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ABSTRACT 

 

Dementia is a syndrome that is common amongst the elder adults and its occurrence 
rate is on the rise.  The majority of the studies are focused on finding biomarkers for 
diagnosis, while prevention and monitoring of the development is yet an impossible 
task. Nowadays, research on dementia is limited to neuroimaging as it is a non-invasive 
technology. There is a plethora of neuroimaging tools which optimize the virtualization 
of an imported image through image processing or even contribute medical decision 
making through image analysis. Still, brain atrophy in Dementia is yet to be 
characterized properly. Neuroimaging mainly aims on volume decline of brain volume 
and less on other structural textures. Such features are fractal dimension and lacunarity. 
 Some neuroimaging tools calculate fractal dimension and lacunarity for whole brain 
volume. However, their functionality does not include automated estimation of multiple 
images and thus creation of datasets. They just compute these features for given 
structures while not performing the necessary image processing steps.  

As most of these tools are specialized in specific tasks, there is not a holistic method 
that inputs multiple imaging data and exports measurements for fractal dimension, 
lacunarity. This study presents a general purpose tool for automated image processing, 
image segmentation, estimation of fractal dimension, lacunarity and other textures that 
are derived from the calculation of fractal dimension. The exported files are datasets 
with such measurements.  

Finally, a classification between healthy and dementia subjects underlines the utility of 
the software. Even though there were limitations to data acquirement, efficient 
classification with SVM models has been performed. For several brain regions, the 
ranging Fbeta score accuracy was 97% - 100 % outperforming all other methods. 
However, diagnosis of Dementia requires a unique prior model which efficiently 
segment brain regions for any given class. In this thesis, two models were trained, one 
for each group. Nevertheless, the final results reveal the necessity of fractal properties 
as a tool for Dementia classification and monitoring of the Dementia development. Also, 
the utility of the software can be extended to any structural neuroimaging problem such 
as detection of cancer.  
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ΠΔΡΙΛΗΦΗ 
 

Η άλνηα είλαη έλα ζύλδξνκν πνπ είλαη θνηλό ζηνπο ειηθησκέλνπο θαη ν ξπζκόο 
εκθάληζήο ηνπ απμάλεηαη. Η πιεηνλόηεηα ησλ κειεηώλ επηθεληξώλεηαη ζηελ εύξεζε 
βηνδεηθηώλ γηα δηάγλσζε, ελώ ε πξόιεςε θαη ε παξαθνινύζεζε ηεο αλάπηπμεο είλαη 
αθόκε έλα αδύλαην έξγν. Σήκεξα, ε έξεπλα γηα ηελ άλνηα πεξηνξίδεηαη ζηε 
λεπξναπεηθόληζε, θαζώο είλαη κηα κε επεκβαηηθή ηερλνινγία. Υπάξρεη κηα πιεζώξα 
λεπξναπεηθνληζηηθώλ εξγαιείσλ ηα νπνία βειηηζηνπνηνύλ ηελ απεηθόληζε κηαο 
εηζαγόκελεο εηθόλαο κέζσ ηεο επεμεξγαζίαο εηθόλαο ή αθόκε θαη ζπλεηζθέξνπλ ζηε 
ιήςε ηαηξηθώλ απνθάζεσλ κέζσ ηεο αλάιπζεο ηεο εηθόλαο. Ωζηόζν, ε αηξνθία ηνπ 
εγθεθάινπ ζηελ άλνηα δελ έρεη αθόκε ραξαθηεξηζηεί ζσζηά. Η λεπξναπεηθόληζε 
ζηνρεύεη θπξίσο ζηελ παξαθνινύζεζε ηεο κείσζεο ηνπ όγθνπ ηνπ εγθεθάινπ θαη 
ιηγόηεξν ζε άιιεο δνκηθέο πθέο. Τέηνηα ραξαθηεξηζηηθά είλαη ε κνξθνθιαζκαηηθή 
δηάζηαζε θαη ε ύπαξμε θελώλ ζηηο εγθαθαιηθέο δνκέο (lacunarity). Μεξηθά εξγαιεία 
λεπξναπεηθόληζεο ππνινγίδνπλ ηε δηάζηαζε ηνπ θξάθηαι θαη ηνπ lacunarity γηα 
νιόθιεξν ηνλ όγθν ηνπ εγθεθάινπ. Ωζηόζν, ε ιεηηνπξγηθόηεηά ηνπο δελ πεξηιακβάλεη 
απηνκαηνπνηεκέλε εθηίκεζε πνιιαπιώλ εηθόλσλ θαη, ζπλεπώο, δεκηνπξγία ζπλόισλ 
δεδνκέλσλ (datasets). Υπνινγίδνπλ απιώο απηά ηα ραξαθηεξηζηηθά γηα ζπγθεθξηκέλεο 
δνκέο, ελώ δελ εθηεινύλ ηα απαξαίηεηα βήκαηα επεμεξγαζίαο εηθόλαο. Γεδνκέλνπ όηη 
ηα πεξηζζόηεξα από απηά ηα εξγαιεία εμεηδηθεύνληαη ζε ζπγθεθξηκέλεο εξγαζίεο, δελ 
ππάξρεη κηα νιηζηηθή κέζνδνο πνπ εηζάγεη πνιιαπιά δεδνκέλα απεηθόληζεο θαη εμάγεη 
κεηξήζεηο γηα ηε κνξθνθιαζκαηηθή δηάζηαζε θαη ην lacunarity. Απηή ε κειέηε 
παξνπζηάδεη έλα εξγαιείν γεληθνύ ζθνπνύ γηα ηελ απηνκαηνπνηεκέλε επεμεξγαζία 
εηθόλαο, ηελ ηκεκαηνπνίεζε εηθόλαο, ηελ εθηίκεζε ηεο κνξθνθιαζκαηηθή δηάζηαζε, ηνπ 
lacunarity θαη άιισλ πθώλ πνπ πξνέξρνληαη από ηνλ ππνινγηζκό ηεο 
κνξθνθιαζκαηηθήο δηάζηαζεο. Τα εμαγόκελα αξρεία είλαη ζύλνια δεδνκέλσλ κε ηέηνηεο 
κεηξήζεηο. 

Έπεηηα γίλεηαη κηα ηαμηλόκεζε πγεηώλ θαη αηόκσλ κε άλνηα ε νπνία επηβεβαηώλεη ηε 
ρξεζηκόηεηα ηνπ ινγηζκηθνύ. Παξόιν πνπ ππήξραλ πεξηνξηζκνί ζηελ απόθηεζε 
δεδνκέλσλ, πξαγκαηνπνηήζεθε απνηειεζκαηηθή ηαμηλόκεζε κε κεραλέο δηαλπζκαηηθήο 
ππνζηήξημεο. Γηα αξθεηέο πεξηνρέο ηνπ εγθεθάινπ, ε αθξίβεηα Fbeta score θπκαηλόηαλ 
κεηαμύ 95% θαη 100% ππεξηζρύνληαο όισλ ησλ άιισλ κεζόδσλ. Ωζηόζν, ε δηάγλσζε 
ηεο άλνηαο απαηηεί έλα κνληέιν πνπ δηαρσξίδεη απνηειεζκαηηθά ηηο πεξηνρέο ηνπ 
εγθεθάινπ γηα όιεο ηηο θιάζεηο. Σε απηή ηε δηαηξηβή, εθπαηδεύηεθαλ δύν ηέηνηα κνληέια, 
έλα θάζε νκάδα. Παξ 'όια απηά, ηα ηειηθά απνηειέζκαηα αλαδεηθλύνπλ ηελ 
αλαγθαηόηεηα ησλ κνξθνθιαζκαηηθώλ ηδηνηήησλ σο εξγαιείν γηα ηε ηαμηλόκεζε ησλ 
ζηαδίσλ ηεο άλνηαο θαη ηε παξαθνινύζεζε ηεο αλάπηπμεο ηεο άλνηαο. Δπίζεο, ε ρξήζε 
ηνπ ινγηζκηθνύ κπνξεί λα επεθηαζεί ζε νπνηνδήπνηε πξόβιεκα δνκηθήο 
λεπξναπεηθόληζεο όπσο ε αλίρλεπζε θαξθίλνπ. 
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1. INTRODUCTION 

1.1 Purpose of thesis 

Dementia is a disorder observed in older adults with a variety cognitive decline 
symptoms caused by underlying neurodegenerative diseases [1]. Most common cause 
of Dementia is Alzheimer‘s disease while other causes may include Huntington‘s 
disease, Dementia with Lewis bodies, Frontotemporal Dementia and Vascular Dementia 
or mixed Dementia [2] [3] [4] [5] [6] [7] [8]. Dementia is scaled to multiple stages from 
very mild dementia to the most severe stage. According to a report of World Health 
organization in 2015, 50 million individuals worldwide are reported to be subjects of 
various Dementia stages and it is estimated that these numbers are going to be 
approximately doubled from 2060 [9].  

Still, there is no therapy or effective prevention formula being developed. Moreover, in 
some cases like progressive stages of Alzheimer‘s disease, control and even reduction 
of its development is yet a difficult task [9] [10] [11] [12] [13]. For such reasons detection 
of early Dementia stages is crucial in order to limit its long term effects [13] [14] [15] . 
Diagnosis of Dementia is done by clinicians through interviews and observation of 
related symptoms. In 1982 the Clinical Dementia Rating, an ordinal rating score was 
established to characterize the various Dementia stages [16]. Nowadays, such 
traditional methods are started to be considered obsolete due to the lack of automation 
and the necessity to incorporate new knowledge for an optimal clinical judgment. A 
diagnosis tool with accurate estimators would give a better background to the experts 
for causes and effects of Dementia rather than just a written test and clinicians‘ 
judgement. Recently, researchers put a lot of effort of discovering anatomical properties 
on Dementia patients focusing on imaging algorithms using MRI or CT as primary 
scanning technology [17] [18] [19]. Differences on volume between groups are difficult 
to be defined and development of volume decline is yet impossible task. By applying 
discriminative methods, researchers tried to label specific anatomical dementia profiles 
with various methods [20].  

A sub category of these neuroimaging methods is the use of fractal dimension as a 
texture instead of brain volume, while fewer estimate lacunarity [21] [22] [23] [24]. 
Fractal Dimension is ratio which measure of structures complexity of a structure. 
Lacunarity is a measurement of gaps or lacunas (lakes) in the structure. Fractal 
dimension and lacunarity have seen a rise as efficient features for such kind of 
classification and algorithms to estimate them do exist, but are limited. Although, such 
tools are validated and are accurate, none of them takes such measurements 
automatically for each brain region separately. Moreover, they do not utilize other 
statistical features which are derived from fractal calculations. 

 

1.2 Objective 

The software with the use of pipelines performs image processing, image segmentation, 
estimation of lacunarity, fractal dimension leading to the extraction of datasets. There 
are other features which are accrue from the calculation of fractal dimension and are 
included in the extracted datasets.  Such features are y intercept and rmse. Also, intra-
cranial volume of each brain region is stored.  The goal of this thesis is to facilitate 
discoveries in the anatomical characteristics of Dementia subjects. As a result, a cross-
sectional study has been performed to find significant differences between groups and 
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efficiently classifying the subjects using as main features fractal dimension, lacunarity, y 
intercept, rmse and volume.  

Additional challenges were raised during the development of this tool which included   
optimal performance and speed for each pipeline. The open source freesurfer [25] 
software has been used as it is specialized on image processing for brain volumes and 
it is the most widely used tool across the scientific community. For the first stages of 
image processing it is quick and efficient but it lacks in terms of speed compared to 
other methods. Voxelmorph software [26] which is specialized on structural MRI 
imaging has been selected for image segmentation. For a given trained model it 
segments brain volumes in a matter of seconds and is more accurate than freesurfer. 
Then the segmented output volumes are imported to a final pipeline which estimates the 
fractal dimension, prefactor lacunarity, y intercept, rmse and volume for a total of 41 
brain regions and the results are stored in exported csv files. Fractal Dimension is 
estimated and validated through a linear regression model thus giving a background for 
the accuracy of the calculation. Lacunarity is calculated from a formula containing the 
fractal dimension. A milestone of the thesis is the final classification. It extracts new 
knowledge in brain anatomy on Dementia subjects and it has the potential to be used as 
an automated CDR score estimator. Furthermore, it underlines the utility of the 
software, which can be expanded on every brain imaging analysis. Figure 1 displays the 
workflow of this thesis: 

 

1.3 Overview 

The structure of this thesis shall include the literature review, where theoretical 
background for existing methods related to image processing, segmentation, fractal 
dimension estimation, lacunarity estimation and Dementia detection shall be mentioned.  
The reasons for choosing specific tools or pipelines for each procedure in this software 
shall be explained. In the methods section, each process of the tool shall be presented 
and in the results section a classification with the extracted data from the tool shall be 
performed for validating its utilization. Discussion and Conclusion shall include the 
limitations, interpretation of the results and potential applications of this thesis. 
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Figure 1 : Workflow of the thesis 
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2. LITERATURE REVIEW 

2.1 Neuroimaging  

Digital imaging is a technique that aims to represent an object or a structure and it is 
applied in many scientific fields. The need to examine individuals with abnormalities 
created the need for development of non-invasive methods. Thus, medical imaging was 
invented which mainly focus on displaying the human anatomy and physiology. The 
accelerated development of technology, allowed the researchers to create and optimize 
medical imaging techniques. The new knowledge lead to more specialization of imaging 
tasks and creation of new methods, thus subfields of medical imaging were developed. 
Such field was neuroimaging also known as brain imaging which is the utilization of 
various techniques that lead to the visualization of the brain structure. It includes 
structural imaging which is oriented on displaying the structural properties of the brain. 
The other category is functional imaging which focuses on metabolic and physiological 
visualization.  

Magnetic Resonance Imaging (MRI) is a structural imaging technique which is non-
invasive [27]. From MRI acquisition T1-weighted images and T2-weight images are 
produced. T1 images are discriminate better tissues with fat while T2 tissues including 
both fat and water like Cerebrospinal fluid (CSF). However, in comparison to functional 
MRI (fMRI) it loses information about physiology [28]. Functional imaging also includes 
Positron Emission Tomography (PET) and Single photon emission computed 
tomography (SPECT) where radioactive elements are used during the acquisition 
process making them less preferable from fMRI. However, in this thesis structural 
properties of the brain shall be examined therefore images of that modality are not to be 
used. A common neuroimaging technique is computed tomography (CT) [124], which x-
rays to construct the inner structures of the human body. Since x-rays may harm the 
subject as it is exposed to radiation, MRI is considered a safest method. However, in 
cases of metallic implants or artificial cardiac pacemakers CT over MRI is preferred 
since MRI use magnets to take the imaging measurements. Since the developed 
softaware proposed in this thesis is focused on dementia problems, implants or other 
materials that MRI should not be applied do not exist in the examined subjects. The 
software of this thesis supports MRI T1 weighted images as performance of voxelmorph 
is already validated in this modality. Also, the thesis only examines structural properties 
of the brain volume and thus estimates fractal dimension. In case of fMRI, multifractal 
analysis should be performed to efficiently describe the brain functionality and 
physiology.  Therefore, T1 weighted images have been chosen as data for the testing of 
the software and for the statistical analysis. 

 

2.2 Image processing 

Digital image processing is a field with various applications and has been around for 
many decades. In medical processing is focused on cleaning the data in order to 
achieve the optimal visualization of brain volume. Neuroimaging tools have been 
created having various procedures. Those include removal of biases, noise and other 
artifacts, normalization of intensity values, image registration,  visualization of the brain 
volume and a portion of them extend their functionality into image analysis [29] [30]. 
Most of such artifacts occur during the MRI acquisition. Both development in the 
architecture of MRI machines and the optimization of algorithms reduce the effects of 
those artifacts in the MRI virtualization. Thus, such advances in technology lead to the 
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creation of more sophisticated tools. Their primary aim is to assist clinicians in decision 
making.  

Neurodegenerative disorders and brain cancer are cannot be yet properly countered, 
thus early diagnosis and monitoring of the development is required. The most common 
tool used for all these procedures is Freesurfer [26]. It is an open source which 
developers update regularly and they provide extensive documentations for 
customization of their code.  It supports MRI images and performs segmentation along 
with advanced image segmentation and analysis.  

 

2.3 Image segmentation 

Image segmentation is a part of image processing, and it is an important stage for 
neuroimaging studies [32]. The way images are segmented affect the final clinical 
decision therefore optimal accuracy in the estimation of brain regions is required. In 
Dementia diagnosis, the structural properties of brain regions play an important role for 
giving a background for the current clinical condition. In Dementia longitudinal studies, 
decline in brain structures is examined. Lately, with the emergence of deep learning, 
many algorithms for deep learning image segmentation have been created [33]. Even 
Freesurfer utility has been expanded in deep learning with the creation of FastSurfer 
[34]. These deep learning methods reach the optimal accuracy but they are still 
computationally expensive due to their architecture. Voxelmorph is state-of-the-art open 
software for training MRI image segmentation models in an unsupervised deep learning 
fashion. As a neural network, voxelmorph‘s architecture is known as U-net [35]. U-Nets 
are advanced convolution networks that perform specific procedures (Figure 2). 

It is divided to encoder and decoder. In the encoder compression of the image is 
performed and decoder does the decompression. They both include steps of 
convolution with use of an activation function, max pooling, crop and copy. Convolution 
includes importing an input volume to be compressed with a given filter (kernel). The 
output image is known as feature map. Both number of input features and number of 
output features are parameters that are defined by the developer. Then the max pooling 
operation follows which aims to minimize the feature map with a given stride and filter. 
Thus number of features is decreased. When reaching the minimum features needed, 
the algorithm starts the up-sampling where the decompression of image occurs. When 
reaching to the each stage of decompression each level incorporates a feature map 
from the compression stage. For each level, a part of feature map is cropped and 
copied to the existing decompressed feature map as shown in Figure 2.  
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Figure 2: The U-net architecture as proposed by Olaf Ronneberger et al. 

 

As Bayesian inference the model may be described by the following formula: 

Ŝ = arg ₛ max p(S|I)= arg max ₛ (I|S)p(S). (1) 

I corresponds to the intensity values of the 3D MRI volume, S is the probabilistic atlas 

used for segmentation with L labels where L=41. The posterior probability distribution 

p(S|I) is calculated by the prior I and the likelihood p(I|S). The last part of the equation 

means that for given input images and a probabilistic atlas the optimal output is 
estimated.  A probabilistic atlas represents the spatial distribution of probabilities for 
each brain region. Finally, the Ŝ segmentation is calculated. Other deep learning 
methods estimate the probability distribution at once. The likelihood p(I|S) aims to 
estimate the relationship between atlas and image intensity values , incorporated the 
imaging artifacts. For such reasons parameter θᵢ which describes the label probabilities 

and deformation of atlas is added as well as θᵢ which is a function for estimation of label 

and location. The developers focused on a personalized approach where the likelihood 
parameters are tuned automatically from the input images. In that way the model is 
robust to alterations of MRI contrast. Through mathematical operations, the use of point 
estimates and EM algorithm, the proposed model is shown in formula (2): 

Ŝ = arg ₛ max p ( S | θₛ , θᵢ , I ) = arg ₛ max p ( I |  S, θᵢ) p ( S | θₛ)  (2) 

 
In short, the final segmentation of the image is the maximum likelihood of a product. 
First part of the product estimate the probability for an image I, given parameters 
probabilistic atlas (S) and intensity parameters (θᵢ). Second part calculates the 
probability of atlas (S) given the atlas deformation (θₛ). The maximum likelihood of the 
product is calculated, and the optimal segmentation is chosen.The whole process is 
shown in Figure 3. 
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Figure 3: Segmentation model of voxelmorph taken by [26] 

 

The inputs are the 3D MRI image and a probabilistic atlas. The Convolutional Neural 
Network (CNN) is the U-net architecture which outputs the velocity field (v) and a 
pooling layer. From the polling layer the parameters variation and mean are calculated 
and along with the input image the likelihood is calculated. The velocity field is used in 
the integration layer to produce the deformable field. The integration layer performs 
squaring and scaling. The deformation field is used to transform the atlas into a 
wrapped atlas. The three outputs are combined to calculate the loss (ι). The whole 
process has no exposure to inter-subject bias; it is the fastest segmentation method 
while it does not uses manual delineations. Therefore voxelmorph is superior compared 
to Freesurfer and other neuroimaging tools. 

 

2.4 Fractal Dimension and Lacunarity of Brain structures 

Research in neuroimaging is mainly oriented on functional properties of the brain to 
discover any underline mechanisms that lead to specific symptoms. Structural analysis 
is mainly oriented on volumetric measurements of the brain [36] [37] and had little 
success on early diagnosis or prediction of the dementia development. However, some 
more sophisticated techniques have investigated other structure properties of the brain 
such as fractal Dimension [21] [22] [23] [38] [39] [40].  Rarely in neuroimaging is 
lacunarity included as biomarker [24]. In this thesis fractal dimension, y intercept, rmse 
and lacunarity are utilized as features.  Several of them are utilized to classify dementia 
and control groups. Therefore, if efficient classification is achieved, they may be used as 
potential biomarkers for detection of dementia.  

 

2.4.1 Fractal Dimension 

Fractal Dimension (Df) is a ratio which is used to measure complexity (roughness) of a 
structure [41] [42]. It is formulated by Mandelbrot in 1975 who tried to measure the self-
similarity of Britain‘s coast. The word fractal implies that dimensions are not strictly 
integers as classical geometry claims. Instead, fractal geometry assumes that there are 
dimensions which are not natural numbers but they are measured in a continuous 
spectrum instead. For example, while a cube has a dimension of 3, a deformable cubic 
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object may equals to 2.8 fractal dimension. Also, the term fractal implies self-similarity of 
the structure. For different scales objects like Koch snowflake are repeated. Such 
procedure is known as fractal analysis or monofractal analysis because the estimated 
fractal dimension is partially stable for different scales.   

There are cases where an object has not a partially stable fractal dimension. There is 
presence of multiple values of Df or divergence for different scales. Such object is 
considered as a multifractal. Multifractal analysis [43] involves the presence of a 
variable fractal dimension for a given object, impying the presence of further dynamics 
in the system. Thus, a constant value is not sufficient to describe the complexity of the 
structure. Multi-fractal analysis can be very enlightening for periodic events or patterns 
happening in physiology of the human body. It has been appied on several studies to 
identify characteristics between genders [125], while others examine physiological 
malfunctions and development of cancer [126] [127]. This approach can be applied to 
functional brain imaging in order to identify repeated metabolic processes or detect 
abnormalities in physiology [128] [129] [130]. Since, the thesis is based on structural 
imaging, multi-fractal properties of the brain are not examined at this scope.  

In images of high resolution, biological structures can be examined if they are repeated 
in smaller scales. Although, in structural MRI neuroimaging, resolution of MRI images 
has been augmented with the invention new MRI acquisition techniques Error! 
Reference source not found., still there are limits in deep learning training. The 
increased resolution leads to requirement of further computational resources and speed 
in training is dramatically reduced. Therefore, in this thesis, fractal dimension is only 
estimated as a tool for description of structure complexity. 

A common algorithm for calculation of fractal dimension is the box counting algorithm 
[41]. Box counting algorithm uses cubes for estimation of fractal dimension. Most data in 
neuroimaging are stored as voxelwise files. Thefore it is preferred for 3D imaging. Main 
box counting algorithms are the fixed grid and the sliding box. The former in 2D uses 
non-overlapping squares to calculate fractal dimension. The latter calculates fractal 
dimension with overlapping squares and can be applied to multi-fractal analysis. Both 
are require iterating in multiple scales with squares of different sizes in order to 
calculate the fractal dimension. In this thesis the box counting fix grid scan is used for 
both computational reasons. The formula that box counting method estimates fractal 
dimension is described by the following formula: 

𝐷box 𝑆 = lim𝑔→0  
-log𝑁 𝑠 

log s 
   (3) 

S is the fractal, while s is a scale factor for the size of boxes and N(s) is the number of 
minimum boxes covering the structure. For large scales the algorithm deverges from the 
actual calculation if the grid is positioned in an arbitrary fashion. Therefore an 
optimization is needed to compute the right positioning of the grid. Figure 4 shows three 
iterations of the box counting algorithm in 2D space with arbitrary grids.  This thesis 
uses 3D MRI images, therefore the formula is adapted to estimate boxes in the 3D 
space. The box counting method includes iterations for multiple scales. For each scale, 
the minimum number of boxes has to cover the area of the structure. Using a plot with 
logN and logs as variables and through linear regression two coefficients are calculated. 
The opposite of the first coefficient is Df while the second is the y intercept. Those two 
coefficients along with root square error (rmse) of linear regression are extracted into 
datasets. In the methods section it is explained with detail how these calculation are 
performed along with some optimizations and in the results section their utility is 
underlined. 
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Figure 4: Box counting method iterating with reduced size of boxes in 2D space. For proper 
estimation of the fractal dimension the grid must be positioned properly in order to fit the 

minimum number of boxes. 

 

2.4.2 Lacunarity 

Lacunarity from image analysis perspective is a texture that measures the gaps in a 
structure. The name is originated by the word lacuna which means lake because it 
describes the effect of gaps (lakes) on structures. In other words it is a measurement of 
heterogeneity. Structures with large gapping usually have high lacunarity. Although 
there are many approaches to estimate lacunarity, in this thesis the prefactor lacunarity 
(PΛ) has been computed. Box counting method efficiently calculates prefactor lacunarity 
as shown on formula (3). 

P𝛬 =
  (𝐺
𝑔=1

𝐴𝑔

𝐴 
− 1 )2

𝐺
 (3),  

Ag is described by equation (4). 

Ag = 
1

𝑒𝑦𝑔
 (4), 𝑦𝑔  is the y intercept for a given g grid position and 𝐴  = 

  𝐴𝑔
𝐺
𝑔=1

𝐺
 (5) 

However, prefactor lacunarity is affected by the scale factor and the image size, thus 
methods have been implemented to match the size of each structure and scaling. In 
Dementia neuroimaging is a promising biomarker as it may characterize decline in brain 
structures [44]. Usually in progressive dementias, there is brain atrophy which can be 
measured by lacunarity. Lacunarity can be a potential biomarker for dementia if 
estimated properly. Brain atrophy leads to local gaps in brain structures. Therefore, 
there is a potential to find different profiles for health and dementia groups that are 
based on the heterogeneity of their brain structures. Also, it can be used for brain 
atrophy in an approach based on repeated measures. In longitudinal studies it can be 
used for estimation of dementia development. It is also utilized in cancer studies for 
detection and development of tumours [45] [46] [47]. 

 

2.4.3 Fractal Dimension and Lacunarity tools 

Existing tools that calculate fractal dimension or lacunarity [48] [49] [50] [51] [52] [53] 
[54] [55] [56] [57] are shown in Table 1. Despite the plethora of these methods a simple, 
computationally fast and holistic method from image processing to Fractal dimension 
and Lacunarity estimation for specific brain regions is yet to be created. Each one of 
these programs is specialized on specific tasks. Some of them just compute Fractal 
Dimension, others Df along with lacunarity for a given structure. UJA-3DFD only 
estimates the Fractal dimension for a whole brain volume but not for the brain regions 
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separately. Although Fracdim performs multifractal analysis along with lacunarity and 
fractal dimension estimation, it only has a given structure as import.  None of them 
follows an automated approach of creating datasets from multiple inputs. Also, they just 
compute a structure given as input and no image processing and segmentation is 
performed. The only drawback of Fractal Tool is that it does not support visualization of 
the inputs and outputs. Such differences between the current approach and the rest of 
the tools are shown in Table 2. 

 

Table 1: Softwares that calculate Fractal Dimension and/or Lacunarity 

Software Approach 

BENOIT 
Measures the FD and/or hurst exponent of data sets using your 

choice of methods to analyze self-similar patterns and self-
affine traces, also applying a white noise filter 

Fracdim 
(Fractal Dimension Java 

Applet) 

Calculates the box-counting dimension using a Monte Carlo 
algorithm. 

FracLac 

(Fractal Dimension and 
Lacunarity, part of 

ImageJ) 

Describes morphology details represented in binary or 
grayscale digital images, using mass and box-counting FD and 

multifractal analysis data 

Fractal analysis 
system for Windows 

Calculates FD by the method of box-counting after pre-
processing 

Fractaldim-package 
Estimates an FD of the given data, using different methods 

regarding the type of dimensional time series 

Fractalyse 
(Fractal Analysis 

Software) 

Computes the FD of the black and white image, curve, and 
network 

Gwyddion 
A modular program for scanning probe microscopy data 

visualization and analysis 

Hausdorff 
(Box-Counting) Fractal 

Dimension 

Returns the Haussdorf FD of an object represented by its 
binary image. This is a function used in matlab 

UJA-3DFD 
Computes the 3D FD from brain MRI, calculating the 3D box-
counting of the brain's entire volume and 3D skeletonization 

Box-Counting Method 
in Python for Fractal 

Analysis of 
Biomedical Images 

Computes Fractal dimension with several box counting 
algorithm for biomedical images 
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Table 2: Comparison of tools from Table 1 with Fractal Tool 

Tool Dimension Exports 
Brain 
areas 

Number 
of files 

Brain 
image 

processing 
Visualize 

BENOIT  2D, 3D Df 
Whole 
Brain 

Volume 
multiple No Yes 

Fracdim  2D Df, PΛ 
Whole 
Brain 

Volume 
single No No 

FracLac / 
ImageJ  

2D, 3D Df, PΛ 
Whole 
Brain 

Volume 
single No Yes 

Fractal analysis 
system for 
Windows  

2D, 3D Df 
Whole 
Brain 

Volume 
single No Yes 

Fractaldim - 
package  

2D Df 
Whole 
Brain 

Volume 
single No No 

Fractalyse  2D Df 
Whole 
Brain 

Volume 
multiple No Yes 

Gwyddion  2D Df 
Whole 
Brain 

Volume 
single No Yes 

Hausdorff 
Fractal 
Dimension 
(Matlab)  

2D Df 
Whole 
Brain 

Volume 
single No Yes 

Box-Counting 
Method in 
Python for 
Fractal Analysis 
of Biomedical 
Images  

2D Df 
Whole 
Brain 

Volume 
single No Yes 

UJA-3DFD  3D Df 
Whole 
Brain 

Volume 
multiple Yes Yes 

Fractal Tool  3D 
Df, 

y_intercept, 
RMSE, PΛ 

41 multiple Yes No 
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2.5 CDR and automation 

Clinical Dementia Rating (CDR) [16]  ranges from 0 to 3, where 0 stands for health 
subject, 0.5 is questionable dementia or very mild dementia, 1 is mild dementia, 2 
stands for moderate stage and 3 is severe Dementia. A test is performed which includes 
interviewing dementia patients while clinicians estimate the CDR score. Mini-Mental 
State Examination (MMSE) is a similar method to spot the Dementia stages with scores 
ranging from 0 (no dementia) to 30 (severe dementia). Methods for automatic diagnosis 
are developed to estimate Dementia stages or classify healthy subjects from Dementia 
patients. [58] [131] [132] [133] [131] [134] 

In this thesis, CDR score has been used to label different stages of Dementia. 
Performing machine learning, control group (CDR = 0) and patient group (CDR 1 or 
greater) are classified with the utility of various fractal and volumetric features. Subjects 
with clinical score equal to 0.5 were excluded. The results suggest high accuracy rates 
on the classifications performed. In some brain regions one feature was sufficient to 
classify the images as no overlapping between the two classes existed.  Οther required 
SVM models. The classification utilizing Support Vector Machines models used 2 
features but there are cases where 1 feature separates the two classes with 100% 
accuracy. In Figure 5 the optimal performance of these models is shown for several brain 
regions. 

 

 

Figure 5: The optimal performance of SVM models for brain regions 

 

Till recently, different approaches for classification of Dementia and control subjects had 
been performed. In terms of accuracy and number of features this method outperforms 
them. Also, the size of dataset used in the majority of these methods is not large 
enough to reach to safe conclusions. Although, the model proposed by Huang et al., 
[134] has equal performance with the classification proposed on this thesis, it has a 
short dataset of 18 samples. Also, it is specialized on classifying AD patients and 
controls, while in this case any Dementia patient is distinguished from healthy subjects.  
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In figures Figure 6, Figure 7, Figure 8 performance of each classification method is 
displayed along with Fractal Tool.  

Since the dataset used in the Fractal Tool was unbalanced the accuracy has been 
measured with the Fbeta score where factor β = control group size / Dementia size = 
594 / 72 = 8.25. Also, by increasing β factor, SVM models aim to increase recall over 
precision. In recall and precision there is a trade-off between False-Positives and False-
Negatives. In medical problems it is crucial not to mistakenly identify a patient as 
healthy subject (False Negative). Simultaneously, it is less important to identify a 
healthy individual as patient (False Positive). 

Such findings indicate the utility of this software. From the datasets created, potential 
biomarkers for Dementia classification problems were discovered. The final 
classification shows that the features derived from the softwares extracted datasets can 
be potential biomarkers for diagnosis of Dementia stages or even applied for prediction 
of Dementia development.  

 

 

Figure 6: Comparison of Fractal Tool with other methods [134] [135] [136] [137] [138] [139] [140] 
[141] [142] [143] correspondingly. 
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Figure 7: Number of features used in methods with the highest accuracy. 

 

 

 

Figure 8: Size of dataset used in methods with the highest accuracy. 
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3. METHODS 

The whole process includes collection of imaging data from OASIS-3 [59] which is 
imported into the FreeSurfer software for Image Processing. Then, each processed 
image is segmented into 40 different brain regions with Voxelmorph. Fractal Dimension, 
volume, rmse, y intercept and ιacunarity for each brain structure are calculated. All 
these steps apart from the collection of data are processes of the software. In a later 
stage in order to check the utility of the software, data from healthy and Dementia 
subjects is compared to find any significant differences in a cross-sectional study. The 
pipeline of the software is shown in figure 9. 

 

 

Figure 9: A brief description of the process. First, the data were collected from OASIS database 
following image processing which has been performed with Freesurfer. Voxemorph segmented 

the volumes and a python pipeline estimated the Df. The extracted datasets are csv files. 

 

3.1 Data 

The data used in the study were 3D MRI T1 weighted images derived from OASIS-3 
Error! Reference source not found. dataset as NIfTI files. There multiple reasons for 
using this dataset as a testing input in the software. Firstly, OASIS project gives free 
access to students and researchers to use their datasets for academic purposes. Also, 
MRI is a non invasive method for diagnosis, prediction and estimation of brain 
abnormalities. Between T1 and T2 weighted images T1 was preferred because 
Voxelmorph‘s trained models are tested and evaluated mainly in T1 weighted images. 
3D representations of brain structures generally are more computationally expensive 
but more accurate than 2D in image segmentation. However, the state-of-the-art 
performance of voxelmorph tackles that drawback and ensures a high speed for image 
segmentation of a few seconds. Additionally, FreeSurfer provides fast basic processing 
for 3D brain images, while calculation of fractal dimension for 3D structures is not a 
computational expensive task if optimized properly. 

There are mainly three modeling types representing 3D objects; mesh, point cloud and 
voxel methods [60]. The most common formats for brain visualization are NIfTI and 
DICOM [61] [62]. NIfTI is a voxel-wise format containing 2D slices, mainly used for 
medical purposes. This collection of 2D slices is the representation of the 3D object. In 
NIfTI header is included additional medical data such as the dimension of the voxels or 
scale. The extension of this format is .nii and DICOM format can easily be transformed 
into NIfTI. 
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The OASIS-3 dataset has sessions from 609 healthy adults and 489 subjects of various 
dementia stages validated by clinicians. OASIS-3 project is a longitudinal study which 
means that some subjects have multiple repeated measurements. The data are stored 
in XNAT, an open access bioinformatics platform, but allowance for OASIS-3 dataset is 
first required through application. Each session has a unique ID, for example 
OAS300001_MR_d0145. OAS shows that the subject is taken from OASIS project, 
300001 is the ID of the subject, MR stands for MRI routine and d0145 represents the 
days since the subject‘s entry. In addition, each session may include multiple MRI 
acquisitions from the same visit. For example in the folder OAS30001_MR_d0129 there 
are 2 folders named anat2 and anat3. These folders include files such as sub-
OAS30001_ses-d0129_run-01_T1w.nii. The file name includes additional information 
for MRI image with T1w indicating that it is a T1 weighted image and run-01 that is the 
first MRI scan of this session. Also, the session includes FreeSurfer files in the folder 
OAS30001_Freesurfer53_d0129. There exist all extracted files from FreeSurfer 
routines. How the files and directories are organized is shown in Figure 10. Subjects 
already having the required FreeSurfer files can be imported directly for image analysis 
in order to avoid unnecessary repeated image processing routines. The files that shall 
be used from Freesurfer are included and processed in the mri directory.   

 

Figure 10: The structure of directories downloaded from OASIS-3 for session 
OAS300001_MR_d0145 

 

In the final analysis a cross-sectional study was performed and thus only one session 
for each subject has been used. The labeling of each subject was based on Clinical 
Dementia Rating (CDR), which is an ordinal scale score for discriminating Dementia 
stages. A written test questioning the patient is required to estimate CDR. Healthy 
individual is scored with 0, questionable or very mild Dementia is scored with 0.5, mild 
Dementia with 1, Moderate Dementia with 2 and severe dementia with 3. OASIS-3 
project also includes multiple CDR sessions for each subject, performed at different 
dates from MRI sessions. So, each subject had to meet specific criteria in order to be 
labeled properly (Figure 11). 
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Firstly, an MRI session should be performed at a date between two CDR sessions of 
the same value. If a MRI session is not chronologically between two CDR sessions then 
the closest one CDR session is checked. If CDR session has distance of 48 days or 
less from MRI session then the subject is labeled. In case of MRI session being 
between two CDR sessions with different scores, the closest one with a distance of 
maximum 48 days from MRI sessions is chosen.  In any other case, subjects were not 
included the study. In the study two groups were used, control group (CDR = 0) and 
subjects diagnosed with at least mild Dementia (CDR <= 1). The class with CDR =0.5 
was not included due to the overlapping with the control group. Also, frequent 
conversion from CDR = 0.5 to CDR = 0 or reverse has been spotted meaning that 
separating these two classes is difficult especially in subjects that are close to the 
decision boundary. 594 healthy subjects (CDR = 0) were enrolled in the study out of 
609, while only 72 subjects with CDR greater than 1 consisted the patient group.  

 

 

Figure 11: The flow that describes how the data gathered for the final analysis 

 

3.2 Image Processing with Freesurfer 

The input data is brain images from the subjects which are acquired directly from the 
MRI scanner without any processing [63]. These raw images are needed to be cleaned 
from noise or artifacts that may induced during the MRI acquisition [64]. There is a 
plethora of image processing algorithms for multiple tasks. However, in this case a tool 
specialized on medical brain imaging is required for both optimal accuracy and speed. 
Freesurfer is open source software [25], which is a collection of multiple tools 
specialized on brain image processing and analysis. It is widely used in the scientific 
community for medical applications. In this thesis, the stable version 6.0 of Freesurfer is 
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used to perform specific processing routines such as correcting any detected motions 
[65], adjusting the size of voxels, normalizing the intensity values [66] and transform 
volume to talairach space [67]. The command recon-all applies the appropriate 
algorithms which include the core of the image processing. The command autorecon1 
performs a part of routines from the recon-all command. All the output files from 
autorecon1 command are stored in a folder named mri inside the session‘s folder. After 
autorecon1 is finished, output files need post-processing in order to be used for image 
segmentation. Voxelmorph uses files with different imaging properties such as type of 
data and size of volume, so extra processing is required. The methods that have been 
executed through a pipeline to perform image processing are shown briefly in Table 3. 

 

Table 3: Pipeline used to automatically perform image processing with Freesurfer 

Processes Brief description 

Motion Correction Removes small notions 

Conformation 
Conforms voxel size to 1x1x1 mm and volume to 
256x256x256   

Transformation to Talairach 
space 

Affine registration 

NU (Non-Uniform intensity 
normalization) 

Performs bias1 field correction 

Intensity Normalization Normalizes intensity values  

Skull stripping Removes skull from volume 

EM registration Align the input file to GCA atlas 

Intensity Normalization Additional intensity normalization 

 

3.2.1 Preparing the data 

Before starting the image processing, Freesurfer uses the mri_convert utility, which 
converts files in various medical file formats. In the software it is designed to 
automatically import a NIfTI file and convert it to mgz format. Mgz is a single 
compressed file used by Freesurfer that apart from imaging data also contains 
metadata.  When in terminal autorecon1 command is executed, the preparation of data 
is enabled automatically and mri_convert is called to output compatible mgz files for 
image processing. Brief description of this conversion is described on Figure 12. 

 

 

 

 

 

 

 

Figure 12: When autorecon1 is executed it calls mri_convert, which imports the input NIfTI file 
T1w.nii and extracts it as a converted version file. The extracted mgz file is T1w.mgz. 
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3.2.2 Motion Correction 

MRI scans are not produced simultaneously, but for each acquisition there is a time 
difference of a few seconds. Apart from short acquisition time there are several factors 
that may lead to the acquisition of a low quality image. Considering that the subject may 
produce motion artifacts such as ghosting, blurring, geometric distortion or decreased 
SNR, the quality of the image is dropped [65]. Therefore, a correction algorithm for 
dealing with these artifacts is needed. One solution for this is to scan the same subject 
again in order to gain similar slices. Motion correction is possible using image 
registration, a method that aligns images of the same scene with different angle or time 
[68]. In FreeSurfer, motion correction pipeline is enabled when two or more volumes are 
imported as inputs. Typically those inputs are of the same subject and visit, but are 
different MRI scan routines. Freesurfer detects any small motion between the multiple 
volumes and corrects them. Then, it averages the corrected volumes and outputs a file 
named rawavg.mgz. Averaging can be done using either mean or median. 

 

3.2.3 Conform the image 

Furthermore, along with motion correction, the first -autorecon1 stage alters the volume. 
Freesurfer sets volumes to be coronal-wise with isotropic voxels of 1 x 1 x 1 mm and 
dimensions of 256 x 256 x 256 or more. Type of data is char. The rawavg.mgz file is 
imported to be conformed and orig.mgz is exported. Freesurfer calls motioncor which is 
an iterated algorithm for motion correction and conform. Table 4 shows the commands 
used. The recon-all autorecon1 command first calls motioncor which executes the 
mri_robust_template. This template performs iteratively the motion correction. The 
parameter –mov is used for identifying the input files, --average can take only 2 values 0 
(mean) or 1 (median) in order to choose the way the output volume shall be averaged. 
The parameter –template corresponds to the output rawvg.mgz file. Furthermore, --satit 
is a method for automatically identify good sensitivity detection, recommended by the 
developers to be applied on brain scans. The other parameters perform initialization (--
inittp, --fixtp), scaling (--iscale, --iscaleout), subscaling (--subscale) if dimension on all 
axes is greater than 200 and –lta exports xforms [referer] for each input file. Then, 
mri_convert then converts the file rawavg.mgz to orig.mgz and parameter –conform 
alters the volume to 1mm voxel size, with size 256x256x256 or greater and in coronal-
wise slice direction. The routine mri_add_xform_header just adds the xform into the 
header of the orig.mgz. Then, it exports the orig.mgz file. The parameter –c just imports 
the name of the transforms/talairach.xfm file into the header without loading it. 

 

Table 4 : Commands tha were used in the conformation and motion correction pipeline. 

 Command line 

1 
mri_robust_template --mov 001.mgz 002.mgz --average 1 --template rawavg.mgz --satit --inittp 1 --
fixtp --noit --iscale --iscaleout --subsample 200 --lta 

2 mri_convert rawavg.mgz orig.mgz --conform 

3 mri_add_xform_to_header -c transforms/talairach.xfm orig.mgz orig.mgz 

4 mri_nu_correct.mni --n 1 --proto-iters 1000 --distance 50 --no-rescale --i orig.mgz --o orig_nu.mgz 
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3.2.4 Transformation to Talairach space 

Human brain in Freesurfer is visualized using Talairach space, which is a 3D coordinate 
system [67]. It aims at mapping the brain regions without taking into consideration 
individual size or shape variations. Freesurfer imports the orig.mgz file, calculates the 
affine transformation of volume matching to MNI305 brain atlas. To perform this routine 
it call MINC tool using a script called talairach. The pipeline is explained on Table 5. The 
file mri_nu_correct.mni executes nu_correct. It performs wrapping.  Input is orig.mgz 
and output orig_nu.mgz. Number of iterations to run nu_correct is defined with --n, while 
the rest parameters (--proto-iters, --distance, --no-rescale) are additional inputs for 
nu_correct related with iterations, distance and scaling. Then, talairach_avi is executed 
importing orig_nu.mgz and exporting transforms/talairach.auto.xfm. This output file 
contains a 3x4 matrix which is the affine transformation of the input file to Talairach 
space. The command cp transforms/talairach.auto.xfm transforms/talairach.xfm just 
copies the components of transforms/talairach.auto.xfm to transforms/talairach.xfm file. 
Subsequently talairach_afd check for failures in affine transformation with threshold of 
0.005 and input the transforms/talairach.xfm file. Finally, the file the 
transforms/talairach_avi.log is exported running the script extract_talairach_avi_QA.awk 
for capturing the progress of each process.  

 

Table 5: The pipeline used in Freesurfer to perform affine transformation 

 Command line 

1 
mri_nu_correct.mni --n 1 --proto-iters 1000 --distance 50 --no-rescale --i orig.mgz --o orig_nu.mgz 

2 talairach_avi --i orig_nu.mgz --xfm transforms/talairach.auto.xfm 

3 cp transforms/talairach.auto.xfm transforms/talairach.xfm 

4 talairach_afd -T 0.005 -xfm transforms/talairach.xfm 

5 awk -f $FREESURFER_HOME/bin/extract_talairach_avi_QA.awk transforms/talairach_avi.log 

 

3.2.5 Non-Uniform intensity normalization 

Although, tissues have to be homogeneous in specific regions of interest, rarely are 
they virualized properly during MRI acquisition. An artificial smooth variation occurs in 
the intensity values known as non-uniform intensity or bias1 field [69]. Non-uniformed 
intensity is a common problem, mainly shown on MRI scanners that had coils with linear 
radio frequency polarization. Recently, these coils are obsolete and majority of them are 
replaced by circularly polarized coils. Nonetheless, anatomical properties of each 
subject and eddy currents produced during MRI routine are some additional causes. 
The removal of this artifact is crucial as it affects segmentation. FreeSurfer uses the 
non-parametric non-uniform intensity normalization (N3) [69] method to remove this 
artifact. It runs the MINC tool with nu_correct.mni. MINCI tool does the normalization 
using nu_correct iteratively. Table 6 shows an implementation of mri_nu_correct.mni 
command. This command imports orig.mgz file, exports nu.mgz, sets the number of 
iterations to 2 and use uchar instead of float.  

 

Table 6: The command that enables the N3 normalization 

Command 

mri_nu_correct.mni --i orig.mgz --o nu.mgz --uchar transforms/talairach.xfm --n 2 
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3.2.6 Intensity Normalization 

After removing field bias, the process of normalizing the values of the input volume is 
called. In image processing the range of intensity values is changed in order to improve 
contrast. Normalization intensity in Freesurfer is calculated with mri_normalize script as 
shown in Table 7. The goal is to output an image where the intensity values of whiter 
matter results to a mean of 110. Imports nu.mgz, converts it into a normalized white 
matter volume and saves it as T1.mgz. Parameter g is the maximum intensity. 

 

Table 7: The command that enables normalization 

Command 

mri_normalize -g 1 -mprage nu.mgz T1.mgz 

 

3.2.7 Skull stripping 

Final step of the autorecon1 process is the removal of skull from the volumes [70]. It is 
an image segmentation task which aims to distinguish tissues of the brain from the 
skull. Commands are shown in table Table 8. Firstly, mri_em_register transforms the 
input file nu.mgz to lta format. The extracted transforms/talairach_with_skull.lta file is 
imported to mri_watershed which removes the skull and other tissues that are not 
included in the brain. It imports the normalized volume T1.mgz, it improves 
segmentation with given atlas using parameter –brain_atlas and outputs 
brainmask.mgz. Then, with cp command the brainmask.auto.mgz is stored to 
brainmask.mgz file. 

 

Table 8: The pipeline for skull stripping 

Command 

mri_em_register -skull nu.mgz $FREESURFER_HOME/average/RB_all_withskull_2016-05-
10.vc700.gca transforms/talairach_with_skull.lta 

mri_watershed -T1 -brain_atlas $FREESURFER_HOME/average/RB_all_withskull_2016-05-
10.vc700.gca transforms/talairach_with_skull.lta T1.mgz brainmask.auto.mgz 

cp brainmask.auto.mgz brainmask.mgz 

 

 

3.2.8 EM Registration and Normalization 

After the autorecon1 processes EM registration is performed. The mask brainmask.mgz 
is aligned to a default Freesurfer atlas using mri_em_register. Then, mri_normalize 
normalizes the intensity values in order to be prepared for the image segmentation. 
Commands are part of the autorecon2 process that does image segmentation. 
However, only 2 steps were used, -gareg and –canorm because image segmentation 
shall be performed from voxelmorph. Commands are shown in Table 9. First, 
brainmask.mgz is imported as mask in mri_em_register and transforms/talairach.lta file 
is produced. Finally, the file norm.mgz is extracted from mri_ca_normalize which 
imports brainmask.mgz as mask, transforms/talairach.lta and volume nu.mgz. 
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Table 9: Pipeline for EM Registration and Normalization 

Command 

mri_em_register -mask $SUBJECTS_DIR/$str/mri/brainmask.mgz $SUBJECTS_DIR/$str/mri/nu.mgz 
$FREESURFER_HOME/average/RB_all_2016-05-10.vc700.gca 
$SUBJECTS_DIR/$str/mri/transforms/talairach.lta 

mri_ca_normalize -c ctrl_pts.mgz -mask $SUBJECTS_DIR/$str/mri/brainmask.mgz 
$SUBJECTS_DIR/$str/mri/nu.mgz $FREESURFER_HOME/average/RB_all_2016-05-10.vc700.gca 
$SUBJECTS_DIR/$str/mri/transforms/talairach.lta $SUBJECTS_DIR/$str/mri/norm.mgz 

 

 

3.2.9 Summary of Image Processing 

Table 10 and Table 11 described briefly the whole Freesurfer pipeline. Commands in 
these tables have been taken from Freesurfer webpage [71] . The script which executes 
the FreeSurfer pipeline is shown in Error! Reference source not found. in the 
Appendix section. 

 

Table 10: Processes from recon-all  -autorecon1 command 

Flag Command line Input / Output files 

-i s1.nii mri_convert s1.nii orig/001.mgz 
s1.nii 

orig/001.mgz 

-i s2.nii (optional) mri_convert s1.nii orig/002.mgz 
s2.nii 

orig/002.mgz 

-motioncor 

mri_robust_template --mov 001.mgz 002.mgz --
average 1 --template rawavg.mgz --satit --inittp 1 -
-fixtp --noit --iscale --iscaleout --subsample 200 --
lta 

orig/001.mgz 
orig/002.mgz 

rawavg.mgz 

mri_convert rawavg.mgz orig.mgz --conform 
rawavg.mgz 

orig.mgz 

mri_add_xform_header -c 
transforms/talairach.xfm orig.mgz orig.mgz 

orig.mgz 

orig.mgz 

mri_nu_correct.mni --n 1 --proto-iters 1000 --
distance 50 --no-rescale --i orig.mgz --o 
orig_nu.mgz 

orig.mgz 

orig_nu.mgz 

-talairach 

talairach_avi --i orig_nu.mgz –xfm 
transforms/talairach.auto.xfm 

orig_nu.mgz 

transforms/ 
talairach.auto.xfm 

Cp transforms/talairach.auto.xfm 
transforms/talairach.xfm 

transforms/ 
talairach.auto.xfm 

transforms/ talairach.xfm 
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Table 11: The rest of the customized Freesurfer pipeline 

Command line Input / Output files 

mri_em_register -mask $SUBJECTS_DIR/$str/mri/brainmask.mgz 
$SUBJECTS_DIR/$str/mri/nu.mgz 
$FREESURFER_HOME/average/RB_all_2016-05-10.vc700.gca 
$SUBJECTS_DIR/$str/mri/transforms/talairach.lta 

brainmask.mgz 

nu.mgz 

transforms/ talairach.lta 

mri_ca_normalize -c ctrl_pts.mgz -mask 
$SUBJECTS_DIR/$str/mri/brainmask.mgz 
$SUBJECTS_DIR/$str/mri/nu.mgz 
$FREESURFER_HOME/average/RB_all_2016-05-10.vc700.gca 
$SUBJECTS_DIR/$str/mri/transforms/talairach.lta 
$SUBJECTS_DIR/$str/mri/norm.mgz 

 

brainmask.mgz 

nu.mgz 

transforms/ talairach.lta 

transforms/talairach.lta 

norm.mgz 

 

 

3.3 Image Segmentation with Voxelmorph 

A fundamental process in image processing is image segmentation [72]. In medical 
sciences is widely applied to distinguish tissues or abnormalities in subject‘s anatomy. 
Many algorithms have been developed through the years [72] [73] trying to achieve the 

talairach_afd -T 0.005 -xfm 
transforms/talairach.xfm 

transforms/ talairach.xfm 

 

awk -f 
$FREESURFER_HOME/bin/extract_talairach_avi
_QA.awk transforms/talairach_avi.log 

 

transforms/ 
talairach_avi.log 

-nuintensitycor 
mri_nu_correct.mni --i orig.mgz --o nu.mgz --
uchar transforms/talairach.xfm --n 2 

orig.mgz 

talairach.xfm 

nu.mgz 

-normalization mri_normalize -g 1 -mprage nu.mgz T1.mgz 
nu.mgz 

T1.mgz 

-skullstrip 

mri_em_register -skull nu.mgz 
$FREESURFER_HOME/average/RB_all_withskul
l_2016-05-10.vc700.gca 
transforms/talairach_with_skull.lta 

nu.mgz 

transforms/talairach_with_
skull.lta 

mri_watershed -T1 -brain_atlas 
$FREESURFER_HOME/average/RB_all_withskul
l_2016-05-10.vc700.gca 
transforms/talairach_with_skull.lta T1.mgz 
brainmask.auto.mgz 

T1.mgz 

brainmask.auto.mgz 

cp brainmask.auto.mgz brainmask.mgz 

brainmask.auto.mgz 

brainmask.mgz 



Fractal tool; Calculating 3D fractal dimension of brain regions for a Dementia classification problem 

 

S. Chatzichronis  36 
 

best accuracy as decisions for diagnosis and development of related diseases are 
crucial. Voxelmorph is specialized in brain segmentation and has superiority in terms of 
speed and accuracy compared to other segmentation algorithms. It successfully 
segments 40 different brain regions and its performance can be augmented with the 
appropriate tuning of the training models. The algorithm is written in two python scripts 
named train_unsupervised_seg.py and test_unsupervised_seg.py. The first process is 
the most computationally expensive as it trains a segmentation model for brain regions. 
The test script uses the model to perform segmentation to the input volume. Before 
importing the processed volumes for training or testing, additional processing is 
required. 

 

3.3.1 Preparing the data 

Input files in voxelmorph support the format npz, a compressed python file. The 
convert_mgz_to_npz bash script was written to transform mgz files to npz. It calls 
automatically FreeSurfer to perform the affine transformation. Voxelmorph supports 
volumes centered in (0,0,0). It imports the selected volumes, sets the center of 
coordinates to (0,0,0), exports a log file and the volume in NIfTI format. Then it calls 
python script create_npz.py. The create_npz.py script changes the format of the given 
volume. The dimensions of the volume were reduced due to memory issues and 
unnecessary voxels were removed. The python script saves the npz file. In this 
experiment due to memory constraints, volumes of size (144, 112, 96) were created. 
So, specific brain regions at the given volume of interest (VOI) were examined. The 
code of the scripts is shown below (tables Table 12 and Table 13). 

 

Table 12: The script that converts mgz files to npz 

Bash script convert_mgz_to_npz 

#!/bin/bash 

length=$# 

anat="" 

counter=0 

str1=${1} 

export SUBJECTS_DIR=$2 

export FREESURFER_HOME=$1 

source $FREESURFER_HOME/SetUpFreeSurfer.sh 

#transform mgz and convert mgz to nii 

f="${3}.nii.gz" 

echo "" 

mri_convert $4 $2/$3"/mri/"$f --apply_transform $2/$3/mri/transforms/talairach.xfm 

--devolvexfm $3 -ic 0 0 0 

 

python3 $5 "${2}/${3}/mri" $3 $6 

str2="${2}/${3}/mri/${f}" 

rm "${str2}"  

 

Table 13: Python script that reduces the dimensions of the npz file 

Python script create_npz.py 

#!/usr/bin/python 

import sys 

import numpy as np 

import nibabel as nib 

import os 

#[1] file path, [2] file name, [3] file destination 

filename = os.path.join(sys.argv[1], sys.argv[2]+".nii.gz") 

img = nib.load(filename) 
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data = np.array(img.dataobj) 

print(data.shape) 

s = data.shape[0] 

a = data[48:(s-48), 31:(s-33), 3:(s-29)]  

print(a.shape) 

str = sys.argv[3]+"/"+sys.argv[2]+'.npz' 

np.savez_compressed(str, a, vol="myvolume") 

 

3.3.2 Training the model 

After preparing the data, the user can enable the image segmentation. The process 
starts by calling the test_unsupervised_seg.py in the software. The training process of 
each model was run online in the Kaggle [74] platform as shown in Table 14. Kaggle 
uses Jupiter notebooks. The probabilistic atlas is given by Voxelmorph which is required 
for training the model. It was reduced to fit the new diminished size of the dataset. Due 
to restraints in memory usage, the images had to be cropped smaller than developers 
suggested. Also, for such reasons the training of the models has been run in the online 
platform kaggle. The online interpreter has a GINVIDIA GPU. The hyper parameters 
included batch size of size 1 and 120 training epochs due to memory allocation. Two 
different models were trained, one for the control group and one for the patient group. 
70% of available imaging data was chosen for training in each case. Due to lack of 
ground truths the models could not be validated for overfitting. The output is a file of h5 
format, which is the model used later in test_unsupervised_seg.py for segmentation. 
However, trained model files can be changed. Thus validated and more accurate 
segmentation model can be incorporated in the tool. 

 

Table 14: Command for training the segmentation model with Voxelmorph 

Command  

run ../input/test-sc/train_unsupervised_seg.py ../input/thesis-dataset --

atlas ../input/prob_atlas_float32_144_112_96.npz --epochs 120 

 

3.3.3 Segmenting the volumes 

Then, assuming a good performance of the models trained, all volumes were 
segmented using the test_unsupervised_learning.py script. It took approximately 45 
seconds to segment each volume. Command for segmention of each volume is shown 
in Table 15. The test_unsupervised_seg.py script requires a volume in the format of npz 
to segment, a trained model, the probabilistic atlas and a mapping file. After these 
processes are completed, the image processing is finished therefore the data are 
prepared for the Image Analysis. 

 

Table 15: The command that enables segmentation for a given session 

Command for segmentation 

/current_directory/test_unsupervised_seg.py /current_directory/ 

OAS30145_MR_d4247.npz /current_directory/OAS30052_MR_d2737.npz --model 

/current_directory/0120_cdr1.h5 --atlas 

/current_directory/prob_atlas_float32_144_112_96.npz --mapping 

/current_directory/prob_atlas_mapping.npz 
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3.3.4 Brain regions 

The segmentation profile consists of 41 different brain regions. Table 16 shows the 
name of each label and what brain region corresponds. The label with the name 
unknown refers to the voxels that are not part of the brain. Three slices from the same 
subject are shown in Figure 9. 9A, 9B, 9C figures display the segmented brain where 
each colour corresponds to a label. 9D, 9E, 9F figures are the same images where only 
brainstem has been kept. 

 

Table 16: The brain regions that voxelmorph exports after image segmentation. 

Label Brain Region Label Brain Region 

1 Unknown  22 Left-Thalamus-Proper 

2 Left-Cerebral-Cortex 23 Right-Thalamus-Proper 

3 CSF 24 Left-VentralDC 

4 Left-Lateral-Ventricle 25 Right-VentralDC  

5 Right-Cerebral-Cortex 26 3 rd Ventricle 

6 Right-Cerebral-White-Matter 27 Right-Putamen 

7 Right-Cerebellum-Cortex 28 Left-Putamen 

8 Left-Cerebellum-Cortex 29 Left-Caudate 

9 Right-Cerebellum-White-Matter 30 Right-Caudate 

10 Left-Cerebellum-White-Matter 31 Left-Pallidum 

11 Right-Lateral-Ventricles 32 Right-Pallidum 

12 Right-choroid-plexus  33 Right-vessel 

13 WM-hypointensities 34 Non-WM-hypointensities 

14 Left-Lateral-Ventricles 35 Left-Amygdala 

15 Left-choroid-plexus 36 Right-Amygdala 

16 4th-Ventricle 37 Left-vessel 

17 Brain-Stem  38 Optic-Chiasm 

18 Left-Hippocampus 39 Right-Accumbens-area 

19 Right-Hippocampus 40 Left-Accumbens-area 

20 Left-Inf-Lat-Vent 41 5th-Ventricle 

21 Right-Inf-Lat-Vent   
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A 

 

B 

 

C 

 

   

Figure 13: Slices of the subject OAS30052_MR_d0693. A, B, C figures are different slices with all 
the brain regions corresponding to a unique colour. D, E, F include only brainstem 

 

3.4 Estimation of fractal dimension and lacunarity 

Fractal Dimension and lacunarity are calculated using a python script that implements 
the box counting algorithm for fixed grids. Additional information is extracted from 
calculations such as subject‘s age of entry, days from entry and volume. Also, from 
linear regression that enables the estimation of fractal dimension, Root mean square 
error (rmse) and y intercept are saved. The whole process involves optimizations for the 
estimation of fractal dimension and lacunarity. 

 

3.4.1 Optimization 

Fractal dimension and prefactor lacunarity are calculated using the Box counting 
algorithm. The position of the grid is an important factor for the calculation of fractal 
dimension. Box counting algorithm requires the minimum number of boxes for a given 
scale. To fulfill that requirement the grid must not be positioned in an arbitrary position 
(Figure 14). The criterion is to reach the minimum number of boxes that need to cover 
the structure. For an input image, the lowest size N of 3D rectangle is the size of the 
voxel (1x1x1 mm). The optimal grid can be easily predicted for low values of N. 
However, as N increases it is more difficult to find the optimal grid. Thus, as the scale 
factor s is increased, the probability of an arbitrary grid being the optimal is reduced. 
This has an impact in the estimation as false spots alter the coefficients of linear 
regression. The error of false estimation from the optimal one is known as quantization 
error (QE) [75] [76]. In an arbitrary grid, the presence of QE results to Nϵ = N + ϵ, where 
N is the number of minimum boxes and ϵ is the quantization error, where ϵ > 0 (figure 
Figure 14). Several optimization algorithms have been developed, mainly brute force 
methods, but they are computationally expensive [77] [78] [79].  
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Figure 14: The figure shows the difference between the optimal grid selection and an arbitrary 
grid for a 2D structure. The box counting algorithm requires the minimum combination of boxes 
for that scale. So, the minimum number of boxes N is 8 while in the first selection  the inflated 

number of boxes is Nϵ = 12. Thus, QE in the first grid selection is Nϵ = N + ϵ <=> ϵ = Nϵ - N = 12 – 8 = 4 

 

 

 

In this thesis, in order to avoid long computation, scaling factor is tuned to low values. 
However, the goal is not to reach the optimal value but ensure that the QE is converging 
to optimal. In the final analysis QE interference shall be used as part of the system and 
the efficiency of fractal dimension inflamed with a small or zero QE error shall be 
examined.   

The method that optimizes the grid selection includes some parameters. Scaling factor 
is regulated on having values from 0 to ln3. Number of points created is 10 and length 

of N has values [1, 𝑒3] where 1 stands for 1 voxel. The grid position is altered iteratively. 

Let lengthx  be length of structure in axis x, ylength  be length of structure in axis y and 

zlength  be length of structure in axis z. The grid position can be altered three times for 

each axis. For example the axis x takes values 0, 
length x

3
 and 

2 ∗ length x

3
 . Therefore, 33 = 27 grid positions are produced. All the points produced from 

all grids are selected. The algorithm chooses the minimum N for a given scale.  

Therefore, QE is reduced choosing from different 27 grid positions that are adapted on 
the structure‘s spatial properties.  For smaller structures the step of iteration for each 
axis is reduced. 

Estimation of lacunarity is performed simultaneously with fractal dimension with the 
altering the grid position. Prefactor lacunarity depends heavily on the lower bound of the 
scaling factor s. For small values of s, lacunarity converges to 0 since there is a little 
variation in the fractal dimensions estimated for different grid positions. Prefactor 
lacunarity in fact utilizes QE error. For QE error with high variation amongst different 
grid positions maximizes lacunarity. From a certain value of scale factor s, the points 
start to diverge from the line of linear regression (Figure 15). In this software, the 

bounds are set as (
 voxels  of  structure

10
, voxels of structure ). Also, number of points for a 

fixed grid is 40 instead of 10.  

 

 

Arbitrary grid Best fit grid 
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Figure 15: The estimated fractal dimension with linear regression. Multiple grid positions 
calculations are displayed in this plot. Optimization includes finding the minimum N value for 

each scaling factor s. As scale is increases the points are diverge from the optimal line because 
they are inflated from QE. 

 

3.4.2 Calculation and outputs 

The script has inputs the session and the brain region and saves into a csv file the 
estimated fractal dimension, rmse error, y intercept, volume, lacunarity, age at entry and 
days from entry of the subject. Rmse is used because it gives information if the 
structure is properly described by fractal dimension. Rmse penaltizes values that are 
not close to the line of linear regression, which implies a multifractal behaviour. For a 
large Rmse, propably the structure may be a multifractal and thus fractal dimension may 
not be sufficient for a future analysis.    

Also, plots are extracted into pdf files to give a background of the estimation. First, pdf 
file includes two plots, one with the plot logN / logs  and the other the multiple fractal 
dimension metrics and y intercepts estimated on different grid positions (Figure 16). The 
orange dot represents the optimal estimated fractal dimension and y intercept 
measurement. Another pfd file with two plots is extracted that returns variable A from 
prefactor lacunarity for each grid position and the other plot shows the distribution of 
calculated fractal dimension for each grid position (Figure 17). There is also a log file 
showing the steps of the algorithm. 

The fd3D_brain_volume script performs this task of extracting these files. It calculates 
the spots shown in logN / logs and then uses a linear regression model to estimate the 
line. The fractal dimension is the opposite value of the line‘s first coefficient. The 
experiments have been performed with diminished volumes, so some regions where not 
fully included in the VOI. The code of the script that estimates all these textures is 
shown below in Table 22. 
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Figure 16: The plots where the fractal dimension is estimated. It is opposite of the first coefficient 
of linear regression. First, plot show the linear regression plot while the second shows the 

multiple measurements, with the orange spot being the optimal estimation. 

 

 

Figure 17: The second pdf file extracted from Df calculations includes a plot that variable A from 
prefactor lacunarity is displayed versus each grid position (iteration). The orange dot is the 

estimated lacunarity. The second plot is the distribution of the estimated Df for each grid position. 
These plots are giving a background for the estimation of lacunarity. 
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3.5 Graphical User Interface 

The aim of this software is to create an automated method for the multiple processes 
needed to extract the Fractal Dimension and Lacunarity measurements. The graphical 
user interface (GUI) is shown at (Figure 18). The menu bar has options for handling a 
single file, multiple files while Help and Documentation options are information about the 
software. The single file option is expanded on additional processes as shown in Figure 
19. Choose a subject option imports files that are inputs for specific process. Selecting 
the button Raw data, a pop up window appears and the user may select a NIFTI file. 
After importing this file, the user may select Freesurfer option in order to start the 
Freesurfer pipeline. This process shall have as input the previous imported file and 
extracts the processed image. Norm.mgz file is the extracted file from Freesurfer 
pipeline. It can be imported using the Fs file (Norm.mgz) button. Such file is converted 
to npz format using the mgz to npz option. Fs file (.npz) button is used to import npz 
files into voxelmorph for image segmentation. Voxelmorph option executes the 
segmentation algorithm. Vxm file option is npz files that can be imported for estimation 
of Fractal Dimension and Lacunarity. They are differing from the previous npz files 
because they are labelled with intensity values from 0 to 41, each one corresponding to 
a specific brain structure. The last option Estimate Df and L calculates Lacunarity and 
fractal Dimension for the previous imported Vxm file. It exports a csv file with Lacunarity 
and fractal dimension metric and the logN / logs plots. Also, csv files can be imported on 
the software. 

 

 

Figure 18: The User Interface of the software with the available options show in the menu bar. 
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Figure 19: The Single file option is expanded on additional options as shown in the figure. Various 
file formats can be imported. Those files are used later in a selected process shown in the menu. 

The multiple files option performs same processes with the single file option, but in this 
case a folder is selected with multiple subjects instead of one single file (Figure 20). The 
folders can only be read if they are organized with the directory protocol of XNAT.  Train 
a Voxelmorph model gives the user the opportunity to train a model for selected 
subjects and export it as h5 file. Segment with Voxelmorph option performs 
segmentation of volumes chosen by the user. Choosing Fd files (.csv) option imports 
the csv files from multiple subjects. The button ‗Create Dataset‘ creates three csv files. 
First one contains Fractal Dimension measurements for each brain region, the second 
Lacunarity measurements and the third volume measurements.  They can be used as 
datasets for any potential statistical analysis. 

 

 

Figure 20: The expanded Multiple files option. It has an additional option for training a 
segmentation model and Creating a dataset from the extracted csv files. 
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3.6 Exported files and folders 

The extracted files from Fractal Dimension and Lacunarity calculations are shown in 
Figure 21. For each brain region the two pdf files are extracted. A csv file (table 18) with 
name of brain region, fractal dimension, volume, lacunarity, y intercept and rmse for all 
brain regions is saved as well as a log file (figure 17). Extracted dataset which read 
multiple sessions as folders, combine the data to export datasets as csv. It exports, 5 
csv files, each dataset corresponds to either Df, lacunarity, rmse, y_intercept or volume. 
For example for selected sessions the dataset exported with Df measurements in all 
brain regions can be seen in Table 17. 

 

Table 17: Exported csv file for session 30130_MR_d0025 that shall be used in the final analysis. 
Some regions for computational reasons were excluded from calculations because they are not 

included in the final analysis and therefore they were set to 0. Volume is measured in millimeters. 

Region Volume Fractal_Dimension Lacunarity y_intercept Rmse 
Unknown 0 0  0 0 
Left_Cerebral_Cortex 0 0 0 0 0 
CSF 0 0 0 0 0 
Left_ Cerebral_White_Matter 0 0 0 0 0 
Right_Cerebral_Cortex 0 0 0 0 0 
Right_Cerebral_White_Matter 0 0 0 0 0 
Right_Cerebellum_Cortex 0 0 0 0 0 
Left_Cerebellum_Cortex 0 0 0 0 0 
Right_Cerebellum_White_Matter 0 0 0 0 0 
Left_Cerebellum_White_Matter 0 0 0 0 0 
Right_Lateral_Ventricle 11901 2.515876 1.652686 8.413373 0.026 
Right_choroid_plexus 0 0 0 0 0 
WM_hypointensities 0 0 0 0 0 
Left_Lateral_Ventricle 0 0 0 0 0 
Left_choroid_plexus 0 0 0 0 0 
4th_Ventricle 0 0 0 0 0 
Brain_Stem 26191 2.742384 0.478248 10.13734 0.0223 
Left_Hippocampus 5013 2.463122 0.224149 8.133819 0.0355 
Right_Hippocampus 5636 2.531998 0.282705 8.286879 0.039 
Left_Inf_Lat_Vent 1028 2.010786 0.211581 5.323142 0.0833 
Right_Inf_Lat_Vent 678 1.871875 0.144003 4.135079 0.1004 
Left_Thalamus_Proper 9421 2.712928 0.25373 9.013871 0.0321 
Right_Thalamus_Proper 8993 2.70756 0.714896 8.851684 0.034 
Left_VentralDC 10235 2.719665 11.20514 9.189808 0.0285 
Right_VentralDC 9523 2.712739 0.434149 9.136656 0.0287 
3_rd_Ventricle 1792 2.719015 0.136727 6.034917 0.1312 
Right_Putamen 8900 2.71203 1.118082 8.094036 0.0566 
Left_Putamen 9185 2.645058 0.745654 7.983477 0.0547 
Left_Caudate 7129 2.121392 0.264252 5.914208 0.0752 
Right_Caudate 8192 2.561056 0.138317 6.924949 0.0583 

Left_Pallidum 57 2.252639 0.17042 3.679181 0.1911 
Non_WM_hypointensities 828 2.195522 3.711845 6.697563 0.0575 
Left_Amygdala 1630 2.666221 0.457707 7.309889 0.0609 

Right_Amygdala 1872 2.603591 1.594876 7.366424 0.0809 
Optic_Chiasm 366 2.563731 0.245694 5.183928 0.1283 
Right_Accumbens_area 860 2.683703 0.231557 6.327014 0.1492 
Left_Accumbens_area 1011 2.642364 0.216049 6.766667 0.0811 
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Figure 21: The folder for session 30504_MR_d0000. The extracted files are the logN / logs plots , 
the csv plot with fractal dimension, Lacunarity and volume measurements and a log file. 

 

Table 18: This is a part of an exported dataset with Fractal Dimension measurements. It includes 
all brain regions for the current session as well as age at entry days from entry and id of each 

session. 
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3.7 Parallel Programming 

To reduce time in execution while processing multiple files, parallel programming [80] 
has been used.  Multi threading is introduced in the program while handling multiple 
pipelines during image processing with Freesurfer, file conversion, Fractal and 
Lacunarity estimation. Multithreading and semaphores strictly synchronize the execution 
of these pipelines. By default 8 threads are being used simultaneously. Parallel 
programming is not applied when executing voxelmorph due to the large memory 
allocation (Table 23).  

A bash was created to ensure that zombie processes were terminated. These 
processes may be produced from the early termination of the software while pipelines 
are running in the background. However, it also terminates any other application 
running from terminal. The code is shown at Table 19. 

 

Table 19: Kill_processes.sh script that terminates zombie processes 

#!/bin/bash 

 

kill $(ps aux | grep "mri_em_register" | grep -v 'grep' | awk '{print $2}') 

sleep 0.2 

kill $(ps aux | grep "mri_ca_normalize" | grep -v 'grep' | awk '{print $2}') 

sleep 0.2 

kill $(ps aux | grep "bash" | grep -v 'grep' | awk '{print $2}') 

sleep 0.2 

kill $(ps aux | grep "mri_convert" | grep -v 'grep' | awk '{print $2}') 

sleep 0.2 

kill $(ps aux | grep "mri_convert" | grep -v 'grep' | awk '{print $2}') 

sleep 0.2 

kill $(ps aux | grep "convert_mgz_to_npz" | grep -v 'grep' | awk '{print $2}') 

sleep 0.2 

kill $(ps aux | grep "create_npz" | grep -v 'grep' | awk '{print $2}') 

sleep 0.2 

kill $(ps aux | grep "fd3D_brain_structure" | grep -v 'grep' | awk '{print $2}') 

sleep 0.2 

kill $(ps aux | grep "test_unsupervised_seg" | grep -v 'grep' | awk '{print $2}') 
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4. RESULTS & DISCUSSION 

4.1 Results 

In order to check the utility of this software, an analysis with the use of Fractal 
Dimension and related measurements has been conducted. The purpose of this 
analysis is to use supervised learning to automatically detect CDR score of each 
subject. The control group has CDR score 0 and the patient group has CDR score 1 or 
greater. The exported datasets have been used as features for the classification of the 
two classes. From calculations mentioned on the methods section, the linear regression 
performed to estimate Df includes two coefficients (Df and the constant coefficient y 
intercept) and a root mean square error (rmse). Also, volume of the brain region has 
been used. Although, lacunarity has been used as feature, it did not discriminate 
efficiently the two classes for the examined brain regions.  

 

4.1.1 Selected brain regions 

Not all brain regions are present in the extracted volumes. Due to the volume reduction 
some regions are not well displayed as there are missing data while others are 
completely missing. Therefore, only whole brain regions that are in the 3D volume and 
have no missing data are included.  These are Right Lateral Ventricle, Brain Stem, Left 
Hippocampus, Right Hippocampus, Left Thalamus Proper, Right Thalamus Proper, Left 
Ventral DC, Right Ventral DC, 3rd Ventricle, Right Putamen, Right Caudate, Left 
Caudate, Right Amygdala, Optic Chiasm, Right Accumbens Area and Left Accumbens 
Area. All these regions were used for classification either with the use of one feature 
(thresholding) or 2 features with Support vector machines (SVM) models [81]. Efficient 
classification of the groups has been performed with SVM models on Brainstem, Left 
Ventral DC, Right Ventral DC, Right Putamen, Optic Chiasm and Right Accumbens 
Area. In Table 20, the classifications between classes are displayed. Threshold is 
referred to the case where there is no overlapping between classes and one feature is 
sufficient to discriminate them.  

 

Table 20: Optimal classifications performed after feature selection. 

Brain region Label Features Classifier 

Brainstem 16 Fractal Dimension, Rmse SVM 

Left Ventral DC 24 Fractal Dimension threshold 

Volume threshold 

y intercept threshold 

Right Ventral DC 25 

Fractal Dimension threshold 

Volume threshold 

y intercept threshold 

Right Putamen 27 Rmse , Volume SVM 

Optic Chiasm 38 Fractal Dimension, Volume SVM 

Right Accumbens Area 39 
Volume, Rmse SVM 

Volume, y intercept SVM 

 

Classifiers were SVM models which were trained with normalized data, evaluated with 
5-fold validation and their hyper-parameters were tuned properly to reach an efficient 
generalization for each classification.  Rbf kernels have been run for classification with 
regularization parameter C and gamma usually having large values due to the fact that 
outliers of the dementia group often are positioned near the control group. So, it is 
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crucial to properly classify in such cases. Also, it is noticed that control subjects are 
closely distributed while dementia subjects are sparser with greater variation.  Still, 
more samples are needed to be included in the patient group for more accurate 
conclusions. In general, hyper-parameter C prevents overfitting. For large values mean 
error is increased and so overiftting is reduced. Gamma hyper-parameter for large 
values controls the curvature of the decision boundary line. These parameters tuned to 
ensure that the majority of subjects near the decision boundary are classified properly. 
C is set to prevent overfitting and gamma is large enough in order to classify correctly 
the subjects near the decision boundary.  

In medical diagnosis and decision-making, it is crucial to maximize sensitivity over 
specificity. It is more important to classify correctly the dementia subjects than the 
control group. The concept is to avoid wrong diagnosis of dementia subjects (maximize 
sensitivity), while wrong classification of healthy subjects has less significance. Thus, 
the aim is that less cases of disease are to be missed. Considering this factor and the 
fact that the data are unbalanced, sklearn library [82] provides an option to classify with 
different penalty for each specific class. For each class the following formula is used:  

wi =
number of total samples

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑜𝑟 𝑖 𝑐𝑙𝑎𝑠𝑠
 (6) 

Hence, given that dementia group has 72 samples while the control group has 594, and 

the number of classes is 2, the weight for the first class (control group) shall be w1 = 
666

2∗594
 = 0.56155 and for the second w2 = 

666

2∗72
 = 4.56164. The python scripts are created 

but a proportion of the code is originated from the sklearn library. The process of 
acquiring data is shown in Figure 22.  

The scripts that used for training the SVM models (table 23) and create the learning 
curve plot (table 24) are shown below. The code implements the calculations of the 
Optic Chiasm region. Similarly, by altering the directories, name of the datasets and 
features, the code is applied for each brain region examined. 

 

 

 

 

 

  

Figure 22: Description of the processes followed to prepare the data for classification 

Collect features from dataset 

 

Use threshold for one feature or 

train and validate SVM models 

for two features 

 

Hold classifiers that separate 

efficiently the two classes 

 

Keep brain regions with no 

missing data from the volume. 
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4.1.2 Left Ventral DC, Right Ventral DC, Right Putamen 

There are cases that one feature is sufficient to discriminate the two groups. The 
classes in Left Ventral DC region are discriminated with no overlapping. It is shown that 
for Volume, Fractal Dimension and y intercept there is the same predictable efficiency 
(Figure 23). In Right Ventral DC also Volume, Fractal Dimension and y intercept are 
equally accurate in separating the two classes (Figure 24). Groups in Right Putamen 
are efficiently discriminated with the volume as feature. Fractal Dimension and y 
intercept are both good features as in each case only outliers are overlapping. However, 
volume in this case is a more reliable feature because there is a greater distance 
between classes (Figure 25). 

 

 

Figure 23: This is the plot that shows the distributions of the CDR classes in Left Ventral DC 
region. For each of the three different features (Df , y intercept, Volume) there is no overlapping. 
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Figure 24: The distributions of the CDR classes in Left Ventral DC region. For each of the three 
different features (Df , y intercept, Volume) there is no overlapping. 

 

Figure 25: The distributions of the CDR classes in Right Putamen. Volume as feature is preferable 
for classification. In y intercept and fractal dimension outliers are either close or overlapping 

exists. 
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4.1.3 Brainstem 

In case of brainstem a slightly different approach has been followed. Fractal Dimension 
separates efficiently the two classes (Figure 26).  However, since a slight distance 
between outliers exists, SVM models were used with 2 features to achieve an improved 
decision boundary. The control group has a dense distribution while the patient group is 
sparser with outliers near the control distribution. Although, most of the features are 
shown to separate efficiently the two classes, Fractal Dimension and the Rmse are 
selected since they achieve the optimal distancing between outliers (Figure 27). With 
that feature selection, Polynomial, rbf and linear SVM models trained as shown in 
figures 24A, 24B, 24C. As shown in figure 24C, the polynomial kernel describes the 
best boundary decision line. Using cross-fold validation with the polynomial kernel and 
regularization parameter C=0.125 and degree of 4, the training and validation curve are 
identical to 100% accuracy (Figure 29) 

 

 

Figure 26: The two CDR classes are distinct. Fractal Dimension as unique feature separates the 
two classes with no overlapping. 
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Figure 27: The CDR classes separated using different feature combinations. Rmse and Fractal 
Dimension (figure 23I) were selected as features for classification. 
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Figure 28: The svm models to separate the two classes.  The polynomial kernel performs better 
than the other two kernels. Regularization parameter is C = 0.125 and polynomial of 4

th
 degree. 

 

 

Figure 29: The learning curve plot where both training and validation curve reach a 100% 
accuracy score. 
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4.1.4 Optic Chiasm 

Classification of Optic Chiasm required non-linear SVM models with rbf kernels. 
Features of fractal dimension and y intercept were the best to separate the CDR 
classes. The regularization hyper-parameter was tuned to C = 32 and hyper-parameter 
gamma to 4. In the end, with the use of learning curves plot the generalization of the 
model is validated (Figure 30). 

 

 

Figure 30: The trained SVM model with rbf kernel and regularization parameters C=4, gamma=4. 
Features are Fractal Dimension and Volume. Control group is concentrated around a mean. 

Dementia group includes outliers near the control group. 

 

Figure 31: The learning curve plot for the SVM model used in figure 30. It converges to 
approximately 99.96% accuracy. Best fit case is noticed at an approximate training size of 360 

samples. 
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4.1.5 Right Caudate 

Right Caudate is an additional brain region that can be used for CDR classification. The 
pairs of features used to train SVM models are volume versus y intercept and rmse 
versus volume as shown in Figure 32 and Figure 33. Performing cross-fold validation, 
the best fit model was examined between the two SVM models. As shown in figures 
Figure 34a and Figure 34b, the svm models with features volume and y intercept had 
better generalization. 

 

Figure 32: SVM model with rmse and volume as features for Right Caudate. 

  

 

Figure 33: SVM model with volume and y intercept as features. 
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Figure 34: The learning curve plots for the two SVM models of figures 32, 33 

 

4.1.6 Right Accumbens Area 

Considering Rmse and Volume as the best feature selection for the right accumbens 
area, the two classes are overlapping. Rbf kernel instead of polynomial and linear is 
selected, as it has an increased accuracy. The parameters of the SVM model is C = 4 
and gamma = 2 and the decision boundary is displayed in Figure 35. 

 

 

Figure 35: The SVM model with rbf kernel which separates the two classes. Features are Rmse 
and Volume. 
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Figure 36: The plot with learning curves of the SVM model in figure 35. Best fit model is shown to 
have approximately 360 training samples and it achieves 99% accuracy. 

 

4.2 Discussion  

The presented software performs image processing, image segmentation and 
estimation of Df, volume, y intercept, rmse and lacunarity for each brain region of 
imported sessions. Also, it creates datasets for multiple selected sessions. Such user 
friendly technique that automatically executes pipelines and gives control to the user for 
each stage is yet to be developed. Most researchers target specific procedures and 
avoid such holistic approach but they are instead focused on specialized procedures. 
There is a variety of image processing tools for neuroimaging [29]. Freesurfer which is 
incorporated into the software is a widely used pipeline for brain imaging, with high 
speed and accuracy on specific stages of image processing. Also, many deep learning 
segmentation algorithms [35] [83] [84] [85] [86] [87] [88] [89] [90]  have been developed 
which achieve a state-of-the-art performance in terms of accuracy, and speed when 
segmenting. However, they require a lot of time to train the segmentation models. 
Since, freesurfer requires a lot of time to segment brain volumes, a faster method 
should have been added in the pipeline of the software. Voxelmorph, compared to all 
other techniques, segments the volume with a trained model at a small computational 
time and achieves the highest accuracy. There are software programs that are 
specialized on estimation of Df or lacunarity, give measurements for an imported image 
(table 1). The most advanced of them and with specialization on brain imaging are UJA-
3DFD [56] and FracLac [50]. UJA-3DFD calculates fractal dimension of whole MRI 
volume but not for brain regions separately. Also, it estimates only fractal dimension, not 
lacunarity. FracLac gives mono-fractal and lacunarity measurements, but it additionally 
exports multifractal information. As shown in the final analysis for the brain structures 
that could be examined due to spatial and computational restrictions, fractal dimension 
along with volume can describe properly differences between the two groups. Moreover, 
FracLac exports multifractal information that may be applied on functional imaging 
(multifractals). However, this software utilizes structural properties of the brain and the 
analysis shown their adequacy for structural classification. In the presence of 
multifractality, rmse can be used as a good indicator.  User is able to choose whether or 
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not to include Df for analysis. Experimentally is shown that rmse has small values and it 
has used as a texture in final classification. Hence, FracLac is not focused on structural 
imaging but is a tool with general utilities. Fractal tool is aiming in the structural 
properties of each brain region and exports datasets automatically for multiple imports, 
combining the fastest and most accurate open-source methods.  

 

4.2.1 CDR classification  

The outcomes of the final analysis give an enhanced background for the Dementia 
disorders while simultaneously underline the necessity for utilizing fractal dimension, y 
intercept and rmse as potential biomarkers. Most neuroimaging studies for Dementia 
are targeting volume reduction of the brain volume [91] [92] Error! Reference source 
not found. [93] [95] [96] [97]. Others have a different orientation, focusing on proteins 
that may be related with Dementia [98] [99] [100] [101] [102]. Fractal dimension and 
lacunarity is shown to be a potential biomarker for neurodegeneration in retinal 
vasculature [24] [38]. Electroencelography (EEG) studies examine differences of 
Higuchi fractal dimension (HFD) [103] between healthy and dementia subjects [104] 
[105] [106]. In structural neuroimaging studies, rarely fractal dimension of brain 
structures is used for diagnosis or prediction of Dementia [107] [108]. Hence, a little 
research related to Dementia has been done for utilization of Df and the other related 
textures ( Rmse, y intercept). 

The findings in this study are shown to be supported by the literature. For the brain 
regions that classification between groups was accurate, brainstem‘s volume is shown 
to be significantly reduced in Dementia subjects compared to healthy individuals [109] 
[110] [111] [112]. Although some of these studies mention that deformations in parts of 
the brainstem were observed in dementia subjects, no fractal analysis has been 
performed. In this thesis is shown that the use of fractal dimension and rmse achieves 
non-overlapping classification of healthy versus dementia subjects with CDR being 1 or 
greater, while volume is shown to have less efficiency in classification. Another study 
has shown that Optic Chiasm is altered in Alzheimer‘s subjects [113]. Right accumbens 
area is a subregion of the Nucleus accumbens. Significant findings prove low MMSE 
score for the right accumbens area and reduced volumetric measurents [114], while 
number of neurons in nucleus accumbens and putamen is diminished [115]. Ventral 
diencephalon (VDC) [116] is a group of brain structures, due to the fact that 
segmentation of these regions is a difficult task in MRI imaging. Individuals with Lewis 
bodies are shown to have less α-synuclein in nucleus accumbens area and ventral 
tegmental area (part of VDC)[116]. 

In general, studies are focused on volumetric measurements or examine the quantity of 
proteins in the regions of brains. There is no currently research on fractal properties of 
brain regions. Such textures can be promising biomarkers for diagnosis of dementia and 
give background for the structural development of the Dementia disorders. 

 

4.2.2 Improved lacunarity estimation for classification problems 

An optimized method for using lacunarity as texture for image classification problems is 
to use lower bound and max bound (Figure 37). For low values of scale factor s as 
shown in the methods section, there is small QE error. For large values of scaling factor 
s, the QE is increased and thus lacunarity is increased. Therefore, lacunarity for very 
small values converges to zero. So, an initializing step is to ensure that the lower 
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lacunarity value is greater than 0.1. Alternatively, it can check if for an increased scale 
factor there is devergence of the points from the line of the linear regression. PΛ 
lacunarity as shown in (3) equation depends on A. Thus, calculation of prefactor 
lacunarity depends on the y intercept. It is shown for brain regions that y intercept is a 
feature that can discriminate effectively the two CDR classes. 

P𝛬 =
  (𝐺
𝑔=1

𝐴𝑔

𝐴 
− 1 )2

𝐺
 (3) 

 

Figure 37: Estimation of lacunarity with low and high boundary for a given image. All points from 
box counting algorithm for all grid positions are displayed. 

 A machine learning algorithm, similar to linear discriminative analysis (LDA), shall tune 
these hyperparameters automatically. The goal is maximize distance between classes 
and minimize variation of each class altering the values of these hyper parameters. The 
algorithm terminates either when finding the combination of these hyperparameters that 
that maximize the distance between classes or when reaching to a predefined accuracy. 
However, such method may require exhaustive research for a large number of different 
grid positions and steps of the scale factor s. These parameters shall start with small 
values and gradually be increased through iterations if no converge is reached or 
accuracy criteria be met.  

 

4.2.3  Issues and limitations 

Despite the automation that this software provides, there are some limitations to its 
application. The software is set to be run in Ubuntu versions, because freesurfer is 
compatible with mac and linux distributions. Also, it has compatibility with versions of 
python greater than 3.6 and tensorflow 2. The models that are used are stored files that 
are loaded in the software. Hence, there is not an option for the user to train a model in 
the interface. Due to computational requirements the voxelmorph models trained in 
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kaggle and thus having such an option in the software would mean that a highly efficient 
computer machine was operating. However, this tool is not designed for such 
computers, but for wider use. Moreover, in future research a well-trained model may 
give the optimal segmentation results. This software assumes the availability of such 
models. Another issue was the small dataset available comprised by 72 subjects of 
various dementia stages with CDR greater or equal to 1 and 594 healthy individuals. 
More data is needed for validation and to reach safe conclusions. Also, the protocol that 
utilized to label the MRI sessions has to be evaluated by clinicians. Otherwise, a dataset 
including both MRI images and the corresponding Dementia stage validated by experts 
shall be used. 

In terms of the final analysis, segmentation with voxelmorph had not validated due to 
the lack of truths. However, 70% of samples have been used for training, while all the 
available data were used in the following steps. Despite the fact that the accuracy is of 
the segmentation is shown to be high for healthy subjects, there is no clear evidence 
that segmentation performance for dementia subjects was optimal. However, authors of 
voxelmorph applied the algorithm in heterogenus data and again sufficient 
segmentation accuracy has been reached. Nevertheless, validation of segmentation 
models should be done to evaluate the reliability of final analysis‘s results. 

The volumes of each session were a part of the whole brain since they had a 
diminished size. The computational requirements did not allow for utilization of the 
whole brain volume, hence some brain structures were partially or overally missing from 
the extracted volume. A more efficient computational system shall be used to perform 
the same experiments in order to enroll the missing regions in the final analysis. 

Finally, issues that occurred during the development of the software were some syntax 
errors to the voxelmorph code due to compatibility with newer versions of tensorflow. 
Other issue was that the trained models of voxelmorph could run on kaggle for 120 
epochs and with 1 batch size. Increasing those parameters was not feasible due to 
memory constrains.  
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5. CONCLUSIONS 

A program to extract fractal dimension, y intercept, rmse and lacunarity measurements 
for brain regions in fast and accurate fashion has been developed. As shown in the final 
classification, the utility of such measurements for Dementia diagnosis, prediction and 
classification is critical. However, an automated, holistic and user-friendly pipeline to 
handle such data does not exist. There are many tools that are specified in partial tasks 
of this software such as estimation of fractal dimension or image segmentation. None of 
them follows that approach. As shown in Table 1 and Table 2 not all of these tools use a 
3D approach, while fewer are oriented on neuroimaging. Mainly UJA-3DFD and 
FracLac are closer to Fractal Tool in terms of such utility. Although, the former has an 
efficient algorithm for estimation of Df of 3D whole brain volumes it does not perform 
segmentation at all. Fractal Tool on the contrary gives far more enriched background for 
41 brain regions by calculating lacunarity and y intercept additionally. FracLac estimates 
Lacunarity and Fractal Dimension for a given structure and is a part of ImageJ which 
includes image processing and segmentation. Stil, Freesurfer and Voxelmorph are 
superior in accuracy to the corresponded methods that ImageJ implements. Generally, 
this thesis minimizes the use of computational resources and simuiteniously focuses on 
the optimal speed and accuracy for each task, while handling multiple parallel 
processes. 

Finally, the analysis is crucial to this thesis shows the importance of the extracted 
features for the classification of Dementia. Although most recent neuroimaging studies 
are focused mainly on volume reduction, this thesis utilizes both volume and fractal 
properties. Firstly, it offers new knowledge about characteristics of specific brain regions 
and how those differiate healthy from Dementia subjects. Secondly, in some cases 
brain volume was not efficient as other features for classification. This finding implies 
that other textures may help to monitor the development of Dementia in the future.  
Such method may enable scientists to expand their research in that direction.  

Currently the methods developed and analysed on section 2.5 are not outperforming the 
classification of this thesis. Huang et al., [134]  has trained and validated a model with 
very small dataset only to classify AD patients from healthy subjects while it is more 
computationally expensive since it uses 24 features. Other methods shown lower 
precision and recall rates.  

The final analysis accurately classifies the dementia from control group, but it cannot yet 
be considered as immediate diagnosis of Dementia stages. There are two segmentation 
models created; one trained with the dementia group and the other with the healthy 
individuals. There is not a prior knowledge which model to choose to segment an input 
image that dementia stage is unknown. Therefore, unknown imported images can not 
be classified and diagnosis is not yet achieved. Moreover, the final analysis was cross-
sectional study which excluded repeated images. So, no conclusions are to be reached 
for the development of Dementia. However, the software primary goal is to export 
datasets. These can be efficiently used for longitunidal studies that may focused on 
development and prediction. As for diagnosis, if the task of segmenting both classes in 
a unified model is fulfied, then automated classification of an unknown input image is 
possible. 
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5.1  Future work 

Further analysis, with the use of multiple dementia classes instead of two can be done 
but that premises sufficient data. This tool has a general purpose of exporting dataset 
and does not limited for Dementia problems. Fractal dimension is shown to be a useful 
texture for detecting brain cancer [118] [119] [120] [121] [122] [123] as well as lacunarity 
[122] [123]. It can be used for problems that are related with brain such as brain cancer, 
epilepsy or other neurological disorders. 

A major aim of a future analysis should be importing MRI data that are labelled with 
their corresponded Dementia stage by experts. The majority of samples in the Dementia 
group had CDR equal to 1, 14 had 1 < CDR < 2, 4 were CDR = 2  and 1 subject was at 
Dementia stage 2 < CDR < 3. The Dementia group is heavily depended on CDR = 1 , 
so a more balanced dataset is needed along with multiple classification between 
Dementia stages. Also, in the case of classification, deep Learning models can be 
applied instead of SVM to examine differences in other brain regions since generally 
they yield more accurate results. 

Still, the tool uses MRI images for structural image analysis and a future challenge 
would be to incorporate functional images (fMRI) and multifractal analysis in order to 
measure and classify physiological dynamics of the brain. Another challenge is to create 
a unique model that performs accurate segmentation for both abnormal and healthy 
brain profiles. Such model using fractal properties as priors may be of efficient speed 
and accuracy since such approach may avoid a highly complex architecture. If an 
automation of labelling patients with CDR score is feasible then it could be a first step 
for replacing the written test in interviews. Such system may diagnose dementia stage 
of patients having as input the MRI scan.  For longitunidal studies, subjects with multiple 
sessions can be enrolled in an analysis. Monitoring the alteration of fractal dimension, 
lacunarity, rmse or y intercept through time and with proper labelling of the Dementia 
stage, a background for the structural brain decline can be created. Finally, the software 
can be applied for research on specific Dementia disease or finding any potential fractal 
differences between the multiple dementia diseases. Although, such analysis is 
possible, there is requirement of sufficient data to support any conclusions. Finally, 
additional research is required from a neuroscientist‘s perspective in order to 
understand why those differences in these features exist, which mechanisms are 
correlated or cause such differentiation and how these results can be interpreted 
physiologically. 

 

 

 

 

 

 

 

 

 

 

 



Fractal tool; Calculating 3D fractal dimension of brain regions for a Dementia classification problem 

 

S. Chatzichronis  64 
 

TERMINOLOGY TABLE 

English Διιεληθόο Όξνο 

Accoumbens Area Δπηθιηλήο Ππξήλαο 

Affine transformation Οκνπαξάιιεινο κεηαζρεκαηηζκόο 

Alzheimer‘s disease Νόζνο ηνπ Αιηζράηκεξ 

Amygdala Ακπγδαιή (πεξηνρή εγθεθάινπ) 

Batch Γέζκε ηεκαρηώλ 

Bias Μεξνιεςία 

Box counting algorithm Αιγόξηζκνο κέηξεζεο θπηίσλ 

Brain regions Πεξηνρέο ηνπ εγθεθάινπ 

Brainstem Δγθεθαιηθό ζηέιερνο 

Cerebellum Παξεγθεθαιίδα 

Cerebral Cortex Δγθεθαιηθόο θινηόο 

Cerebral White Matter Δγθεθαιηθή νπζία 

Choroid plexus Φνξηνεηδέο πιέγκα 

Cortex Φινηόο 

Classifier Ταμηλνκεηήο 

Coefficient Σπληειεζηήο 

Conformation Γηακόξθσζε 

Convolutional Neural networks Σπλειηθηηθά Νεπξσληθά Γίθηπα 

Cross-validation Γηαζηαπξσκέλε επηθύξσζε 

Deep learning Βαζεία εθκάζεζε 

Dementia Άλνηα 

Dementia with Lewis bodies Άλνηα κε ζσκάηηα Ληνύε 

Feature Φαξαθηεξηζηηθό 

Fractal κνξθόθιαζκα ή κνξθνθιαζκαηηθό ζύλνιν 

Fractal dimension Μνξθνθιαζκαηηθή δηάζηαζε 

Frontotemporal dementia Μεησπνθξνηαθηθή άλνηα 

Functional imaging Λεηηνπξγηθή απεηθόληζε 

Grid Πιέγκα 

Hippocampus Ιππόθακπνο (πεξηνρή εγθεθάινπ) 

Huntington‘s disease Νόζνο ηνπ Φάληηλγθηνλ 

Image Analysis Αλάιπζε εηθόλσλ 

Image Processing Δπεμεξγαζία εηθόλσλ 

Image Registration Δπζπγξάκκηζε εηθόλαο 

Image segmentation Καηάηκεζε εηθόλαο 

Intensity Έληαζε 

Kernel Ππξήλαο 

Lacunarity Σηαηηζηηθή έλλνηα πνπ πνζνζηηθνπνηεί ηελ 
ύπαξμε θελώλ (ιηκλώλ από ηε ιαηηληθή 
ιέμε lacuna πνπ ζεκαίλεη ιίκλε) ζε κηα 
δνκή. 

Lateral Ventricles Πιεπξηθέο θνηιίεο 

Learning curves Κακπύιεο εθκάζεζεο 

Linear regression Γξακκηθή παιηλδξόκεζε 

Loss function Σπλάξηεζε απώιεηαο 

Maximum likelihood Μέγηζηε Πηζαλνθάλεηα 

Mixed dementia Μηθηή άλνηα ( ύπαξμε δύν ή πεξηζζόηεξσλ 
πεξηπηώζεσλ άλνηαο ζε έλα άηνκν) 
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Motion correction Γηόξζσζε θίλεζεο 

Multi-Fractal Πνιύκνξθόθιαζκα ή 
πνιπκνξθνθιαζκαηηθό ζύλνιν 

Neurodegenerative diseases Νεπξνεθθπιηζηηθέο αζζέλεηεο 

Normalization Καλνληθνπνίεζε 

Optic Chiasm Οπηηθό Φίαζκα 

Optimization Βειηηζηνπνίεζε 

Overfitting Υπεξπξνζαξκνγή 

Parallel programming Παξάιιεινο πξνγξακκαηηζκόο 

Pixel Δηθνλνζηνηρείν 

Prefactor lacunarity Τξόπνο ππνινγηζκνύ ηεο ζηαηηζηηθήο 
έλλνηαο lacunarity.  

Putamen θέιπθνο θαθνεηδνύο ππξήλα 

Quantization error Σθάικα πνζνζηηθνπνίεζεο 

Segmentation Καηάηκεζε 

Skill stripping Αθαίξεζε / απνγύκλσζε θξαλίνπ 

Structural imaging  Γνκηθή απεηθόληζε 

Supervised learning Δθκάζεζε κε επίβιεςε 

Support Vector Machines Μεραλέο δηαλπζκαηηθήο ππνζηήξημεο 

Talairach Space Φώξνο Talairach 

Thalamus  Θάιακνο (πεξηνρή εγθεθάινπ) 

Transformation Μεηαζρεκαηηζκόο 

Training epoch Δπνρή εθπαίδεπζεο 

Unbalanced data Αληζόξξνπα δεδνκέλα 

Unsupervised learning Δθκάζεζε δίρσο επίβιεςε 

Vascular dementia Αγγεηαθή άλνηα 

Voxel Ογθνζηνηρείν 

Zombie processes Γηεξγαζίεο δόκπη 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fractal tool; Calculating 3D fractal dimension of brain regions for a Dementia classification problem 

 

S. Chatzichronis  66 
 

LIST OF ABBREVIATIONS 

CDR Clinical Dementia Rating 

CNN Convolutional Neural Networks 

CSF Cerebrospinal fluid 

CSV Comma separated values (file) 

CT Computed Tomography 

Df Fractal Dimension 

DICOM Digital Imaging and Communications in Medicine 

fMRI Functional Magnetic Resonance Imaging 

HFD Highusi‘s Fractal Dimension 

GPU Graphics Processing Unit 

GUI Graphical User Interface 

Mgz File extension of Freesurfer 

MMSE Mini Mental State Examination 

MRI Magnetic Resonance Imaging 

NIfTI Neuroimaging Informatics Technology Initiative 

npz Compressed array format file of python 

OASIS Open Access Series of Imaging Studies 

SVM Support Vector Machines 

v Velocity field 

VOI Volume of interest 

VDC Ventral Dienchephalon 

QE  Quantization error 

ι loss 
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APPENDIX I 

 

Table 21 : The script that executes the customized Freesurfer pipeline. It is called by the java 
interface to run the Freesurfer processes. 

#!/bin/bash 

length=$# 

anat="" 

echo " " 

 

counter=0 

str1="${2}/OAS${3}_MR_d${4}/${3}_Freesurfer53_d${4}/DATA" 

if [[ ! -e $str1 ]]; then 

    mkdir -p $str1 

else 

    mkdir -p $str1 

fi 

export SUBJECTS_DIR=$str1 

echo "" 

echo $SUBJECTS_DIR 

echo "" 

for i in "$@" 

do 

  

 counter=$((counter+1)) 

 if [ $counter -eq  1 ] 

 then  

 export FREESURFER_HOME=$1 

 source $FREESURFER_HOME/SetUpFreeSurfer.sh   

 elif [ $counter -eq 3 ] 

 then 

 str="OAS${3}_MR_d${4}"   

 anat="$anat-s $str " 

 elif [ $counter -gt 4 ] 

 then 

 anat="$anat-i $i "  

 fi  

done 

echo "" 

echo "anat is" 

echo "" 

echo $anat 

echo "" 

echo $SUBJECTS_DIR/$str 

 

recon-all $anat -autorecon1 

mri_em_register -mask $SUBJECTS_DIR/$str/mri/brainmask.mgz 

$SUBJECTS_DIR/$str/mri/nu.mgz $FREESURFER_HOME/average/RB_all_2016-05-10.vc700.gca 

$SUBJECTS_DIR/$str/mri/transforms/talairach.lta  

 

mri_ca_normalize -c ctrl_pts.mgz -mask $SUBJECTS_DIR/$str/mri/brainmask.mgz 

$SUBJECTS_DIR/$str/mri/nu.mgz $FREESURFER_HOME/average/RB_all_2016-05-10.vc700.gca 

$SUBJECTS_DIR/$str/mri/transforms/talairach.lta $SUBJECTS_DIR/$str/mri/norm.mgz 

 

 

Table 22: The fd3D_brain_volume scipt that performs the calculations 

import numpy as np 

import pylab as pl 

import sys 

import time 

import scipy.optimize 

from sklearn import metrics 

import math 

import matplotlib.pyplot as plt 

from scipy import stats 
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import statistics 

 

def gather_voxels(volume,temp): 

    ''' 

    Gather non zero voxels 

    ''' 

    for i in range(volume.shape[0]): 

        for j in range(volume.shape[1]): 

            if(temp in volume[i,j]): 

             for k in range(volume.shape[2]): 

                        if (volume[i,j,k]==temp): 

                            voxels.append((i,j,k)) 

    return voxels 

 

def compute_hist( voxels,Gx,Lx,Gy,Ly,Gz,Lz,Ns,i): 

    ''' 

    Compute Histogramm 

    ''' 

    voxels[:,2]                       =           voxels[:,2] - min(voxels[:,2]) + Gx 

    voxels[:,1]                       =           voxels[:,1] - min(voxels[:,1]) + Gy 

    voxels[:,0]                       =           voxels[:,0] - min(voxels[:,0]) + Gz 

    H, edges=np.histogramdd(voxels, 

bins=(np.arange(0,Lx+Gx,i),np.arange(0,Ly+Gy,i),np.arange(0,Lz+Gz,i))) 

    Ns.append(np.sum(H>0)) 

    voxels[:,2]                       =           voxels[:,2] - min(voxels[:,2]) - Gx 

    voxels[:,1]                       =           voxels[:,1] - min(voxels[:,1]) - Gy 

    voxels[:,0]                       =           voxels[:,0] - min(voxels[:,0]) - Gz 

    return Ns, H, edges 

 

def initialize(voxels): 

 

    #move the region to the center of the image 

    x_length                          =           max(voxels[:,2]) - min(voxels[:,2]) 

    y_length                          =           max(voxels[:,1]) - min(voxels[:,1]) 

    z_length                          =           max(voxels[:,0]) - min(voxels[:,0]) 

 

    voxels[:,2]                       =           voxels[:,2] - min(voxels[:,2]) + 

x_length+1 

    voxels[:,1]                       =           voxels[:,1] - min(voxels[:,1]) + 

y_length+1 

    voxels[:,0]                       =           voxels[:,0] - min(voxels[:,0]) + 

z_length+1 

 

    Lx                                =           (x_length) 

    Ly                                =           (y_length) 

    Lz                                =           (z_length) 

    return x_length,y_length, z_length,Lx,Ly,Lz,voxels 

 

def fractal_dimension(voxels,Lx,Ly,Lz,scale): 

    ''' 

    Compute an optimized Df 

    ''' 

    bestfit=[] 

    for i in scale: 

        bestfit,H,edges = compute_hist(voxels,0,Lx,0,Ly,0,Lz,bestfit,i) 

    bestfit       =   np.asarray(bestfit) 

    coeff = np.polyfit(np.log(scale), np.log(bestfit), 1) 

    return coeff,bestfit 

 

def lacunarity(voxels,Lx,Ly,Lz,x_length,y_length,z_length,s): 

    ''' 

    Estimation of Fractal Dimension, lacunarity analysis plot and Prefactor lacunarity, 

    ''' 

    Ns  =         [] 

    Fractal_ar                    =           [] 

    Fractal_ar2                   =           [] 

    RMSE                          =           [] 

    minNs                         =           [] 

    A                             =           [] 

    Gx=0 
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    Gy=0 

    Gz=0; 

    offset=4 

 

    if(x_length<2 or y_length<2 or z_length<2): 

        offset=1 

    elif(x_length<4 or y_length<4 or z_length<4): 

        offset=2 

    elif(x_length<8 or y_length<8 or z_length<8): 

        offset=3 

 

    if(offset<2): 

        offset_x=x_length 

        offset_y=y_length 

        offset_z=z_length 

        stepx=1 

        stepy=1 

        stepz=1 

    else: 

        offset_x=int((offset-1)*x_length/offset) 

        offset_y=int((offset-1)*y_length/offset) 

        offset_z=int((offset-1)*z_length/offset) 

        stepx=int(x_length/offset) 

        stepy=int(y_length/offset) 

        stepz=int(z_length/offset) 

 

    print("x length  ",x_length,y_length,z_length) 

    print(stepx,stepy,stepz) 

    if(offset==1): 

        x_length 

 

    while Gx < offset_x: 

        while Gy < offset_y: 

            while Gz < offset_z: 

                for i in s: 

                    Ns, H, edges           =       

compute_hist(voxels,Gx,Lx,Gy,Ly,Gz,Lz,Ns,i) 

 

 

                if(Ns.count(0)>0): 

                    #print(Ns) 

                    #print("NaN") 

                    Ns=[] 

                    break; 

                else: 

                    coeff = np.polyfit(np.log(s), np.log(Ns), 1) 

                    minNs.append(Ns) 

                    D   =   -coeff[0] 

                    coeff[0]=round(coeff[0],6) 

                    coeff[1]=round(coeff[1],6) 

                    Fractal_ar.append(-coeff[0]) 

                    Fractal_ar2.append(coeff[1]) 

                    #ax1.plot(np.log(s),np.log(Ns), '.',alpha=0.2) 

                    Df                   =       -coeff[0] 

                    coeff = np.polyfit(np.log(s**(-Df)),np.log(Ns), 1) 

                    A.append(1/np.e**coeff[1]) 

                Ns=[] 

                voxels[:,0]  =   voxels[:,0] + stepz 

                Gz =  Gz + stepz 

            voxels[:,0] = voxels[:,0] - Gz 

            Gz =  0 

            voxels[:,1]  =  voxels[:,1] + stepy 

            Gy =  Gy + stepy 

        voxels[:,1] =  voxels[:,1] - Gy 

        Gy =  0 

        voxels[:,2] = voxels[:,2] + stepx 

        Gx =  Gx + stepx 

    voxels[:,2] = voxels[:,2] - Gx 

 

    if(len(A) == 0): 
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        PL=np.NaN 

    else: 

        A_mean =  sum(A[:])  /   len(A) 

        print("A_mean ",A_mean) 

        PL  =  sum(   (A[:]/A_mean - 1) ** 2) / len(A) 

        print("Lacunarity is ",PL) 

 

    return Fractal_ar,Fractal_ar2,PL,minNs,A 

 

def function_compute( voxels,Lx,Ly,Lz): 

 

    x_length, y_length, z_length, Lx, Ly, Lz, voxels =  initialize(voxels) 

 

    voxels_brain_area                           =           len(voxels) 

    print(voxels_brain_area) 

    #total_voxels                                     =           (x_length + y_length 

+ z_length)/3 

    low_bound   =   np.log(voxels_brain_area)/10 

    high_bound  =   np.log(voxels_brain_area) 

    scale_lac                                         =           

np.logspace(low_bound, np.log(high_bound), num=10, endpoint=True, base=np.e) 

    scale_Df                                          =           np.logspace(0, 

np.log(3), num=40, endpoint=True, base=np.e) 

 

    Fractal_ar, Fractal_ar2, PL, minNs,A  = lacunarity(voxels, 

Lx,Ly,Lz,x_length,y_length,z_length,scale_lac) 

  

    if(len(Fractal_ar)>0): 

        coeff, bestfit  = fractal_dimension(voxels,Lx,Ly,Lz,scale_Df) 

np.polyval(coeff,np.log(scale_Df)),color='mediumblue',alpha=0.8) 

 

        rmse                    =       

np.sqrt(metrics.mean_squared_error(np.log(bestfit),np.log(scale_Df)*coeff[0]+coeff[1])) 

        ax1.plot(np.log(scale_Df), 

np.polyval(coeff,np.log(scale_Df)),color='mediumblue',alpha=0.8) 

        ax1.plot(np.log(scale_Df),np.log(bestfit), '.', mfc='red', alpha=0.2) 

        d                       =       -round(coeff[0],4) 

        d                       =       str(d) 

        rmse                    =       round(rmse,4) 

        rmse                    =       str(rmse) 

        Df=-round(coeff[0],4) 

        ax1.set_title("Df is "+str(Df)+" rmse = "+rmse) 

 

        ax2.plot(Fractal_ar2,Fractal_ar, '.', mfc='blue',alpha=0.1) 

        ax2.plot(coeff[1],-coeff[0], '.', mfc='red',alpha=0.8) 

        ax2.set_xlabel('intercept') 

        ax2.set_ylabel('Df') 

        plt.savefig(str(sys.argv[2])+"/"+sys.argv[3]+"_"+sys.argv[5]+".pdf") 

 

        fig2, (ax3, ax4) = plt.subplots(1, 2) 

        fig2.tight_layout() 

        ax3.plot(range(0,len(A),1),np.log(A), '.', mfc='blue',alpha=0.4) 

        ax3.plot(len(A),PL, '.', mfc='red',alpha=0.8) 

        #ax3.plot(coeff[1],-coeff[0], '.', mfc='red',alpha=0.8) 

        ax3.set_xlabel('iterations') 

        ax3.set_ylabel('A') 

        my_dict = {'0': Fractal_ar} 

        ax4.boxplot(my_dict.values()) 

        ax4.set_xticklabels(my_dict.keys()) 

        ax4.set_xlabel('Df') 

        plt.savefig(str(sys.argv[2])+"/"+sys.argv[3]+"_"+sys.argv[5]+"2.pdf") 

    else: 

        coeff = np.array([np.NaN,np.NaN]) 

        rmse   =    10 

    return -coeff[0] , PL, coeff[1], rmse 

 

start_s                 =      time.time() 

a                       =      str(sys.argv[1]) 

volume                  =      np.load(a)['vol'] 

temp                    =      int(sys.argv[3]) 
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voxels=[] 

voxels                  =      gather_voxels(volume,temp) 

voxels                  =      pl.array(voxels) 

voxels_brain_area       =      len(voxels) 

total_voxels            =      volume.shape[2]*volume.shape[1]*volume.shape[0] 

#print(voxels_brain_area) 

 

fig, (ax1, ax2) = plt.subplots(1, 2) 

fig.tight_layout() 

#calculate prefactor lacunarity 

end_s1 = time.time() 

#print("Seconds to calculate Fractal Dimension =", round( (end_s1-start_s) , 5) ) 

 

D,L,y_intercept, rmse = function_compute( 

voxels,volume.shape[2],volume.shape[1],volume.shape[0]) 

 

print("end") 

import csv 

#write fractal dimension of region to file 

with open(sys.argv[4], 'a') as csv_file: 

    s=str(sys.argv[5])+","+str(voxels_brain_area)+","+str(round(D, 6)) 

    csv_file.write(s+","+str(round(L,6))+","+str(round(y_intercept, 6))+","+rmse+"\n") 

 

end_s = time.time() 

print("Seconds to calculate Lacunarity =", round( (end_s-end_s1) , 5) ) 

print("Seconds since epoch =", round( (end_s-start_s) , 5) )  

 

 

Table 23 : Code using semaphores for multi processing and synchronization when estimating 
fractal dimension 

package processes; 

 

import java.util.ArrayList; 

import java.util.concurrent.Semaphore; 

 

import gui.Subject; 

 

public class Sem_Fs implements Runnable { 

  

  Semaphore semaphore = new Semaphore(4); 

   

    public void start(ArrayList<Subject> subj, String FREESURFER_HOME, String 

subj_dir) throws InterruptedException { 

         // create object of this class 

  Sem_Fs obj = new Sem_Fs(); 

  int total_sessions=0; 

  for(int i=0; i < subj.size(); i++) { 

   total_sessions = total_sessions +       

subj.get(i).n_sessions; 

  } 

   

  System.out.println("number of total sessions is "+total_sessions); 

  Thread[] t = new Thread[total_sessions]; 

   

  // create n threads 

    int counter=0; 

    for(int i=0; i < subj.size(); i++) { 

     for(int j=0; j < subj.get(i).ses.size(); j++) { 

      

       String anat=""; 

     //import paths into anat 

     anat =

 anat+subj.get(i).ses.get(j).scan_paths.get(0)+" "; 

        

     anat = FREESURFER_HOME+" "+subj_dir+" 

"+subj.get(i).name+" "+ 

     subj.get(i).ses.get(j).days+" "+anat;   
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     //import the paths in thread, string == number of 

anat + paths 

     t[counter] = new Thread(obj, anat); 

     t[counter].start(); 

     counter++; 

     }    

    }   

         // start threads  

    } 

  

    public void run() { 

     try { 

      semaphore.acquire();   

      FreeSurfer rf = new 

FreeSurfer(Thread.currentThread().getName());      

      //System.out.println("thread -> 

"+Thread.currentThread().getName()); 

      semaphore.release();      

     } catch (InterruptedException e) {e.printStackTrace();} 

    } 

 } 

 

 

 

Table 24: Script that calculates the SVM classifier for Optic Chiasm 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import ShuffleSplit 

from mlxtend.plotting import plot_decision_regions 

from sklearn import preprocessing 

 

brain_stem          =       pd.read_csv("Optic_Chiasm.csv") 

brain_stem          =       brain_stem.drop(('id'),axis=1) 

brain_stem          =       brain_stem.drop(('days'),axis=1) 

brain_stem          =       brain_stem.drop(('ageAtEntry'),axis=1) 

brain_stem          =       brain_stem.drop(('Lacunarity'),axis=1) 

brain_stem          =       brain_stem.drop(('Rmse'),axis=1) 

brain_stem          =       brain_stem.drop(('y_intercept'),axis=1) 

 

y                   =       brain_stem['Class'] 

brain_stem          =       brain_stem.drop(('Class'),axis=1) 

temp1               =       brain_stem['Volume'] 

temp2               =       brain_stem['Fd'] 

brain_stem          =       brain_stem.drop(('Volume'),axis=1) 

brain_stem          =       brain_stem.drop(('Fd'),axis=1) 

brain_stem['x']   = temp1 

brain_stem['y']   = temp2 

X                     =       brain_stem 

 

#normalize 

X['y'] = (X['y']-min(X['y']))/(max(X['y'])-min(X['y'])) 

X['x'] = (X['x']-min(X['x']))/(max(X['x'])-min(X['x'])) 

 

#model train 30%, test 70% 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3) 

 

#run svm 

from sklearn.svm import SVC 

svclassifier = SVC(kernel='rbf', C=0.5, gamma=4,degree=2, class_weight='balanced') 

svclassifier.fit(X_train, y_train) 

y_pred = svclassifier.predict(X_test) 

 

from sklearn.metrics import classification_report, confusion_matrix 

print(confusion_matrix(y_test,y_pred)) 

print(classification_report(y_test,y_pred)) 
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import numpy as np 

import matplotlib.pyplot as plt 

from sklearn import svm 

from sklearn.datasets import make_blobs 

# we create 40 separable points 

plt.scatter( X['x'],X['y'], c=y, s=20, cmap="prism") 

# plot the decision function 

ax = plt.gca() 

xlim = ax.get_xlim() 

ylim = ax.get_ylim() 

# create grid to evaluate model 

xx = np.linspace(xlim[0], xlim[1], 30) 

yy = np.linspace(ylim[0], ylim[1], 30) 

YY, XX = np.meshgrid(yy, xx) 

xy = np.vstack([XX.ravel(), YY.ravel()]).T 

Z = svclassifier.decision_function(xy).reshape(XX.shape) 

# plot decision boundary and margins 

ax.contour(XX, YY, Z, colors='black', levels=[-1, 0, 1], alpha=0.5, linestyles=['--

', '-', '--']) 

# plot support vectors 

ax.set_xlabel("Volume") 

ax.set_ylabel("Fractal Dimension") 

ax.set_title('Optic Chiasm, SVM Model, rbf kernel \n C=0.5, gamma=4') 

plot_decision_regions(X=X.values, y=y.values, 

                      clf=svclassifier, legend=2) 

plt.show() 

plt.savefig("svm_optic_Chiasm.pdf") 

 

Table 25: Script for creating the plot of learning curves 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.naive_bayes import GaussianNB 

from sklearn.svm import SVC 

from sklearn.datasets import load_digits 

from sklearn.model_selection import learning_curve 

from sklearn.model_selection import ShuffleSplit 

import pandas as pd 

 

def plot_learning_curve(estimator, title, X, y, axes=None, 

ylim=None,cv=None,n_jobs=None, train_sizes=np.linspace(.1,1.0, 5)): 

 

    plt.title(title) 

    if ylim is not None: 

        plt.ylim(*ylim) 

    plt.xlabel("Training examples") 

    plt.ylabel("Score") 

 

    train_sizes, train_scores, test_scores, fit_times, _ = \ 

        learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, 

                       train_sizes=train_sizes, 

                       return_times=True) 

    train_scores_mean = np.mean(train_scores, axis=1) 

    train_scores_std = np.std(train_scores, axis=1) 

    test_scores_mean = np.mean(test_scores, axis=1) 

    test_scores_std = np.std(test_scores, axis=1) 

    fit_times_mean = np.mean(fit_times, axis=1) 

    fit_times_std = np.std(fit_times, axis=1) 

 

    # Plot learning curve 

    plt.grid() 

    plt.fill_between(train_sizes, train_scores_mean - train_scores_std, 

                         train_scores_mean + train_scores_std, alpha=0.1, 

                         color="r") 

    plt.fill_between(train_sizes, test_scores_mean - test_scores_std, 

                         test_scores_mean + test_scores_std, alpha=0.1, 

                         color="c") 

    plt.plot(train_sizes, train_scores_mean, 'o-', color="r", 

                 label="Training score") 
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    plt.plot(train_sizes, test_scores_mean, 'o-', color="b", 

                 label="Cross-validation score") 

    plt.legend(loc="best") 

 

    return plt 

 

 

optic_chiasm          =       pd.read_csv(“Optic_Chiasm.csv") 

optic_chiasm          =       optic_chiasm.drop(('id'),axis=1) 

optic_chiasm          =       optic_chiasm.drop(('days'),axis=1) 

optic_chiasm          =       optic_chiasm.drop(('ageAtEntry'),axis=1) 

optic_chiasm          =       optic_chiasm.drop(('Volume'),axis=1) 

y                     =       optic_chiasm['Class'] 

optic_chiasm          =       optic_chiasm.drop(('Class'),axis=1) 

temp                  =       optic_chiasm['Fractal Dimension'] 

optic_chiasm          =       optic_chiasm.drop(('Fractal Dimension'),axis=1) 

optic_chiasm['Fractal Dimension'] = temp 

X                     =       optic_chiasm 

 

title = r"Learning Curves (SVM, rbf kernel, C = 4, gamma = 2)" 

# SVC is more expensive so we do a lower number of CV iterations: 

cv = ShuffleSplit(n_splits=5, test_size=0.3) 

estimator = SVM(kernel = "rbf", C = 4, gamma = 2, class_weight=’balanced’) 

plot_learning_curve(estimator, title, X, y, ylim=(0.97, 1.01), 

                    cv=cv, n_jobs=4) 

  

plt.show() 
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