
Tamper Resilient Circuits

Yiannis Tselekounis
Registration number: 201005

A Thesis Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Science.

Thesis advisor
Aggelos Kiayias

Thesis committe
Stathis Zachos

Aggelos Kiayias
Aris Pagourtzis

National and Kapodistrian University of Athens
Department of Mathematics

”MPLA“, Graduate Program in Logic, Algorithms and Computation

August 28th, 2014

Κρυπτογραφικοί Αλγόριθμοι Ασφαλείς Εναντίον

Επιθέσεων στην Υλοποίηση

Ιωάννης Τσελεκούνης

Αριθμός Μητρώου: 201005

Επιβλέπων

Α. Κιαγιάς

Τριμελής επιτροπή

Σ. Ζάχος

Α. Κιαγιάς

Α. Παγουρτζής

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Τμήμα Μαθηματικών

Μεταπτυχιακό Πρόγραμμα στη Λογική και Θεωρία Αλγορίθμων και

Υπολογισμού

Αύγουστος, 2014

Η παρούσα Διπλωματική Εργασία

εκπονήθηκε στα πλαίσια των σπουδών

για την απόκτηση του

Μεταπτυχιακού Διπλώματος Ειδίκευσης

στη

Λογική και Θεωρία Αλγορίθμων και Υπολογισμού

που απονέμει το

Τμήμα Μαθηματικών

του

Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών

Εγκρίθηκε την 29η Σεπτεμβρίου 2014 από Εξεταστική Επιτροπή

αποτελούμενη από τους:

Ονοματεπώνυμο Βαθμίδα Υπογραφή

1. : Ε. Ζάχο Καθηγητή ………………

2. : Α. Κιαγιά
(Επιβλέπων)

Αναπλ. Καθηγητή ………………

3. : Α. Παγουρτζή Αναπλ. Καθηγητή ………………

Abstract

This dissertation studies the effect of gate-tampering attacks against
cryptographic circuits. The proposed adversarial model is motivated by
the plausibility of tampering directly with circuit gates and by the in-
creasing use of tamper resilient gates among the known constructions
that are shown to be resilient against wire-tampering adversaries. We
prove that gate-tampering is strictly stronger than wire-tampering. On
the one hand, we show that there is a gate-tampering strategy that per-
fectly simulates any given wire-tampering strategy. On the other, we
construct families of circuits over which it is impossible for any wire-
tampering attacker to simulate a certain gate-tampering attack (that we
explicitly construct). We also provide a tamper resilience impossibility
result that applies to both gate and wire tampering adversaries and re-
lates the amount of tampering to the depth of the circuit. Finally, we
show that defending against gate-tampering attacks is feasible by ap-
propriately abstracting and analyzing the circuit compiler of Ishai et al.
[IPSW06] in a manner which may be of independent interest. Specifi-
cally, we first introduce a class of compilers that, assuming certain well
defined tamper resilience characteristics against a specific class of attack-
ers, can be shown to produce tamper resilient circuits against that same
class of attackers. Then, we describe a compiler in this class for which
we prove that it possesses the necessary tamper-resilience characteristics
against gate-tampering attackers.

Keywords: tamper resilient circuits, attack modeling.

i

Περίληψη

Η εύρεση αποτελεσματικών αλγορίθμων προστασίας λογικών κυκλω-

μάτων, τα οποία υλοποιούν κρυπτογραφικά συστήματα εκτεθειμένα σε φυ-

σικές επιθέσεις, αποτελεί ένα από τα ανοιχτά προβλήματα της σύγχρονης

κρυπτογραφίας. Συγκεκριμένα, θεωρούμε ότι το κύκλωμα αναπαριστάται

από ένα κατευθυνόμενο ακυκλικό γράφημα G(V,E), κάθε κόμβος του ο-
ποίου αντιστοιχεί σε μια λογική πύλη ή είναι κόμβος εισόδου ή κόμβος

εξόδου, και κάθε ακμή αντιστοιχεί σε ένα καλώδιο του κυκλώματος. Επι-

πλέον, το γράφημα αποτελείται από ένα σύνολο κόμβων V ′ ⊂ V , οι οποίοι
αναπαριστούν το μυστικό κλειδί του κρυπτογραφικού αλγορίθμου. Ως υπο-

λογισμό ορίζουμε την κατά πλάτος διάσχυση του γραφήματος. Το μοντέλο

ασφάλειας θεωρεί αντιπάλους οι οποίοι δύνανται να αλλοιώσουν τον υπο-

λογισμό αλληλεπιδρώντας με στοιχεία απο το σύνολο E ∪ V , με απώτερο
σκοπό την εξαγωγή του μυστικού κλειδιού. Στόχος, λοιπόν, είναι η εύρεση

αποδοτικών αλγορίθμων προστασίας του υπολογισμού, μέσω του μετασχη-

ματισμού του γραφήματος G σε ένα γράφημα G′
το οποίο θα πληροί τις

ακόλουθες ιδιότητες: (i) ο υπολογισμός που αναπαριστάται από το γράφη-
μα G ταυτίζεται με εκείνον του G′

, (ii) με μεγάλη πιθανότητα η επίθεση
ενός αντιπάλου θα γίνει αντιληπτή από τον υπολογισμό και θα οδηγήσει

σε διαγραφή του κρυπτογραφικού κλειδιού. Σκοπός, λοιπόν, της παρούσας

διπλωματικής εργασίας είναι η θεωρητική μελέτη και κατασκευή, αποδοτι-

κών μετασχηματισμών προστασίας κυκλωμάτων εναντίον επιθέσεων στην

υλοποίηση.

Λέξεις κλειδιά: λογικά κυκλώματα, επιθέσεις εισαγωγής σφαλμάτων,

μοντελοποίηση επιθέσεων.

iii

Contents

Contents v

List of Figures vi

List of Tables vi

1 Introduction 1

1.1 Related work & Motivation . 1

1.2 Impossibility results . 4

1.3 Gate adversaries are strictly stronger than wire adversaries . . 5

1.4 Tamper resilience against gate adversaries 7

2 Preliminaries 9

3 Impossibility results 13

4 Wire vs. Gate Adversaries 19

4.1 Wire adversaries are subsumed by Gate adversaries 19

4.2 Gate adversaries are stronger than wire adversaries 21

5 Defending against Gate Adversaries 31

5.1 Properties that ensure security 31

5.2 Tamper-resilient circuits against gate adversaries 34

v

Bibliography 47

List of Figures

4.1 The circuit C̃ for the separation theorem. 23
4.2 The distinguisher D . 25
4.3 A circuit that self-destructs after one invocation. 30

List of Tables

4.1 All boolean functions from {0, 1}2 to {0,1}. 21
4.2 Atw’s tampering strategy. Each strategy Ti produces the same out-

put with the function fi from Table 4.2. 22

vi

Chapter 1

Introduction

Traditionally, cryptographic algorithms are designed under the assumption
that adversaries have black box access to the algorithms’ implementation and
private input. In this setting, the adversary chooses an input, supplies the
algorithm with it, receives the corresponding output, and it is not allowed
to alter the algorithm’s internals during its execution. This mode of inter-
action is usually being modeled as a security game (e.g., chosen-ciphertext
attack against an encryption scheme or chosen message attack against a digi-
tal signature) and the underlying cryptographic scheme is proven secure based
on it. In reality though, besides observing the algorithms’ input-output be-
haviour, an adversary may also land physical attacks on the algorithm’s im-
plementation. For instance, she may learn the secret key of an encryption
scheme by measuring the power consumed by the device during the encryp-
tion operation [Koc96], or by measuring the time needed for the encryption
to complete [KJJ99]. Besides passive attacks, the class of active attacks in-
cludes inducing faults to the computation [BS97, BDL97, KJJ99], exposing
the device to electromagnetic radiation [GMO01, QS01, RR01], and several
others [GA03, KA98, KSWH98, AK96, BDL01, SA03]. Such attacks have
proven to be a significant threat to the real-world security of cryptographic
implementations.

1.1 Related work & Motivation

The work of [IPSW06] followed by [FPV11, DSK12] undertook the difficult
task of modeling and defending against adversaries that tamper directly with
the implementation circuit. In this setting the adversary is given access to

1

a circuit equipped with secret data stored in private memory; it is allowed
to modify a bounded number of circuit wires and/or memory gates in each
circuit invocation. The objective is to suitably modify the circuit operation so
that tampering gives no (or -at least- bounded) advantage to the adversary.

In [IPSW06] the adversary is allowed to tamper with a bounded number of
wires or memory gates in each computation, and for each component she may
set its value to 1, reset it to 0, or toggle its value. The tampering effect can be
persistent, i.e., if the value of a circuit wire or memory gate is modified during
one run, it remains modified for all subsequent runs. Hence, the adversary
can tamper with the entire circuit by persistently tampering with a bounded
number of wires in each run. The proposed compiler, which is parameterized
by t ∈ N, transforms any boolean circuit C into C ′, where C ′ realizes the same
functionality with C and is secure against adversaries who tamper with up to t
of its wires in each computation, i.e., any adversary who tampers with up to t
circuit wires of C ′ in one circuit invocation, cannot learn anything more about
the circuit’s private information than an adversary having black-box access
to C. Formally, this notion is captured by the following simulation-based
security definition: for every probabilistic polynomial time (PPT) adversary
A tampering with C ′, there exists a simulator S having black-box access to
C such that the output distribution of A and S are indistinguishable. The
construction is based on a randomized secret sharing scheme which shares the
bit-value of a wire in C among k wires, and then introduces redundancy by
making 2kt copies of each wire, where k denotes the security parameter. The
randomized encoding guarantees that any tampering with C ′ will produce an
invalid encoding with high probability, triggering the circuit’s self-destruction
mechanism that erases the circuit’s secret memory. Since this mechanism
is also prone to tampering, the adversary could try to deactivate it so as
to tamper with the rest of the circuit while keeping the secret state intact.
In order to prevent such a scenario, C ′ incorporates an error-propagation
mechanism which permeates the circuit and propagates errors induced by
tampering attacks. The size of C ′ is larger than C by a factor of O(t · log3(1

ε))
where ε represents the simulation error.

In [FPV11] the authors consider a different adversarial model, in which
the adversary is allowed to tamper with every circuit wire, but each tamper-
ing attempt fails with probability δ ≥ 0 (noisy tampering). Moreover, they
put forward a relaxed security definition in which the simulator does not have
black-box access to the circuit, but requires logarithmically many bits of infor-
mation about the circuit’s secret memory. The resulting circuit is augmented
by a O(δ−1 log(1

ε)) factor for the simulation to fail with probability at most ε.
Furthermore, it uses no randomness during execution and consists of subcir-

2

cuits which perform computations over Manchester encodings, which encode
a single bit into four bits. For each subcircuit, the compiler randomly encodes
the 0,1-bits to elements in {0, 1}4\{0000}, and employs tamper-proof gates
that handle computations over these encodings. If the inputs are invalid, the
gates output 0000 and the error propagates to the self-destruction mechanism,
which is similar to the one employed in [IPSW06] but uses some additional
tamper-proof gadgets. Besides error propagation and memory erasure, the
self-destruction mechanism verifies that all subcircuits produce consistent out-
puts. Hence, in order to alter the computation effectively, an adversary needs
to tamper with all k subcircuits in a way such that (i) all attacks produce
valid, probably different due to randomization, encodings, and (ii) the encod-
ings must produce the same decoded output. As it is proved in [FPV11], this
happens with negligible probability in k.

The adversarial model considered in [DSK12] is similar to [IPSW06]. The
main difference is that now persistent tampering is not allowed on circuit wires
and, similarly, to [FPV11] the simulator is allowed a logarithmic amount of
leakage from the computation. Regarding the construction, [DSK12] com-
bines error-correcting codes and probabilistically checkable proofs of proximity
(PCPP) in the following way: the circuit’s secret state s and input x are en-
coded into S and X, respectively. Then the transformed circuit computes1

y = Cs(x) and a PCPP proof π for the validity of the tuple (y,S ◦X) with
respect to the error-correcting code and C. The proof is verified by polyno-
mially many verifiers who output 1 in case of validity, and 0 otherwise, and
their output (i) is fed to a (tamper-proof) AND gate with unbounded fan-in
and fan-out that erases the circuit’s secret state if a verifier rejects π, and (ii)
together with y they feed a (tamper-proof) AND gate with unbounded fan-in
and one output wire, which is the circuit’s output wire. If one of the verifiers
outputs 0, then the circuit outputs the zero bit. The resulting circuit size is
polynomial on the input circuit but a constant ratio of wire tampering can be
tolerated.

Besides tampering against circuits’ wires or memory gates, some works
consider adversaries who tamper exclusively with memory gates [GLM+04,
LL10, DPW10, CKM11]. In [GLM+04] the authors give an impossibility re-
sult on tamper resilience by showing that without using secure hardware an
adversary can extract the circuit’s private information, by sequentially setting
or resetting the memory bits and observing the tampering effects on the circuit
output. Apparently, [IPSW06, FPV11, DSK12] circumvent the impossibility
result by erasing the private information in case of error detection. In [LL10]

1The construction of [DSK12] considers circuits that output one bit.

3

the authors consider adversaries who tamper and probe with the circuits’ pri-
vate memory and they give an impossibility result for circuits that do not
have access to a source of random bits, with respect to both tampering and
probing attacks. [DPW10] introduces the notion of non-malleable codes. Such
codes ensure that any adversary who tampers with a codeword, with respect
to some specific class of tampering functions, will either lead the decoding al-
gorithm to output ⊥, or output a codeword which is irrelevant to the original
word. Moreover, they show how to construct non-malleable codes for specific
classes of tampering functions. Finally, in [CKM11] the authors introduce the
notion of Built-in Tamper Resilience, which defines security for cryptographic
protocols where some of the parties are implemented by hardware tokens that
resist tampering attacks.

The above state of the art in tamper resilient circuits suggests a fundamen-
tal issue that is a source of theoretical motivation dissertation. While tamper-
ing circuit wires seems to be a strong adversarial model, recent constructions
do heavily exploit tamper-proof gates (e.g., the gate with unbounded high fan-
in in [DSK12]). This suggests that tampering gates directly might be an even
stronger (and possibly in some cases even more plausible) adversarial model;
how do wire and gate adversaries fare against each other? and is it possible to
protect against both? what are the upper bounds in terms of amount of tam-
pering that can be tolerated? This dissertation initiates the investigation of
gate-tampering attacks and takes steps towards answering all those questions
as explained below.

Besides its theoretical interest, this text is also motivated by practical
attacks on circuit gates. For example, in [SA03] it is explained how illumi-
nation of a target transistor can cause it to conduct. Transistors are used to
implement logical gates so such an optical probe attack will amount to gate
tampering in a circuit (effectively changing the gate for another gate). Be-
yond that, fault injection in the SRAM of an FPGA also results to switching
the computation of the FPGA circuit (because the program of the FPGA is
stored in memory).

In what follows we briefly discuss the findings of this dissertation.

1.2 Impossibility results

In chapter 3 we give an impossibility result on tamper-resilience. Informally,
the main idea behind the result is the following: we define the notion of non-
triviality of a cryptographic circuit which attempts to capture the essence of
a meaningful cryptographic implementation. According to non-triviality, for

4

every PPT algorithm A and circuit C with private memory s, where C imple-
ments some cryptographic functionality, A should not be able to learn s, while
having black box access to C (observe that if A learns s then the implementa-
tion becomes obsolete as A can simulate it). Then we prove that any circuit
C that satisfies non-triviality possesses necessarily a weakly unpredictable bit,
i.e., there exists a secret state bit that cannot be extracted with probability
very close to 1, while having black box access to C. Now, let d be the depth
of C and assume it consists of gates with fan-in at most 2. If the adversary
is allowed to tamper with up to d circuit components (we prove our result for
either wires or gates), there exists a strategy that extracts the circuit’s unpre-
dictable bit with probability equal to 1. The impossibility result follows from
this, since any simulator with black-box access to C only has no capability to
predict the unpredictable bit as good as the tampering adversary. The main
observation here is that for any d ∈ N, and every compiler T that receives a
circuit C and produces a circuit C ′ of depth at most d, T cannot be secure
against an adversary who tampers with d circuit gates or wires, regardless of
the size of C ′.

It is worth contrasting our result to that of [GLM+04], where the au-
thors consider an adaptive adversary who is capable of tampering with private
memory bits; by correlating circuit outputs to tampering set/reset operations
within the secret-state they show that the whole secret state can be recon-
structed. This suggests that the only way to attain tamper resilience of the
secret-state is by employing internal integrity detection mechanisms and have
the circuit self-destruct in any case of fault detection. With our impossibility
result however we show that simulation will inevitably fail even in the presence
of error-detection and self-destruction mechanisms in case we allow tamper-
ing with up to d circuit components (wires or gates), where d is the circuit’s
depth. This underlines the strength of tampering with circuit components vs.
tampering the secret state.

1.3 Gate adversaries are strictly stronger than
wire adversaries

We proceed to explore the relationship between gate and wire adversaries. In
chapter 4 we first prove that any tampering attack on up to t circuit wires can
be simulated by an adversary who tampers with up to t circuit gates, i.e., for
every circuit Cs and any PPT adversary A who tampers with up to t wires of
Cs, there exists a PPT adversary A′ who tampers with up to t circuit gates,
such that the output of A and A′ are exactly the same. Then we proceed to

5

prove the other direction which is the most technically involved. Note that in
the presence of unbounded fan-out (or fan-in) gates in a circuit it is clear that
a gate adversary has an advantage since a wire adversary may be incapable of
controlling sufficiently many wires to modify the behavior of the gate. How-
ever we demonstrate that even with respect to bounded fan-in/fan-out circuits,
gate adversary are strictly stronger. Specifically, we show that there exist a
family of circuits C̃s̃ parameterized by n, t and a PPT adversary A who tam-
pers with up to n circuit gates, such that for all PPT adversaries A′ who
tamper with up to t circuit wires (where t can be arbitrarily larger than n),
A′ fails to simulate A. Intuitively, the idea behind our proof is the following.
We construct a circuit that has a “critical area” comprised of n AND-gates.
The input to the critical area is provided by a sub-circuit (referred to as C1)
that implements a pseudo-random function, a digital signature and a counter.
The output of the critical area is fed to a second sub-circuit (referred to as
C2) that calculates a digital signature and a second counter. The key point
is that a gate-adversary can transform all AND-gates of the critical area into
XOR-gates. This enables the gate-attacker to produce a circuit output with
a certain specific distribution that is verifiable in polynomial-time. The main
technical difficulty is assembling the circuits C1, C2 suitably so that we can
show that no matter what the wire-attacker does, it is incapable of simulating
the distribution produced by the gate-attacker. Note that the wire-attacker is
fully capable of controlling the input to the C2 sub-circuit (by tampering with
all the output wires of the critical area). Hence by running the circuit several
times, the wire-attacker can attempt to learn the proper output distribution
of the critical region and feed it to C2. In our explicit construction, by appro-
priately assembling the main ingredients of each sub-circuit (pseudo-random
function, digital signatures and counters) we show that there exists no efficient
wire-tampering strategy that simulates the gate-tampering strategy assuming
the security of the pseudo-random function and the digital signature. The
circuit family we construct is executable an unbounded number of times (by
either attacker). If one restricts the number of times the implementation can
be executed by the tampering attackers (by having the implementation al-
ways self-destruct by design after one invocation) then the circuit family can
be simplified.

6

1.4 Tamper resilience against gate adversaries

Given our separation result, the question that remains is whether it is possible
to defend cryptographic implementations against gate adversaries. Towards
that direction, we show (chapter 5) that gate attackers compromise the se-
curity of [IPSW06] by effectively eliminating the circuit’s randomness, when
it is produced by randomness gates, and then we prove that if we substitute
those gates with pseudo-random generators, then [IPSW06] can be shown to
be secure against gate adversaries. Based on [IPSW06], we give a general
characterization (Definition 10) of a secure class of compilers and we use it
in order to present our result in a self-contained way. The way we present
our positive result may also be of independent interest: first, we define a class
of compilers (Definition 10) that have the property that if they have certain
tamper resilience characteristics against an arbitrary class of adversaries, then
the circuits that they produce are tamper-resilient against that class of ad-
versaries. Seen in this light, the result of [IPSW06] is a specific instance that
belongs to this class of compilers that satisfies the basic tamper resilience
characteristics of the class against appropriately bounded wire adversaries.
We proceed analogously to prove that the circuit transformation that removes
the randomness gates satisfies the necessary tamper resilience characteristics
against appropriately bounded gate adversaries. The resulting compiler pro-
duces circuits of comparable size to those of [IPSW06] however the parameter
t in our case reflects the bound on the gate-tampering adversary.

The results of this dissertation were published in Asiacrypt 2013 ([KT13]).

7

Chapter 2

Preliminaries

This chapter provides concrete definitions for the following notions: Boolean
circuit, circuit computation, tampered circuit computation. The reader is
assumed to be familiar with cryptographic tools such as digital signature
schemes, pseudo-random function (PRF) families and secret sharing schemes.

Definition 1 (Circuit). A Boolean circuit C, over a set of gates G, with n
input bits and q output bits, is a directed acyclic graph C = (V,E), such that
every v ∈ V belongs to one of the following sets of nodes:

• VI (Input): For all v ∈ VI , the indegree is zero, the outdegree is greater
than 1, and each v represents one input bit. We label these nodes by
i1, . . . , in.

• VG(Gate): Each v ∈ VG represents a logic gate in G, and its indegree is
equal to the arity of the logic gate. The outdegree is at least 1.

• VO (Output): For all v ∈ VO, the indegree is one and the outdegree
is zero, and each v represents one output bit. We label these nodes by
o1, . . . , oq.

The cardinalities of the sets defined above are n, s and q respectively. Finally,
the edges of the graph represent the wires of the circuit. The set of all circuits
with respect to a set of gates G, will be denoted by CG.

The circuit’s private memory is considered as a peripheral component and
consists of m additional gates. The value m is the memory’s storage capacity

9

in bits.1 Formally,

Definition 2 (Circuit with Private memory). A graph C is a circuit with
private memory provided that its set of vertices can be partitioned into two
sets V, V ′ such that (i) the graph C \ V ′ is a DAG conforming to definition 1,
(ii) there are no edges between nodes in V ′, (iii) each vertex v ∈ V ′ possesses
at most one incoming and exactly one outgoing edge. The set V ′ represents
the memory gates of C; in this case, we refer to C as a circuit with private
memory V ′ and we also denote by E′ the edges of C that are incident to V ′.
We denote |V ′| = m.

From now on we will use the terms Circuit and Graph interchangeably, as
well as the terms wire/edge.

Definition 3 (Computation). Let C be a circuit with private memory V ′ that
contains s ∈ {0, 1}m, and let x ∈ {0, 1}n be the circuit input. The computation
y = Cs(x) consists of the following steps:

i. Memory access: for each v ∈ V ′, the value of v propagates to the
outgoing edge.

ii. Breadth-first traversal of C:

• Assign to each input node ij, for j ∈ [n], the value xj and propagate
xj to its outgoing wires.

• For v ∈ VG (gate node), apply the boolean function that corresponds
to v on the incoming edges and propagate the result to the outgoing
edges.

• Every output node oi, for i ∈ [q], evaluates to the incoming value,
and determines the value yi.

iii. Memory update: every v ∈ V ′ is updated according to its incoming
value.

Informally, in each computation the circuit receives an input x, produces
an output y, and it may also update its private memory from s to some value
s′. From now on, a circuit with secret state s will be denoted by Cs, or by C,
if there is no need to refer to s explicitly.

In the following, we give a generalization of the above definition for mul-
tiple rounds and we formally define the adversarial models we consider.

1In many circumstances we refer to private memory using the terms secret state or
private state.

10

Definition 4 (v-round computation). Let C be a circuit and Env = (s,v) a
pair of random variables. A v-round circuit execution w.r.t. Env is a random
variable (v,AC(·)(v)) s.t. A is a polynomial-time algorithm that is allowed to
submit v queries to the circuit which is initialized to state s and in each query
it performs a calculation over its input as in Definition 3.

In the above definition, v represents all public information related to pri-
vate memory s. For instance, if C implements the decryption algorithm of
a public-key encryption scheme with secret key s, then v should contain in-
formation such as the length of s and the corresponding public-key. Now we
define the adversary of [IPSW06].

Definition 5 (t-wire tampered computation). Let C be a circuit with private
memory V ′ that contains s ∈ {0, 1}m, and let x ∈ {0, 1}n be the circuit input.
The t-wire tampered computation y = CTs (x) for some tampering strategy T
is defined as follows.

1. T is a set of up to t triples of the form (α, e, p), where e is an edge of
C, and α may be one of the following tampering attacks:

• Set: set the value of e to 1,

• Reset: set the value of e to 0,

• Toggle: flip the value of e,

and if p ∈ {0, 1} is set to 1 then the attack is persistent, i.e., the mod-
ification made by α is preserved in all subsequent computations. For
non-persistent attacks we write (α, e, 0) or just (α, e).

2. The computation of the circuit is executed as in definition 3 taking into
account the tampering instructions of T .

Next we define gate-tampered computation.

Definition 6 (t-gate tampered computation). Let C be a circuit with private
memory V ′ that contains s ∈ {0, 1}m, and let x ∈ {0, 1}n be the circuit input.
The t-gate tampered computation y = CTs (x) for some tampering strategy T
is defined as follows.

1. T is a set of up to t triples of the form (f, g, p), where g ∈ VG ∪ V ′,
f can be any function f : {0, 1}l → {0, 1}, where l is the arity of the
gate represented by g, and p defines persistent (or not) attacks as in
definition 5. The tampering substitutes the gate functionality of g to be
the function f .

11

2. The computation of the circuit is executed as in definition 3 taking into
account the tampering instructions of T .

Definition 7 (v-round wire (resp. gate) tampered computation). Let C be a
circuit and Env = (s,v) a pair of random variables. A v-round tampered
computation w.r.t. Env is a random variable (v,AC∗(·)(v)) s.t. A is a
polynomial-time algorithm that is allowed to submit v queries to the circuit
which is initialized to state s and in the i-th query it performs a wire (resp.
gate) tampered computation according to tampering instructions Ti specified
by A. Note that the computation respects persistent tampering as specified by
A.

Notation. We will denote wire and gate adversaries respectively by Aw and
Ag. Moreover, Atw (resp. Atg) denotes a wire (resp. gate) adversary who
tampers with t circuit wires (resp. gates). The output of a single-round
wire (resp. gate) adversary Aw (resp. Ag) with strategy Tw (resp. Tg) who

performs a tampered computation on C is denoted by A[C,Tw]
w (resp. A[C,Tg]

g).

The output of a multi-round adversary Ag (resp. Aw) is denoted by AC
∗(·)

g

(resp. AC
∗(·)

w). For n ∈ N, [n] is the set {1, . . . , n}. The statistical distance
between two random variables X, Y , with range D, is denoted by ∆(X,Y),
i.e., ∆(X,Y) = 1

2

∑
u∈D |Pr[X = u] − Pr[Y = u]|. ∆(X,Y) ≤ k is also

denoted by X ≈k Y , and if D is a distribution over D, X ∼ D indicates that
variable X follows distribution D. Finally, for any vector x = (x1, . . . , xn),
[x]{i...j} = (xi, . . . , xj), i, j ∈ [n], i ≤ j.

12

Chapter 3

Impossibility results

In this chapter we prove that for any non-trivial cryptographic device imple-
mented by some circuit C ∈ CG of depth d, where G contains boolean logic
gates, tamper-resilience is impossible (i) when wire adversaries land d(k − 1)
non-persistent tampering attacks on the wires of C, where k is the maximum
fan-in of the elements in G, and (ii) when gate adversaries non-persistently
tamper with d gates of C. In order to do so, we define the notion of non-
triviality, which characterizes meaningful implementations and then we prove
that every non-trivial circuit C possesses a weakly unpredictable bit (Lemma
1). Then we define an adversary A with strategy T , such that A[C,T] is sta-
tistically far from the output of SC(·), for any PPT algorithm S.

A non-trivial cryptographic device is one that contains a circuit for which
no adversary can produce its entire secret-state in polynomial-time when al-
lowed black-box access to it. Formally,

Definition 8 (non-triviality property). Let Env = (s,v) be a pair of random
variables, and let Cs be a circuit with secret state s. We say that Cs satisfies
the non-triviality property w.r.t. environment Env if for every PPT algorithm
A there exists a non-negligible function f(m) such that

Pr[ACs(·)(v) = s] < 1− f(m).

The above definition is a necessary property from a cryptographic point
of view, since its negation implies that the device can be replicated with only
black-box access. Thus any attacker can render it redundant by recovering its
secret state and instantiating it from scratch. We then focus on specific bits
of the secret state. We define a bit to be weakly unpredictable if predicting

13

its value always involves a non-negligible error given black-box access to the
device.

Definition 9 (weakly unpredictable bit). Let Env = (s,v) be a pair of ran-
dom variables, and Cs be a circuit with secret state s. Then Cs possesses a
weakly unpredictable bit w.r.t. environment Env if there exists an index i,
1 ≤ i ≤ m, such that for every PPT algorithm A there exists a non-negligible
function δ(m) such that

Pr[ACs(·)(v) = si] < 1− δ(m).

Armed with the above definitions we demonstrate that any non-trivial
circuit possesses at least one weakly unpredictable bit.

Lemma 1. Let Env = (s,v) be a pair of random variables. Then for every
circuit Cs, if Cs satisfies the non-triviality property w.r.t. enviroment Env,
then Cs possesses a weakly unpredictable bit, again w.r.t. Env.

Proof. The lemma is proved by contradiction: we consider a circuit Cs which
satisfies the non-triviality property for some non-negligible function f(m),
and none of its bits is a weakly unpredictable bit. Then we construct an
algorithm which extracts s with probability at least 1 − f(m). Concretely,
let Env = (s,v) be a pair of random variables and Cs be a circuit with
secret state s, where |s| = m, that satisfies the non-triviality property, i.e.,
for every PPT algorithm A, there exists a non-negligible function f(m) such
that Pr[ACs(·)(v) = s] < 1−f(m). Here v contains public information related
to s, such as its length. Towards contradiction, suppose that for all i ∈ [m],
there exist PPT algorithms Ai, such that for all non-negligible functions δ(m),

Pr[ACs(·)
i (v) = si] ≥ 1− δ(m). We define an algorithm A∗ that interacts with

Cs in the following way:

i. For i = 1, . . . ,m: A∗ executes ACs(·)
i (v), and let s′i = ACs(·)

i (v).

ii. A∗ outputs s′ = (s′1, . . . , s
′
m).

Since {Ai}mi=1 is a family of PPT algorithms, A∗ is also a PPT algorithm and
Pr[(A∗(v))Cs(·) = s] < 1− f(m) for some non-negligible function f(m) (non-

triviality property). Now, let Ei denote the event that ACs(·)
i (v) 6= si, 1 ≤

i ≤ m. Then

Pr[(A∗(v))Cs(·) 6= s] = Pr[E1 ∪ E2 ∪ . . . ∪ Em]

≤ Pr[E1] + Pr[E2] + . . .+ Pr[Em]

≤ mδ(m),

14

for all non-negligible functions δ(m). Hence,

Pr[(A∗(v))Cs(·) = s] = 1− Pr[(A∗)Cs(·) 6= s]

≥ 1−mδ(m).

By hypothesis, f(m) is non-negligible. Therefore, δ1(m) = f(m)
m is also non-

negligible. Since the last inequality holds for all non-negligible functions it
clearly holds for δ1(m) and we get

Pr[(A∗(v))Cs(·) = s] ≥ 1−mδ1(m)

= 1− f(m),

which breaks the non-triviality property for Cs. �

We next give the impossibility result for circuits that consist of standard
AND, NOT and OR gates, and for the case of wire adversaries. The impossi-
bility is via a construction: we design a specific single round adversary A that
is non-simulatable in polynomial time. The main idea behind the construc-
tion is exploiting the tampering instructions so that we correlate the output
of the circuit with the weakly unpredictable bit contained in the secret state.
Concretely, in the proof of theorem 1 we define a wire adversary Aw who acts
as follows: she targets the weakly unpredictable bit si and a path P from the
i-th memory gate to one output gate, say yj . Then she chooses a tampering
strategy Tw on wires which ensures that si remains unchanged during its pass
through the circuit gates. For instance, if at some point the circuit computes
g(si, x), where x is an input or secret state bit, then (i) if g is an AND (resp.
OR) gate then Aw sets (resp. resets) the wire that carries x, and the circuit
computes ∧(si, 1) = si (resp. ∨(si, 0) = si). After defining Tw, Aw executes
CTws (x) for some x ∈ {0, 1}n of her choice and outputs si. The challenge for
S is to output the unpredictable bit with probability close to 1, while having
only black box access to Cs.

Theorem 1. (Wire Adversaries - Binary Fan-in) Let Env = (s,v) be a
pair of random variables. Then for every circuit Cs ∈ CG of depth d ∈ N,
where G = {∧,∨,¬} and s ∈ {0, 1}m, that satisfies the non-triviality property
w.r.t. Env, there exists a single round adversary Aw with strategy Tw, where
|Tw| ≤ d, such that for every PPT simulator S having black-box access to Cs, it

holds that ∆(SCs(·)(v), A[Cs,Tw]
w (v)) ≥ f(m), for some non-negligible function

f(m).

15

Proof. Let Env = (s,v) be a pair of random variables and Cs be a circuit
of depth d that satisfies the non-triviality property. Then by Lemma 1, Cs

possesses a weakly unpredictable bit, i.e., there exists a secret state bit si,
i ∈ [m], such that for every PPT algorithm A there exists a non-negligible
function f(m) such that

Pr[ACs(·)(v) = si] < 1− f(m).

The main idea behind Aw’s strategy is the following: Aw targets the weakly
unpredictable bit si and a path P from the i-th memory gate to one output
gate, say yj . Then she chooses a tampering strategy Tw on wires which ”en-
sures” that si remains unchanged during its pass through the circuit gates.
Afterwards, she executes CTws (x) for some x ∈ {0, 1}n of her choice and out-
puts yj = si. The main challenge for S is to produce the same output bit
having black box access to Cs.
Concretely, suppose that P contains the nodes (gates) {g1, . . . , gk}, where
k ≤ d and each gi ∈ {∨,∧,¬}, and let {w1, . . . , wk} be the corresponding
input wires, i.e., wi is an input wire to gi that belongs to P. In case the arity
of gi is 2, the second input wire, i.e., the one that does not belong to P, will
be denoted by w′i. Now its time to define Tw:

Initially Tw = ∅. For i = 1, . . . , k :

- if gi = ∨, Tw = Tw ∪ (Reset, w′i),

- if gi = ∧, Tw = Tw ∪ (Set, w′i),

- if gi = ¬, Tw = Tw ∪ (Toggle, wi+1).

Intuitively, if gi = ∨ (∧) we cancel its effect on si by reseting (setting) the
value of w′i to zero (one). If gi = ¬ we just toggle the value of its outgoing wire.
Apparently, Aw extracts si with probability 1. Moreover, since S is a PPT
algorithm and si is a weakly unpredictable bit, Pr[SCs(·)(v) = si] < 1− f(m),
for some non-negligible function f(m). Hence,

∆(SCs(·)(v),A[Cs,Tw]
w (v)) =

1

2

∣∣∣Pr[A[Cs,Tw]
w (v) = si]− Pr[SCs(·)(v) = si]

∣∣∣
+

1

2

∣∣∣Pr[A[Cs,Tw]
w (v) 6= si]− Pr[SCs(·)(v) 6= si]

∣∣∣
>

1

2
|f(m)|+ 1

2
|f(m)|

= f(m).

�

16

The above theorem also holds for circuits that consist of NAND gates,
when the adversary is allowed to tamper with 2d circuit wires. Concretely, the
adversarial strategy against g(si, x), where g is a NAND gate, is the following:
Aw sets the wire that carries x and toggles the wire that carries si. The next
corollary generalizes the above theorem for circuits that consist of gates with
fan-in greater than two. Consider for example an AND gate with fan-in k,
which receives the weakly unpredictable bit, si, on some of its input wires. If
the adversary sets the k − 1 remaining wires, then the gate outputs si.

Corollary 1. (Wire Adversaries - Arbitrary Fan-in) Let Env = (s,v) be a
pair of random variables. Then for every circuit Cs ∈ CG of depth d ∈ N,
where s ∈ {0, 1}m and G = {∧,∨,¬} with bounded fan-in k, that satisfies the
non-triviality property, there exists a single round adversary Aw with strategy
Tw, where |Tw| ≤ d(k− 1), such that for every PPT simulator S having black-

box access to Cs, ∆(SCs(·)(v),A[Cs,Tw]
w (v)) ≥ f(m), for some non-negligible

function f(m).

Proof. The main idea behind the strategy of Aw is the same as in Theorem
1, with a slight difference: Aw has to tamper with up to k − 1 wires for each
gate gi ∈ P in order to cancel its effect on si. Therefore, Aw needs to tamper
with at most d(k − 1) wires in total. �

Finally, we give an impossibility result with respect to gate adversaries.
The main idea behind Ag’s strategy in the following theorem, e.g., against an
AND gate with fan-in k that receives the weakly unpredictable bit si, is the
following: Ag substitutes the AND gate with the function that projects the
value of the incoming wire that carries si to all outgoing wires.

Theorem 2. (Gate Adversaries - Arbitrary Fan-in) Let Env = (s,v) be a
pair of random variables. Then for every circuit Cs ∈ CG of depth d ∈ N, where
s ∈ {0, 1}m and G = {∧,∨,¬} with bounded fan-in k, that satisfies the non-
triviality property, there exists a single round adversary Ag with strategy Tg,
where |Tg| ≤ d, such that for every PPT simulator S having black-box access to

Cs, ∆(SCs(·)(v),A[Cs,Tg]
g (v)) ≥ f(m), for some non-negligible function f(m).

Proof. As in Theorem 1, the adversary targets the weakly unpredictable bit
si and chooses a path P from the i-th memory gate mi to an output gate
yj . Suppose that P contains the gates {mi, g1, . . . , gk, gk+1}, where k ≤ d,
gk+1 = yj , and let {w1, . . . , wk+1} be the corresponding input wires, i.e., wi is
an input wire to gi that belongs to P. Here the adversary tampers with gi, for
i ∈ [k], in the following way: she substitutes gi with the function that projects

17

the value of wi to wi+1. In this way si remains unaffected while “traveling”
from mi to yj while the adversary tampers with up to d circuit gates. �

Notice here that |Tg| does not depend on k.

18

Chapter 4

Wire vs. Gate Adversaries

In this chapter we investigate the relation between wire and gate adversaries
of Definitions 5 and 6, respectively. Concretely, we prove that for any boolean
circuit Cs and PPT adversary Atw with strategy Tw, t ∈ N, there exists a PPT
adversary Atg with strategy Tg, such that for any tampering action in Tw, there
exists an action in Tg that produces the same tampering effect (Theorem 3).
Then we show that the other direction does not hold, i.e., we prove that gate
adversaries are strictly stronger than wire ones (Theorem 4).

4.1 Wire adversaries are subsumed by Gate
adversaries

We show that any wire tampering strategy is possible to be simulated by a
suitable gate tampering strategy.

Theorem 3. Let Env = (s,v) be a pair of random variables. For every circuit
C with gates in G = {∧,∨,¬}, t ∈ N, and any v-round PPT wire adversary
Atw, there exists a v-round gate adversary Alg, for some l ∈ N, l ≤ t, such that

AC
∗
s (·)

w (v) is identically distributed to AC
∗
s (·)

g (v).

Proof. Let Env = (s,v) be a pair of random variables, C a circuit in CG with
private memory V ′, where G = {∧,∨,¬}, and let Atw be a PPT adversary with
strategy Tw, t ∈ N. We construct an adversaryAlg, l ≤ t, with strategy Tg, such

that for all x ∈ {0, 1}n, CTws (x) = C
Tg
s (x), and if the tampered computation

CTws (x) updates the private memory from s to s′, so does C
Tg
s (x), and the

result carries from single-round adversaries to v-round ones.

19

Now assume that Atw executes CTws (x), for some x ∈ {0, 1}n, and recall
that Atw tampers with wires that might be input wires to elements in VG
(circuit gates), V ′ (memory gates) or VO (output gates). Let v ∈ VG , where
v represents g = ∧ and let the input wires to g be w1, w2 ∈ E ∪ E′, i.e.,
g computes ∧(w1, w2).1 Alg is aware of Atw’s strategy and she is allowed to
substitute g with any function in {f | F : {0, 1}2 → {0, 1}}. We consider the
following cases for f w.r.t. Tw:

1. f(w1, w2) = 0, i.e., f is the zero function if Atw resets w1 or w2 or both,

2. f(w1, w2) = 1, i.e., f outputs 1 if Atw sets w1 and w2,

3. f(w1, w2) = w2, if Atw sets w1 (if Atw sets w2, f(w1, w2) = w1),

4. f(w1, w2) = (¬(∨(w1, w2))), if Atw toggles w1 and w2,

5. f(w1, w2) = (¬(∨(w1,¬w2))), ifAtw toggles w1 (ifAtw toggles w2, f(w1, w2) =
(¬(∨(¬w1, w2))),

6. f(w1, w2) = (¬w2), if Atw sets w1 and toggles w2 (if Atw sets w2 and
toggles w1, f(w1, w2) = (¬w1)).

The case for g = ∨ is quite similar. Now let g = ¬ with input wire w. Alg
substitutes g with f ∈ {F | F : {0, 1} → {0, 1}}, where f(w) = 1, if Atw resets
w, f(w) = 0, if Atw sets w and f(w) = w, if Atw toggles w.

Let v ∈ V ′, i.e., v represents a memory gate g. By definition, g consists
of at most one input and one output wire. Clearly, any attack on the input
wire of v propagates on its output wire, unless the adversary tampers with
the output wire. Now let w be the input wire to g. We consider the following
cases:

1. If Atw sets the value of w, then Alg substitutes g with f(w) = 1.

2. If Atw resets the value of w, then Alg applies the function f(w) = 0.

3. If Atw toggles the value of w, then Alg applies the function f(w) = ¬w.

The output wire of v can be considered an input wire to some gate in VG .
Therefore, this case is already covered.

Finally, let v ∈ VO be an output node and y its value with respect to the
tampering made so far. Moreover, let w ∈ E be its incoming wire. Since
Alg knows the strategy of Atw, she knows if Atw lands a Set, Reset or Toggle

1In the following w will denote both a circuit wire w ∈ E ∪ E′, as well as its bit-value.

20

attack and applies f(w) = 1, f(w) = 0 or f(w) = ¬(w), respectively. This

holds for every output bit yi, i ∈ [q]. Hence, CTws (x) = C
Tg
s (x), and since Atw

tampers with at most t wires she indirectly affects the functionality of up to t
circuit gates, which is the maximum number of gates that Alg needs to tamper
with. �

4.2 Gate adversaries are stronger than wire
adversaries

Consider a PPT gate adversary Atg, t = 1, who tampers with an AND or an
OR gate g that consists of two input wires x, y, and a single output wire w,
by replacing g with some g′ that implements one of the 16 possible binary
boolean functions2 fi : {0, 1}2 → {0, 1}, i ∈ [16]. For each fi, i ∈ [16]\{7, 10},
we give a tampering strategy for Atw, t ≤ 3, that simulates the tampering
effect of fi, for both AND and OR gates. Here we abbreviate the attacks set,
reset and toggle by S,R and T, respectively.

In the following, the variables x, y, w, will denote both circuit wires, as
well as their bit-values.

(0, 0) (0, 1) (1, 0) (1, 1) Repr. 1 Repr. 2

f1 1 1 1 1 1 ∧ 1 1 ∨ y
f2 1 1 1 0 ¬(x ∧ y) (¬x ∨ ¬y)

f3 1 1 0 1 ¬(x ∧ ¬y) ¬x ∨ y
f4 1 1 0 0 ¬x ∧ 1 ¬x ∨ 0

f5 1 0 1 1 ¬(¬x ∧ y) x ∨ ¬y
f6 1 0 1 0 ¬y ∧ 1 ¬y ∨ 0

f7 1 0 0 1 x == y (x ∧ y) ∨ (¬x ∧ ¬y)

f8 1 0 0 0 ¬x ∧ ¬y ¬(x ∨ y)

f9 0 1 1 1 ¬(¬x ∧ ¬y) x ∨ y
f10 0 1 1 0 x 6= y (x ∧ ¬y) ∨ (¬x ∧ y)

f11 0 1 0 1 1 ∧ y 0 ∨ y
f12 0 1 0 0 ¬x ∧ y ¬(x ∨ ¬y)

f13 0 0 1 1 x ∧ 1 x ∨ 0

f14 0 0 1 0 x ∧ ¬y ¬(¬x ∨ y)

f15 0 0 0 1 x ∧ y ¬(¬x ∨ ¬y)

f16 0 0 0 0 0 ∧ y 0 ∨ 0

Table 4.1: All boolean functions from {0, 1}2 to {0,1}.
2For clarity, and besides f7 and f10, we give the functions’ representation by logic for-

mulas with respect to both ∧ (Repr. 1) and ∨ (Repr. 2) operators.

21

Atw’s strategy− AND gate Atw’s strategy− OR gate

T1 ((S, x), (S, y)) (S, x)

T2 (T, w) ((T, x), (T, y))

T3 ((T, y), (T, w)) (T, x)

T4 ((T, x), (S, y)) ((T, x), (R, y))

T5 ((T, x), (T, w)) (T, y)

T6 ((T, y), (S, x)) ((T, y), (R, x))

T7 — —

T8 ((T, x), (T, y)) (T, w)

T9 ((T, x), (T, y), (T, w)) No action

T10 — —

T11 (S, x) (R, x)

T12 (T, x) ((T, y), (T, w)

T13 (S, y) (R, y)

T14 (T, y) ((T, x), (T, w)

T15 No action ((T, x), (T, y), (T, w))

T16 (R, x) ((R, x), (R, y))

Table 4.2: Atw’s tampering strategy. Each strategy Ti produces the same
output with the function fi from Table 4.2.

We observe that there is no tampering strategy for Atw consisting of set, re-
set or toggle attacks on x, y and w, that simulates the tampering effect of
f7(x, y) = (x == y) (NXOR) and f10(x, y) = (x 6= y) (XOR). We use this
observation as a key idea behind Theorem 4, which provides a “qualitative”
separation between the two classes of adversaries.
In the following we prove that for any n, l, k ∈ N, there exist a circuit C̃
whose size depends on n, l, k, and a PPT adversary Ang , such that for all
PPT adversaries Atw, where t ≤ l, Atw fails to simulate the view of Ang while

interacting with C̃. Our construction for the counterexample circuit C̃ is pre-
sented in Figure 4.1. It consists of two subcircuits, C1, C2, which will be
protected against adversaries who tamper with up to l of their wires (l-wire
secure). C1 is the secure transformation of some circuit C ′1 which implements
a pseudorandom function Fs(x), together with a counter (Cr1) and a signing
algorithm (Signsk′) of a digital signature scheme Π =(Gen,Sign,Vrfy) with se-
cret key sk′, |sk′| = 2n. C1 computes Fs(c) and produces two n-bit strings
s′a and s′b. Here c denotes the current counter value and the computation is
based on the secret s. Afterwards, the computation σ1 =Signsk′(c, s

′
a,s
′
b) takes

place and m1 = ((c, s′a, s
′
b), σ1) is given as input to C2, which is the l-wire

secure transformation of a circuit C ′2. Furthermore, the two n-bit strings s′a

22

and s′b, are given as input to the AND gates which compute s′a ∧ s′b. The
result z is given as input to C2 which implements another instantiation of the
signing algorithm on input z and the counter (Cr2). Eventually C2 computes
σ2=Signsk′(c, z,m1) and outputs m2 = ((c, z,m1), σ2). Notice that Cr1 and
Cr2 produce the same output in every round and their initial value is zero.
In order to construct the l-wire secure circuits C1, C2, we employ the compiler
of [IPSW06]. This compiler receives the security parameter k, the maximum
number of tampering attacks l, C ′1, and outputs C1. In the same way we
transform C ′2 to C2. Since [IPSW06] considers reversible NOT gates, i.e.,
gates on which any tampering action on either side propagates to the other
side as well, the NOT gates of C1, C2, are also reversible. The final circuit C̃
is the composition of C1, C2, as shown in Figure 4.1.

z1 zn. . .

s′ns′1 . . .s′n+1 s′2n

Cr1

(counter)

(counter)

Cr2

s1

∧· · ·∧

. . .

c

Secret key

C1

C2

· · ·

Fs(c)
(PRF)

c

c

z

s′bs′a

m1 = ((c, s′a, s
′
b), σ1)

l-wire secure implementation

l-wire secure implementation

m2 = ((c, z,m1), σ2)

Signsk′(c, s
′
a, s
′
b)

Signsk′(c, z,m1)

s2n

C̃

Figure 4.1: The circuit C̃ for the separation theorem.

23

Now, the area between C1 and C2 (we call this the critical area) is the part
of C that the gate adversary will tamper with by substituting each AND gate
with an XOR gate. This will be the main challenge for the wire adversary
and its reason to fail the simulation. Specifically, in order to succeed in the
simulation the wire adversary should produce two valid signatures σ1 and σ2

on the messages (c, s′a, s
′
b) and (c, z,m1) where c is an integer representing the

number of rounds the circuit has been executed and z = s′a⊕ s′b. Now observe
that in normal execution the value z is defined as s′a ∧ s′b and it is infeasible
for the wire adversary to simulate XOR gates using wire tampering directly
in the critical area. We emphasize that even by fully controlling the input
z to the second circuit C2 (and thus entirely circumventing the difficulty of
manipulating the ∧ gates) the wire adversary is insufficient since it will have
to provide a valid signature in order to execute a proper C2 evaluation and
the only way such a string can come to its possession is via a previous round
of circuit execution; this will make the counter found inside each of the two
signatures of the final output to carry different values and thus be detectable
as a failed simulation attempt.
Using the above logic we now proceed as follows. For the circuit that we have
described we consider a simple one-round gate adversary Ang that tampers
with the gates in the critical area transforming them into XOR gates and then
returns the output of the circuit. Then we show that there exists a polynomial-
time distinguisher that given any wire-adversary operating on the same circuit
for any polynomial number of rounds is capable of essentially always telling
apart the output of the wire adversary from the output of the gate adversary.
The impossibility result follows: the knowledge gained by the gate adversary
from interacting with the circuit (just once!) is impossible to be derived by
any wire adversary (no matter the number of rounds it is allowed to run the
circuit).
In the following, the circuit defined above is called C̃s̃ with parameters
n, k, l ∈ N, where s̃ denotes its secret state. Now we define a distinguisher
D w.r.t. C̃s̃, which receives the public information v related to s̃ and AC̃∗s̃ (·),
for some tampering adversary A, and distinguishes the output of the gate
adversary from the output of the wire adversary.

24

Distinguisher D(v,m2) w.r.t. C̃s̃:
Distinguisher precondition: The environment variable Env = (s̃,v) where s̃
determines the secret-state of C̃ is such that v consists of the public key pk of the digital
signature Π and s̃ contains two copies of the secret key of Π, sk′, the secret-key of the
PRF and the two counters initialized to 0.

Verification: On input m2 = ((c′,d,m1), σ2), where m1 = ((c,da,db), σ1):

if Vrfypk((c
′,d,m1), σ2) = 0, output 0,

else if Vrfypk((c,da,db), σ1)) = 0, output 0,

else if d 6= da ⊕ db, output 0,

else if c′ 6= c, output 0,

else output 1.

Figure 4.2: The distinguisher D

Theorem 4. For all l, k ∈ N, polynomial in n, for the circuit C̃s̃ of Figure 4.1
with parameters n, k, l and Env as in Figure 4.2, there exists 1-round gate
adversary Ang such that for every (multi-round) PPT wire adversary Alw it
holds for the distinguisher D defined in Figure 4.2:

|Pr[D(v,AC̃
∗
s̃ (·)

w) = 1]− Pr[D(v,AC̃
∗
s̃ (·)

g) = 1]| ≤ 1− negl(n).

Before proving Theorem 4 we prove the following lemma.

Lemma 2. Let Fs : {0, 1}2n → {0, 1}2n be any pseudorandom function (PRF),
S ⊆ {0, 1}2n and |S| = q(n), where q(n) is polynomial in n. Then for all
x ∈ S, if Fs(x) = r, where r = ra||rb and |ra| = |rb| = n,

Pr[ra ∧ rb = ra ⊕ rb] = negl(n).

Proof. Since Fs is a PRF we have that for every PPT algorithm A, there
exists a negligible function ε(n)∣∣∣Pr[AFs(·)(12n) = 1]− Pr[Af(·)(12n) = 1]

∣∣∣ ≤ ε(n),

where f is a random function from {0, 1}2n to {0, 1}2n. Now, for any x in
{0, 1}2n, f(x) is uniformly distributed over {0, 1}2n. Let f(x) = ra||rb. Then,
ra and ra are uniformly distributed over {0, 1}n, and therefore,

Pr[ra ∧ rb = ra ⊕ rb] =
1

4n
.

25

Towards contradiction, suppose that for some x in S, Fs(x) = ra||rb and

Pr[ra ∧ rb = ra ⊕ rb] =
q(n)

4n
+ g(n),

where g(n) is a non-negligible function. Now we define a PPT algorithm B
which distinguishes f from Fs

Algorithm B:

• Choose x uniformly at random from S,

• query the oracle using x and receive r = ra||rb,

• if ra ∧ rb = ra ⊕ rb return 1, otherwise return 0.

So,∣∣∣Pr[BFs(·)(12n) = 1]− Pr[Bf(·)(12n) = 1]
∣∣∣ ≥ ∣∣∣∣ 1

q(n)
·
(
q(n)

4n
+ g(n)

)
− 1

4n

∣∣∣∣ =
g(n)

q(n)
,

and therefore, B distinguishes f from Fs with non-nengligible probability,
which contradicts the hypothesis for Fs. �

Now we proceed to the proof of Theorem 4.

Proof. As we have already discussed, Ang acts as follows: she chooses strat-
egy Tg according to which each AND gate of the critical area is substituted
by an XOR gate, and then executes the circuit. Since the computation that
takes place on C1, C2 is untampered, it is not hard to see that the circuit
output, m2 = ((c′,d,m1), σ2), where m1 = ((c,da,db), σ1), satisfies the fol-
lowing properties: (i) σ2 (resp. σ1) is a valid signature for (c′,d,m1) (resp.
(c,da,db)) w.r.t. Π, (ii) c′ = c, and (iii) d = da⊕db. Hence, by the definition

of the distinguisher D, we have that Pr[D(v,AC̃
∗
s̃ (·)

g) = 1] = 1.
Before discussing the attack vectors of Alw against C̃s̃, we introduce some
notational conventions: let G = {g1, . . . , gn} be the set of AND gates that
lie on the critical area of the circuit, let Wm1 be the set of circuit wires that
carry m1, andWm2 the corresponding set for m2. We partition the probability
space as follows:

- S: D on input v, AC̃
∗
s̃ (·)

w , outputs 1.

- N : Alw outputs m2 after interacting with C̃s̃ for at least one round.

26

- O: m2 is the output of a circuit computation, tampered or untampered.3

- T : Alw tampers with C̃s̃.

- T ′: Alw tampers with C̃s̃ and induces a fault.

- T1: Alw tampers with the wires in Wm1 and produces m′1 6= m1, where
m1 is the partial output of the execution of C1, tampered or not.

- T ′1: Alw substitutes the current value of the elements in Wm1 with some
m′1, which is a valid output of C1 from a preceding round.

- T2: Alw alters the output of the critical area by tampering with the input
or output wires of the elements in G.

- T3: Alw tampers with Cj , for some j ∈ {1, 2}, and induces a fault.

- F : Alw forges a valid signature with respect to Π.

The probability of S equals to

Pr[S] = Pr[S|N] · Pr[N] + Pr[S|¬N] · Pr[¬N], (4.1)

and we need to show that Pr[S] is negligible in n. Clearly,

Pr[S|¬N] ≤ Pr[F] = negl(n), (4.2)

since Alw does not interact with C̃s̃, and therefore, she has to come up with
a valid signature forgery. Now we split Pr[S|N] with respect to O and its
complement4

Pr[S|N] = Pr[S|N,O] · Pr[O] + Pr[S|N,¬O] · Pr[¬O], (4.3)

and let X ′ = [N,¬O] and X = [N,O]. Regarding Pr[S|X ′], since m2 is not
the output of a circuit computation, tampered or untampered, Alw produces a
valid output if (i) succeeds in forging a valid signature for each mi, i ∈ {1, 2},
with respect to Π, which happens with negligible probability in n, or (ii) she
tampers with C1 and/or C2, extracts sk′ and computes the signatures on her

3Tampering with the output wires of C̃s̃ reduces to substitution of the circuit output
m2 by some m′2, i.e., m′2 is not considered as output of any circuit computation, tampered
or not.

4(A ∩B) is also denoted by (A,B).

27

own. Since each Ci is l-wire secure, this happens with negligible probability
in k. Hence,

Pr[S|X ′] ≤ negl(n). (4.4)

Regarding S given X we have

Pr[S|X] = Pr[S|X,T] · Pr[T] + Pr[S|X,¬T] · Pr[¬T], (4.5)

and furthermore, let X1 = [X,T], X ′1 = [X,¬T] . Then

Pr[S|X1] = Pr[S|X1, T
′] · Pr[T ′] + Pr[S|X1,¬T ′] · Pr[¬T ′], (4.6)

and

Pr[S|X ′1] = Pr[s′a ∧ s′b = s′a ⊕ s′b] = negl(n). (4.7)

The above follows from Lemma 2, since the untampered PRF output is s′a||s′b.
Now let X2 = [X1, T

′]. Then

Pr[S|X2] =

3∑
i=1

Pr[S|X2, Ti] · Pr[Ti] +

2∑
i=1

3∑
j=i+1

Pr[S|X2, Ti, Tj] · Pr[Ti, Tj]

+ Pr[S|X2, T1, T2, T3] · Pr[T1, T2, T3]. (4.8)

We expand the above probability summations,

Pr[S|X2, T1] = Pr[S|X2, T1, T
′
1] · Pr[T ′1] + Pr[S|X2, T1,¬T ′1] · Pr[¬T ′1] ≤ negl(n).(4.9)

The above inequality holds due to the following: if the adversary substi-
tutes m1 with m′1, where m′1 is taken from a previous round with counter
value c′, then the circuit output, say m′2, contains different counter values.
Hence, Pr[S|X2, T1, T

′
1] = 0. On the other hand, if the attacker substitutes

m1 with m′1, where m′1 is not the output of a previous computation, then
Pr[S|X2, T1,¬T ′1] ≤ Pr[F] = negl(n).
Regarding T2, (i) Alw cannot produce the XOR tampering effect by tampering
with the input or output wires of the critical area, and (ii) Alw guesses the
output of the PRF with negligible probability in n. Hence,

Pr[S|X2, T2] = negl(n). (4.10)

IfAlw induces a fault to C1 and/or C2, she learns sk′ with negligible probability
in k, and triggers the circuit’s self destruction mechanism with probability very
close to 1. Hence,

Pr[S|X2, T3] ≤ negl(k). (4.11)

28

Now,

Pr[S|X2, T1, T2] = Pr[S|X2, T1, T2, T
′
1] · Pr[T ′1] + Pr[S|X2, T1, T2,¬T ′1] · Pr[¬T ′1]

≤ 0 · Pr[T ′1] + Pr[F] · Pr[¬T ′1] ≤ negl(n). (4.12)

In the above inequality, Pr[S|X2, T1, T2, T
′
1] = 0 due to the mismatch between

the two counter values, and regardless of the adversarial strategy against the
critical area. Moreover, Pr[S|X2, T1, T2,¬T ′1] ≤ Pr[F] since the attacker needs
to forge a valid message m1 w.r.t. to Π, whose counter value would be equal
to the counter value of C2. Using similar arguments we receive

Pr[S|X2, T1, T3] = Pr[S|X2, T1, T3, T
′
1] · Pr[T ′1] + Pr[S|X2, T1, T3,¬T ′1] · Pr[¬T ′1]

≤ 0 · Pr[T ′1] + Pr[F] · Pr[¬T ′1] ≤ negl(n). (4.13)

Pr[S|X2, T2, T3] ≤ negl(k), (4.14)

and

Pr[S|X2, T1, T2, T3] ≤ negl(k). (4.15)

Now, by setting the unconditional probabilities in (4.8) equal to 1, and by
(4.9)-(4.15) we receive

Pr[S|X2] ≤ negl(n). (4.16)

Now let X ′2 = [X1,¬T ′]. Then,

Pr[S|X ′2] = Pr[s′a ∧ s′b = s′a ⊕ s′b] = negl(n) (Lemma 2). (4.17)

We set the unconditional probabilities of (4.6) equal to 1, we apply (4.16),
(4.17) on it, and we receive

Pr[S|X1] ≤ negl(n). (4.18)

Hence, by (4.18), (4.7) and (4.5) we get that

Pr[S|X] ≤ negl(n), (4.19)

and by applying (4.19), (4.4) on (4.3) gives

Pr[S|N] ≤ negl(n). (4.20)

Finally, by (4.20), (4.2) and (4.1) we get

Pr[S] ≤ negl(n). (4.21)

�

29

In the above theorem, the circuit C̃s̃ which distinguishes wire and gate adver-
saries has persistent private state and is operational for unbounded number
of invocations. If one accepts more restricted circuits to be used as coun-
terexamples, specifically circuits that self-destruct after one invocation, we
can simplify the separation result via a much simpler circuit shown in Figure
4.3. That circuit, say C̄s̄, outputs 2n bits, and each output bit is the AND of
two private state bits as shown below. Moreover, it employs a self-destruction
mechanism, consisting of standard AND gates, that ensures memory erasure
in one invocation against adversaries that tamper with t circuit wires. The
environment variable Env = (s̄,v) w.r.t. C̄s̄ is defined as follows:

1. Sample message m
r← Ul, for some l ∈ N, compute σ = Signsk(m) and

let p = m||σ, p ∈ {0, 1}n, where Signsk is the signing algorithm of a
digital signature scheme Π = (Gen, Signsk,Vrfypk).

2. Sample s, s′
r← Un, compute k = s⊕ s′ and set c′ = k⊕ p.

3. Sample c
r← Un and set d = c⊕ c′.

4. Initialize the circuits secret state to s||s′||c||d.

The strategy of the gate adversary is the same as in Theorem 1: Ang tampers
with the rightmost n AND gates and substitutes each one of them with an XOR
gate. In this way, she receives k = s ⊕ s′, c′ = c ⊕ d, and a valid signature
with respect to Π by computing p = c′⊕ k. Hence, the wire adversary has to
produce a valid signature in one circuit invocation, by tampering with up to
t = poly(n) circuit wires.

∧· · ·∧

s′1 . . . s′ns1 . . . sn c1 . . . cn d1 . . . dn

∧· · ·∧

yn+1 y2ny1

c d

yn

0t+1

d1 dt+1

0t+1

∧ ∧

. . .

s s′

Figure 4.3: A circuit that self-destructs after one invocation.

30

Chapter 5

Defending against Gate
Adversaries

5.1 Properties that ensure security

The following definition generalizes the properties of the compiler presented
in [IPSW06] and formalizes the functionality for the main parts of the trans-
formed circuit. Definition 10 is a versatile tool for providing tamper-resilient
compilers that may be of independent interest. The logic is as follows: we
define a (t, k)-secure circuit compiler to be a mapping that produces a cir-
cuit accompanied with certain distributions and gate encodings. Specifically
the compiler substitutes each wire of the given circuit with a wire-bundle and
each gate with a mega-gate that operates over wire-bundles. Within each
wire-bundle a specific probability distribution is supposed to exist that en-
codes probabilistically the 0’s and 1’s of the original circuit. We note that
in the definition below we purposefully leave the exact nature of the class of
tampering attacks undetermined. More specifically, we consider a tampering
attack for a single circuit execution to be a sequence of instructions T that
modify a number of circuit components equal to the cardinality of T (these
may be wires or gates).

Definition 10 ((t, k)-secure circuit compiler). For every t, k ∈ N, the map-
ping T over circuits C ∈ CG with n input bits and q output bits where
G = {∧,¬} and n, q ∈ N, and memory strings s, |s| = m,

(C, s)→ 〈D0,D1〉 , 〈CAND, CNOT〉 ,
〈
Cenc, Cdec, Ĉ, s

′, Ccascade

〉
31

is a (t, k)-secure circuit compiler if the circuit C ′s′ = Cdec ◦Ccascade ◦ Ĉs′ ◦Cenc

realizes the same functionality with Cs and the following hold (for any arbitrary
tampering strategy T , where |T | ≤ t):

1. (Encoding) D0, D1 are distributions of strings in {0, 1}p, which cor-
respond to valid encodings of the bits 0 and 1, respectively. The length
of the encoding, p, depends on the security parameter k and also on t.
Moreover, let Si be the support set of Di, for i ∈ {0, 1}. Then, the
aforementioned distributions must satisfy the following properties:

a) S0 ∩ S1 = ∅. The set of invalid encodings {0, 1}p\(S0 ∪ S1), is
denoted by S⊥.

b) Each tampering attack T against a circuit component that affects
a wire-bundle1 that contains either a sample from D0 or D1 may
(i) leave the value unchanged, or (ii) produce an element in S⊥.
Moreover, given T there is an efficient way to predict the effect of
the tampering (as a distribution over the two events (i) and (ii)),
with all but negligible probability in k, i.e., the stastistical distance
between the two distributions is negligible in k.

2. (Encoder-decoder) The circuit Cenc for each input bit 0 (resp. input bit
1) samples D0 (resp. D1). Moreover, for any x ∈ {0, 1}n the distribution
of CTenc(x) is simulatable with all but negligible probability in k, given the
tampering strategy T and x. Cdec is a deterministic circuit which maps
any element of S0 to 0 and any element of S1 to 1.

3. (Circuit gates) The secret state of C, s, is substituted by s′, |s′| =
pm, where s′ is the encoding of s. Additionally, every gate in C with
functionality f ∈ {∧,¬}, n′ ∈ {1, 2} input wires and q′ ≥ 1 output
wires, is being substituted with the circuit Cf with pn′ input wires and
pq′ output wires. Every wire of C is substituted by a bundle of wires of
size p which during circuit computation will carry an element in S0∪S1.

The resulting circuit is Ĉ and the following hold:

a) (Correctness) For i, j ∈ {0, 1}, if x ∼ Di, y ∼ Dj then it holds
that CAND(x,y) ∼ D(i∧j) and CNOT(x) ∼ D¬i.

b) (Error propagation) If x ∈ S⊥ or y ∈ S⊥, then CAND(x,y) ∈ S⊥
and CTAND(x,y) ∈ S⊥. The case for CNOT is similar.

1For example an attack against a single wire or a memory gate.

32

c) (Simulatability) For i, j ∈ {0, 1}, x ∼ Di, y ∼ Dj, one of
the following must hold: (i) CTAND(x,y) ≈ CAND(x,y) or (ii)
CTAND(x,y) ∈ S⊥. Moreover, there is an efficient way to predict
the effect of the tampering as a distribution over the events (i) and
(ii), given T , with all but negligible probability in k. The case for
CNOT is similar.

4. (Error propagation & self destruction) Ccascade is a circuit which
receives ({0, 1}p)m′ wires and returns output in ({0, 1}p)m′, i.e., it re-
ceives m′ wire-bundles and outputs m′ wire-bundles, where m′ = m+ q.
The first q input wire-bundles of Ccascade are the output wire-bundles of
Ĉ, while the bundles q+ 1, . . . ,m+ q, feed the private memory of Ĉ. Its
purpose is to propagate encoding errors and erase the circuit memory (if
needed); it works as follows:

a) If for all i ∈ {1, . . . ,m′}, yi ∈ S0 ∪ S1, then (1) for all i ∈
{1, . . . ,m′}, the i-th output wire-bundle of Ccascade(y1, . . . ,ym′)
is equal to yi, (2) the output distributions of [Ccascade(y1

, . . . ,ym′)]{1...q} and [CTcascade(y1, . . . ,ym′)]{1...q} are simulatable
with all but negligible probability in k, given T and Cs(x), where x ∈
{0, 1}n denotes the circuit input, and (3) there is an efficient way to
predict if there is any wire-bundle in [CTcascade(y1, . . . ,ym′)]{q+1...m′}
that carries an element in S⊥, with all but negligible probability in
k.

b) If there exists i ∈ {1, . . . ,m′}, s.t. yi ∈ S⊥, then, (1) all out-
put wire-bundles of Ccascade(y1, . . . ,ym′) and CTcascade(y1, . . . ,ym′)
will be in S⊥, and (2) the distribution of all output wire-bundles of
CTcascade(y1, . . . ,ym′) will be simulatable with all but negligibe prob-
ability in k, given the tampering strategy T and Cs(x).

Remark. Note that the above compiler will be suitable for multi-round ad-
versaries. Intuitively, any single-round adversary attacking with a strategy T
for which Definition 10 applies, will either produce an invalid encoding, which
implies memory erasure and error propagation throughout the entire circuit,
or it leaves the computation intact. This is sufficient to enable simulatability
against attackers that follow a multi-round strategy as we demonstrate on
Theorem 6.

33

5.2 Tamper-resilient circuits against gate
adversaries

Now we give a high level overview of [IPSW06] casted as an instance of Def-
inition 10, and we define a gate adversary that compromises its security by
attacking randomness gates. Then we prove that by substituting randomness
gates with PRNGs, we receive a (t, k)-secure circuit compiler against gate ad-
versaries who tamper with up to t circuit gates. Finally, we prove security for
any compiler that satisfies the properties of Definition 10.

A high level description. In [IPSW06] the authors consider an encoding
in which each input or secret state bit, say x, in the original circuit is en-
coded into a string of 2k2t bits (r2kt

1 || . . . ||r2kt
k), where each ri is a random bit,

i ∈ [k−1], and rk = x⊕r1⊕ . . .⊕rk−1. Here, k denotes the security parameter
and t is the upper bound on the number of wires that the adversary may tam-
per with in each computation. The resulting encoding is handled by circuits
that implement the functionality of the atomic AND and NOT gates, perform
computations over encoded values and satisfy the properties of Definition 10
against wire adversaries. Concretely, let C be a circuit, x an input bit to C
and s a secret state bit, and assume that some part of C computes z = x∧ s.
According to the aforementioned encoding, the transformed circuit C ′ encodes
x to (r2kt

1 || . . . ||r2kt
k), where ri, i ∈ [k− 1], is the output of a randomness gate

with fan-out O(2kt), 2 and computes z = CAND(x, e), using a subcircuit CAND

that handles the encoded circuit values and “securely” implements the AND
gate. Here, e = (e2kt

1 || . . . ||e2kt
k) and z = (z2kt

1 || . . . ||z2kt
k) denote the encoded

version of s and z, respectively, and z is the output of CAND which satisfies
zi = riei ⊕

⊕
j 6=iRi,j , for 1 ≤ i < j ≤ k, Ri,j is the output of a randomness

gate with fan-out a multiple of 2kt and Rj,i = (Ri,j⊕riej)⊕rjei. The number

of randomness gates employed by CAND is k(k−1)
2 . Observe that the value of

each wire in the original circuit is shared among k wires and each one of them
is replicated 2kt times, i.e., each “bundle” consists of k “subbundles” with
2kt wires each. The negation of an encoding e is computed by a circuit CNOT

which consists of 2kt NOT gates that simply negate one of the subbundles
of e. The whole circuit transformation is the composition of three compilers,
and the above description refers to the the second compiler, which we will
call Trand. The third compiler replaces randomness gates with circuits that
generate pseudo-random bits.

2Besides the 2kt wires employed by the encoding, some extra copies of r2kti are needed
for computing r2ktk , i ∈ [k − 1].

34

Fact: The compiler of [IPSW06] conforms to Definition 10. Let
Atw be a wire adversary for C ′, which is the t-secure transformation of C
with respect to Trand, and let s be a secret state bit of C. As we discussed
above, s is encoded into e = (e2kt

1 || . . . ||e2kt
k), where each ei, i ∈ [k − 1], is

a random bit, and ek = s ⊕ e1 ⊕ . . . ⊕ ek−1. Let us consider what happens
if Atw tampers with up to t wires of C ′, where t can be greater than k, and
moreover, assume that she tampers with at most k− 1 different “subbundles”
that carry randomized shares of the value s. In such a scenario, the size of each
subbundle, which is 2kt, and the randomization of the carrying values ensure
that the adversary may leave the value of each subbundle unchanged or she
may alter the value of up to t of its wires, in which case she instantly produces
an invalid encoding. Moreover, the effect of the tampering is simulatable in
the following way. The simulator simulates the output of the randomness
gates by producing her own randomness, and then she decides the effect of
the tampering without touching the distribution of s. On the other hand, if
the adversary tampers with all subbundles, and since the randomization on
the circuit’s signals ensures that each tampering attack produces a fault with
constant probability, the simulator knows that the probability that none of
the attacks produce an invalid encoding is exponentially small in k. Therefore,
with all but negligible (in k) probability an error is induced and propagated
by the following circuit components: the cascade phase (Property 4) and the
circuits that implement the standard gates of the original circuit (Property
3). Since CAND and CNOT also produce randomized shares, a similar argument
gives us simulatability against adversaries who tamper with such encodings.

Reversible gates. As we have already discussed in chapter 4, [IPSW06]
assumes reversible NOT gates. As in [IPSW06], in this section we will consider
reversible tampering, i.e., the adversary who tampers with a reversible NOT
gate produces a tampering effect that propagates to the gate’s incoming wire
(note also that w.r.t. NOT gates the wire and gate adversaries are equivalent).

The compiler Trand is insecure against gate tampering. Suppose first
that t ≥ 2k − 1 and let x, s, z and x, e, z be the values defined in the high
level description above. Consider an adversary who (i) sets to zero the k − 1
randomness gates Ri,i+1, for i ∈ [k− 1], that lie on CAND, (ii) sets to zero the
k− 1 randomness gates that lie on Cenc and produce the randomness which is
used to encode an input bit x into x = (r2kt

1 || . . . ||r2kt
k), and (iii) tampers with

a gate that outputs zk (e.g., sets it to 0). Apparently, the 2(k − 1) attacks
on the randomness gates are fully simulatable. Nevertheless, we have zi = 0,

35

for i ∈ [k − 1] and zk = x · s. Hence, in order to simulate the attack on
the gate that outputs zk, the simulator has to make a “guess” on s and the
simulation breaks. For the case when t < 2k− 1 notice that since we consider
persistent tampering, an adversary Atg can still land the aforementioned attack

in 2dkt e rounds by tampering with t circuit gates in each round. In general any
persistent gate adversary may completely eliminate the circuit’s randomness,
and the second stage compiler Trand of [IPSW06] collapses when subjected to
this gate adversary attack (contrary to this, a wire adversary cannot achieve
the same effect since the randomness gates attacked above have a large fan-out
and thus cannot be effectively zeroed). Next we describe how to circumvent
such attacks via the substitution of randomness gates with logic circuitry that
implements a pseudo-random generator (as in the third compiler of [IPSW06]).

Eliminating randomness gates. Consider a circuit Cprg which imple-
ments a pseudo-random generator initialized with a random seed m ∈ {0, 1}n,
that consists of l AND gates and any, polynomial in n, number of NOT gates,
and outputs one pseudo-random bit. We modify Cprg with respect to t and k
as follows:

1. Secret state: Each secret state bit, mi, of m is replaced by
(r2kt

1 || . . . ||r2kt
k), where ri

r← {0, 1} for i ∈ [k−1] and rk = mi⊕r1⊕ . . .⊕
rk−1. Furthermore, we generate l · k(k−1)

2 random bits, and we replicate
each bit 2kt times. The resulting secret state is of length O(k3tl).

2. Circuit gates: Each AND and NOT gate is replaced by CAND and
CNOT, respectively (as defined above), which perform computations over
encoded values. Moreover, the output gate is replaced by 2k2t output
gates.

3. Circuit wires: Each wire of C is replaced by 2k2t wires that carry
encoded bit-values. Finally, we introduce O(k3tl) wires that feed the
CAND subcircuits with the random bits produced in step 1 and stored
in the secret state. Recall that in Trand, the randomness needed by
CAND is produced by randomness gates. Instead here we feed CAND

with the randomness built into the secret state that follows the encoding
described above.

4. Circuit output: With the modifications made so far, the circuit out-
puts a pseudo-random bit r which is encoded into (r2kt

1 || . . . ||r2kt
k). In

order to produce the same output with a randomness gate having fan-
out equal to 2kt we need to compute r2kt, where r = r1⊕ . . .⊕rk. So, we

36

expand Cprg with k−1 C̄XOR gadgets that were introduced in [IPSW06].
Each C̄XOR is a tamperable circuit which receives 4kt input bits, outputs
2kt bits and implements the following functionality:

• C̄XOR(02kt, 02kt) = 02kt,

• C̄XOR(02kt, 12kt) = 12kt,

• C̄XOR(12kt, 02kt) = 12kt,

• C̄XOR(12kt, 12kt) = 02kt,

• C̄XOR(∗2kt, ∗2kt) = 0kt1kt. Here “∗2kt” denotes any string of length
2kt that is not covered by the above cases.

The implementation of each output bit of C̄XOR is realized by a circuit of
the form “OR of ANDs” of the input bits or their NOTs, or the “NOT”
of such a circuit. Notice how the C̄XOR gadget propagates invalid en-
codings, i.e., bit-strings in {0, 1}2kt that consist of both zero and one
bits.

Now, let C̄prg be the resulting circuit, which apparently outputs r2kt. We
replace each randomness gate with the XORed output of k such circuits C̄prg =
{C̄1

prg, . . . , C̄
k
prg}, which consist of k uniform and independent seeds. So, if

an adversary tampers with fewer that k of these circuits, then due to the
randomization of their signals there exists a simulation that reproduces the
tampering effect. On the other hand, if the adversary attacks all k circuits,
she induces a fault with all but negligible probability in k.
Now, let Tcomp be Trand in which each randomness gate is replaced by the
XORed output of the elements in C̄prg. We now prove that Tcomp satisfies
the properties of Definition 10 against gate adversaries, but before doing so
we give the intuition on why this construction somehow retains its properties
against gate adversaries. The key idea is that eliminating randomness gates
effectively removes the advantage of the gate adversary. This is the case
because all other gates employed by Trand even those whose fan-out is somehow
big (and hence may be thought to be higher value targets for a gate attack),
lead to different wire-subbundles. Therefore, a gate adversary that induces
a fault will spread the fault to multiple circuit gates. The circuit’s defense
mechanisms of [IPSW06] will then be able to detect the invalid encodings with
high probability. Now we prove that Tcomp is a (t, k)-secure compiler against
gate adversaries.

Theorem 5. For every t, k ∈ N, the compiler Tcomp is a (t, k)-secure circuit
compiler per definition 10 w.r.t. the class of PPT gate attackers Atg.

37

Proof. We prove the theorem’s statement by verifying each property of Def-
inition 10 separately. So, let Cs ∈ CG be a circuit, where G = {∧,¬}
and let C ′s′ be its secure transformation w.r.t. Tcomp, t and k, where

C ′s′ = Cdec ◦ Ccascade ◦ Ĉs′ ◦ Cenc. We need to show that Cdec, Ccascade, Ĉs′

and Cenc satisfy the properties of Definition 10 against Atg, and we do so by
focusing on gates with big fan-out, in which case the gate adversary obtains
significant advantage over the wire adversary.
We define S0 to be the subset of {02kt, 12kt}k such that for each x =
(x2kt

1 , . . . , x2kt
k) ∈ S0, x1 ⊕ . . . ⊕ xk = 0. D0 is the uniform distribution

over S0. Symmetrically, S1 is the subset of {02kt, 12kt}k such that for each
x = (x2kt

1 , . . . , x2kt
k) ∈ S1, x1⊕ . . .⊕xk = 1, and D1 is the uniform distribution

over S1. We prove next the required properties per Definition 10 (for conve-
nience we do not prove them in the same order they appear in the definition).

i. Property 2. The encoding phase of [IPSW06] is a circuit that consists of
gates in {∨,∧,¬}, and encodes each input bit xi of Cs to (r2kt

1 || . . . ||r2kt
k),

where each rj , j ∈ [k−1], is generated by a randomness gate with fan-out
equal to a multiple of 2kt, and rk = r1⊕. . .⊕rk−1⊕xi. In our setting, r2kt

j

is the XOR of the output of k circuits in C̄prgi,j = {C̄1
prgi,j

, . . . , C̄kprgi,j}, with

private memories of length O(k3tl), initialized as described above. Recall
that l is the number of AND gates of each pseudo-random generator. Now,
let d be the length of the seed of the PRNG before the transformation.
For any tampering strategy Tg, with |Tg| ≤ t, we define a simulator Senc
such that for every x ∈ {0, 1}n, Senc(d, Tg,x) ≈k C

Tg
enc(x):

Input: d, Tg, x = (x1, . . . , xn).

a) (PRNG private memory sampling) The simulator produces its
own randomness in order to initialize the private memory of the
PRNG’s: for i ∈ [n], j ∈ [k − 1], z ∈ [k], generate kd + l · k(k−1)

2
random bits and replicate each bit 2kt times. Let Memz

i,j be the

resulting string, Memi,j = {Mem1
i,j , . . . ,Memk

i,j} and MEMi =

{Memi,1, . . . ,Memi,k−1}, i.e., MEMi consists of private memory
strings of the PRNG’s that produce the k − 1 random bits needed
for the encoding of xi, as described above.

b) Output h(x, Tg, (MEM1, . . . ,MEMn)), where h is a function whose
circuit implementation is the deterministic circuit C̄enc which is de-
rived by Cenc as follows: (i) for i ∈ [n], j ∈ [k − 1], the private
memory of each C̄zprgi,j ∈ C̄prgi,j = {C̄1

prgi,j
, . . . , C̄kprgi,j}, z ∈ [k], has

been initialized with Memi,j as discussed in the above step, and

38

(ii) for each (f, g) ∈ Tg, g is replaced by g′ which implements f . In
other words, h(x, Tg, (MEM1, . . . ,MEMn)) = C̄enc(x), and since the
private memories of the PRNGs employed by C̄enc(x) and Cenc(x) are
initialized with bit-strings that follow the same distribution, we have
C
Tg
enc(x) ≈k C̄

Tg
enc(x).

Informally, Senc receives the circuit input x, the adversarial strategy Tg
and the length of seed which is a function the security parameter k, sam-
ples the randomness needed by the PRNGs by flipping her own coins, and
simulates the tampering effect which depends only on the circuit input
and the generated randomness. Notice that in order to effectively elimi-
nate one random bit, the adversary has to tamper with k PRNG circuits.
Hence, she produces an invalid encoding with all but negligible probability
in k, which propagates through the CAND and CNOT gates to the circuit’s
output. The replacement of randomness gates prevents the derandomiza-
tion of the encoded input, which apparently does not affect Property 2 of
Definition 10, but it is a major component for Properties 1 and 3. The de-
coder is just a deterministic circuit with no special properties. Therefore,
Property 2 of Definition 10 follows.

ii. Property 3. Each input and secret state bit of C is encoded according
to the encoding described above. The main computation is being handled
by the circuit Ĉs′ , which is derived by C by replacing each of its wires
with 2k2t wires and each atomic gate with a special gate that performs
computations over encoded values. Concretely, consider an AND gate of C
with input (x, y) ∈ {0, 1}2, such that x∧y = z. Such a gate is substituted
by circuit CAND which receives (x2kt

1 || . . . ||x2kt
k) and (y2kt

1 || . . . ||y2kt
k) and

outputs (z2kt
1 || . . . ||z2kt

k). Here zi = xiyi ⊕
⊕

j 6=iRi,j , for 1 ≤ i < j ≤ k,
Ri,j is a random bit and Rj,i = (Ri,j ⊕ xiyj) ⊕ xjyi, i.e., zi is one of
the k shares of z. In the middle-stage compiler of [IPSW06], each Ri,j
is the output of a randomness gate with fan-out O(2kt), while now, Ri,j
comes from the XORed output of k pseudo-random generators with 2kt
output gates each. As we discussed above, this modification prevents the
adversary from eliminating randomness employed by the construction and
preserves simulatability. Now, for 1 ≤ i < j ≤ k, consider circuits C∗i that
compute zi = xiyi⊕

⊕
j 6=iRi,j , implemented by standard AND and XOR

gates. Recall that in Tcomp blowing up zi into z2kt
i is achieved as follows.

Each AND gate of C∗i is substituted by a circuit C̄AND which receives 4kt
input bits, outputs 2kt bits and realizes the following functionality:

• C̄AND(02kt, 02kt) = 02kt,

39

• C̄AND(02kt, 12kt) = 02kt,

• C̄AND(12kt, 02kt) = 02kt,

• C̄AND(12kt, 12kt) = 12kt,

• C̄AND(∗2kt, ∗2kt) = 0kt1kt.

Each output bit of C̄AND is computed by a subcircuit of the form “OR of
ANDs” of the input bits or their NOTs, or a “NOT” of such a circuit. Let
C̄∗i be the resulting circuit. The circuit CAND is constructed by k such
circuits, where each C̄∗i , i ∈ [k], computes z2kt

i . Regarding the ⊕-gates the
circuit C̄XOR is used that was described in the beginning of this section.

One can easily verify that if (x, y) ∈ {0, 1}2 and x ∧ y = z, then

CAND((x2kt
1 || . . . ||x2kt

k), (y2kt
1 || . . . ||y2kt

k)) = (z2kt
1 || . . . ||z2kt

k),

i.e., CAND preserves correctness (Property 3a). Moreover, suppose that
one of the inputs, say x = x1|| . . . ||xk, is invalid. Then the C̄AND and
C̄XOR gadgets that implement CAND guarantee that CAND(x,y) ∈ S⊥.
Specifically, if CAND(x,y) = (z′1|| . . . ||z′k), then for some j ∈ [k], zj =
0kt1kt.

Now suppose at least one of the inputs, say x, belongs to S⊥, and consider
a gate adversary who tampers with at most t − 1 gates of CAND.3 Since
x = (x1|| . . . ||xk) ∈ S⊥, there exists some i ∈ [k] such that xi contains
both 0-bits and 1-bits. The length of each xi is 2kt and is given as input
to some C̄AND or C̄XOR circuit, i.e., the circuits that implement the AND
and XOR gates of CAND, respectively. We need to verify that the invalid
encoding propagates even if the gate adversary tampers with the internals
of those gadgets: recall that each output bit of those gadgets is computed
by a subcircuit of the form “OR of ANDs” of the input bits or their NOTs,
or a “NOT” of such a circuit. Therefore, we have 2kt subcircuits which
independently compute 2kt output bits. Since the adversary can tamper
with up to t − 1 gates in total, she may alter the functionality of up to
t − 1 of the 2kt subcircuits. On input xi, an untampered C̄AND gadget
would output 0kt1kt, and therefore, the adversary is far from producing
02kt or 12kt. Hence, the error propagates through C̄AND and C̄XOR, and
Property 3b follows for CAND. The case for CNOT is similar.

We prove Property 3c by reviewing the simulator of [IPSW06] against ad-
versaries who tamper with wires inside the circuit gadgets. In [IPSW06],

3Since x ∈ S⊥, the attacker has already applied at least one tampering action.

40

and due to the randomization techniques employed by the circuit, the
simulator knows the probability distribution of the input to the gadget
and generates samples according to it. Then she decides the tampering
effect given the adversary’s tampering strategy Tw. The encoding also
ensures that each tampering attack against CAND produces an element
in S⊥ with constant probability, and therefore, if the attacker tampers
with t different CAND circuits, an element in S⊥ is produced with all but
negligible probability in k. In our case, any adversary who tampers with
up to t circuit gates, affects up to t circuit gadgets and the attacks can be
simulated exactly as in [IPSW06]. Notice that the effect of any attack on
a circuit that implements a pseudo-random generator is simulatable as in
Cenc.

iii. Property 1. Property 1a of Definition 10 does not depend on the adver-
sarial model and follows directly from [IPSW06] given the above descrip-
tion.

In [IPSW06] the adversary is allowed to tamper with up to t circuit wires
in each computation. Let x = (x2kt

1 || . . . ||x2kt
k) be the encoding of x ∈

{0, 1}, where each xi ∈ {0, 1}, for i ∈ [k], is a share of x which incorporates
the circuit’s randomness (see above). The value x is carried by a circuit
wire on C, while x is carried by a wire-bundle on Ĉs′ . Any wire adversary
needs to tamper with at least kt wires in order to change x to x′ 6= x, in
a way such that x′ /∈ S⊥. Hence, if the adversary tampers with up to t
wires of the wire-bundle that carries x, she leaves the value of the bundle
unchanged or she induces an element in S⊥. Moreover, the randomization
employed by the encoding, both for the case in which x is the encoding
of an input or secret state bit, as well as for the case in which x is the
output of a circuit that implements an atomic gate of C (recall CAND,
CNOT and the ideas of Property 3), guarantees that (i) each tampering
attack on wires that carry x induces a fault with constant probability
and (ii) the simulatability of the tampering effect, which follows by the
simulatability of the randomness incorporated in each xi, given T . If
the adversary tampers with wires that lie on distinct subbundles, the
probability of inducing a fault increases. The gate adversary does not
tamper with the wires that carry x directly. She instead tampers with
the gates that produce x. Hence, we consider the following cases:

• If x is an encoded secret state bit, and since x ∈ {0, 1}2k2t, then x is
the output of 2k2t memory gates.4 Hence, the gate adversary may

4Recall that each memory gate has one input and one output wire.

41

alter up to t bits of x, and apparently, she cannot change the value
of x without producing an element in S⊥.

• Let x = (x1|| . . . ||xk), where xi is of length 2kt and assume that x is
the output of some CAND circuit. Then each xi is the output of some
circuit gadget (C̄AND or C̄XOR) or it comes from a PRNG circuit. By
definition of those components, each of their 2kt bits is produced by
a distinct circuit gate, and the gate adversary may alter up to t of
their bits.

Hence, any adversary Atg who can alter up to t bits of x cannot change
the value of x without producing an element in S⊥, and the simulatability
of the tampering effect is proved as in property 3.

iv. Property 4. The cascade phase of [IPSW06] is a deterministic circuit
which receives m′ wire-bundles, outputs m′ wire-bundles, and enforces
error propagation and memory erasure without employing any random-
ness. As in Ĉs′ , Ccascade employs special tamperable gadgets, call them
Ccheck, that receive 4kt input bits, i.e., they receive pairs of subbundles,
and output 4kt bits. The gadgets realize the following functionality:

• Ccheck(0
2kt, 02kt) = (02kt, 02kt),

• Ccheck(0
2kt, 12kt) = (02kt, 12kt),

• Ccheck(1
2kt, 02kt) = (12kt, 02kt),

• Ccheck(1
2kt, 12kt) = (12kt, 12kt),

• Ccheck(∗2kt, ∗2kt) = (0kt1kt, 0kt1kt).

Each output bit of Ccheck is the output of a subcircuit of the form “OR
of ANDs” of its input wires or their NOTs or a “NOT” of such a circuit.
Hence, a gate adversary who tampers with up to t circuit gates may alter
the functionality of up to t subcircuits of Ccheck. Clearly, the attacker
cannot modify the value of any bundle without producing an invalid en-
coding, and moreover, she cannot change any invalid encoding to a valid
one since she needs to tamper with at least kt gates. Hence, we derive that
both wire and gate adversaries have the same advantage against Ccascade,
and the proof of Property 4 against gate adversaries follows by [IPSW06].
Here we give the main idea behind the proof.

Suppose the input to Cs is x = (x1, . . . , xn) with encoding x̄, and let

Ĉ
Tg
s′ (x̄) = (y1, . . . ,ym′) = ȳ and for all i, 1 ≤ i ≤ m′, yi ∈ S0∪S1, i.e., the

output of Ĉs′(x̄) does not contain invalid encodings. By the definitions

42

of Ccascade and Ccheck, we have that for any untampered computation
[Ccascade(ȳ)]i = yi, and moreover, the output distribution of the wire-
bundles of Ccascade(ȳ) that feed Cdec is simulatable given black box access
to Cs: the simulator computes y = Cs(x), samples her own randomness so
as to encode y into ȳ′ and computes Ccascade(ȳ

′). Since ȳ ≈k ȳ′, we have

that Ccascade(ȳ
′) ≈k Ccascade(ȳ). C

Tg
cascade(ȳ) is simulatable in a similar

way: the simulator having black box access to Cs, receives y = Cs(x),
samples her own randomness so as to encode y into ȳ′. Then she supplies
Ccascade with ȳ′ and applies the adversarial strategy Tg on it. Regarding
the wire-bundles of Ccascade that feed the circuit’s private memory, for any
attack on the gates of Ccascade there exists a simulator which decides if
the attack produces an invalid encoding. The description of the simulator
is similar to the one we described in property 3.

If there exists i, 1 ≤ i ≤ m′, such that yi ∈ S⊥, then by the defini-
tion of Ccheck, [Ccascade(ȳ)]i ∈ S⊥, and more specifically, [Ccascade(ȳ)]i =
(0kt1kt)k, for all i ∈ [m′]. By the description of Ccheck and the structure of

Ccascade (see [IPSW06]), [C
Tg
cascade(ȳ)]i ∈ S⊥, for all i ∈ [m′]. Since for any

tampering action against Ĉs′ we have proved the existence of a simulator
that predicts the result of the tampering effect as a distribution between
producing invalid encodings or not, and due to the error propagation func-
tionality of CAND, CNOT, there exists a simulator S who “predicts” the
output wire-subbundles of Ĉ

Tg
s′ (x̄) that carry invalid encodings. In other

words, there exists a simulator S which receives Tg, x, x̄ , and for each
i, j outputs 1 iff the j-th wire-subbundle, of the i-th wire bundle carries
an invalid encoding. We define a simulator S ′ for C

Tg
cascade(ȳ) as follows:

Input: Tg, x, x̄.

a) Run S(Tg,x, x̄) and denote by Vi,j its output for each i ∈ [m′] and
j ∈ [k].

b) For i ∈ [m′], if for all j ∈ [k], Vi,j = 0, then generate randomness so
as to produce a valid encoding of [Cs(x)]i and set yi equal to that
value. Otherwise, set yi equal to an invalid encoding by taking into
account the adversarial strategy Tg against Ĉŝ.

c) Output h′(y1, . . . ,yn), where h′ is a function whose circuit imple-
mentation is the deterministic circuit C̄cascade which is derived by
Ccascade if for each (f, g) ∈ Tg, we replace g by g′, where g′ imple-
ments f .

The invalid encoding propagates to the circuit’s secret state and output,
and Property 4 follows.

43

�

Security for multiple rounds. Since the attacks we consider are persis-
tent, a multi-round adversary may alter the value of more than kt bits of the
encoding by tampering with t circuit gates in each round. However, if the
adversary alters the value of t bits of the encoding during a round, due to the
randomization of the subbundle’s signals, an element in S⊥ is produced with
constant probability. Observe that in order for the simulation to fail at least
kt bits should be affected; nevertheless, a multi-round adversary will succeed
in modifying kt bits only with negligible probability in k.

The final theorem (which may be of independent interest) states that any com-
piler which satisfies the properties of definition 10, produces tamper resilient
circuits with respect to the standard simulation based security definition.

Theorem 6. Let Env = (s,v) be a pair of random variables, Cs any boolean
circuit, T a (t, k)-secure circuit compiler for t, k ∈ N, and let C ′s′ be the secure
transformation of Cs with respect to T . Then for every multi-round tampering
adversary A that in each round follows a tampering strategy T with |T | ≤ t

there exists a simulator S such that ∆(SCs(·)(v),AC
′∗
s′ (·)(v)) is negligible in k

w.r.t. Env.

Proof. Let A be any tampering adversary. We construct a simulator S such

that SCs(·)(v) ≈k AC
′∗
s′ (·)(v). We first prove the case of single-round adver-

saries; with this as a basis we then tackle multi-round adversaries.
Suppose that A is a single round tampering adversary against C ′s′ = Cdec ◦
Ccascade ◦ Ĉs′ ◦ Cenc, with strategy T and chosen circuit input x. Notice that
we purposefully leave the nature of the tampering attacks undetermined, but
we assume their effects do not break the properties of definition 10. Now,
by property 2 of definition 10 there exists a simulator S1 s.t. S1(T ,x,v) ≈k
CTenc(x). We construct a simulator S2 which outputs a distribution over {0, 1},
where the “1” output indicates that there exists a wire-bundle that feeds
Ccascade and carries an invalid encoding, and the “0” output indicates that all
wire-bundles that feed Ccascade carry valid encodings. We define S2 as follows:
Input: S2 receives T , x, v.

1. S2 executes S1(T ,x,v) to obtain x̄ = (x1, . . . ,xn). Let I ⊆ [n] be the
set of indexes s.t. if j ∈ I, then xj is an invalid encoding, or in other
words, the j-th input wire-bundle of Ĉŝ carries an invalid encoding. If
I 6= ∅ then due to property 3b of definition 10 (error propagation), we
know that an invalid encoding will reach Ccascade. Hence, if I 6= ∅, S2

outputs 1 and terminates, else it proceeds to step 2.

44

2. Let G(V,E) be the graph that represents Ĉŝ, i.e., if e ∈ E, then e
represents a wire-bundle in Ĉŝ and for every v ∈ V , v represents a
CAND, CNOT or memory gate in Ĉŝ. S2 performs a breadth-first search
traversal of G until it finds a circuit component for which there exists
a tampering strategy in T against it. Clearly, any action in T may be
an attack against the circuit outside of the mega-gates (CAND, CNOT)
or within such gates. In the first case, the attack may affect either a
memory gate or a wire-bundle that contains an encoded bit, i.e., it is an
attack against the encoding of values in the circuit. Then, by property 1b
of definition 10, for every such action there exists a simulator which given
only the tampering action predicts the tampering effect as a distribution
between leaving the value of the encoding unchanged and producing an
element in S⊥. In the second case, we use property 3c from which we
are guaranteed a simulator w.r.t. attacks against the circuit gates within
CAND or CNOT that as before will predict whether a fault is produced
or not. In the course of the traversal, for each tampering action in T
the simulator S2 executes the corresponding simulator. Concretely, let
T1 ⊆ T be the strategy of A that affects solely Ĉŝ. For any tampering
action ai ∈ T1, there exists a simulator S̄i that meets the properties
mentioned above. If some S̄i(T ,x, x̄,v) outputs 1, i ∈ |T1|, then S2

outputs 1 and terminates. Otherwise, it continues the BFS traversal of
G having the strategy described above. If for all i ∈ |T1|, S̄i outputs 0,
then S2 outputs 0 and terminates.

Now we define the simulator for Ccascade, S3:
Input: S3 receives T , x, v.

1. S3 executes S2(T ,x,v).

2. If S1(T ,x,v) = 0, then by property 4a of definition 10, there exist sim-
ulators S1

c , S2
c and Smem s.t. S1

c (Cs(x),x,v) ≈k Ccascade(y1, . . . ,ym′),
S2
c (T , Cs(x),x,v) ≈k CTcascade(y1, . . . ,ym′) and Smem(T , Cs(x),x,v) =

1 iff an element in S⊥ feeds the circuit’s private memory. Here
(y1, . . . ,ym′) denotes the input to Ccascade w.r.t. Ĉs′(x̄). If
there exists a tampering action in T against Ccascade, then S3

returns (S2
c (T , Cs(x),x,v),Smem(T , Cs(x),x,v)). Otherwise returns

(S1
c (Cs(x),x,v), 0).

3. If S1(T ,x,v) = 1, then by property 4b of definition 10, there ex-
ist simulators S3

c , S4
c s.t. S3

c (Cs(x),x,v) ≈k Ccascade(y1, . . . ,ym′)
and S4

c (T , Cs(x),x,v) ≈k CTcascade(y1, . . . ,ym′). Again, if there

45

exists a tampering action in T against Ccascade, then S3 returns
(S4

c (T , Cs(x),x,v), 1). Otherwise returns (S3
c (Cs(x),x,v), 1).

The single-round simulator Sr is the composition of the simulators defined
above. Concretely, Sr receives (T ,x,v), computes (a, b) = S3(T ,x,v), returns
(Cdec(a), b), and since the statistical distance between S3(T ,x,v) and the
output of Ccascade that feeds Cdec is negligible in k, and Cdec is a stateless
deterministic circuit which performs the decoding (hence any tampering attack
against Cdec can be trivially simulated) we have that C ′Ts′(x) ≈k Cdec(a).
The result easily extends to the multi-round case since the output of S3 indi-
cates if an element in S⊥ is fed into the circuit’s private memory, during the
next computation, the circuit’s error propagation mechanism enforces mem-
ory erasure, something that ensures that all output wire-bundles of Ccascade

will carry invalid encodings. �

46

Bibliography

[AK96] Ross Anderson and Markus Kuhn. Tamper resistance-a caution-
ary note. In Proceedings of the second Usenix workshop on elec-
tronic commerce, volume 2, pages 1–11, 1996.

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the
importance of checking cryptographic protocols for faults. In Ad-
vances in Cryptology EUROCRYPT 97, pages 37–51. Springer,
1997.

[BDL01] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the
importance of eliminating errors in cryptographic computations.
Journal of cryptology, 14(2):101–119, 2001.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich,
Amit Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility
of obfuscating programs. In Advances in Cryptology CRYPTO
2001, pages 1–18. Springer, 2001.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key
cryptosystems. In Advances in Cryptology CRYPTO’97, pages
513–525. Springer, 1997.

[BS03] Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanaly-
sis of the advanced encryption standard (aes). In Financial Cryp-
tography, pages 162–181. Springer, 2003.

[BSGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Su-
dan, and Salil Vadhan. Robust pcps of proximity, shorter pcps

47

and applications to coding. In Proceedings of the thirty-sixth an-
nual ACM symposium on Theory of computing, pages 1–10. ACM,
2004.

[CKM11] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: built-in
tamper resilience. In Advances in Cryptology–ASIACRYPT 2011,
pages 740–758. Springer, 2011.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-
malleable codes. In ICS, pages 434–452. Tsinghua University
Press, 2010.

[DSK12] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits
against constant-rate tampering. In Advances in Cryptology–
CRYPTO 2012, pages 533–551. Springer, 2012.

[FPV11] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi.
Tamper-proof circuits: How to trade leakage for tamper-
resilience. In Automata, Languages and Programming, pages 391–
402. Springer, 2011.

[GA03] Sudhakar Govindavajhala and Andrew W Appel. Using memory
errors to attack a virtual machine. In Security and Privacy, 2003.
Proceedings. 2003 Symposium on, pages 154–165. IEEE, 2003.

[GG94] Péter Gács and Anna Gál. Lower bounds for the complexity of
reliable boolean circuits with noisy gates. Information Theory,
IEEE Transactions on, 40(2):579–583, 1994.

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali,
and Tal Rabin. Algorithmic tamper-proof (atp) security: Theo-
retical foundations for security against hardware tampering. In
Theory of Cryptography, pages 258–277. Springer, 2004.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier.
Electromagnetic analysis: Concrete results. In Cryptographic
Hardware and Embedded Systems CHES 2001, pages 251–261.
Springer, 2001.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 218–229. ACM, 1987.

48

[GS95] Anna Gal and Mario Szegedy. Fault tolerant circuits and prob-
abilistically checkable proofs. In Structure in Complexity Theory
Conference, 1995., Proceedings of Tenth Annual IEEE, pages 65–
73. IEEE, 1995.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wag-
ner. Private circuits ii: Keeping secrets in tamperable circuits.
In Advances in Cryptology-EUROCRYPT 2006, pages 308–327.
Springer, 2006.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits:
Securing hardware against probing attacks. In Advances in
Cryptology-CRYPTO 2003, pages 463–481. Springer, 2003.

[KA98] Markus G Kuhn and Ross J Anderson. Soft tempest: Hidden data
transmission using electromagnetic emanations. In Information
Hiding, pages 124–142. Springer, 1998.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Advances in Cryptology CRYPTO 99, pages 388–397.
Springer, 1999.

[KL08] Jonathan Katz and Yehuda Lindell. Introduction to modern cryp-
tography. Chapman & Hall, 2008.

[Koc96] Paul C Kocher. Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems. In Advances in Cryptology
CRYPTO 96, pages 104–113. Springer, 1996.

[KSWH98] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side
channel cryptanalysis of product ciphers. In Computer Security
ESORICS 98, pages 97–110. Springer, 1998.

[KT13] Aggelos Kiayias and Yiannis Tselekounis. Tamper resilient cir-
cuits: The adversary at the gates. In Advances in Cryptology -
ASIACRYPT 2013, volume 8270 of Lecture Notes in Computer
Science, pages 161–180. Springer, 2013.

[LL10] Feng-Hao Liu and Anna Lysyanskaya. Algorithmic tamper-proof
security under probing attacks. In Security and Cryptography for
Networks, pages 106–120. Springer, 2010.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptog-
raphy. In Theory of Cryptography, pages 278–296. Springer, 2004.

49

[Pip85] Nicholas Pippenger. On networks of noisy gates. In Foundations
of Computer Science, 1985., 26th Annual Symposium on, pages
30–38. IEEE, 1985.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromag-
netic analysis (ema): Measures and counter-measures for smart
cards. In Smart Card Programming and Security, pages 200–210.
Springer, 2001.

[RR01] Josyula R Rao and Pankaj Rohatgi. Empowering side-channel
attacks. IACR ePrint, 37, 2001.

[SA03] Sergei P Skorobogatov and Ross J Anderson. Optical fault induc-
tion attacks. In Cryptographic Hardware and Embedded Systems-
CHES 2002, pages 2–12. Springer, 2003.

50

