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ABSTRACT 

An artificial neural network application for adaptive video streaming has been used 

and studied for several years. However, for some applications, they are still under 

development and have become one of the academic and industrial research lines in 

machine learning. One of these applications focuses on perceptual end-users 

prediction for adaptive video streaming techniques in 5G mobile networks. 

This dissertation looks at how different neural network topologies are represented, 

with the goal of influencing the development of QoE prediction models for streaming 

video. In addition, this paper presents a cutting-edge neural network architecture for 

QoE prediction targets that connects the convolutional layer to the bidirectional LSTM 

layer. For comparison, the efficacy of several previously suggested neural network 

models - a three-layer CNN and a two-layer LSTM  perceptron network - has been 

built and assessed. To explain their hyperparameters and topologies, this dissertation 

presented two-layered biLSTM, three-layered FNN, and mixed CNN and LSTM QoE 

models. These neural netowrks models were trained using real experimental data from 

the University of Texas at Austin – Image and Video Engineering Lab's LIVE NETFLIX 

video QoE database. 

Simulation results were evaluated using PCC, SROCC and RMSE metrics to 

demonstrate the effectiveness of accurate QoE prediction for an adaptive 5G video 

streaming system. Additionally, the complexity of the proposed architecture of neural 

networks was calculated. After analyzing the comparison results of the studied QoE 

models, the FNN model provided the best level of forecasting accuracy by the RSME 

value and, at the same time, occupied one of the lowest levels of computational 

complexity. This indicates that FNN can be the best method for QoE prediction for 5G 

video streaming due to its relatively low complexity and competitively high prediction 

accuracy. 

Subject area: Machine Learning, Quality of Experience, Adaptive Video Streaming. 

Keywords: Quality of Experience, video streaming, convolutional neural networks, 

feed-forward neural networks, long-short term memory, 5G, mobile networks, 

bidirectional LSTM. 

 



 

ACKNOWLEDGMENTS 

I want to declare my appreciation for the Smart Telecom and Sensing Networks 

(SMARTNET) project within the Erasmus + program of the European Union for the 

scholarship and funding. I was delighted to take part in this great program. In addition, 

I would like to express my gratitude to my advisors and supervisors, Assoc. Prof. 

Stylianos Sigletos, Professor Dimitris Sivridis, Dr. Nikos Passas, and Dionysis G. 

Xenakis, for their support and advice during the dissertation. 

I'd like to express my gratitude to Tetyana Gordienko, Erasmus Project Administrator, 

and Zorina Bousboura for their assistance and organization during the SMARTNET 

program. 

Also, I would like to show respect and recognition to Tatiana Gordienko, Erasmus 

Project Administrator, and Zorina Bousbura for their coordination and assistance while 

I engaged in the SMARTNET program.  

I am very appreciative to my SMARTNET friends who become my friends of life, 

especially my best friends, Sasipim, Khojiakbar, Yevhenii, Mahmoud, Ameen, and 

Marc, share the moments and help me get through this tough COVID time with their 

sincere assistance. Special thanks to Yevhenii for his time to proofread and his 

suggestions on the thesis writing. Additionally, I could not make it through the two-year 

master’s degree abroad without my family, who encouraged me and always got in 

touch to cheer me up. Without these people, this thesis would not have been 

successful.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CONTENTS 

ABSTRACT ............................................................................................................... 4 

ACKNOWLEDGMENTS .................................................................................................................... 5 

LIST OF FIGURES..................................................................................................... 8 

LIST OF TABLES ...................................................................................................... 9 

1 INTRODUCTION ............................................................................................ 10 

1.1 Traffic outlook in today’s networks................................................................................... 10 

1.2 What is Video Streaming ................................................................................................... 12 

1.3 Service provisioning based on Quality of Experience ..................................................... 15 

1.4 Machine Learning............................................................................................................... 20 

1.1.1. Deep Learning ......................................................................................................................... 21 

1.1.2. Feed-forward Neural Network ................................................................................................ 22 

1.1.3. Convolutional Neural Network ............................................................................................... 23 

1.1.4. Recurrent Neural Network ...................................................................................................... 23 

1.1.5. Machine Learning tools .......................................................................................................... 25 

1.5 Problem Statement ............................................................................................................ 28 

2 BACKGROUND ............................................................................................. 30 

2.1. QoE prediction models ...................................................................................................... 30 

2.1.1. Streaming Video QoE Modelling and Prediction: A Long Short-Term Memory Approach.

 30 

2.1.2. Network Traffic Type-Based Quality of Experience (QoE) Assessment for Universal 

Services. 32 

2.1.3. Convolutional Neural Networks for Continuous QoE Prediction in Video Streaming 

Services. 35 

2.2. QoE metrics and protocol design for video streaming .................................................... 37 

2.3. Contributions ..................................................................................................................... 40 



 

2.4. Take away results from the current state-of-the-art. ........................................................ 41 

3. PROPOSED APPROACH .............................................................................. 42 

3.1. Dataset and code used from current literature ................................................................. 42 

3.1.1. Datasets................................................................................................................................... 42 

3.1.2. Code. ....................................................................................................................................... 45 

3.2. Proposed solution.............................................................................................................. 50 

3.2.1. Batch size ................................................................................................................................ 50 

3.2.2. Learning rate ........................................................................................................................... 51 

3.2.3. Adam optimizer ....................................................................................................................... 52 

3.2.4. Feed-Forward Neural Network QoE model. ......................................................................... 52 

3.2.5. Bidirectional LSTM QoE model .............................................................................................. 53 

3.2.6. Combined CNN and LSTM QoE model ................................................................................ 54 

4. PERFORMANCE EVALUATION ................................................................... 56 

4.1. Simulation model and parameters .................................................................................... 56 

4.2. Comparative results ........................................................................................................... 57 

4.3. Summary of results ............................................................................................................ 61 

5. CONCLUSION ............................................................................................... 63 

ABBREVIATION ...................................................................................................... 64 

REFERENCES ......................................................................................................... 66 

 

 



 

 8 

LIST OF FIGURES 

FIGURE 1.  DATA TRAFFIC ON MOBILE NETWORKS AROUND THE WORLD AND YEAR-OVER-YEAR GROWTH 

(EXABYTES PER MONTH) [1]. ....................................................................................................... 10 

FIGURE 2. GLOBAL MOBILE NETWORK DATA TRAFFIC [2]. ...................................................................... 11 

FIGURE 3. MEC-BASED ARCHITECTURE FOR 5G MOBILE NETWORKS [6]. ................................................ 13 

FIGURE 4. MPEG-DASH STANDARD'S CONCEPTUAL DESIGN [10].......................................................... 14 

FIGURE 5. OTT SYSTEM [6]. ............................................................................................................... 15 

FIGURE 6. 3GPP DASH AND PROGRESSIVE DOWNLOAD QOE MEASUREMENTS AND REPORTING FRAMEWORK 

[9]. ........................................................................................................................................... 17 

FIGURE 7. COMMON DNN STRUCTURES [18]. ....................................................................................... 22 

FIGURE 8. LSTM CHAIN STRUCTURE [19]. ........................................................................................... 24 

FIGURE 9. A TRAINING PIPELINE'S TENSORFLOW DATA FLOW GRAPH, INCLUDING SUBGRAPHS FOR INSIGHT 

DATA-IN, PRE-PROCESSING, TRAINING, AND CHECKPOINT STATE [22]. ............................................. 27 

FIGURE 10. QOE PREDICTION USING AN LSTM NETWORK [11]............................................................... 31 

FIGURE 11. SYSTEM MODEL OVERVIEW OF WORK [12]. .......................................................................... 33 

FIGURE 12. THE EFFICIENCY OF TRAFFIC CLASSIFICATION FOR DIFFERENT NN [12]. ................................. 34 

FIGURE 13. CNN-QOE MODEL DESIGN [14]. ........................................................................................ 36 

FIGURE 14. SOME FOOTAGE FROM THE LIVE-NETFLIX DATASET. CONTENT 5, 6, AND 8 FROM DATASET [25].

 ................................................................................................................................................ 43 

FIGURE 15. INFORMATION IN THE DATABASE. ....................................................................................... 45 

FIGURE 16. THE PRE-PROCESSING PART OF THE PROPOSED APPROACH. ................................................ 46 

FIGURE 17. THE NORMALISATION OF EXTRACTED FEATURES. ................................................................. 47 

FIGURE 18. THE CNN-QOE MODEL APPROACH. ................................................................................... 49 

FIGURE 19. THE LSTM-QOE MODEL APPROACH. ................................................................................. 50 

FIGURE 20. PROPOSED FNN-QOE APPROACH ..................................................................................... 53 

FIGURE 21. PROPOSED BIDIRECTIONAL LSTM APPROACH. .................................................................... 54 

FIGURE 22. PROPOSED COMBINED CNN AND BILSTM, QOE MODEL APPROACH. ..................................... 54 

FIGURE 23. THE MULTIPLICATIVE COMPLEXITY OF THE ANALYZED NNS ................................................... 58 

FIGURE 24. THE FNN-QOE MODEL'S QOE PREDICTION PRODUCTIVITY ON THE LIVE-NETFLIX VIDEO QOE 

DATABASE. ............................................................................................................................... 59 

FIGURE 25. OVER THE LIVE-NETFLIX VIDEO QOE DATABASE, THE COMBINED CNN AND LSTM QOE-MODEL 

PERFORMED WELL IN TERMS OF QOE PREDICTION. ........................................................................ 60 

FIGURE 26. PERFORMANCE OF THE BILSTM LAYERS QOE MODELS IN PREDICTING QOE VIA THE LIVE-

NETFLIX VIDEO QOE DATABASE. ................................................................................................. 60 

 



 

 9 

LIST OF TABLES 

TABLE 1. CALCULATED NNS COMPLEXITY............................................................................................ 57 

TABLE 2. THE SUGGESTED NN-QOE MODELS' QOE PREDICTION EFFICIENCY OVER THE LIVE-NETFLIX VIDEO 

QOE DATABASE. THE HIGHEST RESULT IS SHOWN WITH A BOLD TYPEFACE. ..................................... 60 



ML-based Adaptive Video Streaming techniques for 5G and beyond mobile data networks 

A. Rajabov 10 

1 INTRODUCTION 

1.1 Traffic outlook in today’s networks 

Video is currently the most widely consumed content on the Internet. According to the 

latest Ericsson Mobility Report [1], during 2020, the average annual traffic growth rate 

remained at an intermediate level of about 46%, despite an unusual peak in 2019. As 

a result, total mobile data traffic in Q1 2021 reached 66 exabytes. Over time, the 

increase in traffic is attributed to the fascination with the number of smartphone 

subscriptions and the average amount of data per subscription, primarily due to the 

more significant number of video content views. Figure 1 illustrates the total global 

network data and voice traffic per month from Q1 2014 to Q1 2021 and the percentage 

change in mobile data traffic on an annualised basis.  

 

Figure 1.  Data traffic on mobile networks around the world and year-over-year growth 
(exabytes per month) [1]. 

The total mobile traffic is estimated to grow five times by 2026, approximately 300 EB 

per month. At the moment, smartphones are at the centre of the development and 

generation of traffic growth, which generates about 95% of mobile traffic, of which 66% 

is video traffic, one smartphone user monthly exceeds 10 GB of traffic, and by 2026 

this figure could reach about 35 GB. In addition, markets that launch 5G faster are 

also driving traffic growth, and 5G is forecast to carry 53% of total mobile traffic, of 

which 77% could be video traffic by 2026 [1].  



ML-based Adaptive Video Streaming techniques for 5G and beyond mobile data networks 

A. Rajabov 11 

 Another interesting Cisco Annual Report [2] highlights that video devices, especially 

HD TV with internet access, produce a massive amount of traffic as a whole household 

today on average in two to three hours. Furthermore, due to the implementation of 

Ultra High Definition (UHD), or 4K, video streaming, since 4K requires a bit rate 

between 15 and 18 Mbps which is more than twice the bit rate for HD video and nine 

times more significant for standard definition video. Furthermore, several countries 

users currently experience 125 Mbps broadband speed, which opens the route to 

future video demands. Nowadays, video applications are of tremendous need in 

homes, but there could be considerable bandwidth demands in the future and beyond 

the prediction time of 2023 [2]. In figure 2 demonstrates the mobile data traffic 

consumption and growth.  

 

Figure 2. Global mobile network data traffic [2]. 

According to the Cisco Annual Report [2], Internet of Things equipment's would count 

for 14,7 billion of all global network devices by 2023. Equipment producers, business 

software companies, mobile operators, system integrators, and infrastructure vendors 

would have special but supplementary parts across the Internet of Things 

environment. Edge computing and networks enable corporate architectures to 

optimise working for business analysis critical data sets from the Internet of Things 

applications and communications. Multi-access edge enabled by 5G and Wi-Fi 6 

would advantage the low-latency real-time connections and high definition video 

applications, which maintains better video streaming to end-users [2]. 
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1.2 What is Video Streaming 

The process of constantly transmitting and consuming information from a source with 

little or no intermediate storage in network components is known as video streaming. 

Video is split into data packets and played on the client side when it is streamed over 

the Internet. H.264, VP8, and VP9 are some of the coding types used in video 

streaming. The encoded video stream is containerized into a "bitstream" by utilizing 

MP4, FLV, or WebM, and it is sent over the Internet through a transport protocol from 

the streaming server to the client. The conventional approach for video streaming used 

to start from an event's location or from a single user to the cloud, where transcoding 

[3] took place. The Content Delivery Network (CDN) [6] then utilizes Hypertext 

Transfer Protocol (HTTP)-based transport protocols to distribute video to clients, with 

management protocols such as Real-Time Protocol or Real-Time Streaming Protocol 

used for communication (RTP or RTSP). A conventional technique for deploying 

streaming server clusters for streaming services, including video streaming, is also 

available. The central server, which maintains all copies of media files and the Internet 

Protocol (IP) addresses of distributed servers, is in charge of this method, which 

specifies that in-network dispersed regional servers are managed by the central 

server. After then, the central server employs scheduling and load balancing 

algorithms to route customers to one of the dispersed servers closest to them. 

As previously mentioned, growing video traffic causes major difficulties for mobile 

networks during data transfer, necessitating infrastructure that provides reduced 

latency and higher data rates for multimedia transmission in a time-varying wireless 

environment in order to meet high QoE requirements. To address these issues, the 

HTTP Adaptive Streaming (HAS) [4] technology was created to enable video 

transmission over mobile networks. The basic idea behind HTTP adaptive video 

streaming over cellular networks is that the video sequence is split into chunks, each 

of which is encoded with several discrete bit rates. The appropriate video bitrate is 

then chosen based on the achievable bit rate over time in the wireless channel [4].  
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Figure 3. MEC-based architecture for 5G mobile networks [6]. 

The European Telecommunications Standards Institute (ETSI) has proposed a new 

possible method called multi-access edge computing (MEC), which amplifies 5G 

networks to enable data transmission [4]. MEC may use cloud computing and edge IT 

capabilities to manage video content placement and perform video conversion, 

smoothing out transient traffic changeability, response latency, and reducing 

congestion while increasing QoE. Furthermore, Dynamic Adaptive Streaming over 

HTTP (DASH) is rapidly becoming the preferred standard for Video-on-Demand (VoD) 

and live streaming over HTTP in a 5G network [4]. DASH is a client-side method that 

begins with a multimedia presentation description (MPD) file extraction. Data about 

the video chunks that are available, called segments for a specific context, bitrate, 

codecs, length, and the Uniform Resource Locator (URL). The segments loaded using 

data from the MPD are then chosen, extracted, and rendered by DASH. Segments 

might be gathered in the identical content environment as the MPD or disseminated 

through a CDN [4]. DASH clients determine the available buffer capacity, bandwidth, 

and potentially other parameters in the background and choose the next acceptable 

segment based on this information. If a bandwidth deterioration is shown, for example, 

clients choose a lower quality, and therefore a smaller segment, to avoid buffer 

subsidence and allow continued media viewing [6]. Figure 4 illustrates the MPEG-

DASH standard's conceptual design. 
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Figure 4. MPEG-DASH standard's conceptual design [10] 

The Cisco forecast [2] that users would be producing more than 50 trillion bytes of 

information until the end of the decade introduces the Yottabyte era. However, there 

are restrictions to the traditional CDN model. For example, reaching 5G capacity 

becomes super expensive, and low latency requirements could not be solved. In 

addition, limitations would prevent implementing real-time interactive video streaming 

and other new services [2]. Fully optimised 5G claims a new CDN that is as closer to 

users as possible, able to maintain more capacity per unit, low latency, and dynamic 

allocation of resources even in the farthest corner of the 5G network achievable by 

CDN virtualisation. CDN solves object distribution problems for HTTP traffic and CDN 

in new-generation networks to determine video stream distribution problems the same 

way [5]. However, there is a considerable distinction between streaming CDN and 

regular CDN. Streaming applications are commonly bigger than web applications 

which put pressure on caches. 

Moreover, video streaming, except caching, demands much closer collaboration 

between content makers and the CDN. In addition, servers and clients latency are 

more significant in video streaming than in the context of HTTP delivery because 

startup time for video streaming is usually 2 - 5 seconds which is relatively high 

compared to milliseconds for HTTP. Finally, from an enterprise outlook, a CDN 

supports several features. For example, removing content from the network as it was 

placed in a single centralised server, statistics of traffic, and controlling their cost 

structure by defining the number of streams to operate control access end-users 

streams [5]. 
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Over-The-Top (OTT) is a digital service that comprises transferring video content peer-

to-peer through the Internet without Internet Service Provider (ISP) control and 

management [6]. The road is a combination of CDN and the Internet in substance 

where the user equipment connects through Wi-Fi, mobile and fixed network as 

access points. The principle of operation starts from Online Video Distributor (OVD), 

the source of uncompressed video. Then, as needed, the video goes through the 

process of deinterlacing. Next, the critical process is the frame rate, subsampling, and 

resizing processing to create various levels and encoding using Scalable Video 

Coding. The last process is redirecting ready video streams to CDN, where users can 

request online content using any device [6], as demonstrated in figure 5. OTT services 

are constructed on top of a third-telecommunications party's infrastructure, with no 

extra network operator approval. Voice, video, messaging, music, games, and other 

forms based on customer requirements, with OTT streaming services having a huge 

impact on the telecommunications sector. 

 

Figure 5. OTT System [6]. 

Conventional RTP/RTSP video services use a single multimedia server and are sent 

over UDP, which prevents the video data from being retransmitted. On the other hand, 

OTT video services utilise the TCP protocol, which offers congestion control and flows 

control engines to guarantee secure transmission. However, packet loss and 

retransmission influence the OTT video quality, so the QoE management presents 

new features [6]. 

 

1.3 Service provisioning based on Quality of Experience 

Quality of Experience (QoE) refers to the subjective experience that a user has when 

interacting with applications or services [7]. The Quality of Experience (QoE) is a 

subjective statistic that evaluates how customers perceive the entire value of a service. 

HTTP video streaming is affected by stalling, initial delay, adaptation, and other QoE 
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factors [7]. As a consequence, two types of variables have an impact on QoE: user-

related and service-related elements, often known as technical and perceptual 

aspects. The end-user of the program perceives the perceptual elements accurately, 

although they are unrelated to technical advancement. The first delay, for example, 

may be due to technical causes, but the end-user perceives the time spent waiting. As 

a result, it's critical to examine technological effect variables that influence end-user 

perceptions. For example, in a video streaming service, the technical impact factor 

initial delay is often used, such as the time it takes to transmit a specific portion of a 

video for decoding and playing the video [7]. 

In reality, the available transmission data rate as well as the encoder configuration 

define the shortest feasible initial delay. In order to fill the playout buffer with more 

time, video playback is often delayed. This playout buffer is essential for reducing 

short-term throughput variations [7]. The amount of initially stored playtime, on the 

other hand, should strike a balance between the length of the associated delay (more 

buffered playtime = longer initial delay) and the risk of buffer depletion. Stalling is a 

phrase that describes a longer buffered playtime that is less susceptible to short-term 

throughput changes. In video streaming, the phrase "event stalling" refers to video 

playback being stopped due to a buffer underrun. This occurs when the video bitrate 

exceeds the video streaming throughput. Finally, the buffer is full, thus the movie can't 

be played endlessly until additional video data is gathered. Traditional HTTP video 

streaming is primitive, and it can only balance playout buffer size and stalling time in 

response to network variations. In contrast, HTTP adaptive streaming is more flexible 

and may balance video stream delivery with current network conditions, decreasing 

stalling time [7]. 

The present methodology for assessing QoE may be classified as a subjective 

assessment method, an objective assessment method, or a mixture, depending on 

whether the user is actively engaged in the evaluation and whether QoE and its model 

of correlation of affecting factors. Subjective QoE assessment methods are the most 

accurate and direct means of evaluating QoE since they are acquired when users are 

asked to rate the quality of a service as they see it, but they are cumbersome and 

expensive to manage [8]. The objective assessment, on the other hand, assesses the 

user's impression of service quality using numerical quality measures. In this way, the 

assessment process may be repeated and automated. Application service 
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management, on the other hand, is required to integrate input and output signals, 

which is challenging for network operators to do for OTT services and overlooks user 

concerns. Artificial intelligence, statistics, and other disciplines are utilized as 

theoretical support in a pseudo-subjective evaluation approach that combines 

subjective and objective assessment techniques, allows for real-time application, and 

is very accurate. More advanced model learning, on the other hand, requires a large 

amount of data [8]. 

Average throughput, initial playout delay, buffer level, playlist, MPD information, HTTP 

request-response transactions, and representation transition events are all included in 

the 3GPP DASH standard [10]. HTTP request and response transaction metric 

substantially result from each HTTP request and appropriate response. The client-side 

determines and reports:  

 Request type, for example, media segment, MPD, initialisation segment. 

 Time of when HTTP request was made and the appropriate response. 

 HTTP header content in the byte-range specification. 

 TCP connection identifier 

 Successful throughput trace values. 

More capacity metrics such as MPD fetch duration, initial segment, and media 

segments can also be obtained from the HTTP request and response transactions 

[10]. 

 

Figure 6. 3GPP DASH and progressive download QoE measurements and reporting framework 
[9]. 
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The representation switch events metric is used to inform switch events by computing 

the time. A representation changeover event is triggered by the client signals for 

switching from one representation to another. Within each representation switch event, 

the client gives the ID for the new representation, the time of the switch event when 

the client sends the first HTTP request for the new representation, and the media time 

of the first media sample played from the new representation [10]. The entire quantity 

of content bytes, such as HTTP responses, activity time - at least one "GET" request 

has yet to be completed, measurement period duration, inactivity type, and TCP 

channel access are all included in the average throughput statistic. The time between 

when the client requests the first media segment and when the content is received 

from the client buffer is measured by the first playback delay metric [10]. Finally, during 

playback, the metric buffer level is a computation of the buffer fill level. The media data 

is provided starting with the current playing time and the buffer level measurement 

time. The MPD metric is used to hold media presentation information so that servers 

without direct access to the MPD may learn about the media. The client may use this 

measure to provide media display attributes including resolution, bit rate, and quality 

rating, as well as media information like profile and level [10]. The MPEG-DASH Media 

Presentation Description (MPD) is an XML document that includes information about 

media segments, their connections, and the knowledge needed to choose between 

them, as well as any additional metadata that clients may need. MPD has the following 

structure [10]: 

 The top-level MPD element's periods define material with a start and end time. 

For scenes or chapters, or to divide advertising from program material, several 

periods may be utilized. 

 Views enable the same information to be encoded in various ways in distinct 

adaption sets. In most instances, opinions will be provided in a variety of screen 

sizes and bandwidths, allowing customers to seek the best quality material 

possible without having to wait for buffering or wasting bandwidth. 

 Subviews in a view include information related to just one media stream. They 

also provide you the information you need to get a single stream from a 

multiplexed container or a lower-quality version of a stream. 

 Media segments are the media files that the DASH client plays in order, as if 

they were one and the same. For a single-segment view, a list of segments 
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(SegmentList), or a template, the location of media segments may be specified 

using BaseURL (SegmentTemplate). 

 There are two kinds of index segments: one for the entire view (which is always 

a distinct file) and one for each media segment (which may be a range of bytes 

in the same file as the media segment). 

The effect of re-buffering on QoE is considerable. Re-buffering time, re-buffering 

position, and the number of re-buffering occurrences are the metrics used in this thesis 

(NR). As a result, the playback indicator (PI) metric is a continuous-time binary variable 

that shows the current playback status, with 1 indicating re-buffering and 0 indicating 

normal playing. In addition, since re-buffering events irritate users, the total number of 

re-buffering events from the beginning to the conclusion of the session is counted. 

Variables in memory may have an effect on QoE. Consider the recency effect, which 

occurs when recent events have an impact on quality of life. As a consequence, the 

recency effect for QoE is calculated using the time elapsed (TE) measure since the 

last video degradation, bitrate change, or re-buffering.  

Additionally, more QoE metrics influence the adaptive video streaming in the network.  

 Average resolution refers to the average of all segments selected by the media 

player, where each component can take on resolution values from this set 

{2160, 1440, 1080, 720, 480, 360}. 

 Toggle sum refers to the sum of the resolution changes that occurred during 

video playback. 

 Average elevation refers to the average of the hops between the previous and 

current segments across all segments selected by VLC, where each 

component can take on hills from the set [0.6]. So, for example, if the first 

segment is 480p and the second is 1440p, the height or jumps are 3. 

 Average video bitrate (Mbps) refers to the average bitrate across all segments 

selected by the media player, where the size of each component is divided by 

5 seconds, which is its duration. 

 Network usage time in seconds refers to the duration of video playback from 

when the first segment is delivered to when the last element is given. 
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 R1 Network Average Throughput (Mbps) refers to the size of all segments 

(cached and uncached) that the media player has fetched during network 

usage. 

 R2 Network Average Throughput (Mbps) refers to the size of all uncached 

segments over the time the network is in use. 

In networks and telecommunications, the Average Opinion Score (MOS) for latency 

measures the overall quality of an event, system, or experience. It is a crucial QoE 

measure that is expressed as a single rational number, usually ranging from 1 to 5, 

with 1 representing the lowest perceived quality and 5 representing the highest. 

‖𝑀𝑂𝑆‖ =  3.5 ∗ 𝑒(−(0.15𝑀+0.19)𝑁) + 1.5, where M is the average stop length and N is the 

number of pauses, and where M is the average stop duration and N is the number of 

pauses. MOS may be utilized in a number of ways, including adaptive streaming and 

progressive download. However, audio coding and video quality deterioration owing 

to encoding, spatial scaling or video frame rate changes, and delivery quality 

degradation all affect the end-perception user's of quality. Furthermore, because of 

the initial latency in loading, halting, and adjusting to the environment [24].  

1.4 Machine Learning  

Machine Learning (ML) is a term that refers to a set of algorithms that are based on 

prior knowledge. As can be seen, ML has started to replace conventional optimisation 

techniques in many domains due to the flexibility of ML models to integrate new 

constraints and inputs without having to start from scratch and solve mathematically 

complex equations. As with today's computer systems, machine learning models 

adapt quickly to changing circumstances. User location, connection information, cell 

load, local traffic patterns, application types, and dedicated bandwidth are all examples 

of contextual data that may be utilized to benefit from machine learning at edge 

devices. Additionally, doing machine learning activities at the edge may decrease the 

load on the main network. To get the most out of MEC and ML's partnership, ML 

models should be designed to utilize the fewest resources possible while yet providing 

accurate and relevant results as they scale over massive communication networks. 

Due to memory and device power constraints, ML cannot currently offer high inference 

in MEC in contrast to industrial data centers. However, there are two main benefits of 

utilizing machine learning in MEC: 
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 For particular tasks, effective ML models need less energy, memory, or training 

time. 

 Apportioned ML models that distribute learning and inference assignments 

among big data centers and smaller peripherals for improved efficiency and 

parallel processing. 

Machine learning models that are state-of-the-art have been developed to function on 

edge devices using simple models that need minimal computational resources and 

may be utilized on IoT devices [16]. When fewer granular answers are required, 

decreasing the amount of the model input for classification applications, on the other 

hand, may improve MEC learning. Additionally, by adding many exit points in models 

to get outcomes, as well as establishing human-machine partnerships utilizing neural 

networks and designing new efficient ML architectures, computational costs may be 

lowered [17]. Model replication, on the other hand, is just the first step in achieving 

efficient ML in MEC. 

1.1.1.  Deep Learning 

Deep Learning (DL), a subset of machine learning, has attracted a lot of attention in 

recent years for computer vision, new optimal gaming strategies, and other uses, all 

without the need for costly human development. DL, on the other hand, uses neural 

networks to automate feature extraction from huge data sets for later use in 

categorization, decision-making, or data creation [18]. As seen in Figure 11, several 

conventional deep neural networks (DNN) are presented. These models are split into 

three groups based on the training methods used: supervised, unsupervised, and 

reinforced. 
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Figure 7. Common DNN structures [18]. 

In DNNs, which are a step ahead from conventional perceptron systems, hidden layers 

and internal functions are utilized to approximate non-linear connections between 

input and output. To minimize a cost function, all DNN models utilize gradient descent. 

This technique is known as "back-propagation" in optimisation and training, for 

example, mean square error and maximum likelihood. In 5G networks, deep learning 

lowers cost processes and minimizes operational expenses, latency, and downtime. 

Deep Learning is also used in 5G networks for traffic categorization, routing choices, 

and network security [17]. 

1.1.2.  Feed-forward Neural Network 

A feed-forward neural network (FNN) is a kind of deep neural network (DNN) in which 

neurons do not cycle and information is sent directly. According to the Universal 

Approximation Theorem [19], FNN can estimate any closed and constrained function 

with enough neurons in a hidden layer. The hidden layer extracts the properties of the 

input vector, which is then passed to the output layer, which acts as a classifier or 

regression. For example, the classifier 𝑦 = 𝑓∗(𝑥), connects input x to category y. By 

establishing the mapping 𝑓(𝑥;  𝜃), the FNN learns the values of the parameters that 

lead to the best approximation of the function. The data is sent from x through the 

intermediate computations needed to compute f, and then to the final output y. As a 
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consequence, no feedback loops exist in which the output of the model feeds back on 

itself. 

1.1.3.  Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are a kind of deep neural network (DNN) used 

to evaluate large, high-resolution images [18]. CNNs, depending on their location, use 

connections in nearby data, such as pixels in a picture. CNNs use mathematical 

"convolutions," linear processes that weighted average neighboring samples, and 

"pooling," which usually uses a maximum combination or similar function calculated 

on the target [26], to totalize data across a region. CNN was used in 5G networks to 

predict data flows between base stations and detect objects, allowing for the 

development of 5G-enabled industrial robots. To overcome the above-mentioned 

shortcomings of FNN, CNN uses convolution and concatenation techniques. The first 

is used to downsample and the second is used to apply slide convolutional filters on 

the input vector. It typically happens when a maximum or average concatenation 

occurs. CNN is renowned for utilizing smaller convolutional filters and deeper layers. 

As a result, the system develops into a fully convolutional network, with a decreasing 

percentage of pooling layers compared to fully connected layers. CNN is used in 

image recognition, video analysis, natural language processing, and other 

applications. One of the drawbacks of FNN, which includes CNN, is that the output is 

solely determined by the input vectors. As a consequence, completing several 

activities in a row is challenging [17]. 

1.1.4.  Recurrent Neural Network 

The recurrent neural network covers DNN models for estimating functions for 

processing time sequences (RNN). The previous time step's output has an impact on 

the network's solution for the next time step [18]. As a consequence, in addition to the 

actual model inputs, RNNs need the use of "memory" to recover data from earlier time 

steps. Gradient descent learning on RNNs produced explosive gradients, which were 

corrected using new machine learning models called Long-term Short-term Memory 

(LSTM) models with extra information flow structures called "gates." LSTM models 

have shown to be useful and accurate in solving traffic forecasting and mobility 

problems in communication networks. RNNs, on the other hand, may suffer from long-

term dependency issues [19], such as gradient explosion and disappearance. 
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The RNN has extra parameters for training because of the double weights. A simple 

RNN, as previously mentioned, has more parameters in the learning phase, making 

learning exact weights and input weights more difficult [19]. The Echo-State Network 

(ESN) adds these two weights and only knows the output weights to solve these 

problems. The buried layer was renamed "reservoir" in ESN, and neurons are loosely 

connected with weights given at random. Because the consequences of repeated acts 

are continuous, information about precious events builds up in a constant weight 

reservoir, akin to a voice echo. In reality, employing a closed RNN, such as LSTM [18], 

to deal with long-term dependencies is a novel and effective approach. LSTM is a kind 

of RNN that was created to solve issues with long-term dependencies and RNN. As 

with any RNN with repeated modules of a neural network, LSTM has a chain structure. 

By default, RNN modules consist of only the tanh layer. However, LSTM has four 

layers: three sigmoid and one tanh. LSTM has a memory cell and three gates: forget, 

input and output. "Forget gate" is where information goes through LSTM, the sigmoid 

function (1) decides to keep or not the data by considering the previous out but ℎ𝑡−1 

and 𝑥𝑡, as shown in figure 12, the decision presented as 1 or 0, respectively [19].  

 

Figure 8. LSTM chain structure [19]. 

"Input gate" combining sigmoid (2) and tanh (3) functions in the LSTM to update the 

cell state, where tanh creates a vector of new �̃�𝑡 values. By multiplying the old state 

𝐶𝑡−1 by forgetting things 𝑓𝑡 and adding 𝑖𝑡 ∗ �̃�𝑡 to update new state values (4). The 

"Output gate" moves the state value between -1 and 1 using the tanh function layer 

(6) and multiplies it by the output of the sigmoid function (5), after which a portion of 

the output can be taken as determined. 

 
 

(1) 



ML-based Adaptive Video Streaming techniques for 5G and beyond mobile data networks 

A. Rajabov 25 

 
 

(2) 

 
 

(3) 

 
 

(4) 

 
 

(5) 

 
 

(6) 

To sum up, "Input gate" is chargeable for storing and controlling content in the cell, 

"Forget gate" for rebooting the cell by demand, and "Output gate" defines the current 

state of the cell and content which is sent to the next level. The state declares short-

term memory, whereas the cell supports a long memory range. These parts together 

in one unit does LSTM network [19]. Additionally, plenty of machine learning tools exist 

to utilise all the above-mentioned neural networks, and section 1.4.5 describes these 

tools more precisely. 

1.1.5.  Machine Learning tools 

Weka. The University of Waikato in New Zealand created WEKA (Waikato 

Environment for Knowledge Analysis), a freely accessible machine learning software 

program. Weka is a data analysis platform with easy graphical user interfaces, 

algorithms, visualization tools, and prediction models [20]. It is developed in Java and 

operates on virtually any platform. As a result, users may call and apply algorithms 

directly to the dataset or from Java code created by hand. 

Weka's initial version was non-Java and based on the programming language C, and 

it was primarily used to implement third-party modeling methods. The initial version is 

mostly used for data analysis, but the complete Java-based version of Weka is now 

used in a variety of areas, particularly for educational and research purposes [20]. The 

Weka tool has a number of benefits, including mobility, a large number of data pre-

processing and modeling methods, and an easy-to-use user interface. Typical tasks 

include data pre-processing, clustering, classification, regression, visualization, and 

feature selection [20]. Weka methods are based on estimating data from a single file 

or a connection, with each data point described by a set of attributes, usually numeric 
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or nominal. Weka also enables you to utilize SQL databases and modify the results of 

a database query using Java Database Connectivity. Another significant area that is 

not covered by the Weka methodologies and approaches is sequence modeling [20]. 

Scikit-learn. Python's programming language has been determined as one of the most 

well-known languages for scientific calculations due to the high-level interactive 

pattern and growing ecosystem of scientific libraries, which are an attractive option for 

research data analysis and algorithmic engineering [21]. Scikit-learn leverages the 

above-mentioned affluent framework to maintain state-of-the-art realisations of many 

popular machine learning algorithms while supporting a user-friendly interface 

regardfully when coupled with Python language. Thus, Scikit-learn responds to the 

rising demand for statistical data analysis by non-technicians in the software and web 

industry and areas beyond computer science such as biology or physics. Scikit-learn 

operates with ''Numpy" and "Scipy" python libraries, focusing on imperative 

programming. In addition, although the package is created in Python, it includes C++ 

libraries such as LibSVM and LibLinear, which maintain standard realisation of SVMs 

and generalised linear models with compatible licenses [21]. 

Furthermore, Scikit-learn can estimate the productivity of the evaluator or select 

parameters utilising cross-validation, distributing the calculations across multiple cores 

if necessary. It is experienced by comprising an evaluator in the GridSearchCV object, 

where "CV" stands for "cross-validation". At the call of function "fit", it fetches features 

in a given feature grid, maximising the estimate, the forecast, estimation, or 

transformation is then deputed to the configured estimator [21]. Therefore, objects can 

be utilised transparently as any other evaluator. However, cross-validation can be 

more effective for some evaluators by applying specific attributes, such as warm 

restarts or normalisation paths. Finally, a Pipeline object can unite multiple 

transformers and an evaluator to build a joint evaluator, for instance, to apply 

downsizing before fitting. Despite the fact that Scikit-learn is mainly built in a high-level 

language, it has been carefully designed to maximize computing efficiency [21].  

TensorFlow. TensorFlow tool [22] is a machine learning system that works highly and 

in heterogeneous conditions. To conduct computation, general state, and operations 

that alter that state, TensorFlow uses data flow graphs. It displays the nodes of a data 

flow graph across many computers in a cluster, as well as inside a single machine 

spanning multiple processing devices such as multi-core CPUs, general-purpose 
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GPUs, and specialized GPUs. With an emphasis on deep neural network training and 

analysis, TensorFlow offers a broad variety of applications. Furthermore, TensorFlow 

[22], an open-source framework extensively utilized in machine learning research, is 

used in the production of many Google services. Figure 13 shows a TensorFlow data 

flow graph for a training pipeline, which includes subgraphs for reading input, pre-

processing, training, and checking the checkpoint state. The data flow graph explicitly 

signifies the interactions between sub-calculations, becoming it easy to run 

autonomous calculations in parallel and split measures throughout multiple devices.  

 

Figure 9. A training pipeline's TensorFlow data flow graph, including subgraphs for insight 
data-in, pre-processing, training, and checkpoint state [22]. 

Each vertex introduces a unit of local processing, and each edge provides an exit or 

entrance to a vertex in a TensorFlow graph. As a result, TensorFlow refers to 

operations at vertices as "Operations" and flow values along edges as "Tensors" [22]. 

Tensors are n-dimensional arrays containing a limited number of basic types, such as 

Int32, float32, and others, as units. In many machine learning methods, tensors 

naturally execute the input and output data of the typical mathematical processes. For 

adding sparse data, TensorFlow offers two options: encode the data into variable-

length string components of a dense tensor or use a tuple of dense tensors. In 

coordinate list format, an n-D sparse tensor with m nonzero components, for example, 

may be represented as a m x n matrix of coordinates and a vector of values of length 

m. 

Furthermore, a tensor's shape may vary in one or more dimensions, allowing sparse 

tensors with various numbers of units to be shown [22]. A named "type" for an 

operation, such as Const, MatMul, or Assign, may contain zero or more compile-time 

characteristics that specify its behavior. At compile time, a process may be 

polymorphic and variable, with its characteristics defining the common types of its 

inputs and outputs. The "AddN" operation, for example, adds several tensors of the 

same unit type, and it has a type signature defined by a feature type T and an integer 

feature N. TensorFlow has conditional and iterative control flow, as well as 
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sophisticated machine learning techniques. A recurrent neural network (RNN) like 

LSTM, for example, can predict based on sequential data. TensorFlow is used by 

Google's Neural Machine Translation engine to train deep LSTM, which gives the best 

results for many translation tasks [22].  

Google Colaboratory. Jupyter Notebooks, the technology underlying Google 

Colaboratory, were launched before Google Colaboratory. Jupyter is an open-source 

browser-based program that integrates interpreted languages, libraries, and 

visualization tools. The Jupyter notebook may be used locally as well as on the cloud. 

The output is included, and the page is made up of several cells, each of which 

includes a scripting language or markdown code. In many works, text, tables, charts, 

and pictures may be found. Because experiments and results are published 

separately, this technique makes scientific papers easier to share and replicate [23]. 

The Google Colaboratory is a project that aims to spread machine learning research 

and education. Collaboration notebooks are based on Jupyter and operate as a shared 

Google Docs document, enabling many users to collaborate on the same project. 

Python runtimes pre-configured with essential machine learning and AI libraries such 

as TensorFlow, Matplotlib, and Keras are included in Collaboratory. The runtime virtual 

computer is deactivated after a season, and all user data and settings are deleted. 

The notebook, on the other hand, is kept, and data on the virtual machine's hard drive 

may be moved to the user's Google Drive account. Finally, utilizing the tools described 

earlier [23], this Colab service has a GPU-accelerated runtime that can be fully 

modified. 

1.5 Problem Statement 

Streaming video services are often impacted by changing network conditions, which 

may result in corrupted incidents and a decrease in QoE. As a consequence, 

developing QoE models that can accurately and quickly predict a customer's QoE in 

live time may help applications that prioritize Quality of Experience preservation. 

Continuous QoE assessment, on the other hand, is challenging because it must 

account for complex temporal correlations in serial QoE data as well as non-linear 

relationships between factors that influence QoE such as video quality, bit rate 

switching, and re-buffering. 
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The main goal of QoE forecasting study is to investigate a framework that includes a 

variety of activities. To begin, propose a new model that may improve the accuracy of 

the forecasting model while simultaneously lowering its complexity. Second, in terms 

of multiplication by output, memory usage, and output time, to make the proposed 

model easier to execute on real devices and edge devices. To provide an appropriate 

level of service, end-user QoE should be reviewed on a regular basis. By constantly 

monitoring user QoE and improving network resource usage and video streaming, 

network operators may improve QoE. QoE is influenced not just by video quality, but 

also by a mix of factors such as rate adaptation and re-buffering activities that happen 

at various times throughout a video session. The user's QoE is affected by rate 

adaptation, which causes video quality to vary over time. The data rate of a video user 

over a wireless network is constantly changing due to channel oscillations, user 

mobility, resource sharing, and other variables. 
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2 BACKGROUND 

2.1. QoE prediction models  

2.1.1.  Streaming Video QoE Modelling and Prediction: A Long Short-Term 

Memory Approach.  

In study [11], an LSTM-based method for QoE prediction was presented, with the 

authors using the LIVE Netflix and LFOVIA1 databases for Quality of Experience as 

starting data. The continuous Quality of Experience is a random process with non-

Markov time dynamics that is non-linear. The authors utilize LSTM, a kind of RNN that 

has been shown to successfully represent long term short term relationship in serial 

data, to capture these dynamics. LSTMs memory regions and gating structures are 

positioned in such a way that they can effectively capture complicated relationships 

and practically avoid the vanishing gradient issue that plagues conventional RNNs. 

The actual and projected QoE at time t are represented by y(t) and y(t), respectively, 

in the system model of [11]. Let 𝑥(𝑡) ∈ ℝ𝕞 ≥ 0 handle the feature set that captures 

non-negative real-number values in an m-dimensional space. The QoE impact factors 

that govern the development of QoE are delegated by the feature set x(t). So, although 

the time-indexed feature vector 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑚(𝑡)] may predict the current 

QoE y(t) at every given time instant t, the actual QoE y(t) is non-Markovian: 

 
 

(1) 

The conditional probability 𝑝(𝑦(𝑡)|𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(1)) points to the QoE takes 

into account temporal connections at a higher level. These relationships are 

complicated, and capturing them effectively with a single LSTM is impossible. As a 

result, as shown in figure 7, a framework of LSTMs was created to train these 

subjections that are part of the QoE process.. 
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Figure 10. QoE prediction using an LSTM network [11]. 

The provided network is made up of a series of LSTM modules that are organized 

into layers. The LSTM network is abbreviated as 𝐿𝑆𝑇𝑀𝑙,𝑑, with l denoting the number 

of layers and d denoting the each layer's amount of units. The design choices to be 

controlled by the parameters I and d are dependent on the complexity of the 

connections and the nature of the underlying process. The LSTM network continually 

computes the estimated QoE �̂�(𝑡) at each time t using the input attributes x(t). Each 

LSTM unit maintains track of a random process by maintaining a hidden state within 

each cell, with state transitions controlled by input functions x(t). The collection of 

states of LSTM cells in the network is denoted by c(t). To investigate the underlying 

complicated state transition control allocation and forecast the QoE at each point in 

time, LSTMs are used in the following way.  

 

 

(2) 

where 𝑔(. ) is a differentiable function that translates the parameters of the main 

unknown QoE allocation to the c(t) LSTM. 𝐿𝑆𝑇𝑀𝑙,𝑑 has two functions: 𝐿𝑆𝑇𝑀𝑙,𝑑
𝑜 , which 

predicts output QoE, and 𝐿𝑆𝑇𝑀𝑙,𝑑
𝑐 , which updates the cell's state. The expression 

determines the expected QoE �̂�(𝑡). 
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(3) 

 
 

(4) 

Using the LSTM network function 𝐿𝑆𝑇𝑀𝑙,𝑑
𝑐 , condition of the cell c(t) is a function that is 

deterministic of previous QoE �̂�(1: 𝑡 − 1) and previous cell conditions. The state vector 

c(t) enables the LSTM to represent sequential data by monitoring complicated timing 

throughout the QoE process. The predicted QoE �̂�(𝑡) is calculated based on the 

current input function x(t) and the cell's condiotn prior to the renew 𝑐(𝑡 − 1), as 

described in (3). Since LSTMs are fundamentally non-linear in design, the 

Nonlinearities in the estimation of User experience are also taken into account. The 

selection of input features x(t) is important for continuous QoE prediction, according 

to the authors of [11]. The input characteristics must be chosen in such a way that they 

effectively take and combine the different influences that drive the development of QoE 

across LSTM states. Short Time Subjective Quality (STSQ), Playback Indicator (PI), 

and Time elapsed since last re-buffering were chosen as the main three characteristics 

in study [11]. (TR). The perceived quality of the video clip that is being shown to the 

user is cited by STSQ. Standard Video Quality Assessment (VQA) measures like 

STRRED and MS-SSIM may be used to assess STSQ. The video is presently playing 

or re-buffering, as indicated by a PI binary pointer variable. Because the recurrence of 

re-buffering events has a significant impact on a user's QoE, TR is a variable that 

tracks the time since the previous re-buffering event. Linear Correlation Coefficient 

(LCC), Spearman Rank Order Correlation Coefficient (SROCCC), Outage Rate (OR), 

and Normalized Root Mean Squared Error were also employed as metrics for 

evaluating QoE forecasts (NRMSE). The correlation between anticipated and accurate 

QoE estimations is measured using LCC and SROCC. NRMSE and OR are indicators 

of how close predicted and objective scores are. 

2.1.2.  Network Traffic Type-Based Quality of Experience (QoE) Assessment 

for Universal Services. 

The authors of [12] suggested a method for calculating QoE scores, which is shown 

in figure 11. The task of [12] is split into three major steps: extraction of QoE 

measurements, categorization of flow traffic, and quantification of QoE. Time delay, 
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loss rate, and throughput rate are all QoE measures that are utilized in the "QoE 

Quantization Model" to assess the QoE for a network flow with a known traffic type.  

 

Figure 11. System model overview of work [12]. 

Metrics in work [12] are given as the loss rate, flow throughput rate, and packet delay 

defined as DL, LR, and TH, respectively. To address the drawback of the linear 

mapping function 𝑓𝑘(. ), the authors separately consider the connections between QoS 

and network parameters. Above mentioned parameters of the network were calculated 

as  

  (5) 

 
 

(6) 

  (7) 

then combining these there influencing factors, the authors get the QoS expression  

 

 

(8) 

where 𝑞 =  𝜑1 + 𝜑2 + 𝜑3 and arguments a, b, c, d, p, q need to be indicated for many 

kinds of network services. The link between QoS and QoE in work [12] is given as  

 
 

(9) 

  (10) 
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When the rounding function, a > 0, alters according on the kind of network traffic, such 

as video-on-demand, audio-on-demand, live video, video streaming, and so on. 

Authors built up mathematical equations connecting the QoE and QoS values with DL, 

LR, and TH using formulae (8) and (10). In Figure 12, the Precision, Recall Rate, and 

F1 Score of all network service types were likewise analyzed and found as follows:  

 
 

(11) 

 
 

(12) 

 
 

(13) 

The number of instances correctly classified as X is TP (True Positive), the number of 

instances incorrectly classified as X is FP (False Positive), and the number of 

instances incorrectly classified as Not-X is FN (False Negative). The percentage of 

genuine positive samples identified as positive is referred to as precision. The recall 

rate is the percentage of properly recognized positive models to the total number of 

positive instances. The F1 score is the harmonic mean of the accuracy and recall 

rates, and it is only high when both metrics are high. On a test dataset, the authors 

claim that their method can obtain an average competitive classification accuracy of 

almost 90% for virtually all kinds of network traffic.  

 

Figure 12. The efficiency of traffic classification for different NN [12]. 
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The normalised root-mean-square error (RMSE) is often used to quantify the error 

between the model projected MOS score and the ground truth RMSE is computed in 

work [12] for evaluating the QoE model.  

 

 

(14) 

where N defines the number of test samples, 𝑄𝑜𝐸𝑝 and 𝑄𝑜𝐸𝑇 are the QoE predicted 

by the model and the actual QoE value, respectively. The results of [12] show that, 

depending on the model settings, the QoE responsiveness to QoS measures changes 

with the kinds of network traffics. 

2.1.3. Convolutional Neural Networks for Continuous QoE Prediction in Video 

Streaming Services. 

Temporal Convolutional Network (TCN), a kind of Convolutional Neural Network 

(CNN), has been proposed by way of promising alternate approach for serial modeling 

issues in a recent paper [14]. TCN makes use of extended causal convolutions to 

uncover temporal relationships in sequential data in a strong manner. TCN 

computations, unlike LSTM, may be run in parallel, preserving computational and 

simulation advantages. In a broad variety of sequence modeling problems, TCN 

outperforms conventional recurrent architectures, such as LSTMs and Gated 

Recurrent Units (GRU), in realistic deployments. Recognizing TCN's immense 

potential, [14] article maintained a refined TCN-based model, QoE-CNN, for constantly 

forecasting QoE across various devices for watching. Let x(t) be a vector of input 

features at time t in a T-second session of streaming. Let 𝑦𝑡  𝑎𝑛𝑑 �̂�𝑡, respectively, 

represent subjective and expected QoE at time t. For example, the following non-linear 

function may be used to constantly forecast personal QoE at any time t: 

 
 

(15) 

The suggested model consists of one layer of causal convolution and a stack of 

extended causal convolutions, where r is the number of input delays. TCN, on the 

other hand, is made up of just a few prolonged causal convolutions. As shown in figure 

13, a causal convolution layer is initially supplied with input time-series and the first 

residual block.  
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Figure 13. CNN-QoE model design [14]. 

The causal convolutional layer can extract local features of adjacent time steps in 

serial QoE data. The extended causal convolutional layers are then used to extract 

global characteristics between time steps separated by a significant period of time. 

These layers let the model learn the most relevant features of the time series input, 

improving accuracy. The activation function is crucial in enabling the model to detect 

the input data's non-linear nature. Vanishing and increasing gradient g are the most 

challenging issues that prevent the network from learning the optimal function g(.) 

when training a DL model. The supplied CNN-QoE model replaces these levels with 

SeLU to take use of SeLU's benefits and simplify the residual block. SeLU is a unit 

variance, zero mean self-normalizing activation function. It propagates over several 

layers during network training, guaranteeing that it is unaffected by fading and 

increasing gradient issues.  

 

 

(16) 

Video quality, also called as brief subjective quality, has a major influence on video 

streaming users (STSQ). STSQ, which may be predicted using any metric for reliable 

video quality assessment, defines the visual quality of the video presented to the 

viewer (VQA). STRRED (space-time reduced reference entropy differences), MS-

SSIM (multiscale structural similarity), PSNR (peak signal-to-noise ratio), and others 

are only a few examples. Work [14] indicates that STRRED is a robust and high-

performing VQA model when tested on a broad variety of video quality datasets, 
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resolutions, and device types. As a consequence, the STSQ is calculated using 

STRRED. 

The quality of the user's experience suffers as a result of re-buffering. As a 

consequence, data on re-buffering must be reviewed, including re-buffering length, re-

buffering location, and the number of re-buffering occurrences. As a result, two re-

buffering-related inputs are used in article [14]. To begin, the play indicator (PI) is a 

continuous-time binary variable that shows the current play state, with 1 representing 

re-buffering and 0 representing regular play. Second, because user annoyance grows 

every time a re-buffering event occurs, the number of re-buffering (NR) occurrences 

from the beginning to the current point in the session is counted. 

Memory concerns may affect a user's quality of life. When a video is more current, the 

novelty effect, for example, has a larger impact on its perceived quality. Capture, on 

the other hand, is the relationship between the novelty effect and the user's quality of 

experience, i.e., the length of time since the last video degradation, including such 

bitrate switching or re-buffering. Pearson's correlation coefficient (PCC), Spearman's 

rank-order correlation coefficient (SROCC), and root mean square error are three 

metrics used to assess the accuracy of QoE prediction (RMSE). SROCC measures 

the monotonic relationship, while PCC measures the degree of linearity between 

subjective and expected QoE. For PCC and SROCC, a higher number implies a better 

result, whereas for RMSE, a lower value indicates a better result. Accurate and 

effective QoE prediction models are essential for establishing and maintaining 

streaming video services across many viewing devices. The proposed CNN-QoE 

model may also improve current QoE prediction accuracy while decreasing 

computational complexity. As a consequence, CNN-QoE may be a good match for 

upcoming QoE prediction systems or mobile video streaming applications based on 

QoE [14]. 

2.2. QoE metrics and protocol design for video streaming 

DASH protocols are used on the client side in work [13] as a way to improve viewer 

QoE by dynamically adapting to the most suitable video bitrate in response to 

changing network conditions. Furthermore, with the deployment of MEC, Internet 

service providers may save money by caching and delivering video at the network 

edge, reducing backhaul and data traffic. The authors want to discover how much 
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money they can save in collaborative mobile edge caching settings by integrating 

client QoE with network data traffic optimization. Next, compare joint edge caching to 

non-collaborative approaches to determine whether it increases QoE traffic in any 

manner. Simulation results indicate that network-assisted bitrate adjustment combined 

with collaborative edge caching enhances client QoE and lowers network traffic 

burden significantly when compared to prior joint edge caching techniques. The 

system model of work [13] examines the caches of the local and then the 

neighbourhood edge servers unless the block or bitrate of the customer's desired 

video does not exist in the local store. When the edges are unable to find the 

chunk/bitrate, transferring from the origin server is considered. Finally, the actual 

bitrate allocation is determined by maximizing the joint QoE-traffic utility objective. 

Following the assignment of bitrates, the possibility of caching among the different 

chunks/bitrates given for future client access is investigated. 

It's worth noting that the collaborative edge caching isn't required for edge-assisted 

bitrate adaption. Clients and edge servers work together in the former to ensure 

optimum and equitable bitrate distribution. The edge servers work together to enhance 

the overall cache hit rate in the latter. The authors examine the scheduling of S, DASH 

mobile clients across |T| time slots, with each space lasting t seconds. Initially, the 

contents of numerous movies are stored on the origin server. Each movie is split into 

C second chunks, with each chunk having a set size of C seconds. Set R represents 

a number of distinct bitrates that are available. The base station distributes downlink 

resource blocks to subscribing clients according to a proportionate fair policy, with K 

edge servers installed in the system and associated with each server. 𝑊𝑘
(𝑡)

 represents 

the available downlink resource blocks at edge server k in time slot t. Client i's arrival 

and departure timings are indicated by 𝐴𝑖  𝑎𝑛𝑑 𝐷𝑖, respectively. In addition, each 

client's media player has a video buffer with a maximum capacity of 𝐵𝑖
𝑚𝑎𝑥, where 𝐵𝑖

(𝑡)
 

represents the amount of video data in the client's buffer during time slot t. The 

received signal to noise ratio of the client i from the base station k at time slot t is 

represented as 𝑆𝑁𝑅𝑖𝑘
(𝑡)

 depending on the client mobility. Furthermore, 𝑟𝑖𝑘
(𝑡)

 – denotes 

the bitrate given to the current chunk of client i assigned to server k during time slot t. 

The binary variable 𝛼𝑖𝑘
(𝑡)

 is defined in such a way that 𝛼𝑖𝑘
(𝑡)

= 1 denotes the client i's 

assignment to edge server k at time slot t. Video stalling, video quality, bitrate 
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switching, and initial playback buffering time, also known as initial or startup delay, are 

the major variables that influence QoE in dynamic adaptive video streaming, according 

to DASH literature. Video quality, starting buffer, stalling ratio, and fairness are among 

the measures provided. The video quality that customers experience during a 

streaming session is directly proportional to the streaming bitrate. As video chunks are 

broadcast at a high bitrate, the viewing quality improves. The authors of [13] depend 

on the average bitrate at which client i watches the movie throughout the course of its 

streaming session, which can be calculated using the following equation: 

 

 

(17) 

The initial buffer delay, indicated by L, is the time it takes for data in the playback buffer 

to reach its full capacity from the moment the client arrives. A larger initial buffer delay, 

on the other hand, helps to minimize video stopping occurrences during the streaming 

session. Although a lengthy wait has a little effect on QoE, most customers are willing 

to put up with lengthier initial delays in exchange for smoother, interruption-free video. 

For the sake of simplicity, the buffer delay was omitted in our analytical model since 

the effect on QoE is not as important as the impact of video bitrate and switching. 

Ratio of Stalling When the client's buffer fills up (playback stops) as a result of 

streaming video at high bitrates with limited attainable throughput, a video stall event 

occurs. To represent stalling quantitatively in the optimisation issue, we must first 

establish the relation for the client's buffer filling level at each time slot [13].  

 

 

(18) 

where 𝑇ℎ�̂�𝑖𝑘
(𝑡)

 – represents the theoretical throughput by a client i allotted to server k at 

time slot t. [13] points out that during the startup period, which lasts during the first 

buffer delay, there is no video streaming on the client's player. As a result, the effective 

throughput of each client at a particular time slot is calculated using its theoretical 

throughput, and the number of other concurrent clients at that time slot. Fairness. 

Client-based systems may not distribute bitrates properly in certain cases, resulting in 

injustice among competing clients. Strive to distribute the optimum sustainable bitrate 

for each current client, with the smallest variation from the average of bitrates given to 
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the other simultaneous active clients on the same server, to prevent unfair issues. The 

goal of fair bitrate allocation is to reduce the total divergence of the assigned bitrates 

to each client i from the average throughout the course of its whole streaming session, 

as shown by the following summation: 𝐹𝑖 = ∑ ∑ 𝛼𝑖𝑘
(𝑡)

∗ |𝑟𝑖𝑘
(𝑡)

− �̅�(𝑡)|1≤𝑘≤𝐾
𝐷𝑖
𝑡=𝐴𝑖

. Where �̅�(𝑡) 

is the average bitrate of other concurrent clients during time slot t. The equation's 

minimization should also fulfill the base station's instantly accessible resource blocks 

[13]. 

2.3. Contributions 

Convolutional Neural Networks and Long Short-Term Memory (LSTM) are utilized in 

this studied for a QoE prediction model to deal with this issue (CNN). Because it 

incorporates temporal relationships in sequential QoE data, the LSTM-based QoE 

prediction model has the greatest accuracy. 

Nonetheless, due of the usage of consistent processing across time, the chained 

composition in the LSTM architecture is prudently costly to forecast user QoE. It 

means, for example, that the next processing steps must wait until the preceding one's 

outcome is known. It also raises the issue of the model's efficiency on machines with 

low power consumption, such as mobile devices, which may lack the computing 

capacity to execute such algorithms with QoE.  

This thesis aims to develop CNN and LSTM models for QoE prediction using the LIVE 

Netflix database. The main objectives of work: 

 Review and analyse the various ANN designs presented in the current 

literature, focusing on RNN and CNN architectures and their different types. 

 Explore the variety of ANN architectures and applications used for continuous 

QoE prediction. 

 Investigate the connection between the fundamental hyperparameters NN and 

the performance of various NNs in terms of final prediction accuracy. 

 Compare and contrast the performance and complexity of the ANNs described 

in the literature with CNN and LSTM. 
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2.4. Take away results from the current state-of-the-art. 

Overall, the most valuable works were [11] and [14], mentioned in section 2.1, the 

output from articles and given models. These works defined the main idea of the thesis 

and demonstrated that in academia, a video streaming QoE prediction issue existed. 

Besides, studies gave basis to the solution of the video streaming QoE prediction 

problem, the importance of the topic in the 5G network. CNN-QoE and LSTM-QoE 

models offered there are considered state-of-the-art models and showed a direction 

to develop the main idea of QoE prediction for video streaming services. Articles were 

utilised as a baseline and demonstrated CNN-QoE, LSTM-QoE models architecture, 

number of layers, hyperparameters, and input metrics. Input metrics in baseline works 

were four, but we used only three, reducing the model complexity. Parameters of 

models architecture: 

 batch size,  

 epoch number,  

 activation function,  

 optimizer  

and others were analyzed from baseline work and improved in newly proposed 

models. Furthermore, evaluation metrics were analyzed through these works, which 

were applied and compared later in section 4.  
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3. PROPOSED APPROACH 

The proposed approach consists of studying, analysing, and comparing to investigate 

the trade-off between different ML tools' performance and complexity. After analyzing 

the previous studies, this thesis found the most valuable work as a starting point was 

[11] and [14]. The proposed models are motivated because of the rapid increase in 

video streaming in mobile networks. These QoE models can improve the video 

streaming to end-users by evaluating their feedback from playback. Therefore, there 

were given initial metrics and QoE model, which was extended in this thesis. In current 

literature was given four metrics: continuous subjective score, number of re-buffering 

events, playback indicator, and STRRED. Nevertheless, to decline the complexity of 

the QoE model in this thesis, three out of four metrics except playback indicator was 

proposed.  

Additionally, it should be noted that in work from section 2.1. was presented to utilise 

LIVE Netflix, LIVE Netflix II, and LFOVIA QoE databases. These databases contain 

many metrics, but current literature proposed using only the mentioned metrics. In 

work [11] was offered to LSTM-QoE model for prediction, while work [14] suggested a 

CNN-QoE and Temporal Convolutional Network (TCN) QoE model.  

The structure of the section begins with a description of the database from the current 

literature and describes the models, pre-processing and normalization with the 

attached code in 3.1. In section 3.2. presented novel NN models, their 

hyperparameters with code implementation. 

3.1. Dataset and code used from current literature 

3.1.1. Datasets 

The LIVE-Netflix Database has a comprehensive subjective QoE, which combines 

with real-time network and buffer data, perceptive video coding and quality ratings are 

possible, as well as client-based adaptability [25]. Several elements of streaming 

adaptation are captured in the database, including changes in video quality, over 

buffering events of variable length and recurrence, changes in spatial resolution, and 

video content kinds. Subjective data is excellent for training different QoE models 

since it includes both historical and ongoing assessments. Human opinion scores, on 

the other hand, are used in streaming applications to analyze the deterioration of 

streaming video and to evaluate objective video quality models and QoE forecasts. 
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While the database is broad and realistic, it still has certain limitations based on the 

most up-to-date video encoding and streaming concepts. Visual quality, novelty, re-

buffering or quality switching, as well as other variables such as audio quality or 

contextual considerations such as user expectations for video streaming service 

watching and display device environments, all affect QoE. One of the database's 

primary design goals is to serve as a testbed for developing streaming video quality 

models and QoE prediction [25]. 

 

Figure 14. Some footage from the LIVE-Netflix dataset. Content 5, 6, and 8 from dataset [25]. 

The LIVE-Netflix video QoE database was used to obtain input parameters for 

neural networks [26]. There are 112 distorted videos in the collection, which were 

assessed by 55 mobile users. By controlling a collection of 8 distinct playout patterns, 

the movie was created from 14 video contents with 1080p quality at 24, 25, and 30 

fps, respectively. Several frames from video sequences are shown in figure 14. The 

video in the database includes compression rate H.264, re-buffering events and their 

combination, despite newer compression standards are being developed like 

H.265/HEVC and VP9. Furthermore, the database comprises 11 content contributed 

by Netflix, such as drama, action, comedy. Another three belongs to Consumer Digital 

Video Library (CDVL), which is public video content [26]. 

The database format was given as a Matlab file with the extension ".mat" in figure 15, 

which shown the existing information in the database and values. There is a plant of 

metrics, but this thesis utilised metrics, such as continuous subjective score, re-

buffering events, the time elapsed since the last video impairment, and Spatio-

Temporal Reduced Reference Entropic Differences (STRRED). All metrics were 

described in the database as follows: 

 The continuous subjective score in the database is called 

"continuous_subj_score". The continuous subjective score obtains reliable 

results for traditional and compressed television systems are presented, as well 

as an evaluation of scalar MOS in a variety of static and moving video 
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applications. The broad range of potential techniques and tests that must be 

examined, the high number of needed witnesses, and the time required are all 

drawbacks. Objective testing may be done in a variety of ways. Algorithms for 

analyzing video picture features are more closely linked to subjective findings 

than pixel techniques, it may be said. The greatest findings and correlations 

between subjective and objective evaluations come from different measures 

and functions, although they are unlikely to be technology-dependent [25].  

 The number of re-buffering events is defined by the variable "ns". When a re-

buffering event happens between the start of the session and the present time, 

the user becomes more irritated.  

 The time elapsed is named the variable "tsl" — for example, bitrate switch or 

re-buffering occurrence.  

 The metric STRRED has several forms such as "STRRED_mean", 

"STRRED_kmeans" and others in the database, but in this thesis was used 

"STRRED_vec" which contains a vector of STRRED values. When compared 

across databases, the STRRED score correlates extremely well with subjective 

ratings. Spatio Reduced Reference Entropic Differences (SRRED) and 

Temporal Reduced Reference Entropic Differences (TRRED) indices are 

combined in the STRRED index. It's worth noting that the SRRED and TRRED 

indices each work with data derived from certain spatial and temporal frequency 

components. Furthermore, whereas SRRED pointes are computed utilising just 

spatial frequency data, TRRED indices are computed using both spatial and 

temporal data, with spatial data being used to weight the time data. As a 

consequence, only the TRRED index is affected by temporal distortion, while 

the SRRED and TRRED indexes are affected by spatial distortion. 

Compounding a quality score based on spatial and temporal data is concerned 

with processing that takes place in the latter stages of human visual processing 

when there is records of interaction between them [27]. 
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Figure 15. Information in the Database. 

Additionally, adding more metrics to thesis work from the database is possible, but it 

increases the complexity of the proposed QoE model. It is worth mentioning that 

efficient and successful model design requires a wise and scrupulous decision on 

choosing the set of indicative features. Therefore, the thesis work used three metrics 

because after investigating which metrics are more suitable for the evaluation of QoE 

was decided to utilise the metrics as mentioned earlier and fundaments of thesis work 

[14]. 

3.1.2. Code.  

The suggested approaches of work [11] and [14] are given in the GitHub platform [28]. 

First of all, before pre-processing part, it was to import necessary libraries such as 

NumPy, Keras, Tensorflow, Sci-kit, Pandas, SciPy, and Matplotllib. Then, the authors 

of [11] and [14] in the pre-processing part extracted the four metrics: continuous 

subjective score, re-buffering events, playback indicator, and STRRED from the LIVE-

Netflix QoE database. In figure 16 is demonstrated a pre-processing part which 
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indicates that only three metrics were retrieved for this thesis from the MATLAB ".mat" 

file using the "hdf5storage" python package.  

 

Figure 16. The Pre-processing part of the proposed approach. 

Feature extraction was made using a loop and collected into arrays. Subsequently, 

normalisation was applied to the extracted objects. Normalisation consists of rescaling 

numeric attributes with absolute values ranging from 0 to 1. Machine learning 

algorithms tend to execute superior or congregate faster when different variables are 

on a smaller scale. Hence, it is general practice to normalise the data before training 

machine learning models on it. Normalisation also makes the learning process less 

sensitive to the function scale, leading to better odds after training. This process of 

increasing the suitability of features for learning by scaling is called feature scaling, 

and the normalisation formula is  

 

 

(19) 

Subtract the minimum value from each input and then divide the result by the span, 

where the span is the distinction between the maximum and minimum values. Figure 

17 shows the normalisation of features for this thesis. The normalisation range for the 

extracted metrics was 2 to -2 for the continuous subjective score, and STRRED was 
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between 3150 and 0 for maximum and minimum, respectively. Next, extracted 

features were concatenated to one variable to feed as one input vector to the neural 

network. One of the final steps is to apply neural networks. 

LSTM-QoE and CNN-QoE models were provided in works [11] and [14], and these 

models were evaluated using Pearson Correlation Coefficient (PCC), Spearman Rank 

Order Correlation Coefficient (SROCC), and Root Mean Squared Error (RMSE). 

Pearson's correlation coefficient is a statistic that measures how strong a linear 

relationship between two variables is. In essence, Pearson's correlation coefficient 

attempts to build a line of best fit among the two variables and displays how near all 

of the data points are to that line. Consider how well the data points correspond to this 

new best-fit model. Pearson's correlation coefficient may vary from +1 to -1. A value 

of 0 implies that there is no connection between the two variables. A number greater 

than 0 indicates a good relationship. When one variable's value increases, the value 

of the other increases as well. A negative link is shown by a number smaller than zero, 

indicating that the value of one variable increases while the value of the other 

decreases. The following is the PCC calculation equation: 

 

 

(20) 

Pearson's correlation coefficient will be closer to +1 or -1, depending on whether the 

connection is positive or negative, the stronger the link between the two variables. 

When you receive a +1 or -1 as a result, it means that all of your data indicates are on 

the line of best fit and that none of them depart from it. 

 

Figure 17. The normalisation of extracted features. 
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Values between +1 and -1, such as 0.8 or -0.4, indicate variation around the line of 

best fit. The greater the deviation from the best-fit line, the closer the material is to 0. 

Spearman Correlation of Rank Order A nonparametric variant of the PCC is the 

coefficient. The strength and direction of the monotonic link between two ranking 

variables is determined by SROCC, not the magnitude and direction of a linear 

connection among two variables, which is determined by PCC. The SROCC may 

accept values ranging from +1 to -1. A perfect connection of rankings is worth +1 

points, no association between levels is worth 0 points, and an ideal negative 

correlation of grades is worth -1 points. The weaker the link between the rankings, the 

closer it gets to zero. SROCC may be computed in two ways, depending on whether 

the data has no related levels or whether the information has associated rankings. 

When there are no equivalent rankings, use the following formula: 

 

 

(21) 

where 𝑑𝑖 denotes the difference between paired rankings and n is the number of 

instances. The formula for determining equal grades is the same as for determining 

equal grades (17). 

The Root Mean Square Error is another common method for calculating the error in a 

collection of regression predictions. When forecasting quantitative data, the RMSE 

metric is a common method to evaluate model error. The square root of the mean 

square of the discrepancies between actual outcomes and predictions is used to 

calculate the RMSE. Positive values are obtained by squaring each error, and the 

square root of the root mean square error restores the error metric to its original units 

for comparison. 

 

 

(22) 

where, 𝑦1 ,̂ 𝑦2̂, … , 𝑦�̂� are predicted values, 𝑦1, 𝑦2, … , 𝑦𝑛 are observed values, and n is the 

number of observations.  

Convolution layers have been proven to be effective in univariate time sequence 

analysis in a variety of applications, including time sequence sensors, audio signals, 

and natural language processing. The CNN-QoE model is shown in Figure 18, and it 
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should be noted that the Keras built-in "Conv1D" function was utilized in conjunction 

with the "RelU" activation function. The Rectified Linear Activation Function (ReLU) is 

a linear function that, if positive, will output the input directly. Otherwise, it will return a 

value of zero. Because the model in which it is employed is simpler to train and 

frequently offers higher productivity, it has become the default activation function for 

many kinds of neural networks. One input, three hidden convolutional layers, and a 

dense output layer make up the CNN-QoE model architecture. The "Conv1D" layer 

produces an output tensor by convolutioning the input layer in one spatial or temporal 

dimension. The numbers 32 and 2 in the "Conv1D" parameter denote the number of 

filters and kernel size, respectively. The kernel size for "Conv1D" is a vector of original 

data is multiplied by the filter, and the filter is a vector multiplied by the original data. 

 

Figure 18. The CNN-QoE model approach. 

An LSTM-QoE is the suggested model from studies [11] and [14]. LSTM has 

established itself as a reliable technique for tackling complicated sequence prediction 

issues. Rather of sending a single value, the LSTM layer above transmits a sequence 

of values to the LSTM layer below. Instead of having one output time step for all input 

time steps, each input time step should have its own output time step. One input, two 

hidden bidirectional LSTM layers, and a dense output layer make up the LSTM-QoE 

model architecture, as illustrated in figure 19. The number of neurons in the LSTM was 

selected to be 22 and the activation function to be "tanh." The activation function of 

the "sigmoid" activation function is extremely similar to "tanh," and even has the same 

S-shape. The procedure accepts any real number as input and returns values between 

-1 and 1. The more positive the information, the closer the output value is to 1, and 

the smaller the entry, the more negative the information, the closer the output value is 

to -1. The activation function "tanh" is calculated as follows: tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥. 
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Figure 19. The LSTM-QoE model approach. 

To sum up, work [11] and [14] studied which metrics are better to select, how CNN-

QoE and LSTM-QoE models operate, what kind of activation functions to apply, and 

the difference between activation functions and other models parameters. Additionally, 

the evaluation and comparison part is provided in next section 3.2. 

3.2. Proposed solution 

In this thesis, QoE prediction performance of different types of NNs based on work 

[11] and [14] have been analyzed and studied. Furthermore, this thesis offered other 

types of neural networks based on work reviewed in current literature. More precisely, 

combined bidirectional LSTM and convolution neural network, and regular densely 

connected neural network. Compared to the previous study, the difference starts with 

three metrics: continuous subjective score, re-buffering events, and STRRED. The 

proposed models are done using the Google Colab tool for machine learning, including 

the Jupiter notebook platform. 

Additionally, in preparing the training set for the model wasn't used a shuffle method 

for data. Also, it is worth mentioning that the “Flatten” layer is used in this work as a 

reshaping layer that performs the transformation procedure of the input 3D tensor into 

a 2D shape. The primary machine learning parameters used in this work will be 

discussed in the following paragraphs. 

3.2.1. Batch size 

The batch size hyperparameter specifies how many samples will be delivered 

simultaneously across the network. If you have 1050 training samples and the batch 

size is set to 100, for example. The method trains the network using the first 100 

samples (1–100) from the training dataset. The network is then taught again using the 

second 100 samples, 101 through 200. The process may be repeated until the whole 

system has been distributed with all of the choices. The problem may occur with the 

final batch of samples. The number 1050 was used in the example above, which is not 
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evenly divisible by 100. Obtaining the past 50 patterns and training the network is the 

easiest approach. Batch size has the benefit of using less memory. The entire training 

process uses less memory since the network is trained with fewer samples. If you can't 

fit the whole dataset into your computer's memory, less RAM is important. The 

disadvantages of utilizing batch size are as follows: The gradient estimate becomes 

less precise as the batch size decreases. All models in this study were given a batch 

size of 64, which was determined after many optimization assessments to match our 

sample size. 

The epoch hyperparameter was utilized in all of these models to assess the QoE 

prediction and improve machine learning accuracy. The number of times the training 

algorithm processes the whole training dataset is determined by the epoch. Each 

sample in the training dataset has the chance to change the model's internal 

parameters once every epoch. One or more parties make up an era. A single burst 

epoch, for example, is referred to as a batch gradient descent learning method. 

Traditionally, the number of epochs is high, typically hundreds or thousands, to enable 

the learning process to run until the model error is suitably reduced. The number of 

epochs used in this study ranged from 150 to 200, which is sufficient for a suggested 

neural network to converge to the best outcome. The distinction between batch size 

and epoch is as follows: 

 Each epoch represents one forward and backward trip through all of the training 

instances. 

 The number of training instances in one forward or backward pass determines 

the batch size. More memory space is required as the batch size grows. 

Several passes are equal to the number of iterations, with each pass utilizing a batch 

size number of samples. One pass equivalent to one forward pass plus one backward 

pass should not be recorded as two passes since the forward and backward passes 

are two distinct passes. 

3.2.2. Learning rate 

Each time the model weights are changed, the learning rate is a parameter that 

regulates how much the model changes in reaction to the predicted mistake. Picking 

a learning rate is challenging since there are so many variables to consider low number 

may result in a long learning process that becomes stuck, while a high value can result 
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in learning too fast, a poor collection of weights, or an unstable learning process. The 

learning rate, in particular, is an adjustable hyperparameter with a modest positive 

value, often in the range of 0.0 to 1.0, that is utilized in training neural networks. Error 

back-propagation measures the amount of error caused by the node weights in the 

network during training. It scales with the learning rate rather than updating the 

significance with the entire amount. It indicates that the learning rate is 0.1. 

Traditionally, the weights on the network are updated by 0.1 multiplied by each time 

the values are changed, the calculated weight loss or 10% of the anticipated weight 

error is calculated. The learning rate was found to be 0.001 in this thesis. In this 

instance, it is an optimum value since lowering or raising the rate has resulted in 

substantial deterioration of the neural network gradient descent algorithm's 

convergence. 

3.2.3. Adam optimizer 

Adam was selected as an optimization method since it is one of the most extensively 

utilized and widely used optimization approaches in recent literature. Adam's 

optimization method is an extension of stochastic gradient descent, which has lately 

gained traction in computer vision and natural language processing for deep learning 

applications. Adam isn't your typical stochastic gradient descent algorithm. For all 

weight updates, stochastic gradient descent maintains a constant learning rate, this 

remains constant throughout the workout. As the learning progresses, the learning 

rate of each network weight is recorded and adjusted individually. Adam uses the 

mean of the second gradient moments and off-centre variance in addition to the 

average of the first moment to modify the parameter learning rate. The method 

computes the gradient's exponential moving average, and the angle square 

determines the pace at which these moving averages decay. The starting value of the 

moving averages, which should be close to 1.0, causes the torque estimations to be 

biased towards zero. 

3.2.4. Feed-Forward Neural Network QoE model. 

As with earlier models that used the built-in dense layer function, the suggested model 

is a Feed-Forward Neural Network. The dense layer is the first layer of a neural 

network, and it contains parameters like the number of units, activation function, and 

bias boolean parameter. The number of units in a layer corresponds to the size of the 
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neurons. This job is worth 100 neurons, which was determined after considering the 

input characteristics and output correctness. Similarly, the activation function "RelU" 

was found experimentally.  

 

Figure 20. Proposed FNN-QoE approach 

In a neural network, a dense layer is a densely linked layer in which each neuron gets 

input from all neurons in the preceding layer. The thick layer was the most often utilized 

in the models. A thick layer in the background conducts matrix-vector multiplication. 

The matrix's values reflect practical arguments that may be taught and modified via 

mistake back-propagation. As a result of the dense layer, an m-dimensional vector is 

produced. As a result, the dense layer is mostly utilized to reshape the vector. Dense 

layers may also execute operations like rotation, scaling, and translation on a vector. 

It's also worth noting that the FNN-QoE model's architecture is made up of four dense 

layers: one input, three hidden, and one output layer, as shown in Figure 20. 

3.2.5. Bidirectional LSTM QoE model 

The basic concept behind bidirectional recurrent neural networks (RNNs) is 

straightforward. It entails duplicating the network's initial repeating layer. There are 

now two levels side by side, with the first level receiving the input sequence and the 

second receiving a reverse duplicate of the input sequence. The usage of bidirectional 

sequence representation was first approved in the area of voice recognition because 

the context of the whole statement is used to understand what is said rather than linear 

interpretation. Keras supports bidirectional LSTMs through the bidirectional layer 

wrapper. A recurrent layer, such as a Gated Recurrent Unit (GRU) or Long Short-Term 

Memory, is sent as an input to this wrapper (LSTM). It's also expected to define the 

merging mode, which controls how the forward and backward outputs are combined 

before being sent on to the next layer. The following are some merging mode options: 

 "Sum": the results are added together. 
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 "Mul" means that the outputs are multiplied. 

 "Concatenate": The number of outputs for the following level is doubled by 

concatenating the outputs together. 

 "Ave": Calculates the output's average. 

The default option is " Concatenate," and bidirectional LSTM research often utilize this 

technique. 

 

Figure 21. Proposed bidirectional LSTM approach. 

The dropout function is needed to remove some random neurons from the model 

during the training phase, which helps prevent overfitting. 

3.2.6. Combined CNN and LSTM QoE model 

A hybrid CNN and biLSTM QoE model is also presented in this thesis. Figure 22 shows 

the combined model architecture, which consists of one input layer, one hidden 

convolutional layer, one bidirectional LSTM layer, and a dense output layer. It's also 

worth mentioning that the combined QoE model is more difficult to understand than 

the other alternatives. Therefore, compiling the model takes much more time and 

computation resources. However, the result is much better than suggested in work 

[11] and [14]. The results are discussed more precisely in section 4.2. First, the input 

convolutional layer parameters are set to the same as before mentioned: filter size 

was 32 and kernel size was 2 with activation function – “RelU”. Then, the next 

bidirectional layer was utilised LSTM with parameters such as the number of neurons 

was set to 22 and activation function was “tanh”.  

 

Figure 22. Proposed combined CNN and biLSTM, QoE model approach. 

One of the leading modern approaches to finding an appropriate and highly 

performative neural network is to combine existing pieces of different NNs into one big 
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and efficient model. In this work, we connect one single convolution layer with one 

bidirectional LSTM layer to create a semi-RNN model. In the first place, the 

convolution layer can be interpreted as a feature extracting technique – that is, by 

sliding the kernel window through the input data and multiplying it, the layer can pull 

essential elements out of the sequence. This procedure can be compared with a 

typical 2D image extraction. At the same time, commonly used for time sequences 

recurrent neural network in the shape of bidirectional LSTM – can utilize these 

previously extracted features and process them accordingly with the recurrent 

approach. Therefore, this technique helps to obtain an actual high performance while 

being one of the competitive models in a complex way. 
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4. PERFORMANCE EVALUATION 

4.1. Simulation model and parameters 

The main goal of this work is to study and compare new and effective machine learning 

methods applied to the problem of continuous QoE prediction for 5G networks. Here, 

the expected result is an experimental evaluation and an estimation of the practical 

complexity of the analyzed models, which clarifies the possibilities of using tools based 

on ML. The following paragraphs summarise the conclusions by analysing the results 

obtained from an exhaustive and repetitive training procedure for the previously 

described neural networks. The work methodology consists of extracting features from 

the database, creating sequences, pre-processing, normalization, and training a 

model. To properly compare the complexity of the proposed models, we first need to 

get a clear idea of how to calculate the multiplicative complexity index. All reviewed 

NN structures calculate the computational complexity in actual accumulations on the 

restored output QoE symbol. Traning complexity was not considered as we evaluated 

computational complexity in real-time - the evaluation stage, which is the essential 

part, while NN training was done offline - the calibration stage. However, to better 

understand the complexity, in our work, we directly associate these complexities with 

the number of multiplications of the Keras and TensorFlow machine learning 

frameworks utilised without losing abstraction [29].  

Let B be the batch size, 𝑡𝑠 be the input time series size, 𝑡𝑠 = 𝑀, where M denotes 

memory steps, and 𝑓𝑛 is the number of features, which in our work was 3. The real 

and imaginary portions of each symbol were then restored, and the number of results 

on the symbol, 𝑠0, was set to 1. Because biLSTM and CNN layers need inputs in the 

form of level 3 tensors, the NN's input may be parametrized as [𝐵, 𝑡𝑠,   𝑓𝑛]. The FNN 

has a standard parametrization, with [𝐵, 𝑡𝑠 ∗ 𝑓𝑛] defining the dimensions of the 2D 

tensor input. The Flatten layer is usually used to reshape the input tensor. The 

following formula was used to determine the complexity of FNN: 

 
 

(23) 

𝑛1 refers to the number of neurons in the input layer, 𝑛3 to the number of neurons in 

the hidden layer, and n 3 to the number of neurons in the output layer. The output QoE 

representation, which in our instance is equal to 1, is represented by 𝑠0. The 
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computational complexity of a NN based on the biLSTM layer is discussed in the next 

section. Given the 𝑛ℎ hidden neurons in the biLSTM layer, the complexity of a single 

biLSTM NN is given by: 

 
 

(24) 

Finally, supposed that the number of filters 𝑛𝑓 defines the convolutional layer, and the 

kernel size 𝑘𝑠 determines the complication of the combined model CNN and biLSTM. 

The output size for each CNN percolator is (t s-k s+1) [29], and the number of time 

steps is(𝑡𝑠 − 𝑘𝑠 + 1) [29].   

 
 

(25) 

Additionally, having described the CNN and biLSTM layers complexity - the CNN 
network from work [11] can be calculated straightforwardly by using a similar approach 
to the combined NN, but just with three additional convolution layers. 

Table 1. Calculated NNs complexity. 

Layers Complexity 

Two LSTM layers [14] 2.49E+04 

Two biLSTM layers 1.87E+05 

Three FNN layers 2.46E+04 

Combined Сonv1D and biLSTM layers 6.38E+04 

Three СNN layers [11] 5.27E+03 

As for the biLSTM - downscaling to just LSTM network without a bidirectional feature 

- can be done by removing coefficient two from the central equation. On the other 

hand, adding a new layer will give an almost a doubled number of multiplications - 

since the layer is composed of the same number of neurons with minor differences in 

output and input multiplications.  

4.2. Comparative results 

The correctness of the suggested model is evaluated in this thesis using a set of 

hyperparameters and input characteristics. Furthermore, biLSTM-QoE, combined 



ML-based Adaptive Video Streaming techniques for 5G and beyond mobile data networks 

A. Rajabov 58 

CNN + LSTM QoE, and FNN-QoE, from [11] and [14], CNN-QoE, and LSTM-QoE are 

utilized for scoring since these models are fair in their study and their score is based 

on the same QoE database. Three evaluation metrics are used to evaluate the 

prediction accuracy of QoE: Pearson's Correlation Coefficient (PCC), Spearman's 

Rank Order Correlation Coefficient (SROCC), and Root Mean Square Error (RMSE). 

The monotonic connection is measured by SROCC, whereas the degree of linearity 

between subjective and anticipated QoE is measured by PCC. A greater number 

indicates a better outcome for PCC and SROCC, whereas a lower value indicates a 

better result for RMSE. These metrics were previously discussed in section 2.1. Table 

2 summarizes the findings and assessment of the suggested NN-QoE models using 

the RMSE, PCC, and SROCC metrics. It's worth noting that the RMSE assessment 

measure is inversely related to the PCC and SROCC metrics. 

The multiplicative complexity of the analyzed NNs is shown in figure 23. As can be 

seen from the table, the 2-layered biLSTM network has the highest level of complexity 

- since this type of recurrent neural network has the most significant number of 

multiplications inside the recurrent and gated structure of LSTM cells by the obtained 

QoE value. In addition, because this network is bi-directional, the complexity is further 

increased. The combined Conv1D with the biLSTM network has the second-highest 

level of complexity since the memory steps used for training are equal to 15, and the 

convolutional and recurrent structure of the network brings more multiplications per 

single obtained QoE output. 

 

Figure 23. The multiplicative complexity of the analyzed NNs 

At the same time, the proposed 2-layered LSTM neural network proposed by [14] has 

a 2.49E+04 number of multiplications – which takes third place out of the analysed 

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

Two biLSTM layers Combined Сonv1D 
and biLSTM layers

Two LSTM layers
[14]

Three FNN layers Three СNN layers 
[11]

Complexity chart



ML-based Adaptive Video Streaming techniques for 5G and beyond mobile data networks 

A. Rajabov 59 

networks. It is essential to mention that the results obtained by the authors are those 

for the time steps of number 4, while in our work, we utilized the number of steps equal 

to 15. This introduces much more memory, and therefore the 2-layered biLSTM has 

more than twice a higher complexity than the 2-layered LSTM. On the other hand, the 

FNN neural network is an exciting solution to the QoE prediction has an almost 

identical complexity level as the previously mentioned 2-layered LSTM network, even 

with a much higher number of neurons, 100 in FNN to 22 in LSTM, and layers, 3 in 

FNN to 2 in LSTM. However, due to the specific propagation network type – this model 

requires much fewer multiplications between the layers of neurons. Finally, the 

proposed by [11] CNN neural network is the leader in complexity factor – as the 

convolution layer with the dilation factor requires much fewer multiplications in each 

convolving layer. Additionally, the number of steps used in work is equal to 8, while 

mentioning again, in our case, was 15 – which is almost twice memory occupation. 

Therefore CNN becomes the minor complex network in our analysis.  

Considering the complexity information from table 1 and figure 23, the FNN model 

provides the best level of predictive accuracy by RSME value and occupies one of the 

lowest levels of the computational complexity. This indicates that the application of 

FNN could potentially be an optimal technique for QoE prediction, again due to the 

relatively low complexity level and competitively high prediction accuracy. Additionally, 

the LSTM [14] NN depicting the most insufficient accuracy with the memory steps of 

4 has also shown a similar complexity to the FNN. At this point, it is worth discussing 

that FNN and 2-layered LSTM occupy the same sophistication level. However, FNN 

gives higher accuracy than LSTM, which is much better for the prediction application.  

 

Figure 24. The FNN-QoE model's QoE prediction productivity on the LIVE-Netflix video QoE 
Database. 
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Figure 25. Over the LIVE-Netflix video QoE Database, the combined CNN and LSTM QoE-model 
performed well in terms of QoE prediction. 

 

Figure 26. Performance of the biLSTM layers QoE models in predicting QoE via the LIVE-
Netflix video QoE Database. 

Figures 23-25 illustrates plots to represent the accuracy of prediction for each model. 

Graphs showing the similarity can be explained as a slight difference in evaluation 

metrics. In some parts of charts, prediction accuracy is very high, but other factors are 

very different. Moreover, in plots, the QoE prediction is shown in the 60-second range 

and when in graphs, the QoE score went rapidly down, indicating a rebuffering event 

during video streaming. Also, the Pattern defines the video sequence. For example, in 

figure 25, Patterns 2 and 5 depict rebuffering events in 13 and 36 seconds, 

respectively.  

Table 2. The suggested NN-QoE models' QoE prediction efficiency over the LIVE-Netflix video 
QoE database. The highest result is shown with a bold typeface. 

 

NN-QoE models 

PCC SROCC RMSE 

CNN-QoE [11] 0.848 0.733 6.97 

LSTM-QoE [14] 0.802 0.714 7.78 
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FNN-QoE 0.881 0.819 6.69 

BiLSTM-QoE 0.876 0.806 7.07 

Combined CNN+LSTM 

QoE 

0.882 0.809 6.80 

Table 2 demonstrates the outcome of this dissertation work. As can be seen from the 

comparison between all models, the best QoE prediction result was the FNN-QoE 

model. FNN-QoE model showed the lowest RMSE and highest PCC and SROCC 

metrics. As mentioned before, the small RMSE means better prediction accuracy. 

However, the combined QoE model also demonstrated fair results, slightly 0.11 more 

than the FNN-QoE model. In addition, the thesis results are better than base papers 

[11] and [14], but concerning the fact that other models were used. However, it would 

be troublesome to perform and evaluate the offered models without more research 

work.  

Moreover, table 1 and figure 23 shows that the most increased complexity has the 

biLSTM model comparing to others. Also, it should be recorded that during the 

simulation, the biLSTM network took much more time to compile than other networks, 

which denotes the high complexity. Another QoE model, which demonstrated high 

accuracy in table 2 combined QoE-model, in figure 23 combined CNN and biLSTM 

model located in second place by complexity, but it has fair prediction accuracy. 

4.3. Summary of results 

Modern 5G networks are widely recognized for requiring ultra-low latency, high speed, 

and ultra-wide bandwidth. Even if these high standards are pursued, frequent 

disruptions or network changes may cause end-user activities to be disrupted. All of 

these variables, without a doubt, have a major impact on consumers' QoE. As a result, 

maximizing user experience knowledge requires quick and adaptable video streaming, 

and consistent QoE prediction may be helpful and illuminating in the case of DASH 

video streaming. 

Comparing the performance of the proposed NN with the models from the current 

literature in Table 2, we can see that the efficiency of the new FNN-QoE model is more 

accurate and differs from the LSTM-QoE model by 14% on the RMSE metric. 
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Additionally, three-layered CNN has only 5% lower performance on the RMSE metric 

compare to three-layered FNN.   

According to the above analysis, we can argue that using modern machine learning 

tools to apply QoE prediction can be very beneficial due to the high performance and 

accuracy of modern supervised methods, especially when valuable data is available. 

At the same time, high-precision networks usually use a lot of application memory and 

become very difficult to implement in real-time applications on devices in 5G networks. 

Thus, there is a trade-off between a well-performing NN-based tool that can predict 

QoE efficiently and continuously and the level of complexity these NN-based tools 

occupy. An example is that for the FNN neural network, which is undoubtedly one of 

the most straightforward and most understandable tools in terms of complexity - it 

gives relatively competitive accuracy results - and at the same time does not require 

a large amount of memory, like very complex recurrent neural networks. Therefore, 

this type of NN may become the number one method for QoE prediction. At the same 

time, using more memory steps, more neurons, together with enhanced activation 

functions, can lead to better results for repetitive NN, as does biLSTM. On the other 

hand, more memory means more complexity, leading to a longer learning cycle and 

higher resource requirements for this network. 

 

 



ML-based Adaptive Video Streaming techniques for 5G and beyond mobile data networks 

A. Rajabov 63 

5. CONCLUSION 

Finally, for video streaming in 5G networks, this thesis investigated, analyzed, 

developed, and assessed QoE prediction models such as FNN, biLSTM, and a 

combination of CNN and biLSTM. In suitable network congestion conditions, systems 

based on NN-QoE prediction models will serve as the first line of defense and inform 

intelligent traffic management choices, such as when and what levels of scalable video 

streaming should be discarded to optimize network advantage. In a 5G network, 

activities with little effect on perceived QoE are possible. Three metrics were used to 

evaluate the results of all models: PCC, SROCC, and RMSE. Furthermore, two 

additional recent studies [11] and [14] in the literature inspired this thesis, 

demonstrating that there is presently an issue in 5G that requires academic attention. 

Additionally, was calculated the complexity of provided QoE-NN architectures. 

However, the dissertation used a small database to evaluate the result required to 

more precisely utilise work with different databases. Therefore, evaluation on other 

datasets and real-time implementation can be completed in future work. Furthermore, 

in the thesis, there were only three types of QoE models, and there are plenty of 

variations of NNs that can be performed to compare better QoE prediction models for 

video streaming.   

In this thesis, multiple tasks have been performed: 

 Different NN has been studied and analyzed. 

 The modern complexity approach has been learned and implemented 

 Three additional NN was proposed, namely, FNN-QoE, combined CNN and 

biLSTM QoE, and biLSTM-QoE. 

 It was found that FNN gives the best performance of all NN.  Comparing to 

LSTM-QoE prediction, FNN-QoE performed better by 14%. 

 On the other hand, the FNN model with an increasing number of neurons 

provides a similar complexity level to the recurrent LSTM.  

 It was shown that the compromise among the multiplication complexity of 

NN and capacity accuracy has to be taken into account. Therefore, this 

problem has to be addressed when proposing and applying novel NNs for 

QoE prediction. 
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ABBREVIATION 

Abbreviation Explanation Abbreviation Explanation 

RTMP Real-Time Messaging 

Protocol 

STSQ Short Time Subjective 

Quality 

RTSP Real-Time Streaming 

Protocol 

MDP Media Presentation 

Description 

ETSI European 

Telecommunications 

Standards Institute 

PI Playback Indicator 

QoE Quality of Experience VQA Video Quality Assessment 

ISP Internet Service Provider TCN Temporal Convolutional 

Network 

OTT Over-The-Top STRRED Spatio-Temporal Reduced 

Reference Entropic 

Differences 

QoE Quality of Experience SRRED Spatio Reduced 

Reference Entropic 

Differences 

DASH Dynamic Adaptive Video 

Streaming over HTTP 

TRRED Temporal Reduced 

Reference Entropic 

Differences 

ML Machine Learning DL Deep Learning 

MEC Multi-access Edge 

Computing 

STSQ Short Time Subjective 

Quality 

LSTM Long Short-Term Memory MDP Media Presentation 

Description 

CNN Convolutional Neural 

Network 

PI Playback Indicator 

NN Neural Network VQA Video Quality Assessment 
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ANN Artificial Neural Network TCN Temporal Convolutional 

Network 

RNN Recurrent Neural Network STRRED Spatio-Temporal Reduced 

Reference Entropic 

Differences 

CDN Content Delivery Network SRRED Spatio Reduced 

Reference Entropic 

Differences 

DNN Deep Neural Network PCC Pearson Correlation 

Coefficient 

FNN Feed-forward Neural 

Network 

SROCC Spearman Rank Order 

Correlation Coefficient 

GRU Gated Recurrent Units RMSE Root Mean Squared Error 

CDVL Consumer Digital Video 

Library 
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