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ΠΕΡΙΛΗΨΗ
Η παρούσα διπλωματική  εργασία  παρουσιάζει  την  υλοποίηση  με  τεχνολογία  FPGA
αλγορίθμων κωδικοποίησης καναλιού που έχουν προτυποποιηθεί από τον οργανισμό
CCSDS για χρήση σε διαστημικές επικοινωνίες.

Ο  CCSDS  προτείνει  δύο  κατηγορίες  κωδίκων  για  εφαρμογές  τηλεμετρίας:  μία  για
επικοινωνίες στο εγγύς (near-earth) διάστημα (π.χ. δορυφορικές επικοινωνίες) και άλλη
μια για επικοινωνίες βαθέος διαστήματος (deep-space),  με χαρακτηριστικά η κάθε μία
βελτιστοποιημένα ως προς το  πεδίο  εφαρμογής τους.  Και  στις  δύο περιπτώσεις,  οι
κώδικες είναι γραμμικοί μπλοκ κώδικες με μεγάλο μέγεθος μπλοκ και πίνακα ισοτιμίας
με χαμηλή πυκνότητα (LDPC). 

Στην περίπτωση των κωδίκων near-erth,  η προδιαγραφή αφορά σε ένα κώδικα LDPC
(8160,7136)  με ρυθμό 7/8, βασισμένο σε ευκλείδεια γεωμετρία, ενώ για τους κώδικες
deep-space  προδιαγράφονται  9  κώδικες  που  προκύπτουν  από  3  συνδυασμούς
μεγέθους μπλοκ (1024,4096, 16384 bits) με 3 ρυθμούς (½, 2/3, 4/5). Οι κώδικες αυτοί
μοιράζονται κοινή μαθηματική περιγραφή, γεγονός που καθιστά εφικτή την περιγραφή
με τη γλώσσα VHDL ενός κοινού κωδικοποιητή για όλους.

Στην παρούσα εργασία, γίνεται εκμετάλλευση της δομής των πινάκων-γεννητόρων των
κωδίκων  deep-space  προκειμένου  να  μεγιστοποιηθεί  η  απόδοση.  Προκύπτουν  δύο
ειδών παραλληλίες  στη  δομή των εν  λόγω πινάκων,  η  ταυτόχρονη αξιοποίηση των
οποίων οδηγεί σε βελτίωση των επιδόσεων με ελαχιστοποίηση των καταναλισκόμενων
πόρων.  Το  τίμημα  βέβαια  της  βελτιστοποίησης  αυτής  είναι  κάποια  αύξηση  στην
απόκριση (latency) ανάλογα με τις επιλογές παραλληλίας,που ωστόσο αντιμετωπίζεται
με  την  λειτουργία  του  διαύλου  της  διεπαφής  εξόδου  με  διοχέτευση  (pipelining)  Η
περιγραφή στη γλώσσα  VHDL είναι γενική και επιτρέπει την εύκολη παραμετροποίηση
των  βασικών  χαρακτηριστικών  του  κώδικα  (μέγεθος  μπλοκ,  ρυθμός),  των  βαθμών
παραλληλίας για κάθε μια από τις δύο κατηγορίες και του εύρους των διαύλων εισόδου-
εξόδου.

Αντίστοιχα  στην  περίπτωση  του  κώδικα  near-earth,  περιγράφεται  μια  αποδοτική
μέθοδος στη σχεδίαση των επί μέρους οντοτήτων του κυκλώματος που βελτιστοποιεί
την αξιοποίηση των πόρων, σε σχέση με γνωστές λύσεις. Ο κωδικοποιητής σε αυτή την
περίπτωση είναι σχεδιασμένος για διαύλους εισόδου-εξόδου μεγέθους 16 bit.

Και στις δύο περιπτώσεις η είσοδος και έξοδος δεδομένων γίνεται από δύο αντίστοιχες
διεπαφές συμβατές με το πρωτόκολλο AMBA AXI4-Stream, γεγονός που επιτρέπει την
εύκολη διασύνδεσή τους σε μια σχεδίαση SoC ή μια διεπαφή FIFO.  Η λειτουργία των
κωδικοποιητών είναι βέλτιστη από την άποψη ότι παράγουν μια (σχεδόν) αδιάκοπη ροή
δεδομένων στη διεπαφή εξόδου-χωρίς να είναι απαραίτητοι αδρανείς κύκλοι.

Η  περιγραφή  των  κωδικοποιητών  σε  VHDL  επαληθεύεται  ως  προς  την  ορθή  της
σχεδίαση  με  προσομοιώσεις  για  όλες  τις  υποστηριζόμενες  περιπτώσεις,  όπου
απαιτείται η μέγιστη κάλυψη κώδικα (code coverage).  Τέλος, το σχέδιο επαλήθευσης
περιλαμβάνει  την επίδειξη  λειτουργίας  σε ένα  ενσωματωμένο  σύστημα υλοποιημένο
στην κάρτα XUPV505-LX110T, όπου καταγράφονται και οι πραγματικές επιδόσεις του
συστήματος, όπου βρίσκονται στην περιοχή των μερικών Gbps. Η παρούσα υλοποίηση
προκύπτει ότι είναι η ταχύτερη για την συγκεκριμένη οικογένεια LDPC κωδικών.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ψηφιακή Σχεδίαση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: LDPC, CCSDS, FPGA, near-earth, deep-space



ABSTRACT

The  FPGA  implementation  of  LDPC  encoders  for  channel  codes  standardized  by
CCSDS for space communication applications is described in this work. 

CCSDS suggests two classes of channel codes for telemetry applications: one for near-
earth  and  another  for  deep-space  communications,  each  one  optimized  for  the
demands of the specific field.  In both cases, the specification concerns linear block
codes with large block size and sparse generator matrices.

Regarding near-earth codes, the specification describes a Euclidean geometry based
(8160,7136) LDPC code at rate 7/8, while in the deep-space case, 9 codes are defined
which are the combination of thee block lengths (1024,4096,16384 bits) with three rates
(½, 2/3, 4/5), sharing a common mathematical description. This fact enables the VHDL
description of a common encoder for all of them.

The generator matrices of these codes possess considerable structure which facilitates
implementation. Concerning deep-space codes generator matrices, parallelism extends
over  two  dimensions,  which  can  be  exploited  concurrently  to  optimize  timing
performance and at the same time minimize resource utilization. The price to be paid
however is increased latency, which can be mitigated by the pipelined operation of the
output  interface.  VHDL  description  of  the  encoder  is  generic,  allowing  the  easy
modification of the code parameters (block size, rate), the amount of parallelism in each
dimension  and  the  input-output  bus  width,  leading  to  different  performance-latency
balances.

Also in the case of the near-earth code, an efficient design of the encoder's sub-entities
is  described,  leading  to  resources  utilization  optimizations,  compared  to  existing
implementations. The encoder in this case is designed for 16-bit input-output bus.

All  described encoders input-output  is performed on AMBA AXI-4 Stream compliant
interfaces,  facilitating  their  integration  in  an  embedded  system's  design  and
communication with standard FIFO interfaces. The encoders' operation is optimal in that
an uninterrupted flow of data is provided on the output interface, without idle cycles. The
only exception is the near-earth encoder  for  which  just  one idle  cycle  every 513 is
inserted.

The correctness of the VHDL description's is validated by functional simulation for all
supported  cases,  where  100%  code  coverage  is  demanded.  The  verification  plan
includes also the demonstration of real-time operation of the encoders in an integrated
system  implemented  on  a  XUPV505-LX110T  development  board,  where  the  actual
performance of the encoders is recorded and lies in the multi-Gbps range. Finally, the
proposed encoders are shown to be the fastest stream-oriented implementations for the
specified family of LDPC codes, with minimal resource utilization.

SUBJECT AREA: Digital Design

KEYWORDS: LDPC, CCSDS, FPGA, near-earth, deep-space
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PREFACE

The work presented in this thesis was done in partial fulfillment of the requirements for
the post-graduate program of Department of Informatics and Telecommunications of the
National  and  Kapodistrian  University  of  Athens  and  was  supported  by  the  Digital
Systems & Computer Architecture Laboratory (DSCAL). Apart form its other areas of
activity and research, DSCAL exhibits interest in the development of applications for
space systems, including its active involvement is ESA's PROBA-3 space mission.

This work attempts to provide an efficient implementation of communication channel
codes  already  standardized  for  use  in  space  communications  by  CCSDS,  a  multi-
national forum for the development of communications and data systems standards for
spaceflight,  based  on  the  expertise  of  communication  experts  from  its  participant
nations. Implementations are already parts of launched space missions (Cibola Flight
Experiment,  MSL-MRO  proximity  link  etc)  and  are  expected  to  culminate  in  space
communications in future missions,  while  at  the same time gathering attention from
disparate  application  fields,  like  mobile  terrestrial  communications  (U.S.A.F.  LCOT
program).

For  the  development  of  the  encoders  for  this  work,  a  Xilinx  XUPV505-LX110T
development board was used, granted by DSCAL. Implementation was performed on
Xilinx ISE design suite using VHDL, although considerable effort was made so that the
code can be ported  to  other  FPGA vendors  without  any modifications:  it  has  been
verified to  be synthesizable also in  Altera Quartus software  and Microsemi's  Libero
suite. Simulations were executed in Mentor Graphics Modelsim .
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1. INTRODUCTION TO LDPC CODES

The purpose of this chapter is to provide briefly the theoretical background necessary
for understanding the encoder implementation. Relevant information theory topics are
described to the minimum extent required for the adequate description of the application
and  by  no  means  intended  to  explain  theoretical  topics  from  a  mathematically  or
information theory concrete point of view.

1.1 Noisy Channel Coding Introduction

Noise is an inherent element of every communication system. A simplified version of
one such system is displayed in figure 1. Noise in space communications channels (not
accounting for weather effects at least), is modeled in almost perfect approximation by
the Additive White Gaussian Noise (AWGN) model and the channel most commonly
considered  is  the  Binary  Symmetric  Channel  (BSC)  for  a  digital  communications
system. In this model, noise can be represented as a binary vector n , added to the
binary sequence t transmitted on the channel,  resulting in the received vector t̂ .
The purpose of the encoding process is to receive a binary sequence s and transform
it into another binary sequence t of greater length, which should depict the necessary
features  to  mitigate  the  result  of  the  addition  of  the  noise  vector n .  Considering
AGWN  over  a  BSC,  this  noise  vector n contains  a  '1'  in  each  bit  position
corresponding to a flipped bit of the finally received sequence, and this occurs with a
constant probability value “f”.The result of this encoding process is that a corresponding
decoder at the other end of the communication channel is able to provide an estimate
ŝ of  the  initially  transmitted  vector s ,  which  is  as  close  to  it  as  possible.  This

maximum probability of correct inference will be refined later in this chapter.

Figure 1: A simplified binary noisy communication system

Always considering AWGN over BSC, the probability of a bit flipping as a result of the
noise vector contribution to the received codeword (i.e. P(ni= 1)= f ) is expressed by a
single metric for an individual bit, namely the bit error rate (BER), or equivalently the
error rate for a whole frame (Frame Error Rate, FER). For a sequence of N independent
bits, generally FER= 1− (1− BER)N , although for more interesting codes as our case
the frame contains an error if s i≠ ŝi instead of ti≠ t̂i . The value of this probability for a
single bit ( P(ni= 1)= f ) is a channel parameter, which for the communication model
described herein is related to the received signal energy per information bit to the (one
sided) spectral density of the white Gaussian noise, commonly referred as Eb/N0 or
Signal to Noise Ratio (SNR).

The encoded sequence t contains redundant information, decreasing thus the rate at
which actual communication occurs. In a trivial  encoding example, replication codes
transmit multiple sequences of the same source bits and decoding is performed on a

D. Theodoropulos  12
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majority  basis  of  the  value  of  the  received  sequence,  at  the  same time though by
dividing proportionally the actual information data rate. More interesting codes exploit
redundancy more efficiently but generally there seems to be a trade-off between the
(decoded) bit error probability and the communication rate.

Before  1948,  it  was  believed  that  a  vanishingly  small  BER  for  given  channel
characteristics (i.e. constant Eb /N0 value) requires proportionally decreasing rate. All
this changed by Claude E. Shannon in his Phd thesis [1], in which the fundamental
limits on the performance of all codes (for a given rate) were set.

In particular, Shannon associated with each channel a quantity called capacity C , up
to which reliable communication can occur with arbitrarily small BER. This quantity is a
channel  feature and an equivalent  interpretation in the AWGN channel  is that  for  a
specific rate, there is a minimum Eb/N0 for which communication can occur error-free.
Figure 2 depicts this relationship for the binary input AWGN channel for a number of
communication rates.

Shannon's calculations assume an asymptotically infinite code-block length. In practical
applications though this is obviously not feasible and the theoretical capacity limit is
lower than that of fig. 2. The effect of block size on code performance is studied further
in [3].

Figure 2: Capacity limits for the AWGN channel over a selection of data rates (image from [2])

The above results only prove the feasibility of such codes. The design of the actual
codes themselves is nevertheless a different issue, out of Shannon's work scope but a
very interesting field of considerable research towards capacity approaching codes. The
channel codes implemented in this thesis belong to one such class.

D. Theodoropulos  13
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1.2 Low Density Parity Check codes

Channel codes can be divided into two major types depending on the grouping of input
information in constant size packets (block codes) and the encoding of a continuous
stream of  data  (convolution  codes).  The codes examined herein  belong to  the  first
class. Block codes are further divided into linear and non-linear ones, the latter having
never been used in practice. Consequently, we are interested in linear block codes.

1.2.1 Linear Block Codes

For  a  block  code,  information  source bits  are  grouped into  blocks  of  k bits.  The
encoding process transforms these into a n -bit codeword, where n>k , adding thus
n− k bits  of  redundant  information.  For  the  code  to  be  considered  linear,  the

ensemble of  2k possible codewords should form a k-dimensional  subspace in  the
vector space F2

n . According to this definition, if  s∈ F2
k and t∈ F2

n are row vectors
corresponding to the information block and encoded codeword respectively, there exists
a  k∗ n binary matrix,  the rows of which are k linearly independent codewords and
t∈ F2

n is a linear combination of them. Consequently, the encoding process can be
described as the operation t∈ F2

n (performed in GF2 ). The matrix G is known as the
generator matrix and the code itself as a (n,k) linear block code.

The code can be alternatively described by the null space of a different binary matrix H,
such  that  for  every  valid  codeword t∈ F2

n :  t HT= 0 (zero  vector).  The  H  matrix
dimensions  are (n− k )∗ n ,  assuming  full  rank  (rank  deficient  matrices  are  also
possible as it will be the case for one of the CCSDS codes of interest) and GHT= 0 .
The H matrix is called the parity check matrix and because it is the null space of the
code,  it  can  be  perceived  as  the  expression  of  the  constraints  an  arbitrary  binary
sequence should satisfied in order to be considered as a valid codeword.

Codes in which the first k bits of the codewords are the uncoded source information
bits are called systematic. The codes implemented in this thesis are all systematic. This
feature facilitates decoding and other optimizations in the receiver.

1.2.2  LDPC description

LDPC codes where introduced in 1960 by Gallager [4], but generally ignored in the
following years due to the current era's technology limitations, which could not allow
their implementation at a reasonable cost.

These codes are generally characterized by a sparse parity check matrix H, i.e. a matrix
with  a very  low density  of  “1s”.  An absolute  definition  of  sparsity  in  not  defined in
literature, but densities up to 1% qualify for the characterization [5]. This sparsity of H
matrix coefficients is a key feature for reduced complexity implementation.

One exception to the oblivion in which LDPC codes succumbed after their invention was
the  work  of  Tanner  in  1981  [6].  Among  other  things,  he  introduced  a  graphical
representation of these codes in what are currently widely known as Tanner graphs.
The Tanner graph is a bipartite graph in which node fall  into two categories: check
nodes and variable nodes, the former expressing the constraints on codewords and the
latter  the received encoded bits.  A connection between a variable node  v i and a
check node c j is drawn if the corresponding element hij in the parity check matrix is

D. Theodoropulos  14
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1. The representation is valid for all linear block codes and a Tanner graph for the well
known (7,4) Hamming code is displayed in fig. 3. For LDPC codes this representation
facilitates  the  description  of  the  decoder  based  on  a  message  passing  algorithm
between the nodes of the Tanner graph [7].

Figure 3: Tanner graph for the (7,4) Hamming code. Bold lines mark a cycle.

1.2.3 LDPC features

An LDPC code is described as  regular when its parity check matrix has a constant
column weight, say γ and constant row weight ρ. Such a code is said to be (γ,ρ) regular.
In contrast, irregular codes have multiple weights. The CCDS codes are all regular.

The parity check matrices of initial Gallager codes possessed no other structure except
being linear block codes. The problem is that implementation complexity makes their
application prohibitive. A desirable structure to facilitate implementation is that of cyclic
codes: each row of the parity matrix H is a cyclic shift of the previous one. Since each
check equation is related to the previous in a very specific way, encoder complexity is
substantial: it is built by simple elements around a shift register. More interesting codes
though are built using a viable compromise between complexity and performance, using
a quasi-cyclic (QC) structure. The parity check matrix of these codes consists of an
array of juxtaposed cyclic submatrices called  circulants. The general form of such a
matrix is the following:

H=[A11 A12 . . . A1N
A21 A22 . . . A2N
. . . . .
AM 1 AM 2 . . .AMN

]
Each  sub-matrix  A ij is  a  cyclic  matrix  with  a  very  low  density  of  ones.  The
implemented codes in this thesis belong to this class of LDPC codes.

The design of the code for this class of LDPC codes is consequently reduced to the task
of defining the optimum position of 1s in the parity check matrix. Several techniques and
mathematical  tools are employed and considerable research is always hot on these
topics. Generally, design techniques are classified in two big categories: a) random or
pseudo-random  codes,  which  use  computer-based  algorithms  or  methods  and  b)
algebraic  codes  which  use  mathematical  or  combinatorial  tools  such  as  finite
geometries and combinatorial  designs. The codes implemented here belong to both
categories. In particular, AR4JA codes were generated by a pseudo-random algorithm
based on a design entity known as a protograph. This is simply a Tanner graph with a
low number of nodes, which is repeated (consider placing a number of such graphs
side-by side).  Connection lines between variable and check nodes of the expanded
super-graph are permuted in a pseudo-random manner. The number of repetitions and
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the  permutations  pattern  is  a  result  of  advanced  techniques  (density  evolution,
progressive edge growth). An introduction to this topic is included in [8].

A common feature shared among the most interesting LDPC codes is the Row-Column
(RC) constraint: no two rows or two columns are allowed to have a '1' in more than one
position  at  the  same  time:  for  example  codewords  “01001101...”  and  “11101010..”
belong to a non-conformant code because there is a '1' at positions 2 and 5 (at least).
The presence of this constraint ensures that the minimum distance of a (γ,ρ) irregular
code is at least γ+1. Moreover, it precludes cycles of length 4 in the Tanner graph of the
code. Cycles in a graph are structures in the form of a path in a graph from one node
back to itself. One such path in displayed with bold lines in fig. 4 for the Hamming code.
These  structures  jeopardize  the  code  performance,  as  it  will  be  mentioned  in  next
paragraph.

1.2.4 LDPC performance

LDPC  codes  are  the  most  promising  solution  towards  capacity  approaching
performance. The most obvious performance metric is the BER or FER performance, or
in other words, how close to the Shannon capacity limit these codes can approach. In
fig. 4, simulation results for the AR4JA rate 3/4, block length 1024 bits LDPC code are
presented.  Decoding  is  performed  in  a  software  (MATLAB)  implementation  of  the
iterative  Sum of  Products  Algorithm (SPA).  For  the  number  of  simulation  iterations
specified in this test, BER was zero for Eb/N0 grater than roughly 2,5 dB.

Figure 4: BER performance for the rate 4/5 k=1024
CCSDS LDPC code

Figure 5: General form of the BER
curve for most LDPC code

The BER curve of a code is generally partitioned into three regions displayed on fig. 5:
the non-performing region (black), the waterfall region (blue) and the floor region (red).
For extremely low SNR values, there is no point to introduce a channel code since the
errors are so many that the decoder will try to converge most probably towards another
completely different codeword (with smaller distance to the erroneously received). The
code is non-operational in this region. Above a certain limit of Eb/N0 value called the
threshold, the  waterfall region begins: this is recognized as an abrupt slope int the
plot and it is the area where the code performs optimally.  There is however a point
where this abrupt transition halts or even the curve remains constant. This is known as
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the error floor and it is the point where the code becomes inefficient. This weakness is
a common feature of all LDPC codes and it is caused mainly by undesirable structures
in the Tanner graph of the code such as trapping sets or stopping sets. For reasons
that remain unknown, there seems to be a trade-off between low threshold and low
error floor [9].

Decoder  complexity  is  another  performance  parameter  for  LDPC codes.  Generally,
decoding is performed by an iterative belief  propagation algorithm in which variable
nodes  and  check nodes exchange messages conveying  likelihood  information.  The
number  of  steps  required  for  decoding  may  limit  the  actual  data  rate  of  the
communication and this is especially important for high data rates.

Generally,  the  code  performance  is  a  still  unknown  function  of  a  number  of  code
parameters and structures in the Tanner graph and the LDPC codes exhibit  a wide
diversity  of  characteristics.  The  area  is  open  for  research.  An  introduction  to
performance considerations can be found in [9]. 

1.3 Encoder architectures for Quasi-Cyclic codes.

Encoding process of  a  linear  block code is  in  essence nothing more than a matrix
multiplication over GF2 .  The encoded vector is t= s∗ G , where G is the generator
matrix and s the input vector. 

The  circulant  structure  of  the  parity  check  matrix  can  be  exploited  to  facilitate  the
encoding  process.  With  suitable  transformations,  it  is  possible  to  calculate  the
Generator matrix in systematic circulant form and limit the encoder's complexity to being
just linear with the block length [10]. The circulants though of the resulting generator
matrix from this process are dense circulant matrices. Figure 6 displays the shape of
such a systematic circulant matrix for one of the codes of interest. A '1' in this image is
represented by a white pixel, whereas a '0' is black.

Figure 6: Generator matrix of AR4JA LDPC code with k=1024, rate 4/5 (punctured bits included)

The systematic output of the encoder with a generator matrix in this form is the direct
output of the input bits. The non-systematic part of the output can be implemented by
simple shift registers, as shown below.
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1.3.1 Straightforward implementation

A  straightforward  solution  for  the  multiplication  of  a  row  vector  with  a  systematic
circulant matrix is displayed on fig. 7. Codeword length is n, input block size is k and
circulant size is m

Initially the last n-k bits of the Generator matrix are stored in the cyclic shift registers at
the top of the image. These bits correspond to the first rows of the first row of circulants
in the generator matrix. The first information bit to arrive is ANDed with this vector, and
the resulting vector is XORed with the current value of the accumulator at the lower end
of the image. The accumulator stores the result of this XOR operation. Then the shift
registers  containing  the  circulants  of  the  generator  matrix  are  cyclically  shifted  one
position to construct the second row of the generator matrix; the result is multiplied by
the next message bit and added to the accumulator. This process is repeated m times
to complete the first row of circulants in the generator matrix. 

After the AND-XOR operation corresponding to the last row of circulants is completed,
the shift registers do not perform a shift operation but a load instead: the next row is
loaded and the above steps are repeated until all information bits have arrived at the
encoder. During all these steps, arriving input bits form the systematic part of the output.

This  straightforward  implementation requires  2(n-k)  storage elements (flip-flops)  and
k(n-k) AND-XOR operations.

Figure 7: A straightforward encoder implementation for a QC LDPC code

1.3.2 RCE implementation

A more efficient approach is given in [11], henceforth mentioned as RCE encoder.  The
encoder's architecture is displayed in Figure 8 and it makes use of the ideas applied to
the  design  of  convolutional  codes,  namely  the  encoder  structure  of  a  Recursive
Convolutional Encoder (RCE). 
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The idea behind this implementation is to keep the circulants values stationary and
cyclically  shift  the  accumulator  bits  instead.  The  generator  matrix  values  become
combinational functions of an input message bits counter.

During the information bits input, the (systematic output of the encoder is these input
bits: the selectors in the RCEs are set to perform the cyclic shift and the output selector
is set to the upper position to select the input. Upon completion of the calculation the
selectors positions are switched and the calculated parity bits are simply shifted out of
the RCEs.

Figure 8: RCE encoder

1.3.3 RU encoder

In 2001 Thomas Richardson and Rüdiger Urbanke demonstrated a reduced complexity
encoder for LDPC codes [12].  As a first step, the parity check matrix is rearranged into
in an approximately lower triangular form through reordering of rows and columns. The
resulting matrix has the general shape of fig. 9.

Figure 9: The parity check matrix transformed into lower triangular form

Since the original matrix is sparse, the sub-matrices A, B C, D are also sparse. The
elements  of  matrix  T  are  all  zero  above  a  certain  diagonal.  Without  describing  the
mathematical details of the work in [12], we use only their result, keeping the notation
though consistent. For a systematic code, the k=M-N input vector s is encoded as a
systematic codeword t= [ s p1 p2] , where parity bits are partitioned in two sub-vectors
p1 p2 . The steps are outlined below.

Firstly,  calculate φ= ΕΤ− 1B+D ,  which  is  a  dense g x  g matrix.  The first  parity  bit
vector  is  p1

T= φ−1(ΕΤ− 1 Α+C)sT and  the  second  is p2
T= T− 1(AsT+B p1

T ) .  This
calculation involves several sparse matrices and for several interesting codes (including
the CCSDS AR4JA examined here), T is the identity matrix.  As a result,  the above
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equations are further simplified into the following: φ= ΕB+D , p1
T= φ−1(ΕΑ+C )sT and

p2
T= AsT+B p1

T .  The dense matrix  φ  can be precomputed in  advance,  while  other
operations on sparse matrices can be calculated using simplified hardware.

As an example, the corresponding matrices for one of the codes implemented in this
thesis are displayed in fig. 10.

Figure 10: From top to bottom: The parity check matrix of rate ½ k=1024 CCSDS LDPC code, the 

same matrix transformed in lower triangular form and the inverse matrix φ−1 . Each rectangular 

is 512x512 bits. The φ−1 matrix is also 512x512, consisting of 64x64 submatrices.

D. Theodoropulos  20



FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

The dense matrix operations are calculated using a usual encoder such as those 
described in previous chapters. For sparse matrix operations, a simplified architecture is
displayed in fig. 11.

Figure 11: Multiplication of a sparse matrix with a vector and the corresponding hardware[13]

The sparse matrix is constructed from circulant submatrices of size N. The circuit on the
figure performs a multiplication of a vector of size 4N with a sparse matrix 4Nx8N. As
incoming information bits arrive, the multiplexors below the shift registers select which
bit of the shift register is going to be subject to modification by the XOR gate. This is
easy to understand since from the N bits of the circulant, only one is going to take part
in the parity calculation at each step. A (hopefully)  small  memory controls the MUX
operations. More XOR gates are needed in case the sparse matrix is not a rotated
identity matrix like those in the given example.

The iterative encoder calculates parity bits directly from the parity-check matrix instead
of the generator. This can lead to high performance parallel encoders, provided that the
corresponding LDPC codes are amenable to the modifications described in Richardson-
Urbanke work (very low value of g). This is the case with LDPC codes employed in
DVB-T and 802.16ac standards for which encoders have been proposed in the multi-
gigabits per second range speed [14] [15].
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1.3.4 Iterative encoder

In the special case where g=0 (fig. 9), the parity check matrix is simplified into a lower-
triangular form, the structure of which can be exploited in order to create especially
optimized high-throughput  encoders.  Like  in  RU method,  parity  bits  can  be  directly
calculated  from the  parity-check matrix  using  back-substitution:  Let  c  =  [m p]  be  a
codeword block, where m and p indicate the information bit sequence and the parity bit
sequence, respectively and H=[H1 H2] the parity-check matrix partitioned into two sub-
matrices  H1 and  H2  of  suitable  size  to  correspond  to  the  multiplication  operations
detailed below. From the property that the correct codeword satisfies the parity check
equation, the parity bit sequence p can be derived as follows:

H⋅ cT= H1⋅ m
T+H 2⋅ p

T => pT=H 2
−1H 1⋅m

T

Matrix H1  is sparse in all LDPC codes but this is not always the case for H2
-1  matrix,

which is generally sparse. LDPC codes designed with encoding efficiency as a primary
goal contain significant structure in these codes. Efficient encoders for the applicable
codes can take advantage of these structures to maximize throughput while keeping
resource utilization at a minimum.
Examples of such codes are LDPC codes for IEEE 802.11ac and DVB standards. In the
former case,  H2

-1  matrix consists of rotated identity submatrices, while in DVB-S2 it is
an upper triangular matrix (fig. 12). In all cases, the sparse matrix operation  H 1⋅p

T

between the sparse matrix H1 and the vector  m can be performed in a highly parallel
way,  which  can even be performed in  just  one clock  cycle.  For  802.11ac,  the  last
multiplication with H2

-1 can be performed in parallel with shift registers and back-forward
accumulation [16] in just a few clock cycles (depending on the rotated identity matrix
size in H2

-1). In a similar way, the structure of H2
-1  in DVB-S2 corresponds to a trivial

forward substitution operation [17]. Encoders have been proposed for such codes in
[16], [17], [18], [19] with performance in the multi-Gbps range.

Figure 12:  H2
-1 matrices for various LDPC codes: AR4JA code (left),DVB-S2 (right-top),

IEEE802.11ac (right bottom). Left image identity matrix stressed for emphasis.
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These highly parallel architectures however are not suitable for the codes considered in
the current  work.  Considering fig.  12, this is obvious. Indeed, the matrix for  AR4JA
codes (rate ½, k=1024 in the case depicted) consists of a 512×512 identity matrix on
the left and a 12×8 array of 128x128 dense circulants. This matrix is apparently more
complicated than the generator matrix of the code and there is absolutely no benefit if
this  algorithm is  followed.  Instead,  hardware  requirements are expected to  be even
larger because of the calculation of the (unnecessary)  omitted punctured parity bits.
Similar assumptions hold also for other examples of LDPC codes whose parity-check
matrix exhibits similar structure.
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2. CCSDS STANDARDS

The Consultative Committee for Space Data Systems was found in 1982 by the major
space agencies of  the world  and it  is  a  multinational  forum for  the development  of
communication and data systems standards for spaceflights.

CCSDS protocols, collectively known as Space Communication Protocol Specifications
(SCPS)  are  generally  based  on  well-known  Internet  protocols,  with  the  necessary
modifications  and  extensions  to  cope  with  the  specific  space  demands.  For  an
introduction  to  CCSDS space  communication  protocols,  reference  [20]  is  a  starting
point.

CCSDS standards follow a color code according to which, “yellow” publications start as
experimental  and are finally standardized as “blue” books, which is the color of  the
recommended publications.  Books colored “green”  are information reports,  generally
providing the rationale behind the adoption of each standard or other information of
general interest.

In this work, the focus is on the data link layer, in which four Space Data Link Protocols
(SDLPs) have been developed: 

• Telemetry  SDLP  (TM-SDLP)  is  used  mainly  by  spacecraft  systems  for  the
emission of sensor data and systems readings.

• Telecommand SDLP (TC-SDLP) for commands from a ground station (or another
spacecraft) to a spacecraft.

• Advanced Orbiting Systems SDLP (AOS-SDLP) is an extension to TM-SDLP for
bidirectional exchange of on-line information like audio and video.

• Proximity-1 Space Link Protocol for short-range bidirectional links between fixed
probes, landers, rovers, orbiting constellations and orbiting relays. Proximity-1 is
an altogether different protocol stack from the previous one (SCPS) but obviously
has a data link layer.

The data link layer's lowest functions are synchronization of upper layer Protocol
Data Units (PDUs), called  Transfer Frames (TF), randomization and channel coding.
These  functions  belong  to  a  sublayer  of  data  link  layer  called  synchronization  and
channel coding sublayer.  TM and AOS SDLPs share the same synchronization and
channel coding sublayer specification.

The excellent performance characteristics of LDPC codes led CCSDS to adopt them in
synchronization and channel coding sublayer of TM-SDLP and recently in Proximity-1
data link layer.

Two classes of LDPC codes were adopted for use in TM-SDLP: one class of codes
optimized  for  deep-space  applications  (AR4JA)  and  another  for  near-earth  (C2).
Interestingly  though,  one particular  code of  the AR4JA family  (k=1024 rate ½)  was
selected for Proximity-1 coding and synchronization sublayer.

In  the first  case, for  deep space communications,  good Eb/N0  performance is  more
important than high data rates. Communication data rates are lower and the bandwidth
expansion caused by lower channel code rates can be tolerated. Low error floors are an
important parameter defining the SNR performance of the code and for the codes of this
family, they achieve a fair combination of low threshold and low error-floor. The CCSDS
standards define nine LDPC codes for this  family,  sharing a common mathematical
description. The total number of nine codes is the result of the combination of three
block length sizes of 1024, 4096 and 16384 bits over three code rates: 1/2, 2/3 and 4/5.
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In the second case, for Near Earth communications, data is transmitted at hundredths of
Mbps in 375Mhz restricted band. Higher data rates are important in this case, together
with fast convergence of the (iterative) decoder. Error floor should be very low (<10 -10

BER) also. For these reasons, CCSDS adopted a (8176,7156) LDPC code for these
communications, henceforth described as C2 after [21].

The selected code rates are  1/2,  2/3,  4/5,  and approximately  7/8,  which  are  about
uniformly spaced by 1 dB on the rate-dependent capacity curve for the binary-input
AWGN channel [2]. Near rate 1/2, a one-percent improvement in bandwidth efficiency
costs about 0.02 dB in power efficiency; near rate 7/8, a one-percent improvement in
bandwidth efficiency costs 0.1 dB in power efficiency.

Within the AR4JA family,  the selected block lengths (k=1024,  4096 and 16384) are
about uniformly spaced by 0.6 dB on the sphere-packing bound at WER=10 -8. By
choosing to keep k constant among family members, rather than n (codeword length),
the spacecraft’s command and data handling system can generate data frames without
knowledge of the code rate. To simplify implementation, the code rates are exact ratios
of small integers, and the choices of k are powers of two.

Since  the  LDPC codes  implemented  in  this  thesis  are  already  a  standard  publicly
available in [22], the description that follows is limited to the necessary features for the
better understanding of the implementation section that follows. Further insight on the
performance characteristics of the adopted codes is provided in [2].

Real-life implementations of the proposed standards exist  and they are continuously
growing. NASA adopted the AR4JA for the MSL(Curiosity)  to MRO link.  Proximity-1
LDPC code was also the choice for all links of the Constellation program. Code C2 (rate
7/8) was the choice for LDCM (Landsat 8) and NOAA's geostationary satellite GOES.

2.1 AR4JA LDPC code family

TF (information block)  length for each of the 9 codes is given on Table 1. 

An important feature of this family is that the codes are punctured, meaning that not all
of the encoded bits are transmitted. Parity check matrices include additional linearly
dependent rows. 

Table 1: Codeword lengths for supported AR4JA codes (in bits 

Transfer Frame
length (k)

Codeword length (n)

1/2 2/3 4/5 

1024 2048 1536 1280

4096 8192 6144 5120

16384 32768 24576 20480

The  parity  check  matrix  of  this  code  is  a  juxtaposition  of  circulant  sparse  M×M
submatrices. The value of the parameter M is given on Table 2. 
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Table 2: Submatrix size and K parameter for supported codes

Rate 1/2 2/3 4/5 

Submatrix size M

Transfer Frame
length (k)

1024 512 256 128

4096 2048 1024 512

16384 8192 4096 2048

K parameter
2 4 8

The positions of 1 in the parity check matrix are provided by the standard as a formula
and they can be easily implemented in MATLAB. One pictorial  example of  a  parity
check matrix was displayed on fig. 10 for the k=1024 rate ½ member.

The generator matrix for each member of the family has the form G= [IMKW ] , where
IMK  is the MKxMK identity matrix and W is a dense matrix of size MKx3M. Matrix W

is calculated in systematic-circulant form, according to a methodology provided in [23].
The  punctured  bits  can  be  omitted  from the  generator  matrix  during  the  encoding
process and the matrix W can be simplified to MKx2.

The submatrix W is also an array of juxtaposed circulants. The parameter m describes
the circulant size of the generator submatrix W and its value is for all members m=M/4.
It follows that the submatrix W is consequently a 4Kx8 array of m×m circulants. Note
that parameter K is related only to the code rate and is independent of block length! For
better  intuition  into  the  structure  of  the  generator  matrix,  fig.  13  displays  the  W
submatrices for all k=1024 codes. Also, the code parameters defined so far are of high
importance  for  the  encoder's  design.  Table  3  summarizes  them  briefly.  These
parameters and images are important for the description of encoder operation.

Table 3: Summary of the most important parameters for AR4JA family

Parameter Description

k Transfer Frame block length

n Codeword length

M H matrix circulant size, depends on rate and k

m G matrix circulant size, equals M/4

K Describes G matrix vertical dimension as a function of m, equals k/M
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Figure 13: Submatrices W of generator matrices for codes of k=1024.

It  is  very  important  to  note  that  for  all  members  of  the  family,  there  are  always  8
circulant columns. Also note that the number of circulant rows depends only on the code
rate and not the block length (k). These notes will enable the development of a single
parametric VHDL model for the encoder to cover all the members of the family.
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2.2 C2 code for near-earth applications

According to the standard, (8160,7136) C2 LDPC code is an expurgated, shortened,
and  extended  version  of  a  basic  (8176,7156)  LDPC  code,  based  on  Euclidean
geometry.  The  important  features  of  the  code  needed  for  the  design  of  a  suitable
encoder are the following:

• A TF of 7136 bits is provided for encoding, to which 18 zero bits are prepended.
The reason for this is to ensure that incoming information block is divided by 8
and 16, which is the word length of many microprocessor buses.

• The 18 prepended zeros take part in the encoding process, but they are not
transmitted as a part of the systematic output of the encoder. To ensure though
that the output is also divided by 8 and 16, two filling zero bits are appended to
the final codeword to produce an 8160 bit output.

• Parity check matrix is quasi-cyclic: is consists of a 2×14 array of 511×511 sparse
circulants (image 13). Generator matrix in systematic circulant form is provided in
the standard. The non-systematic part of it is a 14×2 array of 511×511 dense
circulants.

Figure 14: Scatter chart of the parity-check matrix of C2 LDPC code

2.3 Frame Synchronization and CADU structure

At the receiving end, a method is required for discerning the boundaries of codewords in
the received stream of code symbols, or else decoding process would fail: the decoding
algorithm would be applied to the wrong sequence of received bits.

CCSDS standards require that LDPC codewords shall be synchronized with a specially
designed bit  sequence, called Attached Sync Marker (ASM). For AR4JA codes, this
sequence is 64 bit, while for C2, a 32-bit sequence has been adopted. Note that the 64-
bit ASM is the same for TM SDLP and Proximity-1.
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The ASM patterns in hexadecimal notation are the following:

AR4JA: 034776C7272895B0

C2: 1ACFFC1D

ASM sequence  is  prepended  to  the  encoded  codeword  to  form  a  data  unit  called
Channel Access Data Unit (CADU).

2.4 Randomization

The  correct  operation  of  the  receiver  requires  that  incoming  data  should  contain
adequate  transition  density  of  received  symbols.  Transitions  help  receiver  maintain
symbol  synchronization with  the coded symbol  boundaries in the received signal. In
addition,  short  periodic  data  patterns  generate  spurious  frequencies  which  impair
receiver's performance. The absence of randomization in the encoded data has been
the source of  several  unexpected problems with  the telemetry links of a  number of
projects  [20].  Consequently,  randomization  is  highly  recommended  by  CCSDS
standards, although not mandatory.

Randomization is assured through the bit-wise addition of the codeword data with a
pseudo-random sequence generated by the polynomial h(x )= x8+x7+x5+x3+1 .  This
polynomial  can be implemented an 8-bit  Linear  Feedback Shift  Register  (LFSR).  A
possible implementation of the LFSR provided in the standard is displayed on fig. 15
with a Fibonacci LFSR. At the beginning of each codeword, the LFSR is initialized to all
1s.  The  pseudo-random sequence  is  repeated  every  255  bits  until  the  end  of  the
codeword.

It is important to note that the ASM sequence defined in previous paragraph is already
optimized for transition density and should not be subject to randomization. Also, the
specified randomization sequence remains the same for all protocols.

Figure 15: A possible implementation of a CCSDS pseudo-random sequence generator[22].
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3. ENCODER DESIGN

Having provided the necessary background for the description of the implementation,
this  chapter  moves  on  to  the  implementation  itself.  A  single  encoder  top  entity  is
designed for all members of CCSDS LDPC codes and the corresponding diagram is
displayed on fig.  16.

The encoder receives a continuous stream of data and produces a stream of CADUs.
The receiving (slave) and transmitting (master) interfaces conform to AMBA 4 AXI4-
Stream protocol  [24]  and  are  built  according  to  the  simplest  possible  configuration
allowed by the protocol specification. 

Figure 16: Encoder's top level diagram

The data buses are Lm×La bits wide. The meaning of the parameters Lm and La is to be
clarified in this chapter. Valid data are framed by TVALID signal and a TREADY signal
signifies the availability of the interface. According to the specification, for a transfer to
occur both the TVALID and TREADY signals must be asserted at a rising clock edge.

No other signaling triggers the encoder to initiate the synthesis of a CADU other than
the presence of valid data on the slave bus and the boundaries between successive
TFs are not marked by any handshake signals but are kept by the encoder's counters
instead. For maximum performance, the master (output) interface should be busy 100%
of the time and this means that idle cycles should be imposed on the receiving (slave)
interface through the AXI-4 Stream handshake signals. The timing of input and output
data is displayed on fig. 17.

Figure 17: Timing of data on encoder's interfaces
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3.1 Encoder Architecture selection

In §1.3 the general encoder architectures were briefly presented. Among the proposed
architectures,  the one that  is  most  suitable for  the characteristics of  CCSDS codes
needs to be selected for implementation.

The  advantages  of  RCE encoder  over  the  straightforward  implementation  are  self-
evident and have already been amply described in [11] and [13].  Consequently,  the
straightforward  implementation  is  not  subject  to  further  investigation.  Following  the
analysis for iterative encoders in §1.3.4, they are also excluded from investigation. The
choice  is  to  be  made among the  two  remaining  options,  namely  the  RCE and RU
encoder, based on the combination of resources and the performance each method can
achieve. This analysis is similar to the work in [13], with the difference that a real AR4JA
code is taken as an example here instead of the (small) example code considered in
that paper. In addition, this work focuses on FPGA implementation possibilities.

3.1.1  RCE encoder resources

For  all  members  of  the  AR4JA  family,  the  generator  matrix  is  composed  of  eight
circulant columns for which eight RCEs similar to those displayed on fig. 8 can be used.
Each RCE is implemented with m flip-flops (F/F), m 2-input AND operations and m 2-
input  XOR operations.  The circulants  are  implemented by m function generators  of
ceil(log2(k/m)) inputs.  For  the  interconnection  of  the  RCEs,  a  negligible  amount  of
resources are needed. In particular, 8 2-input multiplexors to select the desired input for
the RCE (switches in fig. 8) and a small amount of control logic to activate them, not
taken into consideration. The necessary resources are listed on Table 4.

Table 4: Bill of materials for RCE-based encoding

Resource # needed Example for k=1024 rate 1/2

AND 8xm 1024

XOR 8xm 1024

F/F 8xm 1024

ceil(log2(k/m))
input function

generators
8xm 1024 (3-input)

2-input
multiplexors

8 8

3.1.2  Iterative encoder resources

The calculations based on Richardson-Urbanke work [12] can be executed according to
the flow diagram of fig. 18 for maximum parallelism. The partition of parity-check matrix
into submatrices is repeated from figure 9 for easier understanding.

The encoding process entails  one dense matrix  multiplication  and two  sparse.  The
partial products are added in the end. For the dense matrix multiplication in the first
stage, RCE encoders shall  be employed.  The dense matrix J is quasi-cyclic:  it  is  a
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4×(k/m)  array  of  m×m  circulants.  Following  an  analysis  similar  to  the  previous
paragraph, the resources for the RCEs corresponding to the column J stage of Table 5
are calculated. 

Figure 18: Iterative calculation of parity bits

Sparse matrices multiplications can be efficiently executed by the circuit of figure 11.
For  each circulant  of  size m this  configuration needs 1 XOR operation,  m F/Fs for
implementation of the shift register, 1 m-input encoder and m OR operations between
the elements of the shift registers to multiplex the input to the F/Fs between the value of
the previous register and the input from the decoder. The last requirement for the shift
registers was not taken into account in [13]. The control logic for x circulant rows can be
implemented by a function generator of ceil(log2(x)).

Matrix A is an 8×4K array of m×m circulants. The first 4 rows are always zero, so the
function generator required for the control logic can be simplified to 2 inputs. Column.

Similarly, matrix B is an 8×4 array of m×m circulants. Resource reuse between stages A
and B cannot be established for pipeline operation, so independent hardware should be
allocated to these two stages. Table 5 summarizes the results.

A  comparison  between  the  two  matrices  justifies  the  assumption  that  the  iterative
encoder –at least at this form- is not an appealing proposal. The simplification of the
functions generators and the reduced number of AND and XOR functions of the iterative
encoder implementation are balanced by the increased number of flip-flops, the addition
of the OR functions amidst the elements of the shift registers and the large multiplexors
and decoders Another important drawback of the iterative encoder is the higher latency
introduced.  B  stage  operations  cannot  start  before  all  bits  of  the  TF  have  been
processed by stages A and J.

As stated in [13], modifications could be made to the standard's code design without
significant impact on the BER performance of the code. This however is an area of
considerable interest and research of information theory and future developments are
heavily anticipated.

In this thesis, the design based on the RCE is selected for the implementation of the
CCSDS  LDPC  codes.  Optimizations  of  the  basic  design  are  presented  in  next
paragraph
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Table 5: Bill of materials for iterative encoding

Resource # J stage #A stage #B stage
TOTAL (example for

k=1024 rate 1/2)

AND 4xm - - 512

XOR 4xm 4xK 32 512+8+32=552

F/F 4xm 4xKxm 4xm 512+1024+512=2048

1 input
function

generators
4xmxK - - 1024

3 input
function

generator
- - 4 4

2 input
function

generators
4xK - 8

2-input
multiplexors

k/m - - 8

m-input
multiplexor

- 4xK 4 12 (128-input)

m-input
decoder

- 4xK 4 12 (128-input)

OR - 4xKxm 4xm 1024+512=1536

3.1.3  Parallel RCE implementation

The RCE described so far (fig. 8) is capable of serial (one bit at a time) output of the
calculated parity bits. A parallel output of a number of Lm bits can be produced with a
modification  of  the  basic  RCE  according  to  fig.  19.  In  the  image,  Lm=4  for  easier
understanding. Note that shift operations have a step of Lm bits to the right, instead of
one in the shift register of figure 8.

Alternatively, the input at each register can be conceived as a function generator of the
Lm information bits and the  log2(k/m) bits of each function generator fi. It  follows that
increasing the Lm parallelism leads to larger combinational paths in the design but at the
same time it increases throughput.

Another source of parallelism can arise from the structure of the generator matrix. For
all members of the family, it consists of k/m circulants of size m×m each. Two or more
circulants  (generally  La)  can  be  processed  at  the  same  time,  provided  that  the
corresponding input information bits are available. The partial products of the multiple
circulants  are  XORed.  Figure  20  is  a  simplified  diagram  showing  this  possibility.
Different colors are employed to show the parts of the generator matrix for which each
branch of AND-XOR operations is responsible.

The two sources of parallelism are are thus described by two corresponding degrees:
Lm describes the successive bits parallelism and La multiple circulants parallelism.
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Figure 19: A RCE module for parallel processing of Lm=4 bits of mxm circulants.

Figure 20: Simplified view of a parallel RCE with both sources of parallelism: La and Lm.
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Increasing  La parallelism comes with  the  advantage of  simplification  of  the  function
generators (fi, gi, hi,  ii  in fig. 20) for the values of the generator matrix. In the example
given in this figure,  the 3-input functions generators necessary for 8 rows of circulants
of the generator matrix are simplified to just 1-input. Since this simplification affects all
the 8xm functions generator for all the parity bits of the code, considerable amounts of
resources can be saved, leading to more efficient encoders.

On the other hand, the information bits corresponding to a number of La circulants need
to be available for the RCE operation to begin. In cases where the information bits
arrive at the encoder as a stream of data, buffer structures are necessary to save them
until the required amount for processing has arrived. These buffer structures and the
control logic required for their operation place demands on the resources budget of the
design. In fact,  the amount of  memory required is not just mLa bits,  but double this
(2×m×La)  for  uninterrupted  operation.  In  addition,  the  commencement  of  parity
calculations for a given TF has to be delayed for at least (La-1)×(m/Lm)/La clock cycles,
introducing an equal amount of latency.

The product of these two sources of parallelism (Lm×La) can give the total combined
degree of parallelism of the encoder which describes the total number of input bits to
the encoder. Generally, this number should be a power of two, so as to match the width
of  computer  buses.   For  optimal  performance,  calculated parity  bits  should also be
output in the same number. For La>1 and optimal performance (i.e. LaxLm bits output), it
is not possible to just shift out the calculated parity bits, like the encoder of fig. 8 or
fig.19. The La×Lm output parity bits are selected each time from a multiplexor shown in
fig. 20. The multiplexor and associated control logic are another source of complexity as
a result of an encoder selection with La>1.

For AR4JA codes, the encoders described in this thesis implement every reasonable
combination of La and Lm parallelism for a given amount of total  parallelism (La×Lm),
leading  to  different  compromises  between  latency,  speed  and  resource  utilization.
These results are provided in a subsequent chapter. The degrees of parallelism are
design  parameters  statically  defined for  each individual  implementation.  An obvious
limitation in the value of La is that it cannot exceed the number of the circulant rows of
the generator matrix. For example, for all  rate ½ AR4JA codes it cannot exceed the
value of 8.

For C2 code, the circulant size is 511 bits. Any value of La parameter other than one
would impose very high latency and at the same time require a large number of memory
for FIFO and PRCE structures, so it avoided and only the case of La=1 is considered for
this code. Lm parallelism is constant at 16 bits for this encoder.

3.2 Components Description

This  paragraph  describes  the  implemented  encoder  a  block  diagram  of  which  is
displayed on fig.  21. The parallel  RCE of fig 20 has been incorporated and can be
recognized in the figure.

The  Control  and  Buffer  unit  implements  the  receiving  interface  and  accumulates
incoming data until the necessary amount has arrived for RCE operation to start. For a
given value of  the La parameter,  the parallel  RCE of  fig.  20 is  not  able to  operate
(efficiently) until all the La branches of the PRCE tree have data to process. In particular,
(La-1)m+LaLm bits need to have arrived to the Control and Buffer unit for the calculation
of parity bits to begin. The Lm bits of the La circulants concurrently being processed by
the  parallel  RCE are  applied  to  it  through  s_feed  signal.  The  shift  registers  of  the
encoder  are controlled by two signals issued from the Control  Unit:  mac_en  signal,
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which  is  the  clock  enable  of  the  corresponding registers  and  reset_prce,  which  re-
initializes the contents of the registers to all zeros after parity calculation and export of
each CADU.

Figure 21: Encoder Block Diagram.

At  the  same  time,  incoming  information  bits  form  the  receiving  interface  form  the
systematic part of the CADU. The systematic output, in which the ASM sequence is
included, is multiplexed with the parity bits by the MUX at the upper part of the image, to
select the output vector.

If randomization has been selected, the bits of the CCSDS pseudo-random sequence
generator are XORed with the output of the MUX. The operation of the randomization
circuit is controlled by the rand_en signal.

Output  data  are  valid  during  either  the  systematic  or  during  parity  output  where
sys_valid  and  par_valid  signals  are  correspondingly  asserted.  The  master  interface
validity signal is consequently the result of the OR operation on these signals. Incoming
TREADY_MA signal on the master interface is the clock enable of the output registers
of the encoder and is also routed to the Control Unit to halt the operation of the encoder.
In  fact  TREADY_MA  becomes  directly  (through  a  gated  combinatorial  path)  the
TREADY_SL signal of the receiving interface, as indicated by the OR gate in the control
unit in the above diagram. In cases where the encoder is to be used in an embedded
system where this arrangement could significantly jeopardize performance, the circuit of
fig. 22 could be used. In applications considered in this work however, no critical paths
were presented along this path and the this solution was not necessary.
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When the encoder is ready, TDATA and TVALID signals from the transmitting unit are
selected from the multiplexors. Registers D1, D2 keep the last value of these signals
when the output from D3 is asserted. When TREADY_SL is de-asserted,  the values
saved by the delay elements D1, D2 are maintained in the registers. During the first
cycle after TREADY_SL assertion, they are provided to the corresponding encoder's
inputs. The timing diagram of fig. 23 is an effort to clarify this. Only TDATA is displayed
but the timing of TVALID is identical.

Figure 22: A solution to the non-registered output TREADY_SL

Figure 23: Timing example of the proposed solution

Figure 21 also describes the simplifications allowed in the case where La parameter is 1.
In particular, the PARITY MUX can be omitted in that case and Lm parity bits can be
simply shifted out of the shift  registers, as described in previous paragraph, to form
parity signal.

Each FUNCTION COLUMN block in the figure describes m function generators for one
branch of the parallel RCE each. For example, regarding Figure 20, all f i functions are
described by one such block.

The description of the building blocks of the encoder continues with the randomizer and
control and buffer units.
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3.2.1  RANDOMIZER unit

Randomizer unit implements the polynomial mentioned in § 2.4. Since the output of the
encoder is not one bit at a time but La×Lm, a parallel implementation is needed. The
solution adopted for this design is displayed on fig. 24.

Figure 24: Implementation of a parallel CCSDS pseudo-random sequence generator.

In the figure, the LFSR at the bottom implements the polynomial, with the output coming
from the rightmost register (numbered 0). A number of N bits of the pseudo-random
sequence can be obtained if the bit sequence in the LSFR is expanded to an array of N
vectors of 8 bit each according to the following algorithm:

• Considering  an  array  of  vectors,  lfsr_array,  the  first  element  of  the  array
(lfsr_array(0)) is the LFSR itself.

• Foreach vector from 1 to N, the bit position i takes the value of the bit position
i+1 of the previous vector, except from bit position 0.

• Bit  position  0  takes  the  value  of  the  XOR  operation  corresponding  to  the
polynomial over the bits of the previous vector.

It  is evident that the for the first eight bits of the produced result no additional XOR
gates are needed.

3.2.2  Control and Buffer Unit: the general case

The  general  case  for  considered  first  is  the  control  unit  for  an  encoder  with  a
“reasonable”  value  of  La>1.  For  such an encoder,  the  latency introduced by the  La

parameter is adequately small so that the next TF arrives to the encoder when it (the
encoder) outputs the parity bits of the current TF. This is the case depicted on fig. 17
and the corresponding part of fig. 25. Note the difference between the term Latency in
fig. 17 and Systematic Latency in fig. 25. The former was introduced during a high level
description of the encoder and refers to the latency from receiving unit's perspective,
while the latter is the number of cycles it takes to begin the output of the systematic part
of the CADU. Systematic Latency is caused by the La parameter and it is the time it
takes to accumulate enough data for the operation of all branches of the parallel RCE.

D. Theodoropulos  38



FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Obviously this latency does not exist for La=1. Also shown in the figure is the case of
very high latency, such that the next TF arrives to the encoder while the systematic
output of the current TF has not finished. This situation calls for a different FSM of the
control unit examined later.

Figure 25: Timing of data on encoder's interfaces for the general and high latency cases

Figure 26: Control and Buffer Unit

Apart from the generation of all control signals for the encoder's operation, the control
and buffer unit includes also the necessary memory structures to buffer incoming data
on slave interface.  The first  such structure is  a FIFO for  the systematic  part  of  the
output. Until  enough data have gathered for RCE operations for all  branches of the
parallel RCE, incoming data arriving at the encoder at a rate of LaLm bits in every cycle,
are queued in a FIFO for subsequent output. The size of this FIFO is therefore such that
all  bits arriving during the latent cycles can be stored. Since the Systematic Latency
period is (La-1)(m/Lm)/La clock cycles, the FIFO should accommodate for this number of
words of LaLm bits.

The second memory structure necessary for  the Parallel  RCE operation rearranges
incoming “packets” of LaLm bits into pages of m bits each, where each page contains
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input bits referring to the same circulant of the Generator matrix. Due to L a parallelism,
Lm  inputs bits of  La circulants are concurrently processed by the PRCE. Considering
uninterrupted operation of the sender, one clock cycle after the  La-1  of these pages
have been filled with data,  LaLm bits for the last page are received by the encoder. This
condition  fulfills  the  prerequisites  for  commencement  of  RCE  operations.  For  fully
pipelined operation however, the double amount of memory is required for the structure
to work as a double buffer.  In the actual implementation, resource sharing between
these two memory structures exploits the same resources for both memories.

Control signals generation and routing of data to the described memory structures are
orchestrated by a FSM. The top-level  diagram of  the unit  with  a simplified pictorial
representation of its constituent structures is provided on fig. 26, while fig. 27 displays
the transition diagram of the FSM. The diagram of fig. 27 does not intend to provide a
detailed  description  of  the  FSM,  but  to  assist  in  the  better  understanding  of  the
functionality  of  the  control  unit.  All  the  hardware  for  the  Control  and  Buffer  Unit  is
described by a FSMD model at a high level of abstraction and amply documented in-line
with the code.

Figure 27: Simplified state transition diagram of the FSM of the Control and Buffer Unit

3.2.3  Control and Buffer Unit: La=1.

Considerable simplifications can be made to the Control and Buffer unit of the previous
paragraph in the case where La parameter is 1, the most important of them being the
elimination of the two memory structures (FIFO and PRCE memory), but also the FSM
can be considerably simplified. 

The FSM in this case becomes that of fig. 28 and as expected, it comprises fewer states
than that of fig. 27. SYST_BUFFERED state is not necessary here. Another important
difference of this simplified FSM has to do with the behavior of the slave interface.
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During IDLE and ASM_OUT states, the encoder keeps TREADY_SL signal in low state.
A sender unit however should keep the TVALID_SL signal high if it has data to send
and this is in fact the event that triggers IDLE→ASM_OUT transition. This behavior is
compliant with the protocol specification, according to  §2.2.1 of [24], which explicitly
allows a slave to wait for TVALID to be asserted before asserting the corresponding
TREADY. Another important difference is that contrary to the previous case, input is
inhibited during ASM output.

At the end of HALT state, when all parity bits have been transmitted through the master
interface, the presence of an asserted TVALID signal on the slave interface initiates a
transition directly  to  the ASM_OUT state,  instead of  IDLE.  Since the FSM receives
indication that the sender has more data to send (a new TF), one cycle of latency is
saved by this transition. Like before, input from sender is inhibited by a de-asserted
TREADY_SL signal until the FSM reaches SYST state.

Figure 28: Simplified state transition diagram of the FSM of the Control and Buffer Unit for La=1

3.2.4  Control and Buffer Unit: High latency case

The latency caused by high values of La parameter calls for  a separate FSM which
should handle the co-existence of two consecutive TFs in the encoder. The memory
structures size (FIFO and PRCE memory) are the same as the general case, but extra
counters are needed to index the boundaries of the two Transfer Frames into these
structures. 
The FSM is more complicated and its state transition diagram is provided in fig. 29.
Figure 30 displays the state of the FSM on the timing diagram of successive CADUs.
During ACCUM state in this case, parity data of the previous CADU are transmitted on
the master interface, while the encoder is receiving and buffering the current TF. The
machine exits  SYST_BUFFERED state  when the  number  of  data in  the systematic
FIFO structure indicate that the necessary number of latent cycles have elapsed. If a
new TF has arrived on slave interface, the FSM moves to ACCUM_OLDSYS state in
which  the  current  and  previous  TF  co-exist  in  the  memory  structures,  while  the
systematic bits of the previous CADU continue to be transmitted by master interface.
Special counters record the boundaries between the two TFs in the memory structures.
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When all the systematic bits of the previous CADU have been transmitted, the machine
switches to ACCUM state in which the calculated parity bits of the previous CADU are
transmitted on the master interface and at the same time the new TF is received. The
ACCUM state is also the state at  which the machine moves when no new TF has
arrived  after  SYST_BUFFERED  state  and  consequently  the  special  counters  for
separation of two TFs in the memory structures are not necessary.
The condition that needs to be satisfied so that the high latency FSM is employed is that
latency should be higher than the sum of the number of cycles needed for systematic
output and ASM sequence.

Figure 29: Simplified state transition diagram of the FSM of the Control and Buffer Unit for high
latency case.

Figure 30: Timing diagram of the FSM states for high latency case.
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3.2.5  Control and Buffer Unit: Very small Latency

A fourth version of the FSM is necessary when the latency is so small that it equals the
number of cycles necessary for the transmission of the ASM sequence. This situation
itself and the corresponding FSM transition diagram bear significant resemblance to the
case of La=1: although FIFO and PRCE memory structures exist in this case. Valid data
on slave channel trigger the INIT→ ASM_OUT transition but contrary to the La=1 case,
TREADY_SL is asserted during ASM output and the incoming data are stored to the
memory structures. Similar behavior to the La=1 FSM is exhibited by the transitions from
the HALT state: if TVALID is asserted at the end of parity output indicating that a new
TF is arriving on slave interface, the machine moves to ASM_OUT state, while in the
opposite case it moves to INIT.

Figure 31: Timing diagram of the FSM states for very low latency case.

3.2.6  Control and Buffer Unit: no HALT state

It  is  possible  for  some configurations  that  the  latency has such value that  it  is  not
necessary to have a state such as HALT, in which input is inhibited and output comes
from the calculated parity bits of the PRCEs registers.

Indeed, if latency has such a value that the parity output is complete at the exact cycle
in which the encoder begins to output the ASM sequence for the next TF, the HALT
state would be a source of suboptimal operation by inserting an idle cycle on the output
bus. The FSM therefore of the control and buffer unit can be simplified according to the
simplified diagram of fig.32.

The necessary condition for use of this FSM is that the sum latency plus two cycles (to
account for the input-output buffers of the encoder) is greater than the sum of parity
output cycles plus ASM sequence cycles. This latency value is an intermediate stage
between  the  general  case  and  the  high  latency  case  documented  in  previous
paragraph.
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Figure 32: Timing diagram of the FSM states for the case of no HALT state

3.2.7  Control and Buffer Unit: C2 code

For C2 code, the circulant size is 511 bits. Any value of La parameter other than one
would impose very high latency and at the same time require a large number of memory
for FIFO and PRCE structures, so it avoided and only the case of La=1 is considered for
this code. 

Another  complication of  this  code is  that  the circulants size is  not  a  power  of  two.
Despite the manipulation described in §2.2 to make the input and output block lengths
divisible by 8 or 16, the multiplication of the input vector with the generator matrix is
problematic at the boundaries of the circulants. For the encoders of this work, input bus
(slave interface) width is equal to LaLm, or just Lm since La=1 and Lm is a power of two.
To mitigate this, L. Miles and S. Whitaker in [25] propose a method of packing input
data on a 16-bit input bus in groups of 21 bits and then unpacking them to groups of 7
bits. Each multiplication operation is performed against 3 such unpacked groups of data
(21 bits) and an equal number of elements of the generator matrix. For any circulant,
the  first  24  3-tuples  are  multiplied  with  the  corresponding  elements  of  the  current
circulant.  Since 24×21=504,  at  the boundaries of  the circulants,  the first  of  these 3
groups is multiplied with the last 7 bits of the current circulant and the other with the
corresponding elements of the next circulant.

The  disadvantage  of  this  solution  is  that  although  multiplication  operations  are
performed on 21 bits  at  the same time, data flow into the encoder in a 16-bit  bus,
introducing thus a number of idle cycles in the operation of the MAC modules. This is
apparently a waste of resources.

Another source of sub-optimality in the proposed encoder is that the 18 zeros which are
prepended to the Transfer Frame before encoding according to the standard have an a-
priori known result, since the result of multiplication with zero is always zero. An optimal
encoder does not need to waste calculation cycles for these prepended bits but should
directly incorporate the effect they have on the final codeword, knowing that they always
have 18 zeros as the result. The control unit of the C2 encoder proposed in this work is
designed according to this optimizations.
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Figure 33: Timing diagram of the FSM states for C2 code.

The value of parallelism selected in this work is constant at 16 bits. Mismatch at the
boundaries of each circulant occurs at every 32th group of 16 bits of the information
block sequence. To handle this, the encoder of this work utilizes a different technique. A
variable length buffer is used which saves a number of bits from the current input. Let N
be the size in bits of this buffer at a given instance. Instead of sending the 16-bit input
sequence to the PRCE for parity calculation directly, the control unit sends the N bits
saved in the buffer in the previous cycle and the 16-N bits of the current input sequence.
This value increments at the boundary of each circulant to accommodate for the 1 bit by
which each circulant is short of 512, which is the number of bits received after 32 cycles
of input. Especially for the last of these 32 groups of incoming information block bits, the
control unit adds a zero to the sequence as the 16 th bit, before incrementing the value N
of the buffer. The 16-bit input sequence is thus converted to a 15-bit one, making the
total number of bits corresponding to a circulant equal to 31×16+15=511.

The encoder saves one execution cycle by truncating the 18 prepended zeros to the
code. For the first 16 of these 18 bits, the technique explained in next paragraph is
employed, which does not require special handling from the control unit. For the last 2
of these 18 bits however, it is necessary to initialize the size of the input buffer to 2.

At the last (14th) circulant, the number of the buffer has reached the value 15, meaning
that an extra cycle is needed for the buffer to empty its contents upon the PRCE. Also,
after parity output, the two appended zeros are appended to the CADU.

The simplified state diagram of the FSM for the control unit of this encoder is provided in
fig. 33. Similarly to the previously described FSMs,  valid data on slave interface initiate
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a CADU. Note that for performance reasons, the ASM output is controlled by two states,
the difference between them being the assertion of TREADY_SL signal by the last, so
as to allow the sender transmit the next group of 16 bits in the next cycle (in SYST
state). The SYS_EMPTY_BUF state is introduced in order to provide an extra cycle in
which the bits stored in the buffers used for the alignment to the boundaries of circulants
are all consumed. Otherwise, the FSM is similar to that of La=1 for AR4JA codes.

3.2.8 Function generators

The function  generators  for  AR4JA codes  simply  provide  the  first  row of  the  code
circulant based on the value of  “row” input which selects the current circulant. These
parameters can be easily calculated following the methodology in [22] using a software
like MATLAB. Note also that if La parameter is equal to the number of circulant rows in
the  generator  matrix  (e.g.  8  for  k=1024 and rate  ½),  these function generators  are
simplified to constants.

For C2 codes however the situation is complicated by the fact that the selection of the
row has to serve two more functions described here.

• In the steps described in previous paragraph for the alignment of the 16 bit input
to the boundaries of 511-bits circulants, the last bit of the 16 bits applied to the
PRCE during the 32th multiply operation is forced to zero, in order to describe a
15-bit multiplication, since the result of multiplying with zero is also a zero. The
shift  operation  however  executed by the shift  register  is  always  16-bits.  This
discrepancy can be compensated for by a left shift by one position of the parity
register bits. Since however the circulants of C2 code are right circulants, it is
equal to providing to the function generator the last line of the next circulant,
instead of the first, because he last line is the left cyclic shift of the first.

• Following  the  same  reasoning,  the  effect  of  the  multiplication  of  the  18
prepended zeros is  simply a cyclic  shift  operation, which  is  equivalent  to the
cyclic rotation of the circulants. Taking into account the last shift operation of the
shift register during parity calculations, which is equivalent to a rotation by 16 of
the circulants, rotation of the circulants by two positions to the left is what it takes
to simulate the multination by zero. 

In short, the combined effect of the above factors is that for the first circulant, line 510 is
the value of the function generator, for the second line 509 etc. Shift operations are thus
executed by proper selection of circulants rows, without adding extra complexity to the
encoder. 
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4. IMPLEMENTATION

4.1  Code design and parametrization

The  encoder  components  analyzed  in  previous  chapter  are  described  in  VHDL.
Provided code is  amply documented and all  language structures  are  justified using
state-of-the-art Doxygen documentation system and in-line comments.

Encoder  parameters are globally defined in corresponding package file (DEFS.vhd),
with the purpose of being easily modifiable from a central location. All these parameters
are statically defined for a given implementation of the encoder (i.e. they cannot change
after synthesis with a configuration register for example).

For AR4JA, these parameters are the following:

• Desired rate: selection among R12, R23 and R45

• Transfer  Frame length (k).  Valid  values for  CCSDS AR4JA LDPC codes are
1024, 4096 and 16384. All members of the code share the same mathematical
description and consequently  the  encoder  could  operate efficiently  for  all  the
specified block lengths. For practical reasons however having to do with software
synthesis, implementation and simulation runtimes, only 1024-bits block length is
used for  this  implementaion.   The only  requirement  for  addition  of  the  other
members of AR4JA family is the addition of the corresponding VHDL files to
describe the function generators (first rows of circulants) of these members. The
MATLAB scripts to produce these matrices are provided, along with the matrices
themselves. For k=16384 however, it was not possible to even execute them due
to  high  computer  memory  requirements.  A  limited  simulation  of  the  encoder
operation for k=4096 is however included in the accompanying code.

• Circulants size (m). It is defined in the specification but a small memo is also
provided in-line with the code.

• Parallelism parameters La, Lm. According to previous chapter, they also define
the width of the encoder's interfaces. For the purposes of examining the impact
each parameter  has on the encoder's  performance features,  all  combinations
resulting inLa, Lm=16 and 32 where used and extensively simulated.

• Randomization option. Set to true if the highly recommended randomization is
selected.

Based  on  the  selections  made  on  these  parameters,  the  encoder's  top-level  entity
selects  the  suitable  components  for  the  specific  implementation.  This  is  especially
important for the function generator entities, which are different for each member of the
family, as well as for the different versions of the FSMs of the control and buffer unit
detailed in §3.2. 

For C2 code, there are no modifiable parameters in the package file, other than the
randomization option. Code parameters are constant and the control unit is designed
specifically for Lm=16.
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4.2  Core synthesis

The VHDL code was synthesized targeting a Xilinx Virtex 5  XC5VLX110T  FPGA on
Xilinx software for each configuration. Synthesis should run without problem, provided
that the selected parameters defined in package files are valid.  Block RAM resources
were excluded using suitable synthesis options in order that code could be portable to
different FPGA vendors.

4.3 Performance

The  encoders  synthesized  previously  are  implemented  on  the  FPGA,  using  a
constraints file specifying a target clock speed. Performance and resource utilization
and maximum speed are extracted from post place and route reports and listed in table
6  for all  the combinations of La and Lm giving 16 as the product.  Code rate ½ and
k=1024 is considered and minimum run-time was set as the design strategy.

For  AR4JA  codes,  important  results  can  be  deduced  concerning  the  selection  of
parameters La and Lm and the impact the have on performance and resources budget of
the encoder,  for a constant total  parallelism product of  La,  and Lm.  As La parameter
increases,  more latency is  introduced.  Because of  the pipelined operation however,
there is no practical impact on the throughput of the encoder. From the results on the
table, it is apparent that the reduced complexity of the function generators for higher
values of La parameter is reflected on the diminishing LUT utilization. On the other hand,
higher latency is introduced and the demand for larger memory structures of the control
and buffer unit places higher demands on slice registers. The reduce complexity of the
function generators also leads to better timing performance, which can considerably
increase throughput.

For La=1 case for both codes (AR4JA and C2), the only source of latency is from the
input and output buffers.

The critical path in almost all cases was through branches of the PRCE tree, starting
either from the memory structures (s_feed signal on fig. 21) or the FSM state logic to
define the value of function generators (row  signal on same figure) and towards the
parity registers.

Note that the parameters leading to the employment of the high latency case control
unit  appear  to  result  in sub-optimal  in  terms of  resource utilization and speed.  It  is
possible that the extra logic necessary to handle the co-existence of two TFs at the
same time in the control and buffer unit may significantly burden the design.

The control unit without HALT state described in previous chapter is not used in this
case, since targets other cases (LaLm=32).
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Table 6: Resouces and speed

Parameters Slice

Regs

Slice

LUTs

Occ.

Slices

Avg.

fanout

Max.

Freq.

(MHz)

Systematic

Latency

(cycles)

Control  unit

used1

AR4JA

1k

r=1/2

La=1, Lm=16 1120 7844 2252 5,77 155,84 2 CU LA1

La=2, Lm=8 1657 5164 1496 4,98 180,96 10 GENERAL

La=4, Lm=4 2173 3250 849 6,05 191,24 26 GENERAL

La=8, Lm=2 2176 3258 849 4,43 217,16 58 GENERAL

AR4JA

1k

r=2/3

La=1, Lm=16 623 4911 1357 5,61 160,95 2 CU LA1

La=2, Lm=8 884 4785 1753 5,93 180,83 6 GENERAL

La=4, Lm=4 1144 3808 1497 5,57 196,31 14 GENERAL

La=8, Lm=2 1661 3134 870 5,97 241,25 30 GENERAL

La=16, Lm=1 2696 3855 1009 6,51 211,19 62 NEXT IN SYS

AR4JA

1k

r=4/5

La=1, Lm=16 359 2453 780 5,57 196,46 2 CU LA1

La=2, Lm=8 495 3179 930 5,93 211,37 4 LAT.EQ. ASM

La=4, Lm=4 632 2625 728 6,09 251,70 8 GENERAL

La=8, Lm=2 888 2386 644 5,70 271,89 16 GENERAL

La=16, Lm=1 1409 2583 696 6,19 241,96 32 NEXT IN SYS

C2 La=1, Lm=16 1159 9789 2998 5,62 190,91 2 C2

1. Control unit used based on the configuration:

CU LA 1: La=1 case, GENERAL: default unit, NEXT IN SYS: high latency case when next TF arrives during systematic output of

the current, LAT. EQ. ASM.: unit used when latency is equal to the number of cycles necessary for ASM sequence output. C2:

unit for C2 code
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5. VERIFICATION AND VALIDATION

5.1 General

The first step towards verification of the core is the formulation if the requirements which
the encoder should be able to satisfy.

The requirements therefore for the encoders are the following:

• Produced CADUs should comply with the CCSDS definitions.

• Input and output interfaces should comply with the AMBA AXI-4 Stream protocol
for transmission of an infinite continuous aligned stream.

• The number of idle cycles on output (master) interface should be minimal. As
already described in §3.2, for all cases of AR4JA codes there are no idle cycles
at all. For C2 code however, just one idle clock cycle per CADU is introduced
between the systematic and parity output for reasons detailed in §3.2.6.

The verification plan for this work includes the following two actions:

• Validation through functional simulation of the HDL description compliance to the
previously cited requirements are met. Code coverage metrics are expected to
report 100% coverage in all cases and for all types of coverage. This action is
accomplished by a suitable testbench and a tcl script which automates the entire
procedure.

• Validation of the correct operation of the final implemented netlist. The encoder
will be embedded into a suitable system which is then going to be implemented
in the actual hardware. The purpose of the integrated system is to provide the
necessary  stimuli  and  record  the  encoder's  responses,  all  these  while  the
encoder operates at the specified clock frequency. Encoder's responses will be
examined to verify correct operation on the actual hardware.

Details of these two actions are elaborated in following paragraphs. The results provide
strong evidence that the encoder satisfies the requirements.

5.2 Functional simulation

For  the functional  simulation  of  the code,  stimulus  data  are  needed.  Two MATLAB
scripts  (one  for  each  code  family)  generate  text  files  with  the  hexadecimal
representation of a number of TFs, making use of MATLAB's rnd function. The MATLAB
scripts also generate the expected CADUs which the encoders should produce with the
specified input vectors.

Simulation  is  executed  in  Mentor  Graphics  Modelsim  by  a  calling  tcl  script,  which
performs the following operations:

i. Compiles  the  necessary  sources  for  the  particular  configuration  selected  in
definitions  package.  For  C2  code  this  is  only  the  inclusion/exclusion  of  the
randomizer entity but for AR4JA it has to select also a number of other files, like
the  suitable  control  and  buffer  unit  corresponding  to  the  selected  La and  Lm

parameters or the output multiplexor, excluded for La=1.

ii. Selects  and  compiles  the  suitable  testbench  among  a  range  of  options
corresponding to the different control units described in §3.2 and executes it with
coverage option on. Coverage data and simulator's console output are logged in
a  suitable file.  As explained later  in  this  paragraph,  during its  execution,  the
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testbench  records  the  encoder's  responses  to  the  applied  test  vectors  into
suitable files.

iii. Saves coverage database and generates coverage (text) report.

iv. Compares  the  files  generated  by  the  testbench  and  contain  the  encoder's
responses with the expected values calculated in advance with MATLAB. If any
differences are found,  an error message is displayed on the console.

For  AR4JA codes,  the above process needs to  be repeated for  a  number of  La-Lm

combinations  over  different  family  members.  Consequently,  the  above  steps  are
included in  a  tcl  macro,  which  is  then called for  each parameters  combination that
needs to be verified. For C2 code of course, the parameters are static and there is no
need for a macro. The provided tcl scripts are documented extensively. In all cases,
simulation logs are automatically saved in corresponding text files.

Simulation for k=4096 is provided from a separate location, using a different VHDL file
for the encoder and uses a significantly smaller test dataset, not always leading to code
coverage. The reason for this is the prodigious amount of simulation time that would be
required if the two block lengths were simulated with the same number of TFs. This
however does not compromise the validity of the simulation results, since code family
members  across  different  block  lengths  share  exactly  the  same  mathematical
description.

5.2.1  Testbench description

The testbench has to apply the stimuli created in advance to the Unit Under Test (UUT),
while at the same time do this in such way that:

• Interface protocol operation (AXI4-Stream) is verified.

• 100% code coverage is ensured.

• Optimality of the encoder as described in the requirements formulation is verified 
as well.

In addition, UUT responses are recorded and written in a file and coverage data are
collected.

Based on the above requirements, the testbench comprises the following parts:

i. Instantiate and initialize UUT.

ii. Full  throttle  operation  validation.  The  testbench  validates  that  the  encoder
exhibits optimal operation, i.e. there are no idle cycles (AR4JA) or one on output
interface. It  provides TF data to the encoder at the documented rate, without
waiting for TREADY_SL.

iii. Protocol validation. TREADY_MA and TVALID_SL are de-asserted at random
instances  controlled  by  a  pseudo-random  VHDL  function  (uniform).  This
simulates the possibly bursty behavior of the transmitting and receiving units. As
the simulation  time elapses,  the  probability  that  TVALID_SL or  TREADY_MA
increases, so that the control unit's FSM traverses all states and transitions.

iv. Any other necessary steps to ensure 100% code coverage by the testbench,
according to specific needs of the utilized control unit (§3.2). One such example
is the correct reinitialization of the FSM following a reset signal from all the FSM
states. Another case is the possibility that the FIFO of the control and buffer unit
empties during the systematic output. This would require a very long simulation
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runtime if the testbench resorted solely to the method of the previous step, but
can be easily reached using signal  spy library to monitor related signals and
insert the necessary TVALID_SL=0 cycles on slave interface.

As  the  simulation  progresses,  a  special  process  in  the  testbench  records  UUT's
responces in a suitable file, which is going to be examined by the calling tcl script after
the end of the simulation.

All testbenches are fully documented and the details of their operation not covered at
this paragraph can be easily tracked with the help of in-line comments.

5.2.2  Simulation results

For AR4JA codes, a number of 5000 TFs were used as stimulation data for k=1024.
Simulation was successful for all valid combinations of La and Lm parameters for data
bus width equal to 16 and 32 and corresponding coverage reports indicated that 100%
coverage was accomplished for all types of coverage. The only exception is the case of
La=32, Lm=1, where the latency is so high that the it covers entirely the number of cycles
for the input of the next TF and extends over the second subsequent TF, making this
choice impractical.

Due to the longer simulation runtime by reason of the very high block length, C2 code
simulation is performed with a significantly smaller test data set (1000 TFs instead of
5000). Results are coverage are equally successful.

5.3 Implementation validation

The implemented design is integrated in an embedded system to verify the encoder's
operation in real time and on the actual hardware. All hardware tests described in this
paragraph were performed on a XUPV5-LX110T development system.

The embedded system used for the test should provide for the following:

• Necessary hardware for generation or external input of test vectors.

• Necessary hardware for recording the UUT responses.

• Necessary hardware for display of results

• Control and time-scheduling over the test process.

The tests performed at this stage use two sources of test vectors:

• Input TFs are inserted by the board's UART.

• Pseudo-random TFs are generated by a LFSR.

UUT's responses are compacted by a Multiple-Input Shift-Register (MISR). The MISR
employed  is  based  on  a  64-bit  Fibonacci  LFSR  using  the  primitive  polynomial:
h(x )= x4+x3+ x+1 .

Compacted output (i.e. the MISR signature) needs to be provided in human readable
form. On completion of the test, specially designed hardware converts the MISR binary
value into its ASCII representation in hexadecimal form and returns it to the operator of
the test through the board's serial port. Another output to the operator's console is the
number of clock cycles needed to encode the provided TFs as well as the number of
these Tfs.
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The  above  procedure  is  controlled  by  a  specialized  entity's  FSM.  This  control  unit
defines the initiation of the test, based on operator's input, detects the end of the test
and reports results back to the operator.

The  two  versions  of  the  implementation  test  for  the  two  types  of  TF  input  are
subsequently described. In both cases, the embedded systems were designed around a
data bus for the encoder which is equal to 16-bits, meaning that for AR4JA encoders,
only those with LaLm=16 can be tested by this design.

5.3.1  Embedded system description: UART input

For the first of the two tests, the input to the encoder comes from the operator's console
through the development board's UART. Following their input, the TFs are temporarily
stored in  a  FIFO,  large enough to  accommodate the desired number of  them.  The
increased  size  of  this  FIFO  dictates  that  it  should  be  implemented  in  Block  RAM
resources on the FPGA. When the slow process of uploading test vectors to the FIFO
completes, the encoding process is automatically initiated. Detection of the completion
of  uploading procedure  is  done by the integrated circuit's  control  unit  which  counts
incoming TF data, up to the point where they reached a standard fixed number. The
encoder core responses are routed to the MISR for signature compaction and display.
When the control  unit detects that the encoder has finished encoding all  the TFs, it
initiates the results display procedure.

Figure 34: Block diagram of the embedded system for the test with UART input.

The block diagram of the circuit created for the test is displayed in fig.34. An operator's
terminal  is  assumed to  be  connected  to  the  corresponding  serial_in  and  serial_out
ports. After initialization, a RDY message is provided on it to indicate that the system is
ready to start receiving data from the console. Data are received as binary with the help
of a UART generated with the corresponding macro used for Picoblaze applications. A
packer unit packs concatenates two incoming input bytes into a 16-bit word which is
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stored in the FIFO. FIFO includes a counter to keep track of the amount of incoming
data (fifo_datain_count). When this number reaches a fixed number (960 TFs here),
hardwired  into  the  control  unit's  design  as  a  constant,  the  control  unit  asserts
TREADY_MA signal and the encoder begins the processing of data in the input FIFO.
Generated responses are written to the output FIFO, which is in turn connected to the
MISR. The control unit keeps track of the clock cycles elapsing from the moment when
encoding begins in a special counter.

When  both  input  and  output  FIFOs  are  empty,  the  control  unit  asserts  a  signal
(encode_fin)  which  triggers  the  display  of  result  data  on  the  connected  operator
terminal. The display data include the number of cycles necessary for the encoding and
the hexadecimal representation of the MISR value. The control  unit's cycles counter
value is converted to Binary Coded Decimal (BCD) and analyzed to decimal divisions
(units,  tenths,  hundredths  etc).  A  specialized  display  control  unit  has  the  role  of
organizing the information into a user-friendly human readable form. A sample of the
generated output is displayed on fig. 35.

The desired frequency of operation for the entire system is generated by a DCM unit.
LOCKED_OUT output of the DCM triggers the control unit to transit to a state where
RDY message is displayed and the test execution can begin. The DCM frequency can
be set to the maximum achievable value and this is going to be the claimed operation
frequency of the encoder.

Figure 35: Sample terminal output

The number of cycles depends on the LDPC code and the latency introduced by input-
output FIFOs and the system's control unit logic. The calculation of the expected value
of  the  MISR  can  be  performed  using  a  provided  (with  accompanying  code  data)
testbench,  in  which  the  UUT is  the  MISR and  the  expected  CADUs (calculated  in
MATLAB) are applied to it. The final claimed encoder performance takes FIFO delays
into account, so that the reported performance is the actual being experienced when the
encoders of this work have been incorporated in a real embedded system.

In  all  cases  for  all  encoders,  the  integrated  system  was  simulated  before
implementation in hardware. Corresponding simulation testbenches and input sources
are provided in accompanying code files.

The  entities  displayed  on  fig.  34  contain  a  significant  number  of  details.  This  is
especially true for the two control units (main and display). These details include a lot of
information pertaining the operation of the FSMs of the components their constituent
entities etc, the thorough description of which would distract the current document from
its main subject. Their VHDL code however is documented.
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5.3.2  Results with UART input

For AR4JA codes, the configurations selected for the test where those with the best
timing performance for each family member (see Table 6).

Tests  were  performed  with  960  input  TFs  provided  with  the  accompanying
documentation and they were all successful. The maximum operation frequency of the
encoder achieved in each case is displayed on table 7, where the MISR signature value
is that which corresponds to the input data provided with the accompanying code.

Test results are listed on table 7 below. Implementation options were tuned to optimize
timing and the maximum frequency was reached through successive implementations in
ISE design suite.

Due to the significantly higher TF length for C2 codes, the test was run over 127 of them
and was also successful.

Table 7: Implementation test results with UART input data (AR4JA:960, C2:127 TFs)

Parameters MISR value No. of cycles DCM frequency (MHz)

AR4JA

r=1/2
La=8, Lm=2 BF568B63664371CB 126780 230

AR4JA

r=2/3
La=8, Lm=2 8C51CA585AF9203D 96032 240

AR4JA

r=4/5
La=8, Lm=2 6C13FC1220D91C53 080658 250

C2 La=1, Lm=16 37EFE1DBCB5F86B2 65157 200

5.3.3   Embedded system description: LFSR input

The  second  of  the  two  implementation  tests  generates  test  vectors  from a  LFSR,
instead of receiving them from an external source. The advantage of this method is the
significantly higher number of TFs that the test can use, since it is not limited to the
amount of FPGA Block RAM resources. The block diagram of the embedded system is
displayed on fig. 36.

The input UART and the packer unit have been replaced by the LFSR, which fills up the
input  FIFO with  TFs  after  initialization  of  the  FPGA.  The  operator  receives  a  RDY
message  on  the  connected  terminal  and  initiates  the  test  by  pressing  a  properly
debounced push-button on the development board. The next steps are similar to the
previous case with externally provided TF data.

The LFSR operation is simulated in software to calculate the correct value of the MISR
signature at the end of the test. A suitable testbench records LFSR output sequence in
corresponding files and the recorded data are applied to the MISR using the testbench
of the previous paragraph.
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Figure 36: Block diagram of the embedded system for the test with LFSR generated data.

5.3.4   Results with LFSR input

Comparable results were received to the previous case with UART input of test data,
albeit  maximum operation frequencies were  smaller  than those achieved with  serial
input  of  TFs,  mainly  because  of  the  debouncing  circuit  for  test  initiation.
Correspondingly to Table 7, the results are displayed on Table 8.A number of 5000 TFs
was used for AR4JA codes and 1000 for C2.

Table 8: Implementation test results with LFSR generated input data (5000 TFs)

Parameters MISR value No. of cycles DCM frequency (MHz)

AR4JA

r=1/2
La=8, Lm=2 5152CC221167879B 660059 220

AR4JA

r=2/3
La=8, Lm=2 F38F5B29AFF499A2 500031 240

AR4JA

r=4/5
La=16, Lm=1 10A15E1FD603048D 420032 240

C2 La=1, Lm=16 D32DFF71836DB4F6 525317 180
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6. RESULTS

Implementation  results  for  the  fastest  configurations  are  summarized in  Table  9,  in
which the claimed encoding speed is the speed demonstrated by the implementation
test,  taking into account the latency introduced by input and output FIFO and is the
actual speed expected to be experienced from channel coding in real applications. The
formula of calculation of the speed is:
SPEED = Number of CADUs x CADU size / Encode cylces * Clock speed

Results on this table should be interpreted in conjunction with Table 6 for a concrete
viewpoint  on  the  performance  characteristics  of  the  encoders  in  the  current  work.
Performance for other members of AR4JA family is expected to exhibit similar behavior,
in regard to the effect of increasing La parallelism.

Table 9: Summary of demonstrated performance characteristics of the fastest implementations

Parameters Register

utilization

LUT

utilization

Slice

utilization

Claimed encoding

speed (Gbps)

Latency

(ns)

AR4JA r=1/2 La=8, Lm=2 3,148% 4,714% 4,913% 3,678 252,17

AR4JA r=2/3 La=8, Lm=2 2,4% 4,53% 870 3,839 125,01

AR4JA r=4/5 La=8, Lm=2 1,28% 3,4% 644 3,999 64

C2
La=1,

Lm=16
1,67% 14,16% 3165 3,056 10

6.1 Comparison to other implementations: commercial products.

The  implemented  encoders'  performance  is  compared  to  existing  solutions  in  this
paragraph, according to available parameters in corresponding published product briefs.
Such solutions are currently available only for C2 code.

CREONIC GmbH has made available an encoder core for the (8160,7154) C2 code
[26]. According to the information provided in the product brief, coding throughput at
200MHz operation is 1,6Gbps, while encoding latency for the same clock speed is 40ns.
Compared to the C2 encoder of  the present work, throughput at the specified clock
speed is almost the half (3,193 vs 1,6 Gbps). ASM output and randomization are not
implemented.

Small World Communications has created a core also for CCSDS C2 code (LCE01C).
Product specification sheet [27] states that encoding rate can reach up to 1,75 Gbps at
a clock speed up to 250MHz on a XC6VLX75T–3 FPGA. Data buses are 8-bit and it
consumed 9.2 K Virtex-5 LUTs. Encoding is initiated by a start pulse and it employes
double function generators for the coefficients of the generator matrix: one for normal
operation and one at the boundaries of the 511-bit wide circulants. ASM sequence is
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not generated in this case and extra logic is necessary for the interface of the core with
a RAM unit and randomization possibility.

Iprium also sells an encoder/decoder IP core for C2 code [28]. The core is designed for
serial input/output of one bit at a time. For encoding to start, a special signal needs to
be asserted at the beginning of each TF.

In addition, the patented design in [25] has already been reviewed in §3.2.7 and proven
to be susceptible to criticism for inefficient use of the 21-bit MAC module during idle
cycles.  Although F/F  count  is  lower  than current  encoder,  logic  resources required,
expressed in gate count since the encoder was implemented in ASIC, are significant.

Above results are summarized in table 10. While encoding performance is inferior in all
cases, none of the alternative encoders provides a standardized interface for input of
TFs and output  of  CADUs,  nor  randomization is  an option.  If  the  absence of  ASM
sequence output is added, the presented encoder of this work is the only complete core
for generation of CADUs according to the standard.

Table 10: Comparison of Implementations for C2 code

Bus

width
Resources

Max. clock freq.

(MHz)

Enc. Speed

(Gbps)

Latency

(cycles)

Randomi

zation
ASM

CREONIC N/A N/A 200 1,6 8 NO NO

LCE01C 8
9,2K LUTs

(Virtex5)

250

(XC6VLX75T–3)
1,75 3 NO NO

IPrium 1
290 Slices

(Virtex 6)
418 0,418 N/A NO NO

[25] 16

1492 F/Fs

30680 gates

 (ASIC)

128 2 9 NO NO

This work 16

9,8K LUTs

7412 F/Fs

3165 Slices

(Virtex5)

200 3,19 2 YES YES

6.2 Comparison to other implementations: literature.

There is significant scientific interest on the development of efficient LDPC encoders. As
already mentioned,  interesting results can be found in [14], [15], [16], [17], [18] and
[19].  All  of  these solutions are targeted to LDPC codes which are characterized for
encoding efficiency,  which is not the case for the codes of this work. A comparison
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however can be made to the extent applicable and all cited implementations are going
to be commented-out and compared to the current.
At first, none of the cited encoders provide CCSDS ASM framing and randomization
functions. Furthermore, none of the encoders cited above includes flow control so that
the core can handle streams of input-output data. Apart from [19] and this work, all other
implementations are iterative encoders and write output parity data in output memory
elements. In most cases, optimizations in the code design described in  §1.3.4  make
feasible the calculation of all the parity bits at once.
As  already  mentioned,  [14]  and  [15]  are  based  on  Richardson-Urbanke  encoding
algorithm, which is not efficient for CCSDS codes. In both cases the entire information
block needs to be available for the parallel parity calculation process, adding thus an
amount of latent cycles in case of a stream-oriented encoder, which in the case of [14]
is expected to be significant. Especially the impressive performance encoder of [15] is
designed for a particular class of encoding-friendly codes (B-LDPC), adopted for IEEE
802.11  and  802.16  standards  and  a  direct  comparison  with  the  present  encoders
cannot be made. In addition, [15] only implements the parity bits generation, without
taking care for the concatenation with systematic input bits or the serialized process to
write them into a memory.
The work in [16] is about a 7,7 Gbps encoder for IEEE 802.11ac QC-LDPC codes. It is
suitable for streaming operation, since the entire information block is not necessary for
the  encoding  process  to  begin  and  output  of  calculated  parity  data  seems  to  be
serialized  from  output  buffer.  The  algorithm  calculates  parity  bits  directly  from  the
(sparse) parity-check matrix according to the procedure described in §1.3.4.
Similarly, [17] is another example of high throughput encoder for LDPC codes designed
for encoding efficiency,  like those used in DVB-S2 standard, for which the specified
encoder can reach a throughput up to 29Gbps. In this case also, the claimed throughput
refers only to the parity bits generation and does not take into account serialization of
input data and the number of cycles needed to store the input vector into memory. The
proposed encoding algorithm bears significant resemblance to [16] and calculates the
parity bits directly from the (sparse) parity-check matrix. The extremely simple structure
of H2

-1  matrix in this case simplifies the multiplication of that matrix with a the result of
H1mT(following notation of §1.3.4) into a recursive XOR operation.
Reference [18] describes an efficient encoding implementation, also for IEEE 802.16,
which again takes advantage of the special structure of the parity-check matrix of the
code to calculate the parity bits directly from the (sparse) parity-check matrix,  using
back-substitution and consequently  requiring  the parity-check matrix  to  be  in  lower-
triangular form. The multi-Gbps claimed performance refers to the internal  encoding
core operation when all information block bits are available and is limited to 422 Mbps
when serialization of incoming data needs to be taken into account.
The encoder architecture in [19] follows a different approach in that, like the encoders of
the current work, it calculates parity bits from the generator (G) instead of the parity-
check matrix (P) and consequently can be generalized for the CCSDS LDPC codes.
The entire information block needs however to have already been accumulated in order
that the parity calculations can begin. Moreover, it introduces a very large critical path in
the XOR operations which add the results of  the information block sequence to the
corresponding column of the parity-check matrix (for the calculation of one parity bit).
This approach is not expected to scale well for increased block lengths-other than IEEE
802.16  LDPC family  block  lengths,  especially  the  16384  of  AR4JA or  8160 of  C2.
Finally, even for the simple case of the maximum information block of the WiMax LDPC
codes, the memory requirements are prodigious, at the same time reaching a maximum
performance of 360 Mbps.
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Although  the  direct  comparison  of  the  cited  implementations  with  the  current  work
cannot  be  made  because  of  the  code  characteristics,  performance  and  resource
utilization data are however summarized in Table 11. From the solutions available for
implementation of CCSDS codes, it is evident that proposed encoders 

Table 11: Comparison of various LDPC Encoder Implementations

[14] [15] [16] [17] [18] [19]
This

work3

Demonstrated
Application
Field

General 802.11n 802.11ac
DVB-S2

DVB-T2
802.16e 802.16e CCSDS

Codeword
length

2000 1944 1944 64800 1920 2304 2048

Rate 1/2 5/6 1/2 5/6 1/2 1/2 1/2

Resources/

technology

870 Slices

19 Block

RAMs

 Virtex 2

1782 LUTs

2187 F/Fs

Virtex5

96K equiv.

Gates

ASIC 130nm

CMOS

32734 LE

126,6k F/Fs

STRATIX-2

8924 LEs

STRATIX

11430 LEs

3,9M F/Fs

STRATIX

849 Slices

2176 F/Fs

Virtex 5

Algorith1 RU RU BS BS BS Direct Direct

Clock speed 143MHz 290MHz 100MHz 320MHz 149 MHc 60MHz 230MHz

Claimed

throughput
44Mbps2 117,45 Gbps2 7,7 Gbps 29Gbps2

3,32 Gbps2

422 Mbps

(serialized)

119,7 Mbps
3,19 Gbps

(stream)

Applicable  to

CCSDS codes

YES

(with different

results)

NO NO NO NO YES YES

Special Notes

1. RU: Richardson-Urbanke, BS: Back-substitution, Direct: multiplication with

Generator matrix

2. Not serialized output

3. Data in parenthesis refer to highest supported code rate (¾)
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7. CONCLUSIONS

LDPC  codes  were  initially  considered  impossible  to  implement.  Advances  in  VLSI
technology however  have entirely reverted this image and this  work  is  towards this
direction. The encoders implemented in this thesis occupy only a small percentage of
the area of XCV5-LX110T FPGA, while at the same time reaching mutli-Gbps encoding
performance. 
It has been shown that it is possible to improve the timing performance and resource
utilization of the standard RCE-based encoders by processing incoming information bits
corresponding to multiple circulants at the same time. The price however that has to be
paid in this case is increased latency. Due to the pipelined operation of the control unit
however, this latency is not translated into performance degradation, since almost no
idle cycles exist on the output interface. The only exception is the encoder for the C2
code, for which only one idle cycle per CADU is necessary, that is only one cycle in 514
is wasted. 
For AR4JA encoders, the provided VHDL code provides a description that is the same
across all members of the AR4JA family and the parameters are centrally defined in one
package file, simplifying the selection of the configuration which meets the performance-
latency  target  and  also  being  able  to  adapt  to  different  information  block  sizes
(parameter k of the code) and bus sizes up to 64 bits.
The encoder for C2 code uses fixed 16-bit buses for input and output and introduces no
additional latency, other than for its input-output buffering. Through a suitable selection
of circulant rows and an advanced control unit design, it manages to align the input data
arriving in packets of 16 bits on input interface to the boundaries of the 511-bit circulants
of the generator matrix, without wasting resources.
All encoders interface to AMBA AXI4-Stream buses, providing thus a solution which can
be readily incorporated in a SoC design and enabling the encoders of this work to be
characterized as complete practical cores.
Compared to the existing solutions in literature and in market, the proposed encoders
reach unprecedented performance for the specified code family, while at the same time
keeping resource utilization at a minimum.
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ACRONYMS-ABBREVIATED TERMS

AOM Advanced Orbiting Systems

AR4JA Accumulate-Repeat 4-Jagged Accumulate

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BCD Binary Coded Decimal

BSC Binary Symmetric Channel

CADU Channel Access Data Unit

CCSDS Consultative Committee for Space Data Systems

DCM Digital Clock Manager

DVB Digital Video Broadcast

FER Frame Error Rate

F/F Flip Flop

FSM Finite State Machine

Gbps Gigabits per second

LDPC Low-Density Parity-Check

LFSR Linear Feedback Shift Register

PRCE Parallel Recursive Convolutional Encoder

QC Quasi-Cyclic

RCE Recursive Convolutional Encoder

SDLP Space Data-Link Protocol

SNR Signal to Noise Ratio

TF Transfer Frame

TM TeleMetry

UUT Unit Under Test
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