NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTEMENT OF INFORMATICS AND TELECOMMUNICATIONS

GRADUATE PROGRAM
COMPUTER SYSTEMS: SOFTWARE AND HARDWARE

MASTER’S THESIS

Survey of Privacy-Preserving Data Publishing Methods
and
Speedy: a multi-threaded algorithm preserving k-anonymity

Serafeim G. Chatzopoulos

Supervisor: Mema Roussopoulos, Associate Professor

ATHENS

OCTOBER 2015



EONIKO KAI KAMOAIXTPIAKO MNMANENIZTHMIO AGHNQON

2XOAH OETIKQN EMIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAEMNIKOINQNIQN

NMPOrPAMMA METANTYXIAKQN ZNMOYAQN
YNOAOTIZTIKA ZYZTHMATA: AOI'IZMIKO KAI YAIKO

AINAQMATIKH EPTAZIA

BiBAloypa@IKK €TICKOTTNON HEBOOWYV TTpOOTACIOG THG
ISIWTIKOTNTAG OEQONEVWYV TTPOG BNUOCiIEUOT)
Kal
Speedy: évag TTOAUVNMATIKOG OAYOpIOOG TTOU dIa@UAACOEl
TNV k-avwvupia

Zepageip M. Xar{oétmouAog

EmBAéTTWYV: Mépa PouoootrouAou, AvammAnpwtng Kadnyntig

AOHNA

OKTQBPIOZ 2015



MASTER’S THESIS

Survey of Privacy-Preserving Data Publishing Methods
and
Speedy: a multi-threaded algorithm preserving k-anonymity

Serafeim G. Chatzopoulos
A.M.: M1258

Supervisor: Mema Roussopoulos, Associate Professor

October 2015



AINMAQMATIKH EPTAZIA

BiBAloypa@ikn emokOTINON HEBGdWYV TTpOCTACIAG TNG IBIWTIKOTNTAG
OedOUEVWV TTPOG BNUOCIiEUO
Kal
Speedy: évag TTOAUVNUATIKOG OAYOPIOBUOG TTOU dIAPUAGCOEI TV k-aVWwVUlia

2epageip I'. Xar{étrouAog
A.M.: M1258

EMIBAENQN: Mépa PouocootrouAou, AvammAnpwTtrg Kadnyntig

OkTwpplog 2015



ABSTRACT

Nowadays, many organizations, enterprises or public services collect and manage a vast
amount of personal information. Typical examples of such datasets include clinical tests
conducted in hospitals, query logs held by search engines, social data produced by social
networks, financial data from public sector information systems etc. These datasets often
need to be published for research or statistical studies without revealing sensitive
information of the individuals they describe. The anonymization process is more
complicated than hiding attributes that can directly identify an individual (name, SSN etc.)
from the published dataset. Even without these attributes an adversary can cause privacy
leakage by cross-linking with other publicly available datasets or having some sort of
background knowledge. Therefore, privacy preservation in data publishing has gained
considerable attention during recent years with several privacy models proposed in the
literature. In this thesis, we discuss the most common attacks that can be made on
published datasets and we present state-of-the-art privacy guarantees and
anonymization algorithms to counter these attacks. Furthermore, we propose a novel
multi-threaded anonymization algorithm which exploits the capabilities of modern CPUs
to speed up the anonymization process achieving k-anonymity in the anonymized

dataset.

SUBJECT AREA: Privacy-Preserving Data Publishing

KEYWORDS: privacy preservation, data anonymity, database systems, k-anonymity,

multi-threaded algorithm



NMEPIAHWH
2TIG MEPEG MOG, TTOAAOI OpPyavIOUOI, ETTIXEIPNOEIS | KPATIKOI QOPEIC CUAAEyOuV Kal
dlaxeipiCovtal HEYAAO GYKO TTPOCWTTIKWY TTANPOQOPIWY. TUTTIKA TTapadeiyuata TETOIWV
ouvOAwv Oedopévwy  TTEPINAPPBAvVOUY  KAIVIKEG €EETAOEIC VOOOKOMEIwY, query logs
MNXavwy avadntnong, KOIVWVIKA O£dOUEVWYV TTPOEPXOPEVA aTTO OIKTUO KOIVWVIKAG
OIKTUWONG, OIKOVOUIKA OTOIXEIO TTANPOPOPIOKWY CUCTANATWY TOU dNPoaiou KATT. Autd Ta
oUvoAa Oedopévwv XpeladeTal ouxva va OnPOCIEUTOUV YIA EPEUVNTIKEG I OTATIOTIKEG
MEAETEG XWPiIG va aTTokaAu@Bouv euaicBnrta dedouéva Twv  avOpwTTwV  TTOU
mepIAapBdavouv. H diadikaoia avwvupoTroinong €ival o TTEPITTAOKN a1td TNV ATTAR
atréKpuYn TTEdiWYV TTOU UTTOPOUV ApEca va TTPoadiopicouv éva ATouo (ovoua, AOM KATT).
Akoua kai xwpic autd Tta Tedia, €vag emTIOEPNEVOG PTTOPEl va TTpoKaAéoel diappon
euaiodnTwy TTANpogopiwy dlaoTaupwvovTag He GAAa dnudoia dlaBéoiya  ouvoAa
oedopévwy 1 €xovtag KAtrolou €idoug TTPOTEPN yvworn. Emopévwg, n diapuAatn tng
IDIWTIKOTATAG o€ OedOopEVA TTPOG ONUOCieuon €xEl TTPOOEYYIoEl HEYAAO €vOIQ®EPOV TA
TeEAeuTaia XpoOvIa PE QPKETA MOVTEAQ IBIWTIKOTNTAS va £Xouv TTpoTaBei atn BiBAIoypagia.
2€ QUTA TN SITTAWMATIKI €pyacia, avaAUOUE TIG TTIO CUXVEG €TTIOECEIS TTOU PTTOPOUV va
yivouv o€ Onuooleupéva ouvola OedoUEVWY Kal TTAPOUCIACOUNE TIG TTIO OUYXPOVEG
EYYUNOEIG 10IWTIKOTNTAG KAl AAYOpPiOUOUG aVWwVUPOTTOINONG YIA TNV QVTIUETWTTION TWV
emBéocwyv autwyv. EmmmTAéov, Trpoteivoupe €va  véo TTOAUVNUOTIKO  aAyopiOuo
QVWVUMPOTTOINONG TToU €KPETAAAEUETAI TIGC BUVATOTNTEG TWV OUYXPOVWYV ETTECEPYQOTWV
WOTE va ETMTAXUVOEI N d1adIKaoia avwVUPOTIOINONG KAl va ETTITEUXOEI N k-avwvudia oTo

AVWVUNOTTOINUEVO CUVOAO DEQONEVWV.

OEMATIKH NMEPIOXH: MpooTacia IdiwTikdTNTag Acdopévwy TTpog Anuoacicuon

AEZEIZX KAEIAIA: mpooTtacia 1IDIwTIKOTNTAG, avwvupoTtroinon oedouévwy, PACEIG

0edopévwy, k-avwvupia, TTOAUVNUATIKOS aAyopiBuog



EYXAPIZTIEZ

MNa mn diekTrepaiwon TnG TTapoucag AITAwMATIKAG Epyaciag Ba nBeAa va euxapioTnow
TNV €mPBAETTOUCQ, avammAnpwTt kKabnynt MéEua Poucootroulou KaBwg Kal Toug
epeuvnTéc TOu |lvoTitoutou TAnpogopiakwy uoTnudtwy (IMXY) Tou EpeguvnTikou
Kévtpou «ABnva» @odwpn Aaiaudayka, MavwAn Teppofitn kai Anunten ToiToiyko yia

TN ouvepyaaoia Kal TNV TTOAUTIUN OUMBOAR Toug oTnV OAOKANPWON TNG.
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Survey of Privacy-Preserving Data Publishing Methods and Speedy: a multi-threaded algorithm preserving k-anonymity

1. Introduction

In recent years, many organizations or public services collect huge amounts of
individuals’ personal information such as medical records, user preferences, on-line
shopping data, query logs etc. These datasets are often published for research or
statistical studies but in many cases they contain sensitive information that should not be
revealed. A naive approach would be to hide information that can directly link to an
individual’s record in the published dataset. This approach was proven to be inadequate
as there are several examples in which private information was leaked despite the fact

that direct identifiers were removed from the published dataset.

Such examples include AOL which published search logs of 657,000 American citizens
in which Thelma Arnold a 62-year old woman was uniquely identified by the New York
Times reporters. This resulted in AOL removing search data from its site and apologizing
for its release [1]. This was not the only case of such private information leakage; sensitive
information of Netflix's subscribers was revealed by combining Netflix Prize dataset,
which contains anonymous movie ratings of 500,000 of its subscribers, and the Internet

Movie Database as source of background knowledge [2].

L. Sweeney [3] showed that cross-linking poorly anonymized public datasets can cause
privacy threats. For example, William Weld, former governor of Massachusetts, was
successfully identified in the medical data from the Group Insurance Commission (GIC)
when linked to the voter registration list for Cambridge Massachusetts through the
combination of date of birth, gender and ZIP code as shown in Figure 1. According to
Sweeney 87% of U.S. citizens are potentially identifiable by the combination of these

attributes.

» o Ny h \\\\
A Address
// Diagnosis /’/>\ \

/ Ethnicit / \ o \\
/ nicity / ..\ LastVoted {
/ o f Date of Birth \‘ \
[ Medication | \ Date |
‘ Sex ‘ ; |
‘ ‘ | Registered
\ Procedure | J |
\ \  ZIP Code N /
. \ / ame /
Total Charge / J
) / Party
\ Visit Date Mo Affiliation //
ot > o
\\1»7 _— N — _
Medical Data Voter List

Figure 1: Sweeney's linking attack to identify record owners [3]
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Survey of Privacy-Preserving Data Publishing Methods and Speedy: a multi-threaded algorithm preserving k-anonymity

It is clear that to prevent such types of attacks as the ones presented above, data should
be published after certain anonymization procedures take place so as to ensure data
privacy. The research area that studies such procedures is called Privacy-Preserving

Data Publishing and its recent developments make up the first part of this thesis.

The increasing growth of digital information gathered by organizations has posed new
challenges to privacy preserving algorithms. Until now, many algorithms employ
complicated techniques to reduce search space and reduce execution time. However, as
they are single-threaded, they struggle to handle large datasets in a reasonable amount
of time. In this direction, in the latter part of this thesis, we propose a novel algorithm
aiming at making full use of modern CPUs using multiple threads to achieve the k-

anonymity guarantee.
The remainder of this thesis is organized as follows:

e In Section 2, we present a typical Privacy-Preserving Data Publishing scenario;
key actors that take part, classification of attributes and anonymization operations

used to produce the anonymized dataset for publication.

e In Section 3, we discuss the various attack models on a published relational
database and the most known privacy guarantees to counter each one. At the end
of this section, we also present privacy models designed especially for non-

relational high dimensional databases such as transactional data.

e In Section 4, we present the most widely used information loss metrics; a way to

measure data distortion of the anonymized dataset.

e In Section 5, we present several anonymization algorithms grouped by the type of

attack they prevent and the privacy guarantee they preserve.

e In Section 6, we propose Speedy; a novel multithreaded algorithm preserving k-
anonymity. We further evaluate our experimental results in comparison with two of

the most well-known algorithms of this category, Incognito [4] and Flash [35].

e In Section 7, we summarize our thesis and we propose possible extensions and

directions for future work.

Serafeim Chatzopoulos 14
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2. Privacy-Preserving Data Publishing

In this section, we will go through the key concepts needed to understand a typical
Privacy-Preserving Data Publishing scenario. We will present the components and
procedures that take part in such a scenario as well as the most common data
transformation operations in which the original dataset is imposed on, to prevent privacy

breaches.

In our case, we define privacy as the prevention of the attacker to learn additional
information about an entity, for example an individual, by examining the records of the
released data. In general, we assume that the attacker already possesses some
background knowledge before examining the published data. What we want, is to prevent
him from inferring extra knowledge that might include sensitive information about an
individual. Privacy-Preserving Data Publishing provides methods and tools to publish

data that preserve data privacy and at the same time retain their utility.

“ Data
Recipients

| Data Publishing>

Data
Publisher

Anonymization

| Data CoIIection>

Figure 2: A typical Privacy-Preserving Data Publishing scenario
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2.1 Key Actors

In a typical Privacy-Preserving Data Publishing scenario as the one shown in Figure 2
the following actors participate:

Record Owners are those entities that have one or more records in the released dataset.

In our example Bob, Anna, Helen and George are considered to be the record owners.

Data Publisher is the person or organization that collects the data to be published. The
data publisher is then responsible for anonymizing before publishing collected data so
as to avoid privacy breaches. In this thesis, we focus on cases where the data publisher
is considered to be trusted and does not attempt to identify record owners’ sensitive
information and we examine privacy issues that may arise after publishing the

anonymized data.

Data Recipient is considered to be anyone that has access to the published dataset. A

data recipient can be a specific data miner, for example a researcher or data analyst, or
potentially anyone if the anonymized data is released to the public. In all Privacy-
Preserving Data Publishing scenarios we assume that the data recipient can be an
attacker.

2.2 Classification of Attributes

When the data publisher collects the data from the record owners, he ends up with a data
table such as Table 1 containing all information to be anonymized. In most cases, this
table T has the following form
T( Explicit Identifiers,
Quasi — Identifiers,

Non — Sensitive Attributes,
Sensitive Attributes )

so its attributes can be classified in the following categories:

Explicit Identifiers are those attributes that uniquely identify an individual such as Name
or Social Security Number (SSN). For obvious reasons, this kind of attributes should

definitely be omitted from the released dataset.

Quasi-ldentifiers (QIl) are not considered harmful to the individual they describe, but they
can be combined with other background knowledge, such as public voters’ catalogues
and lead to the re-identification of an individual in the published dataset. They can help
the attacker infer the hidden identity behind an anonymized record. Examples of such

attributes are place of birth, year of birth and zipcode of Table 1.

Serafeim Chatzopoulos 16
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Table 1: Original table containing medical data

Explicit Identifiers Quasi-ldentifiers Sensitive
Id Name SSN Birthplace Birth | Zipcode Disease
1 Paulo Dybala 457-58-9658 Argentina 1975 4370 HIV
2 Jeison Murillo 452-45-7895 Colombia 1972 4378 HIV
3 | Lucas Romero | 785-96-7845 Argentina 1962 4379 Fever
4 | Adrien Rabiot 457-89-6325 France 1955 4352 Cancer
5 Eric Dier 787-85-9658 England 1986 4350 Flu
6 Alessio Cerci 789-89-8547 Italy 1972 4397 HIV
7 | Henri Lansbury | 789-25-5896 England 1984 4398 Fever
8 Simone Zaza 980-02-8767 Italy 1973 4398 Flu
9 | Florent Thauvin | 786-89-1782 France 1987 4393 Fever

Non-Sensitive Attributes are those fields that neither cause any harm, if revealed, to
the individual they belong to, nor they can be combined with some external source to

help the re-identification of an individual.

Sensitive Attributes (SA) are those attributes that are unknown to the attacker and he
when associated with an individual can violate that individual’s privacy. Typical examples
of such attributes are disease or salary in case of medical or financial dataset

respectively.

2.3 Data Transformation Operations

After collecting the whole data, the original data table T should undergo an anonymization
procedure before being published. The original dataset should be transformed to a data
table T' of the following form
T'( Quasi — Identifiers’,
Non — Sensitive Attributes,
Sensitive Attributes )

From this anonymized data table T’ explicit identifiers are removed and quasi-identifiers
are anonymized by data anonymization operations to meet certain privacy guarantees
set by the Data Publisher. Several such anonymization technigues have been proposed

in the literature, the most notable of which are presented below.
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Suppression is the removal of data from the dataset that is going to be published. This
technique comes in two variations: record suppression which removes entire records
and value suppression which refers to suppressing a specific value in the table [4].

Suppression can severely increase information loss and reduce the data utility.

Generalization is the data transformation methodology according to which a value of a
guasi-identifier is replaced by a more general value that includes the original one. Tree-
like hierarchies are used to implement generalization which are known as taxonomy
trees. For example, given the hierarchy of Figure 2 the value “Italy” of the attribute
“Birthplace” of Table 1 can be generalized to “Europe” in level 1 of the taxonomy or “*”
in level 2, meaning anywhere, if further generalization is needed. Generalization can be
implemented in two ways using either global or local recording.

e Global Recording generalizes all instances of a certain value to the same level in
all tuples. Three subtypes of global recording have been proposed in the literature.
In full domain generalization, all values of a single attribute are generalized to the
same level of the taxonomy tree, offering uniform domains but often suffering from
unneeded over-generalization. Sub-tree generalization generalizes either all child
nodes of an inner node or none of them, thus achieving less distortion. Last but
not least, sibling generalization generalizes only hierarchy nodes needed

according to privacy criteria achieving even less data distortion [4].

e Local Recording allows the same value to be generalized to more than different
ones in the released dataset. In cell generalization one instance of a value can be

solely generalized while the others remain unchanged [5].

The recording process can be further divided in single or multi-dimensional
generalization. In single-dimensional each attribute is generalized individually. Multiple
quasi-identifier attributes can be generalized with a multi-dimensional generalization

scheme using taxonomy trees related to each one [6].

* Level 2

South America Level 1
England France Italy Argentina Brazil  Colombia Level 0

Figure 3: Hierarchy on attribute "Birthplace" of Table 1
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Perturbation is the idea to replace the original data with some synthetic data values in
such a way that statistical information from the published data do not differ significantly
from those computed from the original data. Perturbation can prevent privacy leakage
as perturbed data records may not correspond to real time data owners so their sensitive
information cannot be revealed by the attacker. This is also a limitation of this technique
as perturbed data can be useful only when calculating statistical properties and are

almost useless for human data recipients.

e Additive Noise is often used to preserve privacy in statistical databases. The main
idea is to hide the original numeric sensitive value by adding some random value
drawn from a distribution. Privacy is preserved when one cannot infer the original

sensitive value by examining the published one [7].

e Synthetic Data Generation builds a statistical model from the actual data and
then samples points from this model. These sampled points form the synthetic data

which is then released instead of the original data [27].
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3. Attack Models and Privacy Guarantees

There are several types of attacks that can be made on a published dataset. They are
classified based on the information they want to reveal in the following four categories:
record linkage attack, attribute linkage attack, table linkage attack and probabilistic attack.
In this section, we present the most notable privacy guarantees categorized by the type

of attacks they prevent, also shown in Table 10 at the end of this chapter.

3.1 Record Linkage Attack

This is arguably the most notorious threat in data publishing. This attack occurs when the
adversary associates one or more external sources and succeeds in identifying an
individual’s record in the published dataset. It is of major importance that every published
dataset is not susceptible to this type of attack.

3.1.1 k-anonymity

The main privacy guarantee against record linkage attacks is k-anonymity, proposed by
Sweeney [3] and Samarati [8], and its variations. The main idea is to hide every
individual’s record among at least k — 1 others with respect to the quasi-identifiers. This
means that every combination of quasi-identifiers should appear 0 or more than k times
in the published dataset. From the attacker’s point of view, when he knows the quasi-
identifiers of a target individual, the probability to identify the target record among a set of
records with the same quasi-identifiers called Equivalence Class, is never greater
than 1/k.

Table 2: 3-anonymous table of Table 1

Quasi-Identifiers Sensitive
Id Birthplace Birth Year Zipcode | Disease
1 | South America | [1955, 1995] 437* HIV
2 | South America | [1955, 1995] 437* HIV
3 | South America | [1955, 1995] 437* Fever
4 Europe [1955, 1995] 435* Cancer
5 Europe [1955, 1995] 435* Flu
6 Europe [1955, 1995] | 435* HIV
7 Europe [1955, 1995] 439* Fever
8 Europe [1955, 1995] 439* Flu
9 Europe [1955, 1995] 439* Fever
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In Table 2 we can see a 3-anonymous version of Table 1. All direct identifiers of the
original dataset are apparently omitted and quasi-identifiers are generalized, based on
their taxonomy trees, to form equivalence classes of size 3. For example, attribute “Place
of Birth” is generalized according to the hierarchy of Figure 3 in level 1 of the taxonomy
tree. Similar hierarchies are used to generalize the other quasi-identifiers; particularly
“Birth Year” is generalized at the top node of the hierarchy and “Zipcode” at level 1 hiding
the last digit. If an adversary knows that Simone was born in Italy in 1973 and has Zipcode
4398, he cannot distinguish his record from the equivalence class which contains records
with ids 7, 8, and 9.

The value of parameter k must be chosen very carefully as it is in fact a trade-off between
privacy and data utility. A large k results in forming larger equivalence classes, so the
probability of privacy breaches is reduced. On the other hand, a large k causes more data

generalizations hiding actual values and restricting data utility.

3.1.2 (1, k)-anonymity

Gionis et al. [9] introduces three relaxations of k-anonymization which aim at offering
higher data utility while preserving privacy. The first one, (1, k)-anonymity can be used if
the attacker knows only the public information of his target. In this case, instead of
performing k-anonymization, it is enough to generalize the table entries in such way that
the public data of every individual are consistent with at least k records of the released
table T'.

3.1.3 (k,1)-anonymity

The second notion introduced is called (k,1)-anonymity. The released table T’ is
considered to be (k, 1)-anonymous if every record in that table is consistent with at least
k records in the original table T. Note that a k-anonymous table is also both (1, k) and

(k, 1)-anonymous, but the contrary is not always the case.
3.1.4 (k, k)-anonymity

The above two privacy guarantees offer a weaker protection of privacy, when compared
to k-anonymity. Thus, it makes more sense to use them in combination and not
individually. An anonymous table that satisfies both (1, k) and (k, 1)-anonymity is called

(k, k)-anonymous. This property offers similar protection to k-anonymity, when the
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attacker has full knowledge on only some of the individuals in the table. However, using

(k, k)-anonymity, we may achieve higher data utility compared to k-anonymity.

3.2 Attribute Linkage Attack

This threat occurs when an individual is associated with information about his sensitive
attributes. This information can be a range of values containing an individual’s sensitive
value or the sensitive value itself. For example, considering the attribute “Salary” as
sensitive, the knowledge that an individual's value of this attribute lies in the range of
[6000, 6500] can be unacceptable as it provides near accurate estimate of the actual

sensitive value.

3.2.1Homogeneity and Background Knowledge Attack

Machanavajjhala et al. [10] present two attacks that can cause severe privacy breaches
to k-anonymous datasets. We use Table 3 to demonstrate these attacks. The first one,
homogeneity attack, can be exploited due to k-anonymity's potential lack of diversity in
sensitive attributes. For example, if Henri is an Englishman who lives in zipcode 4398, we
can focus our search to identify him in the last 3 rows of the dataset of Table 3. All patients

in these rows have the same disease so we can conclude that Bob has fever.

Table 3: 3-anonymous dataset susceptible to attribute linkage attacks

Quasi-Identifiers Sensitive
Id Birthplace Birth Year Zipcode | Disease
1 | South America | [1955, 1995] 437* Flu
2 | South America | [1955, 1995] 437* HIV
3 | South America | [1955, 1995] 437* Flu
4 Europe [1955, 1995] 435* Cancer
5 Europe [1955, 1995] 435* Flu
6 Europe [1955, 1995] | 435* HIV
7 Europe [1955, 1995] 439* Fever
8 Europe [1955, 1995] 439* Fever
9 Europe [1955, 1995] 439* Fever
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The second potential attack is called background knowledge attack. If we know that
Lucas is from Argentina, we are sure that he corresponds to a row in the first equivalence
class (rows with id 1, 2 and 3) of Table 3. If we further know that he is very susceptible to

flu, then with high probability we can conclude that he has the flu.

3.2.2 l-diversity

To address these limitations of k-anonymity, Machanavajjhala et al. [10] introduce -

diversity as a stronger notion of privacy:

An equivalence class is [-diverse if it contains at least | “well-preserved” values for the
sensitive attribute. A table is said to meet [-diversity if every equivalence class of it, is [-

diverse.

The above principle does not clarify what “well-preserved” values mean. Several
proposed instantiations are listed below:

3.2.2.1 Distinct l-diversity

The simplest understanding of “well-preserved” would be to ensure that each equivalence
class has at least [ distinct values. Table 4 is a further anonymized version of the dataset

of Table 3 satisfying [-diversity with [=2.

As an equivalence class may have one value appear much more frequently than other
values, distinct [-diversity does not prevent probabilistic attacks. This resulted in the

proposal of the two following stronger notions of [-diversity.

Table 4: 2-diverse version of the dataset of Table 3

Quasi-ldentifiers Sensitive
Id Birthplace Birth Year Zipcode | Disease
1 * [1955, 1995] 43** Flu
8 * [1955, 1995] 43 Fever
3 * [1955, 1995] 43** Flu
4 * [1955, 1995] 43** Cancer
5 * [1955, 1995] 43 Flu
6 * [1955, 1995] 43 HIV
7 * [1955, 1995] 43%* Fever
2 * [1955, 1995] 43%* HIV
9 * [1955, 1995] 43%* Fever
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3.2.2.2 Entropy l-diversity
The entropy of an equivalence class is defined as follows:

Entropy(E) = — Z p(E,s)log(p(E,s))

SES

where S is the domain of the sensitive attribute, E is the equivalence class and p(E, s) is

the fraction of records in E that have sensitive attribute s.

A table is said to have Entropy [-diversity if every equivalence class E has Entropy(E) =
log (D). This implies that entropy of the entire table must be at least log(l), in order to

apply the Entropy [-diversity.

If a few values are very common, the entropy of the entire table can be very low and thus
Entropy [-diversity may be too restrictive. For this reason, another less conservative

notion of [-diversity is proposed.

3.2.2.3 Recursive (c, I)-diversity

Recursive (c,l)-diversity makes sure that the most frequent values do not appear too
frequently and the less frequent values do not appear too rarely. Let m be the number of
values in an equivalence class and r;, 1 < i < m be the number of times that the i*"* most
frequent sensitive value appears in the equivalence class E. Then E is said to have
recursive (c, D)-diversity if r; < ¢ (r; + 141 + -+ 13,,) for some user-specified constant c. We
say that equivalence class E satisfies recursive (c,l)-diversity if by eliminating one
possible sensitive value, the remaining equivalence class is still (¢, — 1)-diverse. A table
satisfies recursive (c,l)-diversity if every equivalence class satisfies recursive (c,1)-
diversity.

3.2.2.4 Multi-Attribute l-diversity

Preserving [-diversity for multiple sensitive attributes presents some challenges as an
equivalence class that is [-diverse in each attribute separately may violate the principle
of [-diversity. For example, suppose that we have the 3-diverse equivalence class EC:
presented in Table 5. EC: has two sensitive attributes: Hospital and Disease. We can
see that EC: satisfies 3-diversity with respect to Hospital (ignoring Disease) and with
respect to Disease (ignoring Hospital).

However, if we know that Bob is present in this equivalence class and he was not
hospitalized in Peter Smith Hospital, then we are sure that Bob is record with id 3 or 4

and therefore he has the flu. One piece of information destroyed his privacy.
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Table 5: Equivalence Class satisfying 3-diversity on each attribute

Id Hospital Disease
1 | Peter Smith Hospital HIV
2 | Peter Smith Hospital | Cancer
3 | NorthWest Hospital Flu
4 | Forest Park Hospital Flu

This problem occurred because attribute Disease was not well represented for each value
of attribute Hospital. When having multiple sensitive attributes, these attributes should be
treated as part of the quasi-identifier when checking for [-diversity so as to ensure that [-
diversity principle is held for the entire table.

3.2.2.5 Limitations of l-diversity
While [-diversity represents an important step beyond k-anonymity in protecting against

attribute linkage attacks, Li et al. [11] present a number of its limitations.

Suppose that we have an original dataset with 10000 records that has only one sensitive
attribute: the test result of a particular virus that takes two values, positive or negative.
Additionally, suppose that 99% of the table records are negative and only 1% positive.
One may not mind being known to be tested negative but would likely not want to be
known as having tested positive. In this case, 2-diversity is unnecessary for an

equivalence class that contains only negative records.

To satisfy distinct 2-diversity there can be at most 10000 x 1% = 100 equivalence classes
so the information loss would be large. Similarly, if one wants to apply Entropy [-diversity
to this table, parameter [ must be set to a small value as the entropy of the sensitive
attribute in the overall table is very small. Therefore, the above example indicates that in

some specific cases [-diversity may be unnecessary or difficult to achieve.
3.2.3Skewness and Similarity Attack

According to [11], [-diversity is vulnerable to the following two types of attacks:

First, consider the example in Section 3.2.2.5. Further suppose that one equivalence
class has an equal number of positive and negative records. It satisfies distinct 2-diversity,
entropy 2-diversity and any recursive (c, 2)-diversity requirement. However, this presents
a serious privacy risk as anyone in this class would be considered to have 50% possibility

of being positive as compared with the 1% of the overall population.
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In fact, an equivalence class with 1 positive and 49 negative records has exactly the same
diversity with another one with 49 positive and 1 negative records, even though these two
classes present different levels of privacy risks. As a result, when the overall distribution
is skewed, satisfying [-diversity does not prevent attribute disclosure, as the adversary

can exploit this skewness; this type of attack is called skewness attack.

The second type of attack is called similarity attack. When the sensitive attribute values
in an equivalence class are distinct but semantically similar, an adversary can learn
important information. For example, consider an equivalence class that has the sensitive
attribute “Disease” with the following set of values {gastric ulcer, gastritis, stomach
cancer}. An adversary can infer that his target has a stomach related disease. This
leakage of sensitive information occurs because while [-diversity ensures “diversity” of
sensitive values in each group, it does not take into account the semantic closeness of

these values.

3.2.4t-closeness

To counter the limitations of [-diversity presented, Li et al. [11] proposed a novel privacy

guarantee called t-closeness:

An equivalence class is said to have t-closeness if the distance between the distribution
of a sensitive attribute in this class and the distribution of the attribute in the whole table
is no more than a threshold t. A table is said to have t-closeness if all equivalence classes

have t-closeness.

If the distance between these distributions is small, the correlation between quasi-
identifier attributes and sensitive attributes is limited and so is the amount of useful
information released. If an observer gets a clear picture of this correlation then attribute
disclosure occurs. The parameter t in t-closeness enables the trade-off between data
utility and privacy. The way to measure the distance between the two distributions is not
strictly defined but the Earth Mover’s Distance (EMD)?! [12] is suggested.

We note that t-closeness protects against attribute disclosure but it does not deal with

identity disclosure. Thus, it may be desirable to use it in conjunction with k-anonymity.

1 The EMD is based on the minimal amount of work needed to transform one distribution to another by

moving distribution mass between each other.
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Table 6: Original table containing medical data

Quasi-ldentifiers Sensitive
Id | Place of Birth Birth Year Zipcode | Disease
1 Colombia 1972 4378 HIV
2 Brazil 1987 4373 Cancer
3 Italy 1972 4397 HIV
4 England 1984 4398 Fever
5 Italy 1973 4398 Flu
6 Argentina 1962 4379 Fever

3.2.5 (a, k)-anonymity

Another privacy model to counter the homogeneity attack presented in Section 3.2.1 is
(a, k)-anonymity proposed by R. Wong et al. in [13]. (a, k)-anonymity aims to protect
individual identifications and sensitive relationships with a simpler model than recursive
(¢, )-diversity, where it is rather difficult for users to set values for ¢ and [ parameters. In
addition, (a, k)-anonymity does not take into account any background knowledge that an
adversary may have as in practice we do not know the nature of this background

knowledge.

(a, k)-anonymity is an extension of k-anonymity as it requires that after anonymization,
in every equivalence class, the frequency of a sensitive value is no more than a, where

« is a fraction and k is an integer. For example, in Table 7 we can see an anonymized

version of Table 6 respecting (1/3,2)-anonymity. As we can see, no sensitive value in

the two equivalence classes in the anonymized table has frequency greater than 1/3.

Table 7: (1/3,3)-anonymous version of Table 6

Quasi-ldentifiers Sensitive
Id | Place of Birth Birth Year Zipcode | Disease
1 | South America | [1962, 1987] 437* HIV
2 | South America | [1962, 1987] 437* Cancer
6 | South America | [1962, 1987] 437* Fever
3 Europe [1962, 1987] 439* HIV
4 Europe [1962, 1987] 439* Fever
5 Europe [1962, 1987] 439* Flu
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3.3 Table Linkage Attack

Previous models assume that the adversary already knows that the victim’s record is
present in the released dataset. However, sometimes it is a privacy risk when the attacker
can infer with high probability that an individual's record is contained in the published
data. This type of attack aiming at membership disclosure is called table linkage attack.
For example, consider a dataset which contains information on only HIV-positive patients.
The fact that a patient’s record is contained in the dataset reveals that the patient is HIV-

positive; thus membership disclosure can pose a privacy threat.

3.3.1 8-presence

Nergiz et al. [14] introduced §-presence as a new privacy model to protect against table
linkage attacks. The basic idea is to prevent the adversary from identifying any individual
as being in the released dataset with certainty greater than §. Formally, given an external

public table T, and a private table T,, where T, € T, we say that a generalized table T’ of

T, satisfies §-presence, where § = (6in, Omax) if
Smin S P(tET,|T') < Spmax VtET,

Therefore, § = (8min, Omax) 1S @ range of acceptable probabilities for P(t ETy | T’) and in
such a dataset we say that each tuple t € T, is §-present in T, or the existence probability

of t is within §.

Despite the fact that §-presence is a strict privacy model, it supposes that the data
publisher has access to the same external table T, that an adversary may use to exploit

an attack which is surely not a practical assumption.

3.3.2 c-confident §-presence

In general, it is impossible for the data publisher to have a complete knowledge of all
external data tables. So, Nergiz et al. [15] redefine the notion of §-presence with the
relaxation that the data publisher knows only statistics (attribute distribution functions) on
the entire population. A c-confident §-presence anonymization ensures that a given tuple

t is §-present with respect to the current population with probability c.

Formally, given a public set of distribution functions F, a private table T, a confidence
level c € [0 — 1] and a generalization T’ of T,, let I, be the event that tuple t € T, is J-

present w.r.t T' and the whole (unknown) population. In other words, I; holds if 6,,, <
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P(t €T, | T’) < &max- Note that I, is a random event since public dataset T, is a random

variable. We say that §-presence holds for T’ with § = (8,,in, Omax) @and confidence c if
P(I;|F)=>c VtET,

As an outcome of the above definition, privacy is satisfied for only those tuples that are

in the private dataset T,, and it is tuple-independent, meaning that each tuple will be §-

present with probability c.

3.4 Probabilistic Attack

In statistical databases, it is important to be able to mine useful information about the
underlying population represented by the database while preserving the privacy of
individuals. Published data should provide the adversary with little additional information
beyond his background knowledge (uninformative principle). When the adversary can
change his probabilistic belief on the sensitive attributes of the victim after accessing the
published data, we call it a probabilistic attack. The family of privacy models presented in

this section focus primarily on protecting against attacks of this type.

3.4.1 (¢, t)-isolation

Chawla et al. [16] give a definition of privacy for statistical databases. According to this
definition, the adversary should not gain additional confidence on the values of a given
record when interacting with the published database. Even if the adversary manages to
construct a query that effectively names a single individual, it should be impossible to
learn the value of any attribute of the data record. As the adversary’s goal is to single out
an individual from the crowd, a method is proposed to preserve privacy in statistical

databases eliminating such isolations, called (c, t)-isolations.

(c, t)-isolations in statistical databases are formally modeled as follows; suppose a data
point y of a target victim v in a data table and g the adversary’s inferred data point of v
by using published data and background knowledge. We say that q (c,t)-isolates y if

B(q,cd,) contains fewer than t points in the initial data table, where B(q, c6,) denotes a

ball of radius ¢4, around g and &, = ||q — y|| is the distance between g and y.

On the other hand, if B(q, cd,,) contains at least ¢ points then q also looks similar to other

t — 1 points, so y has not been isolated. From the above definition, we see that preventing

(c, t)-isolations is very similar to preventing record linkages.
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3.4.2 e-differential privacy

Dwork [17] introduces an innovative privacy notion for statistical databases which
guarantees that the presence or absence of a single record in the dataset will not change
significantly the results of any statistical analysis. Consequently, this model ensures that
the privacy risk of an individual should not increase substantially by participating in the
statistical database.

More formally e-differential privacy is modeled as follows:

A randomized function K is e-differential private if for all datasets D, and D, that differ on

at most one element and all S € Range(K),
Pr[K(D,) € S] < e® x Pr[K(D,) € S]

where Range(K) denotes the output range of function K and ¢ is a constant which adjusts

the trade-off between accuracy of the statistics estimated and privacy.

The function K is the mechanism for adding noise to the result of a query to ensure that
the above formula holds. Several differential privacy preserving mechanisms are
available depending on the specific use case. One of the first proposed is the Laplace
mechanism which adds random noise that conforms to the Laplace statistical distribution.
The magnitude of the random noise is chosen as a function f of the largest change that
a single record can have on the output of the query. This is called sensitivity of function
f:D - R%andis

Af = maxp, p, [If (D) — f(DII
for all D,, D, differing in at most one record.

Therefore, sensitivity captures how much an individual’s record can affect the output. For
example, simple counting queries have Af < 1 as the presence or absence of a single
record can affect the output of the query by a value of 1. It has been proven that adding

a random Laplace(4f /¢) variable to a query’s output guarantees e-differential privacy.

Note that differential privacy is a condition on the release mechanism and not on the
released dataset. This means that for any two datasets that are similar (do not differ on
more than one element) a differentially private function K will behave approximately the

same for both datasets.
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Differential privacy has been very popular among researchers due to its versatility and
intriguing mathematical background and has been expanded to support various types of
data such as set-valued data [18] and location data [19].

e-differential privacy is considered to be a very strict privacy definition adding worst case
noise, so several relaxations to the basic definition have been proposed to achieve better
utility. Some of the most notable ones include (g, §)-differential privacy [20], random
differential privacy [21], privacy under a metric [22] and methods proposed in [23] and
[24].

3.4.3 e-distinguishability

This model, proposed by Dwork et al. [25], is designed to preserve privacy for statistical
databases across multiple transcripts; a user’s single query and its corresponding

response.

A privacy mechanism is considered to be e-distinguishable if for all transcripts t and for
all databases D and D’ differing in a single row, the probability of obtaining transcript t
when the database is D, is within a (1 + ¢) multiplicative factor of the probability of
obtaining the transcript t when the database is D'. In other words, it is required that the

absolute value of the logarithm of the ratios is bounded by parameter «.

3.4.4(d,y)-privacy

(d,y)-privacy is a probabilistic privacy definition proposed by Rastogi et al. [26] in which
an adversary believes in some prior probability P(t) of a tuple t appearing in the data.

After seeing the anonymized data D’, the adversary forms a posterior belief P(t|D").

(d,y)-privacy is only designed to protect against adversaries that are d-independent: an
adversary is d-independent if for all tuples t considered a priori independent, the prior
belief P(t) satisfies the conditions P(t) = 1, meaning that the adversary knows that the
victim’s tuple is the released dataset, or P(t) < d. For all such adversaries, the privacy
definition requires that P(¢|D") < y and P(t|D')/P(t) = d/y.

However, (d,y)-privacy cannot be applied in many real life scenarios as tuple-

independence is a very strong assumption and cannot be guaranteed in many cases [27].

3.5 Transactional data

All the above privacy guarantees are designed for relational databases. Recently, there

have been some works towards the anonymization of non-relational data the most notable

Serafeim Chatzopoulos 31



Survey of Privacy-Preserving Data Publishing Methods and Speedy: a multi-threaded algorithm preserving k-anonymity

of which are discussed in this and the next section. In particular, in this section we focus

on privacy guarantees proposed for transactional databases.

A transactional database consists of transactions, each one defined as an arbitrary set of
items chosen from a large universe U. These items can be public (non-sensitive) or
private (sensitive). Detailed transaction data provides an electronic image of one’s life,
therefore as with relational data, before being released it must made anonymous so that

data subjects cannot be re-identified.

Traditional privacy models used for relational databases cannot handle transactional
databases efficiently. In relational databases, the key is to form equivalence classes on
guasi-identifiers and make the records that belong to each class indistinguishable.
Forming equivalence classes on the universe U of a transactional database, which is

extremely high dimensional, means suppressing most items when anonymizing [28].

3.5.1 k™-anonymity

Terrovitis et al. [29] propose a guarantee that provides privacy preservation to set-valued
data. Assuming that the maximum knowledge of an adversary is at most m items in a
specific transaction, k™-anonymity prevents him from distinguishing the transaction from
a set of k published transactions. It requires that each combination of sets up to m items
must appear at least k times in the published data. In other words, any subset query of

size m or less, issued by an adversary should return more than k or zero records.

3.5.2 p-uncertainty

This model introduced by Cao et al. [30] makes the strict assumption that despite the fact
that values in a record can be categorized to sensitive and non-sensitive, an adversary
can possess information in any of them. As a result, non-sensitive values can be used to

infer sensitive ones.

Table 8: Original transactional dataset

Id ltemsets

1 {a1, a3, a3, 51,52}
2 {a1, a4, a3}

3 {as, as}

4 {as, s2}

S {a,,a3,51,5,}
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Table 9: Anonymized dataset of Table 8 satisfying 0.7-uncertainty

Id ltemsets
1 {a;, as, s;}
2 {a1, a4, a3}
3 {ay, a3}
4 {as, 52}
S {a,, az, s,}

For example, Table 8 shows five transactions in which items a4, a,,a; and a, are non-
sensitive and s;, s, are sensitive. Given this table, if Alice knows that Bob has bought a,,

she can infer that he also bought a,, a3, s; and s,.

Furthermore, if Alice already knows that Bob has bought the private item s,, she can infer
that he also bought sensitive item s,. To prevent such inferences p-uncertainty is
proposed to keep the confidence of each Sensitive Association Rule lower than a

threshold p.

A transaction dataset is said to satisfy p-uncertainty, if and only if, for any transaction t,
any subset of items x < t and any sensitive item s & x, the confidence of the Sensitive

Association Rule x — s is less than avalue p > 0.

As we can see Table 9 is an anonymized version of Table 8 satisfying 0.7-unceratainty

after suppressing values a, and s;.

3.5.3 (h, k,p)-coherence

Xu et al. [31] introduced (h, k,p)-coherence as a new privacy notion for transactional
databases with the assumption that in a large universe U, it is unlikely that an attacker
has prior knowledge of all public items in U. The power of the attacker is measured by

the maximum number p of public items that can be obtained in a single attack.

A database D has (h, k, p)-coherence if for every combination g of no more than p public
items, either no transaction contains £ or the set of transactions containing g (called 8-
cohort), contains at least k transactions and no more than h percent of these transactions

contains a common private item.
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In other words, (h,k,p)-coherence ensures that for an attacker with power p, the
probability of linking an individual to a transaction is limited to 1/k and the probability of

linking an individual to a private item is limited to h.

Table 10: Privacy guarantees and attacks they protect from

Attack Model

Privacy Model Record  Attribute  Table  Probabilistic
Linkage Linkage Linkage Attack
k-anonymity v
(1, k)-anonymity v
(k, 1)-anonymity v
(k, k)-anonymity v
l-diversity v v
(a, k)-anonymity v v
t-closeness v
8-presence v
c-confident ,
é-presence
(c, t)-isolation v v
e-differential privacy v v
(d,y)-privacy v v
k™-anonymity v
p-uncertainty v
(h, k, p)-coherence v
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4. Information Loss Metrics

From the early stages of Privacy-Preserving Data Publishing, it was made clear that
privacy preservation is inversely proportional to a published dataset’s utility. Intuitively,
when a strong privacy guarantee is used, it is difficult for the attacker to infer additional

information on the published dataset but the utility of the published dataset is reduced.

All anonymization operations cause distortion which should be minimized in order to
maintain the ability to extract meaningful information from the published dataset. A variety
of information loss metrics have been proposed in the literature to measure the data
usefulness. All of them are based on the principle that the anonymized dataset should
retain the statistical properties of the original one. Below, we discuss the most widely
used information loss metrics and the suitability of each one.

4.1 Classification Metric

Classification Metric (CM) proposed by lyengar [32] is a special purpose data metric that
is suitable when the anonymized data will be used to train a classifier. First, a
classification model is built where the class label is one column of the table. Each tuple
is assigned with a class label, and is also part of a group? denoted by G (t). The main idea
is to penalize a row if it is suppressed or if its class label class(t) is not the majority class
label of its group majority(G(t)). So the penalty of each individual tuple is given by:

1, if tis suppressed

penalty(t) =41, if class(t) + majority(G(t))

0, otherwise
The Classification Metric is then computed as the sum of penalties of each tuple,
normalized by the number of total tuples:

_ Yter penalty(t)
|IT|

CM

where t is a tuple in the data table T and |T| the cardinality of the table. In some cases it
is important to evaluate the impact of anonymization operations by building a classifier
from the anonymized data and see how it performs; however is unclear how the specific

data metric can be expanded to support more general purposes.

2 A group consists of all tuples that have the same unique combination of generalized values.

Serafeim Chatzopoulos 35



Survey of Privacy-Preserving Data Publishing Methods and Speedy: a multi-threaded algorithm preserving k-anonymity

4.2 ILoss

ILoss (IL) proposed in [33] is a general purpose data metric measuring information loss
when generalizing an original value v to a generalized value v'. IL of such a generalization
is computed by

lv'| -1

IL(v') = A
A

where |v’'| is the number of values that are generalized to v’ and |D,| is the number of
values in the domain A of v'. By the above definition we can see that an ungeneralized

value has IL(v") = 0. IL of a tuple is given by

IL(t") = z (w; X IL(v")

vIEL!

where w; is a positive parameter specifying the penalty factor for losing information on
attribute i. Therefore, total IL of the entire generalized table is computed by the sum of IL

of each tuple in the table:

IL(T") = Z IL(t)

tIeT!

4.3 Discernibility Metric

Discernibility Metric (DM) is another general purpose metric introduced by Skowron et al.
[34]. This metric measures information loss with the assumption that smaller equivalence
classes preserve more data utility. Therefore, it penalizes every record by the size of
equivalence class that it belongs to. If a tuple belongs to an equivalence class of size
|EC|, then the penalty of this record is also of this size. The penalty of the equivalence
class itself is |EC|? and therefore the overall penalty of the entire data table is given by
DM(T') = Z |EC;|?
ECET!
This metric tends to penalize subsequently k-anonymity and its variants when the

published dataset contains large equivalence classes and does not capture the

distribution of records in the quasi identifier space.

4.4 Normalized Certainty Penalty

Xu et al. [5] introduce Normalized Certainty Penalty (NCP); a general purpose data metric

which seem to produce more accurate estimations of the loss of the published data utility.
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Intuitively, NCP tries to capture the degree of generalization of each value, considering
the ratio of the total items in the domain that are indistinguishable from it. In the case of
a categorical attribute the NCP of an item v of the hierarchy H in the attribute A is given

by

[v']
NCPA(U) = m

where v’ is a node of the hierarchy H where v is generalized, |v’| is the number of leaf
descendants under node v’ and |H| is the number of distinct values in the attribute. The
weighted NCP for the entire data table T’ is the sum of the weighted normalized certainty

penalty for all tuples:

NCP(T") = Zmli(wi " NCPy, (1))

where w; is the weight of attribute i denoted as A4;.
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5. Anonymization Algorithms

There have been proposed various anonymization algorithms in the literature producing
anonymized datasets preserving one of the privacy guarantees presented in Section 3.
As it is particularly difficult and meaningless to gather all anonymization algorithms
available, in this section we try to briefly present the basic/most well-known algorithms

and those which introduced innovations at the time proposed.

5.1 Algorithms against Record Linkage Attack

Algorithms of this category mainly include those that preserve k-anonymization and its
variants. The solution search space is all possible data transformation operations that can
lead to an anonymized dataset. The optimal solution is the one that, given a metric,
minimizes information loss, increasing data utility of the published dataset. It has been
proven that using generalization and suppression, it is NP-hard to achieve optimal k-

anonymity for multi-dimensional quasi-identifiers [36].

5.1.1Binary Search

Samarati in [8] proposes an optimal binary search algorithm that first enumerates all
possible minimal generalizations and then choses the optimal one. This algorithm is one
of the first efforts made, however it is rather expensive, especially for large datasets, to

identify all possible minimal generalizations.

5.1.2 Incognito

LeFevre et al. [4] introduce Incognito; an optimal algorithm that produces k-anonymous

full domain generalizations using the following two key properties:
Rollup property: if v’ is a generalization of {v;,v,..v,} then |v'| =X, |v;]. This
property enables bottom-up aggregation of the parent size of v’ from the part sizes of its

children in the hierarchy.

Subset property: if T is k-anonymous with respect to Q, then it is also k-anonymous with
respect to any set of attributes P such that P < Q. This property is essential for effectively

pruning the search space and finding the optimal solution.

Although Incognito is an effective optimal algorithm that outperforms Binary Search, its

complexity increases exponentially with the number of quasi-identifiers.

Serafeim Chatzopoulos 38



Survey of Privacy-Preserving Data Publishing Methods and Speedy: a multi-threaded algorithm preserving k-anonymity

Table 11: Algorithms against Record Linkage Attack

Algorithm Privacy Guarantee Data Transformation
. ) Full-domain generalization/
Binary Search k-anonymity )
Suppression
, ) Full-domain generalization/
Incognito k-anonymity .
Suppression
) Full-domain generalization/
Flash k-anonymity )
Suppression
Modrian k-anonymity Multi-dimensional generalization
Top-Down " " Sub-tree generalization/
o -anonymi
Specialization ymiy Value suppression
r-Gather Clustering k-anonymity Clustering
5.1.3Flash

Kohlmayer et al. [35] propose Flash, another optimal anonymization algorithm preserving
k-anonymity. The Flash algorithm constructs and traverses a full generalization lattice in
a bottom-up breadth-first manner and constantly generates and checks paths in the lattice
using binary-search-like vertical traversal strategy using predictive tagging to take

advantage of the subset property introduced by Incognito.

Experimental results show that Flash outperforms Incognito using real-world datasets but

as an optimal algorithm, it also suffers from the curse of dimensionality.

5.1.4 Modrian

As the computational cost of the above algorithms increases exponentially, many other

methods employ multi-dimensional local recording to achieve lower information loss.

A representative algorithm of this category is Modrian [6], a greedy top-down
specialization algorithm that partitions the space recursively across the dimension with
the widest normalized range and supports a limited version of local recording. Employing
a multi-dimensional generalization scheme increases the search space, but usually

results in better data utility than single generalization schemes.
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5.1.5Top-Down Specialization

This algorithm introduced by Fung [37], [38] employs a top-down lattice traversal scheme.
It starts from the most general state in which every value is generalized in the root of its
taxonomy tree. Then, it specializes from this state until no other specialization can be
made without violating k-anonymity. The advantage of this approach is that it produces a
k-anonymous table in every specialization step, so if someone is satisfied with the result,

he can terminate the algorithm at any stage.

5.1.6 Clustering approaches

Aggarwal et al. [39] introduce modeling the problem of finding generalizations as a
clustering problem. They propose r-Gathering Clustering algorithm which approximates
the optimal solution in a constant factor. Furthermore, Xu et al. [5], propose a number of
agglomerative and recursive algorithms that aim to minimize information loss according

to the NCP metric presented in section 4.4.

5.2 Algorithms against Attribute Linkage Attack

In this section, we present algorithms that prevent attribute linkages on the anonymized
data. They preserve privacy guarantees discussed in Section 3.2 and despite the fact that
they are a different category and preserve other privacy guarantees, many of them are
simple extensions of algorithms used for protection against record linkage attacks
presented in the previous section.

5.2.1 l-diversity Incognito, t-closeness Incognito and elncognito

Machanavajjhala et al. along with introducing the [-diversity guarantee in [10], point out
that generalizations help achieve [-diversity in exactly the same way as k-anonymity.
Therefore, Incognito algorithm is modified to guarantee [-diversity and any other algorithm
against record linkage that employs full-domain or sub-tree generalization can be

extended in this direction.

In exact the same way, Incognito was also extended to support t-closeness in [11] and
(a, k)-anonymity in [13] called elncognito.

5.2.2 1I*-Optimize

In [40] Liu et al. present [*-Optimize; an algorithm to achieve optimal anonymization
preserving [-diversity using sub-generalization. The algorithm computes all possible cuts

in a cut enumeration tree each node of which is ranked according to a given infroamtion
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Table 12: Algorithms against Attribute Linkage Attack

Algorithm Privacy Guarantee Data Transformation
_ _ _ _ . Full-domain generalization/
l-diversity Incognito [-diversity ,
Suppression
. Full-domain generalization/
t-closeness Incognito t-closeness _
Suppression
_ _ Full-domain generalization/
elncognito (a, k)-anonymity _
Suppression
o ) . Sub-tree generalization\
[*-Optimize [-diversity ,
Suppression
Anatomy [-diversity Anatomization

loss metric. The optimal solution is found by effectively pruning all sub-trees that have

higher cost of the currently examined candidate node.

5.2.3 Anatomy

Most algorithms so far try to achieve privacy guarantees using generalization and
suppression data transformations. This algorithm employs another approach; instead of
generalizing values to make records indistinguishable inside an equivalence class, it
disassociates quasi-identifiers from sensitive attributes and then publishes two separate
tables with those. The advantage of this algorithm is that it does not modify original values

while preserving exact the same privacy guarantee.

5.3 Algorithms against Table Linkage Attack

Keeping in mind that determining the presence (or absence) of an individual’s record in a
published dataset can pose privacy threats (see Section 3.3), algorithms presented in this

section aim at eliminating the possibility of such an inference in the anonymized data.

5.3.1SPALM

Single-Dimension Presence Algorithm (SPALM) [14] is an optimal (given a certain

precision metric) algorithm that achieves §-presence. It uses a full domain single-

Serafeim Chatzopoulos 41



Survey of Privacy-Preserving Data Publishing Methods and Speedy: a multi-threaded algorithm preserving k-anonymity

Table 13: Algorithms against Table Linkage Attack

Algorithm Privacy Guarantee Data Transformation
SPALM &-presence Full-domain generalization
MPALM &-presence Multi-dimensional generalization
SFALM c-confident §-presence Full-domain generalization

dimension generalization scheme and it exploits the anti-monotonicity property? to prune
effectively the entire search space in a top-down specialization manner.

5.3.2MPALM

Multi-Dimensional Presence Algorithm (MPALM) [14] is a sub-optimal, multi-dimensional
generalization algorithm that provides §-presence. It makes use of heuristics and
experiments show that in most cases it results in lower information loss than SPALM due

to its more flexible generalization scheme.

5.3.3SFALM

SFALM [15] is a variation of SPALM algorithm modified accordingly to meet the c-
confident §-presence guarantee. It takes as input a confidence threshold ¢ and a public
distribution instead of a public table. Due to several optimizations SFALM’s performance

is comparable to SPALM.

5.4 Algorithms against Probabilistic Attack

The family of algorithms presented in this section are proposed to achieve the
probabilistic privacy models presented in Section 3.4. As a general notion, these
algorithms employ random perturbation techniques to prevent statistical disclosure in the

anonymized dataset.

3 Anti-monotonicity property: if a table T is §-present, then a generalization table T’ of T also satisfies 6-

presence.
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Table 14: Algorithms against Probabilistic Attack

Algorithm Privacy Guarantee  Data Transformation

Perturbation/

Cross-Training Round Sanitization (c, t)-isolation . )
Additive Noise

Perturbation/

e-Differential Privacy Additive Noise | e-differential privacy N )
Additive Noise

Perturbation/

SuLQ Algorithm e-differential privac
QAlg P y Additive Noise

Perturbation/
Probabilistic differential privacy e-differential privacy Synthetic Data
Generation

. _ Perturbation,
ap Algorithm (d,y)-privacy .
Sampling

5.4.1 Cross-Training Round Sanitization

This algorithm combines recursive histogram sanitization and density-based perturbation

to eliminate (c, t)-isolations (Section 3.4.1) in the anonymized dataset.

In recursive histogram sanitization, the original dataset is partitioned recursively into
smaller regions until no region contains more than 2t data points. Density-based
perturbation is a variant of perturbation via additive noise in which the magnitude of the

noise added to a point depends on the local density of the database near a specific point.

Cross-Training Round Sanitization [16] randomly divides the original dataset in two sets,
A and B. A recursive histogram is constructed on B and points in A are imposed on

density-based sanitization according to their positions in the histogram of B.

5.4.2 e-Differential Privacy Additive Noise

e-Differential Privacy Additive Noise [17] is a mechanism which adds noise with a scaled
symmetric exponential distribution with variance ¢2 > ¢/Af in each component, where
Af is the sensitivity of function f:D — R% as described in Section 3.4.2 and ¢, the

parameter of e-Differential Privacy.

This distribution has independent coordinates, each of which is an exponentially
distributed random variable. The implementation of this mechanism thus simply adds
symmetric exponential noise to each coordinate of f(X).
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5.4.3SuLQ Algorithm

SuLQ algorithm (Sub-Linear Queries) [42], [43] adds noise to statistical queries’ response
with the goal of retaining data utility while preserving privacy. In this algorithm, a query is
a pair of {r, q} where r indicates a set of rows and g denotes a function that maps attribute
values to {0, 1}. The exact answer to query {r, q} is the number of rows in the set q for
which g evaluates to 1. For example, when function q is a projection onto the j™ attribute,
the query is transformed targeting the subset of entries in the j™ column vertically
partitioning the database on this attribute. The answer is further perturbed adding noise

according to parameter «.

SuLQ has been proven to maintain a strong form of privacy by adding a small amount of
noise, provided that the total number of queries is sub-linear to the number of database
rows (hence the term Sub-Linear Queries - SULQ). This assumption becomes reasonable

as databases grow larger.

5.4.4 Probabilistic differential privacy

Machanavajjhala et al. [27] propose an algorithm using synthetic data generation to
preserve privacy. The main idea is to build a statistical model from the actual data and
then sample points from this model. These sampled points form the synthetic data which
is then released instead of the original data.

Privacy comes from the fact that noise is added from two sources: the bias that comes
from the creation of the model and the noise due to the random sampling from the model.
The intuition behind such statistical modeling is that inferences made on the synthetic

data should be similar to inferences that would have been made on the real data.

5.4.5apf Algorithm

This algorithm proposed in [26] uses perturbation and sampling to achieve (d, y)-privacy.
It takes as input a database I and publishes a view V. The database I has n attributes
A1 A, ..., A, and each one takes values from a finite domain D;. The domain of all tuples

with these attributes is denoted as D = D; X D, X ... X D,,.

af Algorithm has two steps: in the first one called a-step, a subset of the tuples in I is
inserted in V, each one with independent probability « + . The second step (S-step),
generates some counterfeit records from the domain D and adds them to V with
probability 8. The main drawback of this algorithm is that by inserting counterfeit records,

the published view lacks the truthfulness of the original dataset in record level.
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5.5 Transactional data

In this section, we briefly discuss algorithms aiming at anonymizing transactional

datasets. They preserve privacy guarantees presented in Section 3.5.

5.5.1 Direct Anonymization

Terrovitis et al. [29] apart from proposing an optimal but not scalable algorithm preserving
k™-anonymity, also present two heuristic algorithms that find a nearly optimal solution in

most cases.

Both these algorithms construct a trie-like tree (count tree) to count the support of all
possible combinations of up to m. Direct Anonymization (DA) is based on the pre-
computation of the complete count tree and then it scans the tree to determine possible
privacy breaches and then check for generalized combinations to find a solution that
solves each one. The disadvantage of DA is that it has significant memory requirements
and computational cost as it constructs and scans the whole count tree.

5.5.2 Apriori

Apriori is the second heuristic algorithm presented in [29] and is based on the following
principle: if an itemset S causes a privacy breach, then every superset of S also causes a

privacy breach.

This algorithm exploits this principle to make the required generalizations progressively.
It first examines privacy breaches that may arise if an adversary knows 1 item from each
itemset, then 2 until it examines privacy threats from an adversary that knows m items.

In this way, Apriori uses generalizations made in step i to reduce the search space of

stepi+1.
Table 15: Algorithms for anonymizing transactional data
Algorithm Privacy Guarantee Data Transformation

Direct Anonymization k™-anonymity Generalization
Apriori k™-anonymity Generalization
SuppressControl p-uncertainty Suppression
TDControl p-uncertainty Generalization/ Suppression
Suppression (h, k, p)-coherence Suppression
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5.5.3TDControl and SuppressControl

TDControl [30] is top-down algorithm combining global generalization with suppression.
It constructs a particularization tree (generalizations from bottom-up view), in a greedy
manner, aiming to achieve the highest information gain possible in each move. It
terminates when any possible particularization move would violate p-uncertainty and the
suppressions required to safeguard it would cause more information loss than the

particularization would offer.

TDControl offers more data utility than SuppressControl, an algorithm proposed also in
[30] that implements a trivial solution; it suppresses sensitive items until it finds a table

that satisfies p-unceratinty.

5.5.4 Suppression

Xu et al. [31] along with the definition of (h, k, p)-coherence provide Suppression; a new
algorithm for preserving this notion. Let MM (e) denote the number of minimal moles*
containing the public item e. By suppressing the item e, MM(e) minimal moles are
eliminated at the cost of Information Loss® IL(e). To eliminate all minimal moles and
minimize Information Loss, this algorithm constructs a mole tree and suppresses the
public item e that maximizes MM (e) / IL(e). When no moles are left, we are sure that the

anonymized dataset satisfies (h, k, p)-coherence.

4 A mole is a piece of prior knowledge that could be used to link a target individual to a transaction. A mole

is minimal if every subset is a non-mole.

5 Information Loss for an item e, denoted as IL(e), is the count of occurrences of item e that are suppressed.
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6. Speedy: a multithreaded algorithm preserving k-anonymity

As we have seen in the previous section, there are numerous anonymization algorithms
each one preserving a different privacy guarantee. Most of them employ complicated
techniques to reduce the search space and reach an optimal or nearly optimal solution in
reasonable time. However, as the dataset’s size increases, so does the execution time of

the algorithm sometimes reaching unacceptable limits.

Until now, anonymization algorithms do not make full use of modern CPUs capable of
handling multiple threads at the same time. In this section, we introduce Speedy; a novel
multi-threaded algorithm preserving k-anonymity that exploits the capabilities of multi-

core CPUs to speed up the anonymization process of large real-time datasets.

6.1 Previous Algorithms

In this section, we review two major previous single-threaded algorithms that preserve k-
anonymity. Incognito implements a horizontal traversal strategy while Flash traverses the
anonymization lattice in a bottom-up breadth-first manner, generating and evaluating
paths-branches in each step. We will demonstrate a typical example of each one using
the dataset of Table 16 and generalization hierarchies of Figure 4.

Table 16: Example dataset

Quasi-ldentifiers Sensitive
Birthplace | Birthyear | Zipcode Disease
Argentina 1975 4370 HIV
Colombia 1972 4378 HIV
Argentina 1962 4379 Fever

France 1955 4352 Cancer
England 1986 4350 Flu
Italy 1972 4397 HIV
England 1984 4398 Fever
Italy 1973 4398 Flu
France 1987 4393 Fever
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Figure 4: Generalization Hierarchies

6.1.1Incognito

LeFevre et al. [4] proposed Incognito, an optimal algorithm implementing a dynamic
programming approach. Incognito is based on the idea that if the dataset is not k-
anonymous when transformed according to a subset of the quasi-identifiers, then the
transformation with respect to all quasi-identifiers cannot be k-anonymous either.
Therefore, it constructs generalization lattices for all subsets of up to n quasi-identifiers

and traverses them by performing a bottom-up, breadth first search.

The transformations that are not solutions for a subset of size m < n of quasi-identifiers
cannot be a solution for a subset of m + 1. This property allows the implementation of
predictive tagging transformations of generalization lattices that are traversed in
subsequent iterations. The algorithm terminates when the generalization lattice of all n

guasi-identifiers has been processed.

We will now discuss an example of Incognito in order to anonymize the dataset of Table
16 with the generalization hierarchies of Figure 4. The algorithm starts by generating

generalization lattices for subsets of quasi-identifiers with size one.

As we can see in Figure 5, the algorithm starts by traversing the lattice corresponding to
guasi-identifier “Birthplace” in a bottom-up manner. It first checks if the column is 2-
anonymous when applying transformation [0]. This means that values in this column are
generalized to level 0 of the respective hierarchy. Because level O representes original
values, they are not generalized at all and then the column is checked for 2-anonymity by
enumerating all occurences of each value. In order to tag the node as anonymous, every

value should appear at least 2 times or zero according to the definiton of k-anonymity.
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Figure 5: Incognito’s generalization lattices form =1 and m = 2

This is not true so the algorithm continues with the next node [1]. It then repeats the same
process, generalizing every value of column “Birthplace” to level 1 of the hierarchy and
checking for 2-anonymity. This time, the transformation [1] leads to a possible solution
and by applying predicitve tagging, node [2] is also tagged as a possible solution. The

same procedure is applied to the other quasi-identifiers “Birthyear” and “Zipcode”.

After checking all subsets of size one, Incognito proceeds with subsets of size two. In this
step, it is possible to tag all transformations that contain at least one transformation that
was non-anonymous in the previous iteration. For example, in the lattice corresponding
to Birthplace and Zipcode, all transformations which define level 0 to Birthplace or level 0
to Zipcode are excluded from the set of possible solutions. Therefore, the first
transformation that Incogntio checks by traversing this lattice is [1,1] which is found not

to be 2-anonymous so it procceeds with nodes in the next level.

The algorithm terminates when checking the generalization lattice of all 3 quasi-identifiers
shown in Figure 6. Numerous transformation nodes have been excluded from previous
iterations so Incognito needs to check only three nodes to find the set of all possible 2-

anonymous generalizations.
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Figure 6: Incognito’s generalization lattice for m = 3

6.1.2 Flash

Flash is an algorithm proposed by Kohlmayer et al. in [35] and has borrowed its basic
characteristics from Incognito. This algorithm constructs one single generalization lattice
for all the quasi-identifiers and does not bother with subsets of quasi-identifiers as
Incognito. The main difference between the two is that Flash implements a more fine-
grained traversal strategy than Incognito. It iterates over all levels in the lattice starting

from level 0.

For every node in each level, if the node is not already tagged, it builds a path towards
the top node, implementing a greedy depth-first strategy. The construction of a path is
based on a vertical traversal strategy aiming at choosing nodes with lower degree of
generalization. This strategy chooses the next transformation node of the path according
to three fixed criteria: (a) the total generalization level of the node in the lattice, (b) the
average generalization of all quasi-identifiers of the node and (c) the average of the
number of distinct values on the current level of each quasi-identifier. The search is
terminated when the top node is reached or when the current node does not have a

successor that is not already tagged.
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Figure 7: First iteration of Flash algorithm

When a path is built, a binary search is implemented which starts checking for k-
anonymity at the node that is positioned in the middle of the current path. Whenever a
node is checked, predictive tagging is applied within the whole generalization lattice.
Depending on the result of the check, the algorithm proceeds with the lower or upper half
of the path. The algorithm continues until all nodes in the generalization lattice are

checked for anonymity.

For example, Figure 7 shows the first iteration of the Flash algorithm. A path is
constructed from root node [0,0,0] to reach top node [2,2,3]. This path contains nodes
linked with red arrows in the figure. Then, Flash checks for 2-anonymity node [1,0,3]
which is the mid-node of the path. As this node is not 2-anonymous, all predecessors of
this node are also tagged non-anonymous and the algorithm continues by examining the
upper half path containing nodes [1,0,3], [2,0,3], [2,1,3] and [2,2,3]. Again mid-node
[2,1,3] is checked which is 2-anonymous so successor [2,1,3] is also tagged as
anonymous and predecessor [2,0,3] is checked for anonymity, which does not hold.
Finally, all nodes of the path have been checked and then the algorithm proceeds with
the same process for the nodes of level 1. Two of them have been tagged from the

previous stage so only node [0,1,0] is a candidate, from which Flash will construct a new
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path towards the top node and traverse it in the same way. This process continues until

all nodes of the lattice are checked.

6.2 Speedy Algorithm

The traversal strategy employed by Flash gives a clear advantage over Incognito’s
breadth-first traversal. In our algorithm, we adopt this strategy and we introduce

parallelization in the process of checking transformation nodes for anonymity.

The check of whether an individual transformation node is k-anonymous or not can be a
time-consuming task. To check this condition, the algorithm has to generalize each quasi-
identifier to the level specified by the transformation and then enumerate rows with the

same quasi-identifier values so as to determine k-anonymity.

To speedup this process, Speedy creates n threads and splits the initial table T to n sub-
tables T/, T, ...T, with size equal to cardinality(T)/n. Then each thread; separately
performs the generalization process of the sub-table T;" and returns to the main thread a
map including distinct combinations of generalized quasi-identifiers found in this sub-table

and their respective number of occurrences.

Finally, to determine if the current transformation is k-anonymous, the main thread simply
merges the results and checks if every combination of quasi-identifier values is present

more than k times.

6.3 Optimizations

In this section, we discuss some further optimizations implemented in all algorithms to
exploit similarities between the transformation nodes that are checked consequently.
6.3.1 Projection

This optimization is based on the idea that we have to transform only part of the data that
actually change. A projection can be applied we have to check two consecutive
transformation nodes that have the same level of generalization for some quasi-

identifiers. In this case, the same columns do not need to be transformed again.

6.3.2 Roll-up

When the algorithm moves from a transformation s; to transformation s, which is a
generalization of s, equivalence classes can be formed from the classes of s;. A roll-up,

transforms and groups only distinct rows found from a previous check, and adds their
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corresponding counter to build current equivalence classes and their respective number
of occurrences. In this way, the algorithm does not need to generalize in each check every
single row of the dataset to determine anonymity.

6.3.3 History buffer of snapshots

To properly utilize the roll-up optimization on transitions that are not on consecutive
nodes, we have to maintain a history buffer containing snapshots of the equivalence
classes formed when checking transformation nodes for anonymity. Then equivalence
classes of a transformation node n' can be built by merging the classes from a specialized
node n that a snapshot exists, exactly as in the roll-up optimization. The history buffer

employs the LRU policy and stores no more than a predefined number of snapshots.

6.4 Evaluation

For the evaluation of the implemented algorithms, we use five real-world datasets which

have been utilized for benchmarking previous works on k-anonymity.

6.4.1 Datasets

The datasets include the 1994 US census database (ADULT), KDD Cup 1998 data
(CUP), NHTSA crash statistics (FARS), the American Time User Survey (ATUS) and the
Integrated Health Interview Series (IHIS). The ADULT dataset is the de-facto standard
for the evaluation of k-anonymity algortihms. Table 17 show statistics of all datasets. They
cover a wide spectrum, ranging from 30k to 1.2M rows consisting of 8 and 9 Quasi-
Identifiers. The associated generalization hierarchies have a height between 2 and 6

levels.

Table 17: Datasets used for Evaluation

Dataset QlIs Records  Size(MB)

ADULT 9 30,162 2.52
CupP 8 63,441 7.11
FARS 9 100,937 7.19
ATUS 9 539,253 84.03
IHIS 9 1,193,504 107.56

Serafeim Chatzopoulos 53



Survey of Privacy-Preserving Data Publishing Methods and Speedy: a multi-threaded algorithm preserving k-anonymity

6.4.2 Implementation Details and Setup

Our multi-threaded algorithm as well as Incognito and Flash were implemented in Java.
Dataset is represented as a two-dimensional array of integers and every non-numeric
attribute has its own dictionary to map values to integers. A hierarchy is implemented as

a java map with key the parent node and value an array of the successor nodes.

The benchmarks were performed on a server machine with a 6-core i7-4930k processor
and 64GB of memory running a 64-bit Linux 3.2.0 kernel. Algorithms were executed on a
64-bit Oracle JVM (1.8.0).

We anonymized every dataset with 2 < k < 10 and 1 < |QIs| < 6 which results in 54 runs
per dataset for each single-core algorithm: Incognito and Flash. Our multi-threaded
algorithm was further tested with the number of threads varying in the range 1 <n < 6,
which results in 5 x 54 = 270 runs per dataset. This configuration was executed for every
dataset so 324 x5 = 1620 executions were made in total. Executions were made
interchangeably among the algorithms and in each one, the dataset and hierarchies were
loaded from scratch to eliminate the impact of the CPU cache on the acceleration of the

anonymization process.

The results are reported without the time needed for initialization, which includes loading
the original dataset and the respective hierarchies from the disk. Therefore, the execution

time of all three algorithms is the time needed for the core anonymization process.
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Figure 8: Average execution times for Incognito and Flash
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Figure 9: Average execution times for Flash and Speedy

6.4.3 Experimental Results

Figure 8 shows the average execution times for Incognito and Flash for all runs with the
number of quasi-identifiers in the range 1 < |QIs| < 6. We can see that Flash clearly
outperforms Incognito due to its traversal strategy which exploits the roll-up optimization.
In Figure 9 we can see the respective execution times between Flash and Speed. Speedy
was timed using varying numbers of threads and it is clear that it benefits from the parallel
transformation node checking. This benefit is more obvious in Figure 10 which shows the
execution times in milliseconds of Speedy for various numbers of threads. Note that more
threads (bounded by the number of CPU cores) tend to result in faster execution times

especially for larger datasets.
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Figure 10: Speedy execution times for IHIS dataset with |QIs| =4 and k=10
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IHIS ATUS FARS CUP ADULT
2 threads @ 1.938213 1.913364  1.915552 1.728208  1.920339
3threads @ 2.949185 2.842338 | 2.808302 2.387479 2.807074
4threads @ 3.-858426 3.551246 @ 3.593112 @ 2.791893 3.672545
5threads @ 4.793702  4.365942 413946  3.067263 @ 3.70904
6 threads @ 5.512814 5.012325 4.432252 3.250669 @ 3.790642

The power of multi-core modern CPUs is fully exploited in larger datasets where multiple
threads can check the dataset for anonymity in parallel much faster than the single-core
Flash algorithm. The ideal number of threads is observed to be equal to the number of
CPU cores. As depicted in Table 18 larger datasets used in the experiments (IHIS and

ATUS) achieve nearly optimal speedup factors for all thread configurations.

Last but not least, as it is known from [28] the computational complexity of k-anonymity
increases exponentially with the number of quasi-identifiers. Our algorithm cannot be an

exception and clearly suffers from the curse of dimensionality as shown in Figure 11.
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Figure 11: Speedy execution times with |threads| = 6 and k =5
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7. Conclusions and Future Work

In this thesis, we discussed possible privacy linkages and most recent privacy guarantees
and algorithms which prevent them. Our survey focused on privacy primarily for relational
and transactional databases. We believe that there are still challenging problems in the
research area of Privacy-Preserving Data Publishing, particularly in the anonymization
of semi-structured data. None of the existing privacy guarantees can be directly applied
for anonymizing semi-structured data so new opportunities rise for novel privacy models

and algorithms.

We also presented a new multi-threaded anonymization algorithm preserving k-
anonymity which is scalable to the number of CPU cores and achieves much better time
performance than the two most reputable algorithms of this category: Incognito and Flash.
A disk-based version of this algorithm could be a useful extension as it will be able to
handle enormous datasets without compromising execution time compared to single-

threaded algorithms.
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ACRONYMS
CM Classification Metric
DM Discernibility Metric
FG Full-domain generalization
IL ILoss
MG Multi-dimensional generalization
MPALM Multi-Dimensional Presence Algorithm
NCP Normalized Certainty Penalty
P Perturbation
SPALM Single-Dimension Presence Algorithm
SuLQ Algorithm Sub-Linear Queries Algorithm
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