
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES

MASTER THESIS

GeoTriples: A Tool For Publishing Earth Observation and

Geospatial Data as RDF Graphs Using the R2RML Mapping

Language

Ioannis Vlachopoulos

Supervisors: Manolis Koubarakis, Professor UoA
Kostis Kyzirakos, Post-Doctoral Researcher CWI

ATHENS

JANUARY 2015

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ∆ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΣΠΟΥ∆ΕΣ

∆ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

GeoTriples: Εφαρµογή για ∆ηµοσιοποίηση ∆εδοµένων

Παρατήρησης Γης και Γεωχωρικών ∆εδοµένων σε Μορφή RDF

Γράφων, Χρησιµοποιώντας τη Γλώσσα Αντιστοίχησης R2RML

Ιωάννης Βλαχόπουλος

Επιβλέποντες: Μανόλης Κουµπαράκης, Καθηγητής ΕΚΠΑ
Κωστής Κυζηράκος, Μεταδιδακτορικός Ερευνητής CWI

ΑΘΗΝΑ

ΙΑΝΟΥΑΡΙΟΣ 2015

MASTER THESIS

GeoTriples: A Tool For Publishing Earth Observation and Geospatial Data as RDF

Graphs Using the R2RML Mapping Language

Ioannis Vlachopoulos

R.N.: M1249

SUPERVISORS:

Manolis Koubarakis, Professor UoA
Kostis Kyzirakos, Post-Doctoral Researcher CWI

EXAMINATION COMMITEE:

Efstathios Hadjiefthymiades, Assistant Professor UoA

ATHENS

JANUARY 2015

∆ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

GeoTriples: Εφαρµογή για ∆ηµοσιοποίηση ∆εδοµένων Παρατήρησης Γης και

Γεωχωρικών ∆εδοµένων σε Μορφή RDF Γράφων, Χρησιµοποιώντας τη Γλώσσα

Αντιστοίχησης R2RML

Ιωάννης Βλαχόπουλος

Α.Μ.: Μ1249

ΕΠΙΒΛΕΠΟΝΤΕΣ :

Μανόλης Κουµπαράκης, Καθηγητής ΕΚΠΑ
Κωστής Κυζηράκος, Μεταδιδακτορικός Ερευνητής CWI

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:

Ευστάθιος Χατζηευθυµιάδης, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

ΙΑΝΟΥΑΡΙΟΣ 2015

Abstract

A plethora of Earth Observation data that is becoming available at no charge in Europe
and the US recently reflects the strong push for more open Earth Observation data. Lin-
ked Data is a paradigm which studies how one can make data available on the Web and
interconnect it with other data with the aim of making the value of the resulting "Web of
data" greater than the sum of its parts. Open Earth Observation data that are currently
made available by space agencies such as ESA and NASA are not following the linked data
paradigm. Therefore, Earth Observation data and other kinds of geospatial data that are
necessary for a user to satisfy her information needs can only be found in different data
silos, where each silo may contain only part of the needed data. Publishing the content
of these silos as RDF graphs, enables the development of data analytics applications with
great environmental and financial value. In this thesis, we present the tool GeoTriples
that allows for the transformation of Earth Observation data and geospatial data into RDF
graphs. GeoTriples goes beyond the state of the art by extending the R2RML mapping
language to be able to deal with the specificities of geospatial data. GeoTriples is a semi-
automated tool that allows the publication of geospatial information into an RDF graph
using the state of the art vocabularies like GeoSPARQL and stSPARQL, but at the same
time it is not tightly coupled to a specific vocabulary.

SUBJECT AREA: Semantic Web
KEYWORDS: linked data, earth observation, geospatial data, RDF graphs, mapping,
R2RML

Περίληψη

Τα τελευταία χρόνια ένας ολοένα αυξανόµενος όγκος δεδοµένων παρατήρησης γης γίνε-
ται διαθέσιµος στην Ευρώπη και την Αµερική. Τα συνδεδεµένα δεδοµένα είναι ένα µοντέλο
το οποίο µελετάει τον τρόπο µε τον οποίο τα δεδοµένα µπορούν να γίνουν διαθέσιµα στον
παγκόσµιο ιστό και να διασυνδεθούν µε άλλα δεδοµένα, δηµιουργώντας εποµένως έναν Ϊστό
∆εδοµένων¨. Ωστόσο τα δεδοµένα παρατήρησης γης που διατίθενται από υπηρεσίες όπως η
ESA και η NASA δεν ακολουθούν το µοντέλο των συνδεδεµένων δεδοµένων. Κατά συνέπεια,
προκειµένου κάποιος χρήστης κάποιος χρήστης να ικανοποιήσει διαφόρου τύπου ανάγκες
για πληροφορίες, ϑα πρέπει να συλλέξει γεωχωρικά δεδοµένα και δεδοµένα παρατήρησης
γης από διαφορετικά σιλό. ∆ηµοσιεύοντας τα δεδοµένα των σιλό αυτών ως γράφους RDF, κα-
ϑίσταται δυνατή η ανάπτυξη εφαρµογών ανάλυσης δεδοµένων µε µεγάλη περιβαλλοντολογική
και οικονοµική αξία. Στην παρούσα διπλωµατική, παρουσιάζεται το εργαλείο GeoTriples για
το µετασχηµατισµό δεδοµένων παρατήρησης γης και γεωχωρικών δεδοµένων σε γράφους
RDF. Το GeoTriples επεκτείνει τη γλώσσα αντιστοίχησης R2RML ώστε να λάβει υπόψιν και
τις ιδιαιτερότητες που παρουσιάζουν τα γεωχωρικά δεδοµένα. Αποτελεί µία ηµι-αυτόµατη
εφαρµογή για µετατροπή γεωχωρικής πληροφορίας σε RDF χρησιµοποιώντας δηµοφιλή λε-
ξιλόγια όπως GeoSPARQL και stSPARQL, χωρίς ταυτόχρονα να δεσµεύεται αποκλειστικά µε
κάποιο από αυτά.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Σηµασιολογικός Ιστός
ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ : Συνδεδεµένα δεδοµένα, παρατήρηση γης, γεωχωρικά δεδοµένα, γράφοι
RDF, αντιστοίχηση, R2RML

Ευχαριστίες

Αρχικά ϑα ήθελα να ευχαριστήσω τον καθηγητή και επιβλέποντα αυτής της διπλωµατικής
εργασίας, Μανόλη Κουµπαράκη, για την πολύτιµη καθοδήγησή του η οποία κατέστησε δυνα-
τή την εκπόνησή της εργασίας αυτής. Επίσης ϑα ήθελα να ευχαριστήσω το µεταδιδακτορικό
ερευνητή Κωστή Κυζηράκο και το συνάδελφο ∆ηµητριανό Σάββα για τη συνεργασία τους και
την πολύτιµη ϐοήθειά τους στο ερευνητικό έργο LEO, στα πλαίσια του οποίου εκπονήθηκε η
εργασία.

Contents

1 Introduction 1

2 Languages for mapping relational databases to RDF graphs 4

2.1 Mapping languages and systems . 4

2.2 Comparison of mapping languages . 7

2.3 The mapping language R2RML . 10

2.3.1 Structure of an R2RML mapping . 11

2.3.2 Useful features of R2RML . 12

2.4 Processors of R2RML mappings . 13

2.4.1 OpenLink Virtuoso . 13

2.4.2 RDF-RDB2RDF . 14

2.4.3 XSPARQL . 14

2.4.4 Ultrawrap . 14

2.4.5 db2triples . 15

2.4.6 Morph . 15

2.4.7 D2RQ . 16

2.5 Summary . 17

3 Transforming Earth Observation data into RDF graphs 18

3.1 Earth Observation data . 18

3.2 Transforming geospatial data into RDF graphs 21

3.3 Summary . 22

4 GeoTriples: a tool for transforming Earth Observation data into RDF

graphs 23

4.1 The Architecture of GeoTriples . 23

4.2 Implementation Choices . 25

4.2.1 The D2RQ platform and Morph . 25

4.3 Transforming geospatial data into RDF graphs 26

4.3.1 Automatic generation of R2RML mappings 26

4.3.2 Processing R2RML mappings for producing RDF graphs 34

4.4 Extensions to R2RML . 37

4.4.1 Transformation Extension . 37

4.4.2 Transformation (OWL Class) . 38

4.4.3 Function (OWL Class) . 39

4.4.4 ArgumentMap (OWL Class) . 39

4.4.5 transformation (Property) . 40

4.4.6 function (Property) . 40

4.4.7 argumentMap (Property) . 40

4.5 Summary . 42

5 Using GeoTriples in a real world scenario 43

5.1 Developing populating ontologies for precision farming 43

5.1.1 Talking Fields products . 43

5.1.2 Natura 2000 ontology . 47

5.1.3 Corine Land Cover . 48

5.1.4 Administrative geography of Germany 51

5.1.5 LinkedGeoData . 53

5.2 Discovery Queries on data published by GeoTriples 55

5.3 Summary . 63

6 Conclusions 64

7 Acronyms 65

APPENDIX I 66

APPENDIX II 68

List of Figures

2.1 An overview of R2RML constructs . 11

2.2 Architecture of Ultrawrap . 15

2.3 Architecture of the D2RQ Platform . 17

4.1 The abstract architecture of the system GeoTriples 24

4.2 The system architecture of GeoTriples . 25

4.3 Part of the GeoSPARQL ontology . 27

4.4 An example of a logical table and the corresponding logical geometry table . 28

4.5 Natura 2000 areas for Germany . 28

4.6 Modeling of extension classes and properties 38

4.7 Extended rr:TermMap . 41

5.1 Example of a fictional TalkingFields product 44

5.2 Classes in the TalkingFields Ontology . 46

5.3 Example of a Natura 2000 area . 47

5.4 Classes in Natura 2000 Ontology . 49

5.5 Example of a Corine Land Cover area . 49

5.6 Classes in the Corine Land Cover Ontology 50

5.7 States and administrative districts of Germany 51

5.8 Classes in the German Administrative Units Ontology 52

5.9 The Jachen & Lainbach rivers in Bavaria, Germany 53

5.10 Visualization of the TalkingFields products and query region of Example 1 . 56

5.11 Visualization of protected areas and query region of Example 2 57

5.12 Visualization of rivers and query region of Example 3 58

5.13 Visualisation of agricultural fields within Dachau 59

5.14 Visualisation of the parts of agricultural fields that overlap a protected area . 61

5.15 Visualisation of the parts of an agricultural field that is close to a river . . . 62

6.1 Database schema for a talkingfields product. 70

6.2 Part of the GeoTriples graphical user interface 79

6.3 Menu File → Connect . 80

6.4 Select SQL type of connection . 80

6.5 Provide connection properties . 81

6.6 Select columns to remove . 82

6.7 Load an existing ontology . 83

6.8 Change class of table Fields using the classes from loaded ontology 83

6.9 Change predicate of column using the properties from loaded ontology 84

6.10 Provide the baseIRI . 84

6.11 Menu Publish → Generate R2RML Mapping using information from Mapping

Editor . 85

6.12 Preview or Edit R2RML mapping . 85

6.13 Menu Publish → Generate RDF graph . 86

6.14 Save result in a file . 86

List of Tables

2.1 Comparison of RDB-to-RDF mapping languages[19] 9

4.1 Attributes schema . 29

4.2 A sample of the contents of the Natura 2000 dataset 29

4.3 Prefixes used in the extended R2RML vocabulary 37

4.4 Transformation functions that are supported by GeoTriples 39

5.1 TalkingFields data for farms . 44

5.2 TalkingFields data for agricultural fields . 45

5.3 TalkingFields data for raster cells . 45

5.4 Natura 2000 data . 48

5.5 Example Area (see figure 5.5) of CLC dataset 50

5.6 Administative Geography of Germany data 51

6.1 Sample data of a talkingfields product. 70

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Chapter 1

Introduction

Lots of Earth Observation (EO) data has become available at no charge in Europe and

the US recently and there is a strong push for more open EO data. For example, a recent

paper on Landsat data use and charges by the US National Geospatial Advisory Committee

- Landsat Advisory Group starts with the following overarching recommendation: “Landsat

data must continue to be distributed at no cost”. Similarly, the five ESA Sentinel satellites

that would soon go into orbit have already adopted a fully open and free data access policy.

In the same spirit, the Autumn 2012 edition of the newsletter of the European Association

of Remote Sensing Companies makes the case for a free and open data policy for GMES,

arguing that this will fuel the development of the geo-information services industry, and as

a result, bring maximum economic benefit to Europe.

Linked data is a new data paradigm which studies how one can make RDF data available

on the Web, and interconnect it with other data with the aim of increasing its value [9]. In the

last few years, linked geospatial data has received attention as researchers and practitioners

have started tapping the wealth of geospatial information available on the Web [21]. As a

result, the linked open data (LOD) cloud has been rapidly populated with geospatial data

some of it describing EO products (e.g., CORINE Land Cover and Urban Atlas published by

project TELEIOS1). The abundance of this data can prove useful to the new missions (e.g.,

Sentinels) as a means to increase the usability of the millions of images and EO products that

are expected to be produced by these missions. However, open EO data that are currently

made available by space agencies such as ESA and NASA are not following the linked

data paradigm. Therefore, from the perspective of a user, the EO data and other kinds of

geospatial data necessary to satisfy his or her information need can only be found in different

data silos, where each silo may contain only part of the needed data. Opening up these silos

by publishing their contents as RDF and interlinking them with semantic connections will

allow the development of data analytics applications with great environmental and financial

value.

In this dissertation we will describe GeoTriples, a tool for translating EO and geospatial

data into RDF graphs, using the R2RML mapping language. The tool is developed in the

1http://www.earthobservatory.eu

Ioannis Vlachopoulos 1

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

context of the FP7 project LEO2. LEO aims to study the life cycle of linked open EO

data and develop tools that support it [20]. More specifically, the scientific and technical

objectives of LEO are the following:

• To capture, as precisely as possible, the life cycle of linked open EO data.

• To develop publishing tools that transform open EO data and metadata, made available

by space agencies such as ESA and NASA, from their standard formats into RDF and

make it available on the LOD cloud.

• To develop publishing tools that transform open geospatial data and metadata from

their standard formats into RDF and make it available on the LOD cloud. Open

geospatial data (e.g., digital maps, administrative data, enviromental data, etc.) are

typically used together with EO data in applications such as precision farming and are

made available by public agencies as well (e.g., the Bavarian Topological Survey for

the precision farming application developed in LEO. This is also the main objective of

this dissertation.

• To develop tools that interlink open EO data sources and geospatial data sources

published as RDF.

• To develop tools for cross-platform searching, browsing and visualization of linked EO

data and linked geospatial data.

• To demonstratate the value of the developed tools by:

– Performing large-scale publication and linking of open EO data from the GMES

Space Component Data Access warehouse managed by ESA, and relevant geospa-

tial datasets made available by other public bodies in Europe.

– Developing a precision farming application that shows how geo-information ser-

vices based on linked EO data, linked geospatial data and specialized algorithms

can contribute to an environmental friendly increase in the efficiency of agricul-

tural production.

The rest of this disseration is as follows; First of all, we will report work carried out in

mapping techniques from the relational model to the RDF model. Then, we will describe

the various formats of EO and geospatial data made publicly available and report on related

work on publishing such data as RDF graphs. Finally, we are going to present GeoTriples,

2http://www.linkedeodata.eu

Ioannis Vlachopoulos 2

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

developed in the context of this thesis and project LEO, and examples of its usage in a real

world scenario.

Ioannis Vlachopoulos 3

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Chapter 2

Languages for mapping relational databases

to RDF graphs

In the current state of the Web, the majority of data is stored in relational databases (RDB).

Therefore, there is a need to bridge the conceptual gap between the standard relational model

and the Resource Description Framework (RDF) that is the de facto standard for publishing

and linking semantic data on the Web. Depending on current requirements that need to

be addressed, different mapping methods may need to be employed. In this chapter, we

describe the state of the art RDB-to-RDF mapping languages designed for this task. For

completeness, we will not only present mapping languages, but also present existing systems

and prototypes that perform such a mapping without the formal definition of a mapping lan-

guage. Then we will report a feature based comparison that categorizes current approaches

in four categories: the Direct Mapping approach, the read-only general-purpose mapping ap-

proach, the read-write general-purpose approach and the special-purpose approach. Then,

we will present in more detail the R2RML mapping language, that recently became a W3C

recommendation, for expressing such mappings and we will present systems that process

R2RML mappings.

2.1 Mapping languages and systems

We start our discussion of mapping languages by presenting the Direct Mapping of Re-

lational Data to RDF1 approach that became a W3C recommendation in 2012. The direct

mapping approach is a straight forward method for translating relational data into RDF.

According to this approach, relational tables are mapped to classes defined by an RDF vo-

cabulary, while the attributes of each table are mapped to RDF properties that represents

the relation between subject and object resources. Identifiers, classes, properties, and in-

stances are generated automatically. According to this approach, the generation of RDF

data is dictated by the schema followed by the relational database. The directed mapping

mechanism was initially defined in [7] while [1] is an implementation of such a mechanism.

1http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/

Ioannis Vlachopoulos 4

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

A lightweight tool designed to publish relational data in the Semantic Web is Triplify.

Its main functionality lies on mapping HTTP-URI requests onto relational database queries,

and translating the results into RDF statements. The rationale behind this functionality is

that the largest percentage of data is already stored in structured form but are published as

HTML by web applications. The main objectives of Triplify are the following; a) to enable

users to publish several formats of data as linked data, e.g., JSON and CSV from existing

web applications, b) offer preconfigured mappings as input to popular content management

systems such as Drupal and Wordpress, c) perform selectively updates on large amount

of data without having to re-crawl unchanged content and d) evaluate the flexibility and

scalability of its approach using the data published by the Open Street Map project. Triplify

needs three configuration elemenents to generate RDF triples. These elements are; a default

schema namespace, a mapping from namespace prefixes to namespace URIs and a mapping

of URL patterns to sets of SQL queries. The main notion on which Triplify is based, is the

fact that for each logical table (a view or a physical table), the unique identifier is used for

the production of the instance URIs. The names of the columns are used to generate object

and data properties, and, finally, the values of the SQL result set are used to construct the

objects of the RDF triples, which can be literal values or references to other objects. It is,

however, important to do some preprocessing via SQL to generate these views and convert

them into the RDF data model. This preprocessing involves the use of several extensions

of SQL that annotate inline generated the views generated and remain transparent to the

SQL processor. The extensions used are the mapping to existing vocabularies (e.g., column

name “name” to “foaf:name”), object properties in order to make reference to other URIs as

automatic mechanisms consider all columns by default to be datatype properties, datatypes

and language tags to properly annotate RDF literals.

Another popular mapping language to translate relational data into RDF, is D2RQ

[13, 10]. Being the successor of the XML-based D2R MAP [8], it treats non-RDF relational

databases as virtual RDF graphs. It exposes relational data as RDF triples and allows the

access to it via SPARQL queries. Mappings can be produced either automatically or given

as input by the user, in case the re-use of an existing vocabulary is needed. The mappings

are expressed as RDF triples using the TURTLE syntax. A D2RQ mapping is based on

the notion of the ClassMap. The ClassMap represents a class or a group of classes in an

ontology. It specifies whether URI instances derive from blank nodes or by the combination

of a URI pattern with a primary key value. Each ClassMap, in turn, consists of a set of

property bridges which specify how properties on the instance level are created and how

database values are mapped to URIs or literals. There are two types of property bridges:

the datatype property bridges whose values are actually the ones stored in the relational

Ioannis Vlachopoulos 5

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

database as they are, and the object property bridges that are used for object properties in

order to make references to other URI instances.

In order to standardize RDB-to-RDF mappings, there has been an ongoing Working

Group accommodated by the W3C RDB2RDF. The result of this work is the design of the

language R2RML which provides features similar to D2RQ except for having some extra

ones like Named Graph and SQL Views support [14]. More details about R2RML are given

in Section 2.3.

R2O [6] is a RDB-to-ontology mapping language, fully declarative and extensible. The

ontologies may be expressed either in RDFS or OWL. The mappings are expressed in a XML-

based syntax. An R2O mapping defines how to create instances in the ontology and can be

used to populate the ontology automatically using the data extracted from the relational

database. Such a mapping can also be processed by other tools, middleware or APIs for tasks

such as self-verification in order to automatically detect inconsistencies on the mapping itself,

to verify the integrity of parts of a DB by applying ontology axioms to the DB elements and

automatically characterize data sources to allow dynamic query distribution in intelligent

information integration approaches. However, R2O mappings are not bidirectional and thus,

only RDB2RDF mapping is supported. Additionally, the mappings are not intended to be

human-readable and as a result are not to be generated or edited manually, except via a

graphical user interface. The ODEMapster2 is a tool that has been enhanced to process R2O

mappings.

[15] introduces an OWL-based representation format for relational data and schema com-

ponent, the Relational.OWL. It defines an OWL ontology to describe the RDB schema

and its corresponding data. This mapping is targeted to be used in data-exchange in peer-

to-peer databases. Each peer must be able to process and understand OWL documents,

have access to the subject Relational.OWL ontology or a semantically equivalent one and

also have access to the OWL schema representation of the corresponding database. As it is

OWL-based, one of its main aspects is the ability to represent knowledge, since, applied to

the domain of relational databases, data and schema items can be described in a machine

readable but also understandable format, provided that an ontology is specified for the rela-

tional data. In addition, reliability is ensured for data and schema exchange between peers

of a network. However, in order to minimize the risk of misunderstanding the knowledge

represented, it is important to define a representation format which is unambiguous for all

the peers involved, even though it may not be stated explicitly. A Relational.OWL map-

ping also contains selected metadata of the target database. This metadata mostly includes

2http://neon-toolkit.org/wiki/ODEMapster

Ioannis Vlachopoulos 6

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

information about tables and columns, primary and foreign key constraints and datatypes.

Openlink Software developed the Virtuoso Universal Server which, via RDF views,

exposes relational data on the Semantic Web [16, 27].The Virtuoso RDF views are designed

to translate SQL query result sets into RDF triples using mappings expressed in a declarative

Meta Schema Language in combination with pre-existing vocabularies. The Meta Schema

Language resembles to some extent SQL DDL from a syntax point of view.

R3M [17, 18] is another RDB to RDF mapping language that records additional in-

formation about the database schema to support update operations. An R3M mapping is

expressed in RDF, using the R3M ontology, and maps the terms of a domain ontology model

to the database schema. Its main approach is similar to other existing mapping languages;

database tables are mapped to ontology classes and table columns are mapped to data prop-

erties. R3M also supports mapping link tables to object properties instead of classes, in order

to define relations between URI instances. The root element of a R3M mapping is called the

DatabaseMap. It represents the database and access information for the mediator. The URI

prefix of the RDF dataset to be produced is also provided in the DatabaseMap along with

a list of target tables to be mapped which are called TableMaps. A TableMap represents

the mapping of an individual table. It provides the ontology class in which the instances are

assigned, as well as a URI pattern for them. It also contains a list of AttributeMaps which

maps the table’s columns to properties defined in the ontology. Finally, R3M mappings

support also insert/update/delete operations on the target relational database. These map-

pings instruct how SPARQL update operations such as INSERT DATA, DELETE DATA

and MODIFY can be translated into SQL.

2.2 Comparison of mapping languages

A comparison framework is defined in [19] for the functional juxtaposition of the mapping lan-

guages presented in this chapter. Since all languages support the direct mapping approach,

several features that are expected from a mapping language are defined. The comparison

framework of [19] comprises the following features.

1. Logical Table to Class: A logical table represents a relational table that may not

be materialized within the RDBMS. Thus, a logical table can be an SQL view or an

ad-hoc SQL query. This feature maps a logical table to an RDFS class.

2. M:N Relationships: Relational databases use special tables, called cross-reference

tables, for representing M:N relationships among entities. This feature maps such ta-

Ioannis Vlachopoulos 7

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

bles to the appropriate RDF constructs, since such relationships are expressed naturally

in RDF using multiple triples.

3. Project Attributes: An RDB to RDF mapping may choose to export into RDF a

subset of all available columns within a table. For example, sensitive data like personal,

private, confidential or classified information should not be exported from the database.

Therefore, the mappings should project only the required attributes in the output RDF

graph.

4. Select Conditions: There are occasions in which not all the records should be mapped

to triples, but only those satisfying a user-defined condition. A mapping language

should allow the definition of such a selection predicate that would allow only qualifying

records to be exported into RDF.

5. User-defined Instance URI: Apart for sequences of URI that are automatically

generated by the mapping engine, the mapping language should provide a templating

mechanism for the generated URI so that the user could customize the form of the

produced URI.

6. Literal to URI: The SQL standard does not provide a specialized datatype for rep-

resenting a URI. In practice, a URI is represented as a set of characters. Therefore,

such a value should be converted to a valid URI in the RDF representation.

7. Vocabulary Reuse: The target vocabulary for a mapping can either be derived

automatically by taking into account table and attributes names, or could be mapped

to an existing vocabulary. This feature allows the mapping to use terms from an

existing vocabulary.

8. Transformation Functions: Values of a relational table may need an intermediate

transformation step prior exporting them into RDF. This feature allows the expression

of transformation functions on relation data for converting them into the desired form

that will be exported into RDF.

9. Datatypes: Although RDF uses XML datatypes, and a standardized mapping be-

tween SQL datatypes and XML datatypes exists3, a mapping language should allow

the assertion of the datatype information. This feature allows the explicit definition

of the datatype of the target RDF literal within a mapping.

3ISO/IEC 9075-14 XML-related specifications, http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=53686

Ioannis Vlachopoulos 8

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Table 2.1: Comparison of RDB-to-RDF mapping languages[19]

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
Direct Mapping (3) 7 7 7 7 7 7 7 7 7 7 7 7 7 3

R2O 3 7 3 3 3 3 3 3 3 7 3 (3) 7 (3) 7

Relatinal OWL (3) 7 3 7 7 7 7 7 3 7 3 (3) 7 7 3

Virtuoso 3 3 3 3 3 3 3 3 3 3 3 (3) 7 3 7

D2RQ 3 3 3 3 3 3 3 3 3 7 3 (3) 3 3 7

Triplify 3 3 3 3 3 3 3 3 3 7 7 (3) 7 3 7

R2RML 3 3 3 3 3 3 3 3 3 3 3 (3) 3 3 7

R3M (3) 3 3 (3) 3 3 3 3 3 7 7 3 7 3 3

3= full support (3) = partial support 7= no support

10. Named Graphs: An RDF dataset may contain multiple graphs. A mapping language

should allow the assignment of specific fragments of the database to different named

graphs instead of being forced to assign all produced triples into a single graph.

11. Blank Nodes: Blank nodes are RDF terms that denote anonymous identifiers that

are unique within an RDF graph, but their value is of no importance. Blank nodes are

being used by this feature to map tuples that do not have a unique identifier such as

a primary key.

12. Integrity Constraints: An important functionality of a relational database is to

allow the specification of integrity constraints and to enforce them. The authors of [19]

distinguish between key constraints (primary key, foreign key) and other constraints

(not null, unique, check). This feature allows the explicit declaration of such constraints

in the mapping language.

13. Static Metadata: The mapping language should allow the addition of static meta-

data into the produced RDF graph. For example, the user should be able to provide

information (e.g., provenance information) that is not explicitly present in the rela-

tional database.

14. One table to n Classes: In most cases, the RDF resources generated from a logical

table are instances of a single RDFS class. This feature allows us to map one table

to several classes. This could be the case when a database is not normalized and

redundant information is present. In this case, different projections of the table could

be mapped to different classes.

15. Write Support: Usually, RDF data are accessed in a read-only manner. Nevertheless,

a mapping language should provide support for write access to the data. This feature

explicitly supports write access to the relational data, based on the produced RDF

graphs.

In [19], mapping languages are classified in four categories. Direct Mapping, Read-

only general-purpose Mapping, Read-write general-purpose mapping and special-purpose

Ioannis Vlachopoulos 9

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

mapping. The direct mapping is a simple approach for transforming relational tables into

RDF, thus most of the desired features presented above are not supported.

Read-only general-purpose mappings (R2RML, D2RQ and Virtuoso) provide similar

functionality with some minor variations (e.g., support for named graphs and static meta-

data). The expressiveness of these mapping languages makes them suitable for a great va-

riety of applications where the transformation of a relational database to a read-only graph

is needed.

Read-write general-purpose mappings (R3M) focus on providing bidirectional access to

the data stored in a relational database. This feature comes at the expense of poorer sup-

port for logical table mappings (F1) and selection conditions (F4) due to the view update

problem[5]. As a result, the expressiveness of the read-write general-purpose mapping is

less expressive than read-only general-purpose mappings in order to guarantee support for

update operations on the underlying relational data.

Special-purpose mapping languages (R2O, Triplify) were not designed to be highly reusable

like the general-purpose mappings presented above, but were driven by use-cases. Thus, not

all of them provide support for static metadata, named graphs or blank nodes. However,

these mapping languages are appropriate for applications that are similar to the respective

use-cases.

R2RML and D2RQ support most of the features described above and can be used to

produce automatically a direct mapping from a relational database, while the produced

mapping can also be based on a pre-existing vocabulary. This feature makes them ideal

for applications that consume linked data, in existing ontologies can be reused or new ones

may be developped for modeling Earth Observation data. R2RML and D2RQ also support

several transformation functions on the values of the database which may be a highly desired

features. However, R2RML and D2RQ do not support update operations on the underlying

relational data. Therefore, the expressivenes of R2RML and D2RQ make them the most

suitable languages and tools for expressing and processing mappings for publishing data,

that can be consumed by applications (e.g., use case of project LEO).

2.3 The mapping language R2RML

R2RML is a language for expressing customized mappings from relational databases to

RDF datasets. Such mappings provide the ability to transform existing relational data into

the RDF data model, expressed in a structure and target vocabulary of the mapping au-

thor’s choice. R2RML mappings are themselves RDF graphs usually encoded in the Turtle

Ioannis Vlachopoulos 10

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Figure 2.1: An overview of R2RML constructs

syntax. R2RML allows different types of mapping implementations. An application that

processes R2RML mappings, also known as an R2RML processsor, can choose to leave the

relational database intact and provide a virtual SPARQL4 endoint that transparently trans-

lates SPARQL queries to SQL queries by taking into account the given R2RML mappings.

Alternatively, an R2RML processor can choose to export all relational data as an RDF dump

according to the given mappings and then offer a linked data interface over the produced

data [28].

Every R2RML mapping is tailored to a specific database schema and target vocabulary.

The input to an R2RML mapping is a relational database that conforms to that schema.

The output is an RDF dataset, as defined in SPARQL, that uses predicates and types from

the target vocabulary. The mapping is conceptual; R2RML processors are free to materialize

the output data, or to offer virtual access through an interface that queries the underlying

database, or to offer any other means of providing access to the output RDF dataset.

2.3.1 Structure of an R2RML mapping

R2RML mappings refer to logical tables to retrieve data from an input database. A logical

table is a relational table that is explicitly stored in the database, an SQL view or a valid

SQL select query. For each logical table that will be exported into RDF, a triple map has

to be defined. A triple map is a rule that defines how each tuple of the logical table will be

mapped to a set of RDF triples. Each triple map consists of two parts.

An R2RML mapping consists of a subject map and one ore more predicate-object maps.

4http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

Ioannis Vlachopoulos 11

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

A subject map forms the subject of all RDF triples generated from a logical table row.

Usually, the primary key of the table is used to generate automatically the IRI of the resource

that will appear on the subject part of all generated triples. A predicate-object map consists

of predicate maps and object maps. A predicate map defines the RDF property to be used

to relate the subject and the object of the generated triple. An object map defines how to

generate the object of the triple, the value of which originates from the value of the column

of the logical table specified.

In order to produce RDF triples, one has to combine the subject map with a predicate

map and an object map and apply all of them to each tuple of the related logical table. By

default, all triples can be assigned to the default graph of the output RDF dataset, or to

a named graph. For this purpose, a graph map can be declared in the subject map or the

predicate-object map. A graph map defines the URI of the named graph that will contain

the produced RDF triples.

According to the R2RML specification, subject maps, predicate maps, object maps and

graph maps are term maps. A term map is a function that generates an RDF term from a

row of a logical table. Term maps are used to generate RDF terms from existing data and

are allowed to define functions that returns constantly the same RDF term, functions that

return an RDF term according to the contents of a row of a logical table, and RDF terms

that are produced automatically by a templating mechanism.

In order to express relationships among logical tables, R2RML defines referencing object

maps. A referencing object map is defined within a predicate-object map and defines the

relationship that holds between the objects to be generated and the subject of another triple.

Since this relationship can be referencing different logical tables, a join may be defined

between the two logical tables using a join condition. A join condition is an RDF resource

that has a parent and child properties that define the column names of the respective logical

tables. Figure 2.1 was originally presented in [28] and depicts the relationship between the

aforementioned constructs that constitute an R2RML mapping.

2.3.2 Useful features of R2RML

R2RML is not limited to mapping relational tables to RDFS classes and relational attributes

to data properties. R2RML goes beyond the direct mapping approach and has several useful

features that are presented below:

• Ad-hoc SQL result-sets: A logical table is not obliged to be a physical table in

the database but it can be an SQL view or the result of an SQL select query. This

Ioannis Vlachopoulos 12

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

feature is very useful in cases where the user wants to apply some transformations

(e.g., syntactic modifications) or apply aggregate functions on the input data.

• Templates: Using the rr:template property, one can specify the format of a re-

source that will be used as a subject or an object of a triple using a string template.

For example, consider the relational table Employee(id, name, surname, salary). The

subject of the generated resource could use the primary key id of the table to form

a resource URI template "http://example.com/Employee/{id}/" to generate auto-

matically resources of the form <http://example.com/Employee/1/>,

<http://example.com/Employee/2/>, etc.

• Linking two tables: Most RDF datasets do not use only data properties (properties

for which the value is a data literal), but also object properties (properties for which the

value is an individual) to assert relations between resources. As a result, an R2RML

mapping can take into account foreign key contraints that may exist in the underlying

relational database to make these assertions.

• Named Graphs: Named graphs are a key concept of RDF that allows the identifica-

tion of an RDF graph using a URI. As a result, contextual information, like provenance

information can be naturally expressed in RDF. R2RML caters for this case and allows

a user to customize a subject map so that produced triples can belong to the default

graph or any other named graph.

2.4 Processors of R2RML mappings

An R2RML processor is a software application that supports all the features of R2RML,

namely generating a mapping from a database and produce a respective RDF dump file.

We will now present in some detail several R2RML processors, namely OpenLink Virtuoso,

RDF-RDB2RDF, XSPARQL, UltraWrap, DB2Triples, Morph, and D2RQ.

2.4.1 OpenLink Virtuoso

OpenLink Virtuoso5 is a high-performance object-relational SQL database. Virtuoso defines

its own proprietary mapping language, nick-named Linked Data Views, which uses Virtu-

oso’s Meta Schema Mapping Language to map relational data to RDF. Linked Data Views

is similar to R2RML, so R2RML support is achieved by the inclusion of a simple translator

5http://virtuoso.openlinksw.com

Ioannis Vlachopoulos 13

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

which translates R2RML mappings to Linked Data Views. However, due to several limi-

tations of the optimizer of the native Linked Data Views implementation of Virtuoso, the

rr:sqlQuery feature of R2RML is not supported, meaning that logical tables derived from

SQL queries cannot be mapped into RDF graphs.

2.4.2 RDF-RDB2RDF

RDF-RDB2RDF6 is a processor of R2RML mappings. It is a Perl application that contains

modules that support both the Direct Mapping mechanism, and the R2RML mapping lan-

guage. RDF-RDB2RDF takes as input an R2RML mapping and generates an RDF dump.

The R2RML module also implements an extension of R2RML that allows the dynamic def-

inition of a language tag that takes into account the contents of a column.

2.4.3 XSPARQL

XSPARQL7 is a prototype implementation of the XSPARQL language for mapping between

XML and RDF in either direction. XSPARQL is a rewriter that translates an XSPARQL

query into an XQuery. It supports the RDB2RDF Direct Mapping and R2RML mapping

language and currently can access relational data stored in MySQL and PostgreSQL.

2.4.4 Ultrawrap

Ultrawrap8 is a tool developed by Capsenta. Ultrawrap is not a native RDF store, but pro-

vides a publishing and querying interface. The publishing interface transforms the contents

of an underlying relation database into RDF by processing direct mappings, R2RML map-

pings or D2RQ mappings. The querying interface employs a simple translation algorithm

into SQL, without implementing any optimizations. It also provides a graphical user inter-

face for customizing mappings (e.g. exclude a table column or give a specific URI pattern

for the instances). Figure 2.2 displays the architecture of this tool.

6https://metacpan.org/release/RDF-RDB2RDF
7http://xsparql.deri.org
8http://capsenta.com/ultrawrap/

Ioannis Vlachopoulos 14

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Figure 2.2: Architecture of Ultrawrap

Ultrawrap consists of two parts: Compile and Server. Ultrawrap Compile processes the

mappings and generates RDF graphs. Ultrawrap Server is responsible for the execution of

SPARQL queries by translating them to SQL, thus pushing all optimizations to the SQL

engine.

2.4.5 db2triples

The tool db2triples9 is an R2RML processor that also provides support for the direct mapping

approach. Its functionality is limited to accepting an R2RML mapping file and the details

for connecting to a relational database, and then produces RDF triples in a desired format

(e.g. TURTLE, N3). However, it is not able to generate automatically R2RML mappings

or evaluate SPARQL queries over the underlying relational database.

2.4.6 Morph

Morph10 is an RDB2RDF engine which implements the R2RML specification. Currently,

it supports two operations: the generation of an RDF graph from relational data given a

valid R2RML mapping, and SPARQL query processing. SPARQL queries are evaluated

over virtual RDF graphs, by translating them into SQL according to the input R2RML

mapping. Several optimizations are employed during the translation phase, such as self-join

elimination, subquery elimination and left outer-join elimination.

Several algorithms have been implemented for translating SPARQL into SQL based on

predefined mappings. Especially for the case of R2RML mappings, usually such algorithms

9https://github.com/antidot/db2triples
10https://github.com/jpcik/morph

Ioannis Vlachopoulos 15

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

are not satisfactory enough in terms of performance (e.g. query evaluation time). The latest

release of Morph [26], extents Chebotko’s algorithm for translating SPARQL to SQL by

taking into account R2RML mappings. The performance of this algorithm was evaluated

by comparing native SQL queries (hand-written), naive-translation queries generated by the

modified Chebotko’s algorithm, and three variants of the latter, being subquery elimination

(SQE), self-join elimination (SJE) and a combination of both (SQE + SJE). It is observed

in the results that overall, the performance of the translated queries was similar. Morph

is also evaluated through the analysis of real world queries, from projects like BizkaiSense,

REPENER and Integrate, by comparing the response time between D2R and Morph.

2.4.7 D2RQ

The D2RQ11 platform is a system for accessing relational databases as virtual, read-only

RDF graphs. Similarly to Ultrawrap and Morph, it offers RDF-based access to the content

of a relational database, without having to replicate its contents into an RDF store. The

main operations supported by D2RQ are the following:

• Generate mappings from an input relational database. Such mappings can be written

either in the D2RQ mapping language or R2RML.

• Create RDF graphs, serialized in several RDF formats (e.g. TURTLE, N3, RD-

F/XML), from the content of the relational database by taking into account appropri-

ate mappings.

• Query a non-RDF database using SPARQL. SPARQL queries are translated to SQL

using the appropriate mappings.

The developers of D2R originally defined the D2RQ mapping language which describes

mappings between a relational database and an ontology. The language D2RQ has been

described in some detail in Section 2.1. Apart from the D2RQ language, the D2R platform

provides support for R2RML mappings. The platform consists of the following components:

the D2RQ engine and the D2R server. The D2RQ engine, which is a plug-in for the Jena

Semantic Web toolkit12, uses the mappings to rewrite Jena API calls to SQL queries that

are evaluated against the underlying database. The D2R server is an HTTP server that

provides a linked data view for the contents of the underlying database and a SPARQL

endpoint. Figure 2.3 presents the architecture of the D2RQ platform. Finally, the D2RQ

11http://d2rq.org/
12http://semanticweb.org/wiki/Jena_(toolkit)

Ioannis Vlachopoulos 16

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

platform supports many popular relational databases such as MySQL, PostgreSQL, Oracle,

SQL Server, HSQLDB and other database systems compliant with the SQL-92 standard.

Figure 2.3: Architecture of the D2RQ Platform

2.5 Summary

In this chapter, we presented the state of the art RDB-to-RDF mapping languages designed

for mapping relational data to RDF. We presented in more detail the R2RML mapping lan-

guage which recently became a W3C recommendation and presented implemented systems

that are based on R2RML mappings.

Ioannis Vlachopoulos 17

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Chapter 3

Transforming Earth Observation data into

RDF graphs

Earth Observation data can come in various forms. In this chapter we will discuss in some

detail the formats that are most commonly used in the domain of Earth Observation for

representing and exchanging relevant information. Since EO data is geospatial data, we will

also discuss related work on transforming geospatial information to RDF graphs.

3.1 Earth Observation data

Earth Observation data can come in vector or raster form usually accompanied by metadata.

Vector data, available in formats such as ESRI shape files, KML, and GeoJSON documents,

can be accessed either directly or via Web Services such as the OGC Web Feature Service

or the query language of a geospatial DBMS. Raster data, available in formats such as

GeoTIFF, Network Common Data Form (netCDF), Hierarchical Data Format (HDF), can

be accessed either directly or via Web Services such as the OGC Web Coverage Processing

Service (WCS) or the query language of an array DBMS, e.g., SciQL developed by CWI

in project TELEIOS. Metadata about EO data are encoded in various formats ranging

from custom XML schemas to domain specific standards like the OGC GML Application

schema for Earth Observation products and the OGC Metadata Profile of Observations and

Measurements. Let us now present in more detail the file formats that are commonly used

in the Earth Observation domain.

ESRI Shapefiles store thematic and geometric information for spatial features in a dataset.

The ESRI shape file data format1 is developed and regulated by ESRI as an open specifica-

tion for exchange geometric information. Thematic information is stored in a dBASE format

file (.dbf) which is a relational table. Each tuple of this table is associated to a single geomet-

ric object that is stored in the main file (.shp). Information about the coordinate reference

system that has been used for encoding the coordinates of the geometric objects is stored

in a separate file (.prj). Optionally, a spatial index that may be used for optimizing access

1http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Ioannis Vlachopoulos 18

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

to the geometric information is stored in a separate file (.sbn). A shape file is restricted to

contain a single type of geometry for all features. A geometric object may be a point, a

line string, a polygon, a collection of points, a collection of line strings, or a collection of

polygons, that optionally may contain a measurement value.

Keyhole Markup Language (KML) is an XML grammar for encoding and exchanging

geographic data with a main focus on visualization of such data in an earth browser. It

was originally developed by Google Inc. and subsequently it was submitted to the Open

Geospatial Consortium for becoming an implementation standard. OGC KML 2.22 is now an

OGC implementation standard. KML focuses not only to the encoding and transportation of

geographic information, but also on the representation of such data. Geometric information

in KML uses the GML Coordinate Reference System with identifier LonLat84 5773. KML

defines appropriate structures for representing points, open and closed line strings, polygons,

and collection of geometries that allows the association of more than one geometries to the

same feature. The KML specification also defines the appropriate vocabulary for stating

whether a 3D browser should drape a geometry over the terrain, whether to connect a

geometry to the ground, and how to interpret the altitude components of a geometry. KML

also allows the specification of the location, orientation and scale of a textured 3D object. A

KML document has various non-spatial attributes like name, visibility, author, link, style,

and region, and optionally contain groups of features, simple or complex types that derive

from xsd:anySimpleType. Features can be described using non-spatial attributes like name,

visibility, author, phone number, link, description, and style. The KML standard also caters

for the case that user-defined data need to be present for representing a feature.

The Geography Markup Language (GML) is an XML-based encoding standard3 devel-

oped by the OGC for the representation of geospatial data. GML provides XML schemas for

defining a variety of concepts that are of use in Geography: geographic features, geometry,

coordinate reference systems, topology, time and units of measurement. Initially, the GML

abstract model was based on RDF and RDFS, but later the consortium decided to use XML

and XML Schema. The GML profiles are logical restrictions of GML that might be of use

by applications that do not want to use the whole of GML. GML profiles can be specified

through an XML document, an XML schema, or both. Some of the profiles that have been

proposed for public use are the Point Profile, which defines a simple point geometry in GML

and the GML Simple Features Profile, which is the GML encoding of Simple Features for

SQL [4]. In addition various GML application schemas have been defined. Applications

schemas are XML vocabularies that are application- specific and can be built on specific

2http://portal.opengeospatial.org/files/?artifact_id=27810
3http://portal.opengeospatial.org/files/?artifact_id=20509

Ioannis Vlachopoulos 19

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

GML profiles or use the full GML specification.

GeoJSON4 is a format for encoding a variety of geographic data structures. It contains

GeoJSON objects which can represent geometric objects, features or feature collections.

Properties of GeoJSON objects are represented using name-value pairs. Features have a

property named geometry which contain a geometric object. A geometric object can be a

point, a collection of points, a linestring, a collection of linestrings, a polygon, a collection

of polygons or a collection that contains any of the aforementioned geometric object types.

The Network Common Data Form (netCDF) is a binary data format for array-oriented

scientific data. Currently, the netCDF format is a candidate encoding standard5. netCDF

was designed for representing digital geospatial information that represents space and time-

varying phenomena. netCDF data are self-describing as all information about the contents of

a file (e.g., spatial and temporal properties of the data) is embedded in the file. netCDF files

are used extensively for exchanging information related to forecast models, weather stations,

satellites imagery, etc.

Catalogue web services allow the discovery of Earth Observation collections and products

and their accompanying metadata. Catalogue Services for the Web (CSW) is an OGC

standard [2] for exposing a geospatial catalogue on the Web. CSW defines a common interface

for discovering, browsing and querying metadata. A CSW catalogue contains information

for geospatial data, geospatial services and other auxiliary resources. Metadata are encoded

in XML documents that contain a minimum set of elements like title, format, type (e.g.,

dataset, collection of datasets or service), bounding box, and coordinate reference system.

The standard defines XML schemas for the documents that are exchanged between the client

and the catalogue when the client wants to discover the capabilities of the catalogue, when

she wants to formulate search requests to the catalogue, and when the server returns the

results to the client.

OpenSearch6 is an ongoing initiative for the definition of a collection of formats for

sharing search results. The standard defines the structure of an XML document that informs

prospective clients about the capabilities of the search engine and a set of parameterized URL

templates that the client can instantiate to make search requests. OpenSearch also defines

the envelope structure (as usually the matching records can be obtained in various formats)

of response XML documents that contains the results of a search request.

4http://geojson.org/geojson-spec.html
5http://www.opengeospatial.org/standards/netcdf
6http://www.opensearch.org/

Ioannis Vlachopoulos 20

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

3.2 Transforming geospatial data into RDF graphs

Up to now, little attention has been paid to the problem of publishing geospatial information

in the Semantic Web. Most datasets that contain geospatial information are either gener-

ated manually or by semi-automated processes. In this section we review related work in

publishing geospatial information in RDF.

LinkedGeoData (LGD)7 is a project focused on publishing OpenStreetMap (OSM)8 data

as linked data. OSM maintains a global editable map that depends on users to provide the

information needed for its improvement and evolution. The respective ontology is derived

mainly from OSM tags, i.e., attribute-value annotations of nodes, ways, and relations. The

tool Sparqlify9 has been recently developed by the same group, for mapping relational data

to RDF and linked data. Sparqlify is based on a custom mapping language (nicknamed Spar-

qlify mapping language), which resembles SPARQL construct queries and SQL statements

for defining views. The Sparlify mapping language allows the mapping of spatial datatypes

into RDF but does not discuss how one can deal with data that are not stored in relational

databases.

In [12], the authors present how R2RML can be combined with a spatially enabled

relational database in order to transform geospatial information into RDF. For the manipu-

lation of the geometric information prior to its transformation into RDF, the authors create

several logical tables that are based on ad-hoc SQL queries that perform the appropriate pre-

processing (e.g., requesting the serialization of a geometry according to the WKT standard).

This approach demonstrates the power of utilizing a general-purpose mapping language like

R2RML, which is in contrast to other approaches discussed earlier in this chapter. However,

in this work, no automated method for publishing geospatial datasets into RDF is discussed.

The tool geometry2rdf10 allows the transformation of geospatial information stored in

relational databases into RDF. Currently, geometry2rdf supports only the Oracle Spatial

relational database and utilizes the Jena and Geotools libraries for generating the RDF

data. The tool follows the direct mapping approach, which is not expressive enough to deal

with the specificities of the Earth Observation domain.

The tool TripleGeo [25] developed in project GeoKnow11 is an open source Extract-

Transform-Load (ETL) utility designed to publish into RDF data stored in a spatially en-

7http://linkedgeodata.org/
8http://www.openstreetmap.org/
9http://sparqlify.org/

10http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/151-geometry2rdf
11http://geoknow.eu/

Ioannis Vlachopoulos 21

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

abled database or in an ESRI shapefile. TripleGeo is an extension of geometry2rdf which

adds support for the GeoSPARQL vocabulary. However, it also follows the direct mapping

approach which is not as expressive as R2RML which is a general purpose mapping language.

3.3 Summary

In this chapter we presented the formats that are most commonly used in the domain of Earth

Observation for representing and exchanging geospatial information. We also presented

related work on transforming geospatial information to RDF graphs.

Ioannis Vlachopoulos 22

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Chapter 4

GeoTriples: a tool for transforming Earth

Observation data into RDF graphs

The previous two chapters discussed previous research on transforming relational and geospa-

tial data sources into RDF. We discussed W3C standards which involve mapping languages

to create user defined mappings between an input database source and the elements of a

target RDFS schema. One critical problem of these mappings is that they do not handle

most popular geospatial data types, and do not utilize state-of-the art data models and

query languages for linked geospatial data (stSPARQL and GeoSPARQL). In this thesis we

are developing the tool GeoTriples that will be able to transform geospatial data sources

into RDF data modelled as in the recent works on stSPARQL and GeoSPARQL. We are

going beyond the related work on mapping relational databases to RDF graphs by design-

ing and developing a tool that will be able to translate a rich variety of geospatial data

sources into RDF according to the relevant OGC standards. We show how GeoTriples can

produce automatically R2RML mappings for Earth Observation data stored in spatially-

enabled databases or ESRI shape files and process such mappings in order to produce RDF

graphs that utilize the state-of-the art data models (stSPARQL and GeoSPARQL). Other

kinds of EO data will be dealt as they will be needed in the course of the project.

The organization of this chapter is as follows. In Section 4.1 we present the conceptual

architecture of GeoTriples, in Section 4.2 we present the systems D2RQ that we chose to use

as the basis of our implementation. Finally, in Section 4.3 we present some implementation

details for GeoTriples, where we discuss how GeoTriples performs the automatic generation

of R2RML mappings and how it processes them in order to produce RDF graphs.

4.1 The Architecture of GeoTriples

Earth Observation data sources involve vector, structured, and raster data. Vector and

structured data may be found in file formats, such as ESRI shape files, KML documents, or

GeoJSON documents. Likewise, raster data may be found in image file formats, such as Geo-

TIFF or netCDF. Using GeoTriples, we will publish the former kind of data, namely vector

Ioannis Vlachopoulos 23

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

SQL SciQL stSPARQL
GeoSPARQL

Extraction and Transformation Tool

FITS ENVI
SAT

KML GML

Raw Data Integrated Access and
ProcessingWeb Services

WFS WCS

CSW Open
SearchShape

Files
net

CDF

net
CDF

ENV
ISAT

KML
connector

Data Vault

Shape File
connector

KMLShape
Files

Linked Open
Data Cloud

Figure 4.1: The abstract architecture of the system GeoTriples

and structured, as RDF graphs using the vocabulary of the GeoSPARQL query language.

GeoSPARQL is a recent OGC standard for representing and querying geospatial information

in the Semantic Web, thus supporting its vocabulary should be an essential requirement of

any publishing tool. Apart from the file formats mentioned above, we are also interested

in publishing as linked data the contents of catalogues that are widely used in the Earth

Observation domain as Catalogue Service for the Web (CSW) and Open Search registries.

Finally, the tool will also be able to publish as linked data the results of an SQL, SciQL and

stSPARQL/GeoSPARQL query over such data.

Figure 4.1 displays the abstract architecture of the tool GeoTriples from a data perspec-

tive. The tool will support several types of data formats as input. These types include raw

data, output data of web services, data stored in relational databases as well as the results

of processing over data stored in a relational database. Raw data include formats like ESRI

shape files and KML documents as well as raster formats like GeoTIFF and netCDF image

files.

The system architecture of GeoTriples is presented in Figure 4.2. The connector com-

ponent is responsible for providing an abstraction layer that allows the components of

GeoTriples to transparently access input data. GeoTriples comprises two main components:

The mapping generator and the R2RML processor. Given an input data source, the map-

Ioannis Vlachopoulos 24

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Mapping
Generator

KLM

SHP

R2RML
Mapping

Document

Geo
TIFF

net
CDF

D2RQ
Engine

Relational
Database

C
on

ne
ct

or

GeoTriples

R2RML
Processor

D2RQ
Engine

Figure 4.2: The system architecture of GeoTriples

ping generator creates automatically an R2RML mapping that transforms the input data

into data in the RDF data model. The produced R2RML mapping is enriched with sub-

ject and object maps that take into account the specificities of geospatial data by using the

GeoSPARQL vocabulary as the target vocabulary. The R2RML processor of GeoTriples

is responsible for generating RDF graphs from the input data by taking into account the

mapping documents produced by the mapping generator.

4.2 Implementation Choices

In this section, we discuss the implementation choices we made while designing GeoTriples.

We discuss which system we choose for the mapping generator and the R2RML processor

components of GeoTriples, as well as why we choose MonetDB as the main relational back-

end for accessing scientific files repositories and evaluating queries over multi-dimensional

arrays.

4.2.1 The D2RQ platform and Morph

One of the implementation choices we had to make during the design of GeoTriples was to

choose which RDB2RDF framework to extend. We examined all the discussed in Section 2.4

alternatives, among which were OpenLink Virtuoso, DB2triples and D2RQ. D2RQ was one of

Ioannis Vlachopoulos 25

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

the most mature systems for publishing relational data into RDF that we tested. It provides

a mechanism for generating R2RML mappings by accessing the catalogue of a relational

database which is a highly desired feature. D2RQ also supports several relational databases

such as Oracle, MySQL, PostgreSQL, and MonetDB. D2RQL also provides support eval-

uating SPARQL queries on a relational database by translating the SPARQL queries into

SQL queries taking into account the existing mappings. However, given the recent results on

the performance of the system Morph [26] in the future, we will also consider in the future

the possibility of utilizing Morph as the R2RML processor of GeoTriples in addition to the

D2RQ engine.

4.3 Transforming geospatial data into RDF graphs

In this section we will present the main functionality of GeoTriples. First, we will present how

GeoTriples generates automatically R2RML mappings given a spatially-enabled database

such as PostGIS or an ESRI shape file. Then, we will discuss the process of generating an

RDF graph from the input data by processing these R2RML mappings.

4.3.1 Automatic generation of R2RML mappings

Much work has been done recently on extending RDF for representing and querying geospa-

tial information. The most mature results of this work is the data model stRDF and the

query language stSPARQL [22, 23] and the OGC standard GeoSPARQL [24]. We will briefly

present the vocabulary defined in GeoSPARQL since we will use it for the representation of

geospatial information.

GeoSPARQL is an OGC standard for the representation and querying of geospatial

linked data. GeoSPARQL defines much of what is required for such a query language

by providing vocabulary (classes, properties, and functions) that can be used in RDF

graphs and SPARQL queries to represent and query geospatial data. Figure 4.3 presents

a part of the GeoSPARQL ontology. The top level classes defined in GeoSPARQL are

geo:SpatialObject and geo:Feature. geo:SpatialObject is the top class and has as

instances everything that can have a spatial representation. geo:Feature represents all

the features and is the superclass of all classes of features users might want to define.

geo:SpatialObject is a superclass of geo:Feature and geo:Geometry. Additional vo-

cabulary is defined for asserting and querying information about geometries.

The focus of R2RML is to map the contents of a relational database to RDF graphs,

Ioannis Vlachopoulos 26

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

geo:Spatial
Object

geo:Feature geo:Geometry

geo:hasDefaultGeometry

geo:hasGeometry

xsd:integer xsd:integer xsd:boolean xsd:booleanxsd:integer

geo:dimension

geo:coordinate
Dimension

geo:spatial
Dimension

geo:isEmpty

geo:isSimple

geo:hasSerialization rdf:Literal

geo:asWKT

geo:asGML

geo:gmlLiteral

geo:wktLiteral

Figure 4.3: Part of the GeoSPARQL ontology

while in the Earth Observation domain we have to allow additional types of data sources

as input. For this reason, we will extend R2RML with logical geometry tables. We define

a logical geometry table as a view over a logical table that contains a geometry column.

The logical geometry table contains the columns comprising the primary key of the logical

table and the serialization of the geometry along with metadata defined by the GeoSPARQL

vocabulary. In terms of the GeoSPARQL vocabulary, the logical table will be used for pop-

ulating instances of the geo:Feature class, while the logical geometry table will be used for

populating instances of the geo:Geometry class. An appropriate rr:predicateObjectMap

has to be defined in order to link instances of the geo:Feature and geo:Geometry class

using the appropriate join condition on the primary key of the logical tables and the logical

geometry tables. Figure 4.4 depicts a logical table, a logical geometry table and the links

between them. The logical table consists of the primary and thematic attributes describing a

feature, while the logical geometry table consists of the primary key of the logical table, and

a set of geometric attributes that derive by applying geospatial functions like geof:asWKT

and geof:isSimple to the stored geometry. This allows us to create mappings that map

information that exists implicitly in the input data but is required to be present in the RDF

graph in order to be compliant with the GeoSPARQL vocabulary.

Let us now demonstrate how one could employ our extension of the R2RML mapping

language with logical geometry tables to transform the Natura 2000 dataset, which is dis-

tributed as an ESRI shape file, into RDF.

Example. Natura 2000 is an ecological network designated under the Birds Directive and

the Habitats Directive of the European Union which together form the cornerstone of Eu-

Ioannis Vlachopoulos 27

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Logical Table
PrimaryKey tAttr

1
tAttr

2
... tAttr

m

1 ...

2 ...

... ...

... ...

N ...hasG
eom

etry

Logical Geometry Table

PrimaryKey Geometry gAttr
1

... gAttr
m

1 ...

2 ...

... ...

N ...

hasG
eom

etry

hasG
eom

etry

Figure 4.4: An example of a logical table and the corresponding logical geometry table

rope’s nature conservation policy. We present the Natura dataset in more detail in Chapter 5.

The Natura 2000 areas for Germany are shown geographically in Figure 4.5.

Figure 4.5: Natura 2000 areas for Germany

The Natura 2000 dataset for Germany is distributed in the form of ESRI shape files

that contain thematic and geometric information about the protected areas. Each geometric

object is characterized by the following thematic attributes:

The contents of the shape file can be modeled as a logical table that coresponds to the rela-

tional table with schema Natura(gid BIGINT, Geom GEOMETRY, SiteCode VARCHAR(255),

Ioannis Vlachopoulos 28

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Table 4.1: Attributes schema

Attribute Name Data Type
SiteCode String
SiteName String

Release Date Date
SiteType String

MS String
Point X Double
Point Y Double

Shape Length Double
Shape Area Double

Table 4.2: A sample of the contents of the Natura 2000 dataset

SITECODE SITENAME
RE-

LEASE DATE
SITETYPE MS

POINT X POINT Y
Shape Length Shape Area

DE0916391 NTP S-H W... 2011-01-27 K DE 4221691.4 3492908.0 836551.3 4525462405.6

DE1003301
DOGGER-

BANK
2011-01-27 B DE 3953766.1 3623776.9 171212.4 1695526629.1

SiteName VARCHAR(255), Release Date DATE, SiteType VARCHAR(255), MS VARCHAR(255),

Point X DOUBLE PRECISION, Point Y DOUBLE PRECISION, Shape Length DOUBLE PRECISION,

Shape Area DOUBLE PRECISION), where GEOMETRY is the geometric data type defined by the

”Simple feature access - Part 2: SQL option” OGC standard [3]. In Table 4.2 we present

two features from the Natura 2000 dataset for Germany .

The desired RDF triples to be produced from this shape file are as follows:

<http://data.example.com/natura/Feature/id/1>

rdf:type geo:Feature ;

nato:has_SITECODE "DE0916391"^^xsd:string ;

nato:has_SITENAME "NTP S-H W..."^^xsd:string ;

nato:has_RELEASE "2011-01-27"^^xsd:date ;

nato:has_SITETYPE "K"^^xsd:string ;

nato:has_MS "DE"^^xsd:string ;

nato:has_POINT_X "4221691.4"^^xsd:double ;

nato:has_POINT_Y "3492908.0"^^xsd:double ;

nato:has_Shape_Length "836551.3"^^xsd:double ;

nato:has_Shape_Area "4525462405.6"^^xsd:double ;

geo:hasGeometry

<http://data.example.com/natura/Geometry/id/1> .

Ioannis Vlachopoulos 29

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

<http://data.example.com/natura/Geometry/id/1>

rdf:type geo:Geometry ;

geo:dimension "2"^^xsd:integer ;

geo:coordinateDimension "2"^^xsd:integer ;

geo:spatialDimension "2"^^xsd:integer;

geo:isEmpty "false"^^xsd:boolean ;

geo:isSimple "true"^^xsd:boolean ;

geo:asWKT "POLYGON((...))"^^geo:wktLiteral .

Every feature in the shape file becomes an instance of the class geo:Feature and each

thematic attribute is assigned to it by an RDF triple. Notice that a new instance of the

class geo:Geometry is created for representing the spatial information of the feature.

For creating such RDF triples we need to introduce the concept of a logical geometry

table. As we mentioned earlier, a logical geometry table is a view over the aforementioned

relational table, that contains the columns comprising the primary key of the logical table

and additional columns that contain the serialization of the geometry along with meta-

data about the geometry using the GeoSPARQL vocabulary. These metadata represent

useful information about geometries such as the dimension of the coordinates of a geom-

etry, whether a geometry is empty or simple etc. The logical geometry table in this ex-

ample is a table with schema NaturaGeometryTable(gid BIGINT, dimension SMALLINT,

coordinateDimension SMALLINT, spatialDimension SMALLINT, isEmpty BOOLEAN,

isSimple BOOLEAN, asWKT VARCHAR(4096)) where the contents of the column dimension

is the result of applying the function geof:dimension to the column Geom and so on. The

following R2RML mapping produces RDF triples that contain the thematic information of

each feature in the shape file.

_:natura

rr:logicalTable [rr:tableName "‘natura‘";];

rr:subjectMap [

rr:class geo:Feature;

rr:template "http://data.example.com/natura/Feature/id/{‘gid‘}";];

rr:predicateObjectMap [

rr:predicate nato:has_SITECODE;

rr:objectMap [rr:datatype xsd:string;

rr:column "‘SITECODE‘";];

];

Ioannis Vlachopoulos 30

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

rr:predicateObjectMap [

rr:predicate nato:has_SITENAME;

rr:objectMap [rr:datatype xsd:string;

rr:column "‘SITENAME‘";];

];

rr:predicateObjectMap [

rr:predicate nato:has_RELEASE;

rr:objectMap [rr:datatype xsd:date;

rr:column "‘RELEASE‘";];

];

rr:predicateObjectMap [

rr:predicate nato:has_SITETYPE;

rr:objectMap [rr:datatype xsd:string;

rr:column "‘SITETYPE‘";];

];

rr:predicateObjectMap [

rr:predicate nato:has_MS;

rr:objectMap [rr:datatype xsd:string;

rr:column "‘MS‘";];

];

rr:predicateObjectMap [

rr:predicate nato:has_POINT_X;

rr:objectMap [rr:datatype xsd:double;

rr:column "‘POINTX‘";];

];

rr:predicateObjectMap [

rr:predicate nato:has_POINT_Y;

rr:objectMap [rr:datatype xsd:double;

rr:column "‘POINTY‘";];

];

rr:predicateObjectMap [

rr:predicate nato:has_Shape_Length;

rr:objectMap [rr:datatype xsd:double;

rr:column "‘ShapeLength‘";];

];

rr:predicateObjectMap [

rr:predicate nato:has_Shape_Area;

Ioannis Vlachopoulos 31

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

rr:objectMap [rr:datatype xsd:double;

rr:column "‘ShapeArea‘";];

].

The following R2RML mapping produces RDF triples that contain the geometric infor-

mation of each feature in the shape file.

_:naturaGeometry

rrx:logicalGeometryTable [rr:tableName "‘natura‘";];

rr:subjectMap [

rr:class geo:Geometry;

rr:template "http://data.example.com/natura/Geometry/id/{‘gid‘}";];

rr:predicateObjectMap [

rr:predicate geo:hasGeometry ;

rr:objectMap [

rr:parentTriplesMap _:natura;

rr:joinCondition [

rr:child "gid";

rr:parent "gid";];

];

];

rr:predicateObjectMap [

rr:predicate geo:dimension;

rr:objectMap [

rrx:transformation [

rrx:function geof:dimension;

rrx:argumentMap (

[rr:column "‘Geom‘"]

);

]

];

];

rr:predicateObjectMap [

rr:predicate geo:coordinateDimension;

Ioannis Vlachopoulos 32

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

rr:objectMap [

rrx:transformation [

rrx:function geof:coordinateDimension;

rrx:argumentMap (

[rr:column "‘Geom‘"]

);

]

];

];

rr:predicateObjectMap [

rr:predicate geo:spatialDimension;

rr:objectMap [

rrx:transformation [

rrx:function geof:spatialDimension;

rrx:argumentMap (

[rr:column "‘Geom‘"]

);

]

];

];

rr:predicateObjectMap [

rr:predicate geo:isEmpty;

rr:objectMap [

rrx:transformation [

rrx:function geof:isEmpty;

rrx:argumentMap (

[rr:column "‘Geom‘"]

);

]

];

];

rr:predicateObjectMap [

rr:predicate geo:isSimple;

rr:objectMap [

Ioannis Vlachopoulos 33

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

rrx:transformation [

rrx:function geof:isSimple;

rrx:argumentMap (

[rr:column "‘Geom‘"]

);

]

];

];

rr:predicateObjectMap [

rr:predicate geo:asWKT;

rr:objectMap [

rrx:transformation [

rrx:function geof:asWKT;

rrx:argumentMap (

[rr:column "‘Geom‘"]

);

]

];

].

According to the R2RML specification, graph maps, subject maps, predicate maps, and

object maps are term maps. A term map is a function that generates an RDF term from a

row of a logical table. It is allowed to define functions that return constantly the same RDF

term, functions that return an RDF term according to the contents of a row of a logical

table, and RDF terms that are produced automatically by a templating mechanism. Notice

in the example above that we have extended the definition of an object map by allowing

it to be the RDF term obtained by performing a transformation on the source data. Each

transformation defines the SPARQL built-in function or the SPARQL extension function

to be invoked, using as argument the sequence of RDF terms that are produced by the

respective term maps.

4.3.2 Processing R2RML mappings for producing RDF graphs

The R2RML processor of GeoTriples parses the mappings that were created from the previous

step, reads the input data and generates RDF graphs. The R2RML mappings presented in

the previous section comprises a triples map for generating the RDF data that represents

Ioannis Vlachopoulos 34

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

thematic information for the input data, and a triple that represent the spatial information

of the input data.

The triples map that generates thematic RDF information for the input data, defines a

logical table that contains the attributes that comprise the primary key along with attributes

with thematic information. In the case of a shape file, the primary key is considered to be

the row id of each tuple in the dBASE table. This triples map specifies a subject map that

defines the structure of the RDF terms that will consist of the subject of all generated triples.

By default, a template is used for generating URIs by taking into account the value of the

primary key. The triples map also contains multiple predicate-object maps that define the

RDF properties to be used for relating the subject and the object of the generated triple,

the value of which originates from the value of the thematic attribute of the logical table.

The triples map that generates spatial RDF information for the input data, defines a

logical geometry table that contains the attributes that comprise the primary key along

with geometric attributes. Similarly to the previous triples map, in the case of a shape file,

the primary key is considered to be the row id of each tuple in the dBASE table. This triples

map specifies a subject map that defines the structure of the URI that will be generated for

identifying resources representing the geometry of the features that were generated in the

previous step. The triples map also contains a predicate-object map for each property of the

geo:Geometry class, as defined by the GeoSPARQL vocabulary. Each predicate-object map

defines that such a property is used for relating the subject and the object of the generated

triple, the value of which is computed by applying the respective GeoSPARQL function

to the input geometry. For example, the following R2RML mapping fragment defines a

predicate-object map that will generate triples with predicate geo:isSimple and object the

result of applying the GeoSPARQL function geof:isSimple to the input geometry.

rr:predicateObjectMap [

rr:predicate geo:isSimple;

rr:objectMap [

rrx:transformation [

rrx:function geof:isSimple;

rrx:argumentMap (

[rr:column "‘Geom‘"]

);

]

];

];

Ioannis Vlachopoulos 35

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

The R2RML processor of GeoTriples, processes these mappings and chooses a different

way of evaluating the logical transformation functions mentioned above, depending on the

type of the input data. For example, if the input data source is a spatially enabled relational

database, GeoTriples will translate this operation to an SQL view that applies to the input

geometry the ST IsSimple function defined by the OGC-SFA standard [3]. If the input data

source is a shape file, then GeoTriples will perform this transformation on the fly using an

external library, for example the JTS Topology Suite.

Ioannis Vlachopoulos 36

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Table 4.3: Prefixes used in the extended R2RML vocabulary

Prefix URI

rr http://www.w3.org/ns/r2rml#

rrx http://www.w3.org/ns/r2rml-ext#

strdf http://strdf.di.uoa.gr/ontology#

geo
http://www.opengis.net/ont/geosparql#

4.4 Extensions to R2RML

The main goal of GeoTriples is the generation and processing of R2RML mappings capable of

handling EO and geospatial data. The geometric properties of GeoSPARQL, the vocabulary

we use by default, are evaluated by values that are not explicity given from the source

data, such as the dimension of a given geometry. Such values can be derived by applying a

transformation function over the geometry, which is usually available from the source data

in binary format. As a result, we extended the R2RML mapping language with new classes

and properties in order to support transformation functions over some values that maybe be

constant or derive from a column of a relational table or a shapefile layer.

4.4.1 Transformation Extension

The transformation operation is declared in an object map, since the latter describes the

objects of the generated triples. Specifically, the operation of transforming a value is modeled

using the class rrx:Transformation that contains the URI of the function we want to evaluate

and at least one argument. The property that assigns a transformation to an object map is

rrx:transfomation. Consequently, the domain of rrx:transformation is the rr:TermMap,

since rr:ObjectMap is a subclass of rr:TermMap, and the range is the rrx:Transformation.

As a result, an rr:TermMap can also be a transformation-valued-map if we use the prop-

erty rrx:transformation, except for being either a constant-valued-term-map1 or a column-

valued-term-map2 as described in the R2RML official webpage3.

An rrx:Transformation object, in turn, is described by two objects; An rrx:Function

object that is evaluated with the URI of the transformation function we want to evaluate

(e.g. a GeoSPARQL function), via the property rrx:function. The second object is an

1http://www.w3.org/TR/r2rml/\#dfn-constant-valued-term-map
2http://www.w3.org/TR/r2rml/\#dfn-column-valued-term-map
3http://www.w3.org/TR/r2rml/

Ioannis Vlachopoulos 37

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

rrx:Transformation

rrx:Function rrx:ArgumentMap

rrx:function rrx:argumentMap

rrx:transformation

Figure 4.6: Modeling of extension classes and properties

rrx:ArgumentMap object which represents the set of arguments of the subject rrx:Function.

The extensions of R2RML that we developed are displayed in Figure 4.6.

Below, we present more formal definitions of the terms we added in the R2RML vocab-

ulary.

4.4.2 Transformation (OWL Class)

Transformation (OWL Class) represents a transformation over a value. A transformation is

a function that creates an RDF term from a column of a subject of the logical table described

in the subject map. The result of that function is known as the term map’s generated RDF

term.

Definition

• The URI of this class is http://www.w3.org/ns/r2rml-ext#Transformation.

• This class is the domain of the properties rrx:function and rrx:argumentMap, and

the range of property rrx:transformation.

Ioannis Vlachopoulos 38

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Table 4.4: Transformation functions that are supported by GeoTriples

Extension Function URI Description

geo:dimension
Returns the inherent dimension of input

geometry
geo:spatialDimension Not supported
geo:coordinateDimension Not supported

geo:isEmpty

Returns true if input geometry is an
empty geometry. If true, then this

geometry represents an empty geometry
collection, polygon, point etc

geo:isSimple

Returns true if geometry A has no
anomalous geometric points, such as

selfintersection or selftangency

geo:asText
Returns the Well-Known Text (WKT)

serialization of input geometry

geo:asGML

Returns the Geography Markup
Language (GML) serialization of input

geometry

4.4.3 Function (OWL Class)

Function (OWL Class) represents the transformation’s functionality. An instance of class

Function is represented by a resource that has exactly one rrx:function property. An

rrx:Function object is the RDF term that is the value of its rrx:function property. In

GeoTriples we focalized to spatial transformations over a geometry values and we reuse

the existing spatial extension functions that are defined in stSPARQL and GeoSPARQL

vocabularies. The currently supported functions are shown in Table 4.4.

Definition

• The URI of this class is http://www.w3.org/ns/r2rml-ext#Function.

• This class is the range of the property rrx:function.

4.4.4 ArgumentMap (OWL Class)

An rrx:ArgumentMap can be either a column-valued-term-map4 or a constant-valued-term-

map5. The rrx:ArgumentMap is represented by a resource that has exactly one rr:column

4http://www.w3.org/TR/r2rml/\#dfn-column-valued-term-map
5http://www.w3.org/TR/r2rml/\#dfn-constant-valued-term-map

Ioannis Vlachopoulos 39

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

property, or a rr:constant property. A rrx:Transformation object refers to a rrx:ArgumentMap

object via the object property rrx:argumentMap.

Definition

• The URI of this class is http://www.w3.org/ns/r2rml-ext#ArgumentMap.

• The ArgumentMap class is the range of the rrx:argumentProperty.

4.4.5 transformation (Property)

The transformation property refers to a rrx:Transformation instance to express the trans-

formed value of a constant or a column’s value from a logical table row.

Definition

• The URI of this property is http://www.w3.org/ns/r2rml-ext#transformation.

• The property is an object property.

• The domain of this property is rr:TermMap.

• The range of this property is rrx:Transformation.

4.4.6 function (Property)

The function property refers to a rrx:Function instance.

Definition

• The URI of this property is http://www.w3.org/ns/r2rml-ext#function.

• The property is an object property.

• The domain of this property is rrx:Transformation.

• The range of this property is rrx:Function.

4.4.7 argumentMap (Property)

The argumentMap property refers to an rrx:ArgumentMap instance.

Definition

Ioannis Vlachopoulos 40

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

xsd:string xsd:string

rr:TermMap

rrx:transformation

rr:constantrr:template
rr:column

rrx:Transformation

owl:Thing

Figure 4.7: Extended rr:TermMap

• The URI of this property is http://www.w3.org/ns/r2rml-ext#argumentMap

• The property is an object property.

• The domain of this property is rrx:Transformation.

• The range of this property is rrx:ArgumentMap.

Ioannis Vlachopoulos 41

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

4.5 Summary

In this chapter we presented the conceptual architecture of GeoTriples, we presented the

systems D2RQ and MonetDB that we chose to use as the basis of our implementation

and finally we presented some implementation details for GeoTriples. We discussed how

GeoTriples performs the automatic generation of R2RML mappings from spatially-enabled

databases or ESRI shape files and how it processes such mappings in order to produce RDF

graphs. Other kinds of EO data will be dealt as they will be needed in the course of the

project.

Ioannis Vlachopoulos 42

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Chapter 5

Using GeoTriples in a real world scenario

In this chapter we present how GeoTriples can be used in a real world scenario. We demon-

strate how to use GeoTriples to create linked open data that can be exploited in the precision

farming domain, as done in project LEO. In this chapter, we briefly describe the ontologies

that we developed for representing data that are being produced and then consumed by the

precision farming application developed within LEO. Finally, we provide example queries

that can be used for data discovery and data manipulation.

5.1 Developing populating ontologies for precision farming

We now present four data sets that will be used in the precision farming application, namely

TalkingFields products, Natura 2000 areas, Corine Land Use/Land Cover and the adminis-

trative geography of Germany.

5.1.1 Talking Fields products

TalkingFields1 is a precision farming project funded by ESA and led by LEO partner VISTA

(PCA also participates). TalkingFields is an initiative aiming to increase the efficiency of

agricultural production via precision farming by means of geo-information services integrat-

ing space and ground-based assets. Currently, TalkingFields produces products for improved

soil probing using satellite-based zone maps, and provide services for monitoring crop devel-

opment through provision of biomass maps and yield estimates. Figure 5.1 shows an example

of a TalkingFields product with fictional data.

In order to make use of semantic web technologies, we need to transform the data sets

provided by TalkingFields to some appropriate format. We now show how a small subset

of the provided sets can be represented using this technology. First, we construct an RDFS

ontology of concepts and properties depicted in Figure 5.2. This ontology is presented in

more detail in the LEO deliverable D5.2.1 [11] but for the convenience of the reader we will

1http://www.talkingfields.de/

Ioannis Vlachopoulos 43

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Figure 5.1: Example of a fictional TalkingFields product

now present parts of the developed ontology.

The TalkingFields ontology has three main classes, tfo:Farm , tf:Field and tf:RasterCell.

The class tfo:RasterCell is the top class of the TalkingFields taxonomy and contains classes

that model the hierarchy of agricultural land. The class tfo:Farm represents an area of land

used for growing crops that contains one or more areas of open land represented by the class

tfo:Field, which in turn are translated into rectangular land parcels, represented by the

class tfo:RasterCell.

The main properties of the class tf:RastelCell are tf:hasGeometry that links a raster

cell to its geometric extent, and tf:hasTFQuality that defines the quality of a raster cell.

The main properties of the class tf:Field are tf:hasHarvest that represents the quality

of the field, and tf:hasRasterCell that links a field to the raster cells it consists of. The

main properties of the class tf:Farm are tf:hasName that represents the name of the farm,

and tf:hasField that links a farm to the fields it consists of.

In Tables 5.1,5.2, and 5.3 we show the contents of an example TalkingFields product.

Note that the rows of the table 5.1,5.2, and 5.3 become instances of class tf:Farm, tf:Field,

and tf:RasterCell respectively.

Table 5.1: TalkingFields data for farms

FarmID

FarmBetrieb

Next we represent some illustrative part of the TalkingFields datasets using the developed

Ioannis Vlachopoulos 44

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Table 5.2: TalkingFields data for agricultural fields

FieldID FieldName FMArea Usage MainPeriod SubPeriod Watering Processed FarmID

1061 16 Wirtsacker 7.1593 1 2012 0 0 1 FarmBetrieb

Table 5.3: TalkingFields data for raster cells

x y CV Vigor FieldID

334200 5411420 12 NULL 1061
334220 5411400 100 2.00 1061
334220 5411340 70.8 -11.00 1061

vocabulary. In what follows we give an RDF representation (in Turtle notation) of a farm

that contains a field that consists of three raster cells.

tf:Farm1 rdf:type tf:Farm ;

tf:hasFarmID "FarmBetrieb" ;

tf:hasField tf:Field1 .

tf:Field1 rdf:type tf:Field ;

tfo:hasFieldName "16 Wirtsacker" ;

tfo:hasFMArea 7.1593 ;

tfo:hasUsage 1 ;

tfo:hasMainPeriod 2012 ;

tfo:hasSubPeriod 0 ;

tfo:hasWatering 0 ;

tfo:hasPocessed 1 ;

tfo:hasRasterCell tf:RasterCell1 ;

tfo:hasRasterCell tf:RasterCell2 ;

tfo:hasRasterCell tf:RasterCell2 ;

tf:RasterCell1 rdf:type tf:RasterCell ;

tfo:hasX 334200 ;

tfo:hasY 5411420 ;

tfo:hasCV 12 ;

tfo:hasTFQuality 1 ;

tfo:hasVigor NULL .

tf:RasterCell2 rdf:type tf:RasterCell ;

tfo:hasX 334220 ;

Ioannis Vlachopoulos 45

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

tfo:hasY 5411400 ;

tfo:hasCV 100 ;

tfo:hasTFQuality 0 ;

tfo:hasVigor 2.00 .

tf:RasterCell3 rdf:type tf:RasterCell ;

tfo:hasX 334200 ;

tfo:hasY 5411340 ;

tfo:hasCV 70.8 ;

tfo:hasTFQuality -1 ;

tfo:hasVigor -11.00 .

Figure 5.2: Classes in the TalkingFields Ontology

Ioannis Vlachopoulos 46

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

5.1.2 Natura 2000 ontology

Natura 2000 is an ecological network designated under the Birds Directive and the Habitats

Directive2 which together form the cornerstone of Europe’s nature conservation policy. Na-

tional authorities submit a standard data form that describes each site and its ecology in

order to be characterized as a Natura site. The spatial extent of each site is submitted by

each national authority, and after a validation phase, a spatial database containing all sites

is produced. An example of a Natura 2000 area in Germany is presented in Figure 5.3.

Figure 5.3: Example of a Natura 2000 area

We developed an ontology for the the Natura 2000 dataset that derives from the dataset

published by the European Environmental Agency3 that contains the Natura 2000 sites

in Germany. The ontology reuses the three top classes of GeoSPARQL: geo:Feature,

geo:Geometry, geo:SpatialObject. Each protected site will be an instance of the class

nat:NaturaArea that describes features of protected sites. The main properties of the

class nat:NaturaArea are nat:hasSiteName that represents the name of the protected area,

nat:hasSiteType that represents the type the protected area (e.g., birds directive site), and

geo:hasGeometry that links a protected area with its geometric serialization.

In Table 5.4 we show an example of a Natura 2000 area.

2http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm
3http://ec.europa.eu/environment/nature/natura2000/access_data/index_en.htm

Ioannis Vlachopoulos 47

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Table 5.4: Natura 2000 data

SITECODE SITENAME
RE-

LEASE DATE
SITETYPE MS

POINT X POINT Y
Shape Length Shape Area

DE1421304

AHRENVIL-

FELDER

WESTER-

MOOR

2011-01-27 B DE
4273442.525 3493323.252

3249.00 694680.67

The RDF triples that represent a protected nature reserve in the Ahrenvilfeld community

are:

nat:field_DE1421304 rdf:type nat:NaturaArea ;

geo:hasGeometry nat:Geometry_DE1421304 ;

nato:hasSITENAME "AHRENVI?LFELDER WESTERMOOR"^^xsd:string ;

nato:hasRELEASE_DA "2011/01/27"^^xsd:string ;

nato:hasMS "DE"^^xsd:string ;

nato:hasPOINT_X "4273442.5257"^^xsd:double ;

nato:hasPOINT_Y "3493323.2525"^^xsd:double ;

nato:hasShape_Leng "3249.00798832"^^xsd:double ;

nato:hasShape_Area "694680.677619"^^xsd:double .

nat:Geometry_DE1421304 rdf:type geo:Polygon ;

geo:hasDefaultGeometry nat:Geometry_DE1421304> ;

geo:asWKT "<http://spatialreference.org/ref/epsg/32632>

POLYGON ((4273436.2628 3493735.5445,

4273535.6729 3493720.3748,

... ,

4273436.2628 3493735.5445))"^^geo:wktLiteral .

5.1.3 Corine Land Cover

The Corine Land Cover (CLC) 4 is an activity of the European Environment Agency that

collects data regarding the land use and land cover of European countries. The project uses

a hierarchical scheme with three levels of abstraction for describing land cover information.

The first level indicates the major categories of land cover on the planet, e.g., agricultural

areas, the second level identifies more specific types of land cover, e.g., permanent crops, and

4http://www.eea.europa.eu/publications/COR0-landcover

Ioannis Vlachopoulos 48

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Figure 5.4: Classes in Natura 2000 Ontology

the third level narrows to a specific characterization e.g., fruit trees and berry plantations.

An example of a Corine Land Cover area is presented in Figure 5.5.

Figure 5.5: Example of a Corine Land Cover area

We developed an ontology for the the Corine Land Use/Land Cover dataset that derives

from the dataset published by the European Environmental Agency5. We started with

the ontology that was developed in TELEIOS for this dataset, but we updated it to be

compliant with the GeoSPARQL vocabulary. The main classes of the developed ontology

are clc:Area, clc:LandUse and clc:Geometry . The class clc:LandUse is the top class of

the CLC taxonomy and contains classes that represent the land use of an area. The class

clc:Area represents every area that has been characterized by EEA with a specific land

use. The class clc:Geometry represents the spatial extent of an area. The main properties

5http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3

Ioannis Vlachopoulos 49

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

of an instance of class clc:Area are clc:hasLandUse that represents the usage/coverage of

an area, and clc:hasGeometry that links an area to the serialization of its geometry.

In Table 5.5 we show an example of an area that has been characterized as non-irrigated

arable land.

Table 5.5: Example Area (see figure 5.5) of CLC dataset

code 00 ID Remark Area Ha Shape Leng Shape Area

211 EU-2204078 NULL 3981304.06 42610763.58 39813040619.19

The RDF triples that represent the area presented in Table 5.5 are:

clc:EU-2204078 rdf:type clc:Area;

clco:hasLandUse clc:NonIrrigatedArableLand ;

clco:hascode_00 "211" ;

clco:hasArea_Ha "3981304.06192" ;

clco:hasShape_Leng "42610763.5868" ;

clco:hasShape_Area "39813040619.2" ;

geo:hasGeometry clc:Geometry_EU-2204078 .

clc:Geometry_EU-2204078

rdf:type clc:Polygon ;

geo:asWKT "<http://spatialreference.org/ref/epsg/etrs89/>

POLYGON (3578100.067199999467 3596707.2704,

... ,

3588417.4635 3590977.5712)"^^geo:wktLiteral .

Figure 5.6: Classes in the Corine Land Cover Ontology

Ioannis Vlachopoulos 50

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

5.1.4 Administrative geography of Germany

The German Administrative Geography6 is a dataset containing thematic and spatial infor-

mation regarding the states of Germany. The dataset describes the administrative divisions

of Germany (e.g., state, municipality). Figure 5.7 presents the states and the administrative

districts of Germany.

Figure 5.7: States and administrative districts of Germany

In Table 5.6 we show the information that is available for the state of Hamburg.

Table 5.6: Administative Geography of Germany data

USER GEN DES ISN
WIRK-

SAMKEI

DE-

BKG ID
LENGTH

SHAPE AREA

2 Hamburg

Freie und

Hanses-

tadt

22
1974/01/01

DE-

BKGDL20000E6GD
247768.69

739022897.08

In Figure 5.8 we present the ontology that we developed for representing the German Ad-

ministrative geography. The ontology models an administrative area using three main classes:

gau:Staat, gau:Verwaltungseinheit, and gau:Bundeslander for representing states, ad-

6http://www.geodatenzentrum.de/geodaten/gdz_rahmen.gdz_div?gdz_spr=deu&gdz_akt_zeile=

5&gdz_anz_zeile=1&gdz_unt_zeile=14&gdz_user_id=0

Ioannis Vlachopoulos 51

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

ministrative units and federated units. The RDF triples representing an administrative unit

of Germany, based on the information derived from the shapefile, are the following:

gau:Lnder_2 a Lnder ;

gauo:debkg_id "DEBKGDL20000E6GD" ;

gauo:hat_amtliche_bezeichnung "Freie und Hansestadt" ;

gauo:hat_geographischer_name "Hamburg" ;

gauo:hat_isn 22.0E0 ;

gauo:hat_use 2.0E0 ;

gauo:length 247768.69 ;

gauo:shape_area 739022897.08 ;

gauo:wirksamkei "1974-01-01"^^xsd:date;

gauo:hasGeometry gau:Geometry_9402748 .

gau:Geometry_9402748 rdf:type geo:Geometry ;

geo:asWKT "MULTIPOLYGON ((11.3931707 47.5856015,

... ,

11.5841895 47.6494972))"^^geo:wktLiteral .

Figure 5.8: Classes in the German Administrative Units Ontology

Ioannis Vlachopoulos 52

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

5.1.5 LinkedGeoData

LinkedGeoData (LGD)7 is a project focused on publishing OpenStreetMap (OSM)8 data

as linked data. OSM maintains a community-driven global editable map that gathers map

data in a crowdsourcing fashion. The respective ontology is derived mainly from OSM

tags, i.e., attribute-value annotations of nodes, ways, and relations. The data model of

OpenStreetMap consists of three main categories: Nodes that represent point locations with

latitude/longitude values, Ways that are ordered sequences of nodes, and relations that

are groupings of nodes and ways. Figure 5.9 presents two rivers in Bavaria, Germany.

Figure 5.9: The Jachen & Lainbach rivers in Bavaria, Germany

The RDF triples that represent the rivers Jachen and Lainbach are the following:

osm:Waterway_9402748 rdf:type osmo:River ;

osmo:hasName "Jachen" ;

osmo:hasType "river" ;

osmo:hasWidth "None" ;

7http://linkedgeodata.org/
8http://www.openstreetmap.org/

Ioannis Vlachopoulos 53

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

geo:hasGeometry osm:Geometry_9402748 .

osm:Geometry_9402748 rdf:type geo:LINESTRING ;

geo:asWKT "LINESTRING

(11.3931707 47.5856015,

... ,

11.5841895 47.6494972)"^^geo:wktLiteral .

osm:Waterway_224535247 rdf:type osmo:River ;

osmo:hasName "Jachen" ;

osmo:hasType "river" ;

osmo:hasWidth "None" ;

geo:hasGeometry osm:Geometry_224535247 .

osm:Geometry_224535247 rdf:type geo:LINESTRING ;

geo:asWKT "LINESTRING

(11.5705614 47.6355863,

... ,

11.5714161 47.6361931)"^^geo:wktLiteral .

osm:Waterway_27774460 rdf:type osmo:River ;

osmo:hasName "Lainbach" ;

osmo:hasType "river" ;

osmo:hasWidth "None" ;

geo:hasGeometry osm:Geometry_27774460 .

osm:Geometry_27774460 rdf:type geo:LINESTRING ;

geo:asWKT "LINESTRING

(11.2372667 47.4393502,

... ,

11.2658696 47.4488869)"^^geo:wktLiteral .

osm:Waterway_45110595 rdf:type osmo:Stream ;

osmo:hasName "Lainbach" ;

osmo:hasType "stream" ;

osmo:hasWidth "None" ;

geo:hasGeometry osm:Geometry_45070159 .

osm:Geometry_45070159 rdf:type geo:LINESTRING ;

geo:asWKT "LINESTRING

(11.4581125 47.6821132,

Ioannis Vlachopoulos 54

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

... ,

11.3687858 47.6952384)"^^geo:wktLiteral .

osm:Waterway_45070159 rdf:type osmo:Stream ;

osmo:hasName "Lainbach" ;

osmo:hasType "stream" ;

osmo:hasWidth "None" ;

geo:hasGeometry osm:Geometry_45110595 .

osm:Geometry_45110595 rdf:type geo:LINESTRING ;

geo:asWKT "LINESTRING

(11.3917048 47.6329094,

... ,

11.389525 47.6341773)"^^geo:wktLiteral .

5.2 Discovery Queries on data published by GeoTriples

In this section we demonstrate how to discover TalkingFields data, protected areas and rivers

by using various thematic and spatial criteria. We also demonstrate how we can combine

several datasets presented earlier in this chapter, in order to express more complex queries

like spatial joins and distance queries.

Example 1. Discover all information about TalkingFields products within a given polygon.

SELECT *

WHERE { ?field rdf:type tfo:Field ;

tfo:hasFieldID ?field_id ;

tfo:hasFieldName ?field_name ;

tfo:hasFMArea ?field_fmarea ;

tfo:hasUsage ?field_usage ;

tfo:hasMainPeriod ?field_mperiod ;

tfo:hasSubPeriod ?field_speriod ;

tfo:hasWatering ?field_watering ;

tfo:hasPocessed ?field_pocessed ;

tfo:hasRasterCell ?cell .

?cell geo:hasGeometry ?cell_geo .

?cell_geo geo:asWKT ?cell_geowkt .

FILTER(geof:sfContains(

Ioannis Vlachopoulos 55

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

"<http://spatialreference.org/ref/epsg/32632/>

POLYGON ((677682 5346719, 677682 5346672,

678980 5348518, 677751 5349109,

677682 5346719))"^^

<http://www.opengis.net/ont/geosparql#wktLiteral> ,

?cell_geowkt))}

}

Figure 5.10: Visualization of the TalkingFields products and query region of Example 1

This query finds all information related to TalkingFields products using a spatial criterion

for selecting only those fields that lie within a given polygon. Figure 5.10 visualizes the input

data, the query region and the results of SPARQL query presented above. Some of the results

of the query are displayed below:

?field id?field name ?field area?field usage?field mperiod?field speriod?field watering?field pocessed

1070 3 Mitterweg 5.101 1 2012 0 0 1

1061
7

Kreuzacker 12.629
1 2012 0 0 1

1055
11

Frankental
6.134 1 0 0 0 NULL

1068
16

Wirtsacker 7.1593
1 2013 0 0 1

Example 2. Discover all Natura 2000 areas that lie within a given polygon.

Ioannis Vlachopoulos 56

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

SELECT ?area_name

WHERE {?area rdf:type nat:NaturaArea ;

nat:hasSiteName ?area_name ;

geo:hasGeometry ?geo .

?geo geo:asWKT ?geowkt .

FILTER(geof:sfContains(

"<http://spatialreference.org/ref/epsg/32632/>

POLYGON ((678321 5346720, ...))"^^

<http://www.opengis.net/ont/geosparql#wktLiteral>,

?geowkt))}

This query finds all protected areas from Natura 2000 dataset that lie within a given

polygon.

Figure 5.11: Visualization of protected areas and query region of Example 2

Figure 5.11 visualizes the input data, the query region and the results of SPARQL query

presented above. Some of the results of the query are displayed below:

?area name

GEWSSERSYSTEM DER LUHE UND UNTEREN NEETZE

TRUPPENBUNGSPLTZE MUNSTER NORD UND SD

ILMENAU MIT NEBENBCHEN

Example 3. Discover all rivers within a given polygon.

SELECT ?river_name

Ioannis Vlachopoulos 57

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

WHERE { ?area rdf:type osmo:River ;

osmo:hasName ?river_name ;

geo:hasGeometry ?geo .

?geo geo:asWKT ?geowkt .

FILTER(geof:sfContains(

"<http://www.opengis.net/def/crs/EPSG/0/4326>

POLYGON ((123.212 323.542, ...))"^^

<http://www.opengis.net/ont/geosparql#wktLiteral>,

?geowkt))}

Figure 5.12 visualizes the input data, the query region and the results of SPARQL query

presented above. Some of the results of the query are displayed below:

Figure 5.12: Visualization of rivers and query region of Example 3

The above SPARQL query retrieves all rivers from the Open Street Maps dataset, that

lie within the given polygon. This query can be used from the precision farming application

to retrieve information about rivers that are close to fields in order to produce a map for

fertilizer/pesticide usage that complies to the German law. Figure 5.12 visualizes rivers from

Open Street Maps, the query region and the results of SPARQL query presented above. Some

of the results of the query are displayed below:

?river name

Amper

Heidhofer Altwasser

Ioannis Vlachopoulos 58

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Example 4. Discover all information about agricultural fields that lie within a certain region

of Germany.

SELECT *

WHERE { ?state rdf:type aug:Kreise ;

gauo:hat_geographischer_name "Dachau" ;

geo:hasGeometry ?state_geo .

?state_geo geo:asWKT ?state_geowkt .

?field rdf:type tf:Field ;

tfo:hasFieldID ?field_id ;

tfo:hasFieldName ?field_name ;

tfo:field_fmarea ?field_fmarea ;

tfo:hasUsage ?field_usage ;

tfo:hasMainPeriod ?field_mperiod ;

tfo:hasSubPeriod ?field_speriod ;

tfo:hasWatering ?field_watering ;

tfo:hasPocessed ?field_pocessed ;

tfo:hasRasterCell ?cell .

?cell geo:hasGeometry ?cell_geo .

?cell_geo geo:asWKT ?cell_geowkt .

FILTER(geof:sfContains(?state_geowtk, ?cell_geowkt))

}

Figure 5.13: Visualisation of agricultural fields within Dachau

Ioannis Vlachopoulos 59

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

The above SPARQL query finds all the fields from TalkingFields dataset that lie within

the district of Dachau. Notice that the query above utilizes the geof:sfContains SPARQL

extension function in a filter clause in order to test whether the geometries of a field is

contained by the geometry of the district of Dachau. Figure 5.13 visualizes the input data

and the results of SPARQL query presented above. Some of the results of the query are

displayed below:

?field id ?field name ?field area ?field usage ?field mperiod ?field speriod ?field watering ?field pocessed

1070 3 Mitterweg 1 2012 0 0 1

1061 16 Wirtsacker 1 2012 0 0 1

1055 22 Schmidt Bauplatz 1 0 0 0 NULL

Example 5. Select all parts of agricultural fields that overlap a Natura 2000 area.

SELECT distinct ?field_name ?cell_x ?cell_y ?cell_cv ?cell_vigor

WHERE { ?natarea rdf:type nato:NaturaArea ;

geo:hasGeometry ?natarea_geo .

?natarea_geo geo:asWKT ?state_geowkt .

?field rdf:type tf:Field ;

tfo:hasFieldID ?field_id ;

tfo:hasFieldName ?field_name ;

tfo:hasUsage ?field_usage ;

tfo:hasMainPeriod ?field_mperiod ;

tfo:hasSubPeriod ?field_speriod ;

tfo:hasWatering ?field_watering ;

tfo:hasPocessed ?field_pocessed ;

tfo:hasRasterCell ?cell .

?cell geo:hasGeometry ?cell_geo ;

tfo:hasX ?cell_x ;

tfo:hasY ?cell_y ;

tfo:hasCV ?cell_cv ;

tfo:hasVigor ?cell_vigor .

?cell_geo geo:asWKT ?field_geowkt .

FILTER(geof:sfOverlaps(?natarea_geowtk, ?field_geowkt))}

Ioannis Vlachopoulos 60

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Figure 5.14: Visualisation of the parts of agricultural fields that overlap a protected area

The above SPARQL query finds all parts of a field that lie within a protected area.

Similary to Example 3, the precision farming application can use this information in order

to produce a map for fertilizer/pesticide usage that complies to the German law. Figure

5.14 visualizes the input data and the results of SPARQL query presented above. Some of

the results of the query are displayed below:

?field name ?cell x ?cell y ?cell cv ?cell vigor

27 Donaufeld 4534474.626 2858077.183 16.900 9999

27 Donaufeld 4534477.561 2858077.185 85.400 3

27 Donaufeld 4534473.219 2858078.151 70.300 12

50 Buchnerentau 1 4534474.627 2858233.183 74.700 5

50 Buchnerentau 1 4534474.626 2858021.228 84.800 9999

50 Buchnerentau 1 4534474.626 2858019.700 16.900 -9

Example 6. Select all parts of agricultural fields that are less than 150 meters away from a

river.

SELECT distinct ?cell_x ?cell_y ?cell_cv ?cell_vigor

WHERE {?river rdf:type osmo:River ;

osmo:hasName ?river_name ;

geo:hasGeometry ?river_geo .

?river_geo geo:asWKT ?river_geowkt .

Ioannis Vlachopoulos 61

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

?field rdf:type tfo:Field ;

tfo:hasFieldID ?field_id ;

tfo:hasUsage ?field_usage ;

tfo:hasMainPeriod ?field_mperiod ;

tfo:hasSubPeriod ?field_speriod ;

tfo:hasWatering ?field_watering ;

tfo:hasPocessed ?field_pocessed ;

tfo:hasRasterCell ?cell .

?cell geo:hasGeometry ?cell_geo ;

tfo:hasX ?cell_x ;

tfo:hasY ?cell_y ;

tfo:hasCV ?cell_cv ;

tfo:hasVigor ?cell_vigor .

?cell_geo geo:asWKT ?field_geowkt .

FILTER(geof:distance(?river_geowkt , ?field_geowkt,

<http://www.opengis.net/def/uom/OGC/1.0/metre>) < 150)}

Figure 5.15: Visualisation of the parts of an agricultural field that is close to a river

This query uses the geo:distance function that involves two spatial objects and a URI

that identifies a unit of measurement. The result of this metric function is the minimum

distance between the spatial objects that are given as an input. Similarly to Example 3 and 5,

Ioannis Vlachopoulos 62

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

the precision farming application can use this information in order to produce an improved

map for fertilizer/pesticide usage by taking into account existing information about the

surroundings of a field.

Figure 5.15 visualizes the input data and the results of SPARQL query presented above.

Some of the results of the query are displayed below:

?field name ?cell x ?cell y ?cell cv ?cell vigor

19 Maisachacker gro 1858714.796 8887945.407 38.200 9999

19 Maisachacker gro 1858714.251 8887945.096 64.700 -13

19 Maisachacker gro 1858714.157 8887942.180 70.300 -10

19 Maisachacker gro 1858714.459 3652143.188 NULL 22

5.3 Summary

In this chapter we presented how GeoTriples can be used in a real world scenario. We demon-

strated how to use GeoTriples to build a precision farming application that consumes linked

open geospatial data. We briefly described the ontologies that we developed for representing

involved data and we presented datasets from the linked open data cloud that are being

used by applications such as the fire monitoring application implemented in TELEIOS. Fi-

nally, we provided some example queries that demonstrate how semantic web technologies

and linked data can be used for data discovery and data manipulation in the context of a

precision farming application.

Ioannis Vlachopoulos 63

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Chapter 6

Conclusions

In this thesis we provided a description and a comparison among several languages for

representing mappings from relation databases to RDF datasets, based on several potentially

desired features. We present in more detail the language R2RML that we chose to extend for

expressing mappings of EO and geospatial data to RDF. We presented the architecture of the

transformation tool GeoTriples that is able to generate automatically R2RML mappings for

Earth Observation data stored in spatially-enabled databases or ESRI shape files and process

such mappings in order to produce RDF graphs from the input data. Then, we demonstrated

how GeoTriples can be used in a real world scenario where Earth Observation products are

published as linked open Earth Observation data. Following the publication step, EO data

are combined with data that are currently published as linked open geospatial data in order

to realize a precision farming application that offers management decision support for plant

protection and fertilization activities regarding temporal and legal restrictions by taking into

account information about the surrounding of the fields.

Ioannis Vlachopoulos 64

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Acronyms

EO Earth Observation
RDF Resource Description Framework
OSM OpenStreetMap
ESA European Space Agency

NASA National Aeronautics and Space Administration
RDB Relational Database
OGC Open Geospatial Consortium
WKT Well-Known Text

namespace prefix

http://strdf.di.uoa.gr/ontology# strdf

http://www.opengis.net/ont/geosparql# geo

http://www.opengis.net/def/function/geosparql/ geof

http://www.w3.org/ns/r2rml# rr

http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf

http://www.w3.org/2000/01/rdf-schema# rdfs

http://www.w3.org/2002/07/owl# owl

http://data.linkedeodata.eu/osm/ontology# osmo

http://data.linkedeodata.eu/osm/ osm

http://data.linkedeodata.eu/Natura2000DE/ontology# nato

http://data.linkedeodata.eu/Natura2000DE/ nat

http://data.linkedeodata.eu/corine-land-cover/ontology# clco

http://data.linkedeodata.eu/corine-land-cover/ clc

http://data.linkedeodata.eu/talking-fields/ontology# tfo

http://data.linkedeodata.eu/talking-fields/ tf

http://data.linkedeodata.eu/AdministrativeUnitsGermany/ontology#gauo

http://data.linkedeodata.eu/AdministrativeUnitsGermany/ gau

Ioannis Vlachopoulos 65

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

APPENDIX I

In this chapter, we provide installation guidelines for GeoTriples. For the convenience of the

reader, we give specific instructions for executing each step in a computer running Ubuntu

14.04 64-bit. We will present how the user can install GeoTriples using a debian package,

and how to compile GeoTriples from sources.

Installing GeoTriples using the debian package

In this section we will describe how one can install the GeoTriples utilities using the provided

debian package and commands entered in the command-line interface terminal. The main

dependency for GeoTriples is Java 1.7.

The first step is to install Java 7. More information can be found at https://help.

ubuntu.com/community/Java.

sudo apt-get install openjdk-7-jre

The next step is to download the respective .deb file from the software repository. The

debian package file can be downloaded from the following URL: http://sourceforge.net/

projects/geotriples/files/geotriples_1.0.deb/download

After downloading the debian package, the user should install it using some package

manager like dpkg.

sudo dpkg -i packageFile

Finally, GeoTriples can be invoked by typing either of the two following commands:

geotriples-cmd [ARGS]

which invokes the command line utility and

geotriples-gui

which initializes the graphical user interface of GeoTriples.

In Appendix II we present how the user can use the command line utility and the graphical

user interface of GeoTriples respectively.

Ioannis Vlachopoulos 66

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Building GeoTriples from sources

In this section we provide detailed instructions on how to compile GeoTriples from sources.

Before downloading and compiling GeoTriples, the following steps should be executed:

• Install Java 7. More information can be found at https://help.ubuntu.com/community/

Java.

sudo apt-get install openjdk-7-jdk

• Install maven. More information can be found at http://maven.apache.org/

sudo apt-get install maven

• Install Git. More information can be found at http://git-scm.com/.

sudo apt-get install git

• Install the 32-bit shared libraries of the GNU C library for AMD64.

sudo apt-get install libc6:i386

The first step is to download the source code of GeoTriples via Git:

git clone https://github.com/LinkedEOData/GeoTriples.git

The above command creates a replica of the source code of GeoTriples in a directory

called geotriples-code. Now the user can proceed with the compilation of the downloaded

sources to create the necessary executables. The source code can be compiled by executing:

cd geotriples-code && mvn clean package

After compiling the source code, two executable all-in-one jars are created inside the

target directory. These are the target/geotriples-VERSION-SNAPSHOT-cmd.one-jar.jar

and

target/geotriples-VERSION-SNAPSHOT-gui.one-jar.jar which implement the command

line and graphical utilities respectively. These executables can be run by executing the fol-

lowing command:

java -jar target/geotriples-{VERSION}-SNAPSHOT-{UTILITY}.one-jar.jar

where VERSION is the current version of GeoTriples (1.0) and UTILITY can be either cmd

or gui.

Ioannis Vlachopoulos 67

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

APPENDIX II

Using the command line interface of GeoTriples

In this chapter we will present in detail how the user can use the command line interface of

GeoTriples for publishing EO data as an RDF graph. The procedure for transforming EO

data into RDF comprises three steps: the automatic generation of an R2RML mapping given

an input data set, the optional step of editing the R2RML mapping by the user in order to

follow the ontology of her preference, and finally the utilization of the R2RML mapping for

the automatic generation of the RDF graph.

Automatic generation of R2RML mappings

The mapping generator component of GeoTriples is responsible for the automatic generation

of an R2RML mapping document by analyzing the schema of the input data source, that can

be either an existing database or an ESRI Shapefile. This mapping document associates each

table with a new RDFS class identified by a URI that is generated automatically according

to the name of the table, and each column to a property with a URI that is generated

automatically from the name of the column. This mapping document can be used as-is or

can be further customized by the user in order to satisfy her needs (e.g., comply with a

different vocabulary). The command for generating such a mapping is:

geotriples generate-mapping [options] jdbcURLorFileURL

or

geotriples generate-mapping [-u user] [-p password] [-d driver]

[-b baseURI] [-o r2rmloutfile]

[-r2rml] jdbcURLorFileURL

The parameters user, password and driver are used when the input data source is a

spatially-enabled relational database and allow the specification of the credentials to be used

when connecting to the database. If the parameter r2rmloutfile is defined, then the gen-

erated mapping will be redirected to the specified file. The argument r2rml can be specified

Ioannis Vlachopoulos 68

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

in order generate a mapping document according to the R2RML mapping language. The

parameter baseURI is used for turning relative URI and URI patterns into absolute URI.

Finally, the argument jdbcURLorFileURL is JDBC url for connecting to MonetDB, Post-

greSQL, Oracle, MySQL, SQL Server, HSQLDB or Interbase/Firebird database. Currently,

GeoTriples supports the automatic generation of mappings for columns containing geometric

information for the MonetDB and PostgreSQL databases.

Publishing EO data as an RDF graph

The R2RML processor of GeoTriples allows the user to publish the contents of a spatially-

enabled database or the contents of an ESRI Shapefile as an RDF graph, given an R2RML

mapping document. The R2RML processor of GeoTriples can be invoked as follows:

geotriples dump-rdf [options] inputmappingfile

or

geotriples dump-rdf [-u user] [-p password] [-d driver] [-jdbc jdbcURL]

[-sh fileURL] [-f format] [-b baseURI] [-o rdfoutfile]

inputmappingfile

Using the format argument, the user specifies the desired RDF syntax for the generated

RDF graph. GeoTriples supports TURTLE, RDF/XML, RDF/XML-ABBREV, N3, and N-

TRIPLES which is the default syntax. The parameter rdfoutfile redirects the generated

RDF triples into the specified file. Finally, the argument inputmappingfile defines the

R2RML document that specifies how the input data source is mapped to an RDF graph.

Using GeoTriples for transforming database into RDF

In this section* we show how GeoTriples can be used to publish a dataset containing geospa-

tial information using the command line interface. In this example we show how the user

can publish data produced by the talkingfields project1 when stored in MonetDB. The in-

put dataset contains information about fields in Bavaria, Germany and follows the schema

depicted in Figure 6.1. Some sample data from each table is depicted in Table 6.1.

1http://www.talkingfields.de

Ioannis Vlachopoulos 69

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Fields

Name STRING

ID SMALLINT

FM_area DECIMAL(9,4)

crop SMALLINT

usage TINYINT

ClientID TINYINT

mainperiod SMALLINT

subperiod TINYINT

watering BOOLEAN

processed BOOLEAN

Raster_fert (VIEW)

SELECT*,
CAST(vigor_value / 10 AS

DECIMAL(4,3)) AS fert_value
FROM "Raster";

Raster

FieldID SMALLINT

x INTEGER

y INTEGER

cv DECIMAL(4,1)

vigor_value DECIMAL(4,2)

geom GEOMETRY

Figure 6.1: Database schema for a talkingfields product.

Name ID FM area crop usage ClientID

2 Keller re. 1049 6.8426 101 1 34
4 Wischlburg li. 1067 10.3118 null 1 34

mainperiod subperiod watering processed

2013 0 false true
2013 0 false true

FieldID x y cv vigor value geom

1034 334760 5410460 8.2 null POLYGON ((334760.00 5410460.00,...))
1048 335580 5411940 94.2 -7.00 POLYGON ((335580.00 5411940.00,...))

Table 6.1: Sample data of a talkingfields product.

The first step is to generate the R2RML mapping document using the generate-mapping

module of GeoTriples. Assuming that the user has installed GeoTriples using the provided

.deb package, the R2RML document is generated with the following command:

geotriples generate-mapping -u monetdb -p monetdb \

-b http://data.linkedeodata.eu/talking-fields \

-o mapping.ttl -r2rml \

jdbc:monetdb://server:50000/tf

This command produces an R2RML mapping document with name mapping.ttl for the

data stored in the database tf that is served by MonetDB that runs on a machine with

name server on port 50000. We now present parts of the generated R2RML mapping

document.

Ioannis Vlachopoulos 70

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

@prefix geof: <http://www.opengis.net/def/function/geosparql/>.

@prefix map: <#>.

@prefix ogc: <http://www.opengis.net/ont/geosparql#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix rr: <http://www.w3.org/ns/r2rml#>.

@prefix rrx: <http://www.w3.org/ns/r2rml-ext#>.

@prefix rrxf: <http://www.w3.org/ns/r2rml-ext/functions/def/>.

@prefix vocab: <ontology#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

map:rs_Fields

rr:logicalTable [rr:tableName ’"tf"."rs"."Fields"’;];

rr:subjectMap [rr:class vocab:rs_Fields;

rr:template \newline

’http://data.linkedeodata.eu/talking-fields/Fields/id/{"ID"}’;];

rr:predicateObjectMap [

rr:predicate vocab:rs_Fields_ClientID;

rr:objectMap [

rr:datatype xsd:integer;

rr:column ’"ClientID"’;

];

];

rr:predicateObjectMap [

rr:predicate vocab:rs_Fields_mainperiod;

rr:objectMap [

rr:datatype xsd:integer;

rr:column ’"mainperiod"’;

];

];

.

map:rs_RasterGeo

rr:logicalTable [rr:sqlQuery """SELECT gid, st_dimension(geom) as

dimension, st_dimension(geom) as "coordinateDimension",

st_dimension(geom) as "spatialDimension", st_issimple(geom) as

"isSimple", st_isempty(geom) as "isEmpty",

CONCAT(’<http://www.opengis.net/def/crs/EPSG/0/32633> ’ ,

Ioannis Vlachopoulos 71

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

REPLACE(CAST(geom AS TEXT), ’"’, ’’)) as

"asWKT" FROM "tf"."rs"."Raster\"""";];

rr:subjectMap [rr:class ogc:Geometry;

rr:template \newline

’http://data.linkedeodata.eu/talking-fields/RasterGeo/Geometry/{"gid"}’;];

rr:predicateObjectMap [

rr:predicate ogc:dimension;

rr:objectMap [

rr:datatype xsd:integer;

rr:column ’"dimension"’;

];

];

rr:predicateObjectMap [

rr:predicate ogc:asWKT;

rr:objectMap [

rr:datatype ogc:wktLiteral;

rr:column ’"asWKT"’;

];

];

rr:predicateObjectMap [

rr:predicate ogc:isSimple;

rr:objectMap [

rr:datatype xsd:boolean;

rr:column ’"isSimple"’;

];

];

.

map:rs_Raster

rr:logicalTable [rr:tableName ’"tf"."rs"."Raster"’;];

rr:subjectMap [rr:class vocab:rs_Raster;

rr:template

’http://data.linkedeodata.eu/talking-fields/Raster/id/{"gid"}’;];

rr:predicateObjectMap [

rr:predicate vocab:rs_Raster_cv;

rr:objectMap [

rr:datatype xsd:decimal;

rr:column ’"cv"’;

Ioannis Vlachopoulos 72

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

];

];

rr:predicateObjectMap [

rr:predicate ogc:hasGeometry;

rr:objectMap [

rr:parentTriplesMap map:rs_RasterGeo;

rr:joinCondition [rr:child "gid"; rr:parent "gid";];

];

];

rr:predicateObjectMap [

rr:predicate vocab:rs_Raster_FieldID;

rr:objectMap [

rr:parentTriplesMap map:rs_Fields;

rr:joinCondition [rr:child ’"FieldID"’; rr:parent ’"ID"’;];

];

];

.

map:rs_Raster_fert

rr:logicalTable [rr:tableName ’"tf"."rs"."Raster_fert"’;];

rr:subjectMap [rr:class vocab:rs_Raster_fert;

rr:template

’http://data.linkedeodata.eu/talking-fields/Raster_fert/id/{"gid"}’;];

rr:predicateObjectMap [

rr:predicate vocab:rs_Raster_fert_fert_value;

rr:objectMap [

rr:datatype xsd:decimal;

rr:column ’"fert_value"’;

];

];

.

Optionally, the user may edit the contents of the R2RML mapping document (e.g. in

order to utilize a different vocabulary). In LEO, we developed an ontology for talkingfields

products that was presented in Deliverable D5.2.1. Since we want the generated RDF graph

to follow this vocabulary, we modify accordingly the generating R2RML mapping to follow

the developed vocabulary. We now present parts of the modified R2RML mapping document.

Ioannis Vlachopoulos 73

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

@prefix geof: <http://www.opengis.net/def/function/geosparql/>.

@prefix map: <#>.

@prefix ogc: <http://www.opengis.net/ont/geosparql#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix rr: <http://www.w3.org/ns/r2rml#>.

@prefix rrx: <http://www.w3.org/ns/r2rml-ext#>.

@prefix rrxf: <http://www.w3.org/ns/r2rml-ext/functions/def/>.

@prefix vocab: <ontology#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

map:rs_Fields

rr:logicalTable [rr:tableName ’"tf"."rs"."Fields"’;];

rr:subjectMap [rr:class vocab:Field;

rr:template

’http://data.linkedeodata.eu/talking-fields/000001/Field/id/{"ID"}’;];

rr:predicateObjectMap [

rr:predicate vocab:hasClientID;

rr:objectMap [

rr:datatype xsd:integer;

rr:column ’"ClientID"’;

];

];

rr:predicateObjectMap [

rr:predicate vocab:hasMainPeriod;

rr:objectMap [

rr:datatype xsd:integer;

rr:column ’"mainperiod"’;

];

];

.

map:rs_RasterGeo

rr:logicalTable [rr:sqlQuery """SELECT gid, st_dimension(geom) as

dimension, st_dimension(geom) as "coordinateDimension",

st_dimension(geom) as "spatialDimension", st_issimple(geom) as

"isSimple", st_isempty(geom) as "isEmpty",

CONCAT(’<http://www.opengis.net/def/crs/EPSG/0/32633> ’ ,

Ioannis Vlachopoulos 74

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

REPLACE(CAST(geom AS TEXT), ’"’, ’’)) as "asWKT" FROM

"tf"."rs"."Raster\"""";];

rr:subjectMap [rr:class ogc:Geometry;

rr:template

’http://data.linkedeodata.eu/talking-fields/000001/Geometry/id/{"gid"}’;];

rr:predicateObjectMap [

rr:predicate ogc:dimension;

rr:objectMap [

rr:datatype xsd:integer;

rr:column ’"dimension"’;

];

];

rr:predicateObjectMap [

rr:predicate ogc:asWKT;

rr:objectMap [

rr:datatype ogc:wktLiteral;

rr:column ’"asWKT"’;

];

];

rr:predicateObjectMap [

rr:predicate ogc:isSimple;

rr:objectMap [

rr:datatype xsd:boolean;

rr:column ’"isSimple"’;

];

];

.

map:rs_Raster

rr:logicalTable [rr:sqlQuery """SELECT ROW_NUMBER() OVER

(ORDER BY "x", "y") as "gid", "x", "y", "vigor_value",

"cv", "FieldID", CAST("vigor_value" / 10 AS DECIMAL(4,3))

AS "fert_value" FROM "tf"."rs"."RasterFert\"""";];

rr:subjectMap [rr:class vocab:RasterCell;

rr:template

’http://data.linkedeodata.eu/talking-fields/000001/RasterCell/id/{"gid"}’;];

rr:predicateObjectMap [

rr:predicate vocab:hasFertValue;

Ioannis Vlachopoulos 75

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

rr:objectMap [

rr:datatype xsd:decimal;

rr:column ’"fert_value"’;

];

];

rr:predicateObjectMap [

rr:predicate vocab:hasCV;

rr:objectMap [

rr:datatype xsd:decimal;

rr:column ’"cv"’;

];

];

rr:predicateObjectMap [

rr:predicate ogc:hasGeometry;

rr:objectMap [

rr:parentTriplesMap map:rs_RasterGeo;

rr:joinCondition [rr:child ’"gid"’; rr:parent ’"gid"’;];

];

];

rr:predicateObjectMap [

rr:predicate vocab:belongsToField;

rr:objectMap [

rr:template

’http://data.linkedeodata.eu/talking-fields/000001/Field/id/{"FieldID"}’;

];

];

.

Next, we use the R2RML processor of GeoTriples for generating an RDF graph for the

talkingfields products stored in the database tf:

geotriples dump-rdf -u monetdb -p monetdb \

-b http://linkedeodata.eu/talking-fields \

-o tf.nt

-jdbc jdbc:monetdb://server:50000/tf \

mapping-leo.ttl

Ioannis Vlachopoulos 76

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

This command produces an RDF document with the name tf.nt. Part of the contents of

the generated RDF graph is presented below.

<http://data.linkedeodata.eu/talking-fields/000001/Field/id/1034> a tf:Field ;

tf:hasClientID "34"^^xsd:integer> ;

tf:hasSubPeriod "0"^^xsd:integer ;

tf:isProcessed "true"^^xsd:boolean ;

tf:hasWatering "false"^^xsd:boolean ;

tf:hasName "1 Gei\u00DFelweiher"xsd:string ;

tf:hasUsage "1"^^xsd:integer ;

tf:hasMainPeriod "2013"^^xsd:integer ;

tf:hasFM_Area "27.3071"^^xsd:decimal ;

rdfs:label "Field #1034" .

<http://data.linkedeodata.eu/talking-fields/000001/RasterCell/id/14718>

a tf:RasterCell ;

tf:hasX "334760"^^xsd:integer ;

tf:hasY "5410460"^^xsd:integer ;

tf:hasCV "8.2"^^xsd:decimal ;

tf:hasFertValue "0"^^xsd:decimal ;

tf:hasVigor> "0"^^xsd:decimal ;

tf:belongsToField

<http://data.linkedeodata.eu/talking-fields/000001/Field/id/1034> ;

ogc:hasGeometry

<http://data.linkedeodata.eu/talking-fields/000001/Geometry/id/14718> .

<http://data.linkedeodata.eu/talking-fields/000001/Geometry/id/14718>

a ogc:Geometry ;

rdfs:label "demobetriebGeo #1" ;

ogc:asWKT "<http://www.opengis.net/def/crs/EPSG/0/32633>POLYGON

((334760 5410460, 334760 5410440,...))"^^ogc:wktLiteral ;

ogc:coordinateDimension 2 ;

ogc:dimension 2 ;

ogc:isEmpty "false"^^xsd:boolean ;

ogc:isSimple "true"^^xsd:boolean ;

ogc:spatialDimension 2 .

Ioannis Vlachopoulos 77

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Using the graphical user interface of GeoTriples

In addition to the command line version of GeoTriples, we implemented a graphical user

interface that allows the users to interact with GeoTriples through graphical icons and visual

indicators such as ontology-driven forms. The graphical user interface uses the Apache Pivot2

framework, an open-source platform for building installable web and desktop applications

with a rich variety of widgets.

In this chapter we present the structure of the graphical user interface and repeat the

previous example using the graphical user interface instead of the command line utility of

GeoTriples.

Structure of the graphical user interface of GeoTriples

The graphical user interface of GeoTriples, presented in Figure 6.2, consists of the following

parts: the menu bar, the mapping editor, the mapping viewer and the tool bar.

The menu bar provides easy access to the main functionalities of GeoTriples. By choosing

the option Connect from the submenu File, the user is prompted to input the details for

the input data source as shown in Figure 6.4. The user may choose a relational database or

an ESRI shape file as an input data source. Afterwards, the tool accesses the data source

defined by the user and read its schema. For instance, if the user wants to use a relational

database as an input data source, she will be asked to input the necessary information

database engine and name, username and password as depicted in Figure 6.5. Via the menu

Publish, the user can access the two core functionalities of GeoTriples; Generate R2RML

Mapping and Generate RDF graph.

The mapping editor of the graphical user interface of GeoTriples allows the user to

customize an R2RML mapping. The mapping editor is initially populated according to the

schema of the input data source. The mapping editor allows the user to customize the

R2RML mapping that will be generated while the mapping viewer displays to the user the

generated R2RML document in Turtle notation.

The mapping editor supports the extensions of the R2RML mapping language that we

defined in section 4.4Ṫhe mapping viewer is updated whenever the user clicks the Generate

R2RML Mapping option from the submenu Publish.

The Toolbox section contains buttons that can be used as shortcuts for the Generate

2https://pivot.apache.org/

Ioannis Vlachopoulos 78

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

R2RML Mapping and Generate RDF graph operations. Additionally, this component pro-

vides the end user with the ability to select the desired syntax for the generated RDF graph

as well as the coordinate reference system that will be used for the generated spatial RDF

literals by entering the appropriate EPSG code.

Figure 6.2: Part of the GeoTriples graphical user interface

Using GeoTriples for transforming database into RDF

In this section we will show how GeoTriples is used to publish a dataset containing geospatial

information. Specifically, we will use the graphical user interface of the application to create

first of all the R2RML mapping from RDB schema to RDF and then use the produced

mapping to create an RDF dump from the data source. We will use the same MonetDB

database (tf) as in Section 6 with schema presented in Figure 6.1.

In this example we will map to RDF all tables from the database. For the table Fields

we will map to RDF only the columns Name, ID, crop, ClientID. We will also make use of

the talkingfields ontology that was developed in LEO and map the aforementioned columns

to an RDF graph using the properties of the ontology.

Let us now present how the user can use the graphical user interface of GeoTriples for

generating an RDF graph for a talkingfields product that is stored in a spatially-enabled

MonetDB database. The first step is to establish a connection to the database using the

File → Connect option as shown in Figure 6.3.

Ioannis Vlachopoulos 79

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Figure 6.3: Menu File → Connect

Figure 6.4: Select SQL type of connection

In the pop up form that opens, the user fills in all required information for connecting

to the database as shown in Figure 6.5.

Ioannis Vlachopoulos 80

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Figure 6.5: Provide connection properties

After connecting to the database, GeoTriples reads the schema of the input database

and populates the contents of the mapping editor. Then, the user may edit the mapping

according to her needs. For example, the user may remove tables and columns that should not

be published by selecting them and clicking the remove button under the table description.

Ioannis Vlachopoulos 81

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Figure 6.6: Select columns to remove

The user can also modify the R2RML mapping to follow a different vocabulary from

the one that is been generated automatically by GeoTriples. In this example, we want to

generate an RDF graph that follows the talkingfields ontology. For loading the developed

ontology, the user should choose menu File→ Load Ontology as shown in Figure 6.7. After

loading the ontology, the mapping editor is automatically updated, thus allowing the user

to make use of the classes and properties that are defined in the chosen ontology as shown

in Figure 6.8,6.9.

Ioannis Vlachopoulos 82

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Figure 6.7: Load an existing ontology

Figure 6.8: Change class of table Fields using the classes from loaded ontology

Ioannis Vlachopoulos 83

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Figure 6.9: Change predicate of column using the properties from loaded ontology

The last thing to consider, before generating an RDF graph, is to define the baseIRI

of the generated R2RML document. This parameter is used for converting relative URI

and URI patterns to absolute URI. Figure 6.10 depicts how a user can modify the baseIRI

parameter.

Figure 6.10: Provide the baseIRI

Ioannis Vlachopoulos 84

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

After customizing the R2RML mappings using the mapping editor, the user clicks Publish

→ Generate R2RML Mapping in order to generate the final R2RML mapping that will be

used afterwards for the generation of the RDF graph. The user may inspect the generated

R2RML mapping as shown in Figure 6.12.

Figure 6.11: Menu Publish → Generate R2RML Mapping using information from Mapping
Editor

Figure 6.12: Preview or Edit R2RML mapping

Ioannis Vlachopoulos 85

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

The last step is to generate the RDF graph using the modified R2RML mapping document

that was produced in the previous steps. This step can be done by selecting Publish →
Generate RDF graph as shown in Figure 6.13.

Figure 6.13: Menu Publish → Generate RDF graph

Figure 6.14: Save result in a file

Ioannis Vlachopoulos 86

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

Bibliography

[1] SquirrelRDF. http://jena.sourceforge.net/SquirrelRDF/.

[2] Open Geospatial Consortium. OpenGIS Catalogue Services Specification. OpenGIS Im-

plementation Specification, 2007. Available from: http://portal.opengeospatial.

org/files/?artifact_id=20555.

[3] Open Geospatial Consortium. OpenGIS Implementation Specification for Geographic

information - Simple feature access - Part 2: SQL option. OpenGIS Implementa-

tion Standard, 2010. Available from: http://portal.opengeospatial.org/files/

?artifact_id=25354.

[4] Open Geospatial Consortium. OpenGIS Implementation Standard for Geographic infor-

mation - Simple f eature access - Part 1: Common Architecture. OpenGIS Implemen-

tation Standard, 2010. Available from: http://portal.opengeospatial.org/files/

?artifact_id=25355.

[5] F. Bancilhon and N. Spyratos. update semantics of relational views.

[6] Jesus Barrasa, Oscar Corcho, and Ascun Gómez-Pérez. R2O, an Extensible and Seman-

tically based Database-to-Ontology Mapping Language. In in In Proceedings of the 2nd

Workshop on Semantic Web and Databases (SWDB2004), pages 1069–1070. Springer,

2004.

[7] Tim Berners-Lee. Relational Databases on the Semantic Web.

http://www.w3.org/DesignIssues/RDB-RDF.html.

[8] Christian Bizer. D2r map - a database to rdf mapping language. In Irwin King and

Tamás Máray, editors, WWW (Posters), 2003.

[9] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.

International Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

[10] Christian Bizer and Andy Seaborne. D2RQ-treating non-RDF databases as virtual RDF

graphs. In Proceedings of the 3rd international semantic web conference (ISWC2004),

volume 2004, 2004.

[11] Stefan Burgstaller and Wolfgang Angermair. Ontologies and linked data for precision

farming-v1. Del. D5.2.1, FP7 project LEO, 2014.

Ioannis Vlachopoulos 87

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

[12] Kevin Chentout and Alejandro A. Vaisman. Adding Spatial Support to R2RML Map-

pings. In OTM Workshops, volume 8186 of Lecture Notes in Computer Science. Springer,

2013.

[13] Richard Cyganiak, Chris Bizer, Jrg Garbers, Oliver Maresch, and Christian Becker.

The D2RQ Platform. http://d2rq.org/.

[14] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF Map-

ping Language. W3C Recommendation. http://www.w3.org/TR/r2rml/.

[15] Cristian Pérez de Laborda and Stefan Conrad. Relational.OWL: A Data and Schema

Representation Format Based on OWL. In Proceedings of the 2Nd Asia-Pacific Con-

ference on Conceptual Modelling - Volume 43, APCCM ’05, pages 89–96. Australian

Computer Society, Inc., 2005.

[16] Orri Erling and Ivan Mikhailov. RDF Support in the Virtuoso DBMS. In Sören Auer,

Christian Bizer, Claudia Müller, and Anna V. Zhdanova, editors, CSSW, volume 113

of LNI, pages 59–68. GI, 2007.

[17] Matthias Hert. Relational databases as semantic web endpoints. In The Semantic Web:

Research and Applications, volume 5554 of Lecture Notes in Computer Science, pages

929–933. Springer Berlin Heidelberg, 2009.

[18] Matthias Hert, Gerald Reif, and Harald C. Gall. Updating Relational Data via SPAR-

QL/Update. In Proceedings of the 2010 EDBT/ICDT Workshops, EDBT ’10, pages

24:1–24:8, New York, NY, USA, 2010. ACM.

[19] Matthias Hert, Gerald Reif, and Harald C. Gall. A comparison of rdb-to-rdf mapping

languages. In Proceedings of the 7th International Conference on Semantic Systems,

I-Semantics ’11, pages 25–32, New York, NY, USA, 2011. ACM.

[20] Manolis Koubarakis. Linked Open Earth Observation Data: The LEO Project. ESA-

EUSC-JRC 2014, 2014.

[21] Manolis Koubarakis, Manos Karpathiotakis, Kostis Kyzirakos, Charalampos Nikolaou,

and Michael Sioutis. Data Models and Query Languages for Linked Geospatial Data.

In Thomas Eiter and Thomas Krennwallner, editors, Reasoning Web. Semantic Tech-

nologies for Advanced Query Answering, volume 7487 of Lecture Notes in Computer

Science, pages 290–328. Springer Berlin / Heidelberg, 2012.

Ioannis Vlachopoulos 88

GeoTriples: A Tool for Publishing Earth Observation and Geospatial Data as RDF Graphs, Using the R2RML Mapping
Language

[22] Manolis Koubarakis and Kostis Kyzirakos. Modeling and querying metadata in the

semantic sensor web: The model stRDF and the query language stSPARQL. In ESWC,

2010.

[23] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: A Se-

mantic Geospatial DBMS. In In Proceedings of the 11th International Semantic Web

Conference, Lecture Notes in Computer Science, 2012.

[24] OGC. GeoSPARQL - A geographic query language for RDF data, November 2010.

[25] Kostas Patroumpas, Michalis Alexakis, Giorgos Giannopoulos, and Spiros Athanasiou.

TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples. In Pro-

ceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT

2014), volume 1133 of CEUR Workshop Proceedings. CEUR-WS.org, 2014.

[26] Freddy Priyatna, Óscar Corcho, and Juan Sequeda. Formalisation and experiences of

R2RML-based SPARQL to SQL query translation using Morph. In Chin-Wan Chung,

Andrei Z. Broder, Kyuseok Shim, and Torsten Suel, editors, WWW, pages 479–490.

ACM, 2014.

[27] O. Software. Mapping Relational Data to RDF with Virtuoso’s RDF Views.

http://virtuoso.openlinksw.com/whitepapers/relationalg.html.

[28] Richard Cyganiak Souripriya Das, Seema Sundara. R2RML: RDB to RDF Mapping

Language, September 2012.

Ioannis Vlachopoulos 89

