
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES
“COMPUTER SYSTEMS: SOFTWARE AND HARDWARE”

MASTER THESIS

Privacy Preserving Medical Data Analytics using Secure
Multi Party Computation. An End-To-End Use Case.

Athanasios G. Giannopoulos
Dimitris I. Mouris

Supervisors: Yannis E. Ioannidis, Professor NKUA
Minos N. Garofalakis, Professor TUC

ATHENS

SEPTEMBER 2018

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ
“ΥΠΟΛΟΓΙΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΛΟΓΙΣΜΙΚΟ ΚΑΙ ΥΛΙΚΟ”

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Στατιστικές Αναλύσεις με Σεβασμό στην Ιδιωτικότητα
Ιατρικών Δεδομένων χρησιμοποιώντας Ασφαλή
Υπολογισμό Πολλαπλών Συμμετεχόντων. Μία

Ολοκληρωμένη Περίπτωση Χρήσης.

Αθανάσιος Γ. Γιαννόπουλος
Δημήτρης Η. Μούρης

Επιβλέποντες: Ιωάννης Ε. Ιωαννίδης, Καθηγητής ΕΚΠΑ
Μίνως Ν. Γαροφαλάκης, Καθηγητής ΠΚ

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2018

MASTER THESIS

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An
End-To-End Use Case.

Athanasios G. Giannopoulos R.N.: M1529
Dimitris I. Mouris R.N.: M1534

Authors had equal contribution and are listed in alphabetical order.

SUPERVISORS: Yannis E. Ioannidis, Professor NKUA
Minos N. Garofalakis, Professor TUC

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Στατιστικές Αναλύσεις με Σεβασμό στην Ιδιωτικότητα Ιατρικών Δεδομένων
χρησιμοποιώντας Ασφαλή Υπολογισμό Πολλαπλών Συμμετεχόντων. Μία

Ολοκληρωμένη Περίπτωση Χρήσης.

Αθανάσιος Γ. Γιαννόπουλος Α.Μ.: M1529
Δημήτρης Η. Μούρης Α.Μ.: M1534

Οι συγγραφείς είχαν ίση συνεισφορά και τα ονόματά τους παρατίθενται σε αλφαβητική
σειρά.

ΕΠΙΒΛΕΠΟΝΤΕΣ: Ιωάννης Ε. Ιωαννίδης, Καθηγητής ΕΚΠΑ
Μίνως Ν. Γαροφαλάκης, Καθηγητής ΠΚ

ABSTRACT

The new era of big data demands high performance computing, since the amount of data
published online is growing exponentially. Cloud computing has emerged as a result,
providing strong computational power for both individuals and companies. Though cloud
computing is the answer to many businessmodels, there are many use-cases where cloud
fails to meet the demands of information privacy. For instance, exposing financial and
medical information to the cloud may violate the individuals’ right to privacy. People are
not comfortable sharing their sensitive data, and more importantly, they do not trust any
cloud provider with this information; data that are uploaded in the cloud can be exposed
to attacks from both the cloud provider and third parties.

Nevertheless, there are many real world use cases that use information from different
parties to jointly compute meaningful results, but due to the aforementioned limitations,
some are avoided and others do not always respect data privacy. The solution to this is a
technique called Secure Multi-Party Computation (SMPC or MPC), which leverages cryp-
tographic primitives to carry out computations on confidential data, computing a function
and learning nothing more than what the N parties would have if a separate trusted party
had collected their inputs, computed the same function for them, and then return the result
to all parties.

Motivated by this wide range of applications, in this thesis we have focused on providing
an end-to-end infrastructure for computing privacy-preserving analytics. More specific-
ally, we have developed algorithms specifically tailored to encrypted architectures and
in the SMPC scenario, such as secure aggregators and secure decision tree classifiers.
Moreover, we have focused on the coordination and communication between all involved
parties; those who provide their data, those who perform the secure computation, and
finally those that initiate new computations. Our algorithms are not dependent to the ap-
plication that our systems serves, however, in order to demonstrate it, in this thesis we
use hospitals as data providers and we focus on medical research. Our goal is to estab-
lish an end-to-end system for discovering useful information with respect to data privacy,
and also to provide the building blocks for potentially more elaborate privacy-preserving
algorithms.

SUBJECT AREA: Privacy-Preserving Computation, Privacy-Preserving Data Mining, Se-
cure Multi-Party Computation

KEYWORDS: Secure Multi-Party Computation, Privacy-Preserving Data Mining, Histo-
gram, Decision Tree Classifier, Medical Data

ΠΕΡΙΛΗΨΗ

Η νέα εποχή των μεγάλων δεδομένων απαιτεί μεγάλη υπολογιστική ισχύ, αφού το πλήθος
των δεδομένων που δημοσιεύονται στο διαδίκτυο μεγαλώνει εκθετικά. Σαν αποτέλεσμα,
προέκυψαν τα Νέφη Υπολογιστικών Συστημάτων, παρέχοντας μεγάλη υπολογιστική ισχύ,
τόσο για ιδιώτες όσο και για επιχειρήσεις. Παρόλο που τα υπολογιστικά νέφη είναι η
απάντηση σε πολλά επιχειρηματικά μοντέλα, υπάρχουν πολλές περιπτώσεις χρήσης όπου
τα υπολογιστικά νέφη αποτυγχάνουν να καλύψουν τις απαιτήσεις ιδιωτικότητας τωνπληρο-
φοριών. Για παράδειγμα, εκθέτοντας οικονομικές και ιατρικές πληροφορίας στο νέφος
μπορεί να παραβιάζει το δικαίωμα των ατόμων στην ιδιωτικότητα. Οι άνθρωποι δεν
νιώθουν άνετα με το να μοιράζονται τα ευαίσθητα δεδομένα τους, και πιο σημαντικά,
δεν εμπιστεύονται κανέναν πάροχο υπολογιστικού νέφους με τις πληροφορίες αυτές. Τα
δεδομένα που μεταφορτώνονται στο νέφος μπορεί να εκτεθούν σε επιθέσεις τόσο από
τον πάροχο όσο και από τρίτους.

Παρόλα αυτά, υπάρχουν πολλές πραγματικές περιπτώσεις χρήσης που χρησιμοποιούν
πληροφορίες από διαφορετικές οντότητες προκειμένου να υπολογίσουν από κοινού ουσι-
αστικά αποτελέσματα, αλλά λόγω τωνπροαναφερθέντωνπεριορισμών, κάποιες από αυτές
αποφεύγονται και άλλες δεν σέβονται πάντα την ιδιωτικότητα των δεδομένων. Η λύση σε
αυτό είναι μία τεχνική που ονομάζεται Ασφαλής ΥπολογισμόςΠολλαπλών Συμμετεχόντων,
η οποία αξιοποιεί θεμελιώδεις κρυπτογραφικές ιδιότητες προκειμένου να εκτελέσει υπολο-
γισμούς πάνωαπό εμπιστευτικά δεδομένα, υπολογίζοντας μία συνάρτηση και μαθαίνοντας
τίποτε παραπάνω σε σχέση με το τι θα μάθαιναν N συμμετέχοντες, εαν μία ξεχωριστή
έμπιστη οντότητα είχε συλλέξει τις εισόδους τους, είχε εκτελέσει την ίδια συνάρτηση, και
τέλος επέστρεφε το αποτέλεσμα σε όλους τους συμμετέχοντες.

Παίρνοντας κίνητρο από αυτό το ευρύ φάσμα εφαρμογών, στην εργασία αυτή επικεντρωθή-
καμε στο να παρέχουμε μία ολοκληρωμένη υποδομή για υπολογισμό στατιστικών αναλύσ-
εων με σεβασμό στην ιδιωτικότητα. Πιο συγκεκριμένα, έχουμε υλοποιήσει αλγορίθμους
ειδικά σχεδιασμένους για κρυπτογραφημένες αρχιτεκτονικές, χρησιμοποιώντας το σενάριο
του Ασφαλή Υπολογισμού Πολλαπλών Συμμετεχόντων, όπως ασφαλείς συγκεντρωτικούς
αλγορίθμους και ασφαλείς κατηγοριοποιητές με δέντρα απόφασης. Ακόμα, συγκεντρωθή-
καμε στο συντονισμό και την επικοινωνία μεταξύ όλων των συμμετεχόντων. Αυτών που
παρέχουν δεδομένα, αυτών που εκτελούν τον ασφαλή υπολογισμό και τέλος αυτών που
ξεκινούν νέους υπολογισμούς. Οι αλγόριθμοί μας δεν εξαρτώνται από την εφαρμογή
που εξυπηρετεί το σύστημά μας, παρόλα αυτά, για λόγους παρουσίασης, στην εργασία
αυτή χρησιμοποιούμε νοσοκομεία σας παρόχους δεδομένων και επικεντρωνόμαστε στην
ιατρική έρευνα. Ο Στόχος μας είναι να ιδρύσουμε ένα ολοκληρωμένο σύστημα με σκοπό
την ανακάλυψη χρήσιμης πληροφορίας με σεβασμό στην ιδιωτικότητα, και επίσης να
προσφέρουμε τα δομικά στοιχεία για τυχόν πιο πολύπλοκους αλγορίθμους με σεβασμό
στην ιδιωτικότητα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Υπολογισμοί με Σεβασμό στην Ιδιωτικότητα, Εξόρυξη Δεδομένων
με Σεβασμό στην Ιδιωτικότητα, Ασφαλείς Υπολογισμοί μεταξύ πολλαπλών Συμμετεχόντων

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: Ασφαλής ΥπολογισμόςΠολλαπλών Συμμετεχόντων, Εξόρυξη Δεδομένων
με Σεβασμό στην Ιδιωτικότητα, Ιστόγραμμα, Κατηγοριοποιητής Δέντρου Απόφασης, Ιατρικά
Δεδομένα

This master thesis is dedicated to our parents
Giorgos and Aggeliki

Ilias and Eirini

ACKNOWLEDGEMENTS

To start, we would like to thank our advisor Prof. Yannis E. Ioannidis for the chance he
gave us to work on this research project and also for the insightful discussions we had
during this thesis.

We are particularly thankful for the help and advice of Minos N. Garofalakis and Omiros
Metaxas all these months.

Last but not least, we thank ATHENA Research Center for the support of this thesis in
terms of My Health - My Data (MHMD) project. We would also like to express our gratitude
to the MHMD team, and especially Christos Nasikas, for the fruitful discussions.

The work in this thesis was partially supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 732907 (“My Health, My
Data”).

September 2018

CONTENTS

1 Introduction 1
1.1 Privacy Issues in the Cloud & Multi-Party Computing 1

1.2 Our Contribution . 2

1.3 Thesis Structure . 3

2 Preliminaries 4
2.1 Encryption . 4

2.2 Symmetric-Key Encryption . 4

2.3 Asymmetric-Key Encryption (Public-Key Encryption) 4

2.3.1 RSA . 5

2.3.2 ElGamal . 6

2.3.3 Paillier . 6

2.4 Homomorphic Encryption . 7

2.4.1 Partially Homomorphic Encryption 8

2.4.1.1 RSA Cryptosystem . 9

2.4.1.2 ElGamal Cryptosystem . 9

2.4.1.3 Paillier Cryptosystem . 9

2.4.2 Fully Homomorphic Encryption . 10

2.5 Secure Multi-party Computation (SMPC) 10

2.5.1 Millionaire’s Problem . 11

2.5.2 Oblivious Transfer . 11

2.5.3 Garbled Circuits . 12

2.5.3.1 Circuit Encoding . 12

2.5.3.2 Data Transfer . 12

2.5.3.3 Circuit Evaluation . 13

2.5.3.4 Output Revealing . 13

2.5.3.5 Overhead . 13

2.6 Secret Sharing . 14

2.6.1 Shamir Secret Sharing . 14

2.6.1.1 Algorithm . 14

2.6.1.2 Threat Model . 15

2.6.2 Additive Secret Sharing . 15

2.6.2.1 Algorithm . 16

2.6.2.2 Threat Model . 16

2.6.3 Secret Sharing Homomorphism . 16

3 Related Projects 18
3.1 My Health My Data . 18

3.2 Scalable Oblivious Data Analytics . 18

4 Sharemind: A Secure Computing Platform 19
4.1 Real World Applications . 19

4.1.1 Satellite Collision Detection . 19

4.1.2 Analysing Private Databases . 20

4.2 SecreC . 20

4.2.1 SIMD in SecreC . 21

4.3 Sharemind Infrastructure . 22

5 A Medical Case Study 24
5.1 A Doctor’s view . 24

5.2 An Individual’s view . 24

5.3 A Researcher’s view . 25

5.4 Our End-to-End Architecture . 25

5.4.1 End-to-End Execution Flow . 25

5.4.1.1 Query Initiation . 26

5.4.1.2 Data Import . 27

5.4.1.3 Data Importing On-the-Fly 27

5.4.1.4 Computation Execution . 28

5.4.1.5 Result Publishing . 28

5.4.2 SMPC Threat Model . 28

5.4.2.1 Computing Parties Collusion 29

5.5 Supported Computations . 29

6 Privacy Preserving Algorithms 30
6.1 Challenges in Privacy Preserving Algorithms 30

6.2 Branching Oracles . 30

6.3 Notation . 31

6.4 Transforming Algorithms to their Privacy Preserving Equivalent 31

6.5 Algorithms for Two Types of Data: Categorical & Numerical 33

6.6 Privacy Preserving Histograms . 34

6.6.1 Algorithms for Privacy Preserving Histograms 35

6.6.1.1 Privacy Preserving Histogram Computation: A Naive Ap-
proach . 36

6.6.1.2 Privacy Preserving Histograms for Categorical Values . . . 36

6.6.1.3 Privacy Preserving Histograms for Numerical Values . . . 38

6.6.1.4 Filters in Privacy Preserving Histograms 39

6.7 Decision Trees . 43

6.7.1 Textbook ID3 . 44

6.7.2 Privacy Preserving ID3 . 47

6.7.2.1 Privacy Assessment . 51

6.7.3 Privacy Preserving C4.5 . 53

7 Implementation Details 56
7.1 Coordinator . 56

7.1.1 RESTful API . 56

7.1.2 Sequence of Actions . 57

7.1.3 Result Caching . 58

7.2 Data Providers . 58

7.2.1 RESTful API . 58

7.2.2 Data Importer . 59

7.2.3 Containerization . 59

7.3 SMPC Cluster . 59

7.4 User Interface . 60

7.5 Communication . 62

8 Datasets 63

9 Experimental Evaluation 66
9.1 Histograms . 66

9.2 Decision Trees . 68

10 Conclusions & Future Work 69

Abbreviations - Acronyms 70

Appendices 71

A RESTful APIs 72

A.1 Coordinator’s RESTful API . 72

A.1.1 /smpc/histogram/numerical POST request 72

A.1.2 /smpc/histogram/categorical POST request 74

A.1.3 /smpc/decisionTree POST request 76

A.1.4 /smpc/queue GET request . 79

A.2 Data Providers’ RESTful API . 84

A.2.1 /smpc/import/numerical POST request 84

A.2.2 /smpc/import/categorical POST request 84

B User Interface Screenshots 86

C Source Code under MIT Licence 87

D Creative Commons Attribution 4.0 International Public License 88
D.1 Section 1 – Definitions. 88

D.2 Section 2 – Scope. 89

D.3 Section 3 – License Conditions. 90

D.4 Section 4 – Sui Generis Database Rights. 91

D.5 Section 5 – Disclaimer of Warranties and Limitation of Liability. 91

D.6 Section 6 – Term and Termination. 91

D.7 Section 7 – Other Terms and Conditions. 92

D.8 Section 8 – Interpretation. 92

REFERENCES 95

LIST OF FIGURES

Figure 1: An overview of the architecture of Sharemind 23

Figure 2: An overview of the architecture of our study 26

Figure 3: An one-dimensional histogram with β = 4 35

Figure 4: A two-dimensional histogram/heatmap with β = 4 35

Figure 5: One-dimensional histogram displaying Age Groups 35

Figure 6: A two-dimensional histogram displaying Age Groups with Continental
Population Groups . 35

Figure 7: Histogram on Patient Age and Height (cm) with no filters 40

Figure 8: Histogram on Patient Age and Height (cm) with filters on Patient Age 40

Figure 9: Histogram on Patient Age and Height (cm) with filters on Patient Age
and Weight (kg) . 40

Figure 10: Histogram on BMI (kg/msq) with no filters 41

Figure 11: Histogram on BMI (kg/msq) with filters on Height (cm) and Weight (kg) 41

Figure 12: Play-Tennis decision tree example 43

Figure 13: Landing page: choosing between secure data aggregation & classi-
fication . 60

Figure 14: Selecting dataset for secure aggregation 60

Figure 15: Choosing attributes, filters and data-providers for secure aggregation
for numerical dataset . 61

Figure 16: 2D Histogram for “Patient Age” & “Heart Rate” for β = 5 for each
dimension . 61

Figure 17: Creating a histogram on the MeSH dataset 62

Figure 18: DATS model . 64

Figure 19: Numerical histograms timings . 66

Figure 20: Categorical histograms timings . 66

Figure 21: Numerical histograms with filters timings 67

Figure 22: ID3 decision tree classifier timings with variable patients for 3 attributes 68

Figure 23: ID3 decision tree classifier timings with variable number of attributes 68

Figure 24: Creating a decision tree on the MeSH dataset 86

Figure 25: ID3 decision tree for the request shown in Figure 24 86

Figure 26: Creating a decision tree on the CVI dataset 86

Figure 27: C4.5 decision tree for the request shown in Figure 26 86

LIST OF TABLES

Table 1: Coordinator’s RESTful API . 56

Table 2: Data Providers’ RESTful API . 58

Table 3: CVI dataset . 63

Table 4: Importing of Diseases [C] . 65

Table 5: Importing of Stomatognathic Diseases [C07] 65

LIST OF ALGORITHMS

Algorithm 1: Textbook & Privacy Preserving Sum of an Array 32

Algorithm 2: Textbook & Privacy Preserving Max of an Array 32

Algorithm 3: Textbook & Private Information Retrieval 33

Algorithm 4: Naive Privacy Preserving 1D Histogram for Categorical Values 36

Algorithm 5: Naive Privacy Preserving 1D Histogram for Numerical Values 36

Algorithm 6: Privacy Preserving 1D Histogram for Categorical Values 37

Algorithm 7: Privacy Preserving Multi-Dimensional Histogram for Categorical Values 38

Algorithm 8: Privacy Preserving 1D Histogram for Numerical Values (Specified Cells) 39

Algorithm 9: Privacy Preserving Constraint Mask 41

Algorithm 10:Entropy Textbook Algorithm . 44

Algorithm 11: Information Gain Textbook Algorithm 45

Algorithm 12:Best Textbook Algorithm . 45

Algorithm 13:All Examples Same Textbook Algorithm 46

Algorithm 14:Most Common Label Textbook Algorithm 46

Algorithm 15: ID3 Textbook Algorithm . 47

Algorithm 16:Privacy Preserving Count Positives Algorithm 48

Algorithm 17:Privacy Preserving All Examples Same Algorithm 48

Algorithm 18:Privacy Preserving Most Common Label Algorithm 49

Algorithm 19:Privacy Preserving Best Algorithm . 49

Algorithm 20:Privacy Preserving Entropy Algorithm 50

Algorithm 21:Privacy Preserving Information Gain Algorithm 50

Algorithm 22:Privacy Preserving ID3 Algorithm . 51

Algorithm 23:Privacy Preserving C4.5 Algorithm . 53

Algorithm 24:Privacy Preserving C4.5 Best Algorithm 55

LIST OF SOURCE CODES

Code 1: Millionaire problem in SecreC . 21

Code 2: Array addition in SecreC . 22

Code 3: Array addition in SecreC using SIMD . 22

Code 4: Rules for decision tree from figure 12 . 44

Code 5: Example of a patient JSON object with MeSH codes 64

Code 6: Example 1 of /smpc/histogram/numerical POST request body 73

Code 7: Example 2 of /smpc/histogram/numerical POST request body 73

Code 8: Example 1 of /smpc/histogram/numerical response 74

Code 9: Example 2 of /smpc/histogram/numerical response 74

Code 10: Example 1 of /smpc/histogram/categorical POST request body 75

Code 11: Example 2 of /smpc/histogram/categorical POST request body 76

Code 12: Example 1 of /smpc/decisionTree POST request body for categorical values 77

Code 13: Example 2 of /smpc/decisionTree POST request body for numerical values 78

Code 14: Example 3 of /smpc/decisionTree POST request body for categorical values 78

Code 15: Example /smpc/queue GET request . 79

Code 16: Example /smpc/queue GET response body for a successful Age Groups
(M01.060) histogram . 80

Code 17: Example /smpc/queue GET response body for a successful Height(cm)
histogram with β = 5 . 81

Code 18: Example /smpc/queue GET response body for a successfully computed
private decision tree using C4.5 on Patient Age from categorical values . 82

Code 19: Example /smpc/queue GET response body for a successfully computed
private decision tree using ID3 on Patient Age from categorical values . . 83

Code 20: Example /smpc/queue GET response body for an ongoing computation
during secure import . 83

Code 21: Example /smpc/queue GET response body for a failed computation . . . 83

Code 22: Example /smpc/import/numerical POST request body 84

Code 23: Example /smpc/import/categorical POST request body 85

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

1. INTRODUCTION

Arguing that you don’t care about the right to privacy
because you have nothing to hide is no different than
saying you don’t care about free speech because you

have nothing to say.

Edward Snowden [57]

Big data is growing exponentially, 90 percent of which has been created in the past few
years [37]. People are constantly producing and publishing information about themselves.
Such data comes from browsing the web, talking to someone online, moving around emit-
ting GPS signal, being registered by cameras or credit card usage, or even wearables and
IoT devices. Many companies and organizations, such as Google and Facebook, make
profit from big data analytics, collection and storage.

One of the most common examples is personalized advertisements, occurring from the
massive data analytics. It is becoming increasingly common for data about our location,
music and movies we like, private conversations, and any other online trace we leave
behind, to be linked to our purchasing preferences.

The aforementioned tracking and profiling comes from breaching of the individuals’ pri-
vacy. Privacy is the ability of individuals to have control over how their personal inform-
ation is collected and used, and thereby express themselves selectively. Nowadays, the
need of preserving someone’s privacy is more crucial than ever. For instance, financial
information can be sensitive. Such information includes a person’s holdings, debts and
transactions (e.g. purchases). This information, if compromised, can lead criminal activity
such as fraud or identity theft. Also, one’s purchases can be linked to places they visit,
people they contact and so on; thus, such data should remain private.

A noteworthy example that renders privacy of critical importance is medical data. People
may not be comfortable sharing their medical records to others, due to several reasons.
For instance, it could affect their employment, their insurance coverages, or people just
do not want others to know about their medical or psychological conditions or treatments.
Medical data reveals a lot for a patient’s personal life and therefore should be protected.

An argument adopted by many, is that there is no need for privacy if you have nothing to
hide. This shows a failure to understand that privacy is a human right. There is no need
to justify why such a right is needed. The burden of justification falls on the one seeking
to violate this right. Even when a right is not useful to you, you can’t give away the right
of others.

1.1 Privacy Issues in the Cloud & Multi-Party Computing

This rapid growth of information has resulted in the consistently growing popularity of cloud
computing, which offers strong computational power for both individuals and companies.
At the same time, all data that are uploaded in the cloud can be exposed to attacks from
both the cloud provider and third parties. However, in the case of financial and medical
data, people are not comfortable sharing their sensitive data, and more importantly, they
do not trust any third party with this information.

A. Giannopoulos - D. Mouris 1

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

There are many real world use cases and business models that use information from
different parties to compute jointly meaningful results, but due to the aforementioned lim-
itations, some are avoided and others do not always respect data privacy. The solution
to this, is technique called secure multi-party computation (SMPC or MPC) [28,63], which
leverages cryptographic primitives to carry out computations on confidential data. Having
N parties with private inputs, the goal is to compute a function and learn nothing more
than what they would have if a separate trusted party had collected their inputs, computed
the same function for them, and then return the result to all parties.

Real world examples are unlimited; for instance, Sharemind [13] – a platform for secure
computations – mentions the example of satellite collision [36], since the number of satel-
lites orbiting the planet is growing and thus the danger of collisions is also growing. Indeed,
two satellites crashed in 2009. Satellite owners are not willing to make the orbits of their
satellites public. However, this – and future – collisions could be avoided by sharing in-
formation about the satellites orbits. Using MPC, the parties can cooperate and learn
whether a collision is going to happen and nothing else. No information about the actual
orbits would leak, since computations are carried out on encrypted data.

Another interesting example is presented in [41], where in the late 1990s, the Canadian
Government maintained a massive federal database that pooled citizen data from a num-
ber of different government ministries, with aim to implement governmental research that
would arguably improve the services received by citizens. This database became known
as the “big brother” database, despite that was officially called the Longitudinal Labor
Force File. Fortunately, the people protested and the project was discontinued due to
privacy concerns. As in the example of medical research, here, individuals data privacy
would have been exposed, rendering the need of privacy-preserving algorithms of crucial
importance.

1.2 Our Contribution

In this thesis, our primarily concern is to create an end-to-end infrastructure for computing
privacy preserving analytics such as [2, 41]. We have developed algorithms specifically
tailored to encrypted architectures and in the SMPC scenario, but also we have focused
on the coordination and communication between all involved parties; those who provide
their data, those who perform the secure computation, and finally those that initiate new
computations. In our view, this thesis provides an end-to-end system for discovering use-
ful information with respect to data privacy. In our system, we have developed some
essential analytics algorithms – such as aggregators and decision trees. Our goal is to
provide the building blocks for potentially more elaborate algorithms to be implemented
with respect to data privacy.

In the context of this thesis, our study is focused on medical data, which has been a
popular data mining topic of late [18, 25]. However, the primary reason that we focus on
medical data is that the privacy protection of medical records is taken more seriously than
other data mining tasks [9]. Medical records are related to humans, which renders privacy
of critical importance. Thus, medical data constitute an example that demonstrates the
necessity of privacy preserving algorithms and also for a comprehensive infrastructure
that incorporates and facilitates all participating parties.

Although in this thesis we have focused on medical data, our end-to-end infrastructure is
oblivious to the type of data that it processes. The same analytics will be applied whether

A. Giannopoulos - D. Mouris 2

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

it would perform medical research on hospitals data, or highly classified statistics for gov-
ernments data, or even private computation for preventing satellite collisions. This variety
of applications that can be served through our system, are mainly tied to two data types –
continuous1 and categorical2 data. Examples of the former category include weight, price,
profits, etc, where some categories of the latter type of data include product-type, gender,
age-group, etc. This heterogeneity of data types has separated our privacy-preserving
algorithms in two corresponding categories, since different data types are managed in dif-
ferent ways. The algorithms we have developed for privacy-preserving analytics can deal
with both quantitative and categorical data.

1.3 Thesis Structure

The rest of the thesis is organized as follows: In section 2, we examine some funda-
mental cryptographic protocols that are essential for the subsequent sections. In section
4 we present the Sharemind secure multiparty computation framework, while in section
5 we elaborate in our end-to-end medical case study. Consecutively, in section 6 we
present the basic notion of privacy-preserving algorithms and how they are different from
their textbook equivalents. Moreover, we elaborate on details of the algorithms of the
two major categories we have developed, secure aggregation and secure classification.
In section 7 we delve into the various implementation details of our system. Our exper-
imental evaluation is presented in section 9 and finally, our conclusions and future work
goals are summarized in section 10.

1Continuous data is data where the values can change continuously, rendering uncountable the number
of different possible values.

2Categorical data refer to those aspects of data where there is a distinction between different groups;
the number of possible values/categories are small and can be counted.

A. Giannopoulos - D. Mouris 3

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

2. PRELIMINARIES

In this section, we present the basic principles of cryptography and also some fundamental
cryptographic protocols that are essential for the subsequent sections.

2.1 Encryption

The fields of cryptography, privacy, computer and information security, design and util-
ize software, hardware, and human resources to address the issue of sensitive inform-
ation and private communication. One of the most commonly used ways of preserving
data privacy is the use of encryption. Encryption is the process of encoding a message
(plaintext), such that it is accessible only to authorized parties, and no one else. This is
accomplished using an encryption algorithm (cipher) that operates on the plaintext and
produces a ciphertext. The ciphertext needs to be decrypted in order to be read and a
decryption algorithm is responsible for this operation. Both algorithms use a key in order
to operate on the plaintext. The distribution of the key(s) ensures the authorization of the
parties involved.

Ultimately, the basic building blocks of an encryption scheme come down to three dis-
crete components. These are the Key Generation mechanism and the Encryption and
Decryption algorithms.

2.2 Symmetric-Key Encryption

The simplest form of encryption, is the use of a symmetric key scheme. Such a scheme
utilizes a secret key which is used to perform the mathematical operations of both encrypt-
ing and decrypting of a message. The communicating parties must share the same key
in order to communicate securely. Symmetric-key algorithms are algorithms that use the
same key for both encryption of the plaintext and decryption of the ciphertext. The keys
represent a shared secret between two or more parties that can be used to maintain a
private information channel. The requirement that both parties have access to the secret
key is one of the main drawbacks of symmetric key encryption, in comparison to public-key
encryption schemes that we expand in section 2.3.

More formally, given a plaintext P and a secret key K, a ciphertext C is produced such
that:

C = Enc(P,K)

P = Dec(C,K) = Dec(Enc(P,K), K)
(2.1)

Where Enc and Dec are the Encryption and Decryption algorithms respectively.

2.3 Asymmetric-Key Encryption (Public-Key Encryption)

The major problem that traditional symmetric-key algorithms face is that they require the
parties to exchange keys, or more specifically to agree to a secret common private key,
prior to communicating. This needs a secure (physical or digital) communication channel
accessible even for a short period of time, in order for the secret key to be exchanged.

A. Giannopoulos - D. Mouris 4

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Such a channel could be a piece of paper delivered by hand or by a trusted courier, or a
short in person communication.

An asymmetric or public-key cryptosystem is one where different keys are employed for
the operations in the cryptosystem (e.g., encryption and decryption), and where one of the
keys can be made public without compromising the secrecy of the other key [35]. That
way there is no need for a secure channel or prior agreement.

Usually three algorithms are needed to define a public key cryptosystem. These are a
Key Generation algorithm which produces the public and private keys (based on a security
parameter η), an Encryption and a Decryption algorithm.

In the classic model such an encryption scheme involves a public key which is used for
encryption and a private key which is used for decryption. More formally, given a plaintext
P , a public key PubKey, and a private key PrivKey we can produce a ciphertext C such
that:

C = Enc(P, PubKey)

P = Dec(C,PrivKey)
(2.2)

Where Enc and Dec are the Encryption and Decryption algorithms respectively.

If Alice wants to send a message to Bob, she needs Bob’s public key which could be
publicly available (e.g. on Bob’s website). Alice encrypts her message with Bob’s public
key and sends the resulted ciphertext to Bob. Bob then needs his private key which is
only in his possession in order to decrypt the ciphertext Alice sent and retrieve the original
message. If Bob wishes to reply, he needs Alice’s public key etc. Generally, the public
(encryption) key could be shared to any party that wants to communicate with the owner
of that public key, while the private (decryption) key should be kept secret and used by
the recipient of the ciphertext to recover the original plaintext.

The ability for two users to establish a shared secret over an insecure communication
channel, despite having no prior communication or information exchange was first pro-
posed in 1976 by Whitfield Diffie and Martin Hellman. That method is named Diffie-
Hellman (DH) key exchange [23] after its authors. The security of the algorithm is based
on the difficulty of solving the Discrete Log Problem (DLP). The DLP is stated as follows:
Given g, p and gk (mod p), find k.

Some of the most widely used public key cryptosystems are the RSA (Rivest – Shamir –
Adleman) [54], the El Gamal [24] and the Paillier [50] Cryptosystems.

2.3.1 RSA

One if the first and most widely adopted public key cryptosystem is RSA . The algorithm’s
difficulty reduces to the difficulty of factoring the product of two large prime numbers. Its
three basic algorithms are described below.

• Key Generation

– Randomly select two large primes p and q.
– Calculate modulus n = p · q.
– Calculate ϕ(n) = (p− 1) · (q − 1).
– Randomly select e : gcd(e, ϕ(n)) = 1.

A. Giannopoulos - D. Mouris 5

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

– Calculate reverse d = e−1 (mod ϕ(n)).
d · e = 1 (mod ϕ(n)).

– The public key is (n, e), while the private key is d. p, q and ϕ(n) must also be
kept private.

• Encryption

– Given a plaintext message m, we get a ciphertext c = me (mod n).

• Decryption

– Given a ciphertext c, we get back the plaintext m as follows: cd (mod n) = med

(mod n) = m.

2.3.2 ElGamal

The ElGamal encryption system is a public-key cryptosystem based on the Diffie-Hellman
key exchange. Its three basic algorithms are described below.

• Key Generation

– Select two large primes p and q : q | (p− 1).
– Select a generator g of group G which is a large enough order-q subgroup of
the multiplicative group Z∗

p of integers between 1 and p− 1.
– Randomly select x ∈R Zq.
– Calculate y = gx (mod p).
– The public key is y, while the private key is x.

• Encryption

– Given a plaintext message m, we get a ciphertext c as follows.
– Randomly select r ∈R Zq.
– Calculate G = gr (mod p).
– Calculate M = m · yr (mod p).
– Return c = (G,M)

• Decryption

– Given a ciphertext c = (G,M), we get back the plaintext m as follows:
m = M/Gx (mod p).

2.3.3 Paillier

The Pallier cryptosystem is a public-key cryptosystem that relies its security upon the
decisional composite residuosity assumption [50].

• Key Generation

A. Giannopoulos - D. Mouris 6

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

– Randomly and independently select two large primes p and
q : gcd(p− 1, q− 1) = 1 If both primes have the same length this property holds.

– Calculate the RSA modulus n = p · q.
– Calculate λ = lcm(p− 1, q − 1).
– Select generator g ∈ Z∗

n2 such that the order of g is a non zero multiple of n.
– Calculate µ = (L(gλ (mod n2)))−1 (mod n), where L(x) = x−1

n
.

– The public key is (n, g), while the private key is (λ, µ).

• Encryption

– Given a plaintext message m, we get a ciphertext c as follows.
– Encode m into Zn.
– Randomly select r ∈R Z∗

n.
– Return c = gm · rn (mod n2).

• Decryption

– Given a ciphertext c ∈ Zn2, we get back the plaintext m as follows:
m = L(cλ (mod n2)) · µ (mod n).

2.4 Homomorphic Encryption

Some encryption schemes are inherently “malleable”, which means that it is possible to
transform a ciphertext into another ciphertext which decrypts to a related plaintext. Ho-
momorphic encryption is a malleable encryption scheme that allows operations directly on
encrypted data so that the results after decryption would correspond to applying matching
operations on unencrypted data. For example, having an encryption mechanism Enc, the
product of any two ciphertexts is equal to a ciphertext of the sum of the two corresponding
plaintexts (M1 and M2). Or more generally the application of a function to the ciphertexts
corresponds to another function on the plaintexts, as follows:

Enc(M1)⊗ Enc(M2) = Enc(M1 ⊕M2) (2.3)

for some operations ⊗ and ⊕.

Homomorphic encryption enables outsourcing computations to a third party, as for ex-
ample on the cloud. Cloud computing is designed to deal with difficult operations and with
computationally demanding algorithms. However, if user’s data are unencrypted they can
be exposed to attacks from both the cloud provider and third parties (hackers, government
agencies, data breaches, etc.). Even if the data are stored (data at rest) and transferred
(data in transit) securely, when they are in use they can be exposed to security risks, such
as side-channel attacks [67] and hardware Trojans [6, 59]. Data at rest implies data that
is stored physically in any digital form, while data in transit means data traversing the net-
work. Active data under constant change which is stored in a non-persistent digital state
typically in computer random access memory (RAM), CPU caches, or CPU registers are
called data in use.

It is possible, to construct an entire system to work over encrypted data, manipulating and
returning encrypted results. This system would be based on homomorphic encryption,

A. Giannopoulos - D. Mouris 7

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

which allows to apply a function to the ciphertexts that corresponds to another function on
the plaintexts, and in general enables computation on encrypted data. The final results can
then be obtained by a single decryption. For instance, given Enc(M1) and Enc(M2) (the
encryption of M1 and M2), you can compute Enc(M1 +M2) without knowing M1, M2 nor
the decryption key. The only point in the process where data would be decrypted is when
the user wants to see the result, and that would presumably happen in the application or
client software, not in the database server in the cloud, rendering the host incapable of
leaking any type of information.

One challenge that homomorphic encryption schemes, and in general every encrypted
computation framework, face is the inability to make runtime decisions based on encryp-
ted data. Using homomorphic operations requires special care to ensure that branching
does not reveal any sensitive data by observing side-channel information (e.g. the branch
target). For instance, the host is unable to perform operations like “if (x > 0) return;”
when x is an encrypted variable. This is known as the “termination problem”, introduced
in [15], since performing runtime branch decisions is not possible and therefore rendering
the algorithms implemented on top of those systems by design more complex.

To address this problem traditional algorithms must be changed to their homomorphic
equivalents, a not straightforward process. Some work has been done in [47] by develop-
ing benchmarks targeted for computer architectures based on homomorphic operations.
Those benchmarks avoid termination problems while maintaining data privacy.

There is not a sole type of homomorphic encryption, different schemes have been pro-
posed for different types of applications.

2.4.1 Partially Homomorphic Encryption

The most widely used type of homomorphic encryption is partially homomorphic encryp-
tion (PHE), with schemes like RSA, ElGamal, Benaloh and Paillier. PHE has been expan-
ded with applications such as Helios (e-voting PHE based system) [1], Cryptoleq (Het-
erogeneous abstract machine for both encrypted and unencrypted computation based on
PHE) [45], and others. All those systems, perform manipulations directly on encrypted
data without decrypting them, thus no information leakage is possible. When the result is
eventually decrypted, it will be the same as applying the samemanipulations on plaintexts.

The two most common cases (but not the only ones) of partially homomorphic cryptosys-
tems are additively homomorphic and multiplicatively homomorphic.

• Additively homomorphic systems enable computation over ciphertexts (encrypted
data) that result in the encryption of the sum (addition) of two plaintexts. More form-
ally, a cryptosystem is considered to be additively homomorphic iff:

Enc(M1)⊗ Enc(M2) = Enc(M1 +M2) (2.4)

for some operation ⊗.

• Multiplicatively homomorphic systems enable computation over ciphertexts that de-
crypt to the product (multiplication) of two plaintexts. More formally, a cryptosystem
is considered to be multiplicatively homomorphic iff:

Enc(M1)⊗ Enc(M2) = Enc(M1 ·M2) (2.5)

A. Giannopoulos - D. Mouris 8

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

for some operation ⊗.

Below we describe some widely known cryptosystems that are partially homomorphic.

2.4.1.1 RSA Cryptosystem

Plain RSA encryption is multiplicatively homomorphic. Consider the encryption algorithm
described in section 2.3.1. We know that Enc(m) = m1

e (mod n). Given two ciphertexts
Enc(m1) and Enc(m2) of plaintexts m1 and m2 respectively, we can see that the following
holds.

Enc(m1) · Enc(m2) = m1
e (mod n) ·m2

e (mod n) =

(m1 ·m2)
e (mod n) = Enc(m1 ·m2)

(2.6)

So the product of the two ciphertexts corresponds to the ciphertext of the product of the
two plaintexts.

2.4.1.2 ElGamal Cryptosystem

The ElGamal cryptosystem is also multiplicative homomorphic. Based on the algorithm
described in 2.3.2 we know that Enc(m) = (G,M) = (gr (mod p),m, for some random
r ∈R Zq. Consider we have two ciphertexts Enc(m1) and Enc(m2) of plaintexts m1 and
m2, respectively. We can see that the following holds.

Enc(m1) · Enc(m2) = (G1,M1) · (G2,M2) =

(gr1 (mod p),m1 · yr1 (mod p)) · (gr2 (mod p),m2 · yr2 (mod p)) =

(gr1+r2 (mod p), (m1 ·m2) · yr1+r2 (mod p)) = Enc(m1 ·m2)

(2.7)

We can see again that the product of the encryptions of two plaintexts results to the en-
cryption of the encryption of the product of the two plaintexts.

2.4.1.3 Paillier Cryptosystem

The Paillier cryptosystem is additively homomorphic. According to 2.3.3, we know that
Enc(m) = gm · rn (mod n2), for some random r ∈R Z∗

n . Given two ciphertexts Enc(m1)
and Enc(m2) of plaintexts m1 and m2 respectively, we can see that the following holds.

Enc(m1) · Enc(m2) = (gm1 · r1n (mod n2)) · (gm2 · r2n (mod n2)) =

(gm1 · r1n) · (gm2 · r2n) (mod n2) = gm1+m2 · (r1 · r2) (mod n2) =

Enc(m1 +m2)

(2.8)

We can see that the product of the two ciphertexts will decrypt to the sum of their corres-
ponding plaintexts.

A. Giannopoulos - D. Mouris 9

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

2.4.2 Fully Homomorphic Encryption

Another form of homomorphic encryption is Fully homomorphic encryption (FHE), first
invented by Gentry in [27]. Due to the fact that FHE enables arbitrary computation on
ciphertexts, is far more powerful than PHE (which was just called Homomorphic Encryption
before FHE systems were discovered) and its appearance sparked the academic interest.
Consecutively a lot of FHE schemes arise, but unfortunately they come along with a huge
performance overhead. This overhead has been a concern and this is the reason that
there are not many applications that leverage FHE, despite the wide range of that can
benefit from FHE schemes. Some implementations are the HElib [29] and the TFHE [19].

2.5 Secure Multi-party Computation (SMPC)

Secure multi-party computation (SMPC)3 or Secure Function Evaluation (SFE) (in the
two-party setting) is a field of cryptography aiming to create methods that enable dis-
tinct parties, to jointly compute a function over their private inputs. Only the outcome of
that function is made public and the parties don’t learn anything more than their own input
except whatever can be learned from the output of the function.

Secure multi-party computation was introduced in 1982 by Andrew Yao. Its first form was
that of secure two-party computation (2PC) with the so-called Millionaire’s Problem [63].
The problem states that there are two millionaires wishing to know who is richer. However,
they should not find out any additional information about each other’s wealth.

In the general case we have N parties P1, P2, . . . , PN with private inputs x1, x2, . . . , xN re-
spectively. The goal is to compute a function f(x1, x2, . . . , xN) and learn nothing more
than what they would have if a separate trusted party had collected their inputs, computed
function f for them, and the return the result to all parties.

There are two important requirements on any protocol for secure computation, namely
privacy and correctness [43]. The privacy requirement suggests that nothing but what is
absolutely essential should be learned. More specifically, all parties should learn nothing
more but the computation output. The correctness requirement states that every party
should receive the correct computation output, that is an adversary should not be able to
cause the result of the computation to be different than the outcome of the function the
parties agreed to compute.

Plenty of tasks can be modeled using SMPC. The tasks that can be modeled using SMPC
include simple ones such as coin tossing, as well as far more complex such as electronic
voting, electronic auctions, anonymous transactions, anonymous chatting and private in-
formation retrieval systems.

Take electronic voting as an example. The privacy requirement ensures that no party
can learn the individual votes of other parties, while still learning the election outcome.
The correctness requirement ensures that no party can affect the outcome with means
other than casting their one individual vote. Similarly, in the electronic auction example,
the privacy requirement ensures that no party learns the bids of other parties while still
learning the winning bid. The correctness requirement ensures that no party can bias the
auction outcome and that in fact the winning party has places the highest bid.

3Both SMPC and MPC abbreviations are used for secure multi-party computation; in this thesis we use
them interchangeably.

A. Giannopoulos - D. Mouris 10

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

2.5.1 Millionaire’s Problem

The first problem that was modeled using SMPC is the Millionaire’s Problem introduced
by Yao, and it is a basic building block for such secure computations.

Here the two parties P1, P2 are the two millionaires. Their private inputs are each one’s
wealth x1 and x2 respectively. The function which they wish to jointly compute can be
formulated as

f(x1, x2) =

{
x1, if x1 > x2.

x2, otherwise.
(2.9)

A lot of solutions have been proposed to the Millionaire’s problem starting with the one
from Yao himself [63] as well as multiple others including [30,40].

2.5.2 Oblivious Transfer

Another example for the two-party case and a basic building block of SMPC systems is
Oblivious Transfer (OT) firstly introduced in 1981 by Michael O. Rabin [53]. Its simple
flavor is 1-2 oblivious transfer or “1 out of 2 oblivious transfer”.

In the 1-2 oblivious transfer case we have two parties, the sender S and the receiver R.
The sender has two messages, m0 and m1, and the receiver has a bit b. The receiver
wishes to learn mb, without learning anything about m1−b and without the sender learning
b.

A solution for the above problem has been implemented using the protocol of Even,
Goldreich, and Lempel in [26]. Below we describe the otherwise generic protocol using
RSA as en encryption scheme.

• S (who holds messagesm0 andm1) generates an RSA key pair. Recall from section
2.4.1.1 that the public key is (n, e) and the private key is d.

• S randomly selects two values x0, x1.

• S sends x0, x1, N, e to R.

• R picks b ∈ {0, 1}

• R randomly selects a value k and computes v = xb + ke (mod n).

• R sends v to S.

• S computes k0 = (v − x0)
d (mod n) and k1 = (v − x1)

d (mod n). One of k0, k1 will
be equal to k randomly selected be R.

• S sends to m′
0 = m0 + k0 and m′

1 = m1 + k1 to R.

• R can compute exactly one of the messages, as mb = m′
b − k.

A. Giannopoulos - D. Mouris 11

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

2.5.3 Garbled Circuits

There are also generic constructions for building SMPC systems. Generic protocols imple-
ment secure computation for any probabilistic polynomial time function. One of the most
commonly known such generic protocol is Garbled (or Encrypted) Circuits (GC). The most
simple version of SMPC using Garbled Circuits can be found in the two-party case. The
first protocol for such computations was introduced by Yao in [64].

Assume that we have two parties, Alice and Bob, with private inputs x and y, respectively.
They wish to compute function f over their private inputs, and nothing more than f(x, y)
should be learned.

The GC protocol works by expressing f as an combinatorial circuit. The circuit contains
logical gates that implement any function g : {0, 1} × {0, 1} → {0, 1}. These include for
instance simple AND, OR, XOR and NOT gates. This circuit takes as inputs the bitwise rep-
resentation of x and y and has output the bitwise representation of the value f(x, y). The
protocol is based on evaluating an encrypted version of this circuit. A simple description
of Yao’s protocol can be seen below. A complete description as well as security proof of
this protocol can be found in [42].

Let’s assume without loss of generality that Alice is the so called garbled circuit generator,
or garbler, and Bob the evaluator. The circuit is known to both parties.

2.5.3.1 Circuit Encoding

• Alice “hardwires” her input into the circuit. Thus the circuit now computes f(x, ·).

• Alice assigns to each wire i of the circuit two random string values (W 0
i ,W

1
i) which

are called labels that correspond to the Boolean values 0/ false and 1/ true re-
spectively. These labels should be of adequate length (usually 128 bits) as they will
be used as symmetric keys in an encryption scheme.

• For each gate g in the circuit Alice prepares the truth table of g. In that truth table
the values 0, 1 are replaced with the corresponding labels that were generated in the
previous step. The output column is then encrypted 4 using as keys the labels from
the two input columns. For example the transformation of the truth table of an AND
gate with input wires A,B and output wire C can be seen below.

A B C
0 0 0
0 1 0
1 0 0
1 1 1

becomes−−−−−→

A B C
W 0

A W 0
B W 0

C

W 0
A W 1

B W 0
C

W 1
A W 0

B W 0
C

W 1
A W 1

B W 1
C

becomes−−−−−→

A B C
W 0

A W 0
B EW 0

A
(EW 0

B
(W 0

C))

W 0
A W 1

B EW 0
A
(EW 1

B
(W 0

C))

W 1
A W 0

B EW 1
A
(EW 0

B
(W 0

C))

W 1
A W 1

B EW 1
A
(EW 1

B
(W 1

C))

• As a final step Alice generates a random permutation of the truth table’s rows, and
the result is a garbled table.

2.5.3.2 Data Transfer

• Alice sends the garbled truth table for every gate g of the circuit to Bob.

4The notation EK(M) means an encryption of the value M with key K.

A. Giannopoulos - D. Mouris 12

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

• Alice also sends the randomly generated labels corresponding to her input. For
example if Alice’s input a is represented by the bits a4a3a2a1a0 = 01101 then she will
send the labels W 0

a4
, W 1

a3
, W 1

a2
, W 0

a1
, W 1

a0
to Bob.

• Bob also needs the labels corresponding to his input bits. For example if Bob’s
input b is represented by the bits b4b3b2b1b0 = 10100 then he will need the labels W 1

b4
,

W 0
b3
, W 1

b2
, W 0

b1
, W 0

b0
To obtain these labels, Alice and Bob run an 1 out of 2 oblivious

transfer protocol, for each bit (each input wire) of Bob’s input b. Using this 1-2 OT
protocol Bob learns only the labels corresponding to his input bits, and Alice learns
nothing about Bob’s input. If bob wants to obtain the label for input bit b4 = 1, he will
ask Alice between W 0

b4
and W 1

b4
. Bob will learn only W 1

b4
and not W 0

b4
, while Alice will

not learn the value of b4.

2.5.3.3 Circuit Evaluation

• Bob now has the garbled truth tables for each gate of the circuit as well as all input
labels. Having one garbled value/label per input wire and the truth table, Bob will try
to decrypt every value in the output column of the table, but will succeed only once.
The decryption will succeed only in the row for which Bob has the input labels so
he can use them as keys in the decryption. The decryption result will be the output
label of that gate (the garbled version of the gate’s output value). This label will be
used as an input for the next gate in the combinatorial circuit.

• Bob repeats the process for each gate g of the circuit, until he reaches to the output
gate(s) and acquires the output label(s).

2.5.3.4 Output Revealing

• Alice knows The Boolean value corresponding to the output label(s), so Bob and
Alice communicate in order for them to learn the computation result.

• Either Alice will share her information about the original values of the output label(s)
with Bob, or Bob will share the output to Alice and she could respond accordingly so
that one or both of them learn the output.

2.5.3.5 Overhead

This protocol inevitably inserts a notable overhead. An overview of the most substantial
factors as described in [43] can be found below.

• Alice and Bob involve in a 1 out of 2 oblivious transfer protocol for each input wire
related with Bob’s input. These oblivious transfers can dominate the computation
overhead – at least for relatively small circuits – since they require modular expo-
nentiations.

• Alice sends to Bob a garbled truth table for every gate g of the circuit. Thereby, this
operation’s cost is proportional to the circuit size.

• Bob decrypts a constant number of encrypted values for each gate g of the circuit.
This is also linear with respect to the size of the circuit.

A. Giannopoulos - D. Mouris 13

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Multiple attempts have been made to improve the performance of Yao’s protocol. Many
optimizations have been introduced like the ones found in [5,7,39,48,66].

Another generic protocol for Secure multi-party computation can be constructed using
Secret Sharing, a technique which we will describe in section 2.6.

2.6 Secret Sharing

Secret sharing is a method for distributing a secret between N different parties, where
a secret message m is divided into parts, giving each participant its own unique part
(s1, s2, . . . , sN). Combining some of the parts or all of them are needed in order to re-
construct the original secret. The most common type of secret sharing is a scheme with
one dealer and N different players. Initially, the dealer splits the secret to shares and
gives each player a split. Only with all – or most of the shares k ≥ T (T is a threshold) –
someone is able to reconstruct the original secret. The dealer accomplishes this by giv-
ing each player a share in such a way that any group of T or more players can together
reconstruct the secret but no group of fewer than T players can. Such a system is called
a (T,N) - threshold scheme.

A naive secret sharing scheme between a dealer and two parties is to apply bitwise XOR
to the secret and a random string of the same length. For the sake of simplicity, let us
assume that the secret messagem is a string of 5 bits (either 0 or 1), e.g. 01101. Then, the
dealer generates a random string of 5 bits s1 (e.g. 10011) and performs the XOR operation
between s1 andm; a string s2 = 11110 arises. Finally, the dealer gives the s1 and s2 to the
two parties. Neither one of them is able to retrieve the secret messagem without the other
half share, and also nor is able to retrieve any information about the original message.

There exist more complex and elaborate systems for more than two parties, such as
Shamir’s [55], Blakley’s [10], or Additive [38] secret sharing schemes.

2.6.1 Shamir Secret Sharing

Secret sharing was proposed in [55] by Shamir, and it was the first method to enable
distribution of a secret to N parties. A secret message m is divided into N parts, giving
each participant its own unique part, where any T subset of N can recover the secret, but
no T − 1 element subset can.

Adi Shamir’s threshold scheme is based on the idea of polynomial interpolation – the
interpolation of a given dataset by the polynomial of lowest possible degree that passes
through the points of the dataset –, using Lagrange coefficients. Shamir’s secret sharing
scheme constructs a polynomial P of degree N − 1, where N is the number of players, as
follows.

2.6.1.1 Algorithm

• Dealer chooses a random polynomial of degree N − 1 so that P (0) = m, where m is
the secret message, and also the number T of sufficient subsets that can reconstruct
the secret.

A. Giannopoulos - D. Mouris 14

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

For example5, let us suppose our secret message m = 1234 and N = 6 parties,
but any subset of T = 3 is sufficient to reconstruct the secret. Then our polynomial
should have degree 2, f(x) = ax2 + bx + m. The dealer chooses N − 1 random
numbers, i.e. a = 94 and b = 166, thus our polynomial is f(x) = 94x2 + 166x+ 1234.

• Dealer distributes N pairs (xi, P (xi)), xi ̸= 0

First the dealer creates the N pairs. For example:
D0 = (1, 1494), D1 = (2, 1942), D2 = (3, 2578), D3 = (4, 3402), D4 = (5, 4414),
D5 = (6, 5614) and consecutively he/she distributes them to the N parties.

• N players can reconstruct the polynomial P with their pairs, however N − 1 cannot
In order to reconstruct the secret any T points will be enough, for instance, D1, D3

and D4. Computing the Lagrange polynomials:

l0 =
x− x1

x0 − x1

×
x− x2

x0 − x2

=
x− 4

2− 4
×

x− 5

2− 5
=

1

6
x2 −

3

2
x+

10

3

l1 =
x− x0

x1 − x0

×
x− x2

x1 − x2

=
x− 2

4− 2
×

x− 5

4− 5
=

1

2
x2 +

7

2
x− 5

l2 =
x− x0

x2 − x0

×
x− x1

x2 − x1

=
x− 2

5− 2
×

x− 4

5− 4
=

1

3
x2 − 2x+

8

3

Therefore:
f(x) =

∑2
i=0 yi × li(x) = 94x2 + 166x+ 1234

Each party can compute f(0) in order to obtain the secret, in this case f(0) = 1234.

It is evident, that in Shamir’s scheme two points are sufficient to define a line f(x) = ax+b,
three points are sufficient to define a parabola f(x) = ax2 + bx+ c, four points to define a
cubic curve f(x) = ax3 + bx2 + cx + d and so forth. That is, it takes T points to define a
polynomial of degree T − 1, where T − 1 will be the sufficient number of parties that can
reconstructed the secret message.

2.6.1.2 Threat Model

The Shamir secret sharing scheme can tolerate both passive and active adversaries, how-
ever in the latter case it has more strict bounds. Shamir’s sharing algorithm is secure

against a passive adversary when T <
N

2
, while it achieves information-theoretic security

for T <
N

3
with an active adversary. This means that even if the adversary has unboun-

ded computational power, they cannot learn any information about the secret underlying a
share. The BGW [14] protocol, which defines how to compute addition and multiplication
on secret shares, is often used to compute functions with Shamir secret shares.

2.6.2 Additive Secret Sharing

Another form of secret sharing, and probably the simplest one, is additive sharing. Again,
a secret message m is divided into N parts, where each participant has its own unique

5This example is based on a similar example in https://en.wikipedia.org/wiki/Shamir's_Secret_
Sharing Wikipedia link.

A. Giannopoulos - D. Mouris 15

https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing
https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

part. In contrast with Shamir’s sharing algorithm, all parts are necessary in order to recover
the original secret.

2.6.2.1 Algorithm

• Dealer chooses a randomly N − 1 numbers such that xi ∈ Z, i ∈ [1, N − 1]

• Computing xN from the random numbers is pretty trivial; xN = m−x1−x2−· · ·−xN−1

• Finally, the dealer distributes the N secrets (x1, . . . xN)

• In order to reconstruct the original message m, the parties have to combine their
secrets: m = x1 + x2 + · · ·+ xN

Seeing any N − 1 values (i.e. x1, . . . xN−1) does not give any clue about what m could
be, since the remaining xi may change the final result to any element of Z with equal
probability. More elaborate schemes than the (Z,+) have been introduced, in the form of
(A,⊕) (which means in group A using the operation ⊕), such as linear secret sharing.

There are many systems that have implemented various forms of SMPC with secret shar-
ing schemes. The most popular is SPDZ [21, 22], which implements MPC with additive
secret shares and is secure against active adversaries. Another popular system that im-
plements SMPC using additive secret shares is the Sharemind Secure Computing Plat-
form, which we survey in section 4.

2.6.2.2 Threat Model

In contrast to Shamir’s secret sharing scheme, that can tolerate up to T <
N

2
passive

adversaries or T <
N

3
active, as mentioned in 2.6.1.2, additive secret sharing schemes

can tolerate the adversary controlling all but one party, that is T < N . As we already
mentioned, in order to reconstruct the original message m, all parties have to add their
secrets (m = x1+x2+ · · ·+xN). It has become evident, that if one xi is missing, the initial
message m cannot be reconstructed.

2.6.3 Secret Sharing Homomorphism

In [8], Benaloh observed that many secret sharing schemes have a homomorphic property
which allows multiple secrets to be combined by direct computation on shares.

Suppose we have a secret m that can be computed from T sub-secrets {mi}Ti=1 using a
functions f as follows m = f(m1, . . . ,mT). Let ⊕ and ⊗ be binary functions on elements
of the secret domain S and of the share domain T , respectively. We say that a (k,N)
threshold scheme has the (⊕,⊗)-homomorphism property (or is (⊕,⊗)-homomorphic) if
for all f : T k → S, whenever a message

m = f(m1, . . . ,mk)

and another message

m′ = f(m′
1, . . . ,m

′
k)

A. Giannopoulos - D. Mouris 16

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

then the composition of the shares are the shares of the composition:

m⊕m′ = f(m1 ⊗m′
1, . . . ,mk ⊗m′

k)

Shamir’s polynomial based secret sharing 2.6.1 scheme is (+,+)-homomorphic since the
sum of the polynomials use to share the sub-secrets is itself a polynomial that can be used
to deal shares of the super secret.

A. Giannopoulos - D. Mouris 17

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

3. RELATED PROJECTS

3.1 My Health My Data

MyHealth My Data project (MHMD) [46] is a Horizon 2020 Research and Innovation Action
which aims at fundamentally changing the way sensitive data are shared.

MHMD is poised to be the first open biomedical information network centred on the con-
nection between organizations and individuals, encouraging hospitals to start making an-
onymised data available for open research, while prompting citizens to become the ul-
timate owners and controllers of their health data. It is an academic research project,
focusing on the use of Privacy-Preserving Data Mining (PPDM) tools in conjunction with
Blockchain technologies, to develop an ecosystem where patient health records across
several hospitals in Europe can be safely and traceably shared for the purposes of sci-
entific research. MHMD is intended to become a true information marketplace, based
on new mechanisms of trust and direct, value-based relationships between EU citizens,
hospitals, research centres and businesses.

The MHMD project currently utilizes the Sharemind secure computing platform, as well as
many algorithms presented in the current thesis.

3.2 Scalable Oblivious Data Analytics

Scalable Oblivious Data Analytics project (SODA) [58] is also a Horizon 2020 Research
and Innovation Action, with similar goals as MHMD project. More specifically, the SODA
project aims to tackle exactly data protection and anonymization issue identified by the
Big Data Value Association (BDVA) [4], enabling practical privacy-preserving analytics on
Big Data by significant improvement of MPC techniques for privacy-preserving Big Data
processing.

One of the differences between the MHMD and the SODA project is that in the latter uses
FRESCO (a FRamework for Efficient and Secure COmputation) [3, 17] as the underlying
MPC engine.

A. Giannopoulos - D. Mouris 18

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

4. SHAREMIND: A SECURE COMPUTING PLATFORM

Sharemind [12, 13] is a general purpose SMPC system, for privacy preserving data pro-
cessing operating on additively secret-shared values. The idea of Sharemind is to provide
a secure infrastructure that is able to host and evaluate privacy preserving algorithms.
Sharemind provides an easily programmable and flexible platform that enables non-cryp-
tographers to develop and test privacy preserving algorithms such as Privacy Preserving
Data Mining (PPDM). It consists of the computation runtime environment and a program-
ming library for creating private data processing applications Sharemind is provably secure
under the semi-honest (honest but curious) setting.

Sharemind’s is deployed as a distributed computation platform, that can be used both for
data storage and computation. The deployment model consists of (usually three) nodes,
the computing nodes that use SMPC through secret sharing to privately process the data.
Secret sharing guarantees data confidentiality during storage. All computations are done
by the dedicated computing nodes.

Data providers submit their private inputs by sending the corresponding cryptographic
shares to the computing nodes. The secret sharing scheme ensures that each share is
a random bit string. Each host, computing node, is not able to decrypt the data, or even
extract any information about them. Consequently, a node holding that share learns no
extra information about the data input (secret), than if they did not hold that share. For
that reason, data providers need not trust any of the computing nodes. Instead providers
must trust that the nodes as a group obey a set of rules such as that they do not collude
during the computations. This can be achieved through physical and organizational se-
curity measures as well as software auditing. In practice, the computing nodes will be
servers run by independent entities, such as companies or government agencies, ideally
having conflicting interests. Data users want to analyze the information given by data pro-
viders. Answers to their queries are given through the Sharemind system, and not from
data providers directly.

The Sharemind framework provides a privacy preserving instruction set which includes se-
cure addition, multiplication and greater-than-or-equal comparison of two shared values.
Multiplication of a shared value with a constant and extraction of its bits as shares is also
possible. Bit extraction and arithmetic primitives are sufficient to construct any Boolean cir-
cuit with a linear overhead and thus the Sharemind framework is also Turing complete [13].
Many datamining and statistical analysis algorithms use no other mathematical operations
than the Sharemind’s instruction set, thus it is sufficient for most applications.

4.1 Real World Applications

4.1.1 Satellite Collision Detection

One notable example of a real world application of SMPC using Sharemind was presented
in [36]. In this paper, Sharemind engine was utilized to perform satellite collision detection
in a secure multiparty setting. The number of satellites orbiting our planet is growing, and
so does the danger of collisions. Indeed, two satellites crashed in 2009. Satellite owners,
such as governments, do not want to reveal orbital information about their satellites. How-
ever, satellites come with extravagant expenses and each satellite owner want to protect
their property.

A. Giannopoulos - D. Mouris 19

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Future collisions could be avoided by sharing information about the satellites orbits. Us-
ing SMPC, the parties can cooperate and learn whether a collision is going to happen
and nothing else. No information about the actual orbits would leak – no party can see
the individual values, since computations are carried out on encrypted data. The SMPC
solution provides cryptographic guarantees for the confidentiality of the input trajectories.

4.1.2 Analysing Private Databases

Another worth mentioning application took place in 2015, where the Estonian Center of
Applied Research used Sharemind to collect governmental tax and education records with
purpose to run a big data study looking for correlations between people who work during
their studies and those who fail to graduate in time.

In Estonia – where this research took place, the Ministry of Education and Science keeps
track of students and the Tax and Customs Board keeps track of working (by tracking
income tax payments). A correlation between working during studies and not graduat-
ing in time could be possible to find, if these databases were not private. However, this
data cannot be shared because of the Personal Data Protection Act and the Taxation Act
and also many European Union regulations, such as General Data Protection Regulation
(GDPR) [49]. All these legislation prevents such studies from being performed.

The results of the study were quite surprising. The study found no relation between work-
ing during studies and not graduating on time. Instead, it turned out that the population
group that was studied (Estonian students of all fields) work an equal amount. Moreover,
it showed an obvious the reduction of employment during the financial crisis in 2008. This
study would not have been possible without an SMPC engine such as Sharemind, as no
research organization can gain access to these private databases due to Data Protection
regulations. Nevertheless, this research allowed more personalized follow-up studies to
be planned for finding the reasons why students quit.

4.2 SecreC

The programmer of the privacy preserving applications does not necessarily know the
underlying security protocols. Application are developed using the SecreC programming
language [33]. SecreC is an procedural imperative domain specific language (DSL) that is
syntactically similar to C. SecreC guarantees writing privacy-preserving algorithms without
any knowledge of the underlying cryptographic protocol. In other words, SecreC distin-
guishes the application/business logic from the cryptographic protocol.

The language uses a custom type system, which separates private/confidential data from
public. Public values are processed as usual, whereas private values, which are in secret-
shared form are processed using secure computation. To achieve this, SecreC adds a
security type to each fundamental data type. The security type can be either private or
public. If no security type is specified then the public one is used by default. Security types
differ from standard data types in the sense that data associated with the public security
type will be stored and processed publicly on the Sharemind virtual machine, whereas
data associated with the private security type, will be stored in secret-shared form. Each
computing node will acquire one share of the actual value.

In SecreC one can have expressions of private or public data. In the case that such two

A. Giannopoulos - D. Mouris 20

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

expressions are combined into a single expression, the public data are secret-shared and
moved into the private execution environment in order for the composite expression to be
evaluated. That way all data are of the private security type and the expression can be
evaluated.

Sometimes however it is vital to open a secret. This could be done in order to gain some
insight about an algorithm having good intentions in mind. SecreC offers a special De-
classify operator through which is made possible to publish private information. An ex-
pression that is declassified has its security type changed from private to public, and the
secret-shared value moves into the public execution environment. Since the use of the
Declassify operator is the only way for private data to become public, its use should
be tracked in order to reason about data privacy and to avoid potential unwanted pri-
vacy leaks. As a rule of thumb, declassification of private data should occur ass little as
possible. Ideally, declassification should be used only to publish the final results of an
algorithm, or intermediate results that have low privacy risk i.e. do not reveal sensitive
information.

Typically, if a decision (e.g. a branch) is to be made over private data, that would require
the data to be published, that is to be converted to the public security type. For instance,
consider the following example:

if (x) a = b; else a = c;

One can rewrite the previous statement using with the following expression:

a = b * x + c * (1-x);

Using this technique a programmer can replace conditional statements on private data
with such oblivious selection clauses. So the control flow dependencies are converted
into data dependencies.

1 pd_shared3p uint64 max(pd_shared3p uint64 x, pd_shared3p uint64 y) {
2 pd_shared3p uint64 gt = (uint64)(x > y); // 1 if x > y, 0 otherwise
3 return x * gt + y * (1-gt); // Oblivious selection of the max value
4 }
5

6 void main(){
7 pd_shared3p uint64 x1 = 5; // Private, secret-shared value of input party 1
8 pd_shared3p uint64 x2 = 8; // Private, secret-shared value of input party 2
9 pd_shared3p uint64 max = max(x1, x2); // Private result

10 print(declassify(max)); // Result publishing
11 }

Code 1: Millionaire problem in SecreC

An example of SecreC code can be found in Code Snippet 1. The problem at hand is
Yao’s millionaire problem [63] as described in section 2.5. Here we use pd_shared3p as
the security type, which stands for protection domain shared 3 parties, and corresponds
to a private security type using secret-sharing between three parties.

4.2.1 SIMD in SecreC

Each SMPC operation in Sharemind is implemented as an assembly instruction. Share-
mind also supports vectorized operations which play a significant role in the program’s

A. Giannopoulos - D. Mouris 21

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

efficiency. With vectorized operations the same protocol is executed but using multiple
inputs at once, in parallel. Using such SIMD (Single Input Multiple Data) instructions the
protocol performs all operations in parallel by packaging the values in a single communic-
ation message.

This significantly reduces the communication overhead between the participating parties,
which is usually a dominating factor in a protocol’s performance. Thus, developing ap-
plications with vectorization in mind, has a substantial contribution to the application’s
efficiency. We have focused on using vectorization as much as possible when developing
our privacy preserving algorithms, which we describe in chapter 6.

Below, in code snippets 2 and 3, we present two versions of array addition in SecreC. The
first one works with a typical loop on each of the array elements, while the second one
works by performing an SIMD addition between two arrays.

1 void main(){
2 uint64 N = 5;
3 pd_shared3p uint64 a(N) = {1, 2, 3, 4, 5}; // Array definition of size N
4 pd_shared3p uint64 b(N) = {6, 7, 8, 9, 10}; // Array definition of size N
5 pd_shared3p uint64 c(N); // Array declaration of size N
6 for (uint64 i = 0; i < N; i++){
7 c[i] = a[i] + b[i]; // Element-wise addition with sequential access
8 }
9 print(declassify(c)); // Result publishing

10 }

Code 2: Array addition in SecreC

1 void main(){
2 uint64 N = 5;
3 pd_shared3p uint64 a(N) = {1, 2, 3, 4, 5}; // Array definition of size N
4 pd_shared3p uint64 b(N) = {6, 7, 8, 9, 10}; // Array definition of size N
5 pd_shared3p uint64 c(N) = a + b; // SIMD instruction of addition of the two

arrays
6 print(declassify(c)); // Result publishing
7 }

Code 3: Array addition in SecreC using SIMD

The two example programs will have the same output but their performance will differ.
The first program will perform N message exchanges between the computing parties for
the addition, while the second will perform just one. For large enough values of N , the
performance difference is tremendous.

4.3 Sharemind Infrastructure

Sharemind consists of three different kinds of parties, input parties, computing parties
and result parties. The number of the input parties – data providers – as well as the result
parties – analysts/users – is not restricted, however the computing parties are restricted by

A. Giannopoulos - D. Mouris 22

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

the SMPC protocol that is been used; for instance the aforementioned “Millionaire prob-
lem” shown in (Source Code 1) uses the pd_shared3p security protocol, which utilizes
three nodes.

As stated by Sharemind’s author in [12] three is usually the optimal number for the com-
puting nodes configuration in the passively corrupted parties threat model. Three is the
lowest number for which an honest majority of parties processing secret shared data can
be formed. The number of parties can be less – just two nodes – but it adds more com-
plexity to the protocols, as it requires more expensive cryptographic primitives to be used.
The number of computing parties can also be grater than three, increasing however the
communication complexity.

An input party can also be the result party, or one of the computing nodes. The data
providers use secret sharing to distribute their confidential data between the computing
nodes. The analysts make queries and initiate computations, that are performed by the
computing nodes leveraging the homomorphic primitives of the secret shares. Finally,
the analysts get the results of the private computation without anyone seeing the original
confidential data. Sharemind’s infrastructure as explained in [60], is presented in figure 1
in more detail.

Input Party 1

Input Party 2 Result Parties

Computing Parties

Input Party M

Figure 1: An overview of the architecture of Sharemind

A. Giannopoulos - D. Mouris 23

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

5. A MEDICAL CASE STUDY

In this thesis we primary focus to analyze medical data by using some of the aforemen-
tioned techniques from section 2. More specifically we have developed a complete plat-
form built around securemedical data analytics that could be beneficial to patients, doctors
and researchers.

The platform can provide insights about some medical datasets that are imported into the
platform to anyone who wants to query them, without compromising individual patient’s
privacy. These analytics which include data aggregation/statistics and classification are
implemented through privacy preserving algorithms under the secure multi-party compu-
tation scenario.

The platform provides end to end work flow starting from the query selection from a user.
Following is the secure data importing, the performing of privacy preserving data analytics
algorithms upon those data and finally the visualization of the results to the end user
through a friendly user interface (UI).

5.1 A Doctor’s view

We consider the use case of a doctor working in a hospital that wants to examine the data
stored in that hospital’s datasets. He/She could possibly want to evaluate a treatment’s
outcome. To achieve this, the doctor should have monitored some particular datasets
in order to have an overall view of the patients’ condition over time. This could allow
a comparison between previously treated patients and enable data-driven cues for the
treatment. For example, a drug’s effect could be evaluated that way.

The doctor could also compare aggregated results from datasets between different hospit-
als. That way he/she could get an insight of how each patients’ condition varies between
different hospitals, which could indicate the different effect that different treatments have
on patients and identify patterns and differences in these treatments.

Continuous monitoring of patient data is useful for any hospital. This can be achieved
through regular supervision of aggregated statistics (i.e. histograms, heatmaps, etc.)
based on the available medical datasets, like those described in section 6.6. Provided
with usable and informative tools a doctor could potentially make better diagnoses and
take the appropriate action for each case.

5.2 An Individual’s view

An individual could also benefit from the insights provided by our platform. We consider the
case in which an individual with a certain condition queries the available datasets looking
for the same condition (patients-like-me). The individual could locate the hospitals in which
patients with the same condition are treated. Also, he/she could identify which hospitals
in his area have the best outcome for patients with conditions similar to his/hers.

Another way an individual could be benefited from the privacy preserving medical data
analytics is the use of a classification mechanism such as decision trees (section 6.7), us-
ing amodel trained over patient data. This way one could classify himself to a condition/disease
or another chosen attribute for that matter, based on his own data.

A. Giannopoulos - D. Mouris 24

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

5.3 A Researcher’s view

We examine the case where an academic or industry researcher queries the datasets to
see if they suit their research needs. They could discover if the datasets are providing
enough utility/information and decide which ones to use for performing analysis on.

For example, studying aggregate statistical information of the datasets, one could find
possible correlations of particular attributes or find patterns of treatments and conditions.

A researcher could also study the relation between certain conditions and different hos-
pitals, which is something that could provide valuable information.

Additionally, a researcher could utilize some of the classification mechanisms mentioned
above to build useful machine learning models (e.g. classification, prediction, etc.) over
the patient data. Thus, carry out interesting PPDM studies.

5.4 Our End-to-End Architecture

Our architecture consists of the SMPC cluster, a proxy server, dubbed coordinator, as well
as N more servers that are hosted in the hospitals’ premises and act as data providers.

SMPC cluster: The SMPC cluster consists of three servers – three computing nodes –
participating in the SMPC protocol. In our case, these nodes do not provide the data for
the computation. The only data the computing nodes hold and process, are cryptographic
shares of the original data obtained through the secret-sharing mechanism. The cluster
performs a distributed computation over these secret-shared data, exploiting their homo-
morphic properties, in order to produce meaningful results. In GDPR terms, the SMPC
cluster acts as the Data Processor.

Data providers: The data providers are hospitals that provide medical datasets upon
which the privacy preserving algorithms will execute. These medical datasets get popu-
lated from each hospital’s patients i.e. theData Subjects. The patient data are horizontally
distributed among the participating hospitals. When the medical data are transferred from
the hospitals to the computing nodes, they get secret-shared.

Coordinator: The coordinator handles all private computation requests. The server
listens for requests for private query execution, and when such a request arises, the co-
ordinator communicates with the data providers (all N hospitals) requesting them to se-
curely import their data to the computing cluster. The data are then secret-shared to the
three nodes, with each node acquiring one share of the original value. Then the privacy
preserving computation takes place in the SMPC cluster, and the results get visualized
and served back to the requesting user through the coordinator server. The coordinator
server acts as the Data Controller.

5.4.1 End-to-End Execution Flow

An overview of an end-to-end query execution can be found below.

Step 1: A user makes a privacy-preserving analytics request to the coordinator.

Step 2: The coordinator server is responsible for orchestrating all the involved parties:

A. Giannopoulos - D. Mouris 25

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

it communicates with the data-providers requesting secure data-import to the
SMPC cluster.

Step 3: The data-providers extract the requested data from their datasets and securely
import them to the SMPC cluster applying secret-sharing.

Step 4: The SMPC cluster computes the privacy preserving analytics on the requested
data and returns the results to the coordinator.

Step 5: Finally, the results are returned to the user through the coordinator.

All the aforementioned steps are depicted in figure 2. In the subsequent sections we delve
into the above end-to-end execution overview in more detail.

Hospital 1

Hospital 2

SMPC Cluster

Hospital M

Researcher

Coordinator
Server

Importer-Server

Importer-Server

Importer-Server

Import Requests

Private Computation
Request

Private Computation
Results

Secret
Sharing

Figure 2: An overview of the architecture of our study

5.4.1.1 Query Initiation

First, a user sends a request to the coordinator asking for a private computation. This
user can be an analyst/researcher, a doctor, or a patient. This request can specify any
one of the supported privacy preserving computations.

Users get informed about the available privacy preserving analytics algorithms through the
User Interface (UI). The UI is responsible to inform the user about the supported compu-
tations, as well as the available datasets on which these computations can be executed.
These datasets are populated from the hospitals that participate in the platform.

The user’s request includes the desired private computation to be executed, the selected
attributes that are involved in this computation, as well as the selected datasets.

A. Giannopoulos - D. Mouris 26

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

5.4.1.2 Data Import

After the coordinator server collects the user’s private computation query, a data importing
procedure takes place.

The server will send an importing request to the hospitals that are specified in the user’s
query. The importing request will include the attributes indicated by the user that are
participating in with the private computation.

Upon receiving such an importing request, each hospital involved in this private compu-
tation will import a part of its dataset, that is associated with the participating attributes,
into the SMPC cluster. The data to be imported will be secret-shared between the nodes
participating in the SMPC protocol, using an additive secret-sharing protocol.

The data importing is a procedure of high importance, since the patients’ data are trans-
ferred outside the hospitals to third party servers. It is easily misinterpreted that since the
data are leaving the hospitals’ premises, their privacy is being compromised. However, it
has been elucidated in section 2.6 that secret sharing is a form of encryption, thus no in-
formation leakage is possible while data being in use in the SMPC cluster. For transferring
each share from the data providers to the corresponding SMPC computing nodes stand-
ard techniques – such as symmetric encryption – are used to protect data in transit. Data
are also safe while at rest in the SMPC cluster as each node only stores a cryptographic
share of a piece of data, so no information about the original data can be inferred.

5.4.1.3 Data Importing On-the-Fly

Everyday, thousands of people visit their doctors, updating their medical records with new
diagnoses. One may wonder, since the medical data of each hospital are constantly chan-
ging, how often should the datasets in the SMPC cluster be updated?

In our architecture, we have developed a mechanism for data importing on-the-fly, as
figure 2 portrays. More specifically, when a query is requested for private computation, the
coordinator interacts with the hospitals’ servers, initiating the data import procedure. Since
the individual making the query also selects some specific attributes for data aggregation
and/or classification, the importing of the data only happens for the selected attributes.

This importing on-the-fly is beneficial for many reasons. First and foremost, all private
computations are evaluated over the most recent data, and not in a outdated/stale ver-
sion of them. As there are no data stored in the SMPC cluster, every computation is based
on fresh data imported directly from the hospitals (data providers) at the time of compu-
tation. There is no need to keep redundant copies of the dataset in the SMPC cluster.
This eliminates the need to keep the copies regularly updated and reduces the storage
requirements. Also, not having the data replicated outside the data providers’ servers is
less prone to data breaches or similar attacks.

Finally, another reason is that the actual datasets are huge compared to the requested
attributes. Each meaningful request does not take into account every possible attribute
from the dataset, thus there is no purpose importing everything a priori. The attributes
involved in most computations are a subset of the available attributes of the hospitals’
datasets. The storage requirements for importing data just for each computation are minor
in comparison with the entire dataset.

A. Giannopoulos - D. Mouris 27

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

5.4.1.4 Computation Execution

The next step after the data import is the actual private computation execution. The nodes
participating in the SMPC protocol, execute the privacy preserving version of the analytics
algorithm that the requesting user has selected.

The algorithm is executed on encrypted (secret-shared) data, thus the computing nodes
have no access to the original data that still reside on the hospitals. The execution is
oblivious as far as the data is concerned. Any data that gets published is explicitly defined
in the privacy preserving algorithms and usually 6 is only the computation output.

5.4.1.5 Result Publishing

The last step of the secure query execution is the publishing of the computation results.
These are obtained through computation over private data. The results are now con-
sidered public data and can be freely shared with the user that requested the computation
or be used in other future computations. One thing to note is that every published result of
such a computation should be treated as public data and should not be confused with the
confidential input data. With that in mind, whoever initiates a private computation should
have a clear view of what data remain private and what gets published.

There are many different approaches for Privacy Preserving Data Mining (PPDM). This
thesis aims to investigate the secure computation part, which should not be confused with
output-privacy.

Moreover, since some of the private computations may be repeated and also the privacy-
preserving algorithms are highly computational intensive, we have implemented a caching
mechanism that stores the secure computation results so future requests for that data can
be served faster. We elaborate more on the caching mechanism in section (7.1.3).

5.4.2 SMPC Threat Model

Themain security goal of every SMPC engine is to protect the values provided by the input
parties from all other parties. The data of the input parties will be stored and processed
encrypted by the computing parties. The SMPC cluster needs to ensure that no party can
learn anything from the information available to them.

Moreover, the final results must not reveal anything except for the actual results of the
secure computation performed by the computing parties. Note, that depending on the
algorithm and provided data, the output may leak the input of one or more input parties.
For instance, without loss of generality let us suppose a SMPC setting with two parties. A
malicious adversary can always alter his/her input and define it to be an empty database
(or a database with null values). This fact can be very damaging since the final output is
the result of the algorithm on the other party’s database alone.

In this work we assume that the adversary is semi-honest – or similarly, rational, honest-
but-curious. That is, the adversary correctly follows the protocol specification, but has
incentives to eavesdrop sensitive user data. He/She could also attempt to learn additional
information by analyzing any data received during the execution, either unencrypted or

6Some data (e.g. those that will be included in the output) can be published before the algorithm ter-
minates, without violating the prescribed privacy guarantees.

A. Giannopoulos - D. Mouris 28

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

encrypted. In our developed algorithms, we explicitly define which variables are sensitive
and should remain encrypted throughout the whole execution to preserve data privacy.

5.4.2.1 Computing Parties Collusion

In the active adversary scenario, where the adversary controls some of the computing
nodes, the only requirement is not to control all of them simultaneously. Since the actual
data are transferred from the data-providers (hospitals) to the computing nodes through
secret-sharing, it is impossible for any of the three nodes to decrypt them, and in general
to infer any information, as each computing node possesses only a share of the data.
However, meaningful computations can be applied due to the homomorphic properties
that the shares have (section 2.6.3).

As we examined in section 2.5, the computing nodes of the SMPC cluster do not need to
be trusted nodes. The only requirement of these nodes is not to collude. This should not
be confused with trusted servers. A reasonable way to prevent collusion, is to deploy the
computing nodes in premises of organizations having conflicting interests.

Finally, the only information that gets published is the output of the privacy preserving
computation. This is returned to the user who initiated the query via the coordinator server.

5.5 Supported Computations

Our focus is to create an end-to-end infrastructure for computing privacy preserving ana-
lytics. In the field of data mining there have been developed numerous algorithms for data
classification, however a little work has been done with respect to data privacy. Since we
deal with medical data in this thesis, our primary concern is to preserve data privacy and in
the same time provide meaningful information about the data to doctors and researchers.
Notably, our goal is to built a complete platform around secure medical data analytics that
could be beneficial to a wide range of users. Therefore, the analytics produced from our
system should not be complex and convoluted for the average user.

One of the simplest and widely used ways to visualize and comprehend a dataset is his-
tograms. Histograms are bar-graphs that depict frequency distribution, or even statistical
approximations, of a dataset. Decision trees are prediction/classification machine learn-
ing models, that help to yield conclusions about an item, based on certain observations.
The decision tree classification technique is quite intuitive and can offer useful insights
about a particular dataset. Generally, decision trees are tree-like structures that classify
individuals based on a dataset. Each internal node represents a “test” on an attribute,
each branch represents the outcome of the specific test, and each leaf node represents a
class label (decision taken after computing all attributes).

Although histograms’ and decision trees’ outcomes are more easily understood than more
elaborate algorithms, such as neural networks, SVM or other classifiers, they both provide
very insightful information about a dataset. Our goal is to provide an end-to-end architec-
ture with essential analytics algorithms that will provide the building blocks for more elab-
orate algorithms that are implemented with respect to data privacy. We discuss in more
detail histograms and decision trees in sections 6.6 and 6.7 respectively.

A. Giannopoulos - D. Mouris 29

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

6. PRIVACY PRESERVING ALGORITHMS

6.1 Challenges in Privacy Preserving Algorithms

A private computation scheme allows the user to compute any arbitrary function, while
revealing no information to any individual server about the identity of that function. Com-
putation over encrypted data can be utilized in a wide variety of use-cases. For instance,
the problem of how to use encrypted database fields in search queries, or the problem
of testing for membership in a set. Another very common use case is the private set in-
tersection, i.e. “Department of homeland security (DHS) wants to check its list of terrorist
suspects against the passenger manifest of a flight operated by a foreign airline. Neither
party is willing to reveal its information, however, if there is a (non-empty) intersection,
DHS will not give the flight permission to land”.

Despite the variety of applications that encrypted computation can assist, the translation
of any function to its privacy preserving equivalent is not a trivial process. As mentioned in
section 2.4, termination problems are introduced and the avoidance of them is not straight-
forward. First, one has to identify the corresponding termination channels that needs pro-
tection against side-channels and leakage; that is, any branch decision which is based
on encrypted data (i.e. if (Enc(X) is True) then statement). Consecutively, they
have to translate the termination channels using oblivious computation in the encrypted
domain. Commonly, the if statement is replaced by a loop over all possible values and
an oblivious selection of the desired value. Early termination conditions, in general, even-
tually leak sensitive information, which is why the execution time should only depend on
the length of the inputs, not their plaintext values (i.e., execution requires maximum itera-
tions independent of the input). Below we examine the privacy preserving equivalents of
some simple and widely used algorithms in order to clarify the termination problems and
the translation process.

6.2 Branching Oracles

Although we cannot take branch decisions that are based on encrypted values, recent re-
search [45] has implemented special constructions – dubbed BRanching Oracles (BROs)
– which obliviously evaluate the branch outcomes. BROs are treated as decision-making
black boxes and enable an alternative solution to branching on private information. All
the algorithms presented in the following sections suppose that the underlying encrypted
architecture supports a privacy-preserving BRO. More specifically, BROs enable com-
parison of encrypted values and obliviously return an encrypted boolean variable (true,
false).

For instance, the following example illustrates the usage of BROs:

if (x > 1) a = b; else a = c;

Since x is encrypted, the host is unable to make the branch decision whether a should take
the value of b or c. Using a branching oracle, an encryption of true or false will emerge
from the comparison (x > 1) (i.e. gt = (x > 1)). Then, one can compute obliviously the
branch outcome using the result of the private comparison as follows:

a = b * gt + c * (1-gt).

A. Giannopoulos - D. Mouris 30

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Using this technique a programmer can replace conditional statements on private data with
such oblivious selection clauses. Therefore, the control flow dependencies are converted
into data dependencies.

6.3 Notation

Our notation for encrypted values and for operations between encrypted variables consists
of a variation of the classical mathematical operations. Namely, X̃ corresponds to the
encryption of number X, while +̂ , −̂ , ⋆ and ÷̂ represent homomorphic addition,
subtraction, multiplication and division respectively, as shown in equation 6.1. In a like
manner, =̂ (eq. 6.2), ˆ̸= (eq. 6.3) <̂ (eq. 6.4) and >̂ (eq. 6.5) represent private
equality and private comparison, returning an encryption of one (that is 1̃) if the operands
map to equal plaintexts (or respectively the first is less than the second), or an encryption
of zero (0̃) otherwise. All those aforementioned comparisons are utilizing the branching
oracle of the underlying encrypted architecture.

Enc(X) +̂ Enc(Y) = Enc(X + Y)

Enc(X) −̂ Enc(Y) = Enc(X − Y)

Enc(X) ⋆ Enc(Y) = Enc(X · Y)

Enc(X) ÷̂ Enc(Y) = Enc(X ÷ Y)

(6.1)

Enc(X) =̂ Enc(Y) :

{
1̃, if X = Y .

0̃, otherwise.
(6.2)

Enc(X) ˆ̸= Enc(Y) :

{
1̃, if X ̸= Y .

0̃, otherwise.
(6.3)

Enc(X) <̂ Enc(Y) :

{
1̃, if X < Y .

0̃, otherwise.
(6.4)

Enc(X) >̂ Enc(Y) :

{
1̃, if X > Y .

0̃, otherwise.
(6.5)

Also, in the algorithms described below, the variables in red correspond to private values,
while the variables in black represent public data.

6.4 Transforming Algorithms to their Privacy Preserving Equivalent

In this section we will examine three simple algorithms (namely Sum, Max, PIR) and
how to develop them in a way to preserve data privacy. Firstly, algorithm 1 computes
the sum of an array of numbers and it is quite similar to the private sum algorithm. The
latter obliviously updates the encrypted sum with each value of the array, utilizing the
homomorphic properties of the encrypted variables.

A. Giannopoulos - D. Mouris 31

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Algorithm 1 Textbook & Privacy Preserving Sum of an Array
1: procedure Sum(array[N]) ▷ Sum of a public array
2: sum← 0
3: for i ∈ {0, . . . , N − 1} do
4: sum← sum+ array[i]
5: end for
6: return sum
7: end procedure

Private Vars: array, sum
8: procedure Sum(array[N]) ▷ Sum of a private array
9: sum← 0̃

10: for i ∈ {0, . . . , N − 1} do
11: sum← sum +̂ array[i]
12: end for
13: return sum
14: end procedure

On the other hand, algorithm 2 finds and returns the maximum number of an array. In
the private Max algorithm, the host is not able to determine for each value of the array if
it is greater from the current value of max. However, it can obliviously update the value
of max, based on the encrypted comparison outcome (alg. 2 line 13, 14). In the cases
that the value of the array is less than the current max the gt flag will have the value 0̃,
otherwise 1̃. Thus the multiplexer operation in line 14 each time will obliviously “keep” the
greatest value and set the variable max to it.

Algorithm 2 Textbook & Privacy Preserving Max of an Array
1: procedure Max(array[N]) ▷ Find max of a public array
2: max← −∞
3: for i ∈ {0, . . . , N − 1} do
4: if array[i] > max then
5: max← array[i]
6: end if
7: end for
8: return max
9: end procedure

Private Vars: array,max, gt
10: procedure Max(array[N]) ▷ Find max of a private array
11: max← −̃∞
12: for i ∈ {0, . . . , N − 1} do
13: gt← (array[i] >̂ max) ▷ gt obliviously gets either 1̃ if array[i] > max, or 1̃ otherwise
14: max← (gt ⋆ array[i]) +̂ ((1̃ −̂ gt) ⋆ max) ▷ Obliviously update the value of max

15: end for
16: return max
17: end procedure

Both textbook algorithms’ time complexity (algorithms. 1 and 2) is O(n) and the trans-
formation to their privacy preserving equivalents did not affect their complexity. However,

A. Giannopoulos - D. Mouris 32

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

the privacy-preserving algorithm is inevitably more computationally intensive, since the
encrypted operations require many additional CPU cycles.

Algorithm 3 Textbook & Private Information Retrieval
1: procedure IR(table[N][2], key)
2: value← 0
3: for i ∈ {0, . . . , N − 1} do
4: if table[i][0] = key then
5: value← table[i][1]
6: return value ▷ Return the value that corresponds to the requested key
7: end if
8: end for
9: return value ▷ If key not found return 0

10: end procedure

Private Vars: table, key, sum, value, eq
11: procedure PIR(table[N], key)
12: sum← 0̃
13: for i ∈ {0, . . . , N − 1} do
14: value← table[i][1]
15: eq ← (table[i][0] =̂ key)▷ eq obliviously gets either 1̃ if table[i][0] = key, or 1̃ otherwise
16: sum← (eq ⋆ value) +̂ ((1̃ −̂ eq) ⋆ sum) ▷ Obliviously update the value of sum
17: end for
18: return sum
19: end procedure

The third and final example is the Information Retrieval algorithm, where a user maintains
a database and desires to retrieve some data based on a key. The simplest textbook
algorithm searches each consecutive position on the array to find a key match, and im-
mediately returns the corresponding value. In contrast, the privacy preserving algorithm
(PIR) [20] is not able to return before searching the whole database without revealing any
information about the key and the result. In this pair of examples the worst case complexity
is also O(n), however in the average case, the former will search the half database.

The idea here is to brute-force all possible table positions and obliviously find and keep the
value for the requested key. It has become obvious that it is not straightforward to make
more sophisticated algorithms privacy preserving. However, similar techniques are ap-
plied for simple and more elaborate algorithms, in order to transform them to their privacy
preserving equivalents, sacrificing performance for privacy.

Motivated by privacy concerns and from the challenges that arise in securing any func-
tion, in this thesis we concentrate on developing an end-to-end infrastructure for privacy
preserving analytics and incorporate some essential algorithms for aggregation statistics
and classification.

6.5 Algorithms for Two Types of Data: Categorical & Numerical

Due to the limitless applications that our system can serve, the input data can have many
different types. We have separated the data in two broad categories – categorical and
continuous, therefore our algorithms are also logically separated for those two different

A. Giannopoulos - D. Mouris 33

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

kinds of data. Categorical variables are those that can take on one of a limited, and
usually fixed, number of possible values. For instance, blood type, gender, the age-group
and the country that a person lives in. On the other hand, numerical/continuous data
can take any real number, rendering uncountable the number of different possible values.
Examples of the latter category include weight, price, profits, etc.

Medical data, of course, appear in both ways, depending on the “nature” of the attributes.
One more reason that this distinction should be made is that even for the same attribute
(for instance “Age”), a doctor may either classify the exact age, or the birth date, or even
classify the patient in one group (i.e. “child” or “adult”).

Due to these two different kinds of data that exist in medical datasets, we have separated
our algorithms in two categories respectively, categorical and numerical.

6.6 Privacy Preserving Histograms

Despite the challenges presented in sections 6.1 and 6.4, the majority of algorithms can
be transformed to their privacy preserving equivalent. However, this is not a straightfor-
ward translation , as we examined in section 6.4, and in most cases it adds a complexity
overhead to every algorithm that depends its control flow decisions in private data.

Histograms is a practical and notable example of algorithms that are widely used and the
complexity of their privacy preserving version remains in computationally feasible levels,
comparing to the textbook algorithm. But first of all, what is a histogram?

As stated in [31], histograms initially conceived as a visual aid to statistical approximations.
Webster’s defines a histogram as “a bar graph of a frequency distribution in which the
widths of the bars are proportional to the classes into which the variable has been divided
and the heights of the bars are proportional to the class frequencies”. A histogram is
generally a form of classifying and representing data in some categories of a specific
range; the range is an individual “base” element associated with each column.

More specifically, a histogram on some attributes {A,B, . . . , Z} is constructed by partition-
ing the data distribution of those attributes into some ranges which are mutually disjoint
subsets called buckets and approximating the frequencies and values in each bucket. For
the sake of simplicity let us suppose that the number of ranges (β) of all attributes are equal
(β ≥ 1).

In figures 3 and 4 we present two histograms, the first one-dimensional over the attribute
“Patient Age” and the second is a two-dimensional over the attributes “Patient Age” and
“Heart rate”. In both histograms β = 4, since the range of values for each attribute has
been partitioned in four mutually disjoint subsets. In the 1-dimensional histogram 3 the
y − axis corresponds to the total number of occurrences of values that belong to each
bucket. In the 2-dimensional histogram 4 since y− axis corresponds to the ranges for the
buckets for the second attribute, the occurrences are depicted with different colors.

Similarly, in figures 5 and 6 we present two more histograms, but with categorical values.
The attribute “Age Groups” in 5 is separated in four disjoint categories; “Infant”, “Adoles-
cent”, “Child” and “Adult”. In 6 we present demographic information (attribute “Continental
Population Groups”) in relation with “Age Groups”.

A. Giannopoulos - D. Mouris 34

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Figure 3: An one-dimensional histogram with
β = 4

Figure 4: A two-dimensional histogram/heatmap
with β = 4

Figure 5: One-dimensional histogram displaying
Age Groups

Figure 6: A two-dimensional histogram
displaying Age Groups with Continental

Population Groups

6.6.1 Algorithms for Privacy Preserving Histograms

Histograms are one of the simplest ways to visualize and easily understand data; ren-
dering them very useful in many data analysis applications. As we already mentioned,
histograms consist of bars that are mutually disjoint and their heights are proportional to
the counts of values in the corresponding ranges.

Challenges with Privacy-Preserving Histograms: The textbook algorithm splits the
dataset to buckets and consecutively for each item it increments the corresponding “bucket-
counter”. Implementing this algorithm with respect to the privacy of the dataset introduces
the problem that for each value it is not trivial to find the bucket that this specific value
should be placed.

For instance, let us suppose that we are constructing the histogram in figure 5. In this case
β = 4, thus the algorithm should obliviously split the values into four disjoint buckets. The
range of each bucket is computed considering the β parameter, as well as the minimum
and maximum age in the dataset. In this specific example, the minimum age is 18, while
the maximum is 83. Having β = 4 results to bucket-range (83 − 18)/4 = 16.25. There-
fore, the ranges for attribute “Patient Age” are formed as follows: [18, 34.25), [34.25, 50.50),
[50.50, 66.75), [66.75, 83]. Consecutively, for each patient in the dataset the algorithm cal-
culates the number of bucket that the patient belongs by dividing his/her value with the
bucket-range; however, this index is encrypted. Finally, the algorithm iterates through all
β buckets and obliviously adding 1̃ if the bucket is the correct one, or 0̃ otherwise.

The aforementioned algorithm works for numerical values; however, the one for categor-
ical values is very similar. Bucket-range is fixed to one, and β equals to all different pos-

A. Giannopoulos - D. Mouris 35

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

sible values in the dataset. Also, there is no notion of terms minimum and maximum in
categorical values.

6.6.1.1 Privacy Preserving Histogram Computation: A Naive Approach

As we mentioned in section 6.5, we have separated our algorithms in two major categor-
ies, for categorical and for numerical data. The procedure described in 6.6.1 is shown
in algorithms 4 and 5. These algorithms iterate through all N items and check all pos-
sible cells for that item. When the correct cell is found, they increment the correspond-
ing counter. The former is tailored to categorical datasets, while the latter is tailored to
numerical/continuous values.

Algorithm 4 Naive Privacy Preserving 1D Histogram for Categorical Values
Private Vars: array, histogram

1: procedure 1DimSimpleHistogramCategorical(array[N], cells)
2: for i ∈ {0, . . . , N − 1} do
3: for j ∈ {0, . . . , cells− 1} do
4: histogram[j]← histogram[j] +̂ (array[i] =̂ j) ▷ Add 1̃ if array[i] is equal to j,
5: end for ▷ 0̃ otherwise
6: end for
7: return histogram
8: end procedure

Algorithm 5 Naive Privacy Preserving 1D Histogram for Numerical Values
Private Vars: array,min,max, histogram, cellWidth, cell

1: procedure 1DimSimpleHistogramNumerical(array[N], cells,min,max)
2: cellWidth← (max −̂ min) ÷̂ cells ▷ cellWidth gets a float value
3: for i ∈ {0, . . . , N − 1} do
4: cell ← array[i] ÷̂ cellWidth ▷ cell gets an encrypted value in range [0, cells− 1]

5: for j ∈ {0, . . . , cells− 1} do
6: histogram[j]← histogram[j] +̂ (cell =̂ j) ▷ Add 1̃ if cell is equal to j,

0̃ otherwise
7: end for
8: end for
9: return histogram

10: end procedure

Both algorithms are straightforward and simple to understand, however, not very efficient.
In the following subsections we delve into details for the privacy preserving algorithms that
are based in the same idea, but leverage SIMD operations.

6.6.1.2 Privacy Preserving Histograms for Categorical Values

One-Dimensional Histograms: In algorithm 6 we present the privacy preserving al-
gorithm of an one-dimensional (1D) histogram for categorical values. In simple words,
categorical data means that the values are discrete. Hence, the second parameter in the

A. Giannopoulos - D. Mouris 36

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

algorithm (dubbed P) is the number of possible choices that exist in array[N]. The input
data is given in the form of a private array/vector.

The algorithm creates a boolean array of equal size as the input data, and then for each
possible encrypted value of the dataset checks (line 3) and counts (line 4) its occurrences.
Method Sum is the same as in algorithm 1. Finally, the counts are gathered into a vector
and returned – still encrypted – to the user.

Algorithm 6 Privacy Preserving 1D Histogram for Categorical Values
Private Vars: array, histogram, eq

1: procedure 1DimHistogramCategorical(array[N], P)
2: for i ∈ {0, . . . , P − 1} do ▷ P is the number of the different (possible) values in array
3: eq ← (array =̂ i) ▷ SIMD; array eq contains 1̃ where array[j] =̂ i,

0̃ otherwise, j ∈ {0, . . . , P − 1}
4: histogram[i]← Sum(eq) ▷ Operation to sum eq array
5: end for
6: return histogram
7: end procedure

Multi-Dimensional Histograms: In algorithm 7 we present the privacy preserving al-
gorithm of multi-dimensional histograms for categorical values. As in algorithm 6, here,
the third parameter (Ps) is the number of possible choices that exist in array. However,
since here the input data is a private array with multiple dimensions array[N][M], the pos-
sible values should express the possible values for each dimension. Thus, Ps is an array
of A slots, where A is the number of attributes.

The algorithm that computes a private multi-dimensional histogram is similar to the one
regarding one-dimensional histograms but also addresses the issue of having a histogram
of arbitrarily many dimensions. In case we had a fixed (i.e. known a-priori) number of
dimensions the simplest solution would be to use nested loops, as many as the histogram
dimensions. Since the number of dimensions is not known, we have to think of something
else. We represent the multi-dimensional histogram as a serialized version with an one-
dimensional array (a vector) instead of using a multi-dimensional array (a matrix). For
example a 2-dimensional 3× 4 histogram will be represented as a vector whose length is
12 (= 3 · 4), and a 3× 4× 5 3-dimensional histogram wit a vector of length 60 (= 3 · 4 · 5)

When it comes to indexing if we wish to access the 2-dimensional N × M histogram
represented as an one-dimensional at row i and column j, instead of using h[i][j] we use
h[i · M + j]. Similarly, for the 3-dimensional L × N × M histogram, h[i][j][k] becomes
h[i ·N ·M + j ·M + k]. So there needs to be a computation of a single index based on the
multiple dimension indexes. In algorithm 7, the positions vector holds this index for each
record of the provided array, as can be seen in lines 6 and 7

Similarly to the 1D algorithm, the multi-dimensional one creates a boolean array (eq) for
each possible histogram cell, which counts the occurrences of that cell in the positions
vector, as can be seen in lines 12 and 13 of algorithm 7.

A. Giannopoulos - D. Mouris 37

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Algorithm 7 Privacy Preserving Multi-Dimensional Histogram for Categorical Values
Private Vars: array, column, positions, histogram, eq

1: procedure MultDimHistogramCategorical(array[N][M], attributes[A], Ps[A])
2: positions← [0̃, 0̃, . . . , 0̃] ▷ positions is an array initialized with 0̃

3: for a ∈ {0, . . . , A− 1} do
4: attribute← attributes[a]
5: column← array[:, attribute] ▷ Slicing of a specific column of the array matrix
6: prod← Product(Ps[a+ 1 :]) ▷ Product of all Ps elements from index a+ 1 onwards
7: positions← positions +̂ column ⋆ prod
8: end for
9: length← Product(Ps)

10: histogram← [0̃, 0̃, . . . , 0̃] ▷ histogram is an array initialized with 0̃

11: for j ∈ {0, . . . , length− 1} do
12: eq ← positions =̂ j ▷ SIMD; eq gets either 0̃ or 1̃
13: histogram[j]← Sum(eq)
14: end for
15: return histogram
16: end procedure

17: procedure Product(array[N]) ▷ Compute and return the product of an array
18: product← 1
19: for i ∈ {0, . . . , N − 1} do
20: product← product× array[i]
21: end for
22: return product
23: end procedure

6.6.1.3 Privacy Preserving Histograms for Numerical Values

One-Dimensional Histograms: In algorithm 8 we present the privacy preserving al-
gorithm of one-dimensional (1D) histograms for numerical values. In contrast with the
categorical data, numerical data are not discrete, which means that the buckets in which
the histogram will separate the dataset should be fixed (the β parameter, as mentioned in
section 6.6)

First and foremost, the input data is given in the form of a private array/vector of N posi-
tions. The second parameter is open (since the final results will eventually disclose it), and
is the number of buckets/cells that the algorithm will create, namely the β factor. The two
last parameters are also encrypted and are the minimum and maximum values found in
the dataset/array (first parameter of the algorithm). Those two parameters are necessary
in order to determine for each element in the array in which cell should be placed.

This algorithm is very similar and in accord with algorithm 6, however does some extra
steps. In lines 2 and 3, it first determines the width for each cell and then creates an
array of N elements that each one indicates the bucket that the element in the corres-
ponding position of array should be placed. Consecutively, the algorithm creates another
boolean array of equal size as the input data, and then for each possible encrypted value
of the cellMap checks (line 5) and counts (line 6) its occurrences. Finally, the counts are
gathered into a vector and returned – still encrypted – to the user. Line 5 of algorithm 8 is
more complex than line 3 of algorithm 6, since the former has to check some corner cases

A. Giannopoulos - D. Mouris 38

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

of data that belong to the last bucket.

Algorithm 8 Privacy Preserving 1D Histogram for Numerical Values (Specified Cells)
Private Vars: array,min,max, histogram, cellWidth, cellMap, eq

1: procedure 1DimHistogramNumerical(array[N], cells,min,max)
2: cellWidth← (max −̂ min) ÷̂ cells ▷ cellWidth gets a float value
3: cellMap← (array −̂ min) ÷̂ cellWidth ▷ SIMD; cellMap has N elements,

each corresponds to an index idx where 0̃ ≤ idx ≤ c̃ells

4: for i ∈ {0, . . . , cells− 1} do
5: eq ← (cellMap =̂ i) +̂ ((cellMap =̂ cells) ⋆ (i == cells− 1)) ▷ SIMD; similar to

line 3 alg. 6, grouping elements to corresponding cell indexes
6: histogram[i]← Sum(eq)
7: end for
8: return histogram
9: end procedure

Multi-Dimensional Histograms: The algorithm that implements multi-dimensional histo-
grams for numerical, i.e. continuous data is a straightforward generalization of algorithms
7 and 8. Similarly, for each specified attribute we compute the corresponding cell width
(as in the 1-dimensional for numerical values – alg. 8), that depends on the minimum
and maximum values and the specified cell number of that attribute. Consecutively, we
compute the positions vector containing the histogram cell for each one of the N rows of
array. Like in algorithm 7, the positions array contains single indexes that correspond to
multiple indexes according to the procedure described above in section 6.6.1.2.

6.6.1.4 Filters in Privacy Preserving Histograms

Although histograms are one of the simplest ways to visualize and easily understand data,
they also come with some limitations. For instance, it is difficult to visualize in one image
more than three different attributes. Even though we can compute histograms of arbitrarily
many dimensions, even a 3D representation can sometimes be very obscure and difficult
to understand.

Oftentimes, one needs to take into consideration multiple attributes in order to get mean-
ingful results back. However, adding more attributes to the computed histogram is not
always an option as for the reasons described above, the output could be obscure or
even useless whatsoever.

For all those reasons, we have implemented a filtering technique in order to take more
attributes into consideration for the secure computation. With filtering, the user is able to
select a histogram computation over some attributes, and also specify some extra con-
straints over the same or different attributes. Each tuple from the dataset has to meet the
specified criteria/filters in ordered to be counted in the resulting histogram.

The specified filters are represented as a list of constraints that should be met. Each con-
straint is defined by the corresponding attribute, an operator (one of {<,>,=} for con-
tinuous attributes, and just = for categorical ones) and a value. Also a boolean operator
(e.g. AND, OR, XOR) that will be applied between the different constraints is specified.

For example, one could want to see the correlation of age and height but only for a subset
of the dataset. Let us suppose two examples, in the first we want the subset that include

A. Giannopoulos - D. Mouris 39

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Figure 7: Histogram on Patient Age and Height (cm) with no filters

all patients of age above 45, while in the second subset we want to include all patients
of age above 45 and that in the same time weigh less than 90 kg. This can be achieved
with two requests of two-dimensional histograms on the attributes Patient Age and Height
(cm) that also includes the filters Patient Age > 45, and the second additionally have the
limitation that Weight (kg) < 90, and also the boolean operator AND between them. These
will result to two 2-dimensional histograms (heatmap) with axes thePatient Age andHeight
(cm) attributes, but at the same time the results will be restricted by the selection of these
filters. The described example from above, is depicted in figures 7, 8 and 9, in which the
impact of the filters is obvious.

Figure 8: Histogram on Patient Age and Height
(cm) with filters on Patient Age

Figure 9: Histogram on Patient Age and Height
(cm) with filters on Patient Age andWeight (kg)

Another example can be an one-dimensional histogram on Body mass Index (BMI) on the
subset of patients that weigh more than 90 kg or are less than 170 cm in height. This can be
achieved withl a request of an one-dimensional histogram on the attribute BMI (kg/msq)
that also includes the filters Weight (kg) > 90, Height (cm) < 170, and also the boolean
operator OR between them. The effect of this example can be found in figures 10 and 11.

A. Giannopoulos - D. Mouris 40

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Figure 10: Histogram on BMI (kg/msq) with no
filters

Figure 11: Histogram on BMI (kg/msq) with filters
on Height (cm) andWeight (kg)

Algorithm 9 Privacy Preserving Constraint Mask
Private Vars: array, constraintMask, eq, constraintAttribute

1: procedure ConstraintMask(array[N][M], operation, constraintAttributes[C],
constraintOperators[C], constraintV alues[C])

2: if operation = AND then
3: constraintMask ← [1̃, 1̃, . . . , 1̃] ▷ array initialized with 1̃

4: else if operation = OR then
5: constraintMask ← [0̃, 0̃, . . . , 0̃] ▷ array initialized with 0̃

6: else if operation = XOR then
7: constraintMask ← [0̃, 0̃, . . . , 0̃] ▷ array initialized with 0̃

8: end if
9: for c ∈ {0, . . . , C − 1} do ▷ C is the number of the different constraints

10: constraintIndex← constraintAttributes[c]
11: constraintAttribute← array[:, constraintIndex]
12: constraintV alue← constraintV alues[c]
13: constraintOperators← constraintOperators[c]
14: if constraintOperators = GreaterThan then
15: eq ← constraintAttribute >̂ constraintV alue ▷ SIMD; eq vector gets 1̃ at

positions where the constraint holds, 0̃ otherwise
16: else if constraintOperators = LessThan then
17: eq ← constraintAttribute <̂ constraintV alue
18: else if constraintOperators = Equal then
19: eq ← constraintAttribute =̂ constraintV alue
20: end if
21: if operation = AND then
22: constraintMask ← constraintMask ⋆ eq ▷ Applying the boolean operator

between the constraints. SIMD
23: else if operation = OR then
24: constraintMask ← constraintMask +̂ eq
25: else if operation = XOR then
26: constraintMask ← constraintMask +̂ (1− eq) + (1− constraintMask) ∗ eq
27: end if
28: end for
29: return constraintMask
30: end procedure

The way that filters have been implemented is by constructing a vector of size N (i.e. as

A. Giannopoulos - D. Mouris 41

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

long as the number of tuples in the dataset), that works as a boolean mask corresponding
to the specified constraints. Each position of that vector corresponds to a data tuple from
the dataset. If that tuple satisfies all the specified constraints, then the vector should have
the (encrypted) value True in that position, or (encrypted) False otherwise. This vector
then is taken into consideration when we build the histogram. Only tuples which have
“scored” True are counted into the histogram.

In algorithm 9, the aforementioned vector is called constraintMask. In lines 14-20 we build
this boolean mask for each constraint into the eq vector, and in lines 21-27 we combine
these vectors to build the total one, according to the specified boolean operator applied
between them.

The algorithm for computing histograms for either categorical or numerical attributes util-
izes this constraintMask vector. After having computed the constraints, in order to join
them with the data computed by the algorithms, a private multiplication with the N -size
vector constraintMask is needed. This multiplication can be done with SIMD operation,
which saves a lot of communication overhead between the computing nodes.

As the multi-dimensional histogram computation algorithms for numerical and categorical
data, constraint mask can be used for as many dimensions as requested. Since the con-
straint-mask is dependent to the number of tuples in the dataset, the dimensions of the
requested histogram can be as many as the user requests.

A. Giannopoulos - D. Mouris 42

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

6.7 Decision Trees

Decision trees are tree-like structures in which each internal node represents a “test” on
an attribute, each branch represents the outcome of the specific test, and each leaf node
represents a class label (decision taken after computing all attributes). More specifically,
decision trees depict models of decisions and their possible results. They are also a simple
way to display an algorithm that only contains conditional control statements. Starting from
the root node and following the paths to leaves, each path represents classification rules.

For instance, the attribute “Gender” would have two edges leaving it, one for “Male” and
one for “Female”. Each edge could point to a new attribute (for example “Age Groups”),
and so on. The leaves of the tree contain the expected class value for transactions match-
ing the path from the root to that leaf. Given a decision tree, one can predict the class
of a new transaction just by following the “correct” path, which will result in a class label.
He/She can predict the class of a transaction by viewing only the non-class attributes (i.e.
the “constructed” decision tree).

For instance, two friends wish to decide if they will go to play tennis outside, depending the
weather conditions. They also remember the previous days that some weather conditions
did not allow them to play. Thus, they decide to create a decision tree to assist them.
First they define the class attribute to be “Play Tennis”, and three more attributes that
will help them decide: “Outlook” (“Sunny”, “Overcast”, “Rainy”), “Windy” (“High”, “Low”)
and “Humidity” (“High”, “Low”). Then they construct a decision tree like figure 12 that
corresponds to the data that the have collect from the past days.

Outlook

Sunny Overcast Rainy

Windy Play=Yes Humidity

High Low High Low

Play=No Play=Yes Play=No Play=Yes

Figure 12: Play-Tennis decision tree example

From figure 12, the two friends are able to extract a set of rules, listed in Code 4, that will
help them decide if they should go play tennis given the weather conditions.

1 IF (Outlook = Sunny) AND (Windy = Low) THEN Play=Yes
2

3 IF (Outlook = Sunny) AND (Windy = High) THEN Play=No
4

5 IF (Outlook = Overcast) THEN Play=Yes
6

A. Giannopoulos - D. Mouris 43

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

7 IF (Outlook = Rainy) AND (Humidity = High) THEN Play=No
8

9 IF (Outlook = Rainy) AND (Humidity = Low) THEN Play=Yes

Code 4: Rules for decision tree from figure 12

Of course, remembering the weather conditions of more days in the past and if they had
played tennis those days – having an extended dataset – could probably result to more
specific rules. Decision tree rules, help covering all possible future decisions-transactions
and can be used to classify them. There are many useful examples and it has become
evident why this type of learning has become so popular. The algorithms according to
which those tress are generated vary and lead to possible different trees.

One famous algorithm for decision tree construction is ID3 (Iterative Dichotomiser 3). ID3
is the precursor to the C4.5 algorithm, and is typically used in the machine learning and
natural language processing domains. Both algorithms build decision trees from a set of
training data, using the concept of information entropy, however, C4.5 results in better
classification utilizing a more efficient splitting criterion.

6.7.1 Textbook ID3

The ID3 algorithm was first introduced in [51] and assumes that each attribute is categor-
ical, such as the aforementioned attribute “Age Groups” which is separated in four disjoint
categories; “Infant”, “Adolescent”, “Child” and “Adult”.

ID3 algorithm constructs the classification tree top-down in a recursive fashion. The idea
is to find the best attribute that classifies the transactions. At start, the algorithm searches
and chooses the best attribute for the root node, and consecutively the remaining trans-
actions are partitioned by it. On each partition, ID3 is then recursively called.

The best attribute is defined as the attribute that has the smallest entropy – or in other
words, the best information gain. Let T be a set of transactions, C the class attribute
and A some non-class attribute. On each iteration, ID3 iterates through every unused
attribute A of the dataset and calculates the entropy HC(T) (equation 6.6 and algorithm
10) for every subset T that results from splitting the dataset on attribute A.

Algorithm 10 Entropy Textbook Algorithm
Global Vars: classAttribute

1: procedure Entropy(examples) ▷ Entropy (H(S) equation 6.6), is a measure of the
amount of uncertainty in the dataset

2: entropy ← 0
3: for each possible value vi of classAttribute do
4: count← number of examples that examples[classAttribute] = vi
5: percentage← count÷ Length(examples)
6: if percentage ̸= 0 then
7: entropy ← entropy − (percentage ∗ log2(percentage))
8: end if
9: end for

10: return entropy
11: end procedure

A. Giannopoulos - D. Mouris 44

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

HC(T) =
l∑

i=1

−| T (ci) |
| T |

log
| T (ci) |
| T |

(6.6)

The idea is to identify the class of a transaction t, given that the value of A has been
obtained. Let A obtain values a1, . . . , am and let T (aj) be the transactions obtaining value
aj for A. Then, the conditional information of T given A, is given from equation 6.7.

Algorithm 11 Information Gain Textbook Algorithm
1: procedure InformationGain(examples, attribute) ▷ Information gain (equation 6.8) is

the measure of the difference in entropy from before to after a dataset is split on an attribute
2: gain← Entropy(examples)
3: for each possible value vi of attribute do
4: subset← {example ∈ examples | example[attribute] = vi}
5: percentage← Length(subset)÷ Length(examples)
6: if percentage ̸= 0 then
7: gain← gain− (percentage ∗Entropy(subset))
8: end if
9: end for

10: return gain
11: end procedure

Algorithm 12 Best Textbook Algorithm
1: procedure Best(examples, attribute) ▷ Find the best attribute; the one with maximum

information gain – or similarly, minimum entropy
2: maxGain← −∞
3: best← −1
4: for attribute ∈ attributes do
5: gain← InformationGain(examples, attribute)
6: if gain > maxGain then
7: maxGain← gain
8: best← attribute
9: end if

10: end for
11: return best
12: end procedure

HC(T | A) =
m∑
j=1

−| T (aj) |
| T |

HC(T (aj)) (6.7)

Gain(A) = HC(T)−HC(T | A) (6.8)

Finally, the set T is then split by the selected attribute A (best-attribute algorithm 12)
that has the maximum gain (equation 6.8 and algorithm 11) – or equivalently minimum
HC(T | A) – to produce subsets of the data. The algorithm continues to recurse on each
subset, considering only attributes never selected before.

A. Giannopoulos - D. Mouris 45

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

The AllExamplesSame (see algorithm 13) procedure is used to determine if all transac-
tions are of the same class, by checking the value of classAttribute for each transaction.
It returns true if they are, false otherwise.

Algorithm 13 All Examples Same Textbook Algorithm
Global Vars: classAttribute

1: procedure AllExamplesSame(examples, attribute) ▷ Check if all examples are
of the same class

2: for i ∈ {0, . . . ,Length(examples)− 2} do ▷ Check all examples, two at a time
3: ex1 ← examples[i]
4: ex2 ← examples[i+ 1]
5: if (ex1[classAttribute] ̸= ex2[classAttribute]) then
6: return false
7: end if
8: end for
9: return true

10: end procedure

The MostCommonLabel (algorithm 14) procedure returns the class label that is most
common in all available transactions.

Algorithm 14 Most Common Label Textbook Algorithm
Global Vars: classAttribute

1: procedure MostCommonLabel(examples) ▷ Return the most common class in all
examples

2: maxCount← −∞
3: maxLabel← −1
4: for each possible class ci of classAttribute do
5: eq ← examples[classAttribute] = ci ▷ SIMD; eq vector gets 1 at positions

where the equality holds, 0 otherwise
6: count← Sum(eq) ▷ count gets the number of examples with class ci
7: if count > maxCount then
8: maxCount← count ▷ Choose maximum count
9: maxLabel← ci ▷ Choose class with maximum count

10: end if
11: end for
12: return maxLabel
13: end procedure

The recursive ID3 algorithm (see algorithm 15 shown below) has the following structure
with three halting conditions.

1. If the set of remaining attributes is empty, then the algorithm returns the label that is
most common in all transactions as a leaf (lines 2-3).

2. If all transactions are of the same class, then the algorithm returns this class as a
leaf (lines 4-5).

3. If none of the above conditions hold, then the algorithm finds the best splitting attrib-
ute (using algorithm 12) and makes a branch for every possible value of that attribute
(lines 7-19).

A. Giannopoulos - D. Mouris 46

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Algorithm 15 ID3 Textbook Algorithm
Global Vars: classAttribute

1: procedure ID3(examples, attributes)
2: if attributes = {} then ▷ If number of predicting attributes is empty
3: return MostCommonLabel(examples) ▷ Return the label with the most common

value of the target attribute in the examples
4: else if AllExamplesSame(examples) then
5: return examples[0][classAttribute] ▷ Return a node with the label that is common

to all examples
6: end if
7: bestAttribute← Best(examples, attributes) ▷ Best attribute is the one with maximum

information gain – or similarly, minimum entropy
8: branches← {}
9: for each possible value vi of bestAttribute do

10: Let branch be a new tree branch below root, corresponding to the test bestAttribute = vi
11: subset← {example ∈ examples | example[bestAttribute] = vi}
12: if subset = {} then
13: branch← AddLeaf(branch,MostCommonLabel(examples)))▷ Add a leaf
14: else
15: branch← AddTree(branch, ID3(subset, attributes− {bestAttribute}))

▷ Recurse and add the subtree
16: end if
17: branches← branches ∪ branch
18: end for
19: return branches
20: end procedure

6.7.2 Privacy Preserving ID3

In the previous subsection we described the ID3 algorithm which operates on public data.
We should now describe the privacy-preserving version of the same algorithm, where all
the transactions (examples) from which the algorithm builds the tree are private data.

First of all, a key difference from the textbook algorithm is the lack of ability to maintain
subsets of the transactions based on private conditions. In particular, as you can see in
line 11 of algorithm 15, we wish to keep a subset of all examples that have a certain value
in the bestAttribute column.

As we cannot have conditional statements on private data, the only thing we can do is to
apply the oblivious selection technique described in section 4.2. Thus, we are not able
to keep only the subset of rows that satisfy our condition. A solution to this problem is to
define subset as a copy of the examples array. We keep a vector eq (see line 17 of algorithm
22) of equal length with examples. The value of eq[i] is 1̃ if examples[bestAttribute] is
equal to vi, or 0̃ otherwise. Since the values of eq are encrypted, we perform a vector
multiplication between eq and examples so the result will be identical to examples for ever
row i that the condition holds (eq[i] is equal to 1̃), and 0̃ otherwise. Then we add a dummy
row [−̃1, −̃1, . . . , −̃1] (a row of all −̃1, denoted as just −̃1 for simplicity) to all rows that don’t
satisfy the condition (using multiplication with 1̃−eq). The resulting array has all rows from
examples that satisfy the condition, and rows full of −̃1 wherever the condition does not
hold.

A. Giannopoulos - D. Mouris 47

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

For that reason, all the algorithms listed below operate on these kinds of “sets”. In al-
gorithm 16 we describe the CountPositives procedure which returns the (encrypted)
number of rows that are not the dummy [−̃1, −̃1, . . . , −̃1] row. The CountPositives pro-
cedure is equivalent to the call of Length on sets with public data.

Algorithm 16 Privacy Preserving Count Positives Algorithm
Require: examples, neq, count

1: procedure CountPositives(examples)
2: neq ← examples ˆ̸= −̃1 ▷ SIMD comparison
3: count← Sum(neq)
4: return count
5: end procedure

The AllExamplesSame procedure described in algorithm 17 returns the same result as
that in algorithm 13. Theway this is achieved is by counting the number of examples/transactions
that are of class ci, for each possible class ci. The private variable res is initialized to 0̃,
and gets increased if any of those counts is equal to the total number of examples, i.e. all
examples are of that class. If res is greater than 0̃ (equal to 1̃) then all the examples have
the same class.

Algorithm 17 Privacy Preserving All Examples Same Algorithm
Private Vars: examples, res, eq, classCounts
Global Vars: classAttribute

1: procedure AllExamplesSame(examples) ▷ Check if all examples have the same class
2: res← 0̃
3: for each possible class ci of classAttribute do
4: eq ← examples[classAttribute] =̂ ci ▷ SIMD; eq vector gets 1̃ at positions

where the equality holds, 0̃ otherwise
5: classCounts[ci]← Sum(eq) ▷ classCounts[ci] gets the number of examples with

class ci
6: res← res +̂ (classCounts[ci] =̂ CountPositives(examples)) ▷ res will increase

if all examples are of one class
7: end for
8: return res >̂ 0̃
9: end procedure

Similarly to the AllExamplesSame procedure, the MostCommonLabel procedure also
maintains the transaction counts for each possible class ci. Using the technique described
in algorithm 2, we obliviously keep the maximum count and the class label corresponding
to that count, which is returned.

A. Giannopoulos - D. Mouris 48

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Algorithm 18 Privacy Preserving Most Common Label Algorithm
Private Vars: examples,maxCount, eq, gt,maxLabel, count
Global Vars: classAttribute

1: procedure MostCommonLabel(examples) ▷ Return the most common class in examples

2: maxCount← −̃∞
3: maxLabel← −̃1
4: for each possible class ci of classAttribute do
5: eq ← examples[classAttribute] =̂ ci ▷ SIMD; eq vector gets 1̃ at positions

where the equality holds, 0̃ otherwise
6: count← Sum(eq) ▷ count gets the number of examples with class ci
7: gt← count >̂ maxCount
8: maxCount← gt ⋆ count +̂ (1̃ −̂ gt) ⋆ maxCount ▷ Obliviously choose

maximum count
9: maxLabel← gt ⋆ ci +̂ (1̃ −̂ gt) ⋆ maxLabel ▷ Obliviously choose class

with maximum count
10: end for
11: return maxLabel
12: end procedure

The Best procedure obliviously chooses the attribute that has the greatest information
gain. This attribute is considered to be the best to split the dataset on an will be included
in an output tree node. That is why this attribute can be handled as public data (note the
usage of the Declassify operator in line 10) after it has been privately computed.

Algorithm 19 Privacy Preserving Best Algorithm
Require: examples,maxGain, gain, gt, best

1: procedure Best(examples, attributes) ▷ Find the best attribute; the one with maximum
information gain, as public data

2: maxGain← −̃∞
3: best← −̃1
4: for attribute ∈ attributes do
5: gain← InformationGain(examples, attribute)
6: gt← gain >̂ maxGain
7: maxGain← gt ⋆ gain +̂ (1̃ −̂ gt) ⋆ maxGain ▷ Obliviously choose maximum gain
8: best← gt ⋆ attribute +̂ (1̃ −̂ gt) ⋆ best ▷ Obliviously choose best attribute
9: end for

10: return Declassify(best)
11: end procedure

As in algorithms 10 and 11, procedures Entropy and InformationGain (algorithms 20,
21) compute the entropy of a set of transactions, and an attribute’s information gain re-
spectively. The key differences with the previously described textbook algorithms include
the usage of CountPositives procedure instead of Length, due to the difference in the
sets involved in the computation, and the modified log2 function that handles zero input.
Also, note that the subsets (algorithm 21, line 5) are also constructed with the technique
described in the beginning of this section.

A. Giannopoulos - D. Mouris 49

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Algorithm 20 Privacy Preserving Entropy Algorithm
Require: examples, example, entropy, count, percentage, eq
Global Vars: classAttribute

1: procedure Entropy(examples) ▷ Entropy (H(S) equation 6.6), is a measure of the
amount of uncertainty in the dataset

2: entropy ← 0̃
3: for each possible class ci of classAttribute do
4: eq ← examples[classAttribute] =̂ ci ▷ SIMD; eq vector gets 1̃ at positions

where the equality holds, 0̃ otherwise
5: count← Sum(eq)
6: percentage← count÷CountPositives(examples)
7: entropy ← entropy − (percentage ∗ log2(percentage))▷ Here we use a modified log2

function that returns 0̃ given 0̃ as input
8: end for
9: return entropy

10: end procedure

Algorithm 21 Privacy Preserving Information Gain Algorithm
Require: examples, example, gain, subset, percentage

1: procedure InformationGain(examples, attribute) ▷ Information gain (equation 6.8) is
the measure of the difference in entropy from before to after a dataset is split on an attribute

2: gain← Entropy(examples)
3: for each possible value vi of attribute do
4: eq ← examples[attribute] =̂ vi ▷ SIMD; eq vector gets 1̃ at positions

where the equality holds, 0̃ otherwise
5: subset← examples ⋆ eq +̂ (1̃ −̂ eq) ⋆ −̃1 ▷ SIMD; subset gets a copy of examples

at positions where the equality holds, −̃1 otherwise
6: percentage← CountPositives(subset) ÷̂ CountPositives(examples)
7: gain← gain −̂ percentage ⋆ Entropy(subset)
8: end for
9: return gain

10: end procedure

The complete ID3 procedure is described in algorithm 22. In lines 6-11 of the algorithm
we retrieve class label that is same to all examples ad return it. In order to do that, we
cannot just take a random’s example value in the classAttribute column. We should make
sure that this is not a dummy (−̃1) example (line 8). The rest of the algorithm is quite
similar to the textbook one. The differencesmainly include the subsets handling. (creation,
counting, etc.)

A. Giannopoulos - D. Mouris 50

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Algorithm 22 Privacy Preserving ID3 Algorithm
Private Vars: examples, example, eq, subset
Global Vars: classAttribute

1: procedure ID3(examples, attributes)
2: if attributes = {} then ▷ If number of predicting attributes is empty
3: return Declassify(MostCommonLabel(examples)) ▷ Return the most

common class in the dataset
4: else if Declassify(AllExamplesSame(examples)) then
5: label ← −̃1
6: for example ∈ examples do
7: neq ← example[classAttribute] ˆ̸= −̃1
8: label ← neq ⋆ example[classAttribute] +̂ (1̃− neq) ⋆ label
9: end for

10: return Declassify(label)
11: end if
12: bestAttribute← Best(examples, attributes) ▷ Best attribute is the one with maximum

information gain – or similarly, minimum entropy
13: branches← {}
14: for each possible value vi of bestAttribute do
15: Let branch be a new tree branch below root, corresponding to the test bestAttribute = vi
16: eq ← examples[bestAttribute] =̂ vi ▷ SIMD; eq vector gets 1̃ at positions

where the equality holds, 0̃ otherwise
17: subset← examples ⋆ eq +̂ (1̃ −̂ eq) ⋆ −̃1 ▷ SIMD; subset gets a copy of examples

at positions where the equality holds, −̃1 otherwise
18: if Declassify(CountPositives(subset) =̂ 0̃) then
19: branch← AddLeaf(branch,MostCommonLabel(examples))) ▷ Add leaf
20: else
21: branch← AddTree(branch, ID3(subset, attributes− {bestAttribute}))

▷ Recurse and add the subtree
22: end if
23: branches← branches ∪ branch
24: end for
25: return branches
26: end procedure

6.7.2.1 Privacy Assessment

In privacy-preserving algorithms, all intermediate values should remain private. In many
cases, intermediate values may reveal some patterns, and in general sensitive information
about the private inputs.

However, in the case of ID3, some of these intermediate values are part of the output
and eventually will be revealed. For instance, the attributes chosen in each node of the
tree will be revealed in the final results. Thus, there is no reason to trying to protect them
during the protocol execution. In the privacy-preserving ID3, as in all algorithms in this
thesis, we explicitly define which values are private (and thus encrypted), and which are
public.

As stated in [41], although the name of the attribute with the highest information gain is
revealed, nothing is learned of the actual HC(T | A) values themselves. This observation

A. Giannopoulos - D. Mouris 51

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

holds true for all such cases, since neither the information gain nor any other intermediate
values which are not explicitly denoted as public can be leaked.

For an algorithm to remain private, the requirement is that any information is learned by
the algorithm, can also be learned directly from the public input and output [41].

As mentioned in section 4.2 the Declassify operator publishes a private value. Consec-
utively, we reason about the selection of public and private data in the described algorithms
and also about the usage of the Declassify operator.

First of all, we consider the case that all involved parties have the same schema for their
data. Thus, attribute names are known to all parties an should not be considered private
information.

Lindell and Pinkas have constructed a protocol in [41] for privately computing ID3 that
works in the two-party setting. This two-party protocol is proven to be private. However
that algorithm does not consider the case in where the set of transactions T is empty.
Algorithm 22 is a generalization to the multi-party setting from the 2-party protocol that is
described in [41]. The algorithm also addresses the empty transaction set case.

The ID3 algorithm (see algorithm 22) can terminate (i.e. return a value) in three different
cases. Each time, the algorithm’s output is a node of the resulting tree. That is why,
everything that the algorithm returns in any of the three cases should be considered as
public data (see Declassify operator in lines 9, 11 and public branches variable in line
14).

Empty attribute set: The first termination channel of the algorithm is when the set of
remaining attributes is empty, i.e. when there are no attributes left for the algorithm to
check.. This information is publicly known since the remaining attributes can be derived
from the output tree. In this case, the algorithm returns the most common label of the
remaining transactions. Here, we use the Declassify operator to publish that label and
add it as a leaf to the tree.

All examples same: The second way that algorithm 22 can terminate, is when all transac-
tions of the dataset are of the same class. We use the Declassify operator to determine
that information (i.e. if all the dataset is of the same class).

After recursive calls: Finally, if none of the above cases terminate the execution of ID3,
the algorithm will recursively add either a leaf or a sub-tree for each possible value of
the selected attribute, and then return. In order to determine whether to add a leaf or a
sub-tree, we publish the information that there are no transactions left in the subset of the
dataset that corresponds to a particular value of the selected attribute.

By observing the output tree, as well as the public input, one can make the following
observations. Wherever there is a leaf nodewith class ci, one can tell if the set of remaining
attributes is empty, simply by observing the path from the root of the tree. If all attributes
have been used then the set is empty, otherwise it is not. If the attribute set is not empty, we
can deduce that one of two things holds. Either all transactions that belong to the current
path are of the same class (ci), or that there are no transactions at all in that path. These
exact information is also published by algorithm 22, with the only difference being that the
information published by the algorithm distinguishes between when all transactions are of
the same class and the corner case of having no transactions for a particular path of the
tree.

A. Giannopoulos - D. Mouris 52

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

6.7.3 Privacy Preserving C4.5

C4.5 is a decision tree generating algorithm developed by Ross Quinlan [52]. The C4.5
algorithm is an extension of the ID3 algorithm described in section 6.7.1 also developed
by Quinlan [51]. It was ranked #1 in the Top 10 Algorithms in Data Mining pre-eminent
paper published by Springer Knowledge and Information Systems in 2008 [62].

The main difference between C4.5 and ID3 is that the former has native support for both
continuous (i.e. numerical) data and discrete (i.e. categorical) data. The idea behind C4.5
classification is to find the best splitting point for an attribute and split the dataset on that
point. Transactions that are below that threshold belong to one branch and transaction
above that threshold belong to the other branch. The splitting criterion is based on the
information gain 6.8 (difference in entropy 6.6) given by the splitting point. The attribute
that most efficiently splits the dataset is chosen by the algorithm at each level of the tree.
After that the algorithm recurses on the two subsets created by that split.

In algorithm 23 we present the privacy-preserving C45 procedure. It is quite similar to
the ID3 one in algorithm 22. The main differences include that the call of Best pro-
cedure (see algorithm 24), now not only returns the “best” attribute, but also the “best”
threshold that this attribute should split on, and the subsets that result from that split. In
case that the chosen attribute is categorical, then the bestSplitted variable will contain the
subsets resulting from each possible value vi of that attribute. ({example ∈ examples |
example[bestAttribute] = vi} for each possible vi), and the algorithm creates that many
branches. In case that bestAttribute is a numerical attribute, then the bestSplitted vari-
able will contain the two subsets – the set of transactions t having t[bestAttribute] <=
bestThreshold (less), and the set of transactions t having t[bestAttribute] > bestThreshold
(greater). Also, in that case creates two branches one for each aforementioned subsets.
Since the algorithm creates two branches for every split for numerical attributes) the out-
put tree is a binary tree (branching factor = 2), unlike ID3 where the branching factor of
the tree is equal to the number of possible values for every attribute.

Algorithm 23 Privacy Preserving C4.5 Algorithm
Private Vars: examples, allSame, subset, less, greater, bestSplitted
Global Vars: classAttribute, categoricalAttributes

1: procedure C45(examples, attributes)
2: if attributes = {} then ▷ If number of predicting attributes is empty
3: return MostCommonLabel(examples) ▷ Return the label with the most common

value of the target attribute in the examples
4: else if Declassify(AllExamplesSame(examples)) then
5: label ← −̃1
6: for example ∈ examples do
7: neq ← example[classAttribute] ˆ̸= −̃1
8: label ← neq ⋆ example[classAttribute] +̂ (1̃− neq) ⋆ label
9: end for

10: return Declassify(label)
11: end if
12: bestAttribute, bestThreshold, bestSplitted← Best(examples, attributes) ▷ Best

attribute is the one whose split provides maximum information gain. bestSplitted

corresponds to the subsets generated by that split.
13: branches← {}

A. Giannopoulos - D. Mouris 53

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

14: if bestAttribute ∈ categoricalAttributes then ▷ If best attribute is categorical
15: for each possible value vi of bestAttribute do
16: Let branch be a new tree branch corresponding to bestAttribute = vi
17: subset← bestSplitted[vi]
18: if Declassify(CountPositives(subset) =̂ 0̃) then
19: branch← AddLeaf(branch,MostCommonLabel(examples)))
20: else
21: branch← AddTree(branch,C45(subset, attributes− {bestAttribute}))
22: end if
23: branches← branches ∪ branch
24: end for
25: else
26: Let branch be a new tree branch corresponding to bestAttribute <= bestThreshold
27: less← bestSplitted[0]
28: if Declassify(CountPositives(less) =̂ 0̃) then
29: branch← AddLeaf(branch,MostCommonLabel(examples)))
30: else
31: branch← AddTree(branch,C45(less, attributes− {bestAttribute}))
32: end if
33: branches← branches ∪ branch
34: Let branch be a new tree branch corresponding to bestAttribute > bestThreshold
35: greater ← bestSplitted[1]
36: if Declassify(CountPositives(greater) =̂ 0̃) then
37: branch← AddLeaf(branch,MostCommonLabel(examples)))
38: else
39: branch← AddTree(branch,C45(greater, attributes− {bestAttribute}))
40: end if
41: branches← branches ∪ branch
42: end if
43: return branches
44: end procedure

Here we present the privacy-preserving algorithms for C45 and Best procedures. As in
section 6.7.2 we face the same restrictions regarding the subset creation, for the same
reasons as described before. We omit the rest procedures, as well as their textbook
equivalents, as they are similar to the ones presented in sections 6.7.1 and 6.7.2. One
difference for example is that the InformationGain procedure takes the disjoint subsets
that occur from a split as an argument instead of taking the attribute and computing the
subsets inside. Also, another argument is the current entropy of the dataset that gets
computed once in the Best procedure for optimization purposes.

A. Giannopoulos - D. Mouris 54

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Algorithm 24 Privacy Preserving C4.5 Best Algorithm
Global Vars: classAttribute, categoricalAttributes

1: procedure Best(examples, attributes)
2: bestSplitted← {̃}, maxGain← −̃∞, bestThreshold← −̃1, bestAttribute← −̃1
3: ent← Entropy(examples)
4: for attribute ∈ attributes do
5: if attribute ∈ categoricalAttributes then ▷ If attribute is categorical
6: splitted← {}
7: for each possible value vi of attribute do
8: eq ← examples[attribute] =̂ vi ▷ SIMD; eq vector gets 1̃ at positions

where the equality holds, 0̃ otherwise
9: subset← examples ⋆ eq +̂ (1̃ −̂ eq) ⋆ −̃1 ▷ SIMD; subset gets a copy of

examples at positions where the equality holds, −̃1 otherwise
10: splitted← splitted ∪ subset
11: end for
12: gain← InformationGain(ent, examples, splitted)
13: gt← gain >̂ maxGain
14: maxGain← gt ⋆ gain +̂ (1̃ −̂ gt) ⋆ maxGain ▷ Obliviously choose max gain
15: bestAttribute← gt ⋆ attribute +̂ (1̃ −̂ gt) ⋆ bestAttribute
16: bestSplitted← gt ⋆ splitted +̂ (1̃ −̂ gt) ⋆ bestSplitted
17: else ▷ If attribute is numerical
18: Sort examples by attribute column
19: for i ∈ {0, . . . ,Length(examples)− 2} do ▷ Check all examples, two at a time
20: Let ex1 be the first valid example
21: Let ex2 be the second valid example
22: neq ← ex1

ˆ̸= ex1

23: threshold← (ex1[attribute] + ex1[attribute])/2
24: lt← examples[attribute] ≤̂ threshold ▷ SIMD; lt vector gets 1̃ at positions

where the inequality holds, 0̃ otherwise
25: less← examples ⋆ lt +̂ (1̃ −̂ lt) ⋆ −̃1 ▷ SIMD; less gets a copy of

examples at positions where the inequality holds, −̃1 otherwise
26: gt← examples[attribute] >̂ threshold

27: greater ← examples ⋆ gt +̂ (1̃ −̂ gt) ⋆ −̃1
28: splitted← {less, greater}
29: gain← InformationGain(ent, examples, splitted)
30: gt← gain >̂ maxGain
31: maxGain← gt ⋆ gain +̂ (1̃ −̂ gt) ⋆ maxGain
32: bestAttribute← gt ⋆ attribute +̂ (1̃ −̂ gt) ⋆ bestAttribute
33: bestThreshold← gt ⋆ threshold +̂ (1̃ −̂ gt) ⋆ bestThreshold
34: bestSplitted← gt ⋆ splitted +̂ (1̃ −̂ gt) ⋆ bestSplitted
35: end for
36: end if
37: end for
38: return Declassify(bestAttribute),Declassify(bestThreshold), bestSplitted
39: end procedure

A. Giannopoulos - D. Mouris 55

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

7. IMPLEMENTATION DETAILS

Our application consists of four concrete parts, the coordinator, the data providers, the
SMPC cluster and the user interface.

The code for the end-to-end architecture, which is deployed in 7, as well as the privacy-
preserving algorithms is open-source and hosted in GitHub8.

7.1 Coordinator

The coordinator handles all private computation requests, communicates with the data
providers – requesting them to securely import their data to the computing cluster, initiates
the secure computation in the SMPC cluster, and finally returns to the user the requested
analytics results.

The coordinator server has been designed as a Representational State Transfer (REST)
web service. This design helps decoupling server and client applications; the API that
provides is cleaner and easier to understand/discover. It’s standard format/usage makes
it easy for new clients to use the application even if the application was not designed with
these clients’ use cases in mind.

We have implemented this web service using Node.js and more specifically the Express
server minimal web framework.

The RESTful API provided by the coordinator server can be found in the following section.

7.1.1 RESTful API

Table 1: Coordinator’s RESTful API

POSTPOST /smpc/histogram/numerical

POSTPOST /smpc/histogram/categorical

POSTPOST /smpc/decisionTree

GETGET /smpc/queue

POSTPOST /smpc/histogram/numerical

POSTPOST /smpc/histogram/categorical

POSTPOST /smpc/decisionTree

GETGET /smpc/queue

POSTPOST /smpc/histogram/numerical

POSTPOST /smpc/histogram/categorical

POSTPOST /smpc/decisionTree

GETGET /smpc/queue

POSTPOST /smpc/histogram/numerical

POSTPOST /smpc/histogram/categorical

POSTPOST /smpc/decisionTree

GETGET /smpc/queue

The RESTful API of the coordinator is summarized in table 1. The two first POST requests
initiate a secure histogram computation for numerical and categorical values respectively.
With the third POST request a user can request a secure decision tree computation for
either numerical or categorical values, specifying in the request body one of ID3 and C4.5
classifiers. The /smpc/queue GET request is for checking the status and/or result of a

7https://mhmd.madgik.di.uoa.gr/
8https://github.com/Athena-MHMD/smpc-analytics

A. Giannopoulos - D. Mouris 56

https://mhmd.madgik.di.uoa.gr/
https://github.com/Athena-MHMD/smpc-analytics

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

specified computation request (the aforementioned POST requests). In appendix A.1 we
explain in more detail each individual POST and GET request.

7.1.2 Sequence of Actions

In section 5.4.1 we have presented a brief overview of the end-to-end query execution. In
this section, we elaborate on this brief overview, including many implementation details
that have been omitted.

Step 1: A user makes a privacy-preserving analytics request to the coordinator.
This request is either made from the UI (presented in section 7.4) or from an-
other service (e.g. Postman tool9, or even another custom UI that accords with
our API).

Step 2: The coordinator server is responsible for orchestrating all the involved parties:
it communicates with the data-providers requesting secure data-import to the
SMPC cluster.

2.a: The coordinator maintains a database with the IP addresses of all hospit-
als involved in the privacy-preserving computation so it can send import
requests.

2.b: The user has the option to select which of the data providers to involve
in the secure computation. The coordinator sends import requests to the
selected data providers.

2.c: After the import procedure has finished, the coordinator is responsible to
return the results to the user. If the initial request has been made from
the UI, the results are visualized and returned through the UI, otherwise a
JSON file is returned to the user.

Step 3: The data-providers extract the requested data from their datasets and securely
import them to the SMPC cluster applying secret-sharing.
A database is maintained in each hospital with all its private data. However,
in each request, the user selects which attributes take part in the privacy-pre-
serving analytics.

3.a: Each hospital’s server receives a secure data import request from the co-
ordinator for the user selected attributes.

3.b: A data extraction and a secret sharing procedure takes place in each hos-
pital’s server in order to securely import the data to the SMPC cluster.

The data-import procedure is described in more detail in section 7.2.2.

Step 4: The SMPC cluster computes the privacy preserving analytics on the requested
data and returns the results to the coordinator.
Depending on the user’s request, the SMPC cluster execute either a secure
aggregation or a secure decision tree algorithm. After the computation has fin-
ished, the SMPC cluster returns the results to the coordinator.

9https://www.getpostman.com

A. Giannopoulos - D. Mouris 57

https://www.getpostman.com

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Step 5: Finally, the results are returned to the user through the coordinator.
If the initial request has been made from the UI, the results are visualized and
returned through the UI, otherwise a JSON file is returned to the user as de-
scribed in section 7.1.1.

7.1.3 Result Caching

Privacy-preserving algorithms can sometimes be highly time-demanding. Execution times
vary depending on the number of patients, attributes, and also the analytics algorithm that
is used. For instance, by definition, decision trees require way more computational power
that aggregators do. Similarly, their privacy-preserving equivalents are computationally
intensive tasks.

Furthermore, since our end-to-end system is designed to accept hundreds of requests per
day, it is computationally infeasible to meet them all. Not to mention, that many of them
could possible be the same request – or even repeated.

For all those reasons, we have implemented a caching mechanism that stores secure
computation results so future requests for that data can be served faster. If a cache hit
occurs, the secure computation is omitted and the results are immediately returned to the
user. Otherwise, if a cache miss occurs, the secure computation will normally continue as
described in sections 5.4 and 7.1.2.

However, a proficient user may want to omit the already computed results, in case of
a recent dataset modification. In this case, he/she can explicitly specify that the cache
should not be used by adding a “cache”: “no” option in the JSON request body. For the
average user, that would not be necessary, since our system invalidate cache results that
are older than 1 month.

7.2 Data Providers

When a private computation request arises, the coordinator server communicates with the
data providers and requests them to securely import their data to the computing cluster.
Finally the coordinator returns the results of the computation to the researcher.

Data providers run their own web server that listen to import requests from the coordinator.

That server is implemented using Node.js Express Server, and provides the following
RESTful API.

7.2.1 RESTful API

Table 2: Data Providers’ RESTful API

POSTPOST /smpc/import/numerical

POSTPOST /smpc/import/categorical

POSTPOST /smpc/import/numerical

POSTPOST /smpc/import/categorical

A. Giannopoulos - D. Mouris 58

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

The RESTful API of the data providers is summarized in table 2. The above two POST
requests initiates a secure import for numerical and categorical datasets respectively. In
appendix A.2 we explain in more detail the two types of POST requests that the coordinator
sends to the data providers.

7.2.2 Data Importer

The secure data import is one of the most essential procedures in the secure multi-party
computation scenario. In this step, the data are secret-shared to the three computing
parties. The shares are cryptographic part of the secret but reveal nothing about it. In
section 2.6, we examined some secret sharing techniques and the homomorphic proper-
ties that some of them have. In simple words, the secret sharing homomorphic property
enables meaningful computation on the shares of the initial data.

We use a standard tabular structure for the data in order to import them in the SMPC
cluster’s encrypted database provided by Sharemind. The datasets to be imported should
be in comma-separated values (CSV) format. In case that a dataset has some other non-
tabular arrangement (see section 8), we transform them in the standard CSV format using
software that we developed for that particular task.

The aforementioned procedure is described in more detail in section 8.

7.2.3 Containerization

The number of data providers can start from just one (trivial case), and grow unrestrictedly.
The case with only one data provider is when that provider just wants to outsource the
computation to a cloud, without having to trust an individual server. The case of multiple
data providers is themost common case, where the providers wish to perform computation
over the union of all datasets without anyone being able to learn anything more than the
computation’s output. Thus, we wanted the deployment of each data provider to be easy
and fast; veiling all the individual parts, such as the required packages, the SMPC importer
installation, any software for data pre-processing etc.

For that reason we decided that the best choice is to offer a containerized solution. We
used Docker10 for the building and shipping of an image with everything installed and
ready to run. That image also includes the web server accepting requests for data import
(according to the API specified in section 7.2.1), already up and running.

Each individual data provider, can use this image to create a lightweight, portable, self-
sufficient container, which can run virtually anywhere. The container will run locally in the
provider’s premises. The only requirement that a data provider has is to upload its datasets
to the container in order to be able to securely import them into the SMPC cluster. In this
way, non-expert users can easily provide their data to be a part of the secure computation.

7.3 SMPC Cluster

For the purpose of this dissertation, we have deployed the Sharemind secure computing
platform on three 64-bit virtual machines (VM), each running Ubuntu 18.04. The three

10https://www.docker.com/

A. Giannopoulos - D. Mouris 59

https://www.docker.com/

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

VMs share an Intel Xeon E5-2670 (v2) at 2.50 GHz. Each VM utilizes 6 cores and 8 GB
of memory.

As described in section 5.4.2.1, ideally, the three computing nodes should be deployed in
premises with conflicting interests, preventing any adversary from controlling all of them
simultaneously. This should not be confused with trusted servers.

7.4 User Interface

Apart from the RESTful API, a user/researcher can initiate a secure computation through
our user interface (UI), deployed in https://mhmd.madgik.di.uoa.gr/. Our the goal was to
design a simple and elegant user interface which is easy to use and in the same time
enjoyable (user-friendly).

In the landing page, except from reading and understanding useful information about the
end-to-end infrastructure, the operator can choose between two options: secure data
aggregation and secure data classification, as depicted bellow11.

Figure 13: Landing page: choosing between secure data aggregation & classification

Consecutively, the user can select the desired dataset on which the algorithms will ex-
ecute, as in figure 1412.

Figure 14: Selecting dataset for secure aggregation

Secure Aggregation for the CVI dataset: After selecting the secure aggregation for the
CVI (numerical) dataset, the researcher has to choose attributes and their corresponding
histogram cells (β factor), and optionally filters and data-providers for the privacy-pre-
serving computation, as in figure 15. The results of this computation are shown in figure
16.

11In appendix B we have included the whole landing page as a screen-shot, as well as many other
components of the UI.

12The option for selecting dataset for secure classification is identical.

A. Giannopoulos - D. Mouris 60

https://mhmd.madgik.di.uoa.gr/

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Figure 15: Choosing attributes, filters and data-providers for secure aggregation for numerical
dataset

Figure 16: 2D Histogram for “Patient Age” & “Heart Rate” for β = 5 for each dimension

Secure Aggregation for the MeSH dataset: After selecting the secure aggregation for
the MeSH (categorical) dataset, the researcher has to choose attributes, filters and data-
providers for the privacy computation. For instance, in figure 17 the user has specified a
2-dimensional histogram for attributes “Age Groups [M01.060]” and “Population Groups
[M01.686]”, filtering the “Diseases [C]” attribute in “Virus Diseases [C02]” or “Parasitic
Diseases [C03]”.

A. Giannopoulos - D. Mouris 61

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Figure 17: Creating a histogram on the MeSH dataset

Secure Classification for the CVI dataset: The UI for secure classification on the CVI
dataset is similar to the secure aggregation, however it has two extra entries, one for the
class-attribute and one for the classification algorithm (currently ID3 or C4.5).

Secure Classification for the MeSH dataset: Finally, the UI for secure classification on
the MeSH dataset is similar to the secure aggregation one, having two extra entries as
well.

More screenshots of the User Interface, such as those for secure decision tree creation,
are included in appendix B.

7.5 Communication

We employ encryption for data in transit using Transport Layer Security (TLS). All commu-
nication through the coordinator uses Hypertext Transfer Protocol Secure (HTTPS), with
a certificate issued from Let’s Encrypt13. Thus, all secure computation requests as well
as the private-computed results are transferred encrypted. Also, since HTTPS provides
authentication of the accessed website, the users know that they communicate with the
correct server.

13https://letsencrypt.org/

A. Giannopoulos - D. Mouris 62

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

8. DATASETS

As we have stated in section 6.5, the input data can have many different types, since
our system can serve a wide variety of applications. We have separated the data in two
broad categories – categorical and continuous, therefore our algorithms are also logically
separated for those two different kinds of data.

The second reason that we separated our algorithms in those two types, was that we
experimented with datasets both types. In medical research it is common to have standard
datasets with continuous exact values corresponding to a set of attributes, but it is also
common for the datasets to be semantically annotated. For instance a dataset of the first
form could have a column corresponding to attribute Height (cm) with values including
146.84, 139.35, 189.00, 182.68, 160.19, 138.66, 173.06 etc. On the other hand, a dataset of
the second time would have normalized values including Tall, Average, Short etc. The
synthetic datasets we had available for experimentation were the following.

CVI Dataset: Cardiovascular disease is a class of diseases that involve the heart or blood
vessels. Cardiovascular disease includes coronary artery diseases (CAD) such as angina
and myocardial infarction (commonly known as a heart attack). This dataset contains
CardioVascular Imaging (CVI) information, which are represented as numerical values –
not normalized. The format of this dataset is the standard tabular format, we find in CSV
files or in tables of relational databases. An (incomplete) example can be found in table
3.

Table 3: CVI dataset

Heart rate Height (cm) Weight (kg) LVEDV (ml) ...
90 146.84 61.94 118.36 ...
82 139.35 41.51 133.39 ...
...

MeSH Dataset: MeSH14 provides a hierarchically-organized15 terminology for indexing
and cataloging of biomedical information such as MEDLINE/PUBmed and other United
States National Library of Medicine (NLM) databases. Created and updated by the NLM, it
is used by articles databases and by NLM’s catalog of book holdings. This dataset is based
on the MeSH tree structure. MeSH terms are represented as normalized values; this
means that for instance attributes like Age, are separated into groups (for instance Child,
Adult, etc). This dataset contains semantically annotated patient data. The layout of this
dataset is quite different from the ordinary tabular data format, it follows the DATS format.
DATS is the underlying model powering metadata ingestion, indexing and searches in
DataMed, a NIH (National Institute of Health - US) funded project that aims to represent
for biomedical datasets what PubMed (https://www.ncbi.nlm.nih.gov/pubmed) is for the
biomedical literature. The DATSmodel is designed around the Dataset element as shown
in figure 18.

14https://meshb.nlm.nih.gov/
15https://meshb.nlm.nih.gov/treeView

A. Giannopoulos - D. Mouris 63

https://meshb.nlm.nih.gov/
https://meshb.nlm.nih.gov/treeView

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Figure 18: DATS model

Among other metadata, the DATS model contains the keywords element which is a set
consisting of (in our case) MeSH codes. As a result, our dataset is comprised of a JSON
object for each patient. This JSON object contains a keywords element with a list of MeSH
codes describing that patient. An example can be seen in Code 5.

{
"keywords": [

{
"value": "Women",
"valueIRI": "https://meshb.nlm.nih.gov/record/ui?ui=D014930"

},
{

"value": "Adult",
"valueIRI": "https://meshb.nlm.nih.gov/record/ui?ui=D000328"

},
{

"value": "African Americans",
"valueIRI": "https://meshb.nlm.nih.gov/record/ui?ui=D001741"

},
.
.
.

],
.
.
.

}

A. Giannopoulos - D. Mouris 64

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Code 5: Example of a patient JSON object with MeSH codes

The problem with this approach is that the information about a patient is “flat” as it does not
follow the attribute-value model, it is just a set of MeSH terms. In order to import it in our
private secret-shared database that resides in the SMPC cluster, we need to transform
this kind of data to a tabular structure. For that reason we developed a procedure that
performs this conversion at the time of secure importing. This procedure considers the
importing attributes as the “column”, and its direct (1 level down) child that is a parent of
the found keyword as the “value”.

To demonstrate how this conversion works, considered the following (incomplete) hier-
archy of MeSH terms.

Anatomy [A]
Organisms [B]
Diseases [C]

Bacterial Infections and Mycoses [C01]
Virus Diseases [C02]
Parasitic Diseases [C03]
Neoplasms [C04]
Musculoskeletal Diseases [C05]
Digestive System Diseases [C06]
Stomatognathic Diseases [C07]

Ankyloglossia [C07.160]
Jaw Diseases [C07.320]
Mouth Diseases [C07.465]
Pharyngeal Diseases [C07.550]
Stomatognathic System Abnormalities [C07.650]
Temporomandibular Joint Disorders [C07.678]

Temporomandibular Joint Dysfunction Syndrome [C07.678.949]
Tooth Diseases [C07.793]

...
...

Let’s also assume that the JSON object of a patient contains the keyword Temporo-
mandibular Joint Dysfunction Syndrome [C07.678.949] and that the chosen attribute for
importing is Diseases [C]. In this case we will take Diseases [C] as the “column” and Sto-
matognathic Diseases [C07] as the “value”, since it is the direct “child” of the chosen attrib-
ute, which is a “parent” of Temporomandibular Joint Dysfunction Syndrome [C07.678.949]
found in the patient JSON object. The resulting (partial) table can be seen in table 4. If
the chosen attribute for importing wasStomatognathic Diseases [C07] instead ofDiseases
[C], then the “column” would be Stomatognathic Diseases [C07], and the “value” would be
Temporomandibular Joint Disorders [C07.678]. The resulting (partial) table can be seen
in table 5.

Table 4: Importing of Diseases [C]

Diseases
Stomatognathic Diseases

...

Table 5: Importing of Stomatognathic
Diseases [C07]

Stomatognathic Diseases
Temporomandibular Joint Disorders

...

A. Giannopoulos - D. Mouris 65

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

9. EXPERIMENTAL EVALUATION

We measured the runtime performance of our privacy-preserving algorithms using the
Sharemind secure computing platform. We instantiated all private aggregators and de-
cision tree classifiers using the SecreC programming language [33] that Sharemind provides.
In Sharemind, the number of the computing parties are restricted by the SMPC protocol
that is been used. Our experiments use the pd_shared3p security protocol, which utilizes
three nodes in the private domain.

Below, we present the experimental evaluation timings of the developed privacy-pre-
serving histograms and decision trees. Our goal is to provide a concise and holistic view
of our experiments16, by carefully select the most descriptive diagrams.

Experimental Setup: All experiments were performed on three 64-bit virtual machines
(VM), each running Ubuntu 18.04. The three VMs share an Intel Xeon E5-2670 (v2) at
2.50 GHz. Each VM utilizes 6 cores and 8 GB of memory.

9.1 Histograms

The first experimental timing results are about the privacy-preserving histogram computa-
tions. In figure 19 we show the scaling in execution time of histograms on numerical data.
In figure 20 we exhibit the respective measurements for histograms on categorical data.

Note: both x and y axes are log-scaled.

102 103 104 105

100

101

102

103

Number of Patients

Ti
m
e
(s
)

1D
2D

Figure 19: Numerical histograms timings

102 103 104 105

100

101

102

Number of Patients

Ti
m
e
(s
)

1D
2D

Figure 20: Categorical histograms timings

One can observe that the histograms on categorical data perform better than their numer-
ical data equivalents, especially when applied over bigger datasets. This is due to the
extra computation that needs to be done in the case of numerical data, in order to determ-
ine the corresponding histogram cell for each data tuple. Moreover, the privacy-preserving
histograms scale linearly with the dataset size, regardless the type of it.

16All time measurements presented in this section correspond to the sole privacy computation. The
importing timings were roughly 1 second, even for the largest dataset, thus we did not take it into account
in the graphs.

A. Giannopoulos - D. Mouris 66

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

The chart below (figure 21) depicts the timings of histograms on numerical data (such as
figure 19), but also with the application of some filters/constraints. We can clearly see
that as the dataset size grows, the number of filters does not make much of a difference
in the total algorithm’s execution time.

102 103 104 105

100

101

102

103

Number of Patients

Ti
m
e
(s
)

1D & 1 Filter
1D & 2 Filters
2D & 1 Filter
2D & 2 Filters

Figure 21: Numerical histograms with filters timings

A. Giannopoulos - D. Mouris 67

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

9.2 Decision Trees

Consecutively, we measured the privacy-preserving classification algorithms. Figure 22
portrays how the ID3 algorithm scales as the dataset size grows, for a constant number (3)
of classification attributes (“Heart rate”, “Height (cm)” and “Patient Age”). C4.5 algorithm
is more time consuming than ID3. For reference, the training of the classification algorithm
for 50 patients took about 13 ∗ 103 seconds, while for 100 patients the algorithm executed
for 41 ∗ 103 seconds17.

Note: both x and y axes are log-scaled.

50 100 200 400 800 1600

400

600

800

1200

1600

2400

Number of Patients

Ti
m
e
(s
)

Figure 22: ID3 decision tree classifier timings
with variable patients for 3 attributes

1 2 3 4 5

102

103

104

Number of Attributes

Ti
m
e
(s
)

Figure 23: ID3 decision tree classifier timings
with variable number of attributes

Finally, an overview of the runtime performance of the ID3 algorithm for a constant number
of patients and variable number of classification attributes is presented in figure 23.
Note: y axis is log-scaled.

As we observe from our experiments, the number of attributes used for classification is a
dominating factor in the algorithm’s performance.

The execution times for the privacy-preserving creation of the decision trees is orders
of magnitude greater than those of equivalent algorithms working on unencrypted data.
However, this is the training part of the classification algorithm which is performed offline.
For this reason, it does not affect the user experience, since training can happen non-
interactively at predefined periods of time (e.g. every night or once a week).

17For many classification attributes C4.5 has an unbearable runtime overhead, and for that reason we
do not provide a corresponding chart as in the ID3 algorithm

A. Giannopoulos - D. Mouris 68

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

10. CONCLUSIONS & FUTURE WORK

In this thesis we have developed some fundamental privacy-preserving algorithms as well
as an end-to-end infrastructure for computing privacy-preserving analytics. There are
numerous use-cases that require from different parties to jointly compute some function
– such as medical research from different hospitals, but due to data-privacy limitations
are avoided. Our end-to-end system utilizes encrypted computation and can constitute
the building blocks on top of which meaningful privacy computation can take place, as we
have demonstrated with secure aggregators and secure decision tree classifiers. In our
use-case, we focused on medical research, however, in our point of view, this system can
serve a wide range of case-studies.

Every coin has two sides, so the same applies to encrypted computation as well. Util-
izing the homomorphic properties of secret-shares enables a whole new dimension on
computing that respects data privacy, but comes at a high cost, as we observed in the
decision tree classifiers. Although such sophisticated algorithms seem impractical at first
sight due to their high execution timings, one should understand that there is no other way
respecting data-privacy to obtain such results. Moreover, simpler algorithms – suchlike
aggregators – scale linearly to the size of dataset, which casts them practical for everyday
use.

Future work will explore more elaborate algorithms, such as stochastic gradient descent
[56] and/or deep neural networks, that will provide useful analytics results in order to
enhance our framework. Privacy-preserving clustering algorithms [32, 34, 61] are also a
topic worth exploring.

In addition, we aim to refine the ID3 and C4.5 algorithms, taking more advantage of SIMD
instructions, with the purpose of optimizing their execution times. Although the classifica-
tion training is performed in an offline phase, more efficient tree-classifiers would improve
the overall platform.

Privacy-preserving algorithms are inherently more time consuming than their textbook
equivalents. Much work has to be done in the underlying encrypted architectures in order
to keep up with conventional computers. Thus, our goal is to explore other SMPC frame-
works than Sharemind, such as FRESCO (a FRamework for Efficient and Secure COm-
putation) [3,17], SPDZ [21,22], Obliv-C [65] and ObliVM [44]. Trying different MPC frame-
works opens many possibilities, since they support different security protocols, different
number of computing nodes, and in general different security configurations. Moreover,
from the programming side of view, each framework provides its own toolkit and API.

Another interesting research topic is to incorporate a blockchain technology such as Hy-
perledger [16] for enhancing the transparency, traceability, non-repudation, data proven-
ance, and auditability of our system’s computations [68], since all actions are immutable.
In more detail, a distributed ledger using smart contracts can act as the controller of the
system, orchestrating all actions with the use of a Zero Knowledge Verifiable Computa-
tion scheme [11] where data processors are enforced to produce a proof of correctness
of computation without revealing the dataset itself. This records the fact that correct pro-
cessing has taken place without disclosing any information about the data. Finally, every
private computation request and result could be logged for transparency and future use.

A. Giannopoulos - D. Mouris 69

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

ABBREVIATIONS - ACRONYMS

2PC Two-party Computation (Millionaire’s Problem)

BDVA Big Data Value Association

BGV Brakerski – Gentry – Vaikuntanathan

BMI Body Mass Index

CAD Coronary Artery Diseases

CSV Comma-separated Values

CVI CardioVascular Imaging

DATS DAta Tag Suite

Dec Decryption Algorithm

DH Diffie Hellman

DSL Domain Specific Language

Enc Encryption Algorithm

EU European Union

FHE Fully Homomorphic Encryption

FRESCO FRamework for Efficient and Secure COmputation

GDPR General Data Protection Regulation

GPS Global Positioning System

HE Homomorphic Encryption

HElib Homomorphic Encryption Library, implementing the BGV scheme

HTTPS Hypertext Transfer Protocol Secure

IoT Internet of Things

JSON JavaScript Object Notation

MHMD My Health My Data

MPC Secure Multi-party Computation

NIH National Institute of Health

NLM National Library of Medicine

OT Oblivious Transfer

PHE Partially Homomorphic Encryption

PKE Public Key Encryption

A. Giannopoulos - D. Mouris 70

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

PrivKey Private Key

PubKey Public Key

PPDM Privacy Preserving Data Mining

REST Representational State Transfer

RSA Rivest – Shamir – Adleman

SFE Secure Function Evaluation

SIMD Single Instruction Multiple Data

SMPC Secure Multi-party Computation

SODA Scalable Oblivious Data Analytics

SPDZ Smart, Pastro, Damgård and Zakarias. SMPC protocol

SVM Support Vector Machines

TFHE Fast Fully Homomorphic Encryption over the Torus

TLS Transport Layer Security

UID Unique Identifier

VM Virtual Machine

A. Giannopoulos - D. Mouris 71

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

APPENDIX A. RESTFUL APIS

A.1 Coordinator’s RESTful API

A.1.1
POSTPOST /smpc/histogram/numerical

POSTPOST /smpc/histogram/categorical

POSTPOST /smpc/decisionTree

GETGET /smpc/queue

This POST request initiates a secure computation for numerical/continuous values data-
set.

Request: Through the request’s body, one can specify all the desired properties of the
histograms to be computed. These include the attributes on which the histo-
gram will be built (names and cells – β factor), the datasources from which
data will be used, and a set of filters/conditions that should hold for each data
tuple taken into consideration when building the histogram.
The request’s body is a JSON object with the following properties:

attributes: required A list of JSON objects, corresponding to the attributes
on which this histogramwill be built. These JSON objects have
the following keys:

name: required The name of the attribute (string).
cells: required The number of histogram cells (β factor)

to be created for this attribute (positive integer).

datasources: optional A list of the datasources (strings) fromwhich the histo-
gram will be computed. If this key is left empty or not specified,
all available datasources will be used.

filters: optional A JSON object containing a boolean operator and a
list of filters/conditions that should be met for each data tuple
considered in the secure histogram computation. If this field is
left blank or not specified, all data tuples will be used for the
computation. The object has the following keys:

operator: required The boolean operator (string) that will be
applied between all the specified conditions that
follow. One of [AND, OR, XOR]. In the case of
multiple conditions, the operator is left-associat-
ive.

conditions: required The list of conditions that should be met
by each data tuple in the computation. Each con-
dition is represented as a JSON object with the
following keys:
attribute: required The name of the attribute (string).
operator: required The condition’s operator (string).

One of [>, <, =].
value: required The attribute’s value (string).

A. Giannopoulos - D. Mouris 72

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Example (without datasources or filters):

{
"attributes": [

{
"name": "Patient Age",
"cells": "5"

},
{

"name": "Height (cm)",
"cells": "3"

}
]

}

Code 6: Example 1 of /smpc/histogram/numerical POST request body

Example (with datasources and filters):

{
"attributes": [

{
"name": "Patient Age",
"cells": "5"

},
{

"name": "Height (cm)",
"cells": "3"

}
],
"datasources": [

"HospitalA",
"HospitalB"

],
"filters": {

"operator": "AND",
"conditions": [

{
"attribute": "Patient Age",
"operator": ">",
"value": "45"

},
{

"attribute": "Weight (kg)",
"operator": "<",
"value": "90"

}
]

}
}

Code 7: Example 2 of /smpc/histogram/numerical POST request body

Response: The secure histogram computation is a potentially long running operation.
For that reason the server’s response to such a request is always HTTP/1.1
202 Accepted in case of correct request, along with a location in which one
should periodically poll for the computation’s status and/or result. An ex-

A. Giannopoulos - D. Mouris 73

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

ample response can be found below.

Status: 202 Accepted

{
"location": "/smpc/queue?request=b171-3f4ade123374"

}

Code 8: Example 1 of /smpc/histogram/numerical response

In case of a malformed request the server responds with HTTP/1.1 400 Bad
Request as seen below.

Status: 400 Bad Request

Bad Request

Code 9: Example 2 of /smpc/histogram/numerical response

A.1.2

POSTPOST /smpc/histogram/numerical

POSTPOST /smpc/histogram/categorical

POSTPOST /smpc/decisionTree

GETGET /smpc/queue

This POST request initiates a secure computation for categorical values dataset (MeSH).
Through the request’s body, one can specify the desired MeSH terms. The values the
count of which will be computed are the children of the specified MeSH term from the
MeSH ontology.

For example, if a user specifies that he/she wants the counts for the MeSH term “Age
Groups” [M01.060], he/she will get four counts back corresponding to the four children of
“Age Groups”, namely “Adolescent” [M01.060.057], “Adult” [M01.060.116], “Child” [M01.
060.406] and “Infant” [M01.060.703]. If the specified MeSH terms are two, then the res-
ulting counts will correspond to tuples of MeSH labels. If the specified MeSH terms are
three, the result will be triples, etc.

Request: The request’s body is a JSON object with the following properties:

attributes: required A list of MeSH terms, corresponding to the attributes
on which this histogram will be built.

datasources: optional A list of the datasources (strings) fromwhich the histo-
gram will be computed. If this key is left empty or not specified,
all available datasources will be used.

filters: optional A JSON object containing a boolean operator and a
list of filters/conditions that should be met for each data tuple
considered in the secure histogram computation. If this field is
left blank or not specified, all data tuples will be used for the
computation. The object has the following keys:

operator: required The boolean operator (string) that will
be applied between all the specified conditions

A. Giannopoulos - D. Mouris 74

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

that follow. One of [AND, OR, XOR]. In the case
of multiple conditions, the operator is left-asso-
ciative.

conditions: required The list of conditions that should be
met by each data tuple in the computation. Note
that the only filter that can be applied in categor-
ical values is the equality checking. Each con-
dition is represented as a JSON object with the
following keys:
attribute: required The name of the attribute

(string).
value: required The value that the selec-

ted attribute should be equal with
(string).

Example (without datasources or filters):

{
"attributes": [

"M01.060",
"M01.686.508"

]
}

Code 10: Example 1 of /smpc/histogram/categorical POST request body

A. Giannopoulos - D. Mouris 75

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Example (with datasources and filters):

{
"attributes": [

"M01.060",
"M01.686.508"

],
"datasources": [

"HospitalA",
"HospitalB"

],
"filters": {

"operator": "OR",
"conditions": [

{
"attribute": "C14",
"operator": "=",
"value": "C14.280"

},
{

"attribute": "C12",
"operator": "=",
"value": "C12.294"

}
]

}
}

Code 11: Example 2 of /smpc/histogram/categorical POST request body

Response: The server’s response for the /smpc/histogram/categorical POST request
is identical to that of /smpc/histogram/numerical. The server returns HTTP /
1.1 202 Accepted or HTTP/1.1 400 Bad Request. Examples for both cases
can be seen in code snippets 8 and 9.

A.1.3

POSTPOST /smpc/histogram/numerical

POSTPOST /smpc/histogram/categorical

POSTPOST /smpc/decisionTree

GETGET /smpc/queue

Finally, this POST request is for computing a decision tree from either dataset. The im-
plemented classifiers are ID3 and C4.5, and one should specify which one to use in the
request body along with the desired attributes. Moreover, he/she should specify the class-
attribute, according to which the decision tree will occur.

Request: The request’s body is a JSON object with the following properties:

attributes: required A list of MeSH terms, corresponding to the
attributes on which this histogram will be built. These
JSON objects have the following keys:
name: required The name of the attribute (string).
cells: optional The number of histogram cells (β factor)

to be created for this attribute (positive integer).18

18In case, where C4.5 is selected as classifier, or the attribute is categorical, the cells object is
omitted.

A. Giannopoulos - D. Mouris 76

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

classifier: optional The name of the decision tree classifier to be
used. Possible values are {ID3, C4.5}. If this key is left
empty or not specified, the ID3 classifier will be used by
default.

class_attribute: required The attribute on which the classification will oc-
cur.
name: required The name of the class attribute (string).
cells: optional The number of histogram cells (β factor)

to be created for the class attribute (positive in-
teger).19

datasources: optional A list of the datasources (strings) from which
the histogram will be computed. If this key is left empty
or not specified, all available datasources will be used.

Example (using ID3 as the classifier for categorical values):

{
"attributes": [

{
"name": "C14"

},
{

"name": "C12"
},
{

"name": "M01.686"
}

],
"classifier": "ID3",
"class_attribute": {

"name": "M01.060"
},
"datasources": [

"HospitalA",
"HospitalB"

]
}

Code 12: Example 1 of /smpc/decisionTree POST request body for categorical values

19In case, where the class_attribute is categorical, the cells object is omitted.

A. Giannopoulos - D. Mouris 77

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Example (using ID3 as the classifier for numerical values):

{
"attributes": [

{
"name": "Height (cm)",
"cells": "4"

},
{

"name": "Weight (kg)",
"cells": "5"

},
{

"name": "Heart rate",
"cells": "4"

}
],
"classifier": "ID3",
"class_attribute": {

"name": "Patient Age",
"cells": "4"

},
"datasources": [

"HospitalA",
"HospitalB"

]
}

Code 13: Example 2 of /smpc/decisionTree POST request body for numerical values
Example (using C4.5 as the classifier for numerical values):

{
"attributes": [

{
"name": "Height (cm)"

},
{

"name": "Weight (kg)"
},
{

"name": "Heart rate"
}

],
"classifier": "C4.5",
"class_attribute": {

"name": "Patient Age",
"cells": "4"

},
"datasources": [

"HospitalA",
"HospitalB"

]
}

Code 14: Example 3 of /smpc/decisionTree POST request body for categorical values

A. Giannopoulos - D. Mouris 78

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Response: The server’s response for the /smpc/decisionTreePOST request is the same
as the ones described above. The server returns HTTP/1.1 202 Accepted or
HTTP/1.1 400 Bad Request. Examples for both cases can be seen in code
snippets 8 and 9.

A.1.4

POSTPOST /smpc/histogram/numerical

POSTPOST /smpc/histogram/categorical

POSTPOST /smpc/decisionTree

GETGET /smpc/queue

The /smpc/queue GET request is for checking the status and/or result of a specified com-
putation request (the aforementioned POST requests). The status of an ongoing compu-
tation request can be accessed through the /smpc/queue GET request by specifying its
id.

Request: The only parameter this GET request accepts is the id of the desired compu-
tation request, as shown below.

/smpc/queue?request=81c2-b9c0e5589ec0

Code 15: Example /smpc/queue GET request

Response: In case of a correct request, the server responds with HTTP/1.1 200 OK and
the response body is a JSON object containing the specified computation’s
status, and possibly its current step or result which is a JSON object too. The
server’s response body has the following structure.

status: required A string indicating the computation’s status. One of [running,
succeeded, failed, notstarted]

step: optional A string indicating the current step of the computation. This
is present in case that the computation is in the running state.

result: optional A JSON object with the computation’s result in case its
status is succeeded. The JSONobject contains a single key namely
data which contains computation result.
In case of private histogram computations the result is in the form
of tuples (label, value) tuples, which are described here.
label: A string, the value name corresponding to that count.

Can be a tuple, triple etc. depending on the number of
queried Mesh terms.

value: An integer, the actual count for that value.
In case of private decision tree computations the result is in the
form of a JSON object which has a key for each tree branch, and a
value for the corresponding subtree that resides under that branch.

In case of a malformed request the server responds with HTTP/1.1 400 Bad
Request as in 9
Below you can find example responses for correct /smpc/queue GET re-
quests.

A. Giannopoulos - D. Mouris 79

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Example (successfully computed private categorical histogram):
Status: 200 OK

{
"status": "succeeded",
"result": {

"data": [
{

"value": 78,
"label": "Infant"

},
{

"value": 63,
"label": "Adolescent"

},
{

"value": 9936,
"label": "Adult"

},
{

"value": 154,
"label": "Child"

}
]

}
}

Code 16: Example /smpc/queue GET response body for a successful Age Groups
(M01.060) histogram

A. Giannopoulos - D. Mouris 80

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Example (successfully computed private numerical histogram):
Status: 200 OK

{
"status": "succeeded",
"result": {

"data": [
{

"value": 84,
"label": "[130.0, 144.0)"

},
{

"value": 314,
"label": "[144.0, 158.0)"

},
{

"value": 428,
"label": "[158.0, 172.0)"

},
{

"value": 800,
"label": "[172.0, 186.0)"

},
{

"value": 374,
"label": "[186.0, 200.0]"

}
]

}
}

Code 17: Example /smpc/queue GET response body for a successful Height(cm)
histogram with β = 5

A. Giannopoulos - D. Mouris 81

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Example (successfully computed private decision tree using C4.5):
Status: 200 OK

{
"status": "succeeded",
"result": {

"data": {
"Height (cm) <= 173.01": {

"Weight (kg) > 68.56": {
"Heart rate > 81.50": "[18.00, 31.00)",
"Heart rate <= 81.50": "[70.00, 83.00)"

},
"Weight (kg) <= 68.56": {

"Heart rate > 70.50": "[31.00, 44.00)",
"Heart rate <= 70.50": "[18.00, 31.00)"

}
},
"Height (cm) > 173.01": {

"Weight (kg) > 87.70": {
"Heart rate > 94.00": "[18.00, 31.00)",
"Heart rate <= 94.00": "[31.00, 44.00)"

},
"Weight (kg) <= 87.70": {

"Heart rate <= 65.50": "[31.00, 44.00)",
"Heart rate > 65.50": "[57.00, 70.00)"

}
}

}
}

}

Code 18: Example /smpc/queue GET response body for a successfully computed
private decision tree using C4.5 on Patient Age from categorical values

A. Giannopoulos - D. Mouris 82

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

Example (successfully computed private decision tree using ID3):
Status: 200 OK

{
"status": "succeeded",
"result": {

"data": {
"Height (cm) == [153.34, 176.67)": {

"Heart rate == [95.33, 123.00)": "[34.25, 50.50)",
"Heart rate == [67.67, 95.33)": "[18.00, 34.25)",
"Heart rate == [40.00, 67.67)": "[18.00, 34.25)"

},
"Height (cm) == [130.01, 153.34)": {

"Heart rate == [95.33, 123.00)": "[34.25, 50.50)",
"Heart rate == [67.67, 95.33)": "[34.25, 50.50)",
"Heart rate == [40.00, 67.67)": "[18.00, 34.25)"

},
"Height (cm) == [176.67, 200.00)": {

"Heart rate == [95.33, 123.00)": "[18.00, 34.25)",
"Heart rate == [67.67, 95.33)": "[34.25, 50.50)",
"Heart rate == [40.00, 67.67)": "[34.25, 50.50)"

}
}

}
}

Code 19: Example /smpc/queue GET response body for a successfully computed
private decision tree using ID3 on Patient Age from categorical values

Example (ongoing computation):
Status: 200 OK

{
"status": "running",
"step": "Securely importing data"

}

Code 20: Example /smpc/queue GET response body for an ongoing computation
during secure import

Example (failed computation):
Status: 200 OK

{
"status": "failed"

}

Code 21: Example /smpc/queue GET response body for a failed computation

A. Giannopoulos - D. Mouris 83

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

A.2 Data Providers’ RESTful API

A.2.1
POSTPOST /smpc/import/numerical

POSTPOST /smpc/import/categorical

This POST request initiates a secure import for numerical/continuous values dataset.

Request: Through the request’s body, one can specify the desired attribute names (i.e.
columns of the dataset) to be imported. For instance, an example for the CVI
dataset (see section 8) is shown in Code 22, in which a user specifies that
he/she wants to compute private analytics for attributes “Patient Age” and
“Heart rate”.
The request’s body is a JSON object of the following form.

attributes: required A list of attributes (strings) on which this histogram
will be built.

datasource: required The name for the table of the SPMC cluster’s encryp-
ted database in which the data will be imported.

Example (importing of some attribute from the CVI dataset):

{
"attributes": [

"Patient Age",
"Heart rate"

],
"datasource": "HospitalA"

}

Code 22: Example /smpc/import/numerical POST request body

Response: The server responds with HTTP/1.1 200 OK upon successful importing or with
HTTP/1.1 400 Bad Request upon failure.

A.2.2

POSTPOST /smpc/import/numerical

POSTPOST /smpc/import/categorical

This POST request initiates a secure import from datasets with categorical values dataset
(MeSH).

Request: Through the request’s body, one can specify the desired attribute names of
the dataset to import. The request for importing attributes from th MeSH
dataset is similar to the the numerical one, in Code 22, however in attributes
should be specified by their MeSH codes, due to name ambiguity.
The request’s body is a JSON object of the following form.

attributes: required A list of attributes (MeSH codes) on which this histo-
gram will be built.

A. Giannopoulos - D. Mouris 84

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

datasource: required The name for the table of the SPMC cluster’s encryp-
ted database in which the data will be imported.

Example (importing of some attribute from the CVI dataset):

{
"attributes": [

"M01.060",
"C14.280",
"C14.240"

],
"datasource": "HospitalA"

}

Code 23: Example /smpc/import/categorical POST request body

Response: The server responds with HTTP/1.1 200 OK upon successful importing or with
HTTP/1.1 400 Bad Request upon failure.

A. Giannopoulos - D. Mouris 85

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

APPENDIX B. USER INTERFACE SCREENSHOTS

Figure 24: Creating a decision tree on the
MeSH dataset

Figure 25: ID3 decision tree for the request
shown in Figure 24

Figure 26: Creating a decision tree on the CVI
dataset

Figure 27: C4.5 decision tree for the request
shown in Figure 26

A. Giannopoulos - D. Mouris 86

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

APPENDIX C. SOURCE CODE UNDER MIT LICENCE

MIT License

Copyright (c) 2017-2018 Dimitris Mouris, Athanasios Giannopoulos

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish, dis-
tribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES OFMER-
CHANTABILITY, FITNESSFORAPARTICULARPURPOSEANDNONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORTOROTHERWISE, ARISING FROM, OUTOFOR IN CONNECTIONWITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

A. Giannopoulos - D. Mouris 87

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

APPENDIX D. CREATIVE COMMONS ATTRIBUTION 4.0
INTERNATIONAL PUBLIC LICENSE

By exercising the Licensed Rights (defined below), You accept and agree to be bound
by the terms and conditions of this Creative Commons Attribution 4.0 International Public
License (“Public License”). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your acceptance of
these terms and conditions, and the Licensor grants You such rights in consideration of
benefits the Licensor receives from making the Licensed Material available under these
terms and conditions.

D.1 Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is
derived from or based upon the Licensed Material and in which the Licensed Mater-
ial is translated, altered, arranged, transformed, or otherwise modified in a manner
requiring permission under the Copyright and Similar Rights held by the Licensor.
For purposes of this Public License, where the Licensed Material is a musical work,
performance, or sound recording, Adapted Material is always produced where the
Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar
Rights in Your contributions to Adapted Material in accordance with the terms and
conditions of this Public License.

c. Copyright and Similar Rightsmeans copyright and/or similar rights closely related
to copyright including, without limitation, performance, broadcast, sound recording,
and Sui Generis Database Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights specified in Section
2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence
of proper authority, may not be circumvented under laws fulfilling obligations under
Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or
similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other excep-
tion or limitation to Copyright and Similar Rights that applies to Your use of the Li-
censed Material.

f. Licensed Material means the artistic or literary work, database, or other material to
which the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and condi-
tions of this Public License, which are limited to all Copyright and Similar Rights that
apply to Your use of the Licensed Material and that the Licensor has authority to
license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public Li-
cense.

A. Giannopoulos - D. Mouris 88

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

i. Share means to provide material to the public by any means or process that re-
quires permission under the Licensed Rights, such as reproduction, public display,
public performance, distribution, dissemination, communication, or importation, and
to make material available to the public including in ways that members of the public
may access the material from a place and at a time individually chosen by them.

j. Sui Generis Database Rightsmeans rights other than copyright resulting from Dir-
ective 96/9/EC of the European Parliament and of the Council of 11 March 1996 on
the legal protection of databases, as amended and/or succeeded, as well as other
essentially equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public
License. Your has a corresponding meaning.

D.2 Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby
grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irre-
vocable license to exercise the Licensed Rights in the Licensed Material to: A.
reproduce and Share the Licensed Material, in whole or in part; and B. produce,
reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and
Limitations apply to Your use, this Public License does not apply, and You do
not need to comply with its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).
4. Media and formats; technical modifications allowed. The Licensor authorizes

You to exercise the Licensed Rights in all media and formats whether now
known or hereafter created, and to make technical modifications necessary to
do so. The Licensor waives and/or agrees not to assert any right or author-
ity to forbid You from making technical modifications necessary to exercise the
Licensed Rights, including technical modifications necessary to circumvent Ef-
fective Technological Measures. For purposes of this Public License, simply
making modifications authorized by this Section 2(a)(4) never produces Adap-
ted Material.

5. Downstream recipients.
A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed

Material automatically receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or
different terms or conditions on, or apply any Effective Technological Meas-
ures to, the Licensed Material if doing so restricts exercise of the Licensed
Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be con-
strued as permission to assert or imply that You are, or that Your use of the Li-
censed Material is, connected with, or sponsored, endorsed, or granted official
status by, the Licensor or others designated to receive attribution as provided
in Section 3(a)(1)(A)(i).

A. Giannopoulos - D. Mouris 89

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public
License, nor are publicity, privacy, and/or other similar personality rights; how-
ever, to the extent possible, the Licensor waives and/or agrees not to assert
any such rights held by the Licensor to the limited extent necessary to allow
You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.
3. To the extent possible, the Licensor waives any right to collect royalties from

You for the exercise of the Licensed Rights, whether directly or through a col-
lecting society under any voluntary or waivable statutory or compulsory licens-
ing scheme. In all other cases the Licensor expressly reserves any right to
collect such royalties.

D.3 Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Mater-
ial:
i. identification of the creator(s) of the Licensed Material and any others
designated to receive attribution, in any reasonable manner requested
by the Licensor (including by pseudonym if designated); a copyright
notice;

ii. a notice that refers to this Public License;
iii. a notice that refers to the disclaimer of warranties;
iv. a URI or hyperlink to the Licensed Material to the extent reasonably

practicable;
B. indicate if You modified the Licensed Material and retain an indication of

any previous modifications; and
C. indicate the Licensed Material is licensed under this Public License, and

include the text of, or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner
based on the medium, means, and context in which You Share the Licensed
Material. For example, it may be reasonable to satisfy the conditions by provid-
ing a URI or hyperlink to a resource that includes the required information.

3. If requested by the Licensor, You must remove any of the information required
by Section 3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply
must not prevent recipients of the Adapted Material from complying with this
Public License.

A. Giannopoulos - D. Mouris 90

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

D.4 Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use
of the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse,
reproduce, and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in
which You have Sui Generis Database Rights, then the database in which You have
Sui Generis Database Rights (but not its individual contents) is Adapted Material;
and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial
portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your oblig-
ations under this Public License where the Licensed Rights include other Copyright and
Similar Rights.

D.5 Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the
Licensor offers the Licensed Material as-is and as-available, and makes no rep-
resentations or warranties of any kind concerning the Licensed Material, whether
express, implied, statutory, or other. This includes, without limitation, warranties of
title, merchantability, fitness for a particular purpose, non-infringement, absence of
latent or other defects, accuracy, or the presence or absence of errors, whether or
not known or discoverable. Where disclaimers of warranties are not allowed in full
or in part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal
theory (including, without limitation, negligence) or otherwise for any direct, spe-
cial, indirect, incidental, consequential, punitive, exemplary, or other losses, costs,
expenses, or damages arising out of this Public License or use of the Licensed Ma-
terial, even if the Licensor has been advised of the possibility of such losses, costs,
expenses, or damages. Where a limitation of liability is not allowed in full or in part,
this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be in-
terpreted in a manner that, to the extent possible, most closely approximates an
absolute disclaimer and waiver of all liability.

D.6 Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed
here. However, if You fail to comply with this Public License, then Your rights under
this Public License terminate automatically.

A. Giannopoulos - D. Mouris 91

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it
reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30
days of Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

c. For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor
may have to seek remedies for Your violations of this Public License.

d. For the avoidance of doubt, the Licensor may also offer the Licensed Material under
separate terms or conditions or stop distributing the Licensed Material at any time;
however, doing so will not terminate this Public License.

e. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

D.7 Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material
not stated herein are separate from and independent of the terms and conditions of
this Public License.

D.8 Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted
to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material
that could lawfully be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforce-
able, it shall be automatically reformed to the minimum extent necessary to make it
enforceable. If the provision cannot be reformed, it shall be severed from this Public
License without affecting the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply
consented to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon,
or waiver of, any privileges and immunities that apply to the Licensor or You, includ-
ing from the legal processes of any jurisdiction or authority.

A. Giannopoulos - D. Mouris 92

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

REFERENCES

[1] Ben Adida. Helios: Web-based open-audit voting. In USENIX security symposium, volume 17, pages
335–348, 2008.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In ACM Sigmod Record,
volume 29, pages 439–450. ACM, 2000.

[3] Peter S Nordholt ALX, Nikolaj Volgushev ALX, Prastudy Fauzi AU, Claudio Orlandi AU, Peter Scholl
AU, Mark Simkin AU, Meilof Veeningen PHI, Niek Bouman TUE, and Berry Schoenmakers TUE. D1. 1
State of the Art Analysis of MPC Techniques and Frameworks.

[4] BDVA. Big Data Value Association (BDVA), 2018. [Online; accessed 2018].
[5] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols. In Pro-

ceedings of the twenty-second annual ACM symposium on Theory of computing, pages 503–513. ACM,
1990.

[6] Georg T Becker, Francesco Regazzoni, Christof Paar, and Wayne P Burleson. Stealthy dopant-level
hardware trojans. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 197–214. Springer, 2013.

[7] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling from a fixed-
key blockcipher. In Security and Privacy (SP), 2013 IEEE Symposium on, pages 478–492. IEEE, 2013.

[8] Josh Cohen Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret. In Confer-
ence on the Theory and Application of Cryptographic Techniques, pages 251–260. Springer, 1986.

[9] Elisa Bertino, Beng Chin Ooi, Yanjiang Yang, and Robert H Deng. Privacy and ownership preserving
of outsourced medical data. In null, pages 521–532. IEEE, 2005.

[10] GR Blakley and GA Kabatianskii. Linear algebra approach to secret sharing schemes. In Error Control,
Cryptology, and Speech Compression, pages 33–40. Springer, 1994.

[11] Manuel Blum, Alfredo De Santis, Silvio Micali, andGiuseppe Persiano. Noninteractive zero-knowledge.
SIAM Journal on Computing, 20(6):1084–1118, 1991.

[12] Dan Bogdanov. Sharemind: programmable secure computations with practical applications. PhD
thesis, 2013.

[13] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving
computations. In European Symposium on Research in Computer Security, pages 192–206. Springer,
2008.

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):13, 2014.

[15] Michael Brenner, Jan Wiebelitz, Gabriele Von Voigt, and Matthew Smith. Secret program execution
in the cloud applying homomorphic encryption. In Digital Ecosystems and Technologies Conference
(DEST), 2011 Proceedings of the 5th IEEE International Conference on, pages 114–119. IEEE, 2011.

[16] Christian Cachin. Architecture of the hyperledger blockchain fabric. InWorkshop on Distributed Crypto-
currencies and Consensus Ledgers, volume 310, 2016.

[17] Fook Mun Chan, Quanqing Xu, Hao Jian Seah, Zhaohui Tang, Sye Loong Keoh, and Khin Mi Mi Aung.
Privacy Preserving Computation in Home Loans using the FRESCO Framework. 2017.

[18] Vikas Chaurasia and Saurabh Pal. Data mining techniques: To predict and resolve breast cancer
survivability. 2017.

[19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 3–33. Springer, 2016.

[20] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. In
Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages 41–50.
IEEE, 1995.

[21] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P Smart. Prac-
tical covertly secure MPC for dishonest majority–or: breaking the SPDZ limits. In European Symposium
on Research in Computer Security, pages 1–18. Springer, 2013.

[22] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In Advances in Cryptology–CRYPTO 2012, pages 643–662. Springer,
2012.

[23] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions on Information
Theory, 22(6):644–654, 1976.

A. Giannopoulos - D. Mouris 93

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

[24] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE transactions on information theory, 31(4):469–472, 1985.

[25] Bradley J Erickson, Panagiotis Korfiatis, Zeynettin Akkus, and Timothy L Kline. Machine learning for
medical imaging. Radiographics, 37(2):505–515, 2017.

[26] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6):637–647, 1985.

[27] Craig Gentry. A fully homomorphic encryption scheme. Stanford University, 2009.
[28] Oded Goldreich. Secure multi-party computation. Manuscript. Preliminary version, pages 86–97, 1998.
[29] Shai Halevi and Victor Shoup. Algorithms in helib. In International cryptology conference, pages 554–

571. Springer, 2014.
[30] Ioannis Ioannidis and Ananth Grama. An efficient protocol for Yao’s millionaires’ problem. In System

Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on, pages 6–pp. IEEE,
2003.

[31] Yannis Ioannidis. The History of Histograms (abridged). In Proceedings 2003 VLDB Conference,
pages 19–30. Elsevier, 2003.

[32] Geetha Jagannathan, Krishnan Pillaipakkamnatt, and Rebecca N Wright. A new privacy-preserving
distributed k-clustering algorithm. In Proceedings of the 2006 SIAM International Conference on Data
Mining, pages 494–498. SIAM, 2006.

[33] Roman Jagomägis. Secrec: a privacy-aware programming language with applications in data mining.
Master’s thesis, University of Tartu, 2010.

[34] Somesh Jha, Luis Kruger, and Patrick McDaniel. Privacy preserving clustering. In European Sym-
posium on Research in Computer Security, pages 397–417. Springer, 2005.

[35] Burt Kaliski. Asymmetric Cryptosystem, pages 49–50. Springer US, Boston, MA, 2011.
[36] Liina Kamm and Jan Willemson. Secure floating point arithmetic and private satellite collision analysis.

International Journal of Information Security, 14(6):531–548, 2015.
[37] Gang-Hoon Kim, Silvana Trimi, and Ji-Hyong Chung. Big-data applications in the government sector.

Communications of the ACM, 57(3):78–85, 2014.
[38] Jon-Lark Kim and Vera Pless. Designs in additive codes over gf (4). Designs, Codes and Cryptography,

30(2):187–199, 2003.
[39] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates and applications.

In International Colloquium on Automata, Languages, and Programming, pages 486–498. Springer,
2008.

[40] Hsiao-Ying Lin andWen-Guey Tzeng. An efficient solution to the millionaires’ problem based on homo-
morphic encryption. In International Conference on Applied Cryptography and Network Security, pages
456–466. Springer, 2005.

[41] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Annual International Cryptology
Conference, pages 36–54. Springer, 2000.

[42] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, 2009.

[43] Yehuda Lindell and Benny Pinkas. Secure multiparty computation for privacy-preserving data mining.
Journal of Privacy and Confidentiality, 1(1):5, 2009.

[44] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. Oblivm: A programming
framework for secure computation. In Security and Privacy (SP), 2015 IEEE Symposium on, pages
359–376. IEEE, 2015.

[45] Oleg Mazonka, Nektarios Georgios Tsoutsos, and Michail Maniatakos. Cryptoleq: A heterogen-
eous abstract machine for encrypted and unencrypted computation. IEEE Transactions on Information
Forensics and Security, 11(9):2123–2138, 2016.

[46] MHMD. My Health My Data (MHMD), 2018. [Online; accessed 2018].
[47] Dimitris Mouris, Nektarios Georgios Tsoutsos, and Michail Maniatakos. TERMinator Suite: Bench-

marking Privacy-Preserving Architectures. IEEE Computer Architecture Letters, 2018.
[48] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism design.

In Proceedings of the 1st ACM conference on Electronic commerce, pages 129–139. ACM, 1999.
[49] Official Journal of the European Union (4 May 2016). Regulation (eu) 2016/679 of the european parlia-

ment and of the council of 27 april 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, 2016.

[50] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, pages 223–238.
Springer, 1999.

[51] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
[52] J Ross Quinlan. C4. 5: Programming for machine learning. Morgan Kauffmann, 38:48, 1993.

A. Giannopoulos - D. Mouris 94

Privacy Preserving Medical Data Analytics using Secure Multi Party Computation. An End-To-End Use Case.

[53] Michael O Rabin. How To Exchange Secrets with Oblivious Transfer. IACR Cryptology ePrint Archive,
2005:187, 2005.

[54] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[55] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
[56] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd ACM

SIGSAC conference on computer and communications security, pages 1310–1321. ACM, 2015.
[57] Edward Snowden. Just days left to kill mass surveillance under Section 215 of the Patriot Act. We are

Edward Snowden and the ACLU’s Jameel Jaffer. AUA. https://www.reddit.com/r/IAmA/comments/
36ru89/just_days_left_to_kill_mass_surveillance_under/crglgh2/. Accessed: 2018-07-04.

[58] SODA. Scalable Oblivious Data Analytics (SODA), 2018. [Online; accessed 2018].
[59] Nektarios Georgios Tsoutsos, Charalambos Konstantinou, and Michail Maniatakos. Advanced tech-

niques for designing stealthy hardware trojans. In Proceedings of the 51st Annual Design Automation
Conference, pages 1–4. ACM, 2014.

[60] Tiina Turban. A Secure Multi-Party Computation Protocol Suite Inspired by Shamir’s Secret Sharing
Scheme. Master’s thesis, Institutt for telematikk, 2014.

[61] Maneesh Upmanyu, Anoop M Namboodiri, Kannan Srinathan, and CV Jawahar. Efficient privacy
preserving k-means clustering. In Pacific-AsiaWorkshop on Intelligence and Security Informatics, pages
154–166. Springer, 2010.

[62] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J
McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al. Top 10 algorithms in data mining. Knowledge and
Information Systems, 14(1):1–37, 2008.

[63] Andrew C Yao. Protocols for secure computations. In Foundations of Computer Science, 1982.
SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE, 1982.

[64] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of Computer Science,
1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

[65] Samee Zahur and David Evans. Obliv-C: A Language for Extensible Data-Oblivious Computation.
IACR Cryptology ePrint Archive, 2015:1153, 2015.

[66] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 220–250. Springer,
2015.

[67] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-vm side channels and their
use to extract private keys. In Proceedings of the 2012 ACM conference on Computer and communic-
ations security, pages 305–316. ACM, 2012.

[68] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using blockchain to protect personal data. In
Security and Privacy Workshops (SPW), 2015 IEEE, pages 180–184. IEEE, 2015.

A. Giannopoulos - D. Mouris 95

https://www.reddit.com/r/IAmA/comments/36ru89/just_days_left_to_kill_mass_surveillance_under/crglgh2/
https://www.reddit.com/r/IAmA/comments/36ru89/just_days_left_to_kill_mass_surveillance_under/crglgh2/

	CONTENTS
	Introduction
	Privacy Issues in the Cloud & Multi-Party Computing
	Our Contribution
	Thesis Structure

	Preliminaries
	Encryption
	Symmetric-Key Encryption
	Asymmetric-Key Encryption (Public-Key Encryption)
	RSA
	ElGamal
	Paillier

	Homomorphic Encryption
	Partially Homomorphic Encryption
	RSA Cryptosystem
	ElGamal Cryptosystem
	Paillier Cryptosystem

	Fully Homomorphic Encryption

	Secure Multi-party Computation (SMPC)
	Millionaire's Problem
	Oblivious Transfer
	Garbled Circuits
	Circuit Encoding
	Data Transfer
	Circuit Evaluation
	Output Revealing
	Overhead

	Secret Sharing
	Shamir Secret Sharing
	Algorithm
	Threat Model

	Additive Secret Sharing
	Algorithm
	Threat Model

	Secret Sharing Homomorphism

	Related Projects
	My Health My Data
	Scalable Oblivious Data Analytics

	Sharemind: A Secure Computing Platform
	Real World Applications
	Satellite Collision Detection
	Analysing Private Databases

	SecreC
	SIMD in SecreC

	Sharemind Infrastructure

	A Medical Case Study
	A Doctor's view
	An Individual's view
	A Researcher's view
	Our End-to-End Architecture
	End-to-End Execution Flow
	Query Initiation
	Data Import
	Data Importing On-the-Fly
	Computation Execution
	Result Publishing

	SMPC Threat Model
	Computing Parties Collusion

	Supported Computations

	Privacy Preserving Algorithms
	Challenges in Privacy Preserving Algorithms
	Branching Oracles
	Notation
	Transforming Algorithms to their Privacy Preserving Equivalent
	Algorithms for Two Types of Data: Categorical & Numerical
	Privacy Preserving Histograms
	Algorithms for Privacy Preserving Histograms
	Privacy Preserving Histogram Computation: A Naive Approach
	Privacy Preserving Histograms for Categorical Values
	Privacy Preserving Histograms for Numerical Values
	Filters in Privacy Preserving Histograms

	Decision Trees
	Textbook ID3
	Privacy Preserving ID3
	Privacy Assessment

	Privacy Preserving C4.5

	Implementation Details
	Coordinator
	RESTful API
	Sequence of Actions
	Result Caching

	Data Providers
	RESTful API
	Data Importer
	Containerization

	SMPC Cluster
	User Interface
	Communication

	Datasets
	Experimental Evaluation
	Histograms
	Decision Trees

	Conclusions & Future Work
	Abbreviations - Acronyms
	Appendices
	RESTful APIs
	Coordinator's RESTful API
	/smpc/histogram/numerical POST request
	/smpc/histogram/categorical POST request
	/smpc/decisionTree POST request
	/smpc/queue GET request

	Data Providers' RESTful API
	/smpc/import/numerical POST request
	/smpc/import/categorical POST request

	User Interface Screenshots
	Source Code under MIT Licence
	Creative Commons Attribution 4.0 International Public License
	Section 1 – Definitions.
	Section 2 – Scope.
	Section 3 – License Conditions.
	Section 4 – Sui Generis Database Rights.
	Section 5 – Disclaimer of Warranties and Limitation of Liability.
	Section 6 – Term and Termination.
	Section 7 – Other Terms and Conditions.
	Section 8 – Interpretation.

	REFERENCES

