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Abstract

In this thesis we study the identifiability of users across social networks, with a traina-
ble combination of different similarity metrics. This application is becoming particularly
interesting as the number and variety of social networks increase and the presence of
individuals in multiple networks is becoming commonplace. Motivated by the need to
verify information that appears in social networks, as addressed by the research project
REVEAL (REVEALing hidden concepts in Social Media), the presence of individuals in
different networks provides an interesting opportunity: we can use information from one
network to verify information that appears in another. In order to achieve this, we need to
identify users across networks. We approach this problem by a combination of similarity
measures that take into account the users’ affiliation, location, professional interests and
past experience, as stated in the different networks. We experimented with a variety of
combination approaches, ranging from simple averaging to trained hybrid models. Our
experiments show that, under certain conditions, identification is possible with sufficien-
tly high accuracy to support the goal of verification.

SUBJECT AREA: Artificial Intelligence
KEYWORDS: user identification, similarity learning, entity resolution, machine learning,
duplicate accounts



ΠΕΡΙΛΗΨΗ

Σε αυτή τη διπλωµατική µελετάµε την ταυτοποίηση των χρηστών στα κοινωνικά δίκτυα, εκ-
παιδεύοντας εναν συνδυασµό διαφορετικών µετρικών οµοιότητας. Αυτή η εφαρµογή γίνεται
ιδιαίτερα ενδιαφέρουσα, καθώς η αύξηση του αριθµού και της ποικιλοµορφίας των κοινω-
νικών δικτύων και η παρουσία των ατόµων σε πολλαπλά δίκτυα γίνεται πλέον κοινός τόπος.
΄Εχοντας ως κίνητρο την ανάγκη να επαλήθευσουµε τις πληροφορίες που εµφανίζονται σε
κοινωνικά δίκτυα, όπως µελετάται στο ερευνητικό πρόγραµµα REVEAL (REVEALing hidden
concepts in Social Media), η παρουσία ατόµων σε διαφορετικά δίκτυα παρέχει µια ενδια-
ϕέρουσα ευκαιρία : µπορούµε να χρησιµοποιήσουµε τις πληροφορίες από ένα δίκτυο για
να επαληθεύσουµε τις πληροφορίες που εµφανίζονται σε ένα άλλο. Για να επιτευχθεί αυτό,
χρειάζεται να ταυτοποιήσουµε τους χρήστες σε διαφορετικά δίκτυα. Προσεγγίζουµε αυτό
το πρόβληµα συνδυάζοντας κάποια µέτρα οµοιότητας που λαµβάνουν υπόψη τον εργασιακό
χώρο, την τοποθεσία, τα επαγγελµατικά ενδιαφέροντα και την εµπειρία των χρηστών, όπως
αναφέρονται και καθορίζονται στα διάφορα δίκτυα. ΄Εχουµε πειραµατιστεί µε µια ποικιλία
από συνδυαστικές προσεγγίσεις, που κυµαίνονται από την απλή κατά µέσο όρο ταξινόµηση
έως υβριδικούς εκπαιδευόµενους ταξινοµητές. Τα πειράµατά µας δείχνουν ότι, υπό ορι-
σµένες προϋποθέσεις, η ταυτοποίηση χρηστών είναι δυνατή µε αρκετά υψηλή ακρίβεια για
να επιτευχθεί ο στόχος της επαλήθευσης των πληροφοριών.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοηµοσύνη
ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ : ταυτοποίηση χρηστών, µάθηση οµοιότητας, µηχανική µάθηση, διπλότυ-
ποι λογαριασµοί
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Similarity-based Identification Across Social Networks

1. INTRODUCTION

1.1 Problem Description

Social network services have become part of our everyday life. It is now commonplace that

people have accounts in multiple social networks, sharing their thoughts, promoting their

work and probably influencing a part of the population via them. A variety of functionalities

are provided by these services, such as video and photo uploading, posting, messaging,

republishing etc, differing according to the platform and its aim.

Motivated by the need to verify the validity and trustworthiness of information that appears

on social networks, the presence of individuals in different networks can be proved partic-

ularly useful. Public information from one network can be used to validate the source of

information in another network. To achieve this goal, there is a need for user identification

across social networks.

The trustworthiness of information in social networks, according to the REVEAL project 1,

can be assessed on the basis of three pillars: Contributor, Content and Context, themselves

supported by various modalities that are organized in two levels. The first-level modalities,

such as reputation, presence, influence etc, are calculated directly from social media data,

while the modalities of the second level, such as trustworthiness, misbehavior etc, rely on

the results of the first level [1]. Our study contributes to the presence modality of RE-

VEAL as user identification provides information about individuals in different platforms.

Our research relies on Reveal’s Journalism scenario, where verification and validation of

information sources are essential.

In this study, we focus on individuals who are interested in promoting their professional

activities in social media. We assume that these individuals often provide their real name in

different social networks and therefore, the problem that we need to solve is primarily that

of name disambiguation. Specifically, our approach compares users who have similar names,

based on public information provided by the users, as returned by the search engine of the

respective network. In other words, starting with the account of a user in one social network

SN1 we want to identify the account of a user with a similar name in another social network

SN2, that most likely belongs to the same user.

In our study we try to identify users across two popular social networks: Twitter and

LinkedIn. We experiment on these networks because they are both used regularly, though

1http://revealproject.eu/

Aikaterini Zamani 12
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Similarity-based Identification Across Social Networks

Figure 1.1: Example profiles and the alignment of their attributes, as used in the similarity
metrics.

not exclusively, for professional purposes. Focusing on the journalism scenario of REVEAL,

we form our target group of well-known news professionals.

Within a social network, each user is represented by a set of attributes that forms the user’s

profile. We derive a subset of these attributes based on the public accounts of users in the

respective network. The LinkedIn profile of a user includes the following attributes: screen

name, summary, location, specialization, current/past jobs with the respective affiliations,

education, as well as projects and publications. On the other hand, the Twitter profile of

a user contains: screen name, short biography, location and the other users, that the user

specifies in her tweets (user mentions). Although the process starts with a name search,

screen name can be considered as a feature because the results of the search engine do

not always fit exactly the query. Figure 1.1 presents a simple example of how the user’s

attributes are aligned in the two networks, in order to be used in the similarity metrics.

Some attributes can be aligned in a straightforward manner, e.g. Name, Location and

Description, while others require the combination of various fields in the original user profile,

e.g. Achievements and Affiliation-Education.

Aikaterini Zamani 13
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1.2 Contribution of our Work

In this study, we try to identify users across two popular networks: LinkedIn and Twitter.

Our approach relies on novel similarity measures that mainly take into consideration profes-

sional information about the users. To achieve a satisfactory combination of the proposed

similarity metrics, we experiment with various supervised classification techniques, such as

decision trees, Naive Bayes, KNN and two hybrid classifiers that merges Naive Bayes and

decision tables or decision trees efficiently. In addition, an attempt is made to deal with the

imbalanced data problem and estimate the value of missing fields. Experiments based on a

real world scenario show that highly accurate in user identification between these networks

is indeed possible. Thus, the main contribution of our work is to show that the proposed

approach of combining different similarity metrics is a viable solution to the identification

of users, which in turn can be used to verify the validity of public information in social

networks.

1.3 Structure of the Study

The remainder of the study is organized as follows.

In Section 2, we present closely related work and background algorithms, that are used in

the similarity metrics.

In Section 3, we describe our approach to the problem. We present the similarity metrics

that we used and we give specific examples of how they have been used to our approach.

Finally, we describe the classification techniques that we have used to combine these metrics.

In Section 4, we describe the dataset that we used to train and validate our method. We also

present the set up of our experiments and focus on the procedure for handling missing fields,

an important problem in profile comparison. Then we mention the evaluation metrics that

we have used to measure the performance of the classification techniques and we analyze our

experimental results.

Finally in Section 5, we summarize the main conclusions and propose possible extensions of

our work.

Aikaterini Zamani 14
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2. RELATED WORK

2.1 Related Studies

Various recent studies focus on the problem of user identification across the web. To the

best of our knowledge this is the first study that is motivated by the verification of the

validity of information based on public professional data provided by users in social networks.

The novelty of this approach lies in the combination of different sets of features, that are

associated to the professional aspects of a user account, in order to validate professional

accounts.

The user identification problem is related to record linkage and duplicate detection in

databases. Elmagarmid, Ipeirotis and Verykios [2] analyze extensively different similarity

measures and efficient techniques for duplicate record detection. Specifically their survey

contains two main parts. The first part presents a variety of simple and fast string matching

techniques and the particular types of errors that each technique addresses. The second

part involves more sophisticated machine learning techniques, such as probabilistic inference

models, that match complicated records with multiple fields. As these techniques can de-

tect nonidentical duplicate entries in databases, they can be particularly useful in the user

identification problem. A similar study is presented by Cohen et al. [3]. They introduce

the architecture of the “secondString” toolkit, which includes many well-known metrics for

named entity matching. The matching of the entities is based on the computation of a

similarity function, according to different metrics. The similarity function produces a real

number, which indicates how similar or dissimilar are the two entities.

Additionally, many approaches have been proposed for correlating specifically social network

accounts by exploiting information that is either explicitly or implicitly provided by the users.

Explicit feedback refer to data that the users provide directly to their profile (e.g. during

their registration). On the other hand implicit feedback refer to other data in the profile of

a user (e.g.tags, posts etc) [4]. For example Vosecky, Hong, and Shen [5] combine different

explicit profile fields by composing comparison vectors. Their work focuses on vector-based

comparison algorithms for user profiles in social networks. In addition, Iofciu et al. [4]

study the influence of tags in user identification across tagging network services relying on

the combination of implicit and explicit information. They present an approach that takes

into consideration the tags associated with a profile and aggregates profiles from different

tag-based social networks. Therefore, they only deal with tag-based social networks.

Aikaterini Zamani 15
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Malhotra et al. [6] utilizes explicit feedback in order to model the digital footprints of users.

Their study deals with profile disambiguation in social networks and focuses on LinkedIn and

Twitter, like our work. Malhotra et al pair the accounts from the different social networks

and they derive a similarity feature vector for each pair. This vector consists of similarity

scores, by comparing the well-known comparable profile fields such as name, description,

location, image and number of connections. They evaluate their approach with the use of

widely used classifiers. Their work is the one that comes closest to our approach, but it also

bears a number of differences from it. Firstly, due to our original motivation of verifying

the validity of professional accounts, we focused on a different set of features to be extracted

from the user profiles , i.e. we combine features that provide professional information about

the users. Also, Malhotra et al. handle differently the problem of imbalanced data. Namely

they use random sub-sampling to balance the training data, thus training their model with

the same number of match and mis-match examples. Finally, our work addresses the issue

of missing feature values, which is not dealt with in Malhotra et al. [6].

The authors of [7] focus on the use of implicit features of a user’s activity, such as location,

timestamps and writing style. Such features are particularly common in activity-based social

networks. Specifically they take advantage of implicit information that users exhibit in their

posts, such as geo-tagging, that specifies the user’s location, the daytime of posting and

textual characteristics that uniquely identify an individual. The aim of their study is to

prove the possibility of tracking down a user across social networks, not necessarily to one

specific match. Due to this purpose, their approach does not provide exact profile matches

but instead a small set of possible ones that probably belong to a specific user. Related

to authors, the aggregation of these implicit features in a single-aggregated profile could

achieve an online footprint of a user, which needs defense from attacks in order to achieve

the purpose of their study. The authors of [7] utilize activity-based attributes which are not

available in the public profiles of the users.

The most recent work of Goga et al. [8], that is also close to our work, correlates users

across different and popular social networks in large scale. Their study is based on public

feature extraction and the proposed similarity metrics deal with explicit information. Due

to the large scale of the data, they present a classification strategy which tries to find a

threshold to separate matching and mismatching pairs. They also suggest ways to deal with

the missing and imbalanced data. Their study uses several social network services and tries

to identify accounts between pairs of them. When this is not feasible, the authors suggest

the use of a correlation chain, which links accounts between social networks with the help

of an intermediate social network [8]. The main difference of our approach is based on our

motivation of verifying the validity of professional accounts. For this reason, the similarity

Aikaterini Zamani 16
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metrics that they use are more simplified and do not include professional aspects of the users,

as they provide in their accounts. In addition, their main contribution is the matching of

user accounts across major social networks that are more “sensitive to attacks” due to their

nature, such as Facebook, Twitter and Google+, thus LinkedIn service is not included in

their experiments.

2.2 Background Algorithms

2.2.1 Jaro-Winkler distance metric

The Jaro-Winkler metric is based on the number and order of common characters between

two strings. The computation of the original Jaro metric [2] between two strings –s1 and s2

–follows three steps:

1. Compute the lengths of the strings, ||s1|| and ||s2|| .

2. Find their matching characters. We consider as matching characters those that are

the same in the two strings and the difference in their sequence order does not exceed

a threshold. This threshold is set to be half of the length of the shorter of the two

strings.

3. Count the number of transpositions. The previous step produces two subsequences of

matching characters, one for each corresponding string. The number of characters,

that are in the same position in the subsequences and do not match, represents the

number of transpositions.

The Jaro distance is defined by the following equation:

Jaro(s1, s2) =
1

3
·
( m

||s1||
+

m

||s2||
+
m− t

2

m

)
. (2.1)

where m is the number of matching characters and t the number of transpositions.

In 1999 Winkler recommended a modification of Jaro’s metric, in order to give preference

to strings that match exactly at the beginning (given a prefix length). The Jaro-Winkler

distance is defined as:

JaroWinkler(s1, s2) = Jaro(s1, s2) +
(
p · l ·

(
1− Jaro(s1, s2)

))
, (2.2)
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where l is the length of common characters at the prefix and p is a weight that indicates

the significance of a common prefix length. The maximum value of l is usually set to 4

characters, while p is usually set to 0.1 and should not be longer than 0.25.

2.2.2 Levenshtein distance metric

The Levenshtein metric belongs to the family of edit distance metrics. Generally, the edit

distance between two strings is the minimum number of single-character edit operations

(insertion, deletion, substitution), needed to convert one string to the other. In Levenshtein

distance, the cost of every edit-operation is set to 1, therefore it gives the same weight to

every character transformation.

2.2.3 Smith-Waterman metric

Smith-Waterman is a dynamic-programming algorithm that finds the optimal local sequence

alignment. Specifically, viewing each string as a sequence of characters, it compares every

segment of possible lengths of the two sequences, in order to identify local regions with high

similarity i.e., substring matching. The algorithm tries to divide the problem into smaller

parts and find their solutions. To the final solution of the entire problem is computed by

combining the smaller solutions.

The Smith-Waterman algorithm uses a two-dimensional matrix in order to score every pair

of single-characters, produced by the two sequences of the strings. The score depends on

a scoring system, which defines the costs of the edit operations (insertion/deletion of a

character, substitution of one character by another) and gap penalties (open or extend gap).

The score of each pair in a matrix cell is based on the scores of the left, top and top-left

neighboring cells in the matrix. Specifically, the score of a cell in the (i, j) position is:

Ci,j = max
(
Ci−1,j−1 + scorei,j, Ci,j−1 +Wk, Ci−1,j +Wk, 0

)
, (2.3)

where scorei,j is the score of the current cell computed by the costs of the respective edit-

operations that are needed. Also Wk represents the penalty of a gap alignment of k length.

Once the matrix is filled with the scores, the algorithm starts from the cell with the highest

score and backtracks the path of cells in descending score order [9]. The path produces the

optimal local alignment sequence, i.e the best substring match of the compared strings.

The Smith-Waterman algorithm is based on the NeedlemanWunsch technique. The Needle-

manWunsch technique is used for global alignment and compares the strings of same length.

On the other hand, Smith-Waterman compares sequences of different length, using local
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sequence alignment. Nevertheless, the main difference between the two algorithms is that

Smith-Waterman does not accept negative scores. Therefore, the Smith-Waterman tech-

nique replaces negative scores with 0, as it is denoted in eq. 2.3, in order to achieve local

alignment.

2.2.4 SoftTF-IDF metric

SoftTF-IDF belongs to the family of token-based similarity metrics, where sets of tokens

are compared to produce a similarity score. This family of metrics is a good solution for

comparing strings that have common words but in a different position or order. Although,

these metrics solve the problem of word swaps, they are not flexible in spelling errors.

Therefore it is necessary to combine them with another similarity metric to be used for pairs

of tokens and compute a final score based on these values [10].

The basis of SoftTF-IDF is TF-IDF. TF-IDF is a weighting scheme that denotes the signif-

icance of a term in a corpus. Assume two strings that are converted into two corresponding

token sets. TF measures the frequency of a token in the respective token set, while IDF

measures the importance of the token into the combination of the two token sets. The ra-

tional behind IDF is to weigh less the words that have little importance in the token sets,

as they appear many times in both sets, while giving a heavier weight to the the rare ones.

SoftTF-IDF combines TF-IDF with a sub-metric and takes advantage of the above privileges.

Assume two strings and S1 and S2 their corresponding token sets. Let CLOSE(θ, S1, S2)

be the set of tokens w ∈ S1, where each w match with at least one token of S2, achieving

a similarity score above θ. Also let N(w, S2) be the maximum of the similarity scores of w

with each matching word in S2. It is worth to mention that CLOSE function is symmetric.

Thus SoftTF-IDF follows the bellow equation:

SoftTFIDF (S1, S2) =
∑

w∈CLOSE(θ,S1,S2)

W (w, S1) ·W (w, S2) ·N(w, S2) (2.4)

where

W (x,X) =
TFIDF (x,X)√(∑
x∈X TFIDF (x,X)2

) (2.5)

In our approach we use the Jaro-Winker distance as a sub-metric (i.e. for the calculation of

CLOSE), setting θ to 0.9.
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3. APPROACH

3.1 Description of Profiles

As explained in Section 1.1, the basic idea of our approach is to pair accounts that result

from name search and identify those that belong to the same user. Therefore, the task that

we are dealing with is translated to a classification of account pairs into two classes: “match”

and “mis-match”.

Specifically, in order to identify users we create a similarity vector for each pair of user

profiles. The representation of our similarity vector is based on the definition proposed by

[5]. Suppose that we have two user profiles from different social networks:

u1 ∈ SN1 and u2 ∈ SN2 . (3.1)

The similarity vector of the two profiles is defined as:

V (u1, u2) =< score1, score2, · · · , scoren > . (3.2)

where scorek corresponds to the score, returned by the kth similarity metric.

In order to facilitate the comparison, the similarity scores are normalized in the range [0.0,

1.0].

In the following sections, we first present the similarity measures that we use and then the

methods we tested for classifying similarity vectors.

3.2 Similarity Measures

In this subsection we describe the similarity metrics that we use, in order to construct the

similarity vectors for pairs of user profiles.

3.2.1 Name Measure

Previous work in record linkage [3] recommend Jaro-Winkler as an appropriate similarity

for short strings while a study in user identification [4] propose Levenshtein distance for

username similarity. Therefore, in our approach we test both distances (Jaro-Winkler and

Levenshtein distance) in order to find the similarity between the screen names of users –first
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Figure 3.1: Example of Name measure.

and last name that a user provides during her registration. In Figure 3.1 you can see how

the name attributes are aligned. Experimentally, the Jaro-Winkler metric has proved more

accurate for our name measure. Due to the name ambiguity problem mentioned in Section

1.1, additional information is needed for user identification.

3.2.2 Description Measure

This measure estimates the similarity between the short biographies or summaries that users

provide in different social networks, in order to describe themselves, their work and their

specialization. An example is shown in Figure 3.2. In order to measure similarity according

to this short description, we pre-processed corresponding fields of the two profiles. We

removed the punctuation, lowercased and tokenized the description, thereby creating two

different token lists. Taking into consideration the example in Figure 3.2, the two token

lists are as follows:

A1 =[ for, more, than, a, decade, i, have, established, a, positive, reputation, as, a, hard,

working, reporter, who, worked, in, popular, news, agencies, like, cnn, bbc, i, have, gained,

experience, as, an, editor]

A2 = [hard, working, reporter, specialized, at, writing, and, editing, at, cnn, international,

bbc, and, new, york, times, many, interests, in, human, rights, with, a, publication, in, in-

ternational, human, concern]

We tested two different approaches:

1. JaccardToken similarity: Comparing each pair of tokens in the two token lists, we

determine the number of common words. The similarity of the description fields is the

ratio of this number to the number of not common ones.

2. WhitespaceGrams similarity: We create a set that contains the union of tokens of

the two token lists, without duplicates. By comparing the new list against each token

list we determine the number of common tokens among the list and the token set. The
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Figure 3.2: Example of Description measure.

difference of the two resulting numbers (one for each list) denotes the dissimilarity of

the initial token lists if we take into account their non-common words. Therefore, the

similarity of the description fields is computed by the following equation:

WG(s1, s2) =
‖s1‖+ ‖s2‖ − |n1 − n2|

‖s1‖+ ‖s2‖
. (3.3)

where n1, n2 represents the number of common tokens among the set of all tokens and

each of the two token lists s1 and s2 respectively.

LinkedIn description field tend to be larger than Twitter’s short biographies. Due to the

disproportionate length of the description fields, there is a need to express the ratio of

common words more accurately. Therefore, the WhitespaceGrams similarity approach seems

more adequate in our problem. This is also confirmed experimentally.

3.2.3 Location Measure

A recent study associates location with the user’s posts, based on attached geo-tags [7].

Although it is a promising approach, it is not directly applicable to all social networks,

e.g. LinkedIn doesn’t provide geo-tagging. Also it is common that users provide different

variants of their locations in the social networks. For instance they may provide their

country in one social network, but their city written in their native language in the second

one. Techniques based on string similarity will fail in such situations. For this reason our
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comparison combines the textual representation of the location field with geonames ontology

[11] to obtain geospatial semantics. In particular, by querying the web service, we receive

the geographical information of a place. If a given location does not exist in the ontology,

the service identifies it as missing.

When we query the geonames ontology, we receive the results in a geospatial taxonomy first

the countries, then the states, after the cities etc. Even when a name location corresponds

to many toponyms, the ontology will sort the results in a geospatial way. Thus, we limit the

results of a query to those containing the desirable location. When we query for two locations,

that are provided in different social networks, we receive their geographical information and

we compare only those locations that belong to the same country. We convert these locations

to bounding boxes or to coordinates, depending on their geospatial relation. Specifically, the

similarity score of the two locations is defined as follows:

1. The ratio of bounding box areas if one bounding box is within the other.

2. The Euclidean distance between their coordinates when the locations belong to the

same country.

3. 0.0 otherwise.

Specifically, the above enumeration can be defined by the following equation:

LocSim(l1, l2) =


Bbox(l1)/ Bbox(l2) if Bbox(l1) ⊆ Bbox(l2)

Bbox(l2)/ Bbox(l1) if Bbox(l2) ⊆ Bbox(l1)

1/ (1 + ‖l1 − l2‖2) if l1, l2 in SC

0.0 otherwise

(3.4)

where Bbox represents the bounding box of the respective location and SC refers to the

same country. We always put the bounding box that is subsumed into the denominator, in

order to produce values in the range of [0.0, 1.0]. Nevertheless, the ratio of the bounding

box areas would probably produce small values, due to huge disproportion of the respective

covering areas. For this reason, we normalize the similarity score in logarithmic scale as

follows:

Normalize(value) =
1

1− log10(value)
. (3.5)

Using eq. 3.5 , the similarity score in all situations takes values in the range [0.0, 1.0].
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Figure 3.3: Example with bounding boxes in location measure.

Now lets show characteristic examples of the use of the location measure. First we assume

that SNlocation1= “New York” appears in one social network and SNlocation2=“Manhattan”

appears in the other. Since Manhattan is a borough of New York City, its bounding box

–imagine it as a rectangle that covers the Manhattan area –will be included into the bound-

ing box of New York city. Thus, the similarity of the two locations is measured as the

ratio between the covering area of Manhattan’s bounding and the area of New York City’s

bounding box, as shown in Figure 3.3.

In the example of Figure 1.1, the similarity of the two locations will be 1.0 since the bounding

boxes, which are returned from the ontology, coincide.

Now suppose that we retrieve two locations that belong to the same country but their

bounding boxes are not subsumed –SNlocation3=“Athens” and SNlocation4=“Sparta”. In this

case, their similarity is computed by the Euclidean distance of the coordinates of the centres

of two bounding boxes, as shown in Figure 3.4.

Figure 3.4: Compute location similarity using the Euclidean distance.
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3.2.4 Affiliation-Education Measure

This measure attempts to match the current/past affiliation and educational experience of

the users, as stated in the social network profiles. In order to measure the similarity score

we create two token sets, one for each corresponding network. Figure 3.5 shows the profile

fields that participate in this score. In LinkedIn’s set we use the affiliation of current and

past experiences and educational schools, while in Twitter’s set we use the userMentions (@

symbol) that appear in the user’s tweets. We assume that the user is likely to mention her

affiliation and school names in her micro-blogging posts to promote her work. Neither of the

two token sets include duplicates. The token set obtained from Twitter contains additionally

the frequency of each userMention.

Figure 3.5: Example of Affiliation-Education measure.

An additional practical problem with userMentions is their appearance. Generally a user-

Mention describes an entity in a small sequence of characters, in an abbreviated form and

usually without the use of delimiters. It is also commonplace that some userMentions re-

fer to the same entity with a different arrangement of the words, as you can see in Figure

3.5. Thus, there is a need for a textual comparison measure that is suitable for substring

matching. Based on the related survey [2], the Smith-Waterman distance measure seems

adequate, because it combines edit and affine gap distances to identify local regions with

high similarity among them.

In particular we used the implementation of the measure from the simmetrics library [12].

We measure the similarity between each pair of tokens in the two token sets and keep only

those similarity scores that exceed a predefined threshold t. Then we weigh the resulting

scores according to the frequency of a userMention in Twitter profile. Therefore, the overall

similarity score is calculated as shown in the following equation:

n∑
i=1

(scorei · freqi) /
n∑
i=1

freqi (3.6)

where scorei is the Smith-Waterman similarity score of a pair of tokens that is above the
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threshold t and freqi is the frequency of appearance of the specific userMention in the user’s

tweets. The weight indicates a significance estimate of the corresponding userMention.

Some similarity scores that exceed the threshold may correspond to the same token of one

of the sets. This is acceptable because many userMentions or jobs often refer to different

variants of similar entities, as we explained above. For instance in Figure 3.6,“@BBCNews”,

“@BBCzamani” and “@livebbcnow” refer to related entities. Thus, the affiliation “BBC”

in LinkedIn will be matched with all these entities and will lead to the aggregation of their

scores.

Figure 3.6: Example of computing Affiliation-Education measure.

3.2.5 Achievements Measure

It is common that users include their professional achievements and their job specialization

in the short biography field of their profile. In fact we have observed that often the words

a user provides in the description field in Twitter, can be matched with those that she

provides for her job, publications etc in LinkedIn. We attempt to capture this by using the

SoftTFIDF metric, which takes into consideration “similar” and not only identical tokens

[2]. We compose a textual summary of the most significant professional achievements of a

user, as she provides them in LinkedIn: we combine current and past job experiences and the

corresponding affiliations, professional specialization, projects and publications that she has

participated in. Figure 3.7 shows the profile fields that participate in the computation of the

similarity score. The similarity between this “professional summary” and the short biography

in Twitter is computed with the use of SoftTFIDF as implemented in the secondString

library [13], [10].

SoftTFIDF converts the two texts into two bags-of-tokens and calculates the overall similarity

score, by computing the TFIDF distance between each pair of tokens. The SoftTFIDF

method prunes the token pairs if their Jaro-Winkler similarity is below 0.9. Due to the stop
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words in the description field, the similarity score takes small values. For this reason we

normalize the similarity score in logarithmic scale, with the use of eq. 3.5 .

Figure 3.7: Example of Achievements measure.

3.3 Classification

As mentioned in Section 3.1, the various similarity measures are used to built similarity

vectors. These vectors are then classified in order to achieve the required user identification.

Below we describe the different classification approaches that we tested.

3.3.1 Baseline Classification Results

As a baseline we calculate the average of the scores in the similarity vectors:

AvgScore(V ) =
1

n
˙

n∑
i=1

(scorei) (3.7)

where scorei corresponds to the respective score in the similarity vector.

As an example, assume the following user profiles:

u1 ∈ SN1 and u2, u3 ∈ SN2 . (3.8)
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We pair the resulting profiles and two different similarity vectors are created.V1(u1, u2) ,

V2(u1, u3) are as follows:

V1(u1, u2) = <1.0 , 0.345, 0.456, 0.678, 0.879 >

V2(u1, u3) = <1.0 , 0.432, 1.0, 0.789, 0.654 >

The baseline computes the following average scores :

AvgScore(V1) = 3.358 / 5 = 0.6716

AvgScore(V2) = 3.875 / 5 = 0.775

The higher the score, the more likely it is that the corresponding profiles belong to the same

user. Since we are interested in a single match, the pair with the highest score is considered

a match and all other are mismatches. In the Figure 3.8 we can see the the graphical

representation of the above example. With the use of the baseline classifier, V 2 achieves a

higher score. Therefore, TUser2 of the “Georgios Paliouras” Twitter set probably belongs

to the “target user” LUser1 of the corresponding set of the LinkedIn dataset.

LUser1:  Katerina Zamani
LUser2:  Katerina Zamani Katerina Zamani

….
….

LUser25: Katerina Zamani

SET: Katerina Zamani

LUser1: Georgios PaliourasGeorgios Paliouras
LUser2: Georgios Paliouras

….
….

LUser25:George Paliouras

SET: Georgios Paliouras

 …..

SET: Dimitrios Vogiatzis

LUser1: Dimitrios Vogiatzis
LUser2: Dimitrios Vogiatzis

….
….

LUser20:Dimitrios VogiatzisDimitrios Vogiatzis

SET: Katerina Zamani

TUser1:  Katerina Zamani
TUser2:  Katerin Zamani

….
….

TUser25: Katerina Zamani

SET: Georgios Paliouras

TUser1: Georgios Paliouras

TUser2: Georgios Paliouras

 …..

SET: Dimitrios Vogiatzis

TUser1: Dimitrios Vogiatzis
TUser2: Dimitrios Vogiatzis

….
….

TUser25:Dimitris Vogiatzis

LinkedIn Sets Twitter Sets

V1 (LUser1 , TUser1) =
<1.0 , 0.345, 0.456 , 0.687 , 0.879>

V2 (LUser1 , TUser2) =
<1.0 , 0.432 , 1.0 , 0.789 , 0.654> 

Figure 3.8: Example of Baseline Classifier in LinkedIn identification case. The red shadowed
texts represent the target users.

Aikaterini Zamani 28



Similarity-based Identification Across Social Networks

3.3.2 Binary Classifiers

A different way to classify similarity vectors is by training binary classifiers to distinguish

between matches and mis-matches.

The classifiers that we tested are presented below in brief:

Euclidean Distance:

This approach is based on the Euclidean distance of an instance from the centroid of each

class. It classifies an instance based on the minimum of the distances of each center. This

classifier serves as a baseline technique in our experiments.

The classification works as follows:

Assume a set of n classes and let C = (c1, c2, . . . , cn) be the set of their centroids. Both the

centroids, as well as the training and testing instances, are d-dimensional data points, where

d is the number of attributes. The centroids are calculated on the training data. Assume

Tk = (t1, t2, . . . , tm) a set of training instances with class k. The value of centroid ck is

computed as the average score of each ti ∈ Tk in the d-dimensional space.

Center(Tk) =
1

M
˙
M∑
i=1

ti,j | ∀ j ∈ [1, . . . , d] . (3.9)

Now assume a testing instance x̄ as a d-dimensional data point. During testing, the classifier

computes the Euclidean distance of x̄ with each centroid ck. The class with the minimum

Euclidean distance is chosen.

WinnerCenter(x,C) = min( EuclDist(x, ck) | ∀ ck ∈ C) . (3.10)

where

EuclDist(x, ck) =
1

‖x− ck‖2
. (3.11)

Thus, the label of x̄ is the class that is “closest” to x̄.

As we formulate the problem in binary classification, we assume a set of two classes, thus

two centroids. Also the procedure takes place in a 5-dimensional space, due to the 5 scores

in the similarity vectors. During the test phase, the classifier decides whether a pair is a

match or not by determining the centroid that has the minimum Euclidean distance from

the pair.
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Decision Tree:

A common approach in supervised classification learning is that of decision-tree learning,

which generates a decision tree as a predictive model. This model predicts the class of an

instance, by traversing the decision-tree from the root to the leaves. Each non-leaf node

(internal and root nodes) contains an attribute condition to separate an instance depending

on its characteristics. Also it includes at least two branches, each one leading to a different

node (internal or leaf) based on the decision that was produced from the condition. Having

the decision tree model constructed, the classification of a test instance is straightforward.

Starting from the root it follows the right path, until a leaf, according to the attribute values

of the instance, which dictate the decision outcome of each node. A leaf node contains the

predicted class label, based on the corresponding instance.

In our study we experiment with C4.5, a well-known algorithm in decision tree learning

that can be used for classification. This method creates a decision tree model, by analyzing

a training set of instances, in our case similarity vectors with the correct classification-

labeling. Each internal node of the tree represents a test on one of the five similarity scores,

that most effectively splits the respective set into more homogeneous subsets. The measure

of the purity of each node is based on information entropy. Entropy is a measure that

represents the amount of uncertainty in the current dataset –lower entropy denotes higher

homogeneity/purity. Each leaf node of the tree holds a class label, corresponding to the

majority class in the training instances. During the test phase, the classifier decides whether

a pair is a match or not by traversing the decision model tree from root to the leaf. To

avoid overfitting, we perform a common technique in decision trees, called pruning. Pruning

removes some branches of the decision tree in order to improve its generalization capability

[14].

Naive Bayes:

This classifier uses Bayes theorem, to combine prior knowledge of the classes with new test

instances [15]. Specifically the classifier calculates the probability of a class given a test

instance, assuming that all features of the vector, i.e. the five scores, are independent. As we

use continuous features we calculate probabilities by fitting a Gaussian distribution [15]. In

the training phase, the classifier estimates two probability distributions, one for each class.

During testing, the classifier decides the label of a specific pair, depending on its probability

of belonging to each of the two classes. The computation of these probabilities is based on

the respective distributions that were estimated in the training phase.
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KNN:

The Nearest-Neighbor classifier belongs to the category of lazy learning, because the train-

ing phase is performed only when the classification of the test instances is needed. This

classifier represents each instance as a point in d-dimensional space, where d is the number

of attributes, i.e. 5 in our case [15]. Lets assume a set of classes C = (c1, c2, . . . , ck) , a set

N of d-dimensional training instances and x a d-dimensional test instance. KNN classifies

the test instance (x) as follows:

1. It compares x with every training instance of the set N , computing its distance from

each training instance, with the use of a proximity measure.

2. It finds the k nearest training instances of x and their classes respectively.

3. It chooses the label of x, based on the majority class among its k nearest neighbors.

In our study, we set the value of k to 5. Due to imbalanced of data in our dataset, we prefer

to set an odd number in order to achieve a clear result in labeling. Experiments show that

5 performs better in our case. Moreover, we use the Euclidean distance as the proximity

measure.

NBTree:

This is a hybrid approach that combines Naive Bayes and Decision Tree classifiers. This

technique generates a decision tree as usual. The internal nodes of the tree contain splits

triggered by single attributes, while the leaves represent Naive Bayes classifiers, thus return-

ing continuous random variables instead of discrete classes. Before explaining the algorithm,

we describe some fundamental notions:

• Utility of a node: The utility of a node is estimated by the 5-fold cross-validation

accuracy of the NB classifier for that node.

• Utility of a split : The utility of a split is defined as a weighted sum of the utility of the

nodes that are generated. The weight of a node is related to the number of instances

that reach the node.

The algorithm starts by evaluating the utility of a split U(x) on each attribute x. If an

attribute is continuous, a threshold is found with the use of standard entropy minimization
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technique [16]. Afterwards it chooses the attribute with the highest utility split and chooses

that as a root node. The process is repeated recursively for each of the training subsets

that are generated. In each level, the classifier decides whether to split the set, based on

the significance of node utilities. If the accuracy of each Naive-Bayes classifier at each child

node is higher than a single Naive-Bayes classifier at the current node, the set will be split

[16]. Otherwise, it declares the current node as a leaf and creates a Naive-Bayes classifier

for it.

DTNB:

This is another hybrid approach that combines Naive Bayes and Decision Tables classifiers.

Decision Tables can be thought of as classification rules. Each row of the table represents a

conjunctive rule and is associated with a class label [17]. Initially in DTNB, all features are

modeled in Decision Tables. Afterwards with the use of forward selection, the classifier selects

in a stepwise manner the features that improve a Naive Bayes classifier on a validation set

the most. DTNB trains Naive Bayes on the selected features, while it constructs a Decision

Table with the res of the features. The label of a test instance results from the combination

of class probability estimations of both classifiers (Decision Table and Naive Bayes).
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4. EXPERIMENTAL RESULTS

4.1 Data Collection

The collection of the data was based on name search, as denoted in Section 2. We started

with a list of “target users” in mind, e.g. “Katerina Zamani”. Each target user had a

different name. Given the name of a particular target user, we gathered the first 25 profile

results from each network, using the networks search engine. Thus, we created two sets of

profiles (one for each network), each set containing the results of the search for a particular

name. The aim of our study was to identify within each such set only the profile of the target

user, given the users profile in the other network, e.g. given Zamanis profile in Twitter, we

wanted to identify the profile of the same person in LinkedIn, among the set of profiles that

the search for “Katerina Zamani” has returned. We did this matching both ways, i.e. from

Twitter to LinkedIn and vice versa, but only for a single target-user with that name. This

set-up is motivated by our goal of verifying the validity of profiles of professional individuals

in social networks. We also assumed that each target-user has a single account in each

network. Therefore, in each set we identified one profile as the correct match, while all

others were considered mismatches. Figure 4.1 presents how we setup the data collection

in corresponding sets, as explained in detain in this subsection.

LUser1:  Katerina Zamani
LUser2:  Katerina Zamani Katerina Zamani

….
….

LUser25: Katerina Zamani

SET: Katerina Zamani

LUser1: Georgios PaliourasGeorgios Paliouras
LUser2: Georgios Paliouras

….
….

LUser25:George Paliouras

SET: Georgios Paliouras

 …..

SET: Dimitrios Vogiatzis

LUser1: Dimitrios Vogiatzis
LUser2: Dimitrios Vogiatzis

….
….

LUser20:Dimitrios VogiatzisDimitrios Vogiatzis

SET: Katerina Zamani

TUser1:  Katerina Zamani
TUser2:  Katerin Zamani

….
….

TUser25: Katerina Zamani

SET: Georgios Paliouras

TUser1: Georgios Paliouras

TUser2: Georgios Paliouras

 …..

SET: Dimitrios Vogiatzis

TUser1: Dimitrios Vogiatzis
TUser2: Dimitrios Vogiatzis

….
….

TUser25:Dimitris Vogiatzis

LinkedIn Sets Twitter Sets

V1(LUser2 , TUser1)

V2(LUser2 , Tuser2)

V25(LUser2, TUser25)

Figure 4.1: Data structure into corresponding sets. The red shadowed texts indicate the
target users for each set, while the whole figure represents LinkedIn identification case.
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In Table 4.1 the total number of profiles in each of the two networks that we used is provided.

We separated the data into two datasets — one for each network. Each data set contained

262 profiles sets and each set included at most 25 profiles.

Table 4.1: Profiles in the datasets.
LinkedIn Twitter

Number of profiles 2766 3373
Number of profile sets 262 262

4.2 Experimental Setup

Starting with a profile from a social network (SN1) and a set of profiles from a different one

(SN2), our aim is to find the profile that most likely matches the one from SN1. In order

to select the most likely match, we compare each profile in each set of SN1, e.g. the set

of “Katerina Zamani”, with each profile of the corresponding set of SN2. Each comparison

produces a similarity vector, as described in Section 3.2, which is classified as a match or

not. In our experiments we use two different datasets corresponding to the “direction” of the

identification, i.e. starting with a profile from LinkedIn we compare it against the profiles

of the corresponding set in the Twitter dataset and vice versa. Henceforth, we refer to the

former task asTwitter identification and the latter as LinkedIn identification.

4.2.1 Missing Values

It is common that users do not complete each field of their profile. This influences the

performance of our approach because many profile fields that we use are not available.

Table 4.2 presents the number of missing fields for each similarity metric.

Table 4.2: Number of missing values.
SN/metric Name

metric
Description
metric

Location
metric

Affiliation-
Education
metric

Achievements
metric

LinkedIn 0 1866 0 462 221
Twitter 0 1431 1582 735 1431

As shown in Table 4.2, the name of the user is never missing as it is a compulsory field

during the user’s registration. However, the location field in Twitter is only available for

53% of the users in our dataset. The availability of description/summary fields is 33% for

LinkedIn and 58% for Twitter, while the userMention attribute in tweets is used by 78%

of the users. Regarding Affiliation-Education and Achievements metrics, LinkedIn provided
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more complete information than Twitter. This is due to the use of many fundamental and

professional fields, such as affiliation, professional experience etc., that many users provide

in their LinkedIn account.

4.3 Results for Separate Measures and Baseline Classifier

In this section we evaluate separately each similarity measure that we used. Taking into

consideration the large percentage of missing values and how this could influence the accuracy

of classification, we examined the following solutions:

• Set a default score: We set 0.5 as a default similarity score, when the score cannot

be calculated. It is worth recalling that all scores are normalized in the range [0.0, 1.0].

• Set the average score: We set the missing similarity score to the average value of

the similarity scores, that can be computed from the available fields. This average

score is different for each metric and it depends on the measured similarity scores of

the respective measure.

• Set the median score: The basic idea of this approach is similar to the previous

one, but instead of the average, we use the median value of the computed similarity

scores.

In particular, we compute the recall of each similarity score separately. Note that precision

is the same as recall here, since all methods are required to return exactly 262 matches.

Specifically, we select as the most likely matching set the one with the maximum similarity

score. Tables 4.3, 4.4 provide the results for the two datasets (LinkedIn identification and

Twitter identification), for different missing values strategies.

As expected, the success scores in name metric are the same in all approaches because name

fields are always available in social networks. If more than one pairs have the same maximum

similarity score, we select as matching profile the one that is topper in the set of the returning

results. However, the score in the Twitter’s identification case is much higher, due to the

different nature of the two search engines. On one hand the sequence of results that is

returned from a search query in Twitter depends on the popularity of each account, while on

the other hand LinkedIn’s search engine categorizes differently its resulting user accounts. In

addition, the high success scores of the two last metrics in the LinkedIn’s identification case,

indicate the importance of the professional fields in the identification. Finally we conclude

that the average score approach to the in missing values problem, lead to better results. For

this reason, we adopt this approach for the rest of our experiments.
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Table 4.3: Recall for Linked identification for different measures and baseline classifier and
for different strategies for missing values. Results are presented as percentages to facilitate
readability.

Strategy for missing val-
ues

Default Average Median

Name measure 68.70% 68.70% 68.70%
Description measure 60.31% 64.12% 63.74%
Location measure 67.94% 69.08% 68.70%
Affiliation-Education
measure

80.15% 79.77% 79.77%

Achievements measure 83.59% 87.02% 87.02%

Baseline Classifier 86.26% 86.64% 83.59%

Table 4.4: Recall for Twitter identification for different measures and baseline classifier and
for different strategies for missing values. Results are presented as percentages to facilitate
readability.

Strategy for missing val-
ues

Default Average Median

Name measure 90.84% 90.84% 90.84%
Description measure 80.92% 85.50% 85.50%
Location measure 75.57% 82.44% 79.78%
Affiliation-Education
measure

75.19% 75.19% 74.43%

Achievements measure 74.81% 79.77% 79.77%

Baseline Classifier 74.81% 88.55% 85.11%

Also in this subsection, we assess the results of the simple average combination of the sim-

ilarity measures as described in Section 3.2. For each profile set, we define as “match” the

pair with the maximum average score. We use recall in this case as well, in order to measure

performance.

For our experiments we utilize the databases of both social networks and we receive the

recognition success, which shows how many ground-truth data identified correctly. We can

conclude that this success corresponds to the recall measure of the positive class.

In the LinkedIn identification task and in the case of average missing values strategy, the

simple combination recognizes correctly 227 pairs out of 262, arriving at a recall of 86.64%.

In the Twitter identification task the respective recall is 88.55%. Although the results are

promising for a simple combination, are somewhat lower than the best individual scores, i.e.

the Achievement measure for LinkedIn (see Table 4.3) and the Name measure for Twitter

(see Table 4.4).
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4.3.1 Imbalanced Data

The nature of the identification problem across social networks results in considerable im-

balance between the two classes (match vs. mis-match). In our study, only 9.5% of the

LinkedIn profiles and 7.8% of the Twitter profiles comprise the minority (match) class. This

imbalance can cause problems during training for some classifiers. In order to handle this

issue, during testing phase we define as “match” the pair with the maximum probability, in

reference to the classifier. The description and the results of the procedure are presented

further below in Section 4.6.

4.4 Performance Measures

In order to present the results of the classification strategy, we will first describe the perfor-

mance metrics that we use to evaluate the classification systems. As mentioned above, we

use binary classifiers (match and mis-match). The evaluation metrics that are commonly

used for this type of classifiers, are precision, recall and f-measure.

In order to present these measures, we enumerate the four potential results in a binary

classification task:

• True Positive (TP): the number of instances correctly predicted as belonging to the

positive class.

• True Negative (TN): the number of instances correctly predicted as belonging to

the negative class.

• False Positive (FP): the number of instances incorrectly predicted as belonging to

the positive class.

• False Negative (FN): the number of instances incorrectly predicted as belonging to

the negative class.

Table 4.5, places these cases in a confusion matrix.

Table 4.5: Confusion Matrix.
Situations Label “match” Label “mis-match”
Classifier predicts “match” True Positive (TP) False Positive (FP)
Classifier predicts “mis-match” False Negative (FN) True Negative (TN)

4.4.1 Evaluation Metrics

The evaluation metrics that we used are based on the above four cases.
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Precision:

Precision of a class C is the ratio of the correctly predicted instances to all the instances that

the classifier retrieved, irrespective of whether they are correct or not [18]. Precision indicates

what proportion of the instances that the classifier returned are correct. The precision of

the positive and negative classes is shown in the following equations:

Precision(Positive) =
TP

TP + FP
. (4.1)

Precision(Negative) =
TN

TN + FN
. (4.2)

Recall:

Recall of a class C is the ratio of the correctly predicted instances to the total number

of instances truly belonging to C. Recall measures the probability that the classifier would

identify correctly the instances of the specific class C. The recall for the positive and negative

classes is shown in the following equations:

Recall(Positive) =
TP

TP + FN
. (4.3)

Recall(Negative) =
TN

TN + FP
. (4.4)

Recall of the positive class is also called sensitivity or true positive rate.

Accuracy:

Accuracy is a statistical measure that indicates how well the classifier predicts overall. Ac-

curacy is formalized in eq. /refeq:accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
. (4.5)
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F-Measure:

Due to the imbalanced data, F-measure is more appropriate than accuracy to evaluate the

overall classification performance of a method. F-measure represents the harmonic mean of

precision and recall [18], as denoted in the following equations:

Fmeasure(Positive) = 2 ˙
Precision(Positive) ˙Recall(Positive)

Precision(Positive) +Recall(Positive)
. (4.6)

Fmeasure(Negative) = 2 ˙
Precision(Negative) ˙Recall(Negative)

Precision(Negative) +Recall(Negative)
. (4.7)

4.4.2 ROC Curve

The Receiver Operating Characteristics (ROC) curve is a graphical representation of clas-

sification performance. It is useful for evaluation because it provides a visualization of the

performance of the classifiers [19]. The ROC curve depicts the true positive rate as a func-

tion of the false positive rate at different threshold settings. As mentioned above, the true

positive rate (TPR) is the sensitivity or recall. The False positive rate (FPR), or false alarm

rate, is the ratio of negatives incorrectly classified to the total number of negatives [19]. For

reasons of completeness these rates are presented in the following equations:

TPR =
TP

TP + FN
. (4.8)

FPR =
FP

FP + TN
. (4.9)

The ROC space is a 2D space, where the y-axis represents true positive rate (TPR) while

the x-axis the false positive rate (FPR). Each point in the space (x, y) represents a relative

trade-off between TPR and FPR, i.e. trade-off between benefits and costs respectively.

The diagonal line, as illustrated in Figure 4.2 , divides the ROC space into two areas. A

confusion matrix, which generates one point in the ROC space, is characterized as good or

bad prediction related to the diagonal. Specifically the closer a point is to the upper left

corner, the better classification result it represents.

Most classifiers can produce a probability score for each instance, that represents the con-

fidence with which this instance is assigned to the class. Ranking or Score classifiers (e.g.

Naive Bayes) are based on continuous probability estimation, and produce such probability

Aikaterini Zamani 39



Similarity-based Identification Across Social Networks

Figure 4.2: Diagonal line in the ROC space. The upper left point denotes perfect classifica-
tion.

score directly. On the other hand, discrete classifiers (e.g. decision trees), that produce a

discrete class decision corresponding to a single point in the ROC space, can be extended to

convert a class decision to a numeric output. For example a decision tree can be transformed

to return the proportion of training instances belonging to a particular class in a leaf, instead

of the label of the majority class. Assume countp and countn the the number of instances in a

single leaf with “match” and “mis-match” class respectively. The corresponding probability

scores for that leaf are computed with the use of the following equations:

Scorep =
countp

countp + countn
. (4.10)

Scoren =
countn

countp + countn
= 1− Scorep . (4.11)

Given a probability score, a classifier can decides the class of an instance, y imposing a

threshold T on the score. Each threshold value produces a point in the ROC space [19].

Thus, a ROC curve is generated with the use of this threshold T , as a parameter in the

range [0, 1]. In other words, we can say that ROC curve is a function of TPR versus FPR,

parameterized by the varying threshold T .

In our approach we utilize the classifiers that are described in Section 3.2 . All of them, except

decision trees, belong to the ranking/score classification category, producing a probability

score for each instance. Decision tree classifiers are also made to return a numeric output,

as explained above.
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4.5 Results of the Trained Classifiers

In this subsection we present the results of the different classifiers that we used. To estimate

the performance of our classifiers we utilize the k-fold cross validation technique. Due to the

structure of our datasets, we split our sets of pairs into 7-folds, testing 14% of the database

each time. As mentioned in Section 4.3, we evaluate the performance of he classifiers with

the use of precision, recall, F-measure and ROC curves. The results that we present are the

average estimates of the corresponding measures in each fold of the of cross validation.

In Tables 4.6 and 4.7 we can see the results produced by each classifier in each test case.

P indicates the (positive) “match” class while N the (negative) “mis-match” class. Also in

Tables 4.6 and 4.7 we notice that Precision, Recall and F-Measure for the positive class

are low in relevance to the Baseline Average Classification. Due to the imbalanced data

problem, some classifiers do not identify any “matching” pair in some user sets. Indicatively,

in the Twitter identification case 93.10% of sets that were FN after the use of Decision Table

classifier, did not contain any “matching” pair at all. The respective percentage for the

Naive Bayes classifier is 91.90% and for KNN it is 92.70%. However the percentages for the

negative (“mis-match”) class are very high in every classifier, thus we achieve a very high

accuracy as well.

Table 4.6: LinkedIn identification results for various classifiers.
Classifiers
LinkedIn’s
identification

Euclidean
Distance

Decision
Tree

Naive
Bayes

KNN
(k=5)

NBTree DTNB

Accuracy 90.16% 95.77% 93.41% 96.02% 95.77% 95.95%
Precision(P) 53.09% 82.28% 67.63% 83.73% 86.96% 85.77%
Recall (P) 88.86% 72.42% 61.68% 73.60% 66.67% 71.25%
F-measure (P) 66.47% 76.65% 64.33% 77.95% 74.93% 76.97%
Precision(N) 98.54% 97.04% 95.84% 97.12% 96.47% 96.94%
Recall (N) 90.47% 98.27% 96.79% 98.44% 98.82% 98.60%
F-measure (N) 94.33% 97.65% 96.31% 97.77% 97.62% 97.76%

In Figures 4.3 and 4.4 we can see the ROC curves for the LinkedIn identification and Twitter

identification cases respectively. We notice that the DTNB classifier performs better in both

cases (LinkedIn identification and Twitter identification), because its ROC curve is closer to

the upper-left corner than the others.

To handle the imbalanced data problem we also tested another approach, where classifiers

are used like rankers. Specifically, for each user set we choose as “matching” pair the one

with the maximum probability. This probability, which is derived from the distribution

of the positive class during training, denotes the likelihood membership of the instance in
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Table 4.7: Twitter identification results for various classifiers.
Classifiers
Twitter’s identi-
fication

Euclidean
Distance

Decision
Tree

Naive
Bayes

KNN
(k=5)

NBTree DTNB

Accuracy 91.99% 95.13% 95.67% 96.02% 95.49% 95.67%
Precision(P) 51.36% 74.74% 77.44% 83.73% 75.53% 77.92%
Recall (P) 88.80% 66.41% 68.34% 73.60% 66.41% 72.97%
F-measure (P) 65.08% 67.57% 70.88% 77.95% 69.31% 73.23%
Precision(N) 98.92% 97.04% 97.22% 97.12% 97.03% 97.58%
Recall (N) 92.32% 97.67% 98.11% 98.44% 98.04% 97.74%
F-measure (N) 95.51% 97.32% 97.64% 97.77% 97.51% 97.63%

Figure 4.3: ROC curves of the classifiers for the LinkedIn identification task. The y-axis
represents true positive rate (TPR) while the x-axis the false positive rate (FPR).
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Figure 4.4: ROC curves of the classifiers for the Twitter identification task. The y-axis
represents true positive rate (TPR) while the x-axis the false positive rate (FPR).

that class [20]. Tables 4.8 and 4.9 show the results in LinkedIn identification and Twitter

identification for each classifier-ranker. The evaluation metrics represent only the “match”

class, because the results for the negative (“mis-match”) class are high due to imbalanced

data problem, as we observed in the previous statement.

As shown in Tables 4.8 and 4.9, our approach performs well for detecting matching pairs,

especially with the use of the DTNB classifier. Even the low proportion of ground-truth

data, the results for precision and recall in match class are satisfactory, thus we achieve a

high score in accuracy. In LinkedIn identification case, DTNB achieves approximately 95%

in Precision, Recall and F-Measure in the positive (“match”) class. Accuracy in DTNB

Table 4.8: LinkedIn identification results for various rankers.
Rankers
LinkedIn’s
identification

Decision
Tree

Naive
Bayes

KNN
(k=5)

NBTree DTNB

Accuracy 97.87% 98.09% 98.40% 98.68% 98.96%
Precision 89.58% 90.35% 92.66% 92.28% 94.98%
Recall 88.96% 89.69% 91.99% 91.59% 94.27%
F-measure 89.27% 90.02% 92.33% 91.93% 94.62%
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Table 4.9: Twitter identification results for various rankers.
Rankers Twit-
ter’s identifica-
tion

Decision
Tree

Naive
Bayes

KNN
(k=5)

NBTree DTNB

Accuracy 97.93% 97.89% 98.57% 98.52% 98.61%
Precision 86.49% 86.10% 90.73% 91.12% 90.73%
Recall 86.49% 86.10% 90.73% 91.12% 90.73%
F-measure 86.49% 86.10% 90.73% 91.12% 90.73%

is very high (98.96%), due to high results in the “mis-match” class as well. In Twitter

identification, if we take into account the results of Precision, Recall and F-Measure, we

would notice that NBTree classifier performs better, achieving 91.12% in these measures.

On the other hand, DTNB achieves a higher accuracy than NBTree (98.61%) and the results

for Precision, Recall and F-Measure (90.73%) are close to the respective ones in NBTree.

Taking into consideration the ROC curves as well, we can conclude that DTNB outperforms

the other classifiers in both cases (LinkedIn identification and Twitter identification).
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5. CONCLUSION AND FUTURE WORK
In this thesis, we studied user identification across two popular social networks, LinkedIn

and Twitter. Our motivation was to verify the validity and trustworthiness of users in social

networks. For the matching, we used different similarity measures for different pieces of

professional information provided by the users in the two networks. The novelty of this

work lies in the combination of different sets of features in order to produce the similarity

measures. To achieve identification, we combined the similarity metrics using a variety of

well-known supervised classification methods on the basis of similarity vectors. Specifically

we tested our approach with the use of Baseline Average, Euclidean Distance, Decision Table,

Naive Bayes, KNN Classifiers and hybrid techniques such as DTNB and NBTree. Also we

handle missing values, as well as the imbalanced data problem by ranking the classification

results and specifying as “matching” the pairs with the maximum probability. As shown in

our experiments on the specific data set, using a hybrid classifier (DTNB) we can achieve a

very high user identification performance.

A possible future extension of the presented work would be the handling of class imbalance

with a more sophisticated approach. We could use ensemble filtering (e.g SMOTE) to over-

sample the minority (match) class and under-sample the majority (mis-match) one [21].

Specifically, past experiments with SMOTE indicate the improvement of Naive Bayes and

Decision Tree classifiers. Therefore, it would be interesting to use ensemble filtering in

our classification strategy, and especially for NBTree because it combines Naive Bayes and

Decision Tree classifiers. Another approach for handling the imbalanced data problem is

to set higher weights to the positive (matching) instances during training [8]. The weight

should be set properly, e.g. inversely proportional to the ratio of matches to mis-matches.

Moreover, we could enrich location information provided by the users with estimations of

locations as mentioned by the users in tweets or in job descriptions, as [22] suggests. Chen

et al. predicts the city-level location and points of interests of users by extracting content-

based words in their tweets. We could modify this work by extracting specific fields in

the LinkedIn network, in order to estimate professional location e.g. the headquarter of a

company where a user works. Additionally, we would combine this with the work of Chen et

al. [22] to produce a new similarity measure. This extension could increase the performance

of our approach, especially in the journalism scenario, where many reporters are foreign

correspondents.

Finally it would be interesting to study the potential contribution of our approach to
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the difficult problem of identifying fake or compromised accounts in social networks [23].

The COMPA approach is addresses this problem, using event detection identifying sudden

changes in user activity behavior. Event detection seem particularly suitable for the Twitter

network, due to its nature. On the other hand, LinkedIn doesn’t support events in public

information of the users. Nevertheless, we could customize COMPA for LinkedIn by verify-

ing the chronological sequence and content of jobs, education, skills and other professional

characteristics of a user account.
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A. APPENDIX

1.1 Used Toolkits

• Geonames: Geonames is a geographical database that provides geographical informa-

tion through its web services and web ontology. Geonames’ data consist of features,

which are categorized into specific classes of toponyms such as region, lake, build-

ing etc. What makes Geonames attractive is that it integrates geographical data from

many sources, providing a variety of geographical information (e.g. population, coordi-

nates etc) in many languages. In addition, its web ontology is provided as a geospatial

semantic taxonomy. Therefore, Geonames is helpful in our approach because we can

receive useful geographical information with the use of its web services.

• SecondString: SecondString is an open-source Java library for named-entity matching.

It provides many well-known string matching techniques, such as edit-distance metrics,

fast heuristic string comparators, token-based distance metrics, and hybrid methods

[13]. This toolkit computes a distance measure for each implemented metric, in order

to specify the similarity of two entities. This library was helpful in the computation

of our measures, which they are based on implemented metrics such as Levenshtein,

Jaro-Winkler and SoftTFIDF.

• Simmetrics: Simmetrics is another open-source Java library that contains a variety of

similarity metrics. This toolkit provides a plethora of techniques, ranking from simple

ones, such as edit distance metrics, to more complicated algorithms such as Smith-

Waterman ’s. We utilized Simmetrics in the computation of the Affiliation-Education

measure.

• Weka: The Machine Learning Group at the University of Waikato developed a software

that includes several standard Machine Learning (ML) techniques. The Weka team

provides a Java library, implementing many well-known ML algorithms, as well as

many tools for data pre-processing, classification, regression, clustering, association

rules, visualization and evaluation of algorithms and their results [20].
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