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ABSTRACT 

 

One of the open problems in the field of bioinformatics, is the automatic gene prediction 
(nucleotide sequence that encodes proteins). More specifically, researchers are trying to 
predict those positions that correspond to the beginning and the end of genes within a 
genome. These positions are known as splice sites. Several machine learning 
techniques have been used for the specific problem. Nevertheless, the acquisition of 
annotated data, necessary to implement supervised learning techniques, is a significant 
challenge, as the cost is very large. One of the approaches for addressing this problem is 
the transferring of knowledge (transfer learning approach). The aim of this work is the 
study of the representation of genes in order to take into account the sequence of 
nucleotides within a genome and the role of this representation in transfer learning 
methods. 
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ΠΔΡΙΛΗΦΗ 

 

Έλα από ηα αλοητηά προβιήκαηα ηες βηοπιεροθορηθής, είλαη ε ασηόκαηε πρόβιευε 
γοληδίφλ (αιιειοστία λοσθιεοηηδίφλ ποσ θφδηθοποηεί πρφηεΐλες). Πηο ζσγθεθρηκέλα, οη 
ερεσλεηές προζπαζούλ λα προβιέυοσλ ηης ζέζεης ποσ αληηζηοητούλ ζηελ αρτή θαη ηο 
ηέιος ηφλ γοληδίφλ ζε έλα γοληδίφκα. Οη ζέζεης ασηές είλαη γλφζηές φς ζήκαηα 
καηίζκαηος (splice sites). Γηάθορες ηετληθές ηες κεταληθής κάζεζες έτοσλ 
τρεζηκοποηεζεί γηα ηο ζσγθεθρηκέλο πρόβιεκα. Παρόια ασηά, ε απόθηεζε ηφλ 
επηζεκεηφκέλφλ δεδοκέλφλ ποσ είλαη αλαγθαία γηα λα εθαρκοζηούλ οη ηετληθές 
επηβιεπόκελες κάζεζες, αποηειεί κηα ζεκαληηθή πρόθιεζε, θαζώς ηο θόζηος είλαη ποιύ 
κεγάιο. Μία από ηης προζεγγίζεης γηα ηελ αληηκεηώπηζε ασηού ηοσ προβιήκαηος είλαη ε 
κεηαθορά κάζεζες (transfer learning). Σηότος ηες παρούζας εργαζίας είλαη ε κειέηε ηες 
αλαπαράζηαζες ηφλ γοληδίφλ, ώζηε λα ιακβάλεηαη σπόυηλ ε αιιειοστία ηφλ 
λοσθιεοηηδίφλ ζε έλα γοληδίφκα, θαη ο ρόιος ηες αλαπαράζηαζες ασηής ζε κεζόδοσς 
κεηαθοράς κάζεζες. 
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ΛΔΞΔΙ΢ ΚΛΔΙΓΙΑ: κεηαθορά κάζεζες, ζέζεης καηίζκαηος, κεταληθή κάζεζε, γράθοη λ-
γρακκάηφλ  

 



 

 

 

 

 

 

 

 

 

To my family. 

 



ΔΤΥΑΡΙ΢ΣΙΔ΢ 

 

Αρτηθά, ζα ήζεια λα εσταρηζηήζφ ηολ θαζεγεηή κοσ θ. Σηαύρο Περαληώλε, ποσ δέτηεθε 
λα ζσλεργαζηούκε γηα ηε δηεθπεραίφζε ηες δηπιφκαηηθής κοσ εργαζίας. Δπίζες, ζα 
ήζεια λα εσταρηζηήζφ ηολ σπεύζσλό κοσ θ. Γεώργηο Παιηούρα θαη ηελ επηβιέποσζα θα. 
Αλαζηαζία Κρηζαρά, γηα ηελ εποηθοδοκεηηθή ζσλεργαζία ποσ είτακε ζε επίπεδο 
δηπιφκαηηθής αιιά θαη γηα ηολ τρόλο ποσ κοσ αθηέρφζαλ θαζ’ όιε ηε δηάρθεηα ηες 
ζσγγραθής.      

 

 



TABLE OF CONTENTS 

 

PROLOGUE ................................................................................................................................................13 

1. INTRODUCTION .............................................................................................................................14 

2. BACKGROUND ................................................................................................................................16 

2.1 Splice Sites .................................................................................................................................................... 16 

2.1.1 Splice Site Motifs ........................................................................................................................................ 18 

2.2 Phylogenetic Analysis .................................................................................................................................... 18 

3. MACHINE LEARNING TECHNIQUES .........................................................................................20 

3.1 Classification Algorithms ............................................................................................................................... 20 

3.2 Transfer Learning .......................................................................................................................................... 20 

3.2.1 Transfer Learning Approaches ................................................................................................................... 20 

4. STATE OF THE ART TOOLS AND ALGORITHMS ..................................................................23 

4.1 Splice Site Prediction Tools ........................................................................................................................... 23 

4.2 Splice Site Prediction Algorithms .................................................................................................................. 23 

5. PROPOSED APPROACH ................................................................................................................26 

5.1 Introduction .................................................................................................................................................. 26 

5.2 Algorithms for transfer learning optimization ............................................................................................... 26 

5.2.1 First Algorithm-Similarity of source and target data ................................................................................. 26 

5.2.2 Second Algorithm-Target Data Transformation ......................................................................................... 27 

5.3 Sequence Representation ............................................................................................................................. 28 

5.3.1 N-Gram Graphs .......................................................................................................................................... 28 

5.3.2 N-Gram Graphs Algorithm ......................................................................................................................... 29 

5.3.3 Biological Features ..................................................................................................................................... 30 

5.4 NGRAM Parameters ...................................................................................................................................... 31 



5.5 Phylogenetic Analysis .................................................................................................................................... 31 

5.6 Classifiers ...................................................................................................................................................... 32 

5.7 CRF ................................................................................................................................................................ 32 

6. EXPERIMENTS AND RESULTS ...................................................................................................34 

6.1 Experimental Setup ....................................................................................................................................... 34 

6.2 Feature Extraction ......................................................................................................................................... 35 

6.3 NGRAM Parameters ...................................................................................................................................... 35 

6.4 Choosing Classifier ........................................................................................................................................ 37 

6.5 Unbalanced Data........................................................................................................................................... 38 

6.6 Similarity of Source and Target Data ............................................................................................................. 38 

6.7 Target Data Transformation .......................................................................................................................... 39 

6.8 NGRAM (Multiple Source Domain) ................................................................................................................ 40 

6.9 NGRAM Comparison with State-of-the-art .................................................................................................... 42 

7. CONCLUSION ...................................................................................................................................44 

APPENDIX 1 .............................................................................................................................................46 

APPENDIX 2 .............................................................................................................................................48 

APPENDIX 3 .............................................................................................................................................49 

TABLE OF ABBREVIATIONS ................................................................................................................50 

REFERENCES ............................................................................................................................................51 

  



TABLE OF IMAGES 

Image 2.1: Basic steps of protein synthesis [1]............................................................... 16 

Image 2.2: Splice Site Positions. .................................................................................... 17 

Image 2.3: Pyrimidine-CT, Purine-AG residues, Py-Pyrimidine rich motifs [18]. ............. 18 

Image 2.4: Phylogenetic tree example [20]..................................................................... 18 

Image 2.5: Phylogenetic Analysis [21]. ........................................................................... 19 

Image 5.1: Similarity Algorithm Workflow. ...................................................................... 27 

Image 5.2: Data Transformation Algorithm Workflow. .................................................... 28 

Image 5.3: Mean graph creation. .................................................................................... 30 

Image 5.4: Splice site Motifs [24]. ................................................................................... 30 

Image 5.5: Phylogenetic Analysis Steps. ........................................................................ 31 

Image 5.6: CRF patterns [25]. ........................................................................................ 33 

Image 6.1: The distance in years between C. elegans and other species. ..................... 34 

Image 6.2: Comparing Classifiers. .................................................................................. 37 

Image 6.3: Best Classifiers Comparison with first algorithm. .......................................... 39 

Image 6.4: Best Classifiers Comparison with second algorithm. .................................... 40 

Image 6.5: Comparing Classifiers for the Multiple Source Domain. ................................ 42 

Image A1.1: NGRAM Workflow. ..................................................................................... 46 

Image A1.2: Data Alignment Representation.................................................................. 46 

Image A2.1: Evaluation Diagram. ................................................................................... 48 

Image A3.1: CRF workflow. ............................................................................................ 49 

 

 

 

 

 



LIST OF TABLES 

Table 4.1: Splice Site Prediction Tools. .......................................................................... 23 

Table 6.1: Choosing min, max and distance parameters, with KNN classifier and 6.500 

entries. ............................................................................................................................ 35 

Table 6.2: Using whole or part of the sequence, with KNN classifier and 6.500 entries. 36 

Table 6.3: KNN classifier. ............................................................................................... 36 

Table 6.4: KNN overall results. ....................................................................................... 37 

Table 6.5: Distance Matrix. ............................................................................................. 38 

Table 6.6: First Algorithm results. ................................................................................... 38 

Table 6.7: Second Algorithm results. .............................................................................. 39 

Table 6.8: Multiple Source Domain results for the KNN. ................................................ 40 

Table 6.9: Multiple Source Domain results for the first algorithm. ................................... 41 

Table 6.10: Multiple Source Domain results for the second algorithm. ........................... 41 

Table 6.11: D. melanogaster. ......................................................................................... 42 

Table 6.12: A. thaliana. ................................................................................................... 43 

 

  



PROLOGUE 

As part of the preparation of the master thesis of the postgraduate program “Information 
Technologies in Medicine and Biology”, with direction the Bioinformatics field, in 
collaboration with the National Research Center of Natural Sciences "Demokritos", an 
attempt was made to develop techniques to predict splice sites using the transfer 
learning.  
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1. INTRODUCTION 

The field of Computational Biology and biomedical research offer a variety of 
applications in big data analysis, where the role of machine learning is more than 
necessary by allowing the modeling of basic mechanisms [3]. Despite the huge success 
of Data Mining technologies and those of Machine Learning in the fields of 
classification, regression and clustering, many methods achieve good results under the 
assumption that the training and test data are issued on the same space and with the 
same distribution [6].  

Making a brief historical overview, one can see that already since 1980 computational 
biotechnology has contributed in locating exons i.e. gene-coding regions. Many 
machine learning techniques and approaches have been used in order to find and 
predict donor and acceptor splice sites as well as the protein's secondary structure [15]. 

The procedure of splice site prediction is fundamental in the field of gene-finding. More 
specifically, splice sites are locations on DNA at the boundaries of exons and introns. 
The more accurately a splice site can be located, the more reliable it becomes to locate 
the genes on DNA, thus, accurate splice site detectors are significant components of 
state-of-the art gene finders [16].  

Modeling and using biological mechanisms, such as the splice site mechanism, means 
simultaneously the use of complex models, requiring an equivalent suitable sized 
training set, which is often not available especially in the biomedical domain due to time 
and expense [13]. Another issue is the appropriate use of decoys (negative training 
examples), which can definitely change the detectors performance [4].  

Transfer Learning, allows the domains, tasks, and distributions used in training and test 
data to differ by applying knowledge learned previously. In this way, the transfer 
learning approach represents a preferred method in cases where data from the same 
organism and even between different species are limited and no annotated data can be 
obtained. 

In this work, we focus on the problem of splice sites recognition. By now it is fairly well 
understood and there exist experimentally confirmed labels for a broad range of 
organisms [13]. Since the content of the protein plays an important role in relation to the 
splicing prediction, it is a critical task for the identification of genes and their functionality 
[2]. It is worth noting that different kinds of features are required to get high accuracy 
and precision in splice site prediction [17].  

In order to overcome the lack of training data (annotated data) and avoid overfitting, we 
apply a transfer learning approach to transfer knowledge from sequences of specific 
species, namely Homo Sapiens, Rerio, Melanogaster, Elegans and Thaliana, in which 
splice sites are known. Features are being extracted with the help of the n-gram graph 
representation and various classification methods are used.  

The main contributions of this work are:  

 The use of N-gram graphs representation: by representing each DNA sequence 
as an n-gram graph, we can use the N-gram graphs similarity in order to obtain 
the first two features of the proposed approach.  

 The use biological information: There are a few motifs of great importance in 
order to discover with high possibility a splice site. Thus, using such biological 
information combined with the above features can help us achieve higher 
prediction accuracy.  
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 Combining the two features categories above, we managed to achieve high 
performance quickly and with low computational cost, as the proposed features 
space is small, current approaches use a large number of features (thousands), 
and as a result, they need too much time to produce results. For instance, our 
largest dataset (40.000 instances) required less than a day in order to produce 
results.   

 Two transfer learning approaches were proposed, which are based on similarity 
functions. The main idea is to find the most similar instances between training 
and test datasets.  

 A target data transformation approach: We transformed the initial target data with 
the help of the mean values of the similar data. The distributions of each feature 
of the target domain approximated those of the source domain. 

 The Multiple source domain approach: We considered the case in which the 
source domain has more than one species and in both approaches, and we 
incorporated information from the phylogenetic analysis between species.   
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2. BACKGROUND 

2.1 Splice Sites  

The exact identification of genes in eukaryotic genomes depends largely on the ability to 
accurately determine the splicing sites which are segments of DNA that separate the 
exons and introns within a gene. Apart from determining the structure of the gene, 
splice sites also determine the amino acid composition of the proteins encoded by the 
genes. 

The procedure of splice site prediction is fundamental in the field of gene-finding if one 
considers that the transcription of an eukaryotic DNA sequence into messenger RNA 
occurs only after enzymes splice away noncoding regions (introns) and leave only 
coding regions (exons) [17]. 

 

 

Image 2.1: Basic steps of protein synthesis [1]. 

As shown in the figure above, the basic steps of protein synthesis are:  

1. Transcription 
2. Post-processing 
3. Translation 

 
In biology, transcription is the first stage of gene expression and describes the process 
by which an RNA molecule is created using a DNA strand as a template. The term 
transcription is used because the genetic information in the language of DNA, is 
transcribed in the language of RNA, by using uracil base instead of thymine. 

Pre-mRNA is being transformed into mRNA. More precisely, in an eukaryotic gene, the 
sequence of mRNA consists of non-coding regions, known as introns. Genes start with 
an exon and may then be interrupted by an intron. This order continues alternately until 
it ends in an exon. In order to obtain mature mRNA the process of splicing is required, 
in which introns are removed. In this way, two different splice sites arise: the exon-intron 
boundary, known as the donor site or 5’ site (of the intron) and the intron-exon 
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boundary, that is the acceptor or 3’ site. The genome has many consensus sequences. 
Thus, by choosing a window close to the splice site and taking k-mers1 one can get the 
most frequently occurring nucleotide. Having aligned all the sequences, one can notice 
which nucleotide is appearing more frequently in each position. 

As already mentioned, two types of splice sites must be identified: the donor and the 
acceptor. The donor’s splice site indicates where an exon ends and where an intron 
starts, while the acceptor’s splice site indicates the ending of an intron and an exon 
starting. Almost most of donor sites are a GT dimer and most acceptor sites are an AG 
dimer. The fact that these dimers are not necessarily splice sites, complicates their 
detection [2]. 

Dimers often occur at non splice site positions. In human DNA, GT dimers can be found 
about 400 million times overall in both strands. For this reason, the discrimination 
between true donor sites and decoy positions has to be faced [4]. As one can note, 
splice site prediction is a difficult problem. The AG and GT dimers cannot be used as 
features due to their frequent appearance in non splice site sequences. Even the use of 
positional probabilities was rather a fairly poor approach [17]. 

 

 

Image 2.2: Splice Site Positions. 

There are cases in which splicing occurrences introduce premature termination codons 
triggering transcript degradation. From the disease-causing nucleotide substitutions that 
are listed in the Human Gene Mutation Database, a 14% is being thought to cause pre-
mRNA splicing disruption, while only 2% of missense mutations disrupt pre-mRNA 
splicing [8]. Such sequences that disrupt the splicing procedure do not only cause 
disease but also influence its severity. Identifying mutations that disrupt pre-mRNA 
splicing becomes gradually an important field in the therapeutic treatment [8]. 

 

                                            

1
 In computational genomics, k-mers are all the possible subsequences of length k from a read obtained 

through DNA Sequencing. K-mers are often used in sequence alignments [30].   
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2.1.1 Splice Site Motifs  

Significant scientific work proves that there are a few motifs of great importance in order 
to discover with high possibility a splice site. Thus, using such biological information has 
a result to achieve higher prediction accuracy. 

Below, are some of the motifs listed [5]: 

 Most introns start from the sequence GT. This dimer is a motif for most donor 
sites and the general motif is “mrgGTrag”. 

 Most introns end with the sequence AG. This dimer is a motif for most 
acceptor sites and the general motif is “yAGr”. 

 The branch site is a motif within introns and has the consensus sequence 
“ynyyrAy” where the position of “A” nucleotide is fully conserved. This motif is 
being detected 20-50 nucleotides before the acceptor dimer AG. 

 The last motif Py (rich-Pyrimidine) is being detected between branch site and 
acceptor dimer AG. This part of the sequence has high possibility of Cytosine 
and Thymine appearances.    

 

 

Image 2.3: Pyrimidine-CT, Purine-AG residues, Py-Pyrimidine rich motifs [18]. 

 

2.2 Phylogenetic Analysis 

Nowadays, Bioinformatics and Computational Biology develop new methods in order to 
understand various biological processes [9]. One of these studies involve the 
exploration of evolutionary relationships between living organisms using phylogenetic 
analysis. 

Phylogenetic analysis is a method that allows the reporting and evaluation of 
evolutionary relationships [19]. 

 

Image 2.4: Phylogenetic tree example [20]. 
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The evolutionary process resulting from the information of phylogenetic analysis 
typically is displayed by branches and tree diagrams. A simple phylogenetic analysis 
consists of four stages [19]:  

 Alignment - Creation of a data model and exporting phylogenetic dataset. 
 Replacement Model Determination - Substitution Model 
 Tree Construction 
 Tree Evaluation 

 
Each step is crucial for the analysis and should be treated accordingly. For example, 
trees depend on the alignment they are based on. Therefore, the better the alignment 
has been made the better the results for the construction of the tree are. When 
performing a phylogenetic analysis it is enlightening to construct trees based on 
different modifications of the alignment to see how the proposed alignment affects the 
resulting tree. Phylogenetic sequence data usually consists of multiple sequence 
alignments [19]. In the following image the multiple sequence alignment procedure is 
being presented in the upper part, where three or more biological sequences (protein or 
nucleic acid) of similar length are being aligned. From the output, homology can be 
inferred and the evolutionary relationships between the sequences studied [31]. The 
phylogenetic tree that is being produced is shown below.    

 

 

Image 2.5: Phylogenetic Analysis [21]. 

The use of conserved regions for phylogenetic analysis is also an important issue that 
one has to consider since incorrect phylogeny can arise due to historically insignificant 
signals (Axelsen and Palmgren, 1998, Naylor and Brown, 1998) [14]. 

A typical rule wants closely related organisms to have more common biochemical 
processes. The difficulty of carrying out biochemical experiments, differentiates from 
organism to organism, resulting an easier or harder analysis respectively. Biological 
research aims to understand more such biological complexity. This knowledge can be 
transferred in turn to other organisms by verifying or refining models.  
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3. MACHINE LEARNING TECHNIQUES 

3.1 Classification Algorithms 

In this work, we focused on using different machine learning techniques in order to deal 
with the splice sites prediction problem. More specifically we used the N-gram graphs 
representation combined with the biological information of features in order to train a 
classifier and predict splice sites. At this point two algorithms are being proposed, 
namely the “Similarity of source and target data algorithm” and the “Target Data 
Transformation algorithm” concerning the data optimization aiming the classifiers’ better 
adaptation. Furthermore the CRF probabilistic model has been used in combination with 
specific patterns and nucleotide motifs. In this way CRF establishes splice site 
recognition as well.   

 

3.2 Transfer Learning 

The field of Machine Learning is a promising field of computer science giving the 
opportunity to study and construct algorithms with the ability of “learning” and even 
“predicting” data.  

While traditional methods use statistical model strained with previously labeled or 
unlabeled data assuming the same distribution, the method of Transfer Learning allows 
diversity in both distributions and domains. It is now possible to use prior knowledge for 
faster and optimized problem solving [6]. 

In case of few labeled data semi-supervised classification addresses this issue by 
using a large amount of unlabeled data and a small amount of labeled data. A variety of 
supervised and semi-supervised cases have been studied in order to deal with 
imperfect data sets. However most of the times distributions are assumed to be the 
same for both labeled and unlabeled data, unlike transfer learning, where domains 
and distributions may differ [6]. 

Since 1995, transfer learning research appears under various names such as learning 
to learn, life-long learning, knowledge transfer, inductive transfer, multitask learning, 
knowledge consolidation, context-sensitive learning, knowledge-based inductive bias 
and others. Between them, multitask learning framework learns multiple different 
tasks simultaneously [6]. 

On the other hand, Multitask Learning learns both, the source and target tasks 
simultaneously, while Transfer Learning tries boosting target’s domain’s performance by 
using the source domain data. In this way, weights of the loss functions are the same 
for both, source and target data, unlike to the approach of Transfer Learning, where loss 
functions may differ [6]. 

Daily, we face a variety of transfer learning situations. For example, we learn 
recognizing and distinguishing fruits, or playing an organ in order to learn another 
afterwards. Transfer learning is based in applying such previously learned knowledge in 
order to solve problems [6]. 

 

3.2.1 Transfer Learning Approaches 

Three are the main issues in transfer learning one has to deal with [6]:  
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 what to transfer: what part of knowledge can be transferred 
 

 how to transfer: algorithms needed in order to transfer knowledge 
 

 when to transfer: in which situations transferring should be done 
 
 

There are three basic approaches of Transfer Learning [3]:  

 

 Inductive Transfer Learning 

The target task is different from the source task requiring some labeled data 
inducing an objective predictive model. According to the labeled and unlabeled data in 
the source domain, two categories are further distinguished [3]: 

 There are labeled data available in the source domain. Note that in this case, 
inductive transfer learning is similar to the multitask learning [6]. 
 

 No labeled data are available in the source domain. Note that in this case, 
inductive transfer learning is similar to the self-taught learning, where the 
label spaces between the source and target domains may differ, suggesting 
that the side information of the source domain cannot be used directly [6]. 

Following is the definition of Inductive Transfer Learning:  

“Given a source domain DS and a learning task TS, a target domain DT and a learning 
task TT, inductive transfer learning aims to help improve the learning of the target 
predictive function ƒT(·) in DT using the knowledge in DS and TS, where TS ≠ TT” [6].  

 

 Transductive Transfer Learning 

Although the meaning of “transductive” in the traditional machine learning approach, 
refers to the situation where all test data are required to be seen at training time, and 
that the learned model cannot be reused for future data, our work will sink to the 
definition based on the report of [6], were “transductive learning” is described the 
situation where the tasks must be the same and all target domain data are 
unlabeled[6]. 

 

Following is the definition of Transductive Transfer Learning:  

“Given a source domain DS and a corresponding learning task TS, a target domain DT 
and a corresponding learning task TT, transductive transfer learning aims to improve the 
learning of the target predictive function ƒT(·) in DT using the knowledge in DS and TS, 
where DS ≠DT and TS= TT. In addition, some unlabeled target-domain data must be 
available at training time” [6]. 

In other words, the source and target domain have the same tasks and the predictive 
function can be adjusted properly into the target domain in order to predict unlabeled 
target-domain data [6]. 
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 Unsupervised Transfer Learning 
No labeled data are available in the source and target domains [3].  Data 
representations (or similarity and kernel matrices) need to be produced that will 
be evaluated on supervised learning tasks. 

Following is the definition of Unsupervised Transfer Learning:  

“Given a source domain DS with a learning task TS, a target domain DT and a 
corresponding learning task TT, unsupervised transfer learning aims to help improve the 
learning of the target predictive function ƒT(·) in DT using the knowledge in DS and TS, 
where TS ≠TT and YS and YT are not observable” [6]. 
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4. STATE OF THE ART TOOLS AND ALGORITHMS 

4.1 Splice Site Prediction Tools 

This chapter presents related work in the field of splice site prediction. In the following 
table some tools are presented: 

 

Table 4.1: Splice Site Prediction Tools. 

Program Organism Method  

GeneSplicer  Arabidopsis, human HMM + MDD  

NETPLANTGENE  Arabidopsis   NN  

NETGENE    Human, C.elegans, Arabidopsis NN + HMM  

SPLICEVIEW Eukaryotes Score with consensus  

NNSPLICE Drosophila, humanorother NN     

SPLICE PREDICTOR Arabidopsis,maize linear models  

BCM-SPL  Human,  Drosophila, C.elegans  Linear 

 

4.2 Splice Site Prediction Algorithms 

In order to predict splice sites, various classification based methods have been used. 
The basic idea using such classification is to use a splice site sequence as a feature 
vector. The classifier uses the feature vectors of training samples as input in order to 
train model. The classifier can now predict the splice sites [5].  

The main steps in splice sites classification are: 

 

 Feature extraction 

Proper input representation plays an important role for the classifier. In this step, 
orthogonal encoding is used because of its simple processing and effectiveness 
as we already mentioned. Orthogonal encoding is often used to encode DNA 
sequences by features vectors. Each nucleotide is being represented with four 
binary bits, from which only one has the value 1 to represent one of the possible 
explicit values. This simple mapping procedure allows better classification 
results. In case of more fuzzy input data, Salekdeh et al. proposed a schema by 
which only four encoding patterns are used [5].  

 
 Classification 

A set of labeled training data is used to train a classifier, resulting a classifier that 
separates the categories of sequence samples. For this purpose, different 
classification techniques are being used, including artificial neural networks 
(ANN), support vector machines (SVM) etc. with the latter providing very good 
results in splice site detection due to its high accuracies [5]. 
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Various methods have been used for splice site recognition. Kernel-based  and feature 
based methods are some of them, with the first having achieved really good 
performances in many species [17]. Other splice site detectors proposed linear SVMs 
on binary features, which achieved better results than previous Markov models [4]. 
Other methods have used multilayer neural networks with Markovian probabilities as 
inputs. More specifically, three Markov models have been trained on three segments of 
the input sequence, the upstream, signal and downstream segments. Although the 
results were satisfactory for small datasets, the slow training of the neural networks for 
imbalanced number of true and decoy examples, forced the authors to downsample the 
number of negatives for training [4]. Finally, a Bayesian Network based method, models 
statistical dependencies between nucleotide positions [4]. 

 

An important process in the classification of splice sites is the feature extraction. Two 
basic and well known methods are: 

 Probabilistic models and 
 Encoding schema 

 
Probabilistic models are available to model local sequence behavior. On the other 
hand, in the Encoding schema such as the orthogonal encoding, nucleotides in 
sequence are viewed as unordered categorical values. Although orthogonal encoding is 
a method that is widely used because of its effectiveness, its accuracy can be 
influenced in case of ignoring the orders of nucleotides and codon usage. Therefore, a 
more effective feature extraction method is needed in order to improve the accuracy, 
transforming splice site sequence to a feature vector [5]. 

Feature-based methods aim to identify features that can be distinguished. The Feature 
Generation Algorithm (FGA) is such a method for splice site prediction having achieved 
good results [17]. 

There are cases in which splicing occurrences introduce premature termination codons 
triggering transcript degradation. From the disease-causing nucleotide substitutions that 
are listed in the Human Gene Mutation Database, a 14% is being thought to cause pre-
mRNA splicing disruption, while only 2% of missense mutations disrupt pre-mRNA 
splicing [8]. Such sequences that disrupt the splicing procedure do not only cause 
disease but also influence its severity. Identifying mutations that disrupt pre-mRNA 
splicing becomes gradually an important field in the therapeutic treatment [8]. 

Some results from similar work are being represented [1][2][3]. We chose the most 
stable and higher performed algorithms.  

 

Below the compared algorithms are being analyzed: 

 
 SVMS,T : The idea of dual task is to have simultaneous optimization of both models 

and similarity between the solution enforced. In case of little target data availability, 
the training on source data performs much better than training on the target data, 
otherwise training on target data easily outperforms training the source data [1].   
 



Splice Site Prediction Using Transfer Learning 

 

S. Kazantzidis   25 

 

 

Figure 4.1: Diagram for Dual task. 

 

 NBT and A1: Both are baseline naïve Bayes classifiers trained on target labeled 
and source data and they are both probabilistic models as well. The first one is a 
Naïve Bayes Tree classifier while the second one is based on improving the 
multinomial Naïve Bayes classifier, in which low weights are assigned to the target 
data [2]. 
  

 AFMS: The idea of All Features Majority Strategy (AFMS), is to use majority voting 
between the four representations of each sequence. In case of a tie the highest sum 
of absolute values is selected. It is observed that knowledge obtained from the 
source domain is better to be used only for the initialization of the centroids and not 
during the iterations. AFMS is a stable algorithm in many cases, without extreme 
oscillations. The classification potential of this strategy seems to achieve high 
performances in most organisms [3].  
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5. PROPOSED APPROACH 

5.1 Introduction 

In this work, we propose a new method for the problem of splice sites recognition. The 
method combines the use of biological features with different representations such as 
the N-gram graphs. Different classifiers are studied in order to choose the most 
appropriate for our problem setting. The CRF (Conditional Random Field) algorithm, 
which is also widely used in the field of gene prediction, is being studied as well.   

The choice of the N-gram graph representation is based on the fact that it provides 
accurate results in machine learning problems [3][7]. With the use of the biological 
features’ information, these rates increase further. In our research, due to unbalanced 
data, we have chosen to study the F-measure statistic, in order to get more 
representative results.  

With the help of the N-gram graphs, features can be extracted. Using each DNA 
sequence and with the help of N-gram graphs’ similarity we obtain our first two features, 
the splice sites and non-splice sites respectively. This procedure is done both in the 
target and in the source domain as well. 

At this point it should be noted that in order to avoid overfitting we used 70% of the 
training set. Also in multiple source domains, where the source domain has more than 
one species, two solutions were tested: 

 1st solution: We took into account the merging of the source domain’s mean 
graphs. 

 2nd solution: A second approach could be applied by choosing the closest 
source domain in accordance with the target domain. This decision could be 
taken based on a phylogenetic analysis. We followed the first approach since 
we achieved better results. 
 

Our algorithm is trained for one species while we try to adapt the classifier to make 
splice site prediction for a different one. The feature vector we use is the same in both 
source and target domains. Comparing the distributions of the features of the source 
and target domains, if we could manage to customize them in an appropriate manner in 
order to behave similarly, then we would relegate the issue in a Machine Learning 
problem and solve it as usual [23]. 

In this study, we examine two algorithms. The first one provides the most similar 
sequences to the classifier, while the second transforms the test data in order to bridge 
the gap with the training data. 

 

5.2 Algorithms for transfer learning optimization 

In this section we propose two algorithms which will try to optimize the data aiming the 
classifiers’ better adaptation. 

 

5.2.1 First Algorithm-Similarity of source and target data 

The basic idea of the first approach concerns the merging of instances from the source 
domain that are more similar to those of the target domain. 
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Having the source data we will distinguish them in splice sites (label -1) and non splice 
sites (label 1). Respectively for the target domain, using K Means algorithm [3] we split 
the data into two clusters and use the SVM classifier, which characterizes the cluster 
with the bigger amount of non splice sites sequences as a “non splice sites cluster”. 
Respectively, the amount of splice sites sequences is being considered for the splice 
sites cluster. At this point, source and target data have been characterized. We obtain 
the most similar (negative from source with negative from target and positive from 
source with positive from target) between them with the use of the cosine distance. The 
data produced are added to the training data. With the new training set we train the 
SVM classifier and learn a model in order to be able to classify. 

 

In the following diagram, one can see the workflow of the Similarity Algorithm:  

 

 

Image 5.1: Similarity Algorithm Workflow. 

 

5.2.2 Second Algorithm-Target Data Transformation 

The main idea described in the following algorithm, which is conceived from the paper 
[3], is as follows:  

As in the first algorithm, the most similar source and target data are obtained in the 
same way. Based on the following equation (1), we transform the initial target data with 
the help of the mean values of the similar data. For instance, calculating the mean value 
of a feature, of each similar-source and similar-target data, and defining a static value 
“a”, the distributions of each feature approximate each other [32]. 

 

                 
                       

                    
   (1) 
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In the following diagram the workflow of the Data Transformation Algorithm is being 
presented: 

 

 

Image 5.2: Data Transformation Algorithm Workflow. 

 

5.3 Sequence Representation  

5.3.1 N-Gram Graphs 

N-gram graph representation, has been proposed widely in the field of natural language 
processing. An initial definition that could be given describes n-gram as a possibly 
ordered set of words that contains n elements [7]. N-gram graph representation 
methodology manages to capture local and global characteristics of the analyzed 
sequences [3].  

Based on the definition, the N-gram graph (NGG) is a graph G=<VG,EG,L,W>, where VG 

is the set of vertices, EG is the set of edges, L is a function assigning a label to each 
vertex and to each edge and W is a function assigning a weight to every edge. The 

graph has n-grams labeling its vertices σG  VG. The edges eG EG connecting the n-
grams indicate proximity of the corresponding vertex n-grams. The weight of the edges 
can indicate a variety of traits. 

It is important to note that in N-gram graphs each vertex is unique. In order to create the 
n-gram graph from a given sequence, a fixed-width window Dwin of characters around a 
given n-gram N0 is used. All character n-grams within the window are considered to be 
neighbors of N0.These neighbors are represented as connected vertices in the text 



Splice Site Prediction Using Transfer Learning 

 

S. Kazantzidis   29 

graph. Each edge e=<a,b> is weighted based on the number of co-occurrences of the 
neighbors within a window in the sequence [3][7].  

The idea of our first approach uses the N-gram graphs in which close subsequences 
consist of a crucial part of the sequence. Essentially, the N-gram graph is a histogram of 
symbols’ co-occurrences which are captured when found into a maximum distance 
(window) of each other. Also, it’s worth noting that N-gram graphs are deterministic, 
they offer more information based on the representation of co-occurrences, they provide 
trade-off between expressiveness and generalization and they can be combined with 
vector representation of sequences in order to allow machine learning techniques to 
classify sequences [22]. 

The n-gram graph, compared to other representation methods, differs in many areas 
from the typical graphs structure [7].  

 

 In case of a feature vector creation from an N-gram graph, in which the edges 
are the dimensions of the feature vector, the indirect relation between vertices 
is lost.  

 If one uses the same information in order to construct a vector then there is 
high complexity in the transformation process 

 Using N-gram graph representation in Natural Language Processing, no 
assumption can be made about the underlying language as a result the 
representation is made language-neutral and independent of writing 
orientation. 

 The N-gram graph can be used in many applications, such as text 
representation, gene prediction etc. 
 
 

5.3.2 N-gram Graphs Algorithm 

The algorithm we used for N-gram graph extraction of a sequence has the following 
main steps [7]: 

 

 Initializing the N-gram graph by setting the parameters. 
 For each sequence a graph is being created. 
 Merging graphs to a mean graph for both labels.  

 
Having the necessary data information for each species, namely the sequences and 
their labels (positive or negative), two features are being extracted. The first step is to 
draw mean graphs for labeled and unlabeled data. Mean graphs are generated from the 
training set where the labels are known. 
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Image 5.3: Mean graph creation. 

With the help of the mean N-gram graphs for each species two features can be 
extracted. The first one concerns the negative-unlabeled data and the second the 
positive-labeled data. Simultaneously, biological features for each sequence are being 
created as well.  

Having created the features for each species, with the help of a classifier we can 
perform evaluation and estimate the accuracy and F-measure in order to check the 
algorithm’s success rates. At this point several classifiers have been tested such as the 
Decision Tree, SVM with RBF kernel, Linear SVM and others. 

 

5.3.3 Biological Features 

At the same time, biological features for each sequence are being created. The 
biological features are the following: 

 The nucleotide occurrences’ rates (see 6.2 section). 
 The sum of the occurrences’ rates of the purine and pyrimidine cores, in order 

to express the probability of more frequent C and T nucleotides’ occurrence. 
 The branch site Motif “ynyyrAy”. This motif is being detected 20-50 

nucleotides before the acceptor dimer AG. 
 Acceptor Motif “AG”. This dimer is a motif for most acceptor sites and the 

general motif is “yAGr”.  
 Donor Motif “GT”. This dimer is a motif for most donor sites and the general 

motif is “mrgGTrag”. 
 The Pairwise Alignment Score (see 6.2 section). 

 

Image 5.4: Splice site Motifs [24]. 
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5.4 N-gram Graph Parameters 

N-gram graph has some values that must be initialized such as min, max and distance 
value. The distance is a window, while min and max values are the limits for the size of 
the combinations that can be made in this window. Depending on these values, a 
feature can obtain high resolution efficiency.  

These values were selected experimentally, having in mind that triplets of nucleotides 
are being used during the DNA translation process (e.g. defining min=3, max=4 and 
distance=3, N-gram graph will represent the sequences with motifs consisted of three 
and four nucleotides). 

 

5.5 Phylogenetic Analysis 

Phylogenetic analysis helps improve the transfer learning approach by showing the 
phylogenetic distance between species. In this way one can classify them in order to 
have better visualization and put a weight on more significant data. For example, those 
that are present in a same branch, have probably the same genes as well. The closer 
the species, the more similar the data is, and thus the splice sites will have a 
corresponding similarity. 

Due to unbalanced data, i.e. the number of non splice site instances is greater than the 
number of splice site instances, and because we are facing a multiple source domain 
problem we can use weights for each instance helping the classifier to achieve higher 
resolution efficiency. 

In the picture below, our approach in finding splice sites is being represented using 
phylogenetic analysis, which will provide us with the distance matrix (Distance Matrix) 
with the phylogenetic distances of our species. 

 

 

Image 5.5: Phylogenetic Analysis Steps. 

. 

For the application of weights we propose the following: 

Firstly, we put weights in each instance through phylogenetic analysis. This will lead to 
help the algorithm to give greater weights to instances from the source domain which is 
phylogenetically close to the target domain. This solution helps the multiple source 
domain approach. 

Having received a conserved region that is in all species (i.e. a protein [14]), we applied 
the multiple source domain approach and got the distance matrix, which we then 
converted into rates. We obtained this information in order to give weights to the 
instances. 

Secondly, according to the number of instances that each label has, we put a weight. 
For example, if we have 1000 instances of which 70% are characterized with label -1 
and 30% with label 1 we could define a weight "x" for the labels -1 and a weight "2x" for 
the label 1. 
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Finally, we used the cosine distance in order to get the similarity. Afterwards we get for 
each instance the similarity rate with respect to the data set and that is being used as 
the instance’s weight. 

 

                    
    

| | | |
 

∑     
 
   

√∑   
  

   √∑   
  

   

 

 

With very little data, features and instances, the algorithm converges to very good 
results with respect to those that already exist and in relatively quick time. 

 

5.6 Classifiers 

Having the features for each species, several classifiers have been tested such as the 
Decision Tree, SVM with RBF kernel, Linear SVM and others in order to perform 
evaluation.  

Generally, in order to choose classifiers one has to have the following characteristics in 
mind [33]: 

 Computational cost 

 Expected data types of features/labels 

 Suitability for certain sizes and dimensions of data sets 

 Fast performance 

 Good accuracies 

 Good error approximation 

 

As one can notice from the “Experiments and Results” section, KNN and SVM 
classifiers performed best.  

 

5.7 CRF 

The algorithm we used has the following steps: 

 Create patterns for the CRF [25]. 
 Use of Wapiti program (See Experiments). 

The patterns created have forms such as those shown in the following image [25]: 
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Image 5.6: CRF patterns [25]. 

 

For example, using the SubType “bi”, crf will take incidence rates for each nucleotide, 
while using the SubType “bi, bi+1” crf will take incidence rates for all dimers and so on.  
From these patterns, features are being created from the crf program, that are nothing 
more but nucleotide motifs. Those compose a model which is being used in order to 
take a decision concerning each nucleotides label.  

In our approach, for each sequence, we sum up CRF’s decision in order to decide 
whether the specific sequence is a splice site or not. In other words, if the sum is 
positive, then the sequence is a splice site. 
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6. EXPERIMENTS AND RESULTS 

6.1 Experimental Setup 

From the references [1] one can see that the dataset was taken from the Rätsch lab 
(http://cbio.mskcc.org/public/raetschlab/user/behr/splicing/), and so did we. The main 
idea is to recognize splice sites in different species. In most experiments, C.elegans is 
being used as a source domain and the other species as target domain. 

Our dataset, provided by the Rätsch laboratory, consists of sequences of the following 
species, from which we used only the acceptor splice sites: 

 A_thaliana 

 C_elegans 

 D_melanogaster 

 D_rerio 

 H_sapiens 

 

 

Image 6.1: The distance in years between C. elegans and other species. 

 

The dataset consists of sequences that are made up from 200 nucleotides and only a 
1% from the dataset is a splice site (positive instances). All these approaches use a few 
instances from the target domain in order to train their algorithm and the rest of the 
sequences are used for evaluation. 

Having our preprocessed dataset (See APPENDIX 1), we choose some data for our 
experiments. For instance, we choose randomly 40.000 sequences from the Fasta file, 
in which 70% are non-labeled and 30% labeled data, in order to represent real world 
data.  

Evaluation is being performed and the F-measure metrics are being estimated in order 
to check our algorithms’ success rates. Different classifiers have been tested such as 
the Decision Tree, SVM with RBF kernel, Linear SVM and others. Furthermore, with the 
Libsvm library we tested linear and polynomial kernel and finally the KNN classifier was 
studied in which the 3-ΝΝ and 21-ΝΝ were tested, having used the Manhattan distance. 

http://cbio.mskcc.org/public/raetschlab/user/behr/splicing/
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Concerning the CRF algorithm the Wapiti program was used. Wapiti is a program for  
training and using discriminative sequence labeling models with various algorithms 
using an elastic penalty. It currently implements maxent models, maximum entropy 
Markov models (MEMM) and linear-chain conditional random fields (CRF) models. It 
can work in different mode depending on the first argument, either training a model, 
labeling new data, or dumping a model in readable form [28].  

In our case, we used Wapiti as a CRF algorithm program. It receives as parameters two 
files, the training and test set. These files have the following structure: The DNA 
sequences are represented in a file in which each line represents a nucleotide and the 
label of the sequence it belongs. Also, sequences are being separated by an empty line. 

The patterns are set in a separate file and those will be followed by the CRF algorithm 
in order to extract results. Having tried various patterns we conclude to those that 
resulted optimally. 

Having CRF’s prediction results for each test set, summing up the nucleotides’ labels’ 
results from each sequence, a decision is being taken in order to clarify if the label of 
the particular sequence is negative or positive. This experiment was performed with 
16.000 sequences.  

6.2 Feature Extraction 

The biological features mentioned previously where extracted using a dynamic 
algorithm. In the case of the nucleotide occurrences’ rates, the user can choose the 
number of nucleotides as done in K-mer as well. Concerning the pairwise alignment 
score, the Biojava package global alignment is being applied between each sequence 
and the mean graph’s sequence. In this way we get two features, comparing the 
similarity of the sequence with the string that uniquely characterizes the mean graph 
with unlabeled data and the string that uniquely characterizes the mean graph with 
labeled data respectively.  

 

6.3 NGRAM Parameters 

Table 6.1: Choosing min, max and distance parameters, with KNN classifier and 6.500 entries. 

             Species                                       
Ngram-
Parameters  

H_sapiens D_rerio D_melanogaster C_elegans A_thaliana 

Μ:8,Μ:8,D:1 0.86 0.71 0.82 0.75 0.74 

Μ:4,Μ:6,D:2 0.82 0.80 0.83 0.81 0.81 

Μ:2,Μ:4,D:3 0.81 0.79 0.82 0.80 0.80 

Μ:2,Μ:4,D:2 0.80 0.80 0.83 0.79 0.81 

Μ:3,Μ:4,D:3 0.81 0.80 0.83 0.81 0.81 

Μ:4,Μ:4,D:1 0.81 0.81 0.83 0.80 0.81 

Μ:3,Μ:3,D:3 0.82 0.80 0.84 0.81 0.80 

Μ:6,Μ:6,D:1 0.83 0.80 0.82 0.80 0.81 

Μ:3,Μ:5,D:3 0.82 0.80 0.83 0.80 0.80 

Μ:3,Μ:3,D:2 0.81 0.80 0.83 0.80 0.80 

 

In the above table, we chose several values (F-measure) for the parameters of the N-
gram graph algorithm. We noticed that we achieve the best results with the bolded 
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values. We ended up choosing the values: min=3, max= 4 and distance=3. It is also 
worth noting that each cell of the table represents the average of each target domain 
(i.e. for each species) that comes up. The data have been presented appropriately in 
order to show the differences and achieve better visualization. 

 

Table 6.2: Using whole or part of the sequence, with KNN classifier and 6.500 entries. 

             Species                                       
Ngram-
Parameters 

H_sapiens D_rerio D_melanogaster C_elegans A_thaliana 

Μ:4,Μ:6,D:2 All:  
                  Part:     

0.82 0.81 0.83 0.81 0.81 

0.80 0.78 0.79 0.78 0.79 

Μ:3,Μ:4,D:3 All:  
                  Part:     

0.81 0.81 0.84 0.81 0.81 

0.81 0.79 0.82 0.79 0.80 

Μ:3,Μ:3,D:3 All:  
                  Part:     

0.81 0.80 0.84 0.80 0.81 

0.81 0.79 0.81 0.79 0.79 

 

The above table shows the optimal parameter sets from the experiment mentioned 
previously and compares the results that are obtained using whether the whole 
sequence or part of it. This part of the sequence uses 50 nucleotides left of the acceptor 
site, due to the biological information that is located in this area. We note that the results 
do not differentiate a lot as we saw before. Nevertheless we are choosing the set 
min=3, max= 4 and distance= 3, because of the lower computational costs and slightly 
higher results achievement. Another fact that has been observed was that by using only 
a 1/4 of the sequence (50 nucleotides) the specific set of parameters gives results 
similar to those of the entire sequence reducing further the computational costs 
mentioned above. 

But this is not a coincidence at all because according to the approaches of paperwork 
[29] that use K-mers we notice that best results are being achieved when we use 4-mer 
and 6-mer. So in our case these values help features’ generalization capability and as a 
result we can export better results in transfer learning as well. 

 

Table 6.3: KNN classifier. 

                  Entries 
Species 

1000 2500 6500 16000 

H_sapiens_acc 0.99 0.99 0.99 0.98 

D_rerio_acc 0.99 0.99 0.99 0.98 

D_melanogaster_acc 0.99 0.99 0.98 0.98 

C_elegans_acc 0.97 0.98 0.96 0.95 

A_thaliana_acc 0.97 0.98 0.97 0.95 

 

In the table above we have used the source and the target domain of the same species. 
The columns describe the number of sequences taken into account in each experiment 
while the lines describe the target domain (species). Finally, we chose the parameters 
set of min=8, max=8 and distance=1 for the N-gram graph algorithm, achieving best 
results and low costs simultaneously. We ended up using 6.500 sequences for our 
experiments. 
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6.4 Choosing Classifier 

 

Image 6.2: Comparing Classifiers. 

In the above diagram we see the various classifiers that have been used and the 
averages of the results (i.e. averages of the target domain) for each species. We notice 
that the best results are being produced using the KNN classifier. The species have 
been sorted according to their phylogenetic distances. Thus, the more the 
phylogenetical distance from the species grows, the more the rates decline. 

 

Table 6.4: KNN overall results. 

                 Source 
Target 

H_sapiens D_rerio D_melanogaster C_elegans A_thaliana 

H_sapiens  0.87   0.82   0.84   0.76   0.76 

D_rerio  0.77   0.86   0.83   0.76   0.81 

D_melanogaster  0.84   0.83   0.89   0.84   0.80 

C_elegans  0.78   0.75   0.82   0.87   0.80 

A_thaliana  0.79   0.81   0.80   0.81   0.84 

 

The classifiers that were used and studied are, the decision tree, the SVM classifier 
which was tested with several kernels such as RBF Kernel and who had the best 
results. Furthermore, with the Libsvm library we tested linear and polynomial kernel and 
finally the KNN classifier was studied in which the 3-ΝΝ and 21-ΝΝ were tested, having 
used the Manhattan distance. 
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6.5 Unbalanced Data 

Having received a conserved region that is in all species (i.e. a protein [14]), the multiple 
source domain approach was applied in previous section. Following, the distance matrix 
is being shown, which was converted into rates. 

 

Table 6.5: Distance Matrix. 

       Species H_sapiens D_rerio D_melanogaster C_elegans A_thaliana 

H_sapiens 100.00 44.44 37.66 29.86 17.92 

D_rerio 44.44 100.00 33.83 28.51 16.62 

D_melanogaster 37.66 33.83 100.00 29.46 13.99 

C_elegans 29.86 28.51 29.46 100.00 16.90 

A_thaliana 17.92 16.62 13.99 16.90 100.00 

 

6.6 Similarity of Source and Target Data  

Having trained the classifier with the new training set, the accuracy of our algorithm is 
being presented in the following table: 

 

Table 6.6: First Algorithm results. 

                 Source 
Target 

H_sapiens D_rerio D_melanogaster C_elegans A_thaliana 

H_sapiens  0.84   0.83   0.87   0.82   0.82 

D_rerio  0.81   0.84   0.83   0.75   0.80 

D_melanogaster  0.81   0.82   0.86   0.84   0.82 

C_elegans  0.80   0.72   0.83   0.87   0.78 

A_thaliana  0.79   0.82   0.79   0.80   0.83 

 

The algorithm having as main characteristic the similarity and taking advantage of the 
testing data, achieves stability and improves results. Below we can see an overall 
picture-diagram with the classifiers. 
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Image 6.3: Best Classifiers Comparison with first algorithm. 

 

6.7 Target Data Transformation  

 

Table 6.7: Second Algorithm results. 

                 Source 
Target 

H_sapiens D_rerio D_melanogaster C_elegans A_thaliana 

H_sapiens  0.82   0.83   0.85   0.78   0.77 

D_rerio  0.79   0.81   0.82   0.72   0.80 

D_melanogaster  0.81   0.67   0.86   0.80   0.78 

C_elegans  0.81   0.60   0.84   0.87   0.76 

A_thaliana  0.81   0.79   0.79   0.78   0.83 

 

Although the algorithm uses as essential characteristic the transformation and the 
similarity and takes advantage of the testing data we do not notice improved results. 
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Image 6.4: Best Classifiers Comparison with second algorithm. 

 

6.8 NGRAM (Multiple Source Domain) 

The previously mentioned algorithms (Similarity of source and target data algorithm and 
Target Data Transformation algorithm), were also studied with the Multiple Source 
Domain approach. In the following table Homo Sapiens Species is notated as “S” or 
“Sap”, Rerio species is notated as “R” or “Rer”, Melanogaster species is notated as “M” 
or “Melang”, Elegans species as “E” or “Eleg” and finally Thaliana species is notated as 
“T” or “Thal”. The horizontal row of the species presents the source domains and the 
first column presents the target domains. Finally, in case the same species is included 
in the source and the target domain simultaneously, the task is being interrupted 
immediately and visualized as zeros. The results are listed below: 

 

Table 6.8: Multiple Source Domain results for the KNN. 

Species M,R  M,T M,S S,R S,T M,E R,T S,E R,E  T,E 

Sap.   0.84   0.83   0.00   0.00   0.00   0.82   0.82   0.00   0.82   0.77 

Rer.   0.00   0.84   0.82   0.00   0.80   0.82   0.00   0.81   0.00   0.80 

Melang.   0.00   0.00   0.00   0.85   0.83   0.00   0.84   0.85   0.85   0.83 

Eleg.   0.83   0.83   0.83   0.80   0.81   0.00   0.79   0.00   0.00   0.00 

Thal.   0.81   0.00   0.81   0.81   0.00   0.81   0.00   0.81   0.82   0.00 
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Table 6.9: Multiple Source Domain results for the first algorithm. 

Species M,R  M,T M,S S,R S,T M,E R,T S,E R,E  T,E 

Sap.   0.86   0.86   0.00   0.00   0.00   0.85   0.85   0.00   0.84   0.77 

Rer.   0.00   0.81   0.82   0.00   0.81   0.81   0.00   0.81   0.00   0.79 

Melang.   0.00   0.00   0.00   0.81   0.82   0.00   0.85   0.82   0.84   0.85 

Eleg.   0.83   0.84   0.83   0.78   0.80   0.00   0.81   0.00   0.00   0.00 

Thal.   0.80   0.00   0.79   0.81   0.00   0.81   0.00   0.82   0.82   0.00 

 

 

Table 6.10: Multiple Source Domain results for the second algorithm. 

Species M,R  M,T M,S S,R S,T M,E R,T S,E R,E  T,E 

Sap.   0.83   0.83   0.00   0.00   0.00   0.83   0.83   0.00   0.83   0.83 

Rer.   0.00   0.80   0.81   0.00   0.76   0.80   0.00   0.78   0.00   0.79 

Melang.   0.00   0.00   0.00   0.78   0.78   0.00   0.84   0.81   0.84   0.82 

Eleg.   0.81   0.83   0.83   0.75   0.79   0.00   0.81   0.00   0.00   0.00 

Thal.   0.77   0.00   0.79   0.76   0.00   0.80   0.00   0.80   0.81   0.00 

 

Comparing the averages, we notice that the results remain constant. Also, when we 
have two species on the source domain, target domain’s value is very close to the 
corresponding values that would have resulted if we had each source domain 
separately. For example if we had as source domain the Melanogaster and Thaliana 
species and as target domain the Homo Sapiens species then the target value would 
range between Melanogaster/Sapiens and Thaliana/Sapiens values. 
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Image 6.5: Comparing Classifiers for the Multiple Source Domain. 

 

6.9 N-gram Graph Comparison with State-of-the-art 

Following, the overall results are being presented, compared with the state of the art 
algorithms mentioned in previous chapter. The performance of the models are 
evaluated by measuring the accuracy in terms of area under the Receiver Operator 
Characteristic Curve (auROC). Furthermore C.elegans data were used as training set 
while all the other species as test set in order to compare our approach with the State of 
the art approaches: 
 
 

Table 6.11: D. melanogaster. 

 
Algorithms 

Sequences 

2500 6500 16000 40000 

SVMS,T 40.80 37.87 52.33 58.17 

NBT 13.87 25.00 35.28 45.85 

A1 25.83 32.58 39.10 47.49 

AFMS a=1 67 - - - 

CRF 38 46 53 - 

Alg. 1 85 85 81 79 

Alg. 2 83 78 74 74 
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Table 6.12: A. thaliana. 

 
Algorithms 

Sequences 

2500 6500 16000 40000 

SVMS,T 24.21 27.30 38.46 49.75 

NBT 3.10 8.76 28.11 40.92 

A1 3.99 13.96 33.62 43.20 

AFMS a=1 53 - - - 

CRF 25 39 51 - 

Alg. 1 83 80 78 78 

Alg. 2 82 76 69 72 

 

State of the art algorithms are based in probabilistic models and when they use bigger 
data sets for training in order to achieve better performances, success rates increase 
with the computational costs simultaneously.   

In our approach, we took advantage of both the N-gram graphs and the biological 
information, in order to extract features keeping the problem’s space dimension low at 
the same time. We notice that despite the dataset’s size, our results are fairly close. 
Furthermore, the time needed in order to execute the biggest experiment did not 
exceeded a day using a state of the art computer. 

Concerning the two algorithms we proposed, the first algorithm’s classification potential  
seems to be greater in most organisms. The results we obtained seems to be 
comparable with state-of-the-art approaches. Finally, for the organisms with bigger 
evolutionary distance, it is more difficult to achieve good results, most probably because 
the secondary structure of the DNA sequence has changed more overtime [3].  
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7. CONCLUSION 

Having started from the basic biological background knowledge concerning the problem 
of finding splice sites, our work focused on developing transfer learning algorithms using 
the N-gram graph representation.  

Starting with the N-gram graph, we proposed a new method in order to manage finding 
and recognizing splice sites. More specifically, we combined the use of biological 
features, with the N-gram graph representation and the study of several classifiers. The 
choice of the N-gram graph representation was based on the accurate results in 
machine learning problems it provides. With the use of the biological features’ 
information, these rates increase further.  

Apart from the optimal parameter set and the appropriate classifier, experiments were 
done using whether the whole sequence or part of it (50 nucleotides left of the acceptor 
site), in which basic biological information is known to be located. In this way, lower 
computational cost and slightly higher results are being achieved. Another conclusion 
drawn from our sorted species, concerns the declining rates due to their phylogenetical 
distance. 

Two algorithms were proposed for processing the data received by classifiers. The main 
idea of the first one was to provide the classifier the most similar sequences while the 
second algorithm transforms the test data in order to approach the training data. 

The basic idea of the first approach concerned the merging of instances from the source 
domain that are more similar to those of the target domain. The algorithm having as 
main characteristic the similarity described in the previous section and taking advantage 
of the testing data, achieved stability and improved results. In the second approach, for 
each instance of the test set, each feature underwent a small transferring in the training 
set and a transformation parameter is taken into account. With these changes we tried 
the target domain approached the source domain and we improved the classifier. The 
above mentioned algorithms were studied with the Multiple Source Domain approach as 
well. 

CRF’s main idea was to use patterns in order to extract a model composed of features 
(nucleotide motifs) and put them as input into the Wapiti program, which executed the 
CRF algorithm. Finally we performed evaluation and got our results. 

CRF has contributed in the field of gene prediction undeniably and without using the 
biological information, something that could be set as a future target. Both approaches 
are very good as machine learning approaches, i.e. making splice site prediction in the 
same organism. However in our work we dealt more with the N-gram graph algorithm 
using transfer learning and by adapting biological information the results were 
satisfactory approaching those of machine learning. In the future researchers could 
import more biological features [2] in order to increase the accuracy of the algorithm. 

All in all, we noticed from our results that our work contributed in the field of splice site 
recognition in an important manner. We proposed the N-gram graph representation and 
similarity in order to obtain the first two features of our representation. Simultaneously, 
biological information was used with the help of a few important motifs. The latter was 
combined with the N-gram graph features. With the proposed representation, we 
managed to achieve higher prediction accuracy than the current approaches of the 
state-of-the-art. In addition, the proposed representation uses a small amount of 
features, which help us achieve high performances quickly and with low computational 
cost. We have proposed two transfer learning algorithms based on this representation 
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and on similarity measures between training and test sets. We proposed an approach 
for transforming the initial target data with the help of the mean values of the similar 
data in order to approximate the distributions of each feature of the training set. Finally, 
the multiple source domain approach helped us considering the case in which the 
source domain had more than one species and in both approaches we achieved better 
results. For this setting, we used information from the phylogenetic analysis of species. 

With the above results, we achieved better performances using more representative 
features. Also we reduced the computational costs by using only a small amount of 
features. Our largest experiment with 40.000 instances required less than a day in order 
to get results. Finally, in the case of multiple source domain, when we used more than 
one species as source domain our performances improved significantly2.   

  

                                            

2
 Our work is going to be published in the near future. 
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APPENDIX 1 

 Technical Details (Workflow) 

 

Image A1.1: N-gram graph Workflow. 

 

As we can see from the above workflow, we downloaded the Fasta files for the species 
from the link (http://cbio.mskcc.org/public/raetschlab/user/behr/splicing/). After the data 
have been preprocessed, our files have the format we see in the following picture. 

 

Image A1.2: Data Alignment Representation. 
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One can notice that they have been aligned to the pattern of the acceptor (AG) or the 
donor (GT) respectively. From these files some data are chosen for our experiments as 
we mentioned in the previous subchapter. Each row in the new file contains the 
sequence and in the end the label for each sequence is being presented. 

The result is a new “arff” file which consists of the features produced from our algorithm 
(N-gram graph) and the biological features as well. The data from each species are 
stored in a structure in order to use them. In this structure, we keep for each species the 
original data, the sequence and the label of the sequence and for each of these 
sequences features are being extracted and stored (Instances). These attributes are 
being extracted according to the N-gram graph algorithm and the biological features, 
which then are being used by the classifier in order to extract the final results. 
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APPENDIX 2 

 Choosing Classifier (Workflow) 

 

 

Image A2.1: Evaluation Diagram. 

Having created the arff files containing the features for each species, several classifiers 
have been tested such as the Decision Tree, SVM with RBF kernel, Linear SVM and 
others in order to perform evaluation. 
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APPENDIX 3  

 CRF Algorithm (Workflow) 

 

 

Image A3.1: CRF workflow. 

 

As before in the N-gram graphs, the main idea is to use again a preprocessing process 
for our data set in order to extract the training set and the test set and put them as input 
into the Wapiti program, which will execute the CRF algorithm. Finally we will perform 
evaluation and we will get our results. 

The data are aligned to the pattern of the acceptor (AG) or the donor (GT) respectively. 
From these files we choose some data for our experiments. As in the N-gram graphs, 
we could choose randomly 40.000 sequences from the Fasta file, in which 70% are no-
labeled and 30% labeled data, in order to represent real world data. Each row in the 
new file contains again the sequence and in the end the label for each sequence is 
being presented. 



Splice Site Prediction Using Transfer Learning 

 

S. Kazantzidis   50 

TABLE OF ABBREVIATIONS 

DNA Deoxyribonucleic acid 

RNA Ribonucleic acid 

mRNA Messenger Ribonucleic acid 

pre-mRNA Precursor Messenger Ribonucleic acid 

HMM Hidden Markov Models 

CRF Conditional Random Field 

SVM Support Vector Machines 

ANN Artificial Neural Networks 

EKPA National and Kapodistrian University of Athens 

FGA Feature Generation Algorithm 

NBT Naïve Bayes Tree 

AFMS All Features Majority Strategy 

NGG N-gram Graph 

RBF Radial Basis Function 

Libsvm Library Support Vector Machines 

KNN K-Nearest Neighbors 

auROC area under the Receiver Operator Characteristic Curve 
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