL{
 SELECT ?label
 WHλεκτρονικήERE{
 ?ref leg:relevant_for < uri >.
 ?ref rdfs:label ?label.
 }LIMIT 1
}
OPTIONAL
 { < uri > owl:sameAs ?entity .
 ?entity rdf:type ?gagtype
 OPTIONAL
 { ?entity rdfs:label ?gaglabel }
 OPTIONAL
 { ?entity gag:έχει_πληθυσμό ?gagpop }
 OPTIONAL
 { ?entity gag:ανήκει_σε ?gagbelongs }
 OPTIONAL
 { ?entity gag:έχει_γεωμετρία ?gaggeom }
 OPTIONAL
 { ?gagbelongs rdfs:label ?gagbelongslabel }
 }
}

http://lucene.apache.org/

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

Concluding, we can state that entities introduce a new era for the application. Not only
they offer important data to the public, but also they produce a great amount of
opportunities to expand the platform into new services. Aiming to this goal, some tools
have already been developed and they will be presented in the next chapter.

G. Apostolopoulos 33

Figure 12: Entity search page

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

4. MINOR ADDITIONS AND NEW FUNCTIONALITIES

Apart from implementing the N-ary Tree to store the legal resources and referencing
Entities to obtain further information, in this chapter, we will indicate various tools that
we have constructed to add new functionalities to the API. Apparently, the entities form
the most significant new service supported by the platform. Hλεκτρονικήowever, noticing the
previous edition we have agreed that there was a need to add new features to the
project, that would arguably bring it a level further in knowledge production. We have to
also note that those additions were made possible as a result of the tree implementation
and the enrichment of our ontology.

To begin with, signers constitute an entity and they are no longer indicated as plain text.
This may be a minor change but it has aided in creating triples and enhancing the
dataset. This way, we can connect a signer with a person or organization entity, which
has lead the application to perceive the signer as an object and not as a character
sequence. A signer is linked with Legislation Ontology with a triple that appears like in
the following example:

Additionally, we have added a table in the legal document's page, that indicates both
the references it contains and the legal resources that refer to it. Below (figures 13,14)
we quote two sample screenshots from this table.

G. Apostolopoulos 34

<http://legislation.di.uoa.gr/eli/amc/2016/4_22-2-2016/signer/person/
1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://legislation.di.uoa.gr/ontology#Signer>

Figure 13: References found inside the document sample page

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

The “Referenced By” tab is structured by applying the following SPARQL query:

Furthermore, the current API version supports statistics concerning Ministries'
legislative act. The query to select this data is:

The feature provides a graph for each ministry, indicating the amount of legal
documents that were signed, sorted by year. A sample image from this graphical
environment is presented below:

G. Apostolopoulos 35

SELECT DISTINCT ?legref ?reflabel ?legreftitle
WHλεκτρονικήERE{ ?ref rdf:type leg:Reference .
 ?ref rdfs:label ?reflabel .
 ?ref leg:relevant_for < uri >.
 ?part leg:has_reference ?ref.
 ?legref eli:published_in ?gaz.
 OPTIONAL{ ?legref eli:title ?legreftitle.}
 ?legref eli:has_part ?part.
}

SELECT ?minlabel ?lawtype ?year (COUNT (?law) as ?sum)
WHλεκτρονικήERE{?law leg:published_by ?min.
 ?law eli:date_publication ?date.
 BIND (year(?date) as ?year).
 ?law rdf:type ?lawtype.
 ?min leg:relevant_for ?minent.
 ?minent rdf:type leg:Organization.
 ?min rdfs:label ?minlabel.
}GROUP BY ?minlabel ?lawtype ?year
ORDER BY ?minlabel ?lawtype ?year

Figure 14: Legal resources' references to the current legal document

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

Using the dropdown menu, we can choose the Ministry we are interested in.

Following our main goal to offer more data to the user, we added one more signers'
table, containing the Organizations. As we have noted earlier in the thesis, a signer can
be either a person or an Organization (mostly a Ministry). The query that brings the
signers is almost identical to the old one, but having modified the ontology, a signer can
also be a Ministry.

The table looks like the one we use for the persons. A modification we have made,
however, is that we have added links to the signers to link them to their entities' pages
(see figures 8,11). More specifically:

G. Apostolopoulos 36

Figure 15: Ministry stats graph

SELECT DISTINCT ?signer ?entity ?label ?type ?sameas ?dblabel
WHλεκτρονικήERE{

< uri > leg:published_by ?signer.
?signer rdfs:label ?label.
?signer leg:relevant_for ?entity.
?entity rdf:type ?type.
OPTIONAL {

 ?entity owl:sameAs ?sameas .
 ?sameas rdfs:label ?dblabel.

}
} ORDER BY ?signer

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

Concluding, the most important functionality that has been added in the recent platform
is the timeline tab. This tab contains every modification that have acted over the legal
resource, indicating the document in which it has been published. The query is the
following:

G. Apostolopoulos 37

Figure 16: Ministries in signers tab (page screenshot)

SELECT ?mod ?parent ?part ?parttype ?text ?type ?patient ?
timelinedate ?timelinetitle ?timelinegaz ?work
WHλεκτρονικήERE {
 < uri> eli:has_part ?patient.
 ?mod eli:amends ?patient.
 ?mod rdf:type ?type.
 ?mod eli:has_part ?part.
 ?parent eli:has_part ?part.
 ?part rdf:type ?parttype.
 ?work eli:has_part ?mod.
 ?work eli:date_publication ?timelinedate.
 ?work eli:published_in ?gaz.
 OPTIONAL {?gaz dc:title ?timelinegaz . }
 OPTIONAL {?work eli:title ?timelinetitle . }
 OPTIONAL {?part leg:has_text ?text . }
}

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

The method that deals with constructing the timeline follows this pattern:

 It creates a modification list for every legal document. This lists consists of
timeline nodes (class TimelineNode).

 The first node inserted in the list is the legal document itself.
 It parses query results and constructs the timeline node.
 If a modification occurs, it inserts the timeline node into the list.

Timeline is a part of legal document's metadata and therefore is created inside the
function that stores the metadata of the resource. Below (figures 16,17) we provide two
screenshots as sample images of the timeline table.

G. Apostolopoulos 38

Figure 17: Insertion in timeline

Figure 18: Substitution in timeline

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

5. GENERAL MODIFICATIONS

In the fifth chapter of this thesis, we will be citing some minor but important
modifications we have applied to the previous edition of the API. Those changes
became necessary either because some functionalities didn't work properly or because
we discovered more efficient ways to implement them.

Firstly, we coded the PDF, XML, RDF and JSON builders. All four of them didn't
function properly because it used to be inefficient to structure the document. Hλεκτρονικήowever,
in the current edition, the PDF and XML files are built using the same logic that is used
in the case of the .jsp pages, utilizing the facilities offered by the tree structure. On the
contrary, JSON is built converting straight from XML to JSON and the RDF file is
produced by a describe query.

Table 3: Libraries used for the builders

PDF iText 7.0.31

XML dom4j 1.6.12

The PDF now looks perfect, whereas, in the old edition it used to be mixed up. An
example part of the PDF appears as follows:

1 See https://itextpdf.com
2 See https://dom4j.github.io/

G. Apostolopoulos 39

Figure 19: PDF file sample

https://dom4j.github.io/
https://itextpdf.com/

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

Moreover to the builders, we realized that general statistics concerning the Greek
legislative act should be provided dynamically. Consequently, we have used the library
canvas.js3 to offer statistics that user can define by scrolling a scrollbar to choose the
date range. Additionally, the user can select the legal resource type, as long as the
Ministry he wishes (see figure 15). In the example screenshot below (figure 20), we can
mention that we have diminished the date range between 2015 and 2018, but the
dataset we have used is for testing only, so it contains data from various years and, in
this range, it contains data only from 2016.

One more change that is worth being noticed is the fact that we have improved the
functionality and the appearance of the legal substitution modifications inside the
document. More specifically, the old part is contained inside a red area, while the newly
added is part of a large green container, like in the image that follows:

3 See https://canvasjs.com/

G. Apostolopoulos 40

Figure 20: Statistics graph sample

Figure 21: Modification appearance in the document

https://canvasjs.com/

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

As far as anyone can notice, there is a small blue icon that opens the deleted part when
clicked.

Apart from the statistics, we have also ameliorated the appearance of the legal
document in our main legislation web page. The main structure remains the same, but
we have added some functionalities that have already been noted. An image is provided
below to show the legal resource presentation page:

Additionally, we have fixed the search page to produce the correct results. The
philosophy behind the page construction remained the same and no technologies were
changed since the last update. Page structure is the same, so the main alteration is the
repair of the search by date which didn't work properly. In the screenshot below
(illustration 23), we can observe the search results when date range is confined
between 2016-09-07 and 2016-09-09.

G. Apostolopoulos 41

Figure 22: Legal document main web page

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

6. CONCLUSION

The idea to bring the public closer to the Greek legislative act seemed more topical than
ever. Nowadays, people use technology for the majority of their daily tasks. Therefore,
we figured it would be rational to facilitate people's lives, helping them to understand our
country's legislation utilizing the web and other technological tools. It is a matter of vital
importance for people, not only to know their rights but also to be aware of their
obligations. This application aims to each and every citizen of Greece and it is not
specifically designed for lawyers and judges, because is a consequent of a well
informed public.

Our mission is to publish Greek legislation data electronically as a part of Linked Data,
following the example of other countries like the UK1 [12] and the Netherlands2. Open
Data is massively grown over the last years. It is our major belief that data should be
available to the public opinion for use or simple knowledge. Our country has done
significant steps on this road to release data to the public. Developing Diavgeia3 has
been the fundamental effort to achieve transparency by the mandatory disclosure of all
government's decisions and acts. Diavgeia is a portal that aids public administration, in
which government's decisions are modeled in OWL and queried using SPARQL [13].
Thus, having Diavgeia as a motive, we have realized it is crucial to develop an
application that will totally make good use of open data.

In this thesis, we indicated and explained the updates that we have applied on the
previous edition of Nomothesi@ API. Our task was to radically modify and improve the
platform to guarantee its proper and efficient work. The changes refered to altering the
storing system of the legal parts and inserting new functionalities to the system, fixing
minor issues that had occured in the old web application. We believe that we have
achieved a significant level of efficiency and reliability using the tree structure to link the
legal document's components. Additionally, entities introduction has been a major
extension that allowed us to offer information that is not limited to legislation. We have
expanded knowledge production using open data from large dataset sources like
dbpedia. Finally, we have fixed various issues that complicated the use of the
application and have developed minor additional features to improve the general
function of the platform.

Concluding, we must note that the main idea behind our project belongs to a larger
concept to bring free data to the public. Data is information and information is
knowledge. Knowledge refers to a theoretical or practical understanding of a subject.
Being able to understand various subjects leads to a society of justice, trust, peace,
altruism, respect, freedom, solidarity and many more values and principles.

1 See https://data.gov.uk
2 See https://data.overheid.nl
3 See https://diavgeia.gov.gr/

G. Apostolopoulos 42

https://diavgeia.gov.gr/
https://data.overheid.nl/
https://data.gov.uk/

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

ABBREVIATIONS – ACRONYMS

Table 4: Table of abbreviations

API Application Programming Interface

CEN European Committee for Standardization

CSS Cascading Style Sheets

DFS Depth-First Search

ELI European Legislative Identifier

GPE Geo-Political Entity

HλεκτρονικήTML HλεκτρονικήyperText Markup Language

JSON JavaScript Object Notation

PDF Portable Document Format

OWL Web Ontology Language

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

URI Universal Resource Identifier

XML Extensible Markup Language

G. Apostolopoulos 43

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

TECHNOLOGIES – LIBRARIES USED

Nomothesi@ API is implemented in Spring Web MVC Framework1. The Model – View –
Controller framework [14] supports application division in three components. The model
contains the functionalities and data of the used classes. The controller handles user
input and the view displays data to the user. Therefore, an MVC framework separates
the UI (controller and view) from the data (model), simoultaneously providing
consistency between those three components.

Table 5: Libraries used in the project

Java 8 (or greater)

Spring Framework 4.2.7.RELEASE

Apache Maven 4.0.0

Apache Tomcat 7.0.55

Eclipse RDF4J 2.3.0

Apache Lucene 5.5.4

iText PDF 7.0.3

dom4j 1.6.1

Bootstrap 3.3.1

jQuery 1.8 & 1.11.1

jQuery DataTable 1.10.15

jQuery Calendar 1.12.4

CanvasJS 2.1

OpenLayers 4.6.5

1 See https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html

G. Apostolopoulos 44

https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html

Re-engineering Nomothesi@ API Web Application: Improve and Support new features

REFERENCES

[1] Chalkidis I. (2014). Nomothesi@: Greek Legislation Platform. B.Sc Thesis. National and Kapodistrian
University of Athens.

[2] Soursos P. (2015). Nomothesi@ API: Re-engineering the Electronic Platform. B.Sc Thesis. National
and Kapodistrian University of Athens.

[3] ELI Task Force (2015). ELI A Technical Implementation Guide. Publications Office of the European
Union.

[4] European Commision. (2016). eGovernment in the European Union.
[5] Lodder A.R, Oskamp A. (eds. 2006). Information Technology & Lawyers. Springer. Chap. 1 & 7.
[6] Tim Berners-Lee. (2006). Linked Data. Design Issues.
[7] Chalkidis I., Nikolaou C., Soursos P., Koubarakis M. (2017). Modeling and Querying Greek

Legislation using Semantic Web Technologies. National and Kapodistrian University of Athens.
[8] Reference [Def.1]. Merriam-Webster Online.
[9] Karalis A. (2012). Greek Linked Data Applications for Smartphones using Geospatial Data. Aristotle

University of Thessaloniki.
[10] Ν. 3852/2010. Νέα Αρχιτεκτονική της Αυτοδιοίκησης και της Αποκεντρωμένης Διοίκησης −

Πρόγραμμα Καλλικράτης. ΦΕΚ 87/Α/7-6-2010.
[11] Counsil of Europe. (2012). Structure and Operation of Local and Regional Democracy.
[12] Sheridan J. (2010). Legislation.gov.uk .
[13] Beris T., Koubarakis M. (2018). Modeling and Preserving Greek Government Decisions using

Semantic Web Technologies and Permissionless Blockchains.
[14] Sarker I., Apu K. (2014). MVC Architecture Driven Design and Implementation of Java Framework for

Developing Desktop Application. International Journal of Information Technology.

G. Apostolopoulos 45

https://www.researchgate.net/publication/291098214_MVC_Architecture_Driven_Design_and_Implementation_of_Java_Framework_for_Developing_Desktop_Application
https://www.researchgate.net/publication/291098214_MVC_Architecture_Driven_Design_and_Implementation_of_Java_Framework_for_Developing_Desktop_Application
http://cgi.di.uoa.gr/~koubarak/publications/2018/diavgeia-ESWC2018.pdf
http://cgi.di.uoa.gr/~koubarak/publications/2018/diavgeia-ESWC2018.pdf
https://blog.law.cornell.edu/voxpop/2010/08/15/legislationgovuk/
https://www.eetaa.gr/en_pages/Structure_and_operation_Greece_2012.pdf
http://www.kedke.gr/uploads2010/N38522010_KALLIKRATIS_FEKA87_07062010.pdf
http://www.kedke.gr/uploads2010/N38522010_KALLIKRATIS_FEKA87_07062010.pdf
http://ikee.lib.auth.gr/record/131379/files/GRI-2013-10122.pdf
https://www.merriam-webster.com/dictionary/reference#legalDictionary
http://cgi.di.uoa.gr/~koubarak/publications/2017/eswc17-legislation.pdf
http://cgi.di.uoa.gr/~koubarak/publications/2017/eswc17-legislation.pdf
https://www.w3.org/DesignIssues/LinkedData.html
https://joinup.ec.europa.eu/sites/default/files/inline-files/eGovernment_Factsheet_European_Union_June_2016_v_7_04.pdf
https://publications.europa.eu/documents/2050822/2138819/ELI+-+A+Technical+Implementation+Guide.pdf/

	1. INTRODUCTION
	1.1 Nomothesi@ in contemporary society
	1.2 Objectives of the thesis
	1.3 Nomothesi@ Ontology
	1.4 Thesis structure

	2. N-ARY TREE IMPLEMENTATION
	2.1 Old storing system issues
	2.2 How is a N-ary Tree beneficial
	2.3 Tree Implementation
	2.3.1 LegislationTreeNode
	2.3.2 Brief explanation of the two main functions
	2.3.2.1 The getById(...) method
	2.3.2.2 The getUpdatedById(...) method

	2.3.3 Modification Nodes
	2.3.3.1 Modification type: Insertion
	2.3.3.2 Modification type: Substitution

	3. ENTITIES
	3.1 What is a reference and how it works
	3.2 Entity types
	3.2.1 Person entity
	3.2.2 Landmark entity
	3.2.3 Geopolitical entity
	3.2.4 Organization entity

	3.3 Entity Queries
	3.4 Entity search page

	4. MINOR ADDITIONS AND NEW FUNCTIONALITIES
	5. GENERAL MODIFICATIONS
	6. CONCLUSION
	ABBREVIATIONS – ACRONYMS
	TECHNOLOGIES – LIBRARIES USED
	REFERENCES

