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ABSTRACT

One of the open problems in the field of bioinformatics, is the automatic gene prediction
(nucleotide sequence that encodes proteins). More specifically, researchers are trying to
predict those positions that correspond to the beginning and the end of genes within a
genome. These positions are known as splice sites. Several machine learning
techniques have been used for the specific problem. Nevertheless, the acquisition of
annotated data, necessary to implement supervised learning techniques, is a significant
challenge, as the cost is very large. One of the approaches for addressing this problem is
the transferring of knowledge (transfer learning approach). The aim of this work is the
study of the representation of genes in order to take into account the sequence of
nucleotides within a genome and the role of this representation in transfer learning
methods.

SUBJECT AREA: Splice Site Prediction, Computational Biology
KEYWORDS: transfer learning, splice site, machine learning, n-gram graphs



NEPIAHWH

‘Eva amd 1a avoixtd 1mpofAnuata TG BIOTTANPOQYOPIKAG, €ival n autopatn TTPORAswn
yovidiwv (aAAnAouxia VOUKAEOTISIWV TTOU KwOIKOTTOIE TTPWTEIVEG). Mo OUYKEKpPIPEVA, Ol
gpeEUVNTEG TTPOOTTAB0UV va TTPoBAEWOUV TIG BETEIG TTOU AVTIOTOIXOUV OTNV apxn Kal 1o
TEAOG TwV yovidiwv oe éva yovidiwua. O1 B€0eI¢ auTéG eival YyVWOTEGC WG OnRuarta
patiopatog  (splice  sites).  AIG@Qopeg  TEXVIKEG TNG  MNXAVIKAG MABNoNg €xouv
XPNoIJoTroiNGei yia TO OUuyKekpIgéEvo TTPORANUa. lMapdAa autd, n amokTnon Twv
EMOoNUEIWPEVWY OEQOUEVWV TTOU  €ival avaykaia yia va €QAPPOCTOUV Ol TEXVIKEG
EMPRAETOMEVNG HAOBNONG, ATTOTEAE PIa onPAvTIK TTPOKANON, KABWG TO KOOTOG €ival TTOAU
MeydAo. Mia atrd TIG TTPOOEYYIOEIG VIO TNV AVTIUETWTTION AQUTOU TOU TTPORAANATOC €ival
METa®opAG puadnong (transfer learning). Z10xX0¢ TNG TTAPOUCAG £pyaciag gival N JEAETN TNG
avatrapdoTaong Twv yovidiwyv, woTte va AauBdavetar uttowiv N aAAnAouxia Twv
VOUKAeOTIOiwV O¢€ €va yovidiwua, Kal 0 pOAOG TNG avatTapdoTacng aQuTthg o€ PeBOdoug
METAPOPAG NABNoNG.

OEMATIKH MNMEPIOXH: MNpdépRAswn Ofocwv Martioparog, YTroAoyioTikry BioAoyia

AEZEIZ KAEIAIA: petagopd pdbnong, BEo€IC patiopaTog, PNXavikn gaénon, ypdeol v-
YPANUATWYV
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EYXAPIZTIEZ

ApxIKd, Ba NBeAa va euxapioTHow Tov KaBnynTh Jou K. ZTaupo MepavTwvr, TTou OEXTNKE
va OUVEPYOOTOUME yia Tn OIEKTTEPAiWON TNG BITTAWMATIKAG Pou epyaciag. ETtriong, Ba
NBeAa va euxapioTAow Tov UTTeEUBUVO pou K. Newpyio MaAioupa kal TNV €TIBAETTOUCA KA.
AvaoTacia KpiBapd, yia Tnv €TTOIKOOOPNTIKA OUVEPYOOia TIOU Eeixape o€ eTmiTredo
OITTAWMATIKAG OAAG Kal yia TOV XPOVO TTOU Pou agiépwaoav Kab' OAn tn OIGpKEIa TNG

OUYYPaPNG.
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PROLOGUE

As part of the preparation of the master thesis of the postgraduate program “Information
Technologies in Medicine and Biology”, with direction the Bioinformatics field, in
collaboration with the National Research Center of Natural Sciences "Demokritos”, an

attempt was made to develop techniques to predict splice sites using the transfer
learning.



Splice Site Prediction Using Transfer Learning

1. INTRODUCTION

The field of Computational Biology and biomedical research offer a variety of
applications in big data analysis, where the role of machine learning is more than
necessary by allowing the modeling of basic mechanisms [3]. Despite the huge success
of Data Mining technologies and those of Machine Learning in the fields of
classification, regression and clustering, many methods achieve good results under the
assumption that the training and test data are issued on the same space and with the
same distribution [6].

Making a brief historical overview, one can see that already since 1980 computational
biotechnology has contributed in locating exons i.e. gene-coding regions. Many
machine learning techniques and approaches have been used in order to find and
predict donor and acceptor splice sites as well as the protein's secondary structure [15].

The procedure of splice site prediction is fundamental in the field of gene-finding. More
specifically, splice sites are locations on DNA at the boundaries of exons and introns.
The more accurately a splice site can be located, the more reliable it becomes to locate
the genes on DNA, thus, accurate splice site detectors are significant components of
state-of-the art gene finders [16].

Modeling and using biological mechanisms, such as the splice site mechanism, means
simultaneously the use of complex models, requiring an equivalent suitable sized
training set, which is often not available especially in the biomedical domain due to time
and expense [13]. Another issue is the appropriate use of decoys (negative training
examples), which can definitely change the detectors performance [4].

Transfer Learning, allows the domains, tasks, and distributions used in training and test
data to differ by applying knowledge learned previously. In this way, the transfer
learning approach represents a preferred method in cases where data from the same
organism and even between different species are limited and no annotated data can be
obtained.

In this work, we focus on the problem of splice sites recognition. By now it is fairly well
understood and there exist experimentally confirmed labels for a broad range of
organisms [13]. Since the content of the protein plays an important role in relation to the
splicing prediction, it is a critical task for the identification of genes and their functionality
[2]. It is worth noting that different kinds of features are required to get high accuracy
and precision in splice site prediction [17].

In order to overcome the lack of training data (annotated data) and avoid overfitting, we
apply a transfer learning approach to transfer knowledge from sequences of specific
species, namely Homo Sapiens, Rerio, Melanogaster, Elegans and Thaliana, in which
splice sites are known. Features are being extracted with the help of the n-gram graph
representation and various classification methods are used.

The main contributions of this work are:

» The use of N-gram graphs representation: by representing each DNA sequence
as an n-gram graph, we can use the N-gram graphs similarity in order to obtain
the first two features of the proposed approach.

» The use biological information: There are a few motifs of great importance in
order to discover with high possibility a splice site. Thus, using such biological
information combined with the above features can help us achieve higher
prediction accuracy.

S. Kazantzidis 14



Splice Site Prediction Using Transfer Learning

» Combining the two features categories above, we managed to achieve high
performance quickly and with low computational cost, as the proposed features
space is small, current approaches use a large number of features (thousands),
and as a result, they need too much time to produce results. For instance, our
largest dataset (40.000 instances) required less than a day in order to produce
results.

» Two transfer learning approaches were proposed, which are based on similarity
functions. The main idea is to find the most similar instances between training
and test datasets.

» A target data transformation approach: We transformed the initial target data with
the help of the mean values of the similar data. The distributions of each feature
of the target domain approximated those of the source domain.

» The Multiple source domain approach: We considered the case in which the
source domain has more than one species and in both approaches, and we
incorporated information from the phylogenetic analysis between species.

S. Kazantzidis 15
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2. BACKGROUND

2.1 Splice Sites

The exact identification of genes in eukaryotic genomes depends largely on the ability to
accurately determine the splicing sites which are segments of DNA that separate the
exons and introns within a gene. Apart from determining the structure of the gene,
splice sites also determine the amino acid composition of the proteins encoded by the
genes.

The procedure of splice site prediction is fundamental in the field of gene-finding if one
considers that the transcription of an eukaryotic DNA sequence into messenger RNA
occurs only after enzymes splice away noncoding regions (introns) and leave only
coding regions (exons) [17].

— €XON — intron 1 8X0N [ intron 1€X0N - intron - €X0N [ intron T— &xon

DNA

ATG GT AG GT WG GT AG GT AG  TAGTAA
TGA

transcription

AUG GU AG GU AG GU AG GU AG

pre-mRNA  cap [ I [ vobA

UAG,UAA
post-processing & UGA
splicing

mRNA <2p [ N oA
AUG UAG,UAA
tramslation
UGA
- " —
protein

Image 2.1: Basic steps of protein synthesis [1].

As shown in the figure above, the basic steps of protein synthesis are:

1. Transcription
2. Post-processing
3. Translation

In biology, transcription is the first stage of gene expression and describes the process
by which an RNA molecule is created using a DNA strand as a template. The term
transcription is used because the genetic information in the language of DNA, is
transcribed in the language of RNA, by using uracil base instead of thymine.

Pre-mRNA is being transformed into mMRNA. More precisely, in an eukaryotic gene, the
sequence of mMRNA consists of non-coding regions, known as introns. Genes start with
an exon and may then be interrupted by an intron. This order continues alternately until
it ends in an exon. In order to obtain mature mMRNA the process of splicing is required,
in which introns are removed. In this way, two different splice sites arise: the exon-intron
boundary, known as the donor site or 5 site (of the intron) and the intron-exon

S. Kazantzidis 16



Splice Site Prediction Using Transfer Learning

boundary, that is the acceptor or 3’ site. The genome has many consensus sequences.
Thus, by choosing a window close to the splice site and taking k-mers® one can get the
most frequently occurring nucleotide. Having aligned all the sequences, one can notice
which nucleotide is appearing more frequently in each position.

As already mentioned, two types of splice sites must be identified: the donor and the
acceptor. The donor’s splice site indicates where an exon ends and where an intron
starts, while the acceptor’s splice site indicates the ending of an intron and an exon
starting. Almost most of donor sites are a GT dimer and most acceptor sites are an AG
dimer. The fact that these dimers are not necessarily splice sites, complicates their
detection [2].

Dimers often occur at non splice site positions. In human DNA, GT dimers can be found
about 400 million times overall in both strands. For this reason, the discrimination
between true donor sites and decoy positions has to be faced [4]. As one can note,
splice site prediction is a difficult problem. The AG and GT dimers cannot be used as
features due to their frequent appearance in non splice site sequences. Even the use of
positional probabilities was rather a fairly poor approach [17].

pre-mRNA

5" UTR Exon Intron Exon Intro Exon 3" UTR

mRNA

Splice Branch Splice
donor site site acceptor site

|
meupumu CUPuAPy  Pyrich NCAG

«—— 20-50 bases —

Intron

Image 2.2: Splice Site Positions.

There are cases in which splicing occurrences introduce premature termination codons
triggering transcript degradation. From the disease-causing nucleotide substitutions that
are listed in the Human Gene Mutation Database, a 14% is being thought to cause pre-
MRNA splicing disruption, while only 2% of missense mutations disrupt pre-mRNA
splicing [8]. Such sequences that disrupt the splicing procedure do not only cause
disease but also influence its severity. Identifying mutations that disrupt pre-mRNA
splicing becomes gradually an important field in the therapeutic treatment [8].

! In computational genomics, k-mers are all the possible subsequences of length k from a read obtained

through DNA Sequencing. K-mers are often used in sequence alignments [30].

S. Kazantzidis 17
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2.1.1 Splice Site Motifs

Significant scientific work proves that there are a few motifs of great importance in order
to discover with high possibility a splice site. Thus, using such biological information has
a result to achieve higher prediction accuracy.

Below, are some of the motifs listed [5]:

>

>

Most introns start from the sequence GT. This dimer is a motif for most donor
sites and the general motif is “mrgGTrag”.

Most introns end with the sequence AG. This dimer is a motif for most
acceptor sites and the general motif is “yAGr”.

The branch site is a motif within introns and has the consensus sequence
“ynyyrAy” where the position of “A” nucleotide is fully conserved. This motif is
being detected 20-50 nucleotides before the acceptor dimer AG.

The last motif Py (rich-Pyrimidine) is being detected between branch site and
acceptor dimer AG. This part of the sequence has high possibility of Cytosine
and Thymine appearances.

Donor Branch Site Acceptor

ragGTragt =Sy (C/TIN(CIT)(CT)(A/GIAGIT) ==X yyyyyyyyyyynyAGH

exon =110-10000 bases = = =120-50 bases = *

Image 2.3: Pyrimidine-CT, Purine-AG residues, Py-Pyrimidine rich motifs [18].

2.2 Phylogenetic Analysis

Nowadays, Bioinformatics and Computational Biology develop new methods in order to
understand various biological processes [9]. One of these studies involve the
exploration of evolutionary relationships between living organisms using phylogenetic

analysis.

Phylogenetic analysis is a method that allows the reporting and evaluation of
evolutionary relationships [19].

S. Kazantzidis

Parts of a phylogenetic tree

node

node

I ,//' Clade
speciesE

- N

branch

Image 2.4: Phylogenetic tree example [20].
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Splice Site Prediction Using Transfer Learning

The evolutionary process resulting from the information of phylogenetic analysis
typically is displayed by branches and tree diagrams. A simple phylogenetic analysis
consists of four stages [19]:

» Alignment - Creation of a data model and exporting phylogenetic dataset.
» Replacement Model Determination - Substitution Model

» Tree Construction

» Tree Evaluation

Each step is crucial for the analysis and should be treated accordingly. For example,
trees depend on the alignment they are based on. Therefore, the better the alignment
has been made the better the results for the construction of the tree are. When
performing a phylogenetic analysis it is enlightening to construct trees based on
different modifications of the alignment to see how the proposed alignment affects the
resulting tree. Phylogenetic sequence data usually consists of multiple sequence
alignments [19]. In the following image the multiple sequence alignment procedure is
being presented in the upper part, where three or more biological sequences (protein or
nucleic acid) of similar length are being aligned. From the output, homology can be
inferred and the evolutionary relationships between the sequences studied [31]. The
phylogenetic tree that is being produced is shown below.

Species &4 ACCAGCCTGTGCATCGATGACGACTAAGTGATACCATAAAGACT
Species B ACCAGCCTGTGCATCGCATGACGACTAAGTGATACCATAAAGACT
Species C ACGAGCATCTGCATCGATGCCGACTAAGTCGATACCATAATGACT
Species D ACGAGCATGTGUATCGATGCCGACTAAGTGATACCATAATGACT
Species E ACCAGCATCTGCTATCGCATGCCGACTAACGTCATACCARAATGACT
Species F  ACCAGCATCTCTATCGATGCCGACTAACGTGATACCAALMATGACT
Species 6 ACCAGCATGTGTATCGATGCCGACTAACGTGCTACCATAATGACT
Species H ACCAGCATCTGTATCGATGCCCACTAAGTGCTACCATAATCACT

1 I —— Species C

Species D

6 — Species E

3 l b Species F

5 — Gpecies G

- Species H

2' 4I 7' —  Species A

——  Species B

Image 2.5: Phylogenetic Analysis [21].

The use of conserved regions for phylogenetic analysis is also an important issue that
one has to consider since incorrect phylogeny can arise due to historically insignificant
signals (Axelsen and Palmgren, 1998, Naylor and Brown, 1998) [14].

A typical rule wants closely related organisms to have more common biochemical
processes. The difficulty of carrying out biochemical experiments, differentiates from
organism to organism, resulting an easier or harder analysis respectively. Biological
research aims to understand more such biological complexity. This knowledge can be
transferred in turn to other organisms by verifying or refining models.
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3. MACHINE LEARNING TECHNIQUES

3.1 Classification Algorithms

In this work, we focused on using different machine learning techniques in order to deal
with the splice sites prediction problem. More specifically we used the N-gram graphs
representation combined with the biological information of features in order to train a
classifier and predict splice sites. At this point two algorithms are being proposed,
namely the “Similarity of source and target data algorithm” and the “Target Data
Transformation algorithm” concerning the data optimization aiming the classifiers’ better
adaptation. Furthermore the CRF probabilistic model has been used in combination with
specific patterns and nucleotide motifs. In this way CRF establishes splice site
recognition as well.

3.2 Transfer Learning

The field of Machine Learning is a promising field of computer science giving the
opportunity to study and construct algorithms with the ability of “learning” and even
“predicting” data.

While traditional methods use statistical model strained with previously labeled or
unlabeled data assuming the same distribution, the method of Transfer Learning allows
diversity in both distributions and domains. It is now possible to use prior knowledge for
faster and optimized problem solving [6].

In case of few labeled data semi-supervised classification addresses this issue by
using a large amount of unlabeled data and a small amount of labeled data. A variety of
supervised and semi-supervised cases have been studied in order to deal with
imperfect data sets. However most of the times distributions are assumed to be the
same for both labeled and unlabeled data, unlike transfer learning, where domains
and distributions may differ [6].

Since 1995, transfer learning research appears under various names such as learning
to learn, life-long learning, knowledge transfer, inductive transfer, multitask learning,
knowledge consolidation, context-sensitive learning, knowledge-based inductive bias
and others. Between them, multitask learning framework learns multiple different
tasks simultaneously [6].

On the other hand, Multitask Learning learns both, the source and target tasks
simultaneously, while Transfer Learning tries boosting target's domain’s performance by
using the source domain data. In this way, weights of the loss functions are the same
for both, source and target data, unlike to the approach of Transfer Learning, where loss
functions may differ [6].

Daily, we face a variety of transfer learning situations. For example, we learn
recognizing and distinguishing fruits, or playing an organ in order to learn another
afterwards. Transfer learning is based in applying such previously learned knowledge in
order to solve problems [6].

3.2.1 Transfer Learning Approaches

Three are the main issues in transfer learning one has to deal with [6]:
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» what to transfer: what part of knowledge can be transferred
» how to transfer: algorithms needed in order to transfer knowledge

» when to transfer: in which situations transferring should be done

There are three basic approaches of Transfer Learning [3]:

» Inductive Transfer Learning

The target task is different from the source task requiring some labeled data
inducing an objective predictive model. According to the labeled and unlabeled data in
the source domain, two categories are further distinguished [3]:

> There are labeled data available in the source domain. Note that in this case,
inductive transfer learning is similar to the multitask learning [6].

» No labeled data are available in the source domain. Note that in this case,
inductive transfer learning is similar to the self-taught learning, where the
label spaces between the source and target domains may differ, suggesting
that the side information of the source domain cannot be used directly [6].

Following is the definition of Inductive Transfer Learning:

“Given a source domain Ds and a learning task Ts, a target domain Dt and a learning
task Tr, inductive transfer learning aims to help improve the learning of the target
predictive function f1(*) in Dt using the knowledge in Dsand Ts, where Ts# Tt” [6].

» Transductive Transfer Learning

Although the meaning of “transductive” in the traditional machine learning approach,
refers to the situation where all test data are required to be seen at training time, and
that the learned model cannot be reused for future data, our work will sink to the
definition based on the report of [6], were “transductive learning” is described the
situation where the tasks must be the same and all target domain data are
unlabeled[6].

Following is the definition of Transductive Transfer Learning:

“Given a source domain Ds and a corresponding learning task Ts, a target domain Dt
and a corresponding learning task T+, transductive transfer learning aims to improve the
learning of the target predictive function f(*) in Dt using the knowledge in Ds and Ts,
where Ds #Dt and Ts= Trt. In addition, some unlabeled target-domain data must be
available at training time” [6].

In other words, the source and target domain have the same tasks and the predictive
function can be adjusted properly into the target domain in order to predict unlabeled
target-domain data [6].

S. Kazantzidis 21



Splice Site Prediction Using Transfer Learning

» Unsupervised Transfer Learning
No labeled data are available in the source and target domains [3]. Data
representations (or similarity and kernel matrices) need to be produced that will
be evaluated on supervised learning tasks.

Following is the definition of Unsupervised Transfer Learning:

“Given a source domain Ds with a learning task Ts, a target domain Dt and a
corresponding learning task T+, unsupervised transfer learning aims to help improve the
learning of the target predictive function f(*) in Dt using the knowledge in Ds and Ts,
where Ts#Ttand Ysand Yt are not observable” [6].
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4. STATE OF THE ART TOOLS AND ALGORITHMS

4.1 Splice Site Prediction Tools

This chapter presents related work in the field of splice site prediction. In the following
table some tools are presented:

Table 4.1: Splice Site Prediction Tools.

Program Organism Method

GeneSplicer Arabidopsis, human HMM + MDD
NETPLANTGENE Arabidopsis NN

NETGENE Human, C.elegans, Arabidopsis NN + HMM
SPLICEVIEW Eukaryotes Score with consensus
NNSPLICE Drosophila, humanorother NN

SPLICE PREDICTOR | Arabidopsis,maize linear models
BCM-SPL Human, Drosophila, C.elegans Linear

4.2 Splice Site Prediction Algorithms

In order to predict splice sites, various classification based methods have been used.
The basic idea using such classification is to use a splice site sequence as a feature
vector. The classifier uses the feature vectors of training samples as input in order to
train model. The classifier can now predict the splice sites [5].

The main steps in splice sites classification are:

> Feature extraction

Proper input representation plays an important role for the classifier. In this step,
orthogonal encoding is used because of its simple processing and effectiveness
as we already mentioned. Orthogonal encoding is often used to encode DNA
sequences by features vectors. Each nucleotide is being represented with four
binary bits, from which only one has the value 1 to represent one of the possible
explicit values. This simple mapping procedure allows better classification
results. In case of more fuzzy input data, Salekdeh et al. proposed a schema by
which only four encoding patterns are used [5].

> Classification

A set of labeled training data is used to train a classifier, resulting a classifier that
separates the categories of sequence samples. For this purpose, different
classification techniques are being used, including artificial neural networks
(ANN), support vector machines (SVM) etc. with the latter providing very good
results in splice site detection due to its high accuracies [5].
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Various methods have been used for splice site recognition. Kernel-based and feature
based methods are some of them, with the first having achieved really good
performances in many species [17]. Other splice site detectors proposed linear SVMs
on binary features, which achieved better results than previous Markov models [4].
Other methods have used multilayer neural networks with Markovian probabilities as
inputs. More specifically, three Markov models have been trained on three segments of
the input sequence, the upstream, signal and downstream segments. Although the
results were satisfactory for small datasets, the slow training of the neural networks for
imbalanced number of true and decoy examples, forced the authors to downsample the
number of negatives for training [4]. Finally, a Bayesian Network based method, models
statistical dependencies between nucleotide positions [4].

An important process in the classification of splice sites is the feature extraction. Two
basic and well known methods are:

» Probabilistic models and
» Encoding schema

Probabilistic models are available to model local sequence behavior. On the other
hand, in the Encoding schema such as the orthogonal encoding, nucleotides in
sequence are viewed as unordered categorical values. Although orthogonal encoding is
a method that is widely used because of its effectiveness, its accuracy can be
influenced in case of ignoring the orders of nucleotides and codon usage. Therefore, a
more effective feature extraction method is needed in order to improve the accuracy,
transforming splice site sequence to a feature vector [5].

Feature-based methods aim to identify features that can be distinguished. The Feature
Generation Algorithm (FGA) is such a method for splice site prediction having achieved
good results [17].

There are cases in which splicing occurrences introduce premature termination codons
triggering transcript degradation. From the disease-causing nucleotide substitutions that
are listed in the Human Gene Mutation Database, a 14% is being thought to cause pre-
MRNA splicing disruption, while only 2% of missense mutations disrupt pre-mRNA
splicing [8]. Such sequences that disrupt the splicing procedure do not only cause
disease but also influence its severity. ldentifying mutations that disrupt pre-mRNA
splicing becomes gradually an important field in the therapeutic treatment [8].

Some results from similar work are being represented [1][2][3]. We chose the most
stable and higher performed algorithms.

Below the compared algorithms are being analyzed:

» SVMS,T : The idea of dual task is to have simultaneous optimization of both models
and similarity between the solution enforced. In case of little target data availability,
the training on source data performs much better than training on the target data,
otherwise training on target data easily outperforms training the source data [1].
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Target Data Source Data
Target Model Source Model

General Component

|

Splice Site Model

Figure 4.1: Diagram for Dual task.

» NBT and Al: Both are baseline naive Bayes classifiers trained on target labeled
and source data and they are both probabilistic models as well. The first one is a
Naive Bayes Tree classifier while the second one is based on improving the
multinomial Naive Bayes classifier, in which low weights are assigned to the target
data [2].

» AFMS: The idea of All Features Majority Strategy (AFMS), is to use majority voting
between the four representations of each sequence. In case of a tie the highest sum
of absolute values is selected. It is observed that knowledge obtained from the
source domain is better to be used only for the initialization of the centroids and not
during the iterations. AFMS is a stable algorithm in many cases, without extreme
oscillations. The classification potential of this strategy seems to achieve high
performances in most organisms [3].
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5. PROPOSED APPROACH

5.1 Introduction

In this work, we propose a new method for the problem of splice sites recognition. The
method combines the use of biological features with different representations such as
the N-gram graphs. Different classifiers are studied in order to choose the most
appropriate for our problem setting. The CRF (Conditional Random Field) algorithm,
which is also widely used in the field of gene prediction, is being studied as well.

The choice of the N-gram graph representation is based on the fact that it provides
accurate results in machine learning problems [3][7]. With the use of the biological
features’ information, these rates increase further. In our research, due to unbalanced
data, we have chosen to study the F-measure statistic, in order to get more
representative results.

With the help of the N-gram graphs, features can be extracted. Using each DNA
sequence and with the help of N-gram graphs’ similarity we obtain our first two features,
the splice sites and non-splice sites respectively. This procedure is done both in the
target and in the source domain as well.

At this point it should be noted that in order to avoid overfitting we used 70% of the
training set. Also in multiple source domains, where the source domain has more than
one species, two solutions were tested:

» 1st solution: We took into account the merging of the source domain’s mean
graphs.

» 2nd solution: A second approach could be applied by choosing the closest
source domain in accordance with the target domain. This decision could be
taken based on a phylogenetic analysis. We followed the first approach since
we achieved better results.

Our algorithm is trained for one species while we try to adapt the classifier to make
splice site prediction for a different one. The feature vector we use is the same in both
source and target domains. Comparing the distributions of the features of the source
and target domains, if we could manage to customize them in an appropriate manner in
order to behave similarly, then we would relegate the issue in a Machine Learning
problem and solve it as usual [23].

In this study, we examine two algorithms. The first one provides the most similar
sequences to the classifier, while the second transforms the test data in order to bridge
the gap with the training data.

5.2 Algorithms for transfer learning optimization

In this section we propose two algorithms which will try to optimize the data aiming the
classifiers’ better adaptation.

5.2.1 First Algorithm-Similarity of source and target data

The basic idea of the first approach concerns the merging of instances from the source
domain that are more similar to those of the target domain.
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Having the source data we will distinguish them in splice sites (label -1) and non splice
sites (label 1). Respectively for the target domain, using K Means algorithm [3] we split
the data into two clusters and use the SVM classifier, which characterizes the cluster
with the bigger amount of non splice sites sequences as a “non splice sites cluster”.
Respectively, the amount of splice sites sequences is being considered for the splice
sites cluster. At this point, source and target data have been characterized. We obtain
the most similar (negative from source with negative from target and positive from
source with positive from target) between them with the use of the cosine distance. The
data produced are added to the training data. With the new training set we train the
SVM classifier and learn a model in order to be able to classify.

In the following diagram, one can see the workflow of the Similarity Algorithm:

Add all data
5‘{ MegativeSimilar |
| DataTraining [/\/,b{
~ PositiveSimilar |
K ) :*| Megative Similar
means ge -
DataTest two clusters |—>| Classifier

Positive Similar

Training data

Classifier |-~

!

Results

Image 5.1: Similarity Algorithm Workflow.

5.2.2 Second Algorithm-Target Data Transformation

The main idea described in the following algorithm, which is conceived from the paper
[3], is as follows:

As in the first algorithm, the most similar source and target data are obtained in the
same way. Based on the following equation (1), we transform the initial target data with
the help of the mean values of the similar data. For instance, calculating the mean value
of a feature, of each similar-source and similar-target data, and defining a static value
“a”, the distributions of each feature approximate each other [32].

fx = a * fx + (a _ 1) " fX(meanTraining(feature_x)) (1)

meanTest(feature_x)
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In the following diagram the workflow of the Data Transformation Algorithm is being
presented:

Vo )

)v{ Positive Similar: J

e

Training Datg

Positive Similar

Test Data Classifier
Negative Similar]

Transform Test Data
No ~_ (
\—‘é\converge}f> Classifier
Yes
., S

l Results

Image 5.2: Data Transformation Algorithm Workflow.

5.3 Seguence Representation

5.3.1 N-Gram Graphs

N-gram graph representation, has been proposed widely in the field of natural language
processing. An initial definition that could be given describes n-gram as a possibly
ordered set of words that contains n elements [7]. N-gram graph representation
methodology manages to capture local and global characteristics of the analyzed
sequences [3].

Based on the definition, the N-gram graph (NGG) is a graph G=<V° E®L,W>, where V°
is the set of vertices, E® is the set of edges, L is a function assigning a label to each
vertex and to each edge and W is a function assigning a weight to every edge. The
graph has n-grams labeling its vertices u®e V®. The edges e®cE® connecting the n-
grams indicate proximity of the corresponding vertex n-grams. The weight of the edges
can indicate a variety of traits.

It is important to note that in N-gram graphs each vertex is unique. In order to create the
n-gram graph from a given sequence, a fixed-width window D, of characters around a
given n-gram Np is used. All character n-grams within the window are considered to be
neighbors of NpThese neighbors are represented as connected vertices in the text
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graph. Each edge e=<a,b> is weighted based on the number of co-occurrences of the
neighbors within a window in the sequence [3][7].

The idea of our first approach uses the N-gram graphs in which close subsequences
consist of a crucial part of the sequence. Essentially, the N-gram graph is a histogram of
symbols’ co-occurrences which are captured when found into a maximum distance
(window) of each other. Also, it's worth noting that N-gram graphs are deterministic,
they offer more information based on the representation of co-occurrences, they provide
trade-off between expressiveness and generalization and they can be combined with
vector representation of sequences in order to allow machine learning techniques to
classify sequences [22].

The n-gram graph, compared to other representation methods, differs in many areas
from the typical graphs structure [7].

» In case of a feature vector creation from an N-gram graph, in which the edges
are the dimensions of the feature vector, the indirect relation between vertices
is lost.

» If one uses the same information in order to construct a vector then there is
high complexity in the transformation process

» Using N-gram graph representation in Natural Language Processing, no
assumption can be made about the underlying language as a result the
representation is made language-neutral and independent of writing
orientation.

» The N-gram graph can be used in many applications, such as text
representation, gene prediction etc.

5.3.2 N-gram Graphs Algorithm

The algorithm we used for N-gram graph extraction of a sequence has the following
main steps [7]:

» Initializing the N-gram graph by setting the parameters.
» For each sequence a graph is being created.
» Merging graphs to a mean graph for both labels.

Having the necessary data information for each species, namely the sequences and
their labels (positive or negative), two features are being extracted. The first step is to
draw mean graphs for labeled and unlabeled data. Mean graphs are generated from the
training set where the labels are known.
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Image 5.3: Mean graph creation.

With the help of the mean N-gram graphs for each species two features can be
extracted. The first one concerns the negative-unlabeled data and the second the
positive-labeled data. Simultaneously, biological features for each sequence are being
created as well.

Having created the features for each species, with the help of a classifier we can
perform evaluation and estimate the accuracy and F-measure in order to check the
algorithm’s success rates. At this point several classifiers have been tested such as the
Decision Tree, SVM with RBF kernel, Linear SVM and others.

5.3.3 Biological Features

At the same time, biological features for each sequence are being created. The
biological features are the following:

» The nucleotide occurrences’ rates (see 6.2 section).

» The sum of the occurrences’ rates of the purine and pyrimidine cores, in order
to express the probability of more frequent C and T nucleotides’ occurrence.

» The branch site Motif “ynyyrAy”. This motif is being detected 20-50
nucleotides before the acceptor dimer AG.

» Acceptor Motif “AG”. This dimer is a motif for most acceptor sites and the
general motif is “yAGr”.

» Donor Motif “GT”. This dimer is a motif for most donor sites and the general
motif is “mrgGTrag”.

» The Pairwise Alignment Score (see 6.2 section).

5' Splice site Branch site 3' Splice site
o, 8- GURAGU ——————— CURACU —(Yn)—-YAG[G__|&

u12 . A
b S-C]GUAUCCUUU

Image 5.4: Splice site Motifs [24].
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5.4 N-gram Graph Parameters

N-gram graph has some values that must be initialized such as min, max and distance
value. The distance is a window, while min and max values are the limits for the size of
the combinations that can be made in this window. Depending on these values, a
feature can obtain high resolution efficiency.

These values were selected experimentally, having in mind that triplets of nucleotides
are being used during the DNA translation process (e.g. defining min=3, max=4 and
distance=3, N-gram graph will represent the sequences with motifs consisted of three
and four nucleotides).

5.5 Phylogenetic Analysis

Phylogenetic analysis helps improve the transfer learning approach by showing the
phylogenetic distance between species. In this way one can classify them in order to
have better visualization and put a weight on more significant data. For example, those
that are present in a same branch, have probably the same genes as well. The closer
the species, the more similar the data is, and thus the splice sites will have a
corresponding similarity.

Due to unbalanced data, i.e. the number of non splice site instances is greater than the
number of splice site instances, and because we are facing a multiple source domain
problem we can use weights for each instance helping the classifier to achieve higher
resolution efficiency.

In the picture below, our approach in finding splice sites is being represented using
phylogenetic analysis, which will provide us with the distance matrix (Distance Matrix)
with the phylogenetic distances of our species.

Received a
Species —* consened region,
farinstance a protein

» Multiple source _ Distance_,, | Converting numbers
alignment Matrix to percentages

Image 5.5: Phylogenetic Analysis Steps.

For the application of weights we propose the following:

Firstly, we put weights in each instance through phylogenetic analysis. This will lead to
help the algorithm to give greater weights to instances from the source domain which is
phylogenetically close to the target domain. This solution helps the multiple source
domain approach.

Having received a conserved region that is in all species (i.e. a protein [14]), we applied
the multiple source domain approach and got the distance matrix, which we then
converted into rates. We obtained this information in order to give weights to the
instances.

Secondly, according to the number of instances that each label has, we put a weight.
For example, if we have 1000 instances of which 70% are characterized with label -1
and 30% with label 1 we could define a weight "x" for the labels -1 and a weight "2x" for
the label 1.
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Finally, we used the cosine distance in order to get the similarity. Afterwards we get for
each instance the similarity rate with respect to the data set and that is being used as
the instance’s weight.

A-B " AB;
|A| |B|
\/z:;lA% \/Z?leE

Similarity = cos(8) =

With very little data, features and instances, the algorithm converges to very good
results with respect to those that already exist and in relatively quick time.

5.6 Classifiers

Having the features for each species, several classifiers have been tested such as the
Decision Tree, SVM with RBF kernel, Linear SVM and others in order to perform
evaluation.

Generally, in order to choose classifiers one has to have the following characteristics in
mind [33]:

» Computational cost

Expected data types of features/labels

Suitability for certain sizes and dimensions of data sets
Fast performance

Good accuracies

YV V V V VY

Good error approximation

As one can notice from the “Experiments and Results” section, KNN and SVM
classifiers performed best.

5.7 CRF

The algorithm we used has the following steps:

» Create patterns for the CRF [25].
» Use of Wapiti program (See Experiments).

The patterns created have forms such as those shown in the following image [25]:
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Feature Type SubTypes
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Image 5.6: CRF patterns [25].

For example, using the SubType “b;”, crf will take incidence rates for each nucleotide,
while using the SubType “bi, bi+1” crf will take incidence rates for all dimers and so on.
From these patterns, features are being created from the crf program, that are nothing
more but nucleotide motifs. Those compose a model which is being used in order to
take a decision concerning each nucleotides label.

In our approach, for each sequence, we sum up CRF’s decision in order to decide
whether the specific sequence is a splice site or not. In other words, if the sum is
positive, then the sequence is a splice site.
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6. EXPERIMENTS AND RESULTS
6.1 Experimental Setup

From the references [1] one can see that the dataset was taken from the Ratsch lab
(http://cbio.mskcc.org/public/raetschlab/user/behr/splicing/), and so did we. The main
idea is to recognize splice sites in different species. In most experiments, C.elegans is
being used as a source domain and the other species as target domain.

Our dataset, provided by the Ratsch laboratory, consists of sequences of the following
species, from which we used only the acceptor splice sites:

» A thaliana
C_elegans

>
» D_melanogaster
» D_rerio

>

H_sapiens

source
domain

target
domain

C remanel P pacificus  D. melanogaster A thaliana
100 M vears 200 3 years 930 N years 1600 M years

Image 6.1: The distance in years between C. elegans and other species.

The dataset consists of sequences that are made up from 200 nucleotides and only a
1% from the dataset is a splice site (positive instances). All these approaches use a few
instances from the target domain in order to train their algorithm and the rest of the
seqguences are used for evaluation.

Having our preprocessed dataset (See APPENDIX 1), we choose some data for our
experiments. For instance, we choose randomly 40.000 sequences from the Fasta file,
in which 70% are non-labeled and 30% labeled data, in order to represent real world
data.

Evaluation is being performed and the F-measure metrics are being estimated in order
to check our algorithms’ success rates. Different classifiers have been tested such as
the Decision Tree, SVM with RBF kernel, Linear SVM and others. Furthermore, with the
Libsvm library we tested linear and polynomial kernel and finally the KNN classifier was
studied in which the 3-NN and 21-NN were tested, having used the Manhattan distance.
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Concerning the CRF algorithm the Wapiti program was used. Wapiti is a program for
training and using discriminative sequence labeling models with various algorithms
using an elastic penalty. It currently implements maxent models, maximum entropy
Markov models (MEMM) and linear-chain conditional random fields (CRF) models. It
can work in different mode depending on the first argument, either training a model,
labeling new data, or dumping a model in readable form [28].

In our case, we used Wapiti as a CRF algorithm program. It receives as parameters two
files, the training and test set. These files have the following structure: The DNA
sequences are represented in a file in which each line represents a nucleotide and the
label of the sequence it belongs. Also, sequences are being separated by an empty line.

The patterns are set in a separate file and those will be followed by the CRF algorithm
in order to extract results. Having tried various patterns we conclude to those that
resulted optimally.

Having CRF’s prediction results for each test set, summing up the nucleotides’ labels’
results from each sequence, a decision is being taken in order to clarify if the label of
the particular sequence is negative or positive. This experiment was performed with
16.000 sequences.

6.2 Feature Extraction

The biological features mentioned previously where extracted using a dynamic
algorithm. In the case of the nucleotide occurrences’ rates, the user can choose the
number of nucleotides as done in K-mer as well. Concerning the pairwise alignment
score, the Biojava package global alignment is being applied between each sequence
and the mean graph’s sequence. In this way we get two features, comparing the
similarity of the sequence with the string that uniquely characterizes the mean graph
with unlabeled data and the string that uniquely characterizes the mean graph with
labeled data respectively.

6.3 NGRAM Parameters

Table 6.1: Choosing min, max and distance parameters, with KNN classifier and 6.500 entries.

Species | H_sapiens | D_rerio D_melanogaster | C_elegans | A thaliana

Ngram-

Parameters

M:8,M:8,D:1 0.86 0.71 0.82 0.75 0.74
M:4,M:6,D:2 0.82 0.80 0.83 0.81 0.81
M:2,M:4,D:3 0.81 0.79 0.82 0.80 0.80
M:2,M:4,D:2 0.80 0.80 0.83 0.79 0.81
M:3,M:4,D:3 0.81 0.80 0.83 0.81 0.81
M:4,M:4,D:1 0.81 0.81 0.83 0.80 0.81
M:3,M:3,D:3 0.82 0.80 0.84 0.81 0.80
M:6,M:6,D:1 0.83 0.80 0.82 0.80 0.81
M:3,M:5,D:3 0.82 0.80 0.83 0.80 0.80
M:3,M:3,D:2 0.81 0.80 0.83 0.80 0.80

In the above table, we chose several values (F-measure) for the parameters of the N-
gram graph algorithm. We noticed that we achieve the best results with the bolded
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values. We ended up choosing the values: min=3, max= 4 and distance=3. It is also
worth noting that each cell of the table represents the average of each target domain
(i.e. for each species) that comes up. The data have been presented appropriately in
order to show the differences and achieve better visualization.

Table 6.2: Using whole or part of the sequence, with KNN classifier and 6.500 entries.
Species | H_sapiens D_rerio D_melanogaster | C_elegans | A_thaliana

Ngram-
Parameters
M:4,M:6,D:2 All: | 0.82 0.81 0.83 0.81 0.81

Part. | 0.80 0.78 0.79 0.78 0.79
M:3,M:4,D:3 All: | 0.81 0.81 0.84 0.81 0.81

Part: | 0.81 0.79 0.82 0.79 0.80
M:3,M:3,D:3 All: | 0.81 0.80 0.84 0.80 0.81

Part: | 0.81 0.79 0.81 0.79 0.79

The above table shows the optimal parameter sets from the experiment mentioned
previously and compares the results that are obtained using whether the whole
sequence or part of it. This part of the sequence uses 50 nucleotides left of the acceptor
site, due to the biological information that is located in this area. We note that the results
do not differentiate a lot as we saw before. Nevertheless we are choosing the set
min=3, max= 4 and distance= 3, because of the lower computational costs and slightly
higher results achievement. Another fact that has been observed was that by using only
a 1/4 of the sequence (50 nucleotides) the specific set of parameters gives results
similar to those of the entire sequence reducing further the computational costs
mentioned above.

But this is not a coincidence at all because according to the approaches of paperwork
[29] that use K-mers we notice that best results are being achieved when we use 4-mer
and 6-mer. So in our case these values help features’ generalization capability and as a
result we can export better results in transfer learning as well.

Table 6.3: KNN classifier.

Entries 1000 2500 6500 16000
Species
H sapiens_acc 0.99 0.99 0.99 0.98
D _rerio_acc 0.99 0.99 0.99 0.98
D_melanogaster_acc | 0.99 0.99 0.98 0.98
C elegans _acc 0.97 0.98 0.96 0.95
A _thaliana_acc 0.97 0.98 0.97 0.95

In the table above we have used the source and the target domain of the same species.
The columns describe the number of sequences taken into account in each experiment
while the lines describe the target domain (species). Finally, we chose the parameters
set of min=8, max=8 and distance=1 for the N-gram graph algorithm, achieving best
results and low costs simultaneously. We ended up using 6.500 sequences for our
experiments.
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6.4 Choosing Classifier
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Image 6.2: Comparing Classifiers.

In the above diagram we see the various classifiers that have been used and the
averages of the results (i.e. averages of the target domain) for each species. We notice
that the best results are being produced using the KNN classifier. The species have
been sorted according to their phylogenetic distances. Thus, the more the
phylogenetical distance from the species grows, the more the rates decline.

Table 6.4: KNN overall results.

Source | H_sapiens | D_rerio | D_melanogaster | C_elegans | A_thaliana
Target
H_sapiens 0.87 0.82 0.84 0.76 0.76
D_rerio 0.77 0.86 0.83 0.76 0.81
D_melanogaster | 0.84 0.83 0.89 0.84 0.80
C_elegans 0.78 0.75 0.82 0.87 0.80
A_thaliana 0.79 0.81 0.80 0.81 0.84

The classifiers that were used and studied are, the decision tree, the SVM classifier
which was tested with several kernels such as RBF Kernel and who had the best
results. Furthermore, with the Libsvm library we tested linear and polynomial kernel and
finally the KNN classifier was studied in which the 3-NN and 21-NN were tested, having
used the Manhattan distance.
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6.5 Unbalanced Data

Having received a conserved region that is in all species (i.e. a protein [14]), the multiple
source domain approach was applied in previous section. Following, the distance matrix
is being shown, which was converted into rates.

Table 6.5: Distance Matrix.

Species H_sapiens | D_rerio D_melanogaster | C_elegans | A_thaliana
H_sapiens 100.00 44 .44 37.66 29.86 17.92
D_rerio 44.44 100.00 33.83 28.51 16.62
D_melanogaster | 37.66 33.83 100.00 29.46 13.99
C_elegans 29.86 28.51 29.46 100.00 16.90
A_thaliana 17.92 16.62 13.99 16.90 100.00

6.6 Similarity of Source and Target Data

Having trained the classifier with the new training set, the accuracy of our algorithm is
being presented in the following table:

Table 6.6: First Algorithm results.

Source | H_sapiens | D _rerio | D_melanogaster | C_elegans | A_thaliana
Target
H_sapiens 0.84 0.83 0.87 0.82 0.82
D_rerio 0.81 0.84 0.83 0.75 0.80
D_melanogaster | 0.81 0.82 0.86 0.84 0.82
C_elegans 0.80 0.72 0.83 0.87 0.78
A_thaliana 0.79 0.82 0.79 0.80 0.83

The algorithm having as main characteristic the similarity and taking advantage of the
testing data, achieves stability and improves results. Below we can see an overall
picture-diagram with the classifiers.
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6.7 Target Data Transformation

Table 6.7: Second Algorithm results.

Source | H_sapiens | D _rerio | D_melanogaster | C_elegans | A_thaliana
Target
H_sapiens 0.82 0.83 0.85 0.78 0.77
D_rerio 0.79 0.81 0.82 0.72 0.80
D_melanogaster | 0.81 0.67 0.86 0.80 0.78
C_elegans 0.81 0.60 0.84 0.87 0.76
A_thaliana 0.81 0.79 0.79 0.78 0.83

Although the algorithm uses as essential characteristic the transformation and the
similarity and takes advantage of the testing data we do not notice improved results.
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6.8 NGRAM (Multiple Source Domain)

The previously mentioned algorithms (Similarity of source and target data algorithm and
Target Data Transformation algorithm), were also studied with the Multiple Source
Domain approach. In the following table Homo Sapiens Species is notated as “S” or
“Sap”, Rerio species is notated as “R” or “Rer”, Melanogaster species is notated as “M”
or “Melang”, Elegans species as “E” or “Eleg” and finally Thaliana species is notated as
“T” or “Thal”’. The horizontal row of the species presents the source domains and the
first column presents the target domains. Finally, in case the same species is included
in the source and the target domain simultaneously, the task is being interrupted
immediately and visualized as zeros. The results are listed below:

Table 6.8: Multiple Source Domain results for the KNN.

Species | M,R M, T M,S S,R S, T M,E R, T S,E R,E T,E

Sap. 0.84| 0.83 0.00 0.00 0.00 0.82 0.82 0.00 0.82 0.77

Rer. 0.00| 0.84 0.82 0.00 0.80 0.82 0.00 0.81 0.00 0.80

Melang. | 0.00 | 0.00 0.00 0.85 0.83 0.00 0.84 0.85 0.85 0.83

Eleg. 0.83| 0.83 0.83 0.80 0.81 0.00 0.79 0.00 0.00 | 0.00

Thal. 0.81| 0.00 0.81 0.81 0.00 0.81 0.00 0.81 0.82 0.00
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Table 6.9: Multiple Source Domain results for the first algorithm.

Species | M,R M, T |MS SR ST M.E R, T SE R,E TE

Sap. 0.86 | 0.86 | 0.00 0.00 0.00 0.85 085 | 0.00 | 0.84 | 0.77
Rer. 0.00 | 0.81| 0.82 0.00 0.81 0.81 0.00 | 081 | 0.00 | 0.79
Melang. 0.00 | 0.00 | 0.00 0.81 0.82 0.00 085 | 082 | 084 | 0.85
Eleg. 083 | 084 | 0.83 0.78 0.80 0.00 0.81 0.00 | 0.00 | 0.00
Thal. 0.80 | 0.00 | 0.79 0.81 0.00 0.81 0.00 | 082 | 0.82 | 0.00

Table 6.10: Multiple Source Domain results for the second algorithm.

Species | M,R M,T M,S SR ST M,E R, T S,E R,E TE

Sap. 0.83 | 0.83 0.00 0.00 0.00 0.83 0.83 0.00 0.83 0.83
Rer. 0.00 | 0.80 0.81 0.00 0.76 0.80 0.00 0.78 0.00 0.79
Melang. 0.00 | 0.00 0.00 0.78 0.78 0.00 0.84 0.81 0.84 0.82
Eleg. 0.81 | 0.83 0.83 0.75 0.79 0.00 0.81 0.00 0.00 0.00
Thal. 0.77 | 0.00 0.79 0.76 0.00 0.80 0.00 0.80 0.81 0.00

Comparing the averages, we notice that the results remain constant. Also, when we
have two species on the source domain, target domain’s value is very close to the
corresponding values that would have resulted if we had each source domain
separately. For example if we had as source domain the Melanogaster and Thaliana
species and as target domain the Homo Sapiens species then the target value would
range between Melanogaster/Sapiens and Thaliana/Sapiens values.
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6.9 N-gram Graph Comparison with State-of-the-art

Following, the overall results are being presented, compared with the state of the art
algorithms mentioned in previous chapter. The performance of the models are
evaluated by measuring the accuracy in terms of area under the Receiver Operator
Characteristic Curve (auROC). Furthermore C.elegans data were used as training set
while all the other species as test set in order to compare our approach with the State of
the art approaches:

Table 6.11: D. melanogaster.

Sequences

Algorithms

2500 6500 16000 40000
SVMS, T 40.80 37.87 52.33 58.17
NBT 13.87 25.00 35.28 45.85
Al 25.83 32.58 39.10 47.49
AFMS a=1 67 -
CRF 38 46 53 -
Alg. 1 85 85 81 79
Alg. 2 83 78 74 74

S. Kazantzidis

42



Splice Site Prediction Using Transfer Learning

Table 6.12: A. thaliana.

Sequences

Algorithms

2500 6500 16000 40000
SVMS, T 24.21 27.30 38.46 49.75
NBT 3.10 8.76 28.11 40.92
Al 3.99 13.96 33.62 43.20
AFMS a=1 53 - - -
CRF 25 39 51 -
Alg. 1 83 80 78 78
Alg. 2 82 76 69 72

State of the art algorithms are based in probabilistic models and when they use bigger
data sets for training in order to achieve better performances, success rates increase
with the computational costs simultaneously.

In our approach, we took advantage of both the N-gram graphs and the biological
information, in order to extract features keeping the problem’s space dimension low at
the same time. We notice that despite the dataset’s size, our results are fairly close.
Furthermore, the time needed in order to execute the biggest experiment did not
exceeded a day using a state of the art computer.

Concerning the two algorithms we proposed, the first algorithm’s classification potential
seems to be greater in most organisms. The results we obtained seems to be
comparable with state-of-the-art approaches. Finally, for the organisms with bigger
evolutionary distance, it is more difficult to achieve good results, most probably because
the secondary structure of the DNA sequence has changed more overtime [3].
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7. CONCLUSION

Having started from the basic biological background knowledge concerning the problem
of finding splice sites, our work focused on developing transfer learning algorithms using
the N-gram graph representation.

Starting with the N-gram graph, we proposed a new method in order to manage finding
and recognizing splice sites. More specifically, we combined the use of biological
features, with the N-gram graph representation and the study of several classifiers. The
choice of the N-gram graph representation was based on the accurate results in
machine learning problems it provides. With the use of the biological features’
information, these rates increase further.

Apart from the optimal parameter set and the appropriate classifier, experiments were
done using whether the whole sequence or part of it (50 nucleotides left of the acceptor
site), in which basic biological information is known to be located. In this way, lower
computational cost and slightly higher results are being achieved. Another conclusion
drawn from our sorted species, concerns the declining rates due to their phylogenetical
distance.

Two algorithms were proposed for processing the data received by classifiers. The main
idea of the first one was to provide the classifier the most similar sequences while the
second algorithm transforms the test data in order to approach the training data.

The basic idea of the first approach concerned the merging of instances from the source
domain that are more similar to those of the target domain. The algorithm having as
main characteristic the similarity described in the previous section and taking advantage
of the testing data, achieved stability and improved results. In the second approach, for
each instance of the test set, each feature underwent a small transferring in the training
set and a transformation parameter is taken into account. With these changes we tried
the target domain approached the source domain and we improved the classifier. The
above mentioned algorithms were studied with the Multiple Source Domain approach as
well.

CRF’s main idea was to use patterns in order to extract a model composed of features
(nucleotide motifs) and put them as input into the Wapiti program, which executed the
CRF algorithm. Finally we performed evaluation and got our results.

CRF has contributed in the field of gene prediction undeniably and without using the
biological information, something that could be set as a future target. Both approaches
are very good as machine learning approaches, i.e. making splice site prediction in the
same organism. However in our work we dealt more with the N-gram graph algorithm
using transfer learning and by adapting biological information the results were
satisfactory approaching those of machine learning. In the future researchers could
import more biological features [2] in order to increase the accuracy of the algorithm.

All in all, we noticed from our results that our work contributed in the field of splice site
recognition in an important manner. We proposed the N-gram graph representation and
similarity in order to obtain the first two features of our representation. Simultaneously,
biological information was used with the help of a few important motifs. The latter was
combined with the N-gram graph features. With the proposed representation, we
managed to achieve higher prediction accuracy than the current approaches of the
state-of-the-art. In addition, the proposed representation uses a small amount of
features, which help us achieve high performances quickly and with low computational
cost. We have proposed two transfer learning algorithms based on this representation
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and on similarity measures between training and test sets. We proposed an approach
for transforming the initial target data with the help of the mean values of the similar
data in order to approximate the distributions of each feature of the training set. Finally,
the multiple source domain approach helped us considering the case in which the
source domain had more than one species and in both approaches we achieved better
results. For this setting, we used information from the phylogenetic analysis of species.

With the above results, we achieved better performances using more representative
features. Also we reduced the computational costs by using only a small amount of
features. Our largest experiment with 40.000 instances required less than a day in order
to get results. Finally, in the case of multiple source domain, when we used more than
one species as source domain our performances improved significantly?.

% Our work is going to be published in the near future.
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APPENDIX 1

» Technical Details (Workflow)
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Image Al.1: N-gram graph Workflow.

As we can see from the above workflow, we downloaded the Fasta files for the species
from the link (http://cbio.mskcc.org/public/raetschlab/user/behr/splicing/). After the data
have been preprocessed, our files have the format we see in the following picture.

Potential Splice Sites

CEXEEEEER 0 T 1 0 O | s
N \J

OCCAATA] CTRTT 0 OCANTCAATCACCCATCAT

LY ACCT CAACAA
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Image Al.2: Data Alignment Representation.

S. Kazantzidis 46



Splice Site Prediction Using Transfer Learning

One can notice that they have been aligned to the pattern of the acceptor (AG) or the
donor (GT) respectively. From these files some data are chosen for our experiments as
we mentioned in the previous subchapter. Each row in the new file contains the
sequence and in the end the label for each sequence is being presented.

The result is a new “arff” file which consists of the features produced from our algorithm
(N-gram graph) and the biological features as well. The data from each species are
stored in a structure in order to use them. In this structure, we keep for each species the
original data, the sequence and the label of the sequence and for each of these
sequences features are being extracted and stored (Instances). These attributes are
being extracted according to the N-gram graph algorithm and the biological features,
which then are being used by the classifier in order to extract the final results.
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APPENDIX 2

» Choosing Classifier (Workflow)
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Image A2.1: Evaluation Diagram.

Having created the arff files containing the features for each species, several classifiers
have been tested such as the Decision Tree, SVM with RBF kernel, Linear SVM and
others in order to perform evaluation.
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APPENDIX 3

» CRF Algorithm (Workflow)
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Image A3.1: CRF workflow.

As before in the N-gram graphs, the main idea is to use again a preprocessing process
for our data set in order to extract the training set and the test set and put them as input
into the Wapiti program, which will execute the CRF algorithm. Finally we will perform
evaluation and we will get our results.

The data are aligned to the pattern of the acceptor (AG) or the donor (GT) respectively.
From these files we choose some data for our experiments. As in the N-gram graphs,
we could choose randomly 40.000 sequences from the Fasta file, in which 70% are no-
labeled and 30% labeled data, in order to represent real world data. Each row in the
new file contains again the sequence and in the end the label for each sequence is

being presented.
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TABLE OF ABBREVIATIONS

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

MRNA Messenger Ribonucleic acid

pre-mRNA Precursor Messenger Ribonucleic acid

HMM Hidden Markov Models

CRF Conditional Random Field

SVM Support Vector Machines

ANN Artificial Neural Networks

EKPA National and Kapodistrian University of Athens
FGA Feature Generation Algorithm

NBT Naive Bayes Tree

AFMS All Features Majority Strategy

NGG N-gram Graph

RBF Radial Basis Function

Libsvm Library Support Vector Machines

KNN K-Nearest Neighbors

auROC area under the Receiver Operator Characteristic Curve
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