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ABSTRACT

Human face is probably the most characteristic identifier in every aspect of a person’s life.
In modern times, the development of cameras and digital electronics, has led to a non
stop generation and collection of face images enabling applications in numerous fields,
like education, health, gaming, security, criminal and forensic investigation. It’s obvious,
that the progress in these fields can facilitate people’s daily life and help them live in more
secure societies. In order for this kind of applications to function properly, though, faces of
high clearness and sharpness are required to be captured. This request is far from easy to
satisfy in real world conditions. Occlusions such as eyeglasses, sunglasses, face masks,
scarves, hands and more, cause serious corruptions to the face images and weaken the
identification performance of facerelated applications.

Although some algorithms can handle face recognition with occlusion, they still suffer from
performance degradation due to occlusion’s extent. Therefore, the removal of occlusions
in face images is a very important, yet challenging task. The difficulty of the task lies in the
fact that, a reconstruction method has to find a way to restore the occluded face parts to
a nonoccluded form, aiming to the generation of a clean face. As we know, human faces
have similar shapes and appearances in general. However, the feature details may differ
substantially among people depending on their race, gender and age. These details are
the ones that raise even more the degree of difficulty of the face restoration procedure.

The objective of this thesis is the restoration of occluded face images to a nonoccluded
form, in order to facilitate their identification. To achieve that, we investigate a number of
inpainting models and we evaluate them on face recognition task. The models are based
on two principal face inpainting methodologies. The first, supervised method, known as
Generative Landmark Guided Face Inpainting (or LaFIn) [17] exploits some of the most in
novative and stateoftheart tools, in the machine learning field, the deep neural networks.
LaFIn’s architecture benefits from the integration of facial landmarks and accomplishes the
desired face restoration. The second, unsupervised method known as Principal Compon
ent Pursuit using Side Information, Features and Missing Values (or PCPSFM) [21] is a
variation of the famous Robust Principal Component Analysis (RPCA) method. PCPSFM
utilizes domain dependent prior knowledge and manages to recover a lowrank matrix L0,
containing the inpainted face. At the same time, it isolates the occlusions in a separate,
sparse matrix S0.
To evaluate the proposed methods, we worked on a portion of the popular CelebA dataset,
which contains face representations of numerous celebrities. For the purpose of our ex
periments, we created occlusions of different sizes and shapes, in order to test the models
under multiple scenarios. Concerning the evaluation process, three different models were
employed to detect the dominant inpainting method, based on the percentage of success
ful matches between the inpainted faces and the clean faces of all the celebrity identities
in the dataset.

SUBJECT AREA: Image Processing, Computer Vision, Deep Learning

KEYWORDS: Image Inpainting, Face Occlusions, Machine Learning, Neural Net
works, Robust Principal Component Analysis, Face Recognition



ΠΕΡΙΛΗΨΗ

Το ανθρώπινο πρόσωπο είναι πιθανώς το πιο χαρακτηριστικό αναγνωριστικό της ταυτό
τητας ενός ανθρώπου σε κάθε έκφανση της ζωής του. Στη σύχρονη εποχή, η ανάπτυξη
των καμερών και των ηλεκτρονικών συσκευών έχει οδηγήσει στην αδιάκοπη παραγωγή
και συλλογή εικόνων με πρόσωπα, που βρίσκουν εφαρμογή σε πολλούς τομείς, όπως η
εκπαίδευση, η υγεία, τα ηλεκτρονικά παιχνίδια, η ασφάλεια, η ποινική και ιατροδικαστική
έρευνα. Είναι προφανές, ότι η πρόοδος σε αυτούς τους τομείς μπορεί να διευκολύνει την
καθημερινή ζωή των ανθρώπων και να τους βηθήσει να ζουν σε πιο ασφαλείς κοινω
νίες. Όμως, για να μπορέσουν αυτού του είδους οι εφαρμογές να λειτουργήσουν ορθά,
απαιτείται η φωτογραφική λήψη προσώπων μεγάλης καθαρότητας και ευκρίνειας. Αυτή
η απαίτηση είναι κάτι παραπάνω από δύσκολο να ικανοποιηθεί στις πραγματικές συν
θήκες διαβίωσης. Occlusions όπως γυαλιά μυωπίας, γυαλιά ηλίου, μάσκες προσώπου,
φουλάρια, χέρια κ.ά. προκαλούν σοβαρές αλλοιώσεις στις φωτογραφίες με πρόσωπα και
αποδυναμώνουν την απόδοση της ταυτοποίησης προσώπου, από τις αντίστοιχες εφαρ
μογές.

Παρόλο που ορισμένοι αλγόριθμοι μπορούν να διαχειριστούν την αναγνώριση προσώ
που με occlusion, εξακολουθούν να υφίστανται μείωση στην απόδοσή τους εξαιτίας της
έκτασης του occlusion. Επομένως, η αφαίρεση των occlusions από τις εικόνες με πρό
σωπα είναι μια πολύ σημαντική, αλλά και απαιτητική εργασία. Η δυσκολία της οφείλεται
στο γεγονός, ότι μια μέθοδος ανακατασκευής πρέπει να βρει κάποιον τρόπο, ώστε να
αποκαταστήσει τα occluded μέρη του προσώπου σε μια μη occluded μορφή, στοχεύοντας
στην παραγωγή ενός καθαρού προσώπου. Όπως γνωρίζουμε, τα ανθρώπινα πρόσωπα
έχουν παρόμοιο σχήμα και μέγεθος σε γενικές γραμμές. Ωστόσο, ορισμένα χαρακτηρι
στικά μπορεί να διαφέρουν πολύ με βάση την φυλή, το γένος και την ηλικία τους. Αυτές οι
λεπτομέρεις αυξάνουν ακόμα περισσότερο το βαθμό δυσκολίας της διαδικασίας αποκα
τάστασης του προσώπου.

Ο σκοπός αυτής της Πτυχιακής Μελέτης είναι η αποκατάσταση occluded εικόνων με πρό
σωπα σε μια μη occluded μορφή, ώστε να διευκολυνθεί η ταυτοποίησή τους. Για να το
πετύχουμε αυτό, διερευνούμε ένα πλήθος από μοντέλα, ειδικευμένα στην ανάπλαση του
προσώπου και τα αξιολογούμε με βάση την απόδοσή τους στην αναγνώριση προσώ
που. Τα μοντέλα στηρίζονται σε δύο κυρίαρχες μεθοδολογίες της ανάπλασης προσώπου.
Η πρώτη, επιτηρούμενη μεθοδολογία, γνωστή ως Generative Landmark Guided Face
Inpainting (ή LaFIn) [17] αξιοποιεί μερικά από τα πιο καινοτόμα και υπερσύγχρονα ερ
γαλεία στο πεδίο της μηχανικής μάθησης, τα βαθειά νευρωνικά δίκτυα. Η αρχιτεκτονική
του LaFIn επωφελείται από την ενσωμάτωση των διακριτών σημείων του προσώπου και
επιτυγχάνει την επιθυμητή αποκατάστασή του. Η δεύτερη, μη επιτηρούμενη μέθοδος γνω
στή ως Principal Component Pursuit using Side Information, Features and Missing Values
(ή PCPSFM) [21] είναι μια γενίκευση της διάσημης μεθόδου Robust Principal Component
Analysis (RPCA). Η PCPSFM αξιοποιεί την προϋπάρχουσα γνώση και καταφέρνει να ανα
κτήσει έναν πίνακα L0, χαμηλού βαθμού, ο οποίος περιέχει το αναπλασμένο πρόσωπο.
Ταυτόχρονα, απομονώνει τα occlusions σε έναν ξεχωριστό, αραιό πίνακα S0.
Για να αξιολογήσουμε τις προτεινόμενες μεθόδους, δουλέψαμε σε ένα τμήμα του δημοφι
λούς συνόλου δεδομένων CelebA, το οποίο περιέχει τις αναπαραστάσεις των προσώπων
διάφορων διάσημων προσωπικοτήτων. Για τα πειράματά μας, δημιουργήσαμε occlusions
διαφορετικών μεγεθών και σχημάτων, ώστε να αξιολογήσουμε τα μοντέλα υπό πολλαπλές



συνθήκες. Όσον αφορά την διαδικασία αξιολόγησης, χρησιμοποιήθηκαν τρία διαφορετικά
μοντέλα, που προσπαθούν να εντοπίσουν την κυρίαρχη μεθόδο ανάπλασης, με βάση το
ποσοστό των επιτυχημένων ταιριασμάτων μεταξύ των αναπλασμένων και των καθαρών
προσώπων όλων των διάσημων προσωπικοτήτων, που εμπεριέχονται στο σύνολο δεδο
μένων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Εικόνας, Υπολογιστική Όραση, Βαθιά Μάθηση
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as well as with libraries related to face detection, recognition and identification.
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1. INTRODUCTION

1.1 Motivation

Human face is probably the most characteristic identifier in every aspect of a person’s life.
In modern times, the development of cameras and digital electronics, has led to a non
stop generation and collection of face images enabling applications in numerous fields,
like education, health, gaming, security, criminal and forensic investigation. For these
activities to be functional complex face recognition systems have been built. Face recog
nition [18] is a method of identifying or verifying the identity of an individual using their
face. Thus, these systems are used to identify people in photos, video, or in realtime.
Face recognition systems use computer algorithms to pick out specific, distinctive details
about a person’s face. These details, such as distance between the eyes or shape of
the chin, are then converted into a mathematical representation and compared to data
on other faces collected in a face recognition database. As expected, face recognition
systems vary in their ability to identify people under challenging conditions such as poor
lighting, low quality image resolution, and suboptimal angle of view.

However, external conditions are not the only ones that may affect the quality of the face
recognition process. Especially, in a real world scenario, occlusions such as eyeglasses,
sunglasses, face masks, scarves, hands and more often hide big parts of human faces
causing serious corruptions to face images and making the face recognition task particu
larly challenging. Although some algorithms can handle face recognition with occlusion,
they still suffer from performance degradation due to occlusion’s extent. Therefore, the
removal of occlusions in face images is a very important, yet challenging task. The diffi
culty of the task lies in the fact that, a reconstruction method has to find a way to restore
the occluded face parts to a nonoccluded form, aiming to the generation of a clean face.
As we know, human faces have similar shapes and appearances in general. However,
the feature details may differ substantially among people depending on their race, gender
and age. These details are the ones that raise even more the degree of difficulty of the
face restoration procedure.

V. M. Panagakis 15
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Figure 1.1: Real world occlusions 1

1.2 Related Work

Various image inpainting methods have been developed over the last decades. In the
following subsections, the most significant works are reviewed, split in two categories, the
supervised and the unsupervised ones.

1.2.1 Supervised Methods

Deep learningbasedmethods is amajor group of supervisedmethods, which deal with the
image inpainting problem. The context encoder [5], which is treated as a pioneer deep
learning method for image completion, introduces an encoderdecoder network trained
with an adversarial loss [6]. After that, plenty of followups have been proposed to im
prove the performance from various aspects. For instance, the scheme in [7] employs
both the global and local discriminators to accomplish the task. Another attempt sugges
ted in [8] designs a coarsetofine network structure and applies a selfattention layer to
connect related features at distant spatial locations. Besides, in [9] and [10] the convolu
tional layers are upgraded for making networks adaptive to the masked input. However,
most of the aforementioned methods can barely keep the structure of the original image
and the inpainted result frequently tends to be blurry, especially on large occluded areas.
For the sake of maintaining the structure of corrupted images, a number of methods, such
as [11, 12], try to firstly predict the edge information for corrupted images and then apply
it as a condition to guide the inpainting. Even these methods are unable to predict reas

1www.comp.nus.edu.sg/~leowwk/thesis/liguodong.pdf

V. M. Panagakis 16
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onable edges inside the masked regions, due to the face deformation caused from the
corruption.

Deep face inpainting methods is another significant group of supervised methods. Spe
cific to face completion, the authors of [13] construct a loss, which takes care of the gap in
semantic segmentation (face parsing), between the inpainted face images and the ground
truth ones, expecting to achieve a better preservation of the face structure. However, this
work often suffers from colour inconsistency and is unable to process effectively faces with
large poses. [9, 14] suggest directly, that users should manually label face edges to get
more accurate results. Although, this can be a flexible way to edit faces, sometimes it is
difficult for users to input precise edge information. That’s why, in [11] a network that pre
dicts the edges is built, which however suffers from inaccurate prediction on large holes.
Moreover, it seems that, for face completion, both face parsing and edge information are
relatively redundant, which may even degenerate the performance when feeding slightly
inaccurate information into the inpainting module. Facial landmarks are better to act as
guidance, thanks to their neatness, sufficiency, and robustness to reflect the structure of
face. Many works, such as [15, 16] have successfully applied landmarks to the task of
face generation.

Figure 1.2: An illustration of different facial features. From left to right: the input, Canny edges,
landmarks, edges by connecting the landmarks, parsing regions [17]

1.2.2 Unsuvervised Methods

Concerning the unsupervised inpainting methods, the traditional methods of the category,
consist of two main representative branches, the diffusionbased and patchbased ap
proaches. Diffusionbased approaches [1, 2] propagate lowlevel features around the oc
cluded areas, in an iterative way. However, these methods are only effective in reforming
regions without structure. At the same time, patchbased methods [3, 4] attempt to copy
similar blocks from either the same image or a set of images to the target regions. The
computational cost of calculating the similarity between their blocks is expensive, even
though some works like [3] have been proposed, in order to accelerate the procedure. On
the other hand, as a common limitation, they all hypothesize that the missing part can be
found elsewhere, which does not always hold in practice.

Another group of unsupervised inpainting methods is called the nonblind inpainting meth
ods. Those techniques fill in the occluded part of an image using the pixels around the
missing region. Exemplarbased techniques that cheaply and effectively generate new
texture by sampling and copying color values from the source are widely used. In paper
[19], a nonblind inpainting method suggests a unified scheme to determine the fill order of
the target region, using an exemplarbased texture synthesis technique. The confidence
value of each pixel and image isophotes are combined to determine the priority of filling.
[20] presents an image inpainting technique to remove occluded pixels when the occlu
sion is small. More specifically, it combines feature extraction and fast weighted principal
component analysis (FWPCA) to restore the occluded images.
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1.3 Objective

The objective of this thesis is the restoration of occluded face images to a nonoccluded
form, in order to facilitate their identification. To achieve that, we investigate a number of
inpainting models and we evaluate them on face recognition task. The models are based
on two principal face inpainting methodologies. The first, supervised method, known as
Generative Landmark Guided Face Inpainting (or LaFIn) exploits some of the most innov
ative and stateoftheart tools, in the machine learning field, the deep neural networks.
LaFIn’s architecture benefits from the integration of facial landmarks and accomplishes
the desired face restoration. The second, unsupervised method known as Principal Com
ponent Pursuit using Side Information, Features and Missing Values (or PCPSFM) is a
variation of the famous Robust Principal Component Analysis (RPCA) method. PCPSFM
utilizes domain dependent prior knowledge and manages to recover a lowrank matrix L0,
containing the inpainted face. At the same time, it isolates the occlusions in a separate,
sparse matrix S0.
To evaluate the proposed methods, we worked on a portion of the popular CelebA data
set, which contains face representations of numerous celebrities. For the purpose of our
experiments, we created occlusions of different sizes and shapes, in order to test the
models under different scenarios. We will elaborate more on the dataset structure and
the types of occlusions in the upcoming chapters of the thesis.Concerning the evaluation
process, three different evaluation models were used aiming to detect the dominant in
painting method, based on the percentage of successful matches between the inpainted
faces and the clean faces of all the celebrity identities in the dataset.
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2. LAFIN: GENERATIVE LANDMARK GUIDED FACE INPAINTING

Face restoration has proven to be a particularly challenging task. Hence, a qualified face
inpainting algorithm should take into account the following two conditions to guarantee
realistic outputs:

• Face structure: The topological relationship among facial features including eye
brows, eyes, nose and mouth must always be wellorganized. All the inpainted faces
must satisfy this topology structure.

• Consistent face attributes: Attributes such as pose, gender, ethnicity, and expres
sion, should be consistent across the inpainted face parts and the nonoccluded
areas.

Generative Landmark Guided Face Inpaintor (LaFIn) [17], is a deep network built to carry
out the face inpainting problem. LaFIn comprises of a Landmark Prediction Module and
an Image Inpainting Module, trained on the CelebA and CelebaHQ datasets [28].

Figure 2.1: LaFIn architecture. At first, the Landmark prediction module estimates the landmarks
and then the Inpainting module applies them on the corrupted image [17]

The functionality of LaFIn can be summarized as follows:

1. Building of a module that predicts landmarks on incomplete faces. The landmarks
reflect the topological structure, pose and expression of the target face.

2. Implementation of an image inpainting module that employs the predicted landmarks
as guidance, in order to accomplish the face restoration. To achieve attribute con
sistency, the module utilizes distant spatial context and connects temporal feature
maps.

2.1 Why adopt landmarks?

As stated, LaFIn uses landmarks as guidance to detect the facial regions of the corrupted
faces. Landmarks can be viewed as the discrete points sampled on the key regions of a
face. Their strong attribute is that they are able to reform the key facial regions without
containing redundant information. This attribute makes them compact, sufficient, and ro
bust.
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Yet, someone may wonder why use landmarks as guidance, instead of edge or parsing
information. Indeed, edge or parsing information can be highly accurate when clean faces
are studied. But this is not the case in challenging situations, where faces with multiple
and large corruptions have to be analysed. In this type of situations, it is impossible to gen
erate reasonable edges. As a result, the edge information retrieved would be redundant
and inaccurate, contributing to the creating of an underperforming inpainting algorithm.

On the other hand, a set of landmarks is always available, no matter what situation the
face is in. Once the landmarks are obtained, they immediately determine the topology
structure, pose and expression of the face, as shown in Figures 2.2, 2.3. For the reasons
above, including the fact they are much more convenient to control from an editing per
spective, we reach the conclusion that using landmarks as guidance is the best available
choice to achieve the face restoration.

Figure 2.2: Landmarks on clean faces

Figure 2.3: Landmarks on occluded faces

2.2 How to guarantee attribute consistency?

Except for the pose and expression attributes determined by the landmarks, there are sev
eral other attributes, such as gender, age, ethnicity, needed to be taken into consideration.
By the term consistency we mean the necessity to connect the clean and the inpainted
parts of the face in a smooth way, so that there is no visual differentiation between them.
To fulfill the consistency requirement, the inpainting algorithm should take the information
of the clean parts as a reference point to reconstruct the occluded parts.

In practice, this can be achieved by connecting distant spatial context and temporal fea
ture maps. Specifically, having a larger receptive field allows a network to capture more
spatial context. In the context of Single Image Super Resolution (SISR), this increases
the ability of the network to reconstruct larger and more complex edge structures. Re
spectively, the use of Long shortterm memory (LSTM) [32] neural networks, allows to
keep track of longterm temporal dependencies that determine the variability of features.
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LSTMs are artificial Recurrent Neural Networks (RNN) built in a way that makes them
suitable to maintain information in their memory cells for long periods of time.

2.3 Network Architecture

LaFIn is a neural network, composed of two main subnets. The first, Landmark Prediction
Module, is the one that predicts the landmark locations, while the second, Image Inpainting
Module, generates new pixels conditioned on the predicted landmarks, as illustrated in
Figure 2.1. In the following subsections, we will break down LaFIn’s architecture in detail.

2.3.1 Landmark Prediction Module

The goal of the Landmark Prediction Module is to retrieve a set of 68 landmarks from a cor
rupted face image. For the purposes of the face inpainting task, we are more concerned
about getting landmarks that can accurately identify the face structure and its basic attrib
utes, like pose and expression, rather than finding the precise location of each unique face
landmark. The reason behind this simplification is that most of the inbetween landmarks
don’t offer important information, concerning the face inpainting task.

LaFIn’s Landmark Prediction Module follows the same architecture as most of the preex
istent landmark detectors (see [22, 23]). Specifically, it is built upon the MobileNetV2
model, proposed in “Mobilenetv2: Inverted residuals and linear bottlenecks” [24] and fo
cuses on feature extraction.

Figure 2.4: Evolution of residual blocks. (a) MobileNets: Residual block, (b) MobileNetV2: Inverted
residual block [24]

Basically, [24] improved the previous work of MobileNets [25], by introducing novel in
verted residuals and linear bottlenecks (Figure 2.4b). To achieve that, the authors of [24]
optimized the preexistent residual blocks [26] (Figure 2.4a) by establishing a series of nov
elties, concerning the ReLU activation function and its transformation. Moreover, instead
of compressing the input feature map and connecting the layers with a high number of
channels, they chose to expand the input map and used shortcuts directly between the
bottlenecks, since they contain all the information. Additionally, they used linear activa
tion functions to set up the input bottleneck to prevent nonlinearities from erasing much
information.
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The process that takes places between the three layers of each residual block, can be
briefly described as follows:

1. The first layer decompresses the data to its original form.

2. A depthwise layer replaces the typical convolution layer and performs filtering using
the ReLU functions.

3. The last layer restores the data to its compact form.

This way, MobileNetV2 deals with the loss of information issue, caused in the classical
residual blocks of MobileNets due to their inability to filter a highdimensional tensors with
ReLU. In fact, the upgraded MobileNetV2 architecture leads to a 75% reduction of the
number of network’s parameters and increases the achieved mean average precision on
the ImageNet dataset by 1.6%, relative to MobileNets.

This exact architecture is used in the implementation of LaFIn’s Landmark Prediction Mod
ule. The final landmark prediction is achieved by fully connecting the fused feature maps
at different rear stages, as shown in Figure 2.1.

2.3.2 Image Inpainting Module

The purpose of the Image Inpainting Module is to restore faces by taking occluded images
and their predicted landmarks. LaFIn’s authors use the famous Generative Adversarial
Network (GAN) architecture, proposed in “Generative Adversarial Nets” [6] by I. Goodfel
low et al, to build the inpainting module.

Figure 2.5: GAN schema 2

GAN uses two networks, called the generator and the discriminator. Based on insights
from game theory, GAN’s training objective can be considered as a minimax game, where
the generator needs to produce fake, realistic images conditioned on the landmarks, out
of a known prior distribution, in order to fool the discriminator. At the same time, the
discriminator needs to distinguish between the real and the generated fake images. The
networks are trained in a competitive adversarial manner. The convergence is reached
when the generated results are not distinguishable from the real ones.

2https://developers.google.com/machine-learning/gan/gan_structure
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Overall, LaFIn’s generator is based on the UNet structure [28]. UNet is an architecture
for semantic segmentation. It involves a contracting path and an expansive path. The
contracting path follows the typical architecture of a convolutional network. It consists of
the repeated application of two 3 × 3 unpadded convolutions, each followed by a ReLU
activation function and a 2 × 2 max pooling operation with stride 2 for downsampling. At
each downsampling step the number of feature channels gets doubled. Every step in the
expansive path consists of an upsampling of the feature map, followed by a 2×2 convolu
tion that halves the number of feature channels, a concatenation with the correspondingly
cropped feature map from the contracting path, and two 3× 3 convolutions, each followed
by a ReLU. The cropping is necessary due to the loss of border pixels in every convolution.
At the final layer a 1× 1 convolution is used to map each 64component feature vector to
the desired number of classes. In total, the network has 23 convolutional layers.

LaFIn’s generator, in particular, consists of three gradually downsampled encoding blocks,
followed by seven residual blocks with dilated convolutions and a longshort term attention
block [29]. The latter connects temporal feature maps, while the stacked dilated blocks
enlarge the receptive field, so that features located in a wider range can be taken into
account. Afterwards, the decoder processes the feature maps gradually upsampled to
the same size as the input. Besides, shortcuts are added between the corresponding en
coder and decoder layers. It’s worth mentioning that, the 1 × 1 convolution operation is
executed before each decoding layer, so that the attention block can adjust the features
weights retrieved from the corresponding previous layer. This specific architecture boosts
the network’s ability to utilize distant features in a both spatial and temporal manner.

Figure 2.6: Unet architecture [28]

Concerning LaFIn’s discriminator subnet, it is built upon the 70×70 PatchGAN architecture
[30]. PatchGAN is a type of discriminator for GANs, which only penalizes structure at the
scale of local image patches. This type of discriminator tries to decide, if each N × N
(N = 70, in this work) patch in an image is real or fake. PatchGAN is run convolutionally
across the image, averaging all responses to provide the final output. Such a discriminator
models effectively the image as a Markov random field, assuming independence between
pixels separated by more than a patch diameter. This procedure can be considered as a
type of style loss.
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Particularly, in LaFIn’s discriminator blocks, the spectral normalization [31] technique is
introduced aiming to stabilize the training process. Furthermore, an attention layer is in
serted to focus on the attributes consistency. Finally, in contrast with works like [7], where
two discriminators are deployed, (i.e., a global discriminator assesses an image’s aggreg
ate consistency, while a local one tries to ensure the local consistency of the inpainted
region), LaFIn’s inpainting module deploys just one discriminator, which only requires an
image and its landmarks as input. This design choice leads to a lighter network architec
ture without affecting its performance because:

1. The global structure is guaranteed thanks to the landmarks conditioning.

2. The attribute consistency is ensured with the insertion of the attention layer.

2.4 FANFace

Figure 2.7: FANFace architecture [42]

LaFIn’s Landmark Prediction Module doesn’t always return a set of landmarks that can
accurately identify the face structure and its basic attributes, specially in cases where the
occlusions cover big parts of face images. Hence, LaFin’s implementation embeds FAN
Face, another model suitable for landmark prediction, proposed in “FANFace: a Simple
Orthogonal Improvement to Deep Face Recognition” [42].

FANFace is based on the integration of features from a facial landmark localization net
work and a face recognition network. The facial landmark localization network is a pre
trained Face Alignment Network (FAN) [44], which has been shown to robustly detect
facial landmarks across large poses, facial expressions, illumination changes, low resolu
tion and even occlusions. FAN is a stacked hourglass network [45] built using the residual
block of [43]. After experimentation, the authors judged that 2 stacks suffice to achieve
good accuracy. Face Recognition Network (FRN), is a ResNet [46], which is widely used
in classification tasks and particularly in face recognition. The innovative idea behind Fan
Face is the integration of features from the pretrained FAN into FRN, while training FRN.
FRN is trained in standard ways on popular face recognition datasets, like VGGFace2,
MS1MV2 and CASIAWebface. The most significant features integrated from FAN are:
the output in the form of facial landmark heatmaps and features from different layers ex
tracted in different resolutions.
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3. ROBUST PRINCIPAL COMPONENT ANALYSIS USING SIDE
INFORMATION

3.1 Problem Definition

Suppose a data matrixM is given, which can be decomposed as

M = L0 + S0, (3.1)

where L0 is a lowrank matrix and S0 is a sparse matrix. In this case, both components
are of arbitrary magnitude. Neither the lowdimensional column and row space of L0, nor
their dimension is known. The locations of the nonzero entries of S0 and their values
are unknown, as well. The goal is to recover accurately or even exactly the lowrank and
sparse components, in an efficient manner. In the case of the face inpainting problem,
matrixM contains aligned face images, stacked as column vectors. The face images can
be both occluded and nonoccluded. The recovered L0 matrix contains all the inpainted
face images in the form of column vectors, while S0 matrix consists of images, depicting
the occluded parts of the initial faces, stacked in a corresponding format.

3.2 Principal Component Analysis

Principal Component Analysis (PCA) [33], is a dimensionalityreduction method that is
often used to reduce the dimensionality of large datasets, by transforming a large set of
variables into a smaller one that still contains most of the information. Reducing the num
ber of variables of a dataset naturally comes at the expense of accuracy. Nevertheless,
most of the times it is worth trading a little accuracy for more simplicity through the di
mensionality reduction. PCA can be very effective when a big number of images has to
be managed. Images are combinations of pixels in rows and columns, placed one after
another. Each pixel represents a single image’s intensity value. Therefore, to process
multiple images we can form a matrix considering a row or column of pixels as a vec
tor. It is obvious, that working with many images requires huge amounts of storage and
processing power, whereas PCA compresses the whole image data, helping to preserve
them in smaller storage facilities and analyze them in a much easier way.

Mathematically, we could say that PCA seeks the best (in an l2 sense) rankk estimate of
L0 by solving

minimize
L

||M− L|| (3.2)

subject to rank(L) ≤ k.

where ||M|| denotes the 2norm, which is the largest singular value of M. This problem
can be efficiently solved via the Singular Value Decomposition (SVD) [34].
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3.3 Robust Principal Component Analysis

Although, PCA is arguably the most widely used statistical tool for data analysis and di
mensionality reduction, its application concerning grossly corrupted data seems to be
pretty fragile. Basically, when applied in a single extremely corrupted entry in M it may
render the estimated L̂ arbitrarily far from the true L0 matrix. In fact, gross errors are now
ubiquitous in modern datacentric applications, because some measurements may be ar
bitrarily corrupted, due to malicious tampering, sensor failures or face occlusions, in our
case.

3.3.1 Problem Variation

A new problem, considered as an idealized version of RPCA set to replace the initial one
aiming to deal with the case of huge corruptions. In the new problem the purpose is to
recover a lowrank matrix L0 from highly corrupted measurements

M = L0 + S0, (3.3)

The entries in S0 can have arbitrarily large magnitude and their support is assumed to be
sparse, but unknown. Even if, at first sight, the separation problem seems impossible to
solve, since the unknowns to infer for L0 and S0 are twice as many as the given measure
ments inM ∈ Rn1×n2, E. Candes et al. showed in “Robust Principal Component Analysis?”
[35], that not only this problem can be solved, but it can be solved by tractable convex op
timization.

Let ||M||∗ :=
∑

i σi(M) denote the nuclear norm of the matrixM, i.e. the sum of the singu
lar values ofM, and let ||M||1 =

∑
ij (|Mij|) denote the l1norm ofM seen as a long vector

in Rn1×n2. The authors of [35] ended up showing that under rather weak assumptions, the
Principal Component Pursuit (PCP) solves

minimize
L,S

||L||∗ + λ||S||1 (3.4)

subject to M = L+ S.
and recovers exactly the lowrank L0 and the sparse S0. In fact, they proved, that the
above problem can be solved by efficient and scalable algorithms, at a cost not so much
higher than the classical PCA one.

3.3.2 Problem Solution

The authors chose to solve the convex PCP problem (3.4) using an Augmented Lagrange
Multiplier (ALM) algorithm introduced in [36]. ALM has the ability to achieve high accuracy
rates in a small number of iterations and it works stably across a wide range of problem
settings, without needing parameter tuning. Actually, during the execution of their exper
iments they observed, that the number of iterations often remains bounded by rank(L0)
throughout the ALM optimization, which reinforces the efficient repetition of the preced
ure.

Let ⟨A,B⟩ represent tr(ATB) for real matrices A,B. The ALM method operates on the
augmented Lagrangian

l(L,S,Y) = ||L||∗ + λ||S||1 + ⟨Y,M− L− S⟩+ µ

2
||M− L− S||F 2

. (3.5)
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A generic Lagrange multiplier algorithm [37] would solve the PCP problem by repeatedly
setting (Lk,Sk) = arg minL,S l(L,S,Yk), and then it would update the Lagrange multiplier
matrix via Yk+1 = Yk+µ(M−Lk−Sk). For this particular PCP problem (3.4), there was no
need in solving a sequence of convex programs, after recognizing that bothminL l(L,S,Y)
and minS l(L,S,Y) have very simple and efficient solutions. The authors let Sτ : R → R
denote the shrinkage operator Sτ (x) = sgn(x)max(|x| − τ, 0), which naturally extends to
matrices, Sτ (A) by applying it to matrix A elementwise. This way, they showed

arg min
S

l(L,S,Y) = Sλµ(M− L+ µ−1Y). (3.6)

Similarly, they letDτ (A) denote the singular value thresholding operator given byDτ (A) =
USτ (Σ)VT , where A = UΣVT is the SVD of A. In a similar way, they showed

arg min
L

l(L,S,Y) = Dµ(M− S− µ−1Y). (3.7)

Thus, they ended up solving a difficult convex problem, following a very practical strategy.
The three most important steps of the strategy can be summarized as follows:

1. Minimize l with respect to L (fixing S).
2. Minimize l with respect to S (fixing L).
3. Update the Lagrange multiplier matrix Y based on the residualM− L− S.

The above steps are represented in a mathematical way in the following Algorithm 1.

Algorithm 1 Principal Component Pursuit by Alternating Directions
1: Initialize: S0 = Y0 = 0, µ > 0.
2: while not converged do
3: Lk+1 = Dµ(M− Sk − µ−1Yk)
4: Sk+1 = Sλµ(M− Lk+1 + µ−1Yk)
5: Yk+1 = Yk + µ(M− Lk+1 − Sk+1)
6: end while
Return: L,S.

Algorithm 1 is a special case of a more general class of augmented Lagrange multiplier al
gorithms, known as alternating directions methods [36]. Via their experiments, the authors
proved that the algorithm requires a relatively small numbers of iterations to achieve good
accuracy. The main computational cost of each iteration is due to the use of singular value
thresholding to calculate Lk+1. The value of Lk+1 depends on the calculation of the singu
lar vectors ofM−Sk−µ−1Yk, whose corresponding singular values exceed the threshold
µ. In fact, they observed empirically, that the number of such large singular values is often
bounded by rank(L0), allowing the efficient calculation of each next iteration via a partial
SVD, which gradually leads to a significant cost reduction. Last but not least, it is of a great
importance to mention the implementation details for Algorithm 1 and particularly the value
of µ and the stopping criterion. The authors use µ = n1n2/4||M||1, as suggested and ex
plained in [36]. Respectively, the algorithm is terminated, when ||M− L− S||F ≤ δ||M||F ,
with δ = 10−7.
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3.4 Robust Principal Component Analysis using Side Information, Features and
Missing Values

3.4.1 Problem Upgrade

Over the years, many variants have been proposed, trying to confront the convex PCP
problem (3.4) in a more efficient way for a number of different applications, including back
ground modelling from surveillance video and removing shadows or specularities from
face images. Two important variants were presented in [38] and [39].

Principal Component Pursuit with Features (PCPF) method in [38] assumes that there
are available orthogonal column spaces U ∈ Rn1×d1, where d1 ≤ n1 and row spaces
V ∈ Rn2×d2, where d2 ≤ n2, with the following objective:

minimize
H,E

||H||∗ + λ||E||1 (3.8)

subject to X = UHVT + E,

where H ∈ Rd1×d2 is a bilinear mapping for the recovered lowrank matrix L ∈ Rd1×d2, with
rank r ≪ min(n1, n2) and E ∈ Rn1×n2 is a sparse matrix with entries of arbitrary magnitude.
The main drawback of this model is that features need to be accurate and noiseless, which
is not trivial in practical scenarios.

In the case of missing data, robust matrix recovery method [39] enhances PCP to deal
with occlusions:

minimize
L,E

||L||∗ + λ||W ◦ E||1 (3.9)

subject to X = L+ E,

whereW is the matrix of binary occlusion masks and A ◦B symbolises the elementwise
multiplication of two matrices of the same dimension. The method’s Jacobitype update
schemes can be implemented in parallel and hence are attractive for solving largescale
problems.

For the purposes of this thesis, we are going to experiment with the Robust Principal Com
ponent Pursuit using Side information, Features and Missing values (PCPSFM), proposed
in “Side Information for Face Completion: A Robust PCA Approach” [21]. This work in
troduces a novel convex program to use side information, which is a noisy approximation
of the lowrank component, within the PCP framework. Moreover, the suggested method
is able to handle missing values, while the developed optimization algorithm grants better
convergence rates. Last but not least, the introduced model is able to use side information
to exploit prior knowledge regarding the column and row spaces of the lowrank compon
ent, expanding even more the potential of the algorithm.

At first, the authors of [21] presented a PCPSM model, which uses side information with
missing values. In order for (3.10) to be valid, they set as a precondition, that a noisy
estimate of the lowrank component of the data S ∈ Rn1×n2 must be available.
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minimize
L,E

||L||∗ + α||L− S||∗ + λ||W ◦ E||1 (3.10)

subject to X = L+ E,

where α > 0, λ > 0 are parameters that weigh the effects of side information and noise
sparsity.

Then, they utilized their proposed PCPSM model to generalise PCPF (3.8), which led to
the introduction of the novel PCPSFMmodel, using side information, features and missing
values.

minimize
H,E

||H||∗ + α||H−D||∗ + λ||W ◦ E||1 (3.11)

subject to X = UHVT + E, D = UTSV,

where H ∈ Rd1×d2 ,D ∈ Rd1×d2 are bilinear mappings for the recovered lowrank matrix L
and side information S respectively. The lowrank matrix L is recovered from the optimal
solution (H∗,E∗) to objective (3.11) via L = UH∗VT .

3.4.2 Problem Solution

Similarly to the solution of the convex problem (3.4), the authors chose the multiblock
Alternating Direction Method of Multipliers (ADMM) to deal with problem (3.11). As men
tioned before, ADMM operates by carrying out repeated cycles of updates, until it con
verges. However, for ADMM to be effective it has to be made sure, that features U,V
correspond to orthogonal matrices. Hence, (3.11) had to be transformed to the identical
convex, but nonsmooth problem:

minimize
H,E

||H||∗ + α||B||∗ + λ||W ◦ E||1 (3.12)

subject to X = UHVT + E, B = H−UTSV,

where H – D has been substituted by B and features U,V have been orthogonalized.

This way, the augmented Lagragian of (3.12) can be calculated much easier, as follows:

l(H,B,E,Z,N) = ||H||∗ + α||B||∗ + λ||W ◦ E||1
+⟨Z,X− E−UHVT ⟩+ µ

2
||X− E−UHVT ||2F (3.13)

+⟨N,H−B−UTSV⟩+ µ

2
||H−B−UTSV||2F ,

where ||A||F is the Frobenius norm of a matrix A, Z ∈ Rn1×n2 andN ∈ Rd1×d2 are Lagrange
multipliers and µ is the learning rate.

Subsequently, ADMM gets applied in (3.13) and generates a series of convex subprob
lems, which eventually produce the solution of the initial problem (3.11). All the subprob
lems are of the same format, meaning that at each ADMM iteration the variables H,B,E
are updated serially, while the rest of them remain fixed. The unique solution of each
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subproblem relies on the shrinkage Sτ (A) and the singular value thresholding Dτ (A) op
erators (with A = UΣVT being the SVD of real matrix A), the usage of whom has already
been analyzed during the solution of the convex problem (3.4). At the end of each ADMM
cycle, Lagrange multipliers Z,N are updated as well.

More specifically, three convex subproblems need to be addressed to solve (3.13), creat
ing a so called, 3block separable convex objective. At first, minimizing (3.13) with regard
to H at fixed B,E,Z,N is identical to:

arg min
H

l = arg min
H

||H||∗ + µ||P−UHVT ||2F , (3.14)

where P = 1
2
(X−E+ 1

µ
Z+U(B+UTSV− 1

µ
N)VT ). The solution of (3.14) is proved to be

UTD 1
2µ
(P)V.

Respectively, minimizing (3.13) w.r.t. B is equivalent to:

arg min
B

l = arg min
B

α||B||∗ + µ

2
||Q−B||2F , (3.15)

where Q = H−UTSV+ 1
µ
N. Likewise, the update rule of (3.15) seems to be Dα

µ
(Q).

Furthermore, the same process is repeated w.r.t. E:

arg min
E

l = arg min
E

λ||W ◦ E||1 + µ

2
||R− E||2F , (3.16)

where R = X − UHVT + 1
µ
Z. The kind of more complicated solution of (3.16) ends up

being Sλµ−1(R) ◦ W+ R ◦ (1−W).

Finally, the update of Lagrange multipliers occurs as follows:

Z = Z+ µ(X− E−UHVT ) (3.17)

N = N+ µ(H−B−UTSV) (3.18)

The whole mathematical reasoning we presented above, is summarised in Algorithm 2.
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Algorithm 2 ADMM solver for PCPSFM
Input: Observation X, maskW, side information S, features U, V, parameters α, λ > 0,

scaling ratio β > 1.
1: Initialize: Z = 0, N = B = H = 0, β = 1

||X||2 .
2: while not converged do
3: E = Sλµ−1(X−UHVT + 1

µ
Z) ◦W+ (X−UHVT + 1

µ
Z) ◦ (1−W)

4: H = UTD 1
2µ
(1
2
(X− E+ 1

µ
Z) +U(B+UTSV− 1

µ
N)VT ))V

5: B = Daµ−1(H−UTSV+ 1
µ
N)

6: Z = Z+ µ(X− E−UHVT )
7: N = N+ µ(H−B−UTSV)
8: µ = µ× β
9: end while
Return: L = UHVT ,E.

It has become evident by now, that ADMM is able to solve complicated convex problems
efficiently, within a small number of iterations. In this particular problem (3.11), a small
number of iterations is of a great necessity, because of the high computation cost that oc
curs from certain steps of the algorithm. For example, the orthogonalization of the features
U,V via the GramSchmidt process has an operation count of O(n1d

2
1) and O(n2d

2
2) re

spectively. At the same time, the update of matrixH in step 4 is the costliest computational
operation of Algorithm 2. Specifically, the SVD required in the singular value threshold
ing action dominates with O(min(n1n

2
2, n

2
1n2)) complexity. To boost the performance even

more, the authors have applied the fast continuation technique, which increases µ in
crementally for accelerated superlinear performance [40]. The initialization strategies for
variables H,B and Lagrange multipliers Z,N are described in [41]. Concerning the stop
ping criteria, the KarushKuhnTucker feasibility conditions have been employed, meaning
if within amaximum number of 1000 iterations, themaximum of ||X−Ek−UHkVT ||F / ||X||F
and ||Hk −Bk −UTSV||F / ||X||F dwindles from a predefined threshold ε, the algorithm is
terminated. In this case, k signifies the index of the ongoing iteration.

Apart from the fast convergence, the 3block separable convex objective of Algorithm 2
urges users to experiment with a number of different parameter combinations. For in
stance, if side information S is not available, PCPSFM reduces to PCP with features and
missing values by setting α to zero. If the features U,V are not present either, PCP with
missing values can be restored by fixing both of them at identity. Although, if only the
side information S is accessible, without the features, the objective is transformed back
into PCPSM. Later on, we will refer to three basic categories of parameterization we have
used to conduct our experiments for the purposes of the face inpainting task.
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4. EXPERIMENTAL EVALUATION AND DISCUSSION

4.1 Data Preparation

4.1.1 Dataset

For the purposes of our experiments, a part of the CelebFaces Attributes Dataset (CelebA)
[27] was used, following the required processing to match the needs of the face inpaint
ing task. CelebA is a largescale face attributes dataset with 202,599 RGB celebrity face
images, including 10,177 person identities. The images in this dataset cover large pose
variations and background clutter. The reason behind the choice of CelebA as our test
dataset is the fact, that LaFIn has already been trained on this exact dataset, so we had to
make sure that PCPSFM would compete on equal terms. In fact, there are two versions
of CelebA. The first, includes the initial, inthewild images as captured in real world con
ditions. For the needs of our project, we went for the second version, which comprises
of the same images, but in a cropped and aligned format. This means, that only the face
and sometimes a part of the upper body are depicted, while all images are aligned based
on the five most important face landmark locations (left eye, right eye, nose, leftmost part
of the mouth, rightmost part of the mouth). The alignment process is the outcome of
face rotation, rescaling or transportation, as shown in some of the images of Figure 4.1.
Occasionally it comes at the cost of ruining the background of the image.

Figure 4.1: Sample of the aligned & cropped CelebA dataset
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Even though, face alignment was a vital condition for the execution of our experiments,
concerning mostly the PCPSFM method, we had to apply a more thorough processing, in
order to isolate the faces completely and remove redundant information. This requirement
occurred from the tendency of the face inpainting methods to confuse the background
of image faces with extensive face occlusions, which usually leads to the generation of
very unrealistic inpainted results. To overcome this obstacle, we proceeded to a manual
cropping of the images, by cutting equal parts on the left side of the left eye and on the right
side of the right eye, but also above the left eye and below the leftmost part of the mouth.
By cropping equally an aligned image we ensured we would get a new aligned image of
a smaller size. Specifically, the initial 218 × 178 pixels size images were transformed to
78 × 80 pixels size. Trying to accomplish as high resolution as possible we resized our
dataset images to 100×100 pixels. After experimentation, this resolution was proven to be
the highest possible we could use to perform the high memory demanding mathematical
operations of the PCPSFM method, without dealing with memory crash issues. In Figure
4.2 there are depicted the manually cropped face images corresponding to the identities
of Figure 4.1.

Figure 4.2: Sample of our dataset, including manually cropped CelebA face images

Concerning the number of images chosen from the CelebA dataset, it’s clear we couldn’t
work with all of the 202,599 images, not only due to our restricted resources but also
because of the long execution time required for each one of the multiple algorithm execu
tions. Apart from, the quantity of the images, their quality is a crucial factor as well. For
instance, we could not use en profile faces for the purposes of this project, where facial
landmarks are not distinct, since the methods we used have to memorize as better as pos
sible the basic structure and attributes of the human face, in order to effectively restore
the occluded parts during the test procedure. Besides, the visual outcome of an en face
image is far more captivating when the basic facial landmarks, like eyes, nose and mouth
get successfully inpainted. For the reasons above, we picked out and processed 1600
images of 100 celebrity identities. The images are distributed equally, meaning there are
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16 images per identity, including 1 manually occluded image. A sample of our dataset
grouped per identity is shown in Figure 4.3.

Figure 4.3: Sample of our dataset grouped by identity

4.1.2 Occlusions

As mentioned above, our dataset contains one occluded face per identity. So, for the
implementation of this project we applied 100 different occlusions, given that there are
100 identities located in our dataset. For the creation of the occlusions, we made use
of the OpenCV python library. OpenCV is a library of Python bindings designed to solve
computer vision problems. One of its uses is to design shapes of different sizes and
colors on a given image. Thus, we tried to exploit OpenCV to create a variety of occlusion
combinations of different shapes (rectangles, circles, triangles, lines) and sizes (small,
medium, big), filled with realistic colors (shades of red, brown, pink) that could be detected
in an actual face occlusion (e.g., a face trauma). For each one of the occluded images,
our goal was to hide at least one of the significant facial landmarks, in order to make the
inpainting task as challenging as possible for our models. In Figures 4.4 – 4.6, we present
some occluded face images of our dataset, grouped by different occlusion criteria. The
size criterion is the one we will use, later on, to evaluate the inpainting results of our
methods.

V. M. Panagakis 34



Facial Inpainting Methods for Robust Face Recognition

Figure 4.4: Occlusions grouped by shape. (a) Rectangular occlusions, (b) Circular occlusions,
c) Triangular occlusions

Figure 4.5: Occlusions grouped by sparsity. (a) Dense occlusions, (b) Sparse occlusions
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Figure 4.6: Occlusions grouped by size. (a) Small occlusions, (b) Medium occlusions,
(c) Big occlusions

4.2 Models Setup

4.2.1 LaFIn

The implementation of LaFIn can be found in the github link of [17]. To experiment with
LaFIn an NVIDIA GPU is required, to execute efficiently and within a short time, the com
plex machine learning models. In addition, a series of deep learning related Python librar
ies is needed, with the most significant being PyTorch, which specializes in the building
of machine learning models from scratch. As known, GPUs are particularly expensive,
so we had to conduct our experiments on the Google Collaboratory platform, which offers
powerful GPUs for a limited amount of time per day.

Concerning LaFIn’s configurations, the model can be set up for both training and test pur
poses, using either its own landmark predictor or FANFace landmarks. Moreover, it gives
users the chance to decide, if they want to employ a mask or not, to cover the occluded
part of the face for better inpainting results. Specifically, one of the following mask options
may be employed:
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• no mask

• random block mask

• center mask

• external mask

• 50% external, 50% random block mask

• 50% no mask, 25% random block, 25% external mask

• external nonrandom mask

For our face inpainting task we used a sole supervised, LaFIn model, initiated for test,
using FANFace landmarks and external nonrandom masks. The use of a nonrandom
mask is what makes the model supervised, because this way we have prior knowledge of
where, precisely the occlusion is located and we can create an exact mask to cover it up.
In Figure 4.7 there are depicted the masks that cover the occlusions of Figure 4.6.

Figure 4.7: Sample of external nonrandom masks

V. M. Panagakis 37



Facial Inpainting Methods for Robust Face Recognition

4.2.2 PCPSFM

The implementation of PCPSFM was based completely on Algorithm 2, as presented in
[21] and analyzed in subsection (3.4.2) of this thesis. For the implementation we used
the Python programming language and the NumPy library, which specializes in complex
mathematical operations between matrices. The only change we made to the algorithm
is related to the value and the state of the scaling ratio factor β, that helps µ reach an
accelerated superlinear performance. Particularly, after experimentation we noticed that
the stable parameter β = 1

||X||2 , where X is the observation matrix, didn’t lead to the best
possible inpainting results. Hence, we decided to replace it, with a usergiven value, which
steadily decreases by 0.05 every 50 iterations, aiming to verge on β = 1, but without ac
tually getting it done, so that the condition β > 1 is fulfilled. In other words, setting the
value of β, as close to 1 as possible, is a crucial factor, which upgrades the quality of the
inpainting results. However, small β values come at the cost of longer iterations, that may
gradually lead to overextended execution times. For the reasons above, the values of β
used during our experiments, satisfy the condition 1 < β ≤ 1.5.

Before getting into the remainder of parameter choices, we should first break down the
three basic PCPSFM submethods we utilized in this project. At first, we tried to ap
proach the inpainting problem via the perspective of the Classic RPCA (CRPCA) algorithm
suggested in [35] and analyzed in section (3.3), meaning a purely unsupervised method
without missing values but neither side information nor features. To achieve that, we had
to create a huge observation matrix X, containing all the clear and occluded face images
and at the same time we set the side information matrix S to zeros, the missing values
matrixW to ones and the features matrices U,V to identity. The second, also, unsuper
vised method PCPF employs only the feature U and nothing else. In this case, feature
U has the role of a database containing only clear face images, which indicate how non
occluded faces should look like. For this method to be functional, our initial dataset had
to be split in half. In U there were located 8 clear face images per identity, meaning a
total of 800 clear faces. The rest 800 clear and occluded face images were placed in X.
S was set to zeros, W to ones and V to identity, as before. Our third PCPFM method is
similar to the second one, but incorporates missing values too. The addition of missing
values makes PCPFM semisupervised, because similarly to LaFIn the information about
the occlusion location is known, but the method can still remove occlusions, which haven’t
been pointed by the user. All matrices’ values are identical to the PCPF ones, except from
W, where we placed the missing values, representing the occlusion masks. The masks
used in PCPFM are the same ones used to set up LaFIn (Figure 4.7).

Regarding the remainder of the parameters, the maximum number of iterations is set by
default to 1000 for all the methods. Similarly, for all three cases the positive tuning para
meter µ, used in augmented Lagrangian, the tolerance value for convergency ε and the
positive tuning parameter α, used in the calculation of B have stable values. Specifically,
µ = 10−5, ε = 10−7 and α = 0, since S is set to zeros in all cases. Furthermore, we initial
ized CRPCA with β = 1.5 and the other two methods with β = 1.2. We selected a higher
β value for the CRPCA method, due to the fact that the observation matrix X is twice as
big, compared to the respectiveX of PCPF and PCPFM, making the computational cost of
Algorithm 2 significantly higher. Thus, by using a higher β value we were able to reduce
the duration of each iteration, without causing a remarkable degradation to the inpaint
ing results. The final PCPSFM models occurred after the initialization of each one of the
three aforementioned submethods with three different λ inputs. Positive tuning parameter
λ is used in the calculation of the sparse matrix E. Following the suggestion of [21] we
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applied λ = 1/
√
max(n1, n2), as the first λ value, where n1, n2 are the dimensions of the

observation matrix X. In our case, λ = 0.0057, since n1 = 3000 and n2 = 800 or 1600, de
pending on the executed method. Either way, n1 is the maximum dimension and its value
is the product of the image size (100× 100) multiplied by 3, which represents the number
of RGB channels. Dimension n2 represents the number of images in X. Subsequently,
we employed two more values λ = 0.01 and λ = 0.1, in order to have an overall view of
the parameter’s effect in our inpainting results. The configuration of all three PCPSFM
methods can be summarized in Table 4.1.

Table 4.1: Initialization configuration of PCPSFM methods

Methods Max iterations α µ β λ ε
CRPCA 1000 0 10−5 1.5 0.0057, 0.01, 0.1 10−7

PCPF 1000 0 10−5 1.2 0.0057, 0.01, 0.1 10−7

PCPFM 1000 0 10−5 1.2 0.0057, 0.01, 0.1 10−7

4.3 Test Procedure

4.3.1 Models Execution

During the implementation of this thesis, all the experiments were executed in the Google
Collaboratory platform. For the LaFIn related experiments the use of GPU was necessary,
while for all the PCPSFM experiments the CPU sufficed. Therefore, as expected the
execution of LaFIn was notably faster, given in fact that the network had to be fed only
with the occluded images, since it was pretrained on clear face images. On the other
hand, PCPSFM models required all the face images for each unique execution, leading
to longer execution times in all cases. Apart from the use of CPU, PCPSFM’s rate was
affected primarily by the size of the observation matrix X and secondarily by the values
of the initialization parameters λ, β. Hence, a long range of different execution times
was observed, not only among the three basic submethods, but also between a pair of
models of the same method, depending exclusively on the unalike initialization values of
their common parameters. Last but not least, we have to keep in mind that we evaluated
the inpainting results based on the size of the occlusions. This means, we had to run all
models for three different datasets, containing the same face images, but with different
occlusions sizes (Figure 4.6). During our experiments, though, the occlusion size didn’t
seem to affect significantly neither the number of iterations nor the execution time of each
model. As a result, in Table 4.2 we present the number of iterations and the average
execution times of all our models, as occurred after the experimentation on each slightly
modified dataset.
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Table 4.2: Number of iterations & execution times of all models

Models Iterations Exec time (min)
LAFIN  3.5

CRPCA
λ = 0.0057 40 200
λ = 0.01 45 240
λ = 0.1 46 255

PCPF
λ = 0.0057 110 24
λ = 0.01 119 25
λ = 0.1 148 32

PCPFM
λ = 0.0057 110 19
λ = 0.01 119 24
λ = 0.1 148 25

4.3.2 Inpainting Results

In this section we display a sample of the results produced by our models for the face
inpainting task and we comment on the models’ efficiency, based on the visual outcomes
of Figures 4.8 – 4.10. Our main purpose is to pursue the effect of the occlusion size in the
face inpainting task. That’s why, each figure illustrates the inpainting results of our models,
as applied to the same, five face images for a different size of occlusion. The five celebrity
faces selected, are on purpose of a totally different face structure and attributes, in order
to help us acquire a wider view of the inpainting application in as realistic conditions as
possible. Actually, identity V has the most heavily occluded face of our dataset, because
of its preexistent occlusions (beard, eyeglasses), in addition to the manually created one.
This raises an extra interest to our task, due to the fact that we didn’t include the preexist
ent occlusions to the occlusion masks, which may lead to a completely different problem
confrontation from the side of supervised, unsupervised and semisupervised methods.
Concerning the format of Figures 4.8 – 4.10, the first row illustrates the occluded face
image and the second displays the ground truth image, meaning the preoccluded image.
In all the following rows, the inpainting results of all our models are depicted, grouped by
the broad method, in which they belong (LAFIN, CRPCA, PCPF, PCPFM).
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Figure 4.8: Image Inpainting on small occlusions
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Figure 4.9: Image Inpainting on medium occlusions
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Figure 4.10: Image Inpainting on big occlusions
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Numerous conclusions can be derived, after having a quick glimpse at the figures above.
A first, general observation is that, as the size of the occlusions grows, the quality of the
inpainting results downgrades. Especially in the case of small occlusions, all the models,
except the CRPCA ones and PCPF (λ = 0.1), complete the inpainting process with high
efficiency, being able to reproduce inpainted face images, almost identical to the ground
truth. On the other hand, each one of the CRPCA models struggle to make the occlu
sion vanish, but none of them accomplishes it in an adequate grade. Actually, we could
anticipate, that the results of CRPCA models would be deficient compared to the corres
ponding results of the other PCPSFM submethods. Besides, CRPCA’s poor performance
is the reason why side information and features had to be employed to upgrade the RPCA
problem, at the first place. However, we should keep in mind that, due to its shy inpainting
contribution, CRPCA has the advantage of maintaining some specialized face attributes
intact, which will be proven to be a crucial factor in the upcoming evaluation results of the
face recognition task.

At the same time, LAFIN sticks to a course very similar to CRPCA. Regarding, small oc
clusions LAFIN seems to produce equal, if not better inpainting results than the advanced
PCPSFM models, like in the case of identity III. Though, as the occlusions grow bigger, it
fails to reconstruct the covered face area, especially when this area contains one or more
of the significant facial landmarks. Unlike CRPA models, which try to make the occlusion
fade away without success, LAFIN shows a different kind of weakness. Particularly, it
applies a type of blur in the occluded area, adopting the skin color of the examined iden
tity. This process leads to a partially deformed face, which at least has a homogeneity,
as regards the skin tone. We would probably expect better inpainting results from LAFIN,
given the fact it has been trained on a huge number of images, containing all the identities
we used in our dataset. However, we can still justify this mediocre performance, because
as mentioned in subsection (4.1.1), the initial CelebA dataset includes a mixture of en
face and en profile images, of a similar but nonidentical structure and dimensionality, in
dicating a slightly different approach on the identification of the occlusions. Besides, the
integrity of the clear facial parts combined with the skin homogeneity gain an upgraded
role, when face recognition comes into play.

Meanwhile, the unsupervised method PCPF produces quite satisfying results for the case
of small occlusions, as well as, for some individual cases of bigger occlusions, consider
ing it has not prior knowledge of the occlusion location. The PCPF model initialized with
λ = 0.0057 is the one that provides the best results of the method for all the occlusion cat
egories. It’s impressive, that PCPF can provide accurate results, even for just one out of
five face images covered with big, sparse occlusions, just because the occlusion happens
to be of a very similar color to the identity’s skin (identity IV). Hence, we couldn’t ask for a
much better outcome from a method, which doesn’t take into consideration the location of
the occlusion, especially when the latter covers up to 40% of the face. However, PCPF’s
successful inpainting results don’t come at zero cost. As analyzed in subsection (4.2.2),
feature U has the role of a database full of clear faces, which provides PCPF the know
how about the structure and attributes of a nonoccluded face. Then, PCPF utilizes this
information as a prototype and reconstructs all the inpainted faces, based on it. In other
words, as shown characteristically in the results of PCPF (λ = 0.0057) of Figure 4.8, the
inpainted faces end up having almost identical face structure (in our case: eyes, eyebrows
and nose), which of course doesn’t keep up with reality. This face structure generalization
will provoke a great confusion to the evaluation methods of the face recognition task, as
we will see in the next section.
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PCPFM is the final method, we experimented with and it’s by far the best one, always with
regard to the illustrations of Figures 4.8 – 4.10. We can’t ascribe any significant misfire
to PCPFM models, as they manage to vanish the occlusions and approach the ground
truth, regardless of the examined occlusion size or identity. Although, the face structure
generalization problem seems to still be present in some of the cases, as an aftereffect of
feature U, PCPFM (λ = 0.1) model stands out and manages to restore the face attributes
in remarkable detail. Therefore, the addition of missing values upgrades the preexistent
PCPF method making it a powerful tool ready to confront the hardest of occlusions.

The last issue that needs to be addressed, is about the unique case of identity V. Pre
viously, during the exploration of the models’ inpainting results, we skipped on purpose
to examine the ones related with this particular identity, because of its preexistent occlu
sions, which differentiate the expected outcome. Thus, we believe that identity V deserves
a special mention, in order to clarify the course of action of each one of the supervised,
unsupervised and semisupervised methodologies, in the case of preexistent occlusions.
Starting with the supervised, LAFIN model, the results don’t surprise us. Particularly, con
cerning small and medium occlusions the inpainting process seems to work ideally and
LAFIN generates results almost identical to the ground truth ones, with the preexistent
occlusion remaining intact. Even though at the beginning of this project we didn’t have the
claim to deal with the case of preexistent occlusions, our unsupervised (PCPF) and semi
supervised (PCPFM) models took over the task for us. As a result, PCPF (λ = 0.0057)
and PCPFM (λ = 0.0057) models generate almost the same, nonoccluded faces, without
eyeglasses and with a kind of trimmed beard, reminding us the clear faces of identity V, as
depicted in Figure 4.3. In fact, this comparison concerns only the small occlusion dataset,
because as mentioned before PCPF, doesn’t perform well in larger types of occlusions.
Namely, the small triangular occlusion can’t prevent PCPF from generating high quality
inpainting results equal to PCPFM. Of course, thanks to the introduction of missing values,
PCPFM is able to deal with both preexistent and manual occlusions of all the shapes and
sizes we experimented on.

To quantify and evaluate the quality of the inpainting results we applied a performance
indicator in the form of a Reconstruction Error metric. This metric measures the distance
between an inpainted image and the ground truth image and returns a value, which rep
resents the deviation between the two images. It’s clear, that the smaller the error value,
the greater the similarity of the images. The reconstruction error is denoted as follows

RE =

(
||GT− Inp||F

||GT||F

)2

(4.1)

where GT is the array representation of the ground truth image and Inp is the array rep
resentation of an inpainted image. The array values lie in the range of [0,1].

For the evaluation of our inpainting results, we deployed the Mean Reconstruction Error
(MRE), meaning we calculated the average reconstruction error for the 100 inpainted im
ages produced by each model. In tables 4.3 – 4.5 we present the MRE values of our
models for our three occlusion datasets.
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Table 4.3: Mean Reconstruction Error on small occlusion dataset

Models Mean Reconstruction Error
LAFIN 0.007

CRPCA
λ = 0.0057 0.023
λ = 0.01 0.027
λ = 0.1 0.033

PCPF
λ = 0.0057 0.025
λ = 0.01 0.027
λ = 0.1 0.038

PCPFM
λ = 0.0057 0.018
λ = 0.01 0.015
λ = 0.1 0.017

Table 4.4: Mean Reconstruction Error on medium occlusion dataset

Models Mean Reconstruction Error
LAFIN 0.037

CRPCA
λ = 0.0057 0.076
λ = 0.01 0.104
λ = 0.1 0.127

PCPF
λ = 0.0057 0.066
λ = 0.01 0.080
λ = 0.1 0.115

PCPFM
λ = 0.0057 0.024
λ = 0.01 0.020
λ = 0.1 0.021

Table 4.5: Mean Reconstruction Error on big occlusion dataset

Models Mean Reconstruction Error
LAFIN 0.039

CRPCA
λ = 0.0057 0.103
λ = 0.01 0.105
λ = 0.1 0.109

PCPF
λ = 0.0057 0.100
λ = 0.01 0.102
λ = 0.1 0.113

PCPFM
λ = 0.0057 0.026
λ = 0.01 0.022
λ = 0.1 0.026
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4.4 Evaluation on Face Recognition

In the previous chapter we commented on the quality of the inpainting results produced
by our models, based on the illustrations shown in Figures 4.8 – 4.10. However, mod
ern applications, focusing on face images, don’t flourish because of the possession of
highquality face images, but thanks to their ability to provide accurate predictions of the
identities depicted in these images. Reaching at the end of this thesis, it has become clear
by now, that the purpose of the face inpainting task is the restoration of occluded faces
to a nonoccluded form, in order to facilitate their identification. Though, we mustn’t be
complacent, that a visually flawless inpainted image guarantees the accurate retrieval of
the identity.

Hence, for the purposes of this project we deployed three different evaluators to validate
the accuracy of our inpainting models for the face recognition task. Before getting into
each individual evaluator, we should first analyze the basic steps of the face recognition
process. At first, we created a database of 800 face images, including 8 clear face im
ages for each one of the 100 identities of our dataset. Then, we calculated and stored
the face encoding of each of the 800 face images, creating a new database consisted
of face encodings. A face encoding is an array of RGB values, containing specialized
information obtained out of a face image. This information occurs from certain important
measurements on the face, like the color, size and slant of eyes, the gap between eye
brows, the position of the nose and more. The same procedure had to be executed for the
inpainted images, representing the test set of our experiments. For each inpainting model
we calculated 100 different face encodings, extracted from the sole inpainted image of
each identity. Afterwards, we passed the face encodings of the test set into an evaluator
and for each one of them, the evaluator predicted one or more identity labels. Overall,
each evaluator gets trained on the face encodings located in the database and tries to
predict the identity shown in a given inpainted image by finding k database images with
the most similar face encodings to the given image. Basically, the evaluator is a Classifier,
who attempts to categorize the inpainted images, in 100 classes, namely the identities. To
make it clear, we will give a simple example of a successful face classification. Suppose,
we want to find the true identity behind identity II, by examining the inpainted image pro
duced by LAFIN, as depicted in Figure 4.8. In other words, we want to classify one of the
100 inpainted images, as occurred after applying LAFIN inpainting on the small occlusion
dataset. Let’s also suppose, that we have initialized the Classifier to return only the most
probable class label (k = 1). For the recognition to be accurate, the retrieved label must
correspond to one out of 8 clear face images of the database, impersonating identity II. A
schema of the inpainted image and the 8 clear face images of the database is depicted in
Figure 4.11. The final step of the face identification process is the evaluation of the results.
To achieve that we used two metrics. The first one is the Exact Accuracy metric, which
checks if the most probable class label equals to the ground truth label. The second is the
RankedK Accuracy metric, which examines if the ground truth label equals at least one
of the top k most probable labels.
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Figure 4.11: The 8 possible matches for an accurate prediction of the inpainted identity

4.4.1 KNearest Neighbors Classifier

The KNearest Neighbors (KNN) Classifier is based on the homonymous KNN algorithm.
KNN is a simple, supervised machine learning algorithm that can be used to solve clas
sification problems. It assumes that similar things exist in close proximity, namely near
to each other. At first, KNN stores all the initial data (train set) and then classifies the
new data points (test set), based on their similarity to the initial data. This means, when
a new data point appears it can be easily classified into the most similar of the available
categories. During our experiments, we used the KNeighborsClassifier implemented in
the Scikitlearn Python package. For the generation of face encodings, we utilized the
face_recognition Python library, which constructs an array of 128 values, representing
the unique face attributes. In Tables 4.6 – 4.8 we present the KNN classification results
for our three occlusion size cases, as calculated using the exact accuracy and rakedK
accuracy metrics, where k = 3, 5 stands for the number of nearest neighbors of the KNN
algorithm.
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Table 4.6: Evaluation results on small occlusions using KNN Classifier

Models Exact
accuracy (%)

Ranked3
accuracy (%)

Ranked5
accuracy (%)

LAFIN 92 96 97

CRPCA
λ = 0.0057 81 89 90
λ = 0.01 85 94 95
λ = 0.1 87 92 94

PCPF
λ = 0.0057 57 74 79
λ = 0.01 72 78 83
λ = 0.1 65 75 77

PCPFM
λ = 0.0057 62 76 78
λ = 0.01 82 87 89
λ = 0.1 80 85 86

Table 4.7: Evaluation results on medium occlusions using KNN Classifier

Models Exact
accuracy (%)

Ranked3
accuracy (%)

Ranked5
accuracy (%)

LAFIN 66 71 80

CRPCA
λ = 0.0057 58 69 73
λ = 0.01 68 72 77
λ = 0.1 62 73 80

PCPF
λ = 0.0057 42 48 53
λ = 0.01 45 55 60
λ = 0.1 33 43 49

PCPFM
λ = 0.0057 48 62 67
λ = 0.01 69 77 84
λ = 0.1 76 83 85

Table 4.8: Evaluation results on big occlusions using KNN Classifier

Models Exact
accuracy (%)

Ranked3
accuracy (%)

Ranked5
accuracy (%)

LAFIN 51 60 63

CRPCA
λ = 0.0057 31 40 49
λ = 0.01 44 54 60
λ = 0.1 44 55 60

PCPF
λ = 0.0057 18 26 33
λ = 0.01 23 34 37
λ = 0.1 26 34 36

PCPFM
λ = 0.0057 45 55 58
λ = 0.01 59 71 77
λ = 0.1 64 70 70
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4.4.2 Linear SVM Classifier

Linear Support Vector Machine (or Linear SVM) is another supervised machine learning
model suitable for the solution of classification problems. Its main attribute is the creation
of a line or a hyperplane, which separates the data into classes. In the SVM algorithm,
the initial data (train set) are mapped as points in a ndimensional space with their values
being the coordinates of their locations. The objective of SVM is to maximize the width
of the gap between the two classes. The new data points (test set) are then mapped into
that same space and they join the class, which corresponds to the side of the hyperplane
they fall into. For our experiments, we used the SVC Classifier, initialized with a linear
kernel and implemented in the Scikitlearn Python package, as well. Once again, the
face encodings were generated using the face_recognition Python library. Tables 4.9 –
4.11 illustrate the Linear SVM classification results for our three occlusion size cases, as
calculated using the exact accuracy metric. Due to the nature of the SVM Classifier we
cannot apply the rankedK accuracy metric.

Table 4.9: Evaluation results on small occlusions using Linear SVM Classifier

Models Exact accuracy (%)
LAFIN 96

CRPCA
λ = 0.0057 79
λ = 0.01 87
λ = 0.1 90

PCPF
λ = 0.0057 62
λ = 0.01 74
λ = 0.1 69

PCPFM
λ = 0.0057 67
λ = 0.01 79
λ = 0.1 82

Table 4.10: Evaluation results on medium occlusions using Linear SVM Classifier

Models Exact accuracy (%)
LAFIN 60

CRPCA
λ = 0.0057 33
λ = 0.01 68
λ = 0.1 67

PCPF
λ = 0.0057 40
λ = 0.01 44
λ = 0.1 32

PCPFM
λ = 0.0057 61
λ = 0.01 69
λ = 0.1 76

V. M. Panagakis 50



Facial Inpainting Methods for Robust Face Recognition

Table 4.11: Evaluation results on big occlusions using Linear SVM Classifier

Models Exact accuracy (%)
LAFIN 54

CRPCA
λ = 0.0057 33
λ = 0.01 45
λ = 0.1 47

PCPF
λ = 0.0057 23
λ = 0.01 22
λ = 0.1 24

PCPFM
λ = 0.0057 42
λ = 0.01 66
λ = 0.1 65

4.4.3 VGGFace2 Classifier

VGGFace2 Classifier is an implementation of our own. Practically, we built a KNN Clas
sifier, named after the VGGFace2 dataset. VGGFace2 is made of around 3.31 million
images divided into 9131 classes, each representing a different person identity. Thanks
to its low label noise, high pose and age diversity, it has become a popular dataset suit
able to train stateoftheart deep learning models on facerelated tasks. We named our
Classifier after VGGFace2, because this time, we chose to generate the face encodings in
a different way. Specifically, we deployed a ResNet50 [46] neural network pretrained on
VGGFace2, which takes an image face as input and returns an array of 2048 values, rep
resenting the unique face attributes, namely the face encodings. Afterwards, we passed
the face encodings in our KNN Classifier, where we utilized the cosine similarity metric to
classify our inpainted results to the predicted identities. Similarly to our first KNN Classi
fier, in Tables 4.12 – 4.14 we present the classification results of our VGGFace2 Classifier
for all the occlusion cases, calculated using the exact accuracy and rakedK accuracy
metrics.

Table 4.12: Evaluation results on small occlusions using VGGFace2 Classifier

Models Exact
accuracy (%)

Ranked3
accuracy (%)

Ranked5
accuracy (%)

LAFIN 88 95 96

CRPCA
λ = 0.0057 78 86 87
λ = 0.01 84 91 93
λ = 0.1 86 92 93

PCPF
λ = 0.0057 61 69 74
λ = 0.01 71 82 84
λ = 0.1 73 80 88

PCPFM
λ = 0.0057 64 75 83
λ = 0.01 81 88 90
λ = 0.1 82 92 96
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Table 4.13: Evaluation results on medium occlusions using VGGFace2 Classifier

Models Exact
accuracy (%)

Ranked3
accuracy (%)

Ranked5
accuracy (%)

LAFIN 75 82 85

CRPCA
λ = 0.0057 54 65 72
λ = 0.01 71 81 85
λ = 0.1 75 82 87

PCPF
λ = 0.0057 37 54 61
λ = 0.01 46 56 65
λ = 0.1 43 55 61

PCPFM
λ = 0.0057 46 62 70
λ = 0.01 67 79 84
λ = 0.1 76 84 88

Table 4.14: Evaluation results on big occlusions using VGGFace2 Classifier

Models Exact
accuracy (%)

Ranked3
accuracy (%)

Ranked5
accuracy (%)

LAFIN 61 74 78

CRPCA
λ = 0.0057 30 42 48
λ = 0.01 43 58 65
λ = 0.1 46 65 76

PCPF
λ = 0.0057 19 28 33
λ = 0.01 27 35 39
λ = 0.1 32 38 42

PCPFM
λ = 0.0057 38 53 61
λ = 0.01 51 66 75
λ = 0.1 59 73 78

4.4.4 Interpretation of Classification results

Observing the accuracy results of our three evaluators we realize that in all cases, except
one, the classifiers point out the same inpainting model as the most dominant. However,
we can’t distinct a sole classifier as the superior for all three occlusion sizes. In fact, the
divergence between the classification percentages of the corresponding models is negli
gible among the classifiers. Starting from the case of small occlusions, we notice a clear
supremacy of the LAFIN model. Particularly, Linear SVM Classifier achieves an exact ac
curacy score of 96% for the LAFIN inpainting results, which is the highest accomplished
among all evaluation results. Actually, Figure 4.8 had predisposed us for LAFIN’s superi
ority and PCPFM’ strong performance. Though, after a 1 – 1 examination of the models,
based on the λ parameter, we realize that PCPFMmodels are inferior to the CRPCA ones.
At first sight, this is an unexpected outcome, judging from the results depicted in Figure
4.8. Yet, as we mentioned before, CRPCA’s weak inpainting contribution, combined with
the small occlusion size amplifies the preservation of the most significant face attributes,
extracted in the form of face encodings. This seems to gradually lead to a more accur
ate face recognition. At last, the face structure generalization issue prevents PCPF from
reaching the standards set by the other methods, leading to rather low evaluation results,
even for the small occlusion dataset.
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Continuing with the examination of the evaluation results, we perceive that, as the occlu
sions grow bigger PCPFM begins to stand out, which sounds logical, considering it is the
only method able to remove the occlusions from every single face image. Specifically, as
analyzed before, the PCPFM models and particularly the one initialized with λ = 0.1 seem
to overcome the face structure generalization problem. For that reason, the latter ends
up producing the most accurate results for the medium occlusion dataset, setting the bar
up to 76% for the exact accuracy metric. The fact that all classifiers accomplish the same
highest accuracy score for the LAFIN model, shows their diversity and reliability in eval
uating complex machine learning tasks, such as face recognition. So, if we had to pick
only one out of three classifiers for this specific occlusion case, we would probably choose
VGGFace2 Classifier, as it is the one which achieves a slightly better classification (84%)
for the respective PCPFM model, based on the second most significant metric, namely
the ranked3 accuracy. Generally, the rankedK accuracy metric, is a very useful metric
for the purposes of the face recognition task, as it unfolds the efficiency of each model in
a broad manner, even if it doesn’t always refer directly to the ground truth classification
class. Coming back to our results, VGGFace2 Classifier seems to be the most stable clas
sifier in this particular occlusion case, as it achieves exact accuracy rates close to 75%
for three models built on three different methods. This is not the case, for the other two
classifiers, each of which achieves just one exact accuracy score over 70%. Last but not
least, despite the redistributions in the accuracy hierarchy the majority of CRPCA models
keep maintaining the second place, this time above LAFIN, while the PCPF ones still hold
the final positions, with the percentages experiencing a deep fall.

Finally, regarding the case of big occlusions a controversy occurs from the classification
results, about which inpainting model is the most appropriate for the purposes of face re
cognition. Specifically, KNN and Linear SVM Classifiers nominate the PCPFM method
as the superior, which is an expected outcome, having examined the illustrations in Fig
ure 4.10. On the other hand, VGGFace2 Classifier, surprisingly points out LAFIN as the
most suitable model, leaving PCPFM as the secondbest option. As always, we justify
our choices using the exact accuracy metric as guidance. Having said that, we go for the
suggestions of the first two classifiers, given the fact that they both achieve scores near
65%, for their best PCPFM model, while VGGFace2 Classifier slightly surpasses 60% for
the LAFIN model. Particularly, Linear SVM achieves 66% for the PCPFM method, initial
ized with λ = 0.01 this time. However, due to the large extension of the occlusions in
this dataset, most exact accuracy scores are notably below 50% for CRPCA and PCPF
methods. Therefore, we can verify with numbers and reinforce the general observation
we made in the previous section. Namely, as the size of the occlusions grows, not only
the quality of the inpainting results downgrades, but also the efficiency in solving the face
recognition task.
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5. CONCLUSION AND FUTURE WORK

The purpose of this thesis was to restore a number of occluded face images to a non
occluded form, using different inpainting methods, which we evaluated on a face recogni
tion task. LaFIn is a supervised method built upon a series of deep neural networks, which
integrate facial landmarks and generate an inpainting result for a given occluded face im
age. During our experiments, we instantiated LaFIn with the FANFace model, suitable
for the prediction of landmarks and we created our own external nonrandom masks to
cover the occluded parts of each face. PCPSFM, on the other hand, is an unsupervised
method, based on the RPCA methodology. It is fed with both occluded and nonoccluded
face images and returns a lowrank matrix L0, containing all the inpainted face images and
a sparse matrix S0, which consists of images, depicting the occluded parts of the initial
faces. To achieve that, PCPSFM incorporates a number of improvements, compared to
the classic RPCAmethod, with the most important of them being side information, features
and missing values. In this project, we implemented three PCPSFM variations, two totally
unsupervised and one semisupervised, aiming to experiment with different combinations
of the introduced improvements. We initialized all three submethods with an adequate
number of parameters. Some of them were identical among the methods and others were
unique for each model, to make it stand out from the rest. In the end, a total of ten models
occurred from the two primary methodologies. During test, we deployed these models on
three manually created datasets, containing the same face images, but with an increasing
occlusion size, dataset after dataset. The test procedure resulted in a discussion about the
effectiveness of each model, in regard to the quality of its inpainting results. This discus
sion involved some unexpected inpainting outcomes, that helped us subtle the difference
between the supervised, unsupervised and semisupervised methodologies. Finally, we
utilized all the generated inpainted images to simulate a face recognition system, similar to
the ones used in modern facerelated applications. To evaluate the quality of our results,
we employed three classifiers (KNN Classifier, Linear SVM Classifier, VGGFace2 Classi
fier), each built upon a unique methodology. Through the evaluation process, we acquired
a spherical perception of each model’s efficiency and we apprehended how the occlusion
size affects each method’s functionality. Finally, we concluded that there isn’t a universal,
superior inpainting method, suitable for all the occlusion cases. Hence, we pointed out
the most appropriate model for each individual case, based on the results provided by our
classifiers.

To sum up, through the course of this thesis we managed to produce a number of suc
cessful inpainting results and we achieved very satisfying evaluation scores on the face
recognition task, always in proportion to the examined occlusion size. However, there are
still many upgrades we could have included in our experiments to optimize even more
the inpainting results and the evaluation accuracy, if we had the appropriate resources
and a loose deadline. First of all, having access to a stable machine with an integrated
GPU, would allow us to focus on a more complex implementation of Algorithm 2, designed
to utilize the processing power of the GPU, which would lead to a notable reduction of
PCPSFM’s execution time. In this context, it would be in our best interest to process and
experiment with a lot more than 1600 face images, in order to feed our models with as
many data as possible, expecting a significant improvement in the inpainting results. In
fact, the face images could be of a resolution higher than 100 × 100 to expose in even
more detail the restoration of the occluded face parts. Moreover, taking for granted the
availability of resources in the future, it may be worth proceeding to the retraining of LaFIn
network, on the exact same cropped and aligned set of clear face images, used as side
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information or features in the PCPSFM models. This way, the comparison of the two
methods will be fair, counter to the circumstances of this project, where we made use of
the default LaFIn version, pretrained on the initial inthewild, aligned CelebA images.
Furthermore, crucial conclusions can be extracted, about the models’ functionality, if we
group our dataset by additional occlusion criteria, apart from the size. For instance, as
analyzed in subsection (4.1.2) we could sort the occlusions, depending on their shape,
sparsity or even the location they lie on the face image. Hence, by combining all these cri
teria we will get a deeper perception of how the inpainting methods respond to each type
of occlusion and it will be easier for us to detect the most demanding occlusion cases.
Last but not least, there is always a chance of finding a better evaluation method, capable
of achieving higher accuracy scores for the face recognition task.
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ABBREVIATIONS  ACRONYMS

ADMM Alternating Direction Method of Multipliers

ALM Augmented Lagrange Multiplier

CelebA CelebFaces Attributes Dataset

CRPCA Classic Robust Principal Component Analysis

FAN Face Alignment Network

FRN Face Recognition Network

FWPCA Fast Weighted Principal Component Analysis

GAN Generative Adversarial Network

KNN KNearest Neighbor

LaFIn (Generative) Landmark Guided Face Inpainting

LSTM Long ShortTerm Memory

MRE Mean Reconstruction Error

PCA Principal Component Analysis

PCP Principal Component Pursuit

PCPF Principal Component Pursuit with Features

PCPFM Principal Component Pursuit with Features
and Missing Values

PCPSM Principal Component Pursuit with Side Information
and Missing Values

PCPSFM Principal Component Pursuit with Side Information,
Features and Missing Values

RNN Recurrent Neural Network

RPCA Robust Principal Component Analysis

ReLU Rectified Linear Activation Unit

RGB Red, Green, Blue

SISR Single Image SuperResolution

SVD Singular Value Decomposition

SVM Support Vector Machine
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