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ABSTRACT 

Nowadays, many organizations, enterprises or public services collect and manage a vast 

amount of personal information. Typical examples of such datasets include clinical tests 

conducted in hospitals, query logs held by search engines, social data produced by social 

networks, financial data from public sector information systems etc. These datasets often 

need to be published for research or statistical studies without revealing sensitive 

information of the individuals they describe. The anonymization process is more 

complicated than hiding attributes that can directly identify an individual (name, SSN etc.) 

from the published dataset. Even without these attributes an adversary can cause privacy 

leakage by cross-linking with other publicly available datasets or having some sort of 

background knowledge. Therefore, privacy preservation in data publishing has gained 

considerable attention during recent years with several privacy models proposed in the 

literature. In this thesis, we discuss the most common attacks that can be made on 

published datasets and we present state-of-the-art privacy guarantees and 

anonymization algorithms to counter these attacks. Furthermore, we propose a novel 

multi-threaded anonymization algorithm which exploits the capabilities of modern CPUs 

to speed up the anonymization process achieving 𝑘-anonymity in the anonymized 

dataset. 

 

 

 

 

 

 

 

 

 

 

SUBJECT AREA: Privacy-Preserving Data Publishing 

KEYWORDS: privacy preservation, data anonymity, database systems, 𝑘-anonymity, 

multi-threaded algorithm 



 

   

 
ΠΕΡΙΛΗΨΗ 

Στις μέρες μας, πολλοί οργανισμοί, επιχειρήσεις ή κρατικοί φορείς συλλέγουν και 

διαχειρίζονται μεγάλο όγκο προσωπικών πληροφοριών. Τυπικά παραδείγματα τέτοιων 

συνόλων δεδομένων περιλαμβάνουν κλινικές εξετάσεις νοσοκομείων, query logs 

μηχανών αναζήτησης, κοινωνικά δεδομένων προερχόμενα από δίκτυα κοινωνικής 

δικτύωσης, οικονομικά στοιχεία πληροφοριακών συστημάτων του δημοσίου κλπ. Αυτά τα 

σύνολα δεδομένων χρειάζεται συχνά να δημοσιευτούν για ερευνητικές ή στατιστικές 

μελέτες χωρίς να αποκαλυφθούν ευαίσθητα δεδομένα των ανθρώπων που 

περιλαμβάνουν. Η διαδικασία ανωνυμοποίησης είναι πιο περίπλοκη από την απλή 

απόκρυψη πεδίων που μπορούν άμεσα να προσδιορίσουν ένα άτομο (όνομα, AΦM κλπ). 

Ακόμα και χωρίς αυτά τα πεδία, ένας επιτιθέμενος μπορεί να προκαλέσει διαρροή 

ευαίσθητων πληροφοριών διασταυρώνοντας με άλλα δημόσια διαθέσιμα σύνολα 

δεδομένων ή έχοντας κάποιου είδους πρότερη γνώση. Επομένως, η διαφύλαξη της 

ιδιωτικότητας σε δεδομένα προς δημοσίευση έχει προσεγγίσει μεγάλο ενδιαφέρον τα 

τελευταία χρόνια με αρκετά μοντέλα ιδιωτικότητας να έχουν προταθεί στη βιβλιογραφία. 

Σε αυτή τη διπλωματική εργασία, αναλύουμε τις πιο συχνές επιθέσεις που μπορούν να 

γίνουν σε δημοσιευμένα σύνολα δεδομένων και παρουσιάζουμε τις πιο σύγχρονες 

εγγυήσεις ιδιωτικότητας και αλγορίθμους ανωνυμοποίησης για την αντιμετώπιση των 

επιθέσεων αυτών. Επιπλέον, προτείνουμε ένα νέο πολυνηματικό αλγόριθμο 

ανωνυμοποίησης που εκμεταλλεύεται τις δυνατότητες των σύγχρονων επεξεργαστών 

ώστε να επιταχυνθεί η διαδικασία ανωνυμοποίησης και να επιτευχθεί η 𝑘-ανωνυμία στο 

ανωνυμοποιημένο σύνολο δεδομένων. 
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1. Introduction 

In recent years, many organizations or public services collect huge amounts of 

individuals’ personal information such as medical records, user preferences, on-line 

shopping data, query logs etc. These datasets are often published for research or 

statistical studies but in many cases they contain sensitive information that should not be 

revealed. A naïve approach would be to hide information that can directly link to an 

individual’s record in the published dataset. This approach was proven to be inadequate 

as there are several examples in which private information was leaked despite the fact 

that direct identifiers were removed from the published dataset.  

Such examples include AOL which published search logs of 657,000 American citizens 

in which Thelma Arnold a 62-year old woman was uniquely identified by the New York 

Times reporters. This resulted in AOL removing search data from its site and apologizing 

for its release [1]. This was not the only case of such private information leakage; sensitive 

information of Netflix’s subscribers was revealed by combining Netflix Prize dataset, 

which contains anonymous movie ratings of 500,000 of its subscribers, and the Internet 

Movie Database as source of background knowledge [2].  

L. Sweeney [3] showed that cross-linking poorly anonymized public datasets can cause 

privacy threats. For example, William Weld, former governor of Massachusetts, was 

successfully identified in the medical data from the Group Insurance Commission (GIC) 

when linked to the voter registration list for Cambridge Massachusetts through the 

combination of date of birth, gender and ZIP code as shown in Figure 1. According to 

Sweeney 87% of U.S. citizens are potentially identifiable by the combination of these 

attributes.  

  

Figure 1: Sweeney's linking attack to identify record owners [3] 
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It is clear that to prevent such types of attacks as the ones presented above, data should 

be published after certain anonymization procedures take place so as to ensure data 

privacy. The research area that studies such procedures is called Privacy-Preserving 

Data Publishing and its recent developments make up the first part of this thesis.   

The increasing growth of digital information gathered by organizations has posed new 

challenges to privacy preserving algorithms. Until now, many algorithms employ 

complicated techniques to reduce search space and reduce execution time. However, as 

they are single-threaded, they struggle to handle large datasets in a reasonable amount 

of time. In this direction, in the latter part of this thesis, we propose a novel algorithm 

aiming at making full use of modern CPUs using multiple threads to achieve the 𝑘-

anonymity guarantee.  

The remainder of this thesis is organized as follows: 

 In Section 2, we present a typical Privacy-Preserving Data Publishing scenario; 

key actors that take part, classification of attributes and anonymization operations 

used to produce the anonymized dataset for publication. 

 In Section 3, we discuss the various attack models on a published relational 

database and the most known privacy guarantees to counter each one. At the end 

of this section, we also present privacy models designed especially for non-

relational high dimensional databases such as transactional data. 

 In Section 4, we present the most widely used information loss metrics; a way to 

measure data distortion of the anonymized dataset. 

 In Section 5, we present several anonymization algorithms grouped by the type of 

attack they prevent and the privacy guarantee they preserve. 

 In Section 6, we propose Speedy; a novel multithreaded algorithm preserving 𝑘-

anonymity. We further evaluate our experimental results in comparison with two of 

the most well-known algorithms of this category, Incognito [4] and Flash [35]. 

 In Section 7, we summarize our thesis and we propose possible extensions and 

directions for future work. 
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2. Privacy-Preserving Data Publishing 

In this section, we will go through the key concepts needed to understand a typical 

Privacy-Preserving Data Publishing scenario. We will present the components and 

procedures that take part in such a scenario as well as the most common data 

transformation operations in which the original dataset is imposed on, to prevent privacy 

breaches.  

In our case, we define privacy as the prevention of the attacker to learn additional 

information about an entity, for example an individual, by examining the records of the 

released data. In general, we assume that the attacker already possesses some 

background knowledge before examining the published data. What we want, is to prevent 

him from inferring extra knowledge that might include sensitive information about an 

individual. Privacy-Preserving Data Publishing provides methods and tools to publish 

data that preserve data privacy and at the same time retain their utility. 

 

Figure 2: A typical Privacy-Preserving Data Publishing scenario 
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2.1 Key Actors 

In a typical Privacy-Preserving Data Publishing scenario as the one shown in Figure 2 

the following actors participate: 

Record Owners are those entities that have one or more records in the released dataset. 

In our example Bob, Anna, Helen and George are considered to be the record owners. 

Data Publisher is the person or organization that collects the data to be published. The 

data publisher is then responsible for anonymizing before publishing collected data so 

as to avoid privacy breaches. In this thesis, we focus on cases where the data publisher 

is considered to be trusted and does not attempt to identify record owners’ sensitive 

information and we examine privacy issues that may arise after publishing the 

anonymized data. 

Data Recipient is considered to be anyone that has access to the published dataset. A 

data recipient can be a specific data miner, for example a researcher or data analyst, or 

potentially anyone if the anonymized data is released to the public. In all Privacy-

Preserving Data Publishing scenarios we assume that the data recipient can be an 

attacker. 

2.2 Classification of Attributes 

When the data publisher collects the data from the record owners, he ends up with a data 

table such as Table 1 containing all information to be anonymized. In most cases, this 

table 𝑇 has the following form 

𝑇( 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠,

𝑄𝑢𝑎𝑠𝑖 − 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠,

𝑁𝑜𝑛 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠,
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 )

  

so its attributes can be classified in the following categories: 

Explicit Identifiers are those attributes that uniquely identify an individual such as Name 

or Social Security Number (SSN). For obvious reasons, this kind of attributes should 

definitely be omitted from the released dataset. 

Quasi-Identifiers (QI) are not considered harmful to the individual they describe, but they 

can be combined with other background knowledge, such as public voters’ catalogues 

and lead to the re-identification of an individual in the published dataset. They can help 

the attacker infer the hidden identity behind an anonymized record. Examples of such 

attributes are place of birth, year of birth and zipcode of Table 1. 
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Table 1: Original table containing medical data 

 Explicit Identifiers Quasi-Identifiers Sensitive 

Id Name SSN Birthplace Birth Zipcode Disease 

1 Paulo Dybala 457-58-9658 Argentina 1975 4370 HIV 

2 Jeison Murillo 452-45-7895 Colombia 1972 4378 HIV 

3 Lucas Romero 785-96-7845 Argentina 1962 4379 Fever 

4 Adrien Rabiot 457-89-6325 France 1955 4352 Cancer 

5 Eric Dier 787-85-9658 England 1986 4350 Flu 

6 Alessio Cerci 789-89-8547 Italy 1972 4397 HIV 

7 Henri Lansbury 789-25-5896 England 1984 4398 Fever 

8 Simone Zaza 980-02-8767 Italy 1973 4398 Flu 

9 Florent Thauvin 786-89-1782 France 1987 4393 Fever 

 

Non-Sensitive Attributes are those fields that neither cause any harm, if revealed, to 

the individual they belong to, nor they can be combined with some external source to 

help the re-identification of an individual. 

Sensitive Attributes (SA) are those attributes that are unknown to the attacker and he 

when associated with an individual can violate that individual’s privacy. Typical examples 

of such attributes are disease or salary in case of medical or financial dataset 

respectively.  

2.3 Data Transformation Operations 

After collecting the whole data, the original data table 𝑇 should undergo an anonymization 

procedure before being published. The original dataset should be transformed to a data 

table 𝑇′ of the following form 

𝑇′( 𝑄𝑢𝑎𝑠𝑖 − 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠′,

𝑁𝑜𝑛 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠,
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 )

 

From this anonymized data table 𝑇′ explicit identifiers are removed and quasi-identifiers 

are anonymized by data anonymization operations to meet certain privacy guarantees 

set by the Data Publisher. Several such anonymization techniques have been proposed 

in the literature, the most notable of which are presented below. 
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Suppression is the removal of data from the dataset that is going to be published. This 

technique comes in two variations: record suppression which removes entire records 

and value suppression which refers to suppressing a specific value in the table [4]. 

Suppression can severely increase information loss and reduce the data utility. 

Generalization is the data transformation methodology according to which a value of a 

quasi-identifier is replaced by a more general value that includes the original one. Tree-

like hierarchies are used to implement generalization which are known as taxonomy 

trees. For example, given the hierarchy of Figure 2 the value “Italy” of the attribute 

“Birthplace” of Table 1 can be generalized to “Europe” in level 1 of the taxonomy or “*” 

in level 2, meaning anywhere, if further generalization is needed. Generalization can be 

implemented in two ways using either global or local recording. 

 Global Recording generalizes all instances of a certain value to the same level in 

all tuples. Three subtypes of global recording have been proposed in the literature. 

In full domain generalization, all values of a single attribute are generalized to the 

same level of the taxonomy tree, offering uniform domains but often suffering from 

unneeded over-generalization. Sub-tree generalization generalizes either all child 

nodes of an inner node or none of them, thus achieving less distortion. Last but 

not least, sibling generalization generalizes only hierarchy nodes needed 

according to privacy criteria achieving even less data distortion [4]. 

 Local Recording allows the same value to be generalized to more than different 

ones in the released dataset. In cell generalization one instance of a value can be 

solely generalized while the others remain unchanged [5].  

The recording process can be further divided in single or multi-dimensional 

generalization. In single-dimensional each attribute is generalized individually. Multiple 

quasi-identifier attributes can be generalized with a multi-dimensional generalization 

scheme using taxonomy trees related to each one [6]. 

 

Figure 3: Hierarchy on attribute "Birthplace" of Table 1 
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  Perturbation is the idea to replace the original data with some synthetic data values in 

such a way that statistical information from the published data do not differ significantly 

from those computed from the original data. Perturbation can prevent privacy leakage 

as perturbed data records may not correspond to real time data owners so their sensitive 

information cannot be revealed by the attacker. This is also a limitation of this technique 

as perturbed data can be useful only when calculating statistical properties and are 

almost useless for human data recipients. 

 Additive Noise is often used to preserve privacy in statistical databases. The main 

idea is to hide the original numeric sensitive value by adding some random value 

drawn from a distribution. Privacy is preserved when one cannot infer the original 

sensitive value by examining the published one [7]. 

 Synthetic Data Generation builds a statistical model from the actual data and 

then samples points from this model. These sampled points form the synthetic data 

which is then released instead of the original data [27]. 
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3. Attack Models and Privacy Guarantees 

There are several types of attacks that can be made on a published dataset. They are 

classified based on the information they want to reveal in the following four categories: 

record linkage attack, attribute linkage attack, table linkage attack and probabilistic attack. 

In this section, we present the most notable privacy guarantees categorized by the type 

of attacks they prevent, also shown in Table 10 at the end of this chapter.  

3.1 Record Linkage Attack 

This is arguably the most notorious threat in data publishing. This attack occurs when the 

adversary associates one or more external sources and succeeds in identifying an 

individual’s record in the published dataset. It is of major importance that every published 

dataset is not susceptible to this type of attack. 

3.1.1 𝒌-anonymity 

The main privacy guarantee against record linkage attacks is 𝑘-anonymity, proposed by 

Sweeney [3] and Samarati [8], and its variations. The main idea is to hide every 

individual’s record among at least 𝑘 − 1 others with respect to the quasi-identifiers. This 

means that every combination of quasi-identifiers should appear 0 or more than 𝑘 times 

in the published dataset. From the attacker’s point of view, when he knows the quasi-

identifiers of a target individual, the probability to identify the target record among a set of 

records with the same quasi-identifiers called Equivalence Class, is never greater 

than 1/𝑘. 

Table 2: 3-anonymous table of Table 1 

 Quasi-Identifiers Sensitive 

Id Birthplace Birth Year Zipcode Disease 

1 South America [1955, 1995] 437* HIV 

2 South America [1955, 1995] 437* HIV 

3 South America [1955, 1995] 437* Fever 

4 Europe [1955, 1995] 435* Cancer 

5 Europe [1955, 1995] 435* Flu 

6 Europe [1955, 1995] 435* HIV 

7 Europe [1955, 1995] 439* Fever 

8 Europe [1955, 1995] 439* Flu 

9 Europe [1955, 1995] 439* Fever 
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In Table 2 we can see a 3-anonymous version of Table 1. All direct identifiers of the 

original dataset are apparently omitted and quasi-identifiers are generalized, based on 

their taxonomy trees, to form equivalence classes of size 3. For example, attribute “Place 

of Birth” is generalized according to the hierarchy of Figure 3 in level 1 of the taxonomy 

tree. Similar hierarchies are used to generalize the other quasi-identifiers; particularly 

“Birth Year” is generalized at the top node of the hierarchy and “Zipcode” at level 1 hiding 

the last digit. If an adversary knows that Simone was born in Italy in 1973 and has Zipcode 

4398, he cannot distinguish his record from the equivalence class which contains records 

with ids 7, 8, and 9.  

The value of parameter 𝑘 must be chosen very carefully as it is in fact a trade-off between 

privacy and data utility. A large 𝑘 results in forming larger equivalence classes, so the 

probability of privacy breaches is reduced. On the other hand, a large 𝑘 causes more data 

generalizations hiding actual values and restricting data utility.  

3.1.2 (𝟏, 𝒌)-anonymity 

Gionis et al. [9] introduces three relaxations of 𝑘-anonymization which aim at offering 

higher data utility while preserving privacy. The first one, (1, 𝑘)-anonymity can be used if 

the attacker knows only the public information of his target. In this case, instead of 

performing 𝑘-anonymization, it is enough to generalize the table entries in such way that 

the public data of every individual are consistent with at least 𝑘 records of the released 

table 𝑇′. 

3.1.3  (𝒌, 𝟏)-anonymity 

The second notion introduced is called (𝑘, 1)-anonymity. The released table 𝑇′ is 

considered to be (𝑘, 1)-anonymous if every record in that table is consistent with at least 

𝑘 records in the original table 𝑇. Note that a 𝑘-anonymous table is also both (1, 𝑘) and 

(𝑘, 1)-anonymous, but the contrary is not always the case. 

3.1.4 (𝒌, 𝒌)-anonymity 

The above two privacy guarantees offer a weaker protection of privacy, when compared 

to 𝑘-anonymity. Thus, it makes more sense to use them in combination and not 

individually. An anonymous table that satisfies both (1, 𝑘) and (𝑘, 1)-anonymity is called 

(𝑘, 𝑘)-anonymous. This property offers similar protection to 𝑘-anonymity, when the 
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attacker has full knowledge on only some of the individuals in the table. However, using 

(𝑘, 𝑘)-anonymity, we may achieve higher data utility compared to 𝑘-anonymity. 

3.2 Attribute Linkage Attack 

This threat occurs when an individual is associated with information about his sensitive 

attributes. This information can be a range of values containing an individual’s sensitive 

value or the sensitive value itself. For example, considering the attribute “Salary” as 

sensitive, the knowledge that an individual’s value of this attribute lies in the range of 

[6000, 6500] can be unacceptable as it provides near accurate estimate of the actual 

sensitive value. 

3.2.1 Homogeneity and Background Knowledge Attack 

Machanavajjhala et al. [10] present two attacks that can cause severe privacy breaches 

to 𝑘-anonymous datasets. We use Table 3 to demonstrate these attacks. The first one, 

homogeneity attack, can be exploited due to 𝑘-anonymity's potential lack of diversity in 

sensitive attributes. For example, if Henri is an Englishman who lives in zipcode 4398, we 

can focus our search to identify him in the last 3 rows of the dataset of Table 3. All patients 

in these rows have the same disease so we can conclude that Bob has fever. 

 

Table 3: 3-anonymous dataset susceptible to attribute linkage attacks 

 Quasi-Identifiers Sensitive 

Id Birthplace Birth Year Zipcode Disease 

1 South America [1955, 1995] 437* Flu 

2 South America [1955, 1995] 437* HIV 

3 South America [1955, 1995] 437* Flu 

4 Europe [1955, 1995] 435* Cancer 

5 Europe [1955, 1995] 435* Flu 

6 Europe [1955, 1995] 435* HIV 

7 Europe [1955, 1995] 439* Fever 

8 Europe [1955, 1995] 439* Fever 

9 Europe [1955, 1995] 439* Fever 
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The second potential attack is called background knowledge attack. If we know that 

Lucas is from Argentina, we are sure that he corresponds to a row in the first equivalence 

class (rows with id 1, 2 and 3) of Table 3. If we further know that he is very susceptible to 

flu, then with high probability we can conclude that he has the flu.  

3.2.2 𝒍-diversity 

To address these limitations of 𝑘-anonymity, Machanavajjhala et al. [10] introduce 𝑙-

diversity as a stronger notion of privacy: 

An equivalence class is 𝑙-diverse if it contains at least 𝑙 “well-preserved” values for the 

sensitive attribute. A table is said to meet 𝑙-diversity if every equivalence class of it, is 𝑙-

diverse. 

The above principle does not clarify what “well-preserved” values mean. Several 

proposed instantiations are listed below: 

3.2.2.1 Distinct 𝒍-diversity 

The simplest understanding of “well-preserved” would be to ensure that each equivalence 

class has at least 𝑙 distinct values. Table 4 is a further anonymized version of the dataset 

of Table 3 satisfying 𝑙-diversity with 𝑙=2.  

As an equivalence class may have one value appear much more frequently than other 

values, distinct 𝑙-diversity does not prevent probabilistic attacks. This resulted in the 

proposal of the two following stronger notions of 𝑙-diversity. 

 

Table 4: 2-diverse version of the dataset of Table 3 

 Quasi-Identifiers Sensitive 

Id Birthplace Birth Year Zipcode Disease 

1 * [1955, 1995] 43** Flu 

8 * [1955, 1995] 43** Fever 

3 * [1955, 1995] 43** Flu 

4 * [1955, 1995] 43** Cancer 

5 * [1955, 1995] 43** Flu 

6 * [1955, 1995] 43** HIV 

7 * [1955, 1995] 43** Fever 

2 * [1955, 1995] 43** HIV 

9 * [1955, 1995] 43** Fever 
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3.2.2.2 Entropy 𝒍-diversity 

The entropy of an equivalence class is defined as follows: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐸) = − ∑ 𝑝(𝐸, 𝑠)𝑙𝑜𝑔 (𝑝(𝐸, 𝑠))
𝑠∈𝑆

 

where 𝑆 is the domain of the sensitive attribute, 𝐸 is the equivalence class and 𝑝(𝐸, 𝑠) is 

the fraction of records in 𝐸 that have sensitive attribute 𝑠. 

A table is said to have Entropy 𝑙-diversity if every equivalence class 𝐸 has 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐸) ≥

𝑙𝑜𝑔 (𝑙). This implies that entropy of the entire table must be at least 𝑙𝑜𝑔 (𝑙), in order to 

apply the Entropy 𝑙-diversity.  

If a few values are very common, the entropy of the entire table can be very low and thus 

Entropy 𝑙-diversity may be too restrictive. For this reason, another less conservative 

notion of 𝑙-diversity is proposed. 

3.2.2.3 Recursive (𝒄, 𝒍)-diversity 

Recursive (𝑐, 𝑙)-diversity makes sure that the most frequent values do not appear too 

frequently and the less frequent values do not appear too rarely. Let 𝑚 be the number of 

values in an equivalence class and 𝑟𝑖 , 1 ≤ 𝑖 ≤ 𝑚 be the number of times that the 𝑖𝑡ℎ most 

frequent sensitive value appears in the equivalence class 𝐸. Then 𝐸 is said to have 

recursive (𝑐, 𝑙)-diversity if 𝑟1 < 𝑐 (𝑟𝑙 + 𝑟𝑙+1 + ⋯ 𝑟𝑚) for some user-specified constant 𝑐. We 

say that equivalence class 𝐸 satisfies recursive (𝑐, 𝑙)-diversity if by eliminating one 

possible sensitive value, the remaining equivalence class is still (𝑐, 𝑙 − 1)-diverse. A table 

satisfies recursive (𝑐, 𝑙)-diversity if every equivalence class satisfies recursive (𝑐, 𝑙)-

diversity. 

3.2.2.4 Multi-Attribute 𝒍-diversity 

Preserving 𝑙-diversity for multiple sensitive attributes presents some challenges as an 

equivalence class that is 𝑙-diverse in each attribute separately may violate the principle 

of 𝑙-diversity. For example, suppose that we have the 3-diverse equivalence class EC1 

presented in Table 5.  EC1 has two sensitive attributes: Hospital and Disease. We can 

see that EC1 satisfies 3-diversity with respect to Hospital (ignoring Disease) and with 

respect to Disease (ignoring Hospital).  

However, if we know that Bob is present in this equivalence class and he was not 

hospitalized in Peter Smith Hospital, then we are sure that Bob is record with id 3 or 4 

and therefore he has the flu. One piece of information destroyed his privacy. 
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Table 5: Equivalence Class satisfying 3-diversity on each attribute 

Id Hospital Disease 

1 Peter Smith Hospital HIV 

2 Peter Smith Hospital Cancer 

3 NorthWest Hospital 

 

Flu 

4 Forest Park Hospital Flu 

 

This problem occurred because attribute Disease was not well represented for each value 

of attribute Hospital. When having multiple sensitive attributes, these attributes should be 

treated as part of the quasi-identifier when checking for 𝑙-diversity so as to ensure that 𝑙-

diversity principle is held for the entire table. 

3.2.2.5 Limitations of 𝒍-diversity 

While 𝑙-diversity represents an important step beyond 𝑘-anonymity in protecting against 

attribute linkage attacks, Li et al. [11] present a number of its limitations. 

Suppose that we have an original dataset with 10000 records that has only one sensitive 

attribute: the test result of a particular virus that takes two values, positive or negative. 

Additionally, suppose that 99% of the table records are negative and only 1% positive. 

One may not mind being known to be tested negative but would likely not want to be 

known as having tested positive. In this case, 2-diversity is unnecessary for an 

equivalence class that contains only negative records.  

To satisfy distinct 2-diversity there can be at most 10000 x 1% = 100 equivalence classes 

so the information loss would be large. Similarly, if one wants to apply Entropy 𝑙-diversity 

to this table, parameter 𝑙 must be set to a small value as the entropy of the sensitive 

attribute in the overall table is very small. Therefore, the above example indicates that in 

some specific cases 𝑙-diversity may be unnecessary or difficult to achieve. 

3.2.3 Skewness and Similarity Attack 

According to [11], 𝑙-diversity is vulnerable to the following two types of attacks:  

First, consider the example in Section 3.2.2.5. Further suppose that one equivalence 

class has an equal number of positive and negative records. It satisfies distinct 2-diversity, 

entropy 2-diversity and any recursive (𝑐, 2)-diversity requirement. However, this presents 

a serious privacy risk as anyone in this class would be considered to have 50% possibility 

of being positive as compared with the 1% of the overall population.  
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In fact, an equivalence class with 1 positive and 49 negative records has exactly the same 

diversity with another one with 49 positive and 1 negative records, even though these two 

classes present different levels of privacy risks. As a result, when the overall distribution 

is skewed, satisfying 𝑙-diversity does not prevent attribute disclosure, as the adversary 

can exploit this skewness; this type of attack is called skewness attack.  

The second type of attack is called similarity attack. When the sensitive attribute values 

in an equivalence class are distinct but semantically similar, an adversary can learn 

important information. For example, consider an equivalence class that has the sensitive 

attribute “Disease” with the following set of values {gastric ulcer, gastritis, stomach 

cancer}. An adversary can infer that his target has a stomach related disease. This 

leakage of sensitive information occurs because while 𝑙-diversity ensures “diversity” of 

sensitive values in each group, it does not take into account the semantic closeness of 

these values. 

3.2.4 𝒕-closeness 

To counter the limitations of 𝑙-diversity presented, Li et al. [11] proposed a novel privacy 

guarantee called 𝑡-closeness: 

An equivalence class is said to have 𝑡-closeness if the distance between the distribution 

of a sensitive attribute in this class and the distribution of the attribute in the whole table 

is no more than a threshold 𝑡. A table is said to have t-closeness if all equivalence classes 

have 𝑡-closeness. 

If the distance between these distributions is small, the correlation between quasi-

identifier attributes and sensitive attributes is limited and so is the amount of useful 

information released. If an observer gets a clear picture of this correlation then attribute 

disclosure occurs. The parameter 𝑡 in 𝑡-closeness enables the trade-off between data 

utility and privacy. The way to measure the distance between the two distributions is not 

strictly defined but the Earth Mover’s Distance (EMD)1 [12] is suggested.  

We note that 𝑡-closeness protects against attribute disclosure but it does not deal with 

identity disclosure. Thus, it may be desirable to use it in conjunction with 𝑘-anonymity. 

                                            

1 The EMD is based on the minimal amount of work needed to transform one distribution to another by 

moving distribution mass between each other.  
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Table 6: Original table containing medical data 

 Quasi-Identifiers Sensitive 

Id Place of Birth Birth Year Zipcode Disease 

1 Colombia 1972 4378 HIV 

2 Brazil 1987 4373 Cancer 

3 Italy 1972 4397 HIV 

4 England 1984 4398 Fever 

5 Italy 1973 4398 Flu 

6 Argentina 1962 4379 Fever 

3.2.5  (𝜶, 𝒌)-anonymity 

Another privacy model to counter the homogeneity attack presented in Section 3.2.1 is 

(𝛼, 𝑘)-anonymity proposed by R. Wong et al. in [13]. (𝛼, 𝑘)-anonymity aims to protect 

individual identifications and sensitive relationships with a simpler model than recursive 

(𝑐, 𝑙)-diversity, where it is rather difficult for users to set values for 𝑐 and 𝑙 parameters. In 

addition, (𝛼, 𝑘)-anonymity does not take into account any background knowledge that an 

adversary may have as in practice we do not know the nature of this background 

knowledge.  

(𝛼, 𝑘)-anonymity is an extension of 𝑘-anonymity as it requires that after anonymization, 

in every equivalence class, the frequency of a sensitive value is no more than 𝛼, where 

𝛼 is a fraction and 𝑘 is an integer. For example, in Table 7 we can see an anonymized 

version of Table 6 respecting (1
3⁄ , 2)-anonymity. As we can see, no sensitive value in 

the two equivalence classes in the anonymized table has frequency greater than 1 3⁄ .  

 

Table 7: (𝟏/𝟑, 𝟑)-anonymous version of Table 6 

 Quasi-Identifiers Sensitive 

Id Place of Birth Birth Year Zipcode Disease 

1 South America [1962, 1987] 437* HIV 

2 South America [1962, 1987] 437* Cancer 

6 South America [1962, 1987] 437* Fever 

3 Europe [1962, 1987] 439* HIV 

4 Europe [1962, 1987] 439* Fever 

5 Europe [1962, 1987] 439* Flu 
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3.3 Table Linkage Attack 

Previous models assume that the adversary already knows that the victim’s record is 

present in the released dataset. However, sometimes it is a privacy risk when the attacker 

can infer with high probability that an individual’s record is contained in the published 

data. This type of attack aiming at membership disclosure is called table linkage attack. 

For example, consider a dataset which contains information on only HIV-positive patients. 

The fact that a patient’s record is contained in the dataset reveals that the patient is HIV-

positive; thus membership disclosure can pose a privacy threat. 

3.3.1 𝜹-presence 

Nergiz et al. [14] introduced 𝛿-presence as a new privacy model to protect against table 

linkage attacks. The basic idea is to prevent the adversary from identifying any individual 

as being in the released dataset with certainty greater than 𝛿. Formally, given an external 

public table 𝑇𝑒 and a private table 𝑇𝑝, where 𝑇𝑝 ⊆  𝑇𝑒 , we say that a generalized table 𝑇′ of 

𝑇𝑝 satisfies 𝛿-presence, where 𝛿 = (𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥) if 

𝛿𝑚𝑖𝑛 ≤ 𝑃(𝑡 ∈ 𝑇𝑝 | 𝑇′)  ≤  𝛿𝑚𝑎𝑥               ∀𝑡 ∈ 𝑇𝑒  

Therefore, 𝛿 = (𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥) is a range of acceptable probabilities for 𝑃(𝑡 ∈ 𝑇𝑝 | 𝑇′) and in 

such a dataset we say that each tuple 𝑡 ∈ 𝑇𝑒 is 𝛿-present in 𝑇𝑝 or the existence probability 

of 𝑡 is within 𝛿.  

Despite the fact that 𝛿-presence is a strict privacy model, it supposes that the data 

publisher has access to the same external table 𝑇𝑒 that an adversary may use to exploit 

an attack which is surely not a practical assumption. 

3.3.2 𝒄-confident 𝜹-presence 

In general, it is impossible for the data publisher to have a complete knowledge of all 

external data tables. So, Nergiz et al. [15] redefine the notion of 𝛿-presence with the 

relaxation that the data publisher knows only statistics (attribute distribution functions) on 

the entire population. A 𝑐-confident 𝛿-presence anonymization ensures that a given tuple 

𝑡 is 𝛿-present with respect to the current population with probability 𝑐.  

Formally, given a public set of distribution functions 𝐹, a private table 𝑇𝑝, a confidence 

level 𝑐 ∈ [0 − 1] and a generalization 𝑇′ of 𝑇𝑝, let 𝐼𝑡 be the event that tuple 𝑡 ∈ 𝑇𝑝 is 𝛿-

present w.r.t 𝑇′ and the whole (unknown) population. In other words, 𝐼𝑡 holds if 𝛿𝑚𝑖𝑛 ≤
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𝑃(𝑡 ∈ 𝑇𝑝 | 𝑇′)  ≤  𝛿𝑚𝑎𝑥. Note that 𝐼𝑡 is a random event since public dataset 𝑇𝑒 is a random 

variable. We say that 𝛿-presence holds for 𝑇′ with 𝛿 = (𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥) and confidence 𝑐 if 

𝑃(𝐼𝑡  | 𝐹) ≥ 𝑐               ∀𝑡 ∈ 𝑇𝑝 

As an outcome of the above definition, privacy is satisfied for only those tuples that are 

in the private dataset 𝑇𝑝 and it is tuple-independent, meaning that each tuple will be 𝛿-

present with probability 𝑐. 

3.4 Probabilistic Attack 

In statistical databases, it is important to be able to mine useful information about the 

underlying population represented by the database while preserving the privacy of 

individuals. Published data should provide the adversary with little additional information 

beyond his background knowledge (uninformative principle). When the adversary can 

change his probabilistic belief on the sensitive attributes of the victim after accessing the 

published data, we call it a probabilistic attack. The family of privacy models presented in 

this section focus primarily on protecting against attacks of this type.  

3.4.1 (𝒄, 𝒕)-isolation 

Chawla et al. [16] give a definition of privacy for statistical databases. According to this 

definition, the adversary should not gain additional confidence on the values of a given 

record when interacting with the published database. Even if the adversary manages to 

construct a query that effectively names a single individual, it should be impossible to 

learn the value of any attribute of the data record. As the adversary’s goal is to single out 

an individual from the crowd, a method is proposed to preserve privacy in statistical 

databases eliminating such isolations, called (𝑐, 𝑡)-isolations. 

(𝑐, 𝑡)-isolations in statistical databases are formally modeled as follows; suppose a data 

point 𝑦 of a target victim 𝑣 in a data table and 𝑞 the adversary’s inferred data point of 𝑣 

by using published data and background knowledge. We say that 𝑞 (𝑐, 𝑡)-isolates 𝑦 if 

𝐵(𝑞, 𝑐𝛿𝑦) contains fewer than 𝑡 points in the initial data table, where 𝐵(𝑞, 𝑐𝛿𝑦) denotes a 

ball of radius 𝑐𝛿𝑦 around 𝑞 and  𝛿𝑦 = ||𝑞 − 𝑦|| is the distance between 𝑞 and 𝑦. 

On the other hand, if 𝐵(𝑞, 𝑐𝛿𝑦) contains at least 𝑡 points then 𝑞 also looks similar to other 

𝑡 − 1 points, so 𝑦 has not been isolated. From the above definition, we see that preventing 

(𝑐, 𝑡)-isolations is very similar to preventing record linkages. 
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3.4.2 𝜺-differential privacy 

Dwork [17] introduces an innovative privacy notion for statistical databases which 

guarantees that the presence or absence of a single record in the dataset will not change 

significantly the results of any statistical analysis. Consequently, this model ensures that 

the privacy risk of an individual should not increase substantially by participating in the 

statistical database. 

More formally 𝜀-differential privacy is modeled as follows: 

A randomized function 𝐾 is 𝜀-differential private if for all datasets 𝐷1 and 𝐷2 that differ on 

at most one element and all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝐾), 

Pr[ 𝐾(𝐷1) ∈ 𝑆] ≤ 𝑒𝜀 × Pr[ 𝐾(𝐷2) ∈ 𝑆] 

where 𝑅𝑎𝑛𝑔𝑒(𝐾) denotes the output range of function 𝐾 and 𝜀 is a constant which adjusts 

the trade-off between accuracy of the statistics estimated and privacy.  

The function 𝐾 is the mechanism for adding noise to the result of a query to ensure that 

the above formula holds. Several differential privacy preserving mechanisms are 

available depending on the specific use case. One of the first proposed is the Laplace 

mechanism which adds random noise that conforms to the Laplace statistical distribution. 

The magnitude of the random noise is chosen as a function 𝑓 of the largest change that 

a single record can have on the output of the query. This is called sensitivity of function 

𝑓: 𝐷 → 𝑅𝑑 and is  

𝛥𝑓 = 𝑚𝑎𝑥𝐷1,𝐷2
||𝑓(𝐷1) − 𝑓(𝐷2)|| 

for all 𝐷1, 𝐷2 differing in at most one record.  

Therefore, sensitivity captures how much an individual’s record can affect the output. For 

example, simple counting queries have 𝛥𝑓 ≤ 1 as the presence or absence of a single 

record can affect the output of the query by a value of 1. It has been proven that adding 

a random Laplace(𝛥𝑓/𝜀) variable to a query’s output guarantees 𝜀-differential privacy. 

Note that differential privacy is a condition on the release mechanism and not on the 

released dataset. This means that for any two datasets that are similar (do not differ on 

more than one element) a differentially private function 𝐾 will behave approximately the 

same for both datasets.  
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Differential privacy has been very popular among researchers due to its versatility and 

intriguing mathematical background and has been expanded to support various types of 

data such as set-valued data [18] and location data [19].  

𝜀-differential privacy is considered to be a very strict privacy definition adding worst case 

noise, so several relaxations to the basic definition have been proposed to achieve better 

utility. Some of the most notable ones include (𝜀, 𝛿)-differential privacy [20], random 

differential privacy [21], privacy under a metric [22] and methods proposed in [23] and 

[24]. 

3.4.3 𝜺-distinguishability 

This model, proposed by Dwork et al. [25], is designed to preserve privacy for statistical 

databases across multiple transcripts; a user’s single query and its corresponding 

response.  

A privacy mechanism is considered to be 𝜀-distinguishable if for all transcripts 𝑡 and for 

all databases 𝐷 and 𝐷′ differing in a single row, the probability of obtaining transcript 𝑡 

when the database is 𝐷, is within a (1 + 𝜀) multiplicative factor of the probability of  

obtaining the transcript 𝑡 when the database is 𝐷′. In other words, it is required that the 

absolute value of the logarithm of the ratios is bounded by parameter 𝜀. 

3.4.4 (𝒅, 𝜸)-privacy 

(𝑑, 𝛾)-privacy is a probabilistic privacy definition proposed by Rastogi et al. [26] in which 

an adversary believes in some prior probability 𝑃(𝑡) of a tuple 𝑡 appearing in the data. 

After seeing the anonymized data 𝐷′, the adversary forms a posterior belief 𝑃(𝑡|𝐷′).  

(𝑑, 𝛾)-privacy is only designed to protect against adversaries that are 𝑑-independent: an 

adversary is 𝑑-independent if for all tuples 𝑡 considered a priori independent, the prior 

belief 𝑃(𝑡) satisfies the conditions 𝑃(𝑡) = 1, meaning that the adversary knows that the 

victim’s tuple is the released dataset, or 𝑃(𝑡) ≤ 𝑑. For all such adversaries, the privacy 

definition requires that 𝑃(𝑡|𝐷′) ≤ 𝛾 and 𝑃(𝑡|𝐷′)/𝑃(𝑡) ≥ 𝑑/𝛾.  

However, (𝑑, 𝛾)-privacy cannot be applied in many real life scenarios as tuple-

independence is a very strong assumption and cannot be guaranteed in many cases [27]. 

3.5 Transactional data 

All the above privacy guarantees are designed for relational databases. Recently, there 

have been some works towards the anonymization of non-relational data the most notable 
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of which are discussed in this and the next section. In particular, in this section we focus 

on privacy guarantees proposed for transactional databases.  

A transactional database consists of transactions, each one defined as an arbitrary set of 

items chosen from a large universe 𝑈. These items can be public (non-sensitive) or 

private (sensitive). Detailed transaction data provides an electronic image of one’s life, 

therefore as with relational data, before being released it must made anonymous so that 

data subjects cannot be re-identified. 

Traditional privacy models used for relational databases cannot handle transactional 

databases efficiently. In relational databases, the key is to form equivalence classes on 

quasi-identifiers and make the records that belong to each class indistinguishable. 

Forming equivalence classes on the universe 𝑈 of a transactional database, which is 

extremely high dimensional, means suppressing most items when anonymizing [28]. 

3.5.1 𝒌𝒎-anonymity 

Terrovitis et al. [29] propose a guarantee that provides privacy preservation to set-valued 

data. Assuming that the maximum knowledge of an adversary is at most 𝑚 items in a 

specific transaction, 𝑘𝑚-anonymity prevents him from distinguishing the transaction from 

a set of 𝑘 published transactions. It requires that each combination of sets up to 𝑚 items 

must appear at least 𝑘 times in the published data. In other words, any subset query of 

size 𝑚 or less, issued by an adversary should return more than 𝑘 or zero records. 

3.5.2 𝝆-uncertainty 

This model introduced by Cao et al. [30] makes the strict assumption that despite the fact 

that values in a record can be categorized to sensitive and non-sensitive, an adversary 

can possess information in any of them. As a result, non-sensitive values can be used to 

infer sensitive ones.  

Table 8: Original transactional dataset 

Id Itemsets  

1 {𝑎1, 𝑎2, 𝑎3, 𝑠1, 𝑠2} 

2 {𝑎1, 𝑎4, 𝑎3} 

3 {𝑎4, 𝑎3} 

4 {𝑎4, 𝑠2} 

5 {𝑎1, 𝑎3, 𝑠1, 𝑠2} 
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Table 9: Anonymized dataset of Table 8 satisfying 𝟎. 𝟕-uncertainty 

Id Itemsets  

1 {𝑎1, 𝑎3, 𝑠2} 

2 {𝑎1, 𝑎4, 𝑎3} 

3 {𝑎4, 𝑎3} 

4 {𝑎4, 𝑠2} 

5 {𝑎1, 𝑎3, 𝑠2} 

 

For example, Table 8 shows five transactions in which items 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are non-

sensitive and  𝑠1, 𝑠2 are sensitive. Given this table, if Alice knows that Bob has bought  𝑎2, 

she can infer that he also bought 𝑎1, 𝑎3, 𝑠1 and  𝑠2.  

Furthermore, if Alice already knows that Bob has bought the private item 𝑠1, she can infer 

that he also bought sensitive item 𝑠2. To prevent such inferences 𝜌-uncertainty is 

proposed to keep the confidence of each Sensitive Association Rule lower than a 

threshold 𝜌.    

A transaction dataset is said to satisfy 𝜌-uncertainty, if and only if, for any transaction 𝑡, 

any subset of items 𝑥 ⊂  𝑡 and any sensitive item 𝑠 ∉  𝑥, the confidence of the Sensitive 

Association Rule 𝑥 →  𝑠 is less than a value 𝜌 >  0. 

As we can see Table 9 is an anonymized version of Table 8 satisfying 0.7-unceratainty 

after suppressing values 𝑎2 and 𝑠1.  

3.5.3 (𝒉, 𝒌, 𝒑)-coherence 

Xu et al. [31] introduced (ℎ, 𝑘, 𝑝)-coherence as a new privacy notion for transactional 

databases with the assumption that in a large universe 𝑈, it is unlikely that an attacker 

has prior knowledge of all public items in 𝑈. The power of the attacker is measured by 

the maximum number 𝑝 of public items that can be obtained in a single attack.  

A database 𝐷 has (ℎ, 𝑘, 𝑝)-coherence if for every combination 𝛽 of no more than 𝑝 public 

items, either no transaction contains 𝛽 or the set of transactions containing 𝛽 (called 𝛽-

cohort), contains at least 𝑘 transactions and no more than ℎ percent of these transactions 

contains a common private item.  
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In other words, (ℎ, 𝑘, 𝑝)-coherence ensures that for an attacker with power 𝑝, the 

probability of linking an individual to a transaction is limited to 1/𝑘 and the probability of 

linking an individual to a private item is limited to ℎ.  

 

Table 10: Privacy guarantees and attacks they protect from 

Privacy Model 

Attack Model 

Record  

Linkage 

Attribute  

Linkage 

Table  

Linkage 

Probabilistic  

Attack 

𝒌-anonymity     

(𝟏, 𝒌)-anonymity     

(𝒌, 𝟏)-anonymity     

(𝒌, 𝒌)-anonymity     

𝒍-diversity     

(𝒂, 𝒌)-anonymity     

𝒕-closeness     

𝜹-presence     

𝒄-confident 

𝜹-presence 

  
 

 

(𝒄, 𝒕)-isolation     

𝜺-differential privacy     

(𝒅, 𝜸)-privacy     

𝒌𝒎-anonymity     

𝝆-uncertainty     

(𝒉, 𝒌, 𝒑)-coherence     

 

Transactional  

Databases 
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4. Information Loss Metrics 

From the early stages of Privacy-Preserving Data Publishing, it was made clear that 

privacy preservation is inversely proportional to a published dataset’s utility. Intuitively, 

when a strong privacy guarantee is used, it is difficult for the attacker to infer additional 

information on the published dataset but the utility of the published dataset is reduced.  

All anonymization operations cause distortion which should be minimized in order to 

maintain the ability to extract meaningful information from the published dataset. A variety 

of information loss metrics have been proposed in the literature to measure the data 

usefulness. All of them are based on the principle that the anonymized dataset should 

retain the statistical properties of the original one. Below, we discuss the most widely 

used information loss metrics and the suitability of each one. 

4.1 Classification Metric 

Classification Metric (CM) proposed by Iyengar [32] is a special purpose data metric that 

is suitable when the anonymized data will be used to train a classifier. First, a 

classification model is built where the class label is one column of the table. Each tuple 

is assigned with a class label, and is also part of a group2 denoted by 𝐺(𝑡). The main idea 

is to penalize a row if it is suppressed or if its class label 𝑐𝑙𝑎𝑠𝑠(𝑡) is not the majority class 

label of its group 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝐺(𝑡)). So the penalty of each individual tuple is given by: 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑡) = {
 1, 𝑖𝑓 𝑡 𝑖𝑠 𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑒𝑑

1, 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠(𝑡) ≠ 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝐺(𝑡))

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The Classification Metric is then computed as the sum of penalties of each tuple, 

normalized by the number of total tuples: 

𝐶𝑀 =  
∑ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑡)𝑡∈𝑇

|𝑇|
 

where 𝑡 is a tuple in the data table 𝑇 and |𝑇| the cardinality of the table. In some cases it 

is important to evaluate the impact of anonymization operations by building a classifier 

from the anonymized data and see how it performs; however is unclear how the specific 

data metric can be expanded to support more general purposes. 

                                            

2 A group consists of all tuples that have the same unique combination of generalized values.  
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4.2 ILoss 

ILoss (IL) proposed in [33] is a general purpose data metric measuring information loss 

when generalizing an original value 𝑣 to a generalized value 𝑣′. IL of such a generalization 

is computed by 

𝐼𝐿(𝑣′) =
|𝑣′| − 1

|𝐷𝐴|
 

where |𝑣′| is the number of values that are generalized to 𝑣′ and |𝐷𝐴| is the number of 

values in the domain 𝐴 of 𝑣′. By the above definition we can see that an ungeneralized 

value has 𝐼𝐿(𝑣′) = 0. IL of a tuple is given by 

𝐼𝐿(𝑡′) = ∑ (𝑤𝑖 × 𝐼𝐿(𝑣′))
𝑣′∈𝑡′

 

where 𝑤𝑖 is a positive parameter specifying the penalty factor for losing information on 

attribute 𝑖. Therefore, total IL of the entire generalized table is computed by the sum of IL 

of each tuple in the table: 

𝐼𝐿(𝑇′) = ∑ 𝐼𝐿(𝑡′)
𝑡′∈𝑇′

 

4.3 Discernibility Metric 

Discernibility Metric (DM) is another general purpose metric introduced by Skowron et al. 

[34]. This metric measures information loss with the assumption that smaller equivalence 

classes preserve more data utility. Therefore, it penalizes every record by the size of 

equivalence class that it belongs to. If a tuple belongs to an equivalence class of size 

|𝐸𝐶|, then the penalty of this record is also of this size. The penalty of the equivalence 

class itself is |𝐸𝐶|2 and therefore the overall penalty of the entire data table is given by 

𝐷𝑀(𝑇′) = ∑ |𝐸𝐶𝑖|2

𝐸𝐶𝑖∈𝑇′

 

This metric tends to penalize subsequently 𝑘-anonymity and its variants when the 

published dataset contains large equivalence classes and does not capture the 

distribution of records in the quasi identifier space. 

4.4 Normalized Certainty Penalty 

Xu et al. [5] introduce Normalized Certainty Penalty (NCP); a general purpose data metric 

which seem to produce more accurate estimations of the loss of the published data utility. 
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Intuitively, NCP tries to capture the degree of generalization of each value, considering 

the ratio of the total items in the domain that are indistinguishable from it. In the case of 

a categorical attribute the NCP of an item 𝑣 of the hierarchy 𝐻 in the attribute 𝐴 is given 

by 

𝑁𝐶𝑃𝐴(𝑣) =
|𝑣′|

|𝐻|
 

where 𝑣′ is a node of the hierarchy 𝐻 where 𝑣 is generalized, |𝑣′| is the number of leaf 

descendants under node 𝑣′ and |𝐻| is the number of distinct values in the attribute. The 

weighted NCP for the entire data table 𝑇′ is the sum of the weighted normalized certainty 

penalty for all tuples:  

𝑁𝐶𝑃(𝑇′) = ∑ ∑(𝑤𝑖 ∙ 𝑁𝐶𝑃𝐴𝑖
(𝑡))

𝑛

𝑖=1
𝑡∈𝑇′

 

where 𝑤𝑖 is the weight of attribute 𝑖 denoted as 𝐴𝑖.  
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5. Anonymization Algorithms 

There have been proposed various anonymization algorithms in the literature producing 

anonymized datasets preserving one of the privacy guarantees presented in Section 3. 

As it is particularly difficult and meaningless to gather all anonymization algorithms 

available, in this section we try to briefly present the basic/most well-known algorithms 

and those which introduced innovations at the time proposed.  

5.1 Algorithms against Record Linkage Attack 

Algorithms of this category mainly include those that preserve 𝑘-anonymization and its 

variants. The solution search space is all possible data transformation operations that can 

lead to an anonymized dataset. The optimal solution is the one that, given a metric, 

minimizes information loss, increasing data utility of the published dataset. It has been 

proven that using generalization and suppression, it is NP-hard to achieve optimal 𝑘-

anonymity for multi-dimensional quasi-identifiers [36]. 

5.1.1 Binary Search 

Samarati in [8] proposes an optimal binary search algorithm that first enumerates all 

possible minimal generalizations and then choses the optimal one. This algorithm is one 

of the first efforts made, however it is rather expensive, especially for large datasets, to 

identify all possible minimal generalizations. 

5.1.2  Incognito 

LeFevre et al. [4] introduce Incognito; an optimal algorithm that produces 𝑘-anonymous 

full domain generalizations using the following two key properties:  

Rollup property: if 𝑣′ is a generalization of {𝑣1, 𝑣2 … 𝑣𝑛} then |𝑣′| = ∑ |𝑣𝑖|𝑛
𝑖=1 . This 

property enables bottom-up aggregation of the parent size of 𝑣′ from the part sizes of its 

children in the hierarchy. 

Subset property: if 𝑇 is 𝑘-anonymous with respect to 𝑄, then it is also 𝑘-anonymous with 

respect to any set of attributes 𝑃 such that 𝑃 ⊆ 𝑄. This property is essential for effectively 

pruning the search space and finding the optimal solution. 

Although Incognito is an effective optimal algorithm that outperforms Binary Search, its 

complexity increases exponentially with the number of quasi-identifiers. 
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Table 11: Algorithms against Record Linkage Attack 

Algorithm Privacy Guarantee Data Transformation 

Binary Search 𝑘-anonymity 
Full-domain generalization/ 

Suppression 

Incognito 𝑘-anonymity 
Full-domain generalization/ 

Suppression 

Flash 𝑘-anonymity 
Full-domain generalization/ 

Suppression 

Modrian 𝑘-anonymity Multi-dimensional generalization 

Top-Down 
Specialization 

𝑘-anonymity 
Sub-tree generalization/ 

Value suppression 

𝒓-Gather Clustering 𝑘-anonymity Clustering 

5.1.3 Flash 

Kohlmayer et al. [35] propose Flash, another optimal anonymization algorithm preserving 

𝑘-anonymity. The Flash algorithm constructs and traverses a full generalization lattice in 

a bottom-up breadth-first manner and constantly generates and checks paths in the lattice 

using binary-search-like vertical traversal strategy using predictive tagging to take 

advantage of the subset property introduced by Incognito.  

Experimental results show that Flash outperforms Incognito using real-world datasets but 

as an optimal algorithm, it also suffers from the curse of dimensionality. 

5.1.4 Modrian 

As the computational cost of the above algorithms increases exponentially, many other 

methods employ multi-dimensional local recording to achieve lower information loss. 

A representative algorithm of this category is Modrian [6], a greedy top-down 

specialization algorithm that partitions the space recursively across the dimension with 

the widest normalized range and supports a limited version of local recording. Employing 

a multi-dimensional generalization scheme increases the search space, but usually 

results in better data utility than single generalization schemes. 
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5.1.5 Top-Down Specialization 

This algorithm introduced by Fung [37], [38] employs a top-down lattice traversal scheme. 

It starts from the most general state in which every value is generalized in the root of its 

taxonomy tree. Then, it specializes from this state until no other specialization can be 

made without violating 𝑘-anonymity. The advantage of this approach is that it produces a 

𝑘-anonymous table in every specialization step, so if someone is satisfied with the result, 

he can terminate the algorithm at any stage. 

5.1.6 Clustering approaches 

Aggarwal et al. [39] introduce modeling the problem of finding generalizations as a 

clustering problem. They propose 𝑟-Gathering Clustering algorithm which approximates 

the optimal solution in a constant factor. Furthermore, Xu et al. [5], propose a number of 

agglomerative and recursive algorithms that aim to minimize information loss according 

to the 𝑁𝐶𝑃 metric presented in section 4.4. 

5.2 Algorithms against Attribute Linkage Attack 

In this section, we present algorithms that prevent attribute linkages on the anonymized 

data. They preserve privacy guarantees discussed in Section 3.2 and despite the fact that 

they are a different category and preserve other privacy guarantees, many of them are 

simple extensions of algorithms used for protection against record linkage attacks 

presented in the previous section. 

5.2.1 𝒍-diversity Incognito, 𝒕-closeness Incognito and eIncognito 

Machanavajjhala et al. along with introducing the 𝑙-diversity guarantee in [10], point out 

that generalizations help achieve 𝑙-diversity in exactly the same way as 𝑘-anonymity. 

Therefore, Incognito algorithm is modified to guarantee 𝑙-diversity and any other algorithm 

against record linkage that employs full-domain or sub-tree generalization can be 

extended in this direction.  

In exact the same way, Incognito was also extended to support 𝑡-closeness in [11] and 

(𝑎, 𝑘)-anonymity in [13] called eIncognito. 

5.2.2   𝒍+-Optimize 

In [40] Liu et al. present 𝑙+-Optimize; an algorithm to achieve optimal anonymization 

preserving 𝑙-diversity using sub-generalization. The algorithm computes all possible cuts 

in a cut enumeration tree each node of which is ranked according to a given infroamtion 
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Table 12: Algorithms against Attribute Linkage Attack 

Algorithm Privacy Guarantee Data Transformation 

𝒍-diversity Incognito 𝑙-diversity 
Full-domain generalization/ 

Suppression 

𝒕-closeness Incognito 𝑡-closeness 
Full-domain generalization/ 

Suppression 

eIncognito (𝑎, 𝑘)-anonymity 
Full-domain generalization/ 

Suppression 

𝒍+-Optimize 𝑙-diversity 
Sub-tree generalization\ 

Suppression 

Anatomy 𝑙-diversity Anatomization 

 

loss metric. The optimal solution is found by effectively pruning all sub-trees that have 

higher cost of the currently examined candidate node.  

5.2.3 Anatomy 

Most algorithms so far try to achieve privacy guarantees using generalization and 

suppression data transformations. This algorithm employs another approach; instead of 

generalizing values to make records indistinguishable inside an equivalence class, it 

disassociates quasi-identifiers from sensitive attributes and then publishes two separate 

tables with those. The advantage of this algorithm is that it does not modify original values 

while preserving exact the same privacy guarantee. 

5.3 Algorithms against Table Linkage Attack 

Keeping in mind that determining the presence (or absence) of an individual’s record in a 

published dataset can pose privacy threats (see Section 3.3), algorithms presented in this 

section aim at eliminating the possibility of such an inference in the anonymized data.   

5.3.1 SPALM 

Single-Dimension Presence Algorithm (SPALM) [14] is an optimal (given a certain 

precision metric) algorithm that achieves 𝛿-presence. It uses a full domain single- 
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Table 13: Algorithms against Table Linkage Attack 

Algorithm Privacy Guarantee Data Transformation 

SPALM 𝛿-presence Full-domain generalization 

MPALM 𝛿-presence Multi-dimensional generalization 

SFALM 𝑐-confident 𝛿-presence Full-domain generalization 

 

dimension generalization scheme and it exploits the anti-monotonicity property3 to prune 

effectively the entire search space in a top-down specialization manner.  

5.3.2 MPALM 

Multi-Dimensional Presence Algorithm (MPALM) [14] is a sub-optimal, multi-dimensional 

generalization algorithm that provides 𝛿-presence. It makes use of heuristics and 

experiments show that in most cases it results in lower information loss than SPALM due 

to its more flexible generalization scheme.   

5.3.3 SFALM 

SFALM [15] is a variation of SPALM algorithm modified accordingly to meet the 𝑐-

confident 𝛿-presence guarantee. It takes as input a confidence threshold 𝑐 and a public 

distribution instead of a public table. Due to several optimizations SFALM’s performance 

is comparable to SPALM.  

5.4 Algorithms against Probabilistic Attack 

The family of algorithms presented in this section are proposed to achieve the 

probabilistic privacy models presented in Section 3.4. As a general notion, these 

algorithms employ random perturbation techniques to prevent statistical disclosure in the 

anonymized dataset. 

 

 

                                            

3 Anti-monotonicity property: if a table 𝑇 is 𝛿-present, then a generalization table 𝑇′ of 𝑇 also satisfies 𝛿-

presence. 
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Table 14: Algorithms against Probabilistic Attack 

Algorithm Privacy Guarantee Data Transformation 

Cross-Training Round Sanitization (𝑐, 𝑡)-isolation 
Perturbation/ 

Additive Noise 

𝜺-Differential Privacy Additive Noise 𝜀-differential privacy 
Perturbation/ 

Additive Noise 

SuLQ Algorithm 𝜀-differential privacy 
Perturbation/ 

Additive Noise 

Probabilistic differential privacy 𝜀-differential privacy 

Perturbation/ 

Synthetic Data 
Generation 

𝜶𝜷 Algorithm (𝑑, 𝛾)-privacy 
Perturbation,  

Sampling 

5.4.1 Cross-Training Round Sanitization 

This algorithm combines recursive histogram sanitization and density-based perturbation 

to eliminate (𝑐, 𝑡)-isolations (Section 3.4.1) in the anonymized dataset.  

In recursive histogram sanitization, the original dataset is partitioned recursively into 

smaller regions until no region contains more than 2𝑡 data points. Density-based 

perturbation is a variant of perturbation via additive noise in which the magnitude of the 

noise added to a point depends on the local density of the database near a specific point.  

Cross-Training Round Sanitization [16] randomly divides the original dataset in two sets, 

A and B. A recursive histogram is constructed on B and points in A are imposed on 

density-based sanitization according to their positions in the histogram of B.  

5.4.2 𝜺-Differential Privacy Additive Noise 

𝜀-Differential Privacy Additive Noise [17] is a mechanism which adds noise with a scaled 

symmetric exponential distribution with variance 𝜎2  ≥  𝜀/𝛥𝑓 in each component, where 

𝛥𝑓 is the sensitivity of function 𝑓: 𝐷 → 𝑅𝑑 as described in Section 3.4.2 and 𝜀, the 

parameter of 𝜀-Differential Privacy.  

This distribution has independent coordinates, each of which is an exponentially 

distributed random variable. The implementation of this mechanism thus simply adds 

symmetric exponential noise to each coordinate of 𝑓(𝑋). 
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5.4.3 SuLQ Algorithm 

SuLQ algorithm (Sub-Linear Queries) [42], [43] adds noise to statistical queries’ response 

with the goal of retaining data utility while preserving privacy. In this algorithm, a query is 

a pair of {𝑟, 𝑞} where 𝑟 indicates a set of rows and 𝑞 denotes a function that maps attribute 

values to {0, 1}. The exact answer to query {𝑟, 𝑞} is the number of rows in the set 𝑞 for 

which 𝑞 evaluates to 1. For example, when function 𝑞 is a projection onto the jth attribute, 

the query is transformed targeting the subset of entries in the jth column vertically 

partitioning the database on this attribute. The answer is further perturbed adding noise 

according to parameter 𝜀. 

SuLQ has been proven to maintain a strong form of privacy by adding a small amount of 

noise, provided that the total number of queries is sub-linear to the number of database 

rows (hence the term Sub-Linear Queries - SuLQ). This assumption becomes reasonable 

as databases grow larger. 

5.4.4 Probabilistic differential privacy 

Machanavajjhala et al. [27] propose an algorithm using synthetic data generation to 

preserve privacy. The main idea is to build a statistical model from the actual data and 

then sample points from this model. These sampled points form the synthetic data which 

is then released instead of the original data.  

Privacy comes from the fact that noise is added from two sources: the bias that comes 

from the creation of the model and the noise due to the random sampling from the model. 

The intuition behind such statistical modeling is that inferences made on the synthetic 

data should be similar to inferences that would have been made on the real data. 

5.4.5 𝜶𝜷 Algorithm 

This algorithm proposed in [26] uses perturbation and sampling to achieve (𝑑, 𝛾)-privacy. 

It takes as input a database 𝐼 and publishes a view 𝑉. The database 𝐼 has 𝑛 attributes 

𝐴1,𝐴2, … , 𝐴𝑛 and each one takes values from a finite domain 𝐷𝑖. The domain of all tuples 

with these attributes is denoted as 𝐷 = 𝐷1 × 𝐷2 × … × 𝐷𝑛. 

𝛼𝛽 Algorithm has two steps: in the first one called 𝛼-step, a subset of the tuples in 𝐼 is 

inserted in 𝑉, each one with independent probability 𝛼 + 𝛽. The second step (𝛽-step), 

generates some counterfeit records from the domain 𝐷 and adds them to 𝑉 with 

probability 𝛽. The main drawback of this algorithm is that by inserting counterfeit records, 

the published view lacks the truthfulness of the original dataset in record level.  
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5.5 Transactional data 

In this section, we briefly discuss algorithms aiming at anonymizing transactional 

datasets. They preserve privacy guarantees presented in Section 3.5. 

5.5.1 Direct Anonymization 

Terrovitis et al. [29] apart from proposing an optimal but not scalable algorithm preserving 

𝑘𝑚-anonymity, also present two heuristic algorithms that find a nearly optimal solution in 

most cases.  

Both these algorithms construct a trie-like tree (count tree) to count the support of all 

possible combinations of up to 𝑚. Direct Anonymization (DA) is based on the pre-

computation of the complete count tree and then it scans the tree to determine possible 

privacy breaches and then check for generalized combinations to find a solution that 

solves each one. The disadvantage of DA is that it has significant memory requirements 

and computational cost as it constructs and scans the whole count tree. 

5.5.2 Apriori 

Apriori is the second heuristic algorithm presented in [29] and is based on the following 

principle: if an itemset 𝑆 causes a privacy breach, then every superset of 𝑆 also causes a 

privacy breach. 

This algorithm exploits this principle to make the required generalizations progressively. 

It first examines privacy breaches that may arise if an adversary knows 1 item from each 

itemset, then 2 until it examines privacy threats from an adversary that knows 𝑚 items. 

In this way, Apriori uses generalizations made in step 𝑖 to reduce the search space of 

step 𝑖 + 1.  

Table 15: Algorithms for anonymizing transactional data 

Algorithm Privacy Guarantee Data Transformation 

Direct Anonymization 𝑘𝑚-anonymity Generalization 

Apriori 𝑘𝑚-anonymity Generalization 

SuppressControl 𝜌-uncertainty Suppression 

TDControl 𝜌-uncertainty Generalization/ Suppression 

Suppression (ℎ, 𝑘, 𝑝)-coherence Suppression 
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5.5.3 TDControl and SuppressControl 

TDControl [30] is top-down algorithm combining global generalization with suppression. 

It constructs a particularization tree (generalizations from bottom-up view), in a greedy 

manner, aiming to achieve the highest information gain possible in each move. It 

terminates when any possible particularization move would violate 𝜌-uncertainty and the 

suppressions required to safeguard it would cause more information loss than the 

particularization would offer. 

TDControl offers more data utility than SuppressControl, an algorithm proposed also in 

[30] that implements a trivial solution; it suppresses sensitive items until it finds a table 

that satisfies 𝜌-unceratinty.  

5.5.4 Suppression 

Xu et al. [31] along with the definition of (ℎ, 𝑘, 𝑝)-coherence provide Suppression; a new 

algorithm for preserving this notion. Let 𝑀𝑀(𝑒) denote the number of minimal moles4 

containing the public item 𝑒. By suppressing the item 𝑒, 𝑀𝑀(𝑒) minimal moles are 

eliminated at the cost of Information Loss5 𝐼𝐿(𝑒). To eliminate all minimal moles and 

minimize Information Loss, this algorithm constructs a mole tree and suppresses the 

public item 𝑒 that maximizes 𝑀𝑀(𝑒) / 𝐼𝐿(𝑒). When no moles are left, we are sure that the 

anonymized dataset satisfies (ℎ, 𝑘, 𝑝)-coherence.  

 

 

 

 

 

 

                                            

4 A mole is a piece of prior knowledge that could be used to link a target individual to a transaction. A mole 

is minimal if every subset is a non-mole. 

5 Information Loss for an item 𝑒, denoted as 𝐼𝐿(𝑒), is the count of occurrences of item e that are suppressed. 
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6. Speedy: a multithreaded algorithm preserving 𝒌-anonymity 

As we have seen in the previous section, there are numerous anonymization algorithms 

each one preserving a different privacy guarantee. Most of them employ complicated 

techniques to reduce the search space and reach an optimal or nearly optimal solution in 

reasonable time. However, as the dataset’s size increases, so does the execution time of 

the algorithm sometimes reaching unacceptable limits.  

Until now, anonymization algorithms do not make full use of modern CPUs capable of 

handling multiple threads at the same time. In this section, we introduce Speedy; a novel 

multi-threaded algorithm preserving 𝑘-anonymity that exploits the capabilities of multi-

core CPUs to speed up the anonymization process of large real-time datasets. 

6.1 Previous Algorithms 

In this section, we review two major previous single-threaded algorithms that preserve 𝑘-

anonymity. Incognito implements a horizontal traversal strategy while Flash traverses the 

anonymization lattice in a bottom-up breadth-first manner, generating and evaluating 

paths-branches in each step. We will demonstrate a typical example of each one using 

the dataset of Table 16 and generalization hierarchies of Figure 4. 

 

Table 16: Example dataset 

Quasi-Identifiers Sensitive 

Birthplace Birthyear Zipcode Disease 

Argentina 1975 4370 HIV 

Colombia 1972 4378 HIV 

Argentina 1962 4379 Fever 

France 1955 4352 Cancer 

England 1986 4350 Flu 

Italy 1972 4397 HIV 

England 1984 4398 Fever 

Italy 1973 4398 Flu 

France 1987 4393 Fever 
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Figure 4: Generalization Hierarchies 

6.1.1 Incognito 

LeFevre et al. [4] proposed Incognito, an optimal algorithm implementing a dynamic 

programming approach. Incognito is based on the idea that if the dataset is not 𝑘-

anonymous when transformed according to a subset of the quasi-identifiers, then the 

transformation with respect to all quasi-identifiers cannot be 𝑘-anonymous either. 

Therefore, it constructs generalization lattices for all subsets of up to 𝑛 quasi-identifiers 

and traverses them by performing a bottom-up, breadth first search. 

The transformations that are not solutions for a subset of size 𝑚 < 𝑛 of quasi-identifiers 

cannot be a solution for a subset of 𝑚 + 1. This property allows the implementation of 

predictive tagging transformations of generalization lattices that are traversed in 

subsequent iterations. The algorithm terminates when the generalization lattice of all 𝑛 

quasi-identifiers has been processed.  

We will now discuss an example of Incognito in order to anonymize the dataset of Table 

16 with the generalization hierarchies of Figure 4. The algorithm starts by generating 

generalization lattices for subsets of quasi-identifiers with size one. 

As we can see in Figure 5, the algorithm starts by traversing the lattice corresponding to 

quasi-identifier “Birthplace” in a bottom-up manner. It first checks if the column is 2-

anonymous when applying transformation [0]. This means that values in this column are 

generalized to level 0 of the respective hierarchy. Because level 0 representes original 

values, they are not generalized at all and then the column is checked for 2-anonymity by 

enumerating all occurences of each value. In order to tag the node as anonymous, every 

value should appear at least 2 times or zero according to the definiton of 𝑘-anonymity.  
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Figure 5: Incognito’s generalization lattices for 𝒎 = 𝟏 and 𝒎 = 𝟐 

This is not true so the algorithm continues with the next node [1]. It then repeats the same 

process, generalizing every value of column “Birthplace” to level 1 of the hierarchy and 

checking for 2-anonymity. This time, the transformation [1] leads to a possible solution 

and by applying predicitve tagging, node [2] is also tagged as a possible solution. The 

same procedure is applied to the other quasi-identifiers “Birthyear” and “Zipcode”.  

After checking all subsets of size one, Incognito proceeds with subsets of size two. In this 

step, it is possible to tag all transformations that contain at least one transformation that 

was non-anonymous in the previous iteration. For example, in the lattice corresponding 

to Birthplace and Zipcode, all transformations which define level 0 to Birthplace or level 0 

to Zipcode are excluded from the set of possible solutions. Therefore, the first 

transformation that Incogntio checks by traversing this lattice is [1,1] which is found not 

to be 2-anonymous so it procceeds with nodes in the next level. 

The algorithm terminates when checking the generalization lattice of all 3 quasi-identifiers 

shown in Figure 6. Numerous transformation nodes have been excluded from previous 

iterations so Incognito needs to check only three nodes to find the set of all possible 2-

anonymous generalizations. 
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Figure 6: Incognito’s generalization lattice for 𝒎 = 𝟑 

6.1.2 Flash 

Flash is an algorithm proposed by Kohlmayer et al. in [35] and has borrowed its basic 

characteristics from Incognito. This algorithm constructs one single generalization lattice 

for all the quasi-identifiers and does not bother with subsets of quasi-identifiers as 

Incognito. The main difference between the two is that Flash implements a more fine-

grained traversal strategy than Incognito. It iterates over all levels in the lattice starting 

from level 0.  

For every node in each level, if the node is not already tagged, it builds a path towards 

the top node, implementing a greedy depth-first strategy. The construction of a path is 

based on a vertical traversal strategy aiming at choosing nodes with lower degree of 

generalization. This strategy chooses the next transformation node of the path according 

to three fixed criteria: (a) the total generalization level of the node in the lattice, (b) the 

average generalization of all quasi-identifiers of the node and (c) the average of the 

number of distinct values on the current level of each quasi-identifier. The search is 

terminated when the top node is reached or when the current node does not have a 

successor that is not already tagged.  
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Figure 7: First iteration of Flash algorithm 

When a path is built, a binary search is implemented which starts checking for 𝑘-

anonymity at the node that is positioned in the middle of the current path. Whenever a 

node is checked, predictive tagging is applied within the whole generalization lattice. 

Depending on the result of the check, the algorithm proceeds with the lower or upper half 

of the path. The algorithm continues until all nodes in the generalization lattice are 

checked for anonymity. 

For example, Figure 7 shows the first iteration of the Flash algorithm. A path is 

constructed from root node [0,0,0] to reach top node [2,2,3]. This path contains nodes 

linked with red arrows in the figure. Then, Flash checks for 2-anonymity node [1,0,3] 

which is the mid-node of the path. As this node is not 2-anonymous, all predecessors of 

this node are also tagged non-anonymous and the algorithm continues by examining the 

upper half path containing nodes [1,0,3], [2,0,3], [2,1,3] and [2,2,3]. Again mid-node 

[2,1,3] is checked which is 2-anonymous so successor [2,1,3] is also tagged as 

anonymous and predecessor [2,0,3] is checked for anonymity, which does not hold. 

Finally, all nodes of the path have been checked and then the algorithm proceeds with 

the same process for the nodes of level 1. Two of them have been tagged from the 

previous stage so only node [0,1,0] is a candidate, from which Flash will construct a new 
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path towards the top node and traverse it in the same way. This process continues until 

all nodes of the lattice are checked.  

6.2 Speedy Algorithm 

The traversal strategy employed by Flash gives a clear advantage over Incognito’s 

breadth-first traversal. In our algorithm, we adopt this strategy and we introduce 

parallelization in the process of checking transformation nodes for anonymity. 

The check of whether an individual transformation node is 𝑘-anonymous or not can be a 

time-consuming task. To check this condition, the algorithm has to generalize each quasi-

identifier to the level specified by the transformation and then enumerate rows with the 

same quasi-identifier values so as to determine 𝑘-anonymity.  

To speedup this process, Speedy creates 𝑛 threads and splits the initial table 𝑇 to 𝑛 sub-

tables 𝑇1
∗, 𝑇2

∗ … 𝑇𝑛
∗  with size equal to 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑇)/𝑛. Then each 𝑡ℎ𝑟𝑒𝑎𝑑𝑖 separately 

performs the generalization process of the sub-table 𝑇𝑖
∗ and returns to the main thread a 

map including distinct combinations of generalized quasi-identifiers found in this sub-table 

and their respective number of occurrences.  

Finally, to determine if the current transformation is 𝑘-anonymous, the main thread simply 

merges the results and checks if every combination of quasi-identifier values is present 

more than 𝑘 times.  

6.3 Optimizations 

In this section, we discuss some further optimizations implemented in all algorithms to 

exploit similarities between the transformation nodes that are checked consequently. 

6.3.1 Projection 

This optimization is based on the idea that we have to transform only part of the data that 

actually change. A projection can be applied we have to check two consecutive 

transformation nodes that have the same level of generalization for some quasi-

identifiers. In this case, the same columns do not need to be transformed again. 

6.3.2 Roll-up 

When the algorithm moves from a transformation 𝑠1 to transformation 𝑠2 which is a 

generalization of 𝑠1, equivalence classes can be formed from the classes of 𝑠1. A roll-up, 

transforms and groups only distinct rows found from a previous check, and adds their 
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corresponding counter to build current equivalence classes and their respective number 

of occurrences. In this way, the algorithm does not need to generalize in each check every 

single row of the dataset to determine anonymity.  

6.3.3 History buffer of snapshots 

To properly utilize the roll-up optimization on transitions that are not on consecutive 

nodes, we have to maintain a history buffer containing snapshots of the equivalence 

classes formed when checking transformation nodes for anonymity. Then equivalence 

classes of a transformation node 𝑛′ can be built by merging the classes from a specialized 

node 𝑛 that a snapshot exists, exactly as in the roll-up optimization. The history buffer 

employs the LRU policy and stores no more than a predefined number of snapshots. 

6.4 Evaluation 

For the evaluation of the implemented algorithms, we use five real-world datasets which 

have been utilized for benchmarking previous works on 𝑘-anonymity. 

6.4.1 Datasets 

The datasets include the 1994 US census database (ADULT), KDD Cup 1998 data 

(CUP), NHTSA crash statistics (FARS), the American Time User Survey (ATUS) and the 

Integrated Health Interview Series (IHIS). The ADULT dataset is the de-facto standard 

for the evaluation of 𝑘-anonymity algortihms. Table 17 show statistics of all datasets. They 

cover a wide spectrum, ranging from 30k to 1.2M rows consisting of 8 and 9 Quasi-

Identifiers. The associated generalization hierarchies have a height between 2 and 6 

levels. 

 

Table 17: Datasets used for Evaluation 

Dataset QIs Records Size(MB) 

ADULT 9 30,162 2.52 

CUP 8 63,441 7.11 

FARS 9 100,937 7.19 

ATUS 9 539,253 84.03 

IHIS 9 1,193,504 107.56 
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6.4.2 Implementation Details and Setup 

Our multi-threaded algorithm as well as Incognito and Flash were implemented in Java. 

Dataset is represented as a two-dimensional array of integers and every non-numeric 

attribute has its own dictionary to map values to integers. A hierarchy is implemented as 

a java map with key the parent node and value an array of the successor nodes. 

The benchmarks were performed on a server machine with a 6-core i7-4930k processor 

and 64GB of memory running a 64-bit Linux 3.2.0 kernel. Algorithms were executed on a 

64-bit Oracle JVM (1.8.0).  

We anonymized every dataset with 2 ≤ 𝑘 ≤ 10 and 1 ≤ |𝑄𝐼𝑠| ≤ 6 which results in 54 runs 

per dataset for each single-core algorithm: Incognito and Flash. Our multi-threaded 

algorithm was further tested with the number of threads varying in the range 1 < 𝑛 ≤ 6, 

which results in 5 ∗ 54 = 270 runs per dataset. This configuration was executed for every 

dataset so 324 ∗ 5 = 1620 executions were made in total. Executions were made 

interchangeably among the algorithms and in each one, the dataset and hierarchies were 

loaded from scratch to eliminate the impact of the CPU cache on the acceleration of the 

anonymization process.   

The results are reported without the time needed for initialization, which includes loading 

the original dataset and the respective hierarchies from the disk. Therefore, the execution 

time of all three algorithms is the time needed for the core anonymization process. 

 

 

Figure 8: Average execution times for Incognito and Flash 
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Figure 9: Average execution times for Flash and Speedy 

6.4.3 Experimental Results 

Figure 8 shows the average execution times for Incognito and Flash for all runs with the 

number of quasi-identifiers in the range 1 ≤ |𝑄𝐼𝑠| ≤ 6. We can see that Flash clearly 

outperforms Incognito due to its traversal strategy which exploits the roll-up optimization. 

In Figure 9 we can see the respective execution times between Flash and Speed. Speedy 

was timed using varying numbers of threads and it is clear that it benefits from the parallel 

transformation node checking. This benefit is more obvious in Figure 10 which shows the 

execution times in milliseconds of Speedy for various numbers of threads. Note that more 

threads (bounded by the number of CPU cores) tend to result in faster execution times 

especially for larger datasets. 

 

 

Figure 10: Speedy execution times for IHIS dataset with |𝑸𝑰𝒔| = 𝟒 and 𝒌 = 𝟏𝟎 
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Table 18: Speedup factor of execution times 

 IHIS ATUS FARS CUP ADULT 

2 threads 1.938213 1.913364 1.915552 1.728208 1.920339 

3 threads 2.949185 2.842338 2.808302 2.387479 2.807074 

4 threads 3.858426 3.551246 3.593112 2.791893 3.672545 

5 threads 4.793702 4.365942 4.13946 3.067263 3.70904 

6 threads 5.512814 5.012325 4.432252 3.250669 3.790642 

 

The power of multi-core modern CPUs is fully exploited in larger datasets where multiple 

threads can check the dataset for anonymity in parallel much faster than the single-core 

Flash algorithm. The ideal number of threads is observed to be equal to the number of 

CPU cores. As depicted in Table 18 larger datasets used in the experiments (IHIS and 

ATUS) achieve nearly optimal speedup factors for all thread configurations. 

Last but not least, as it is known from [28] the computational complexity of 𝑘-anonymity 

increases exponentially with the number of quasi-identifiers. Our algorithm cannot be an 

exception and clearly suffers from the curse of dimensionality as shown in Figure 11.  

 

 

Figure 11: Speedy execution times with |𝒕𝒉𝒓𝒆𝒂𝒅𝒔| = 𝟔 and 𝒌 = 𝟓 
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7. Conclusions and Future Work 

In this thesis, we discussed possible privacy linkages and most recent privacy guarantees 

and algorithms which prevent them. Our survey focused on privacy primarily for relational 

and transactional databases. We believe that there are still challenging problems in the 

research area of Privacy-Preserving Data Publishing, particularly in  the anonymization 

of semi-structured data. None of the existing privacy guarantees can be directly applied 

for anonymizing semi-structured data so new opportunities rise for novel privacy models 

and algorithms.  

We also presented a new multi-threaded anonymization algorithm preserving 𝑘-

anonymity which is scalable to the number of CPU cores and achieves much better time 

performance than the two most reputable algorithms of this category: Incognito and Flash. 

A disk-based version of this algorithm could be a useful extension as it will be able to 

handle enormous datasets without compromising execution time compared to single-

threaded algorithms.  
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ACRONYMS 

CM Classification Metric 

DM Discernibility Metric 

FG Full-domain generalization 

IL ILoss 

MG Multi-dimensional generalization 

MPALM Multi-Dimensional Presence Algorithm 

NCP Normalized Certainty Penalty 

P Perturbation 

SPALM Single-Dimension Presence Algorithm 

SuLQ Algorithm Sub-Linear Queries Algorithm 
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