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Abstract 
 

Acute myeloid leukaemia (AML) is a type of cancer which mostly occurs in adults with 

occasionally lack of symptoms.  It is characterized by proliferative, abnormally differentiated 

and infrequently poorly differentiated hemopoietic cells (Döhner et al., 2015). It affects 0.3 

to 5.3 per 100000 people around the world each year. If the AML patients do not undergo 

treatment, the median survival is approximately 2 months (Sekeres et al., 2004). Its quick 

diagnosis is very important and can benefit the overall survival (Mottal et al., 2020). 

 

The current diploma thesis describes the work of Angelakis & Soulioti, 2021. Machine learning 

techniques are applied on transcriptomics data in order to develop a new screening tool 

which could predict if an individual has AML or is healthy. More specifically, a state-of-the-art 

machine learning algorithm which belongs to the category of gradient boosted trees, 

CatBoost, is applied on gene expression microarray datasets that consist of 3374 individuals, 

AML patients and healthy subjects, and 34 probe sets as features (CatBoost34) and a subset 

of 3374 subjects which consists of 2177 individuals, their age and 26 probe sets as features 

(CatBoost26). The performance of CatBoost26 model is the best one in the literature as 

regards the prediction of AML using similar or not data. 
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Abbreviations 
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ALL acute lymphocytic leukaemia 
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T-ALL T-cell acute lymphoblastic leukaemia 

MPAL mixed phenotype acute leukaemias 
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NOS not otherwise specified 
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RF random forest 

GBT gradient boosted tree 
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1. Hematological malignancies 
 
Hematological malignancies are diseases originating from cells of the bone marrow (BM) and 

the lymphatic system and have been categorized by The World Health Organization (WHO) 

into two basic groups: myeloid and lymphoid neoplasms (Bahakeem & Qadah, 2020; 

Rodriguez-Abreu et al., 2007). They are separated further into three main categories: 

leukaemia, lymphoma and plasma cell neoplasms (Rodriguez-Abreu et al., 2007). 

 

1.1. Leukaemia 
 

There are two forms of leukaemia, acute and chronic form, and each form has two types, 

lymphogenic and myelogenic. Leukaemias are broadly separated into four major classes; 

acute lymphocytic leukaemia (ALL), chronic lymphocytic leukaemia (CLL), acute myeloid 

leukaemia (AML) and chronic myeloid leukaemia (CML). Their clinical characteristics and 

prognosis differ. It is estimated that more than 250000 people worldwide are diagnosed with 

leukaemia each year (Pejovic et al., 2002; Rodriguez-Abreu et al., 2007).  

 

1.1.1. Acute leukaemias 
 

Acute leukaemias, AML and ALL, are rare types of cancer and accounts of less than 3% of all 

malignancies. Although their infrequency, they are one of the major causes of death in young 

age. The incidence of AML is approximately 2.5 per 100000 persons and for ALL 1.3 per 

100000. The average age of ALL diagnosis is 10 years when the median age of AML diagnosis 

is 66 years. 

 

In most cases, the cause of acute leukaemias is unknown. Some cases of AML are related to 

previous chemotherapy or radiation therapy. There are also genetic and immunologic factors 

which contribute to developing the disease (Pejovic et al., 2002; WHO, 2014). 

 

1.1.1.1. AML 
 
AML is the most commonly diagnosed type of leukaemia in adults with an incidence of 20000 

cases per year in the United States. Despite the fact that can occur in any age, from newborns 
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to elderly people, is more often reported in older adults with a median age at 66 years, with 

54% patients over 65 years and 33% over 75 years. The incidence of AML increases 

dramatically with age (De Kouchkovsky & Abdul-Hay, 2016; Johansson & Harrison, 2021; 

Kumar, 2011; Short et al., 2018; WHO, 2014). AML also accounts for 15-20% of childhood 

leukaemia (Agaian et al., 2014). 

 

Its etiology is the result of repeated somatic mutations that give a proliferative advantage, 

therefore they increase the risk of malignant tumors. Sequencing efforts have identified 

mutations in FLT3, NPM1, KIT, CEBPA, TET2, DNMT3A and IDH1 genes but one quarter of AML 

patients carry no mutations in these leukaemia-associated genes (Sekeres et al., 2004; Welch 

et al., 2012). 

 

Survival of AML patients depends on a lot of conditions such as age, genetic subtype, 

performance status, coexistent medical condition or previous diseases and sex, but if the 

patients do not undergo the necessary treatment the average survival is 2 months (Röllig & 

Ossenkoppele, 2021; Sekeres et al., 2004). 

 

AML symptoms vary and some patients experience no symptoms until the diagnosis. As in 

many types of cancer, its quick diagnosis even in an intensive care unit (ICU) is essential for 

the recovery of patients, particularly in the case of children (Mottal et al., 2020).  

 

1.1.1.2. Classification of AML 
 

In 1970, the French-American-British (FAB) Cooperative Group proposed an AML classification 

system. In this system, AML is classified to its subtypes (M0-M7) according to morphologic 

and cytochemical characteristics despite the fact that it is unclear if this system enhances the 

already available prognostic information from cytogenetics. Morphologic and cytochemical 

characteristics misleading in about 10-15% of cases, hence immunophenotypic, cytogenetic 

and molecular genetic analysis are essential. The scope of this classification system is to 

compare easier the different AML cases (Pejovic et al., 2002; Walter et al., 2013). 

In 2017, the 4th edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid 

Tissue has been published. AML is categorized by WHO into 6 groups: AML with recurrent 
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genetic abnormalities; AML with myelodysplasia-related changes (MRC); therapy-related 

myeloid neoplasms (t-MN); AML, not otherwise specified (NOS); myeloid sarcoma; and 

myeloid proliferations related to Down syndrome (DS) (Hwang, 2020). 

 

Table 1. Classification of AML according to FAB. 

FAB subtype Name 

M0 Undifferentiated AML  

M1 AML without maturation (poorly 

differentiated) 

M2 AML with maturation (more differentiated) 

M3 Acute promyelocytic leukaemia (APML) 

M4 Acute myelomonocytic leukaemia (AMML) 

Subtype:  

1. M4 eos: Acute myelomonocytic 

leukaemia with >5% eosinophils 

M5 Acute monocytic leukaemia  

Subtypes:  

1. M5a: Acute monoblastic leukaemia 

- poorly differentiated  

2. M5b: Acute monocytic leukaemia – 

more differentiated 

M6 Acute erythroblastic leukaemia 

M7 Acute megakaryoblastic leukaemia 

 

Table 2. Classification of AML according to WHO. 

Categories 

1. AML with recurrent genetic abnormalities 

AML with a translocation between chromosomes 8 and 21 [t(8;21)] 

AML with a translocation or inversion in chromosome 16 [t(16;16) or inv(16)] 

Acute promyelocytic leukaemia (APL) with the PML-RARA fusion gene 

AML with a translocation between chromosomes 9 and 11 [t(9;11)] 
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AML with a translocation between chromosomes 6 and 9 [t(6:9)] 

AML with a translocation or inversion in chromosome 3 [t(3;3) or inv(3)] 

AML (megakaryoblastic) with a translocation between chromosomes 1 and 22 [t(1:22)] 

AML with the BCR-ABL1 (BCR-ABL) fusion gene 

AML with mutated NPM1 gene 

AML with biallelic mutations of the CEBPA gene 

AML with mutated RUNX1 gene 

2. AML with myelodysplasia-related changes 
3. Therapy-related myeloid neoplasms 

4. AML, not otherwise specified 

AML with minimal differentiation 
AML without maturation 

AML with maturation 
Acute myelomonocytic leukaemia 

Acute monoblastic/monocytic leukaemia 

Pure erythroid leukaemia 
Acute megakaryoblastic leukaemia 

Acute basophilic leukaemia 

Acute panmyelosis with fibrosis 

5. Myeloid sarcoma 

6. Myeloid proliferations related to Down syndrome 

 

1.1.1.3. Diagnosis of AML 
 

The AML diagnostic procedure demands a variety of laboratory examinations. Firstly, the 

doctor will focus on the patient’s symptoms and his medical history. Later will go through a 

physical examination, which means the doctor pays attention on the patient’s eyes, lymph 

nodes, mouth and skin as well as he looks for possible signs of infection and bleeding areas. 

After that, a peripheral blood (PB) microscopic morphological examination is required. The 

incidence of excess number of blast cells in a PB sample is a characteristic of leukaemia. 

Depend on the results of the previous process, BM sample will be examined for additional 

morphological, immunophenotyping and cytogenetic analysis. The FAB classification system 

requires the presence of at least 30% in PB or BM sample, while the WHO classification system 

requires 20% blasts in PB or BM (American Cancer Society, 2012; Percival et al., 2017).  
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The manual examination of blood and bone marrow samples has a variety of drawbacks. Since 

it is done manually is a time-consuming procedure. It is also based on pathologists experience 

hence it is prone to human errors. On the other hand, machine learning (ML) diagnostic 

approaches have the potential to low the cost (MoradiAmin et al., 2016; Warnat-Herresthal 

et al., 2020) Therefore the need for automatic diagnosis, which could help hematologists to 

identify easier and earlier AML and low the cost of diagnosis, arises (Goutam & Sailaja, 2015). 

 

1.1.2. Chronic leukaemias 
 

Chronic leukaemias are separated into CML and CLL.  

 

1.1.2.1. CML 

 

CML presentation increases with age but affects all age groups. The median age of CML 

diagnosis is 53 years. It is diagnosed by a reciprocal translocation, in which the Abelson murine 

leukaemia (ABL) proto-oncogene moves from its normal site on 9q34 to 22q11. The 9q34 is 

called ABL and the 22q11 is called the breakpoint cluster region (BCR). The product of the 

chimeric gene is a tyrosine kinase that enhances cell division and diminish apoptosis of mature 

myeloid cells (Burke & Startzell, 2008; Pejovic et al., 2002; Sawyers, 1999). 

  

1.1.2.2. CLL 

 

CLL is the most common type of leukaemia and it is estimated that 1.8 to 3 per 100000 

persons diagnosed in the United States. The median age of CLL diagnosis is 72 years and most 

patients are older than 60 years. It is not considered to be curable but can be controlled for 

many years. The patients may need to follow a clinical course for a long time (Baumann et al., 

2020; Pejovic et al., 2002). 
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2. Transcriptomics 
 

Transcriptomics is the study of the total transcriptome, corresponds to all RNA transcripts, of 

an organism. It enables the study of gene expression changes in different tissues and 

conditions. Understanding the transcriptome means understanding the functional elements 

of genome and the molecular elements of cells and tissues, as well as the development and 

disease.  

 

Transcriptomic technologies have multiple applications in biomedical field. They are used for 

diagnosis and profiling of a variety of diseases and they have been characterized by two basic 

methods: microarrays and RNA sequencing (RNA-Seq) (Lowe et al., 2017; Wang et al., 2009). 

 

2.1. Microarrays 
 
Microarray technology facilitates the analysis of thousands of transcripts at the same time. 

Microarrays consist of probes, which are short oligonucleotides which are attached to a solid 

surface. Transcript abundance determined by the fluorescently labeled transcripts that are 

hybridized to these probes (Lowe et al., 2017). 

 

Affymetrix GeneChip microarrays are the most popular ones. Each gene on an Affymetrix 

microarray correspond to a probe set, which composed of 11 different pairs of 25-bp 

oligonucleotides. These oligos cover parts of the transcribed region of the gene. Each pair 

consists of a perfect match (PM) and a mismatch (MM) nucleotide oligomer. The PM is 

designed to match exactly the sequence of interest and the MM is used for distinguishing the 

noise due to non-specific match. Not all the probes in a probe set match one known transcript. 

Some probes hit alterative transcripts from the same gene while others match transcripts 

from different genes (N. Jiang et al., 2007). Each probe set has an identifier which consist of 

digits followed by ‘_a’, ‘_s’, ‘_x’ and ending in ‘_at’, which indicates that the probe set is 

designed in such a way to detect the antisense strand of the gene. Probes in a gene family 

probe set ‘_a’ match to the same set of sequences that belong to the same gene family. An 

identical ‘_s’ probe set is designed in a way that all probes in the probe set cross-hybridize to 

the same set of sequences which are not defined as from the same gene family. A mixed ‘_x’ 
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probe set has at least one probe that cross-hybridize to other sequences while a unique probe 

set does not match any other sequence (Thermo Fisher Scientific Inc., 2017). 

 

Probes in DNA microarrays are most of the times, cDNA clones. The majority of these clones 

are expressed sequence tags (EST’s) or cDNA clones. A basic problem with these clones is that 

they lack of reliable annotations of their sequence data (Liu et al., 2010). 

 

EST’s are small reads (200-800 bp) come from one-shot sequencing of randomly selected 

cDNA clones, thus they represent the expressed part of the genome and are used to identify 

gene transcripts (Parkinson & Blaxter, 2009). 

 

Figure 1. Representation of the different probe set types. 

 

(Thermo Fisher Scientific Inc., 2017) 

 

2.2. RNA-Seq 

 

RNA-seq is a high-throughput sequencing method which is used to map and reveal the 

quantity of transcripts in a sample. The first step is the preparation of the cDNA fragments 

with adaptors attached to one end or both ends. Each molecule is used to generate nucleotide 

sequences which are commonly 30 to 400 bp depending on the sequencing approach. Later, 

the reads are aligned to the reference genome or transcripts or assembled de novo when the 

reference genome is not available or lack of annotations. De novo assembly is used to produce 
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a map which contains transcripts’ structure and/or level of expression for each gene 

(Robertson et al., 2010; Wang et al., 2009). 

 

3. Machine learning (ML) 
 
According to Naqa and Murphy, “ML is an evolving branch of computational algorithms that 

are designed to emulate human intelligence by learning from the surrounding environment”. 

ML algorithms are used to teach computers how to deal with enormous data and interpret 

the information produced from them (Naqa & Murphy, 2015; Rao, 2016). It combines 

computer science and statistics and its goal is to improve computers in order to execute a 

task through experience, and thus make the human life easier (Jordan & Mitchell, 2015). 

 

3.1. Categories of ML 
 

ML is divided into four main categories: supervised learning, unsupervised learning, semi-

supervised learning and reinforcement learning. Supervised ML is used for classification and 

regression tasks and is more commonly used for medical purposes than unsupervised ML. In 

supervised ML the inputs are labeled, and the goal of this ML technique is to create a function 

that maps the input to the output. In unsupervised ML the inputs are not labeled, and the 

models are tasked to find interesting structures in the data. It is mostly used for clustering 

and feature reduction. The semi-supervised learning uses a combination of labeled and 

unlabeled inputs. In reinforcement learning, the algorithms receive feedback from the 

environment when selecting an output for a given input (Muhsen et al., 2020; Rao, 2016; 

Simeone, 2018).  

 

3.2. ML in the diagnosis of AML 
 

ML has multiple potential implications in medicine, including diagnosis, risk status 

assignment, prognosis and treatment planning of hematological malignancies (Radakovich et 

al., 2020). It has also been applied to gene expression analysis in order to classify tumors, 

predict patients’ survival and identify new therapeutic targets (Gal et al., 2019). 
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Leukaemias are characterized by strong transcriptomic signals, thus ML techniques and 

transcriptomic data are used over the last two decades in order to define leukaemia subtypes 

and find important gene signatures (Golub et al., 1999; Warnat-Herresthal et al., 2020). 

Specifically in AML diagnosis, some methods use gene expression profiling (GEP) data to 

predict if an individual has AML or is healthy (Angelakis & Soulioti, 2021; Roushangar & Mias, 

2019) or exclude the possibility that an individual has AML (Warnat-Herresthal et al., 2020), 

while other approaches use microscopic data such as histopathology slides to identify AML 

and its subtypes (Kazemi et al., 2016). 

 

4. Models 
 

4.1. Decision trees (DT’s) 
 

DT’s are models which represent logical rules. One new field where DT’s are applied is 

microarray analysis. Their architecture compromises of nodes and branches. DT’s are 

designed with the root on the top and the leaves at the bottom. The root node represents a 

choice that its outcome will split all the observations into at least two subgroups. Each internal 

node depicts a test, each branch represents the result of the test and each leaf node depicts 

the final outcome. When a data instance enters the root node, the algorithm determines 

which node the data instance will follow next. This procedure is iterative and ends when the 

observation arrives at a leaf node so the instance is labeled with its class label (Hormann, 

1964; Myles et al., 2004; Norton, 1989; Song & Lu, 2015; Xie et al., 2003). 
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Figure 2. Representation of a DT.  

 

 

4.2. Random forest (RF) 
 

RF has wide applications in several fields such as face recognition, bioinformatics and medical 

image segmentation. This method is able to handle large feature space and works efficient on 

multi-class problems. It is also robust to overfitting and can deal with outliers. It is an 

ensemble approach which consists of a series of DT’s, hence is called ‘forest’. Each DT consists 

of a randomly selected subset of inputs, thus is called ‘random’. Every DT votes for a class and 

at the end, each new data instance is classified to the class with the highest number of votes 

(Perner, 2012; Sachdeva & Kumar, 2021; Sarica et al., 2017). RF is also used for feature 

selection as it gives the features’ importance (Kursa & Rudnicki, 2010). 
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Figure 3. Representation of RF. 

 

 

4.3. Gradient boosted trees (GBT’s) 
 

GBT’s is a state-of-the art Big Data analytics tool, due to its high performances as regards its 

efficiency, accuracy and interpretability in a variety of ML tasks, such as multi-class 

classification, regression, click prediction and learning to rank (Hancock & Khoshgoftaar, 

2020; Ke et al., 2017). It has some implementations, including XGBoost, LightGBM and 

CatBoost (Anghel et al., 2018). 

 

4.3.1. Extreme gradient boosting (XGBoost) 
 

XGBoost is a scalable, open source package, tree ensembles ML tool for tree boosting. The 

main advantage of XGBoost in comparison with other gradient boosting models is the use of 

methods to control the overfitting problem. In addition, it can outperform other methods in 

terms of accuracy and F1-score, it needs less computational effort and it runs a lot faster than 

other algorithms in distributed or memory-limited settings. It is also a very effective technique 

when used on sparse data (Chen & Guestrin, 2016; Cui et al., 2016; Sheridan et al., 2016).  
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4.3.2. Light gradient boosting machine (LightGBM) 
 

LightGBM includes most of the XGBoost’s advantages but the main difference is that in 

LightGBM the decision trees are developed leaf-wise and not level-wise, which means row by 

row. In particular, is not required to examine the already existing leaves to create each new 

leaf (Al Daoud, 2019). It also utilizes Gradient-based One-Side Sampling (GOSS) and Exclusive 

Feature Bundling (EFB) that accelerate the training process and maintain the accuracy (Ke et 

al., 2017). 

 

4.3.3. Categorical gradient boosting (CatBoost) 
 

CatBoost is a new kind of open source GBDT implementation that outperforms the existing 

state-of-the-art GBDT implementations. It differs from traditional GBDT algorithms for 

various reasons.  

 

Firstly, it can handle efficiently noisy and heterogenous data. CatBoost can also solve 

problems with categorical features because it contains one-hot encoding process so it can 

convert categorical features to numbers at the preprocessing time or during training phase.  

 

Moreover, it can overcome gradient bias, which causes prediction shift by using ordered 

boosting method. This approach improves the generalization ability of the model. In this 

method, CatBoost trains a model for each observation but the model is trained without that 

data instance. Then, the model is used to calculate the gradient estimation of the observation, 

which will be used to train the final model. 

 

It controls the overfitting with two manners. It uses symmetric trees and the same features 

to split the instances, these trees are balanced and less prone to overfitting. It also uses 

random ordering of the training instances. 

 

CatBoost provides a facile way to tune its hyper-parameters, including the depth and the 

learning rate of the trees, for achieving the highest performance. 
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It is an explainability approach since it makes use of Prediction Values Change (PVC) or Loss 

Function Change (LFC) to rank the developed model’s features. Even though it is a black box 

algorithm, it can provide the impact of each feature so it can be used as feature selection 

approach (Dhananjay & Sivaraman, 2021; Hancock & Khoshgoftaar, 2020; G. Huang et al., 

2019; S. Lee et al., 2021; Y. Zhang et al., 2020). 

 

Figure 4. Representation of CatBoost, XGBoost and LightGBM. 

 

 

4.4. Differences between RF and GBT’s 
 

RF and GBT’s consist of DT’s and they have two basic differences. RF constructs each DT 

independently while GBT’s use boosting method. In boosting approach, a tree is developed 

at a time in order to improve by correcting the error of the previous ones. In addition, RF 

combine results by calculate the majority of votes but GBT’s combine the results during the 

process (Downey, 2020). 

 

4.5. k-Nearest-Neighbors (kNN) 
 

The kNN is a non-parametric algorithm used in classification problems. For every data 

instance which needs to be classified, its k nearest neighbors are retrieved. Then, the majority 

of voting in the neighborhood is used to classify the data instance taking or not into 

consideration distance parameters. Very important in this method is to choose an appropriate 

value for k (Goos et al., 1999).  
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4.6. Least absolute shrinkage and selection operator (LASSO) regression 
 

LASSO is a method used in regression models for feature selection and dimensionality 

reduction. It can minimize the prediction error by impose a constraint on the model 

parameters which decrease the regression coefficients to zero. Then, the features with a 

regression coefficient of zero are excluded (Ranstam & Cook, 2018). 

 

4.7. Support vector machine (SVM) 
 

SVM is a tool which consists of supervised learning methods used for classification and 

regression problems (Jakkula, 2011). Its decision function is a hyperplane that separates the 

samples which belongs to different classes (Salcedo-Sanz et al., 2014). The hyperplane is 

designed in such a way that the distance between the hyperplane and the closest data points 

of each class to be the maximum (S. Huang et al., 2018) 

 

4.8. Deep neural networks (DNNs) 
 

DNNs are powerful ML tools and are commonly used to solve large-scale real-word problems, 

including automated image classification, natural language processing and human action 

recognition tasks (Samek et al., 2017).They are artificial neural networks (ANNs) with multiple 

layers between the input and the output layers (Bengio, 2009).  

 

4.9. Models’ evaluation 
 

Different metrics are used to evaluate if a model is accurate and valid. 

 

Confusion matrix is a matrix in which the rows depict the actual class of the observations and 

the columns their predicted class. In binary classification, the confusion matrix is a 2 x 2 

matrix. 

[
𝑡𝑝 𝑓𝑛
𝑓𝑝 𝑡𝑛

] 
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The 𝑡𝑝 is the number of true positives, 𝑡𝑛 is the number of true negatives, 𝑓𝑝 represents the 

sum of false positive results and 𝑓𝑛 indicates the number of false negative ones. 

 

Precision or Positive Predictive Value equals the number of true positive results divided by 

the total positive results and it shows the number of positives that are correctly identified by 

the model out of the total positive records. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

 

Sensitivity or Recall is the ratio of the true positives predictions to true positives and false 

negative results and it presents the positive results that are correctly identified by the 

algorithm out of the actual positive ones. 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

 

Specificity is the ratio of the true negatives to the sum of true negatives and false positive 

predictions. Specificity indicates the ability of the algorithm to correctly identify negative 

results out of the real negative ones. 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

 

Accuracy is the ratio of correctly classified samples (true positives and true negatives) to the 

total number of records and it measures the models’ ability to make correct predictions. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 +  𝑓𝑛
 

 

F1 score or F-measure is a metric who take into consideration the precision and the recall in 

order to measure the not correctly predictions. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

The area under the curve (AUC) score is calculated using receiver operating characteristic 

curve (ROC), which plots sensitivity and 1-specificity. The value of AUC is the area under the 
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ROC curve, and it demonstrates the performance of the model for identifying positive and 

negative results. If the AUC > 0.9 the model has an excellent predictive ability. 

 

PVC calculates the change in prediction when a value corresponding to the feature changes 

and LFC is used to rank a specific model to other models (Caelen, 2017; Dhananjay & 

Sivaraman, 2021; Muhsen et al., 2020; Sachdeva & Kumar, 2021; Vakili et al., 2020). 

 

5. Data 
 

The data used in this study are curated publicly available Affymetrix expression microarray 

one and consists of 34 datasets derived from 32 studies (Angelakis & Soulioti, 2021; 

Roushangar & Mias, 2019). It is an international multicentric dataset since it originated from 

27 organizations, 25 cities, 15 countries and 4 continents. In addition, the data come from 

different microarray platforms: Affymetrix Human Genome U133 Plus 2.0 (GPL570), 

Affymetrix Human Genome U133A (GPL96) and Affymetrix Human Genome U133B (GPL97) 

and their sample source is either PB or BM. The dataset consists of 44754 probe sets which 

were common across all microarray platforms and 3374 arrays correspond to 3374 

individuals. From 3374, 2668 (79.08%) are AML patients and 706 (20.92%) are healthy. 

 

The final dataset consists of 2177 age-annotated individuals and 26 probe sets. From 2177, 

1013 are female (46.53%), 943 are male (43.32%) and 221 (10.15%) are unknown-sex 

individuals. Moreover, 1629 (74.83%) subjects are labeled as AML and 548 (25.17%) are 

labeled as healthy. The mean and the standard deviation of age are 48.87 and 17.01 each. 

The final dataset was randomly divided into training and test set which are composed of 1740 

(79.93%) and 437 (20.07%) subjects, respectively. Tables 3, 4 and 5 provide a detailed 

information about the entire dataset including the number of samples used, the sample 

source, the sex and the age of the individuals, the organizations from which the data originate, 

the total number of AML patients and healthy controls, the AML subtypes according to FAB 

or WHO classification system and statistics about the overall survival when available. 
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Table 3. GEO accesion, health status, Affymetrix platform, number of samples used and 

sample source and references of the train and validation set of 2177 individuals. 

   Training set  Test set  

Author, Year GΕΟ accession Disease 

state 

Affymetrix platform id: Number 

of samples used & Sample 

source 

Percentages Affymetrix platform id: Number 

of samples used & Sample 

source 

Percentages 

Zatkova et al., 2009 GSE10258 AML GPL570: 6 BM 75% GPL570: 2 BM 25% 

Tomasson et al., 2008, 
Walter et al., 2009  

GSE10358 ΑML GPL570: 245 BM 81.67% GPL570: 55 BM 18.33% 

Warren et al., 2009 GSE11375 Ηealthy GPL570: 22 PB 84.62% GPL570: 4 PB 15.38% 

Metzeler et al., 2008 
Wang et al., 2021 

GSE12417 ΑML GPL570: 56 (52 BM & 4 PB) 71.8% GPL570: 22 (21 BM & 1 PB) 28.2% 

Wouters et al., 2009,  
Taskesen et al., 2011, 
Taskesen et al., 2015  

GSE14468 ΑML GPL570: 412 (379 BM & 33 PB) 78.48% GPL570: 113 (103 BM & 10 PB) 21.52% 

Figueroa et al., 2009 GSE14479 ΑML GPL570: 14 BM 87.5% GPL570: 2 BM 12.5% 

Klein et al., 2009  GSE15434 ΑML GPL570: 194 (177 BM & 17 PB) 77.29% GPL570: 57 (54 BM & 3 PB) 22.71% 

Wu et al., 2012 (NPY) GSE15932 Ηealthy GPL570: 6 PB 75% GPL570: 2 PB 25% 

Karlovich et al., 2009 GSE16028 Ηealthy GPL570: 18 PB 81.82% GPL570: 4 PB 18.18% 

Krug et al., 2011 (NPY) GSE17114 Healthy GPL570: 11 PB 78.57% GPL570: 3 PB 21.43% 

Kong et al., 2012  GSE18123 Ηealthy GPL570: 13 PB 76.47% GPL570: 4 PB 23.53% 

Sharma et al., 2009 GSE18781 Healthy GPL570: 20 PB 80% GPL570: 5 PB 20% 

Zhou et al., 2010  GSE19743 Ηealthy GPL570: 50 PB 79.37% GPL570: 13 PB 20.63% 

Li et al., 2011  GSE23025 ΑML GPL570: 22 (12 BM & 10 PB) 64.71% GPL570: 12 (9 BM & 3 PB) 35.29% 

Rosell et al., 2011 GSE25414 Ηealthy GPL570: 11 PB 91.67% GPL570: 1 PB 8.33% 

Schmidt et al., 2006  GSE2842 Ηealthy GPL570: 1 PB 50% GPL570: 1 PB 50% 

Lück et al., 2011  GSE29883 ΑML GPL570: 11 (9 BM & 2 PB) 91.67% GPL570: 1 BM 8.33% 

Xiao et al., 2011  GSE36809 Ηealthy GPL570: 28 PB 80% GPL570: 7 PB 20% 

Li et al., 2013,  
Herold et al., 2014, 
Kuett et al., 2015, 
Herold et al., 2018 

GSE37642 ΑML GPL570: 120 BM 85.71% GPL570: 20 BM 14.29% 

Lauwerys et al., 2013 

Ducreux et al., 2016 

GSE39088 Ηealthy GPL570: 37 PB 80.43% GPL570: 9 PB 19.57% 

Bullinger et al., 2014 

(NPY) 

GSE39363 ΑML GPL570: 12 (10 BM & 2 PB) 92.3% GPL570: 1 BM 7.7% 

Clelland et al., 2013  GSE46449 Ηealthy GPL570: 19 PB 79.17% GPL570: 5 PB 20.83% 

Opel et al., 2015, 
Lueck et al., 2016 

GSE46819 ΑML GPL570: 9 (6 BM & 3 PB) 75% GPL570: 3 (2 BM & 1 PB) 25% 

Leong et al., 2015 (NPY) GSE68833 ΑML GPL570: 148 BM 80.87% GPL570: 35 BM 19.13% 
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Cao et al., 2016  GSE69565 ΑML GPL570: 12 PB 100% - 0% 

Meng et al., 2015 (NPY) GSE71226 Ηealthy GPL570: 3 PB 100% - 0% 

Bohl et al., 2016 (NPY) GSE84334 ΑML GPL570: 42 (23 BM & 19 PB) 93.33% GPL570: 3 (2 BM & 1 PB) 6.67% 

Tasaki et al., 2017 GSE84844 Ηealthy GPL570: 26 PB 86.67% GPL570: 4 PB 13.33% 

Tasaki et al., 2018 GSE93272 Ηealthy GPL570: 25 PB 71.43% GPL570: 10 PB 28.57% 

Leday et al., 2018 GSE98793 Ηealthy GPL570: 49 PB 76.56% GPL570: 15 PB 23.44% 

Shamir et al., 2017 GSE99039 Ηealthy GPL570: 99 PB 81.82% GPL570: 22 PB 18.18% 

Green et al., 2009 (NPY) GSE14845 Healthy - 0% GPL570: 1 PB 100% 

Lück et al., 2011  GSE29883 ΑML GPL570: 11 (9 BM & 2 PB) 91.67% GPL570: 1 BM 8.33% 

Xiao et al., 2011  GSE36809 Ηealthy GPL570: 28 PB 80% GPL570: 7 PB 20% 

Li et al., 2013,  
Herold et al., 2014, 
Kuett et al., 2015, 
Herold et al., 2018 

GSE37642 ΑML GPL570: 120 BM 85.71% GPL570: 20 BM 14.29% 

Lauwerys et al., 2013 

Ducreux et al., 2016 

GSE39088 Ηealthy GPL570: 37 PB 80.43% GPL570: 9 PB 19.57% 

Bullinger et al., 2014 

(NPY) 

GSE39363 ΑML GPL570: 12 (10 BM & 2 PB) 92.3% GPL570: 1 BM 7.7% 

Clelland et al., 2013  GSE46449 Ηealthy GPL570: 19 PB 79.17% GPL570: 5 PB 20.83% 

Opel et al., 2015, 
Lueck et al., 2016 

GSE46819 ΑML GPL570: 9 (6 BM & 3 PB) 75% GPL570: 3 (2 BM & 1 PB) 25% 

Leong et al., 2015 (NPY) GSE68833 ΑML GPL570: 148 BM 80.87% GPL570: 35 BM 19.13% 

Cao et al., 2016  GSE69565 ΑML GPL570: 12 PB 100% - 0% 

Meng et al., 2015 (NPY) GSE71226 Ηealthy GPL570: 3 PB 100% - 0% 

Bohl et al., 2016 (NPY) GSE84334 ΑML GPL570: 42 (23 BM & 19 PB) 93.33% GPL570: 3 (2 BM & 1 PB) 6.67% 

Tasaki et al., 2017 GSE84844 Ηealthy GPL570: 26 PB 86.67% GPL570: 4 PB 13.33% 

Tasaki et al., 2018 GSE93272 Ηealthy GPL570: 25 PB 71.43% GPL570: 10 PB 28,57% 

Leday et al., 2018 GSE98793 Ηealthy GPL570: 49 PB 76.56% GPL570: 15 PB 23.44% 

Shamir et al., 2017 GSE99039 Ηealthy GPL570: 99 PB 81.82% GPL570: 22 PB 18.18% 

Green et al., 2009 (NPY) GSE14845 Healthy - 0% GPL570: 1 PB 100% 

Opel et al., 2015, 
Lueck et al., 2016 

GSE46819 ΑML GPL570: 9 (6 BM & 3 PB) 75% GPL570: 3 (2 BM & 1 PB) 25% 

Leong et al., 2015 (NPY) GSE68833 ΑML GPL570: 148 BM 80.87% GPL570: 35 BM 19.13% 

Cao et al., 2016  GSE69565 ΑML GPL570: 12 PB 100% - 0% 

Meng et al., 2015 (NPY) GSE71226 Ηealthy GPL570: 3 PB 100% - 0% 

Bohl et al., 2016 (NPY) GSE84334 ΑML GPL570: 42 (23 BM & 19 PB) 93.33% GPL570: 3 (2 BM & 1 PB) 6.67% 

Tasaki et al., 2017 GSE84844 Ηealthy GPL570: 26 PB 86.67% GPL570: 4 PB 13.33% 

Tasaki et al., 2018 GSE93272 Ηealthy GPL570: 25 PB 71.43% GPL570: 10 PB 28.57% 

Leday et al., 2018 GSE98793 Ηealthy GPL570: 49 PB 76.56% GPL570: 15 PB 23.44% 

Shamir et al., 2017 GSE99039 Ηealthy GPL570: 99 PB 81.82% GPL570: 22 PB 18.18% 

Green et al., 2009 (NPY) GSE14845 Healthy - 0% GPL570: 1 PB 100% 

Leong et al., 2015 (NPY) GSE68833 ΑML GPL570: 148 BM 80.87% GPL570: 35 BM 19.13% 
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Cao et al., 2016  GSE69565 ΑML GPL570: 12 PB 100% - 0% 

*NPY; not published yet 

 

Table 4. GEO accession, origin of study, AML subtypes and overall survival. 

GΕΟ 

accession 

City, Country, Organization AML subtypes (FAB or 

WHO classification) 

Overall survival (days) 

GSE10258 Vienna, Austria, Medical University of 

Vienna 

M1, M5 - 

GSE10358 St Louis, USA, Washington University 

School of Medicine 

M0, M1, M2, M3, M4, 

M5, M6, M7 

- 

GSE11375 Boston, USA, Massachusetts General 

Hospital 

- - 

GSE12417 Munich, Germany, University of Munich M0, M1, M2, M4, M5, 

M6 

Mean: 614,76 
Std: 503,59 

GSE14468 Houston, USA, MD Anderson Cancer 

Center 

M0, M1, M2, M3, M4, 

M4 eos, M5, M6 

- 

GSE14479 Rotterdam, Netherlands, Erasmus 

University Medical Center 

M0, M1 - 

GSE15434 New York, USA, Columbia University 

Medical Center 

- - 

GSE15932 Hangzhou, China, Second Affiliated 

Hospital, School of Medicine, Zhejiang 

University 

- - 

GSE16028 Basel, Switzerland, F.Hoffmann-La Roche 

AG 

- - 

GSE17114 Lisbon, Portugal, Instituto de Medicina 

Molecular 

- - 

GSE18123 Boston, USA, Boston Children's Hospital - - 

GSE18781 Portland, USA, Oregon Health & Science 

University 

- - 
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GSE19743 Palo Alto, USA, Stanford Genome 

Technology Center 

- - 

GSE23025 Duarte, USA, City of Hope Beckman 

Research Institute 

- - 

GSE25414 Barcelona, Spain, Institut de Recerca 

Hospital Vall d’Hebron 

- - 

GSE2842 Bolzano, Italy, EURAC - - 

GSE29883 Berlin, Germany, Charité t(8;21),  t(16;16) - 

GSE36809 Boston, USA, Massachusetts General 

Hospital 

- - 

GSE37642 Munich, Germany, University Hospital 

Grosshadern, Ludwig-Maximilians-

University (LMU) 

M0, M1, M2, M3, M4, 

M5, M6, M7 

Mean: 962,32 
Std: 1106,70 

GSE39088 Brussels, Belgium, Université catholique 

de Louvain 

- - 

GSE39363 Berlin, Germany, Charité t(3;3) - 

GSE46449 New York, USA, Columbia University 

Medical Center 

- - 

GSE46819 Berlin, Germany, Charité t(16;16) - 

GSE68833 Rockville, USA, NCI M0, M1, M2, M3, M4, 

M5, M6, M7 

- 

GSE69565 Singapore, Singapore, Cancer Science 

Institute of Singapore 

- - 

GSE71226 Changchun, China, the Department of 

Cardiology, China–Japan Union Hospital, 

Jilin University 

- - 

GSE84334 Ulm, Germany, University Hospital of 

Ulm 

- - 

GSE84844 Fujisawa, Japan, Takeda Pharmaceutical 

Company Limited 

- - 
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GSE93272 Fujisawa, Japan, Takeda Pharmaceutical 

Company Limited 

- - 

GSE98793 Cambridge, United Kingdom, University 

of Cambridge 

- - 

GSE99039 Tel Aviv, Israel, Tel Aviv University - - 

GSE14845 Southport, Australia, Griffith Insitute for 

Health & Medical Research 

- - 

 

Table 5. Summary statistics of the total dataset of 2177 individuals and of the training and 

test set, including disease state, sex, number of patients per age group, mean and standard 

deviation of age. 

Summary statistics Training set Percentage Test set Percentage 

Total dataset     

Disease state     

AML Healthy     

1629 548 1303 AML & 438 

Healthy 

79.97% 326 AML & 110 

Healthy 

20.03% 

Percentage     

74,83% AML 25,17% 

Healthy 

    

Sex     

Female Male     

1013 943 807 Female & 755 

Male 

- 206 Female & 188 

Male 

- 

Age     

Age group: Number 

of patients 

Percentage Age group: Number 

of patients 

 Age group: Number 

of patients 

 

0 to 19: 99 4.55% 0 to 19: 75 4.31% 0 to 19: 24 5.5% 

20 to 29: 217 9.97% 20 to 29: 180 10.34% 20 to 29: 37 8.49% 

30 to 39: 340 15.62% 30 to 39: 272 15.62% 30 to 39: 68 15.6% 

40 to 49: 393 18.05% 40 to 49: 313 17.98% 40 to 49: 80 18.35% 
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50 to 59: 487 22.37% 50 to 59: 378 21.71% 50 to 59: 109 25% 

60 to 69: 390 17.91% 60 to 69: 319 18.32% 60 to 69: 71 16.28% 

70 to 79: 212 9.74% 70 to 79: 171 9.82% 70 to 79: 41 9.4% 

80 to 89: 39 1.79% 80 to 100: 33 1.9% 80 to 100: 6 1.38% 

      

Mean of age: 48.87  Mean of age: 48.98  Mean of age: 48.46  

Std of age: 17.01  Std of age: 17.06  Std of age: 16.79  

*Std; standard deviation 

 

6. Methods 
 

Firstly, the dataset of 3374 individuals and 44754 probe sets is randomly split into two sets, 

the training and the validation set, which consist of the 80% and the 20% of the total dataset, 

respectively.  

 

Dimensionality reduction CatBoost model has 200 iterators, depth 6 and learning rate 0.1 is 

applied on the dataset mentioned above in order to obtain the set of 100 most important 

features regarding the PVC of CatBoost and the set of 100 most important attributes 

regarding its LFC. The above two sets may differ. The intersection of these two sets consists 

of 34 probe sets. Ten fold cross validation (10CV) is used in order to tune the dimensionality 

reduction CatBoost model on the training set and then validate it on the test set.  

 

Later, a CatBoost model (CatBoost34) of 200 iterators, depth 5, learning rate 0.1 and 10CV is 

tuned on the dataset of 3374 data instances and 34 probe sets, which come from the 

intersection mentioned before. 

 

The 8 probe sets of the 34 correspond to genes which are correlated from bibliographic 

references to AML. These 8 genes are excluded. In addition, individuals with no age filled-in 

are dropped-out from the dataset of 3374. A CatBoost model (CatBoost26) of 100 iterators, 

depth 11, learning rate 0.1 and 10CV is implemented on the final dataset, which consists of 

2177 individuals, the 26 probe sets and the age as features.  
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In all three models above, weight balance parameters are used, and all the other parameters 

have their default values. 

 

All the above approaches were implemented in Python 3.8 language, using Jupyter 

Notebooks, NumPy, Pandas, Scikit-learn and CatBoost 0.24.1 libraries. 

 

Figure 5. Representation of the methodology, including datasets and CatBoost models as well 

as the F1 score. The first integer corresponds to the number of the data instances and the 

second corresponds to the number of attributes. 
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7. Results 
 

Figure 6. Features’ importance of the PVC of CatBoost model. 

 
 

Figure 7. Features’ importance of the LFC of CatBoost model. 

 
 

Figures 6,7 show the 27 features (26 probe sets and the age) ranked by their importance 

regarding CatBoost26 PVC and LFC, respectively. The 26 probe sets correspond to 19 named 

genes, 4 uncharacterized genes, 6 EST’s and 1 cDNA clone. It is obvious that probe set 

234632_x_at, which is a cDNA clone, with no annotations available, is the most important 

feature as regards both, the predictability of the CatBoost26 and its LFC.  
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From Figure 6, 234632_x_at has more than 4 times higher feature importance regarding the 

PVC when compared to the other features. The next 7 features with high importance 

correspond to 6 named genes {GATA3, BEX5, DSG2, SLC46A3, SH2D3A, CEACAM3} and 1 

uncharacterized gene {LOC101926907}. 

 

In Figure 7, it is obvious that 234632_x_at has at least 4 times higher feature importance than 

the 210789_x_at, while 230527_at is approximately 3 times more important feature than 

210789_x_at. The 11 following most important features in Figure 7, correspond to 10 named 

genes {GATA3, BEX5, DSG2, SLC46A3, FAM153A, FAM153B, FAM153C, PATL2, CEACAM3, 

MAL}, 3 uncharacterized genes {LOC101926907, LOC100507387, LOC105377751} and 1 EST. 

 

Table 6. The 26 probes in descending order according to their feature importance regarding 

the predictability of Catboost26. Information about probe set’s identifier, corresponding gene 

symbols or NCBI accession numbers, blood malignancies and/or other types of cancer they 

are associated with, are presented here. 

Probe set ID Gene symbol/NCBI 
accession number 

Blood malignancies Other types of cancer 

234632_x_at AK026267* - - 
209603_at GATA3 acute 

lymphoblastic 
leukaemia (ALL) 
(Hou et al., 2017) 

breast cancer (Mehra et al., 2005), 
bladder cancer (Li et al., 2014) 

230527_at LOC101926907 - - 
229963_at BEX5 - - 
217901_at DSG2 - cervical cancer (Qin et al., 2020), 

epithelial-derived carcinomas 
(Brennan & Mahoney, 2009), 
pancreatic cancer (Hütz et al., 
2017), breast cancer (Davies et al., 
1997), colon cancer (T. Yang et al., 
2021), lung cancer (Cai et al., 2017; 
Saaber et al., 2015), gastric cancer 
(Biedermann et al., 2005; Yashiro 
et al., 2006), ovarian cancer (Kim et 
al., 2020), laryngeal cancer (Cury et 
al., 2020), liver cancer (Han et al., 
2018) 

214719_at SLC46A3 - liver cancer (Zhao et al., 2019) 
219513_s_at SH2D3A - - 
210789_x_at CEACAM3 - - 
204777_s_at MAL - gastric cancer (Buffart et al., 2008), 

breast cancer (Horne et al., 2009), 
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ovarian cancer (P. S. Lee et al., 
2010), colorectal cancer (Kalmár et 
al., 2015) 

203294_s_at LMAN1 - - 
230753_at PATL2 - - 
242056_at TRIM45 - lung cancer (Peng et al., 2019), 

glioma (J. Zhang et al., 2017) 
217680_x_at RPL10 T-cell acute 

lymphoblastic 
leukaemia (T-ALL) 
(De Keersmaecker 
et al., 2013; Raiser 
et al., 2014) 

ovarian cancer (Shi et al., 2018), 
pancreatic cancer (J. Yang et al., 
2018) 

 

214945_at FAM153A & 
FAM153B & 
FAM153C & 
LOC100507387 & 
LOC105377751 

- - 

222312_s_at AW969803* - - 
214705_at PATJ - - 
241688_at AA677700* - - 
241611_s_at FNDC3A multiple myeloma 

(Manfrini et al., 
2020) 

- 

236952_at AI309861* - - 
207636_at SERPINI2 chronic 

lymphocytic 
leukaemia (CLL) 
(Farfsing et al., 
2009) 

 

pancreatic cancer (Ozaki et al., 
1998) 

243659_at N63876* - - 
226311_at ADAMTS2 mixed phenotype 

acute leukaemias 
(MPAL) (Tota et al., 
2014) 

gastric cancer (C. Jiang et al., 2019), 
kidney cancer (Roemer et al., 2004) 

211772_x_at CHRNA3 T-cell acute 
lymphoblastic 
leukaemia (T-ALL)  
(Laukkanen et al., 
2015) 

lung cancer (Wassenaar et al., 
2011) 

244719_at AA766704* - - 
239766_at BF507518* - - 
243272_at LOC101593348 - - 

 

Table 6 provides information about the 26 most important probe sets. GATA3 has been 

implicated to acute lymphoblastic leukaemia and other types of cancer as well as breast 

cancer and bladder cancer. The gene DSG2 plays a role in various kinds of cancer including 
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cervical cancer, epithelial-derived carcinomas, pancreatic cancer, breast cancer, colon cancer, 

lung cancer, gastric cancer, ovarian cancer, laryngeal cancer and liver cancer. In addition, 

SLC46A3 is correlated to liver cancer, while the gene MAL has been correlated to gastric 

cancer, breast cancer, ovarian cancer and colorectal cancer. ADAMTS2 is implicated in MPAL 

as well as in gastric cancer and kidney cancer. Additionally, CHRNA3 plays a role in T-ALL and 

in lung cancer. The genes PATL2, FAM153A, FAM153B, FAM153C, BEX5, SH2D3A, CEACAM3 

have not been related to any type of cancer yet. 

 

Table 7. Confusion matrix of CatBoost26 on the training set. 

 

[
1302 1

0 437
] 

 

Table 7 shows the confusion matrix of CatBoost26 model. The true positive predicts are up-

left, the true negatives down-right, the false positives down-left and the false negative ones 

are up-right. A positive data instance corresponds to an AML patient and a negative one 

corresponds to a healthy individual. 

 

Table 8. Performances of dimensionality reduction CatBoost model of the 10CV on 3374 and 

44754 probe sets, CatBoost34 model of the 10CV on 3374 and 34 probe sets and CatBoost26 

model of the 10CV on 2177 and 26 probe sets and the age. 

Metrics Validation set 10CV 

CatBoost 

Specificity 0.9929 0.9805 

Sensitivity 1.0000 0.9991 

AUC 0.9965 0.9898 

F1-score 0.9964 0.9884 

CatBoost34 

Specificity 1.0000 0.9929 

Sensitivity 1.0000 0.9926 

AUC 1.0000 0.9920 

F1-score 1.0000 0.9972 
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CatBoost26 

Specificity 1.0000 1.0000 

Sensitivity 1.0000 0.9992 

AUC 1.0000 0.9988 

F1-score 1.0000 0.9996 

 

From Table 8 is evident that the AML diagnosis model CatBoost26 performs very well. The 

AUC from the 10CV is 0.9988 with standard deviation 0.0023 and 95% confidence interval 

[0.9994, 1.000]. In addition, the mean accuracy is 0.994 with standard deviation 0.0011. 

 

8. Discussion 
 

In this study, CatBoost was not only used for the prediction of AML but also for feature 

selection. 

 
CatBoost34 model is microarray platform agnostic. It has not been used the information if a 

data instance comes from Affymetrix Human Genome U133 Plus 2.0, Affymetrix Human 

Genome U133A or Affymetrix Human Genome U133B microarray platform. This enhances the 

robustness of the model and makes it generally applicable. 

 

From bibliographic references, the 26 probe sets that CatBoost26 uses as features, are not 

correlated to AML yet. The age was used for two reasons. Firstly, its prognostic value is high 

as regards the overall survival of AML patients (Mosquera Orgueira et al., 2021). Secondly, 

studies in the field of deep learning with small datasets of 100 data instances derived from 

ultrasound indicate that a CatBoost model which uses age and features that come from a 

variety of sources can achieve high performance in binary classification tasks (Angelakis et al., 

2018; Angelakis et al., 2021; Angelakis, 2021).  

 

The accuracy of the CatBoost26 model is 99.94% and the F1-score is 0.9996. The performance 

of the model is the best one in the literature as regards the diagnosis of AML using 

transcriptomic data. 
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Similar study was carried out using as data the 3374 individuals and the 44754 probe sets as 

features (Roushangar & Mias, 2019).  Statistical techniques were used to reduce the 

dimensionality of the dataset to 984 probe sets. In order to compare the results of this study 

to the current work, the same 80% training set that was used to train the dimensionality 

reduction CatBoost, was also used to train the k-NN model of the study of Roushangar & Mias, 

2019. Dimensionality reduction CatBoost, CatBoost34 and CatBoost26 outperform k-NN as 

Table 9 shows. 

 

Table 9. Performance of the k-NN of Roushangar & Mias, 2019 of the 10CV on 80% training 

set and on the 20% validation set of 3374 individuals and 984 probe sets. 

Metrics Validation set 10CV 

Specificity 0.9716 0.9546 
Sensitivity 0.9925 0.9920 

AUC 0.9821 0.9788 
F1-score 0.9925 0.9899 

 

In another study, with data that originated from similar platforms (Affymetrix Human 

Genome U133A, Affymetrix Human Genome U133 plus 2.0 and Illumina RNA-seq) and 

different machine learning and statistical methods (kNN, LASSO, linear discriminant analysis, 

random forest, linear SVM, polynomial SVM, radial SVM, sigmoid SVM) have been used to 

solve the problem of AML diagnosis (Warnat-Herresthal et al., 2020). In this study, the 

individuals were separated into three main classes: AML, leukaemia and healthy or other 

diseases. The healthy or other diseases group contains healthy individuals and individuals that 

may have other diseases but not any type of leukaemia. The best results of the study of 

Warnat-Herresthal et al. regarding the accuracy are 97.6% when LASSO has been trained on 

Affymetrix Human Genome U133A dataset of 1049 AML and 1451 non AML, 98.0% when has 

been trained on Affymetrix Human Genome U133 plus 2.0, in which 2588 were labeled as 

AML and 5760 as non AML individuals and 99.1% when Illumina RNA-seq dataset of 508 AML 

and 673 non AML ones was used to train LASSO algorithm.  

 

The last work which tried to solve the problem of AML diagnosis using machine learning and 

microarrays data of AML patients and healthy subjects, uses a DNN. The dataset consisted of 

36 data instances and the accuracy of the model was 96.67% (Nazari et al., 2020). 



 38 

9. Conclusion 
 

This research aimed to assist in developing a diagnostic tool for identifying either if an 

individual has AML or is healthy. For the first time in the literature, a gradient boosted tree 

algorithm CatBoost, which uses probe sets and the age as features achieves the highest 

performance as regards the diagnosis of AML. CatBoost34 and CatBoost26 outperform other 

machine learning methods which use similar or different datasets.  

 

In addition, it would be crucial the scientific community to further investigate the 26 probe 

sets shown in Table 6. Firstly, to identify their relation to known genes, as well as their role 

not only in AML but also in other types of cancer. 

 

AML can appear suddenly without early detectable symptoms (Mottal et al., 2020). A 

screening tool where its performance, as regards the sensitivity and specificity is close to 1.00, 

and the sample could be PB is of high importance because it can contribute to prevent human 

errors during PB and BM examinations and can facilitate the quick diagnosis of AML so the 

patients could undergo treatment as soon as possible. In addition, the option of getting 

screened often will help not only in the diagnosis but also in its prevention since the treatment 

is more effective when started early.  
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