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ΠΕΡΙΛΗΨΗ

Εκτεταμένη έρευνα έχει γίνει στους τομείς της Ικανοποίησης Περιορισμών με διακριτά (ακέραια)

ή πραγματικά πεδία τιμών. Αυτή η έρευνα έχει οδηγήσει σε πολλαπλές σημασιολογικές περι-

γραφές, πλατφόρμες και συστήματα για την περιγραφή σχετικών προβλημάτων με επαρκείς

βελτιστοποιήσεις. Παρά ταύτα, λόγω της ασαφούς φύσης πραγματικών προβλημάτων ή ελλιπούς

μας γνώσης για αυτά, η σαφής μοντελοποίηση ενός προβλήματος ικανοποί-ησης περιορισμών δεν

είναι πάντα ένα εύκολο ζήτημα ή ακόμα και η καλύτερη προσέγγιση. Επιπλέον, το πρόβλημα

της μοντελοποίησης και επίλυσης ελλιπούς γνώσης είναι ακόμη δυσκολότερο. Επιπροσθέτως,

πρακτικές απαιτήσεις μοντελοποίησης και μέθοδοι βελτιστο-ποίησης του χρόνου αναζήτησης

απαιτούν συνήθως ειδικές πληροφορίες για το πεδίο εφαρμογής, καθιστώντας τη δημιουργία

ενός γενικότερου πλαισίου βελτιστοποίησης ένα ιδιαίτερα δύσκολο πρόβλημα.

Στα πλαίσια αυτής της εργασίας θα μελετήσουμε το πρόβλημα της μοντελοποίησης και α-

ξιοποίησης σαφών, ελλιπών ή ασαφών περιορισμών, καθώς και πιθανές στρατηγικές βελτιστο-

ποίησης. Καθώς τα παραδοσιακά προβλήματα ικανοποίησης περιορισμών λειτουργούν βάσει συγ-

κεκριμένων και προκαθορισμένων κανόνων και σχέσεων, παρουσιάζει ενδιαφέρον η διερεύ-νηση

στρατηγικών και βελτιστοποιήσεων που θα επιτρέπουν το συμπερασμό νέων ή/και αποδοτικότερων

περιορισμών. Τέτοιοι επιπρόσθετοι κανόνες θα μπορούσαν να βελτιώσουν τη διαδικασία αναζήτησης

μέσω της εφαρμογής αυστηρότερων περιορισμών και περιορισμού του χώρου αναζήτησης ή

να προσφέρουν χρήσιμες πληροφορίες στον αναλυτή για τη φύση του προβλήματος που μον-

τελοποιεί.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοημοσύνη

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ : βελτιστοποίηση, περιορισμός, αριθμητικός, συμπερασμός, ασάφεια, OWL



Abstract
Extensive research has been done in the areas of Constraint Satisfaction with discrete/in-

teger and real domain ranges. Multiple platforms and systems to deal with these kinds of

domains have been developed and appropriately optimized. Nevertheless, due to the in-

complete and possibly vague nature of real-life problems, modeling a crisp and adequately

strict satisfaction problem may not always be easy or even appropriate. The problem of

modeling incomplete knowledge or solving an incomplete/relaxed representation of a prob-

lem is a much harder issue to tackle. Additionally, practical modeling requirements and

search optimizations require specific domain knowledge in order to be implemented, mak-

ing the creation of a more generic optimization framework an even harder problem.

In this thesis, we will study the problem of modeling and utilizing incomplete and fuzzy

constraints, as well as possible optimization strategies. As constraint satisfaction problems

usually contain hard-coded constraints based on specific problem and domain knowledge,

we will investigate whether strategies and generic heuristics exist for inferring new con-

straint rules. Additional rules could optimize the search process by implementing stricter

constraints and thus pruning the search space or even provide useful insight to the re-

searcher concerning the nature of the investigated problem.

SUBJECT AREA: Artificial Intelligence

KEYWORDS: optimization, constraint, numerical, inference, fuzziness, OWL
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Optimization and inference under fuzzy numerical constraints

1. Introduction
In a world of complex systems, incomplete knowledge and changing requirements, the

modeling and reasoning on numerical problems is often an intimidating task, requiring mul-

tiple modeling iterations and experimentations until a consistent model is created. Such

a monolithic process may also lead to re-usability issues, e.g when a platform or formal-

ism is not generalized or easily extensible to be used in multiple projects, or to wasted

time overhead when requirements change or the investigator notices that the core of the

problem was incompletely modeled. A generic and interactive method of modeling such

problems may provide researchers with the appropriate tools to create a re-usable platform

to model a problem, manage constraints and guide both the design and the automated rea-

soning/search processes.

A well researched area of Artificial intelligence is CSPs which are mathematical prob-

lems described as a set of variables with specific domains which are limited via constraints,

modeling physical systems and the relations between them. A CSP solver is software

which uses this information to infer new constraints in order to search for instantiations

that satisfy the constrains. Due to the complexity of the systems they model, CSPs with

finite or even real variables may be cumbersome or even inadequate to represent specific

problems which contain incomplete or vague information. There are various methods of

describing incomplete knowledge and applying reasoning on it, one of them being the well-

researched area of Fuzzy Logic. Extensive work has been done on Fuzzy CSP (f-CSP)

formalisms which give us the tools for integrating fuzzy variables in CSPs and the insight

on utilizing fuzzy operators properly. Nevertheless, the process of modeling a CSP is a

difficult one, possibly requiring multiple design iterations before landing on a successful

description (otherwise, search performance suffers due to a vast search space or worse

Vassileios-Marios Anastassiou 11



Optimization and inference under fuzzy numerical constraints

the problem is so much constrained that there are no possible solutions). This means,

of course, that the modeling of f-CSPs an even harder problem! Proper visual represen-

tations of such problems, interoperable representations and newer formalisms that retain

adequate expressivity while yielding better performance would give CSP investigators an

even better tool to implement and share their work. The developing application area of

the Semantic Web is a promising candidate, providing a software stack that permits re-

search on various levels (from low-level logic semantics to high-level software engineering

practices).

In Chapter Two, we will study classical CSPs as well as the representation and solution

process of dynamic and vague problems. We will investigate methods of modeling flexi-

ble, dynamic and fuzzy descriptions, as well as various methods of optimizing numerical

constraints in CSPs. In Chapter three, we will investigate fuzzy logic and its semantics,

we will describe Description Logics (DLs) and finally we will see how they are combined

with fuzzy logic in the literature. Fuzzy Description Logics are a fairly recent formalism for

describing fuzzy knowledge via ontologies, providing a common ground for describing and

reasoning fuzzy knowledge on the Web, and will be described in chapter three. Finally, in

Chapter four, we will investigate how constraints are modeled via ontologies and what rea-

soning capabilities are provided by such systems and will discuss the requirements of an

ontological framework for describing constraint satisfaction problems with fuzzy relations

and numerical constraints.

Vassileios-Marios Anastassiou 12



Optimization and inference under fuzzy numerical constraints

2. Constraint Satisfaction Problems
In this chapter, we will describe Constraint Satisfaction Problems (CSPs) and showcase
their usefulness by careful investigation of their definition and features in sections 2.1 and
2.2. In section 2.3, we will provide valuable insight on the breadth of their applicability and
their extensions, as well as their limits.

2.1 CSP definitions
A large number of problems in Artificial Intelligence and other fields of Computer Science
can be represented, modeled and solved as CSPs. The formal definition of a CSP is the
following:

Definition 2.1.1 (Constraint Satisfaction Problem). A CSP is a tuple 〈X,D,C〉, where:

• X = {x1, . . . , xn} is a set of variables,

• D = {D1, . . . , Dn} is a set of the respective domains of values such that ∀xi ∈ X

there is a domain Di, and

• C = {C1, . . . , Cm} is a set of constraints such that the scope of each constraint is a
subset of X

In other words, CSPs are the description of a problem containing finite sets of variables
(each with its relevant domain of values) and a set of constraints each applied on some
subset of variables.

Definition 2.1.2 (CSP Variable Domain and Constraints). Each variable is defined by its
domain, that is the set of all possible/considered values that can be assigned to the variable.
These can vary according to the problem type, the arithmetic system used and the platform
used for investigating a CSP, although finite discrete or real domains are the typical choice.
A constraint defines a mathematical relation on and between CSP variables which must
(hard) or should (soft) be satisfied.

Definition 2.1.3 (CSP Instantiation, Solution, Labeling and Consistency). A solution to a
CSP is a complete instantiation of the variables in X satisfying all the constraints in C. If
a CSP has at least one solution, it is described as satisfiable or consistent, otherwise we
say that it is inconsistent.

Vassileios-Marios Anastassiou 13
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Solving a CSP requires searching the search space defined by 〈X,D,C〉 in order to find
an appropriate assignment between variables X and their domain D, which at the same
time satisfy constrains defined in C. In other words, variable literals are grounded during
the process of labeling, checking for (full or partial) satisfiability of the constraint store in
order to produce a satisfying assignment. At the same time, an additional goal may be not
only to find any/all valid assignments for a specific problem, but to find an optimal solution
based on specific cost criteria.

A specific instantiation is called locally consistent if it satisfies all the constraints that
affect its instantiated variables. Thus, a solution is a locally consistent full instantiation
of the CSP variables. In a globally consistent CSP, there is a locally consistent partial
instantiation that can be extended to satisfy all constraints and thus lead to one or more
solutions [Dechter, 1992]. An inconsistent CSP may be the result of overly strict constraints,
in which case investigation is required in order to determine whether some constraints can
be relaxed in order to widen the search space to include possible solutions [Epstein and
Yun, 2010].

2.2 Backtracking and Constraint Propagation
The main methods of searching for a solution in a CSP is Back-Tracking via tree search
and constraint propagation. Simple backtracking search guarantees that a solution will be
found if one exists, but it suffers from redundant value assignments and possible thrashing
(i.e. continuously exploring the same or similar search subtrees), duplicating effort and
degrading performance [Lecoutre et al., 2006]. Constraint propagation disregards domain
values that will definitely not satisfy the constraints but is usually insufficient for providing
the actual solution by itself. The typical approach is a hybrid one, that is enhancing the
typical Tree search method with a constraint propagation algorithm. In the search tree of
the backtracking algorithm, whenever a node is visited, a constraint propagation algorithm
is performed to attain a desired level of consistency by removing inconsistent values from
the domains of the as yet uninstantiated variables. During the process of constraint prop-
agation on a node, if the domain of any variable becomes empty then the node is pruned,
as the current instance becomes inconsistent. An additional family of optimization meth-
ods for backtracking are called Look-back techniques, which avoid assignments that have
lead to dead-ends during the search. These can be implemented as Back-Jumping (try-
ing to continue the search from a previous ancestor rather than the parent node, that is to

Vassileios-Marios Anastassiou 14
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the most recent variable that eliminated values from the dead-end variable) and No-Good
learning (where additional constraints are introduced in order to detect similar dead-ends
earlier in future searches) [Jussien and Boizumault, 2002].

Constraint propagation is a form of reasoning in which, from a subset of the constraints
and the domains, more restrictive constraints or more restrictive domains are inferred. The
inferences are justified by local consistency properties that characterize necessary condi-
tions on values or set of values to belong to a solution. Arc consistency is currently the
most important local consistency property in practice and has received the most attention
in the literature. The importance of constraint propagation is that it can greatly simplify a
constraint problem and so improve the efficiency of a search for a solution. Constraint prop-
agation methods are online and parallelizable, meaning that one may interrupt propagation
on a subtree and examine the intermediate instance if required, and it is also possible to
incrementally add or remove constraints in order to check their effect on constraint prop-
agation. There are two main approaches to performing constraint propagation: the rules
iteration approach and the algorithmic approach. The former constitutes of reduction rules
that specify conditions under which domain reductions can be performed for a constraint;
the latter uses generic or special purpose algorithms specifically designed for constraints
based on problem type [Kumar, 1992; Dib et al., 2010]

Using these heuristics, potential thrashing can be effectively reduced and the search
process is directed towards possible ”bottlenecks” in the search space, where search is
likely to fail, efficiently pruning the search space. Methods such as Forward Checking (FC)
and Maintaining Arc-Consistency (MAC) are implementations satisfying said properties.
FC achieves partial arc consistency while MAC guarantees full arc consistency by con-
straining the search space before proceeding in each search step. Additionally, multi-
ple iterations of the main MAC algorithm have been implemented, as well as a number
of heuristics enhancing the original functionality, providing multiple methods of inference
that satisfy all possible types of constraint consistency [Bessiere et al., 1995]. Haralick
and Elliott [1980] provide an in-depth investigation of said heuristics and strategies (and
more such as Back-checking and Back-marking), demonstrating that efficient and consis-
tent labeling is achievable without introducing significant overhead complexity. Selectively
searching subtrees based on available label choices (effectively by sorting domains based
on available domain values) also enhances search performance, as demonstrated by Bac-
chus and Run [1995].

Vassileios-Marios Anastassiou 15
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Figure 2.1: Comparison of the three basic CSP heuristic methods (source: Guide to Con-
straint Programming, Roman Bart ťak, 1998)

2.2.1 Generalized frameworks for constraint planning
Bartak [1997] described constraint hierarchies which were introduced for describing over-
constrained systems by labeling constraints as either required (called hard) or useful (called
soft), and also with hierarchical strengths or preferences, allowing an arbitrary number of
different strengths for the whole set. This enables the declarative specification of both hard
and soft constraints which, in combination with existing efficient satisfaction algorithms, are
the strengths of constraint hierarchies. Most of the modern satisfaction algorithms can be
grouped into two separate categories: refining [Hosobe et al., 1996] and local propagation
algorithms. The author introduces a generalized framework for constraint planning aiming
to solve constraint hierarchies by leveraging generalized local propagation techniques.

A comparator is an irreflexive and transitive relation over partially-ordered valuations
of variables that is consistent with the constraint hierarchy. One can easily deduce by the
definition of constraint hierarchies that the stronger constraints are more influential as far
a solution is concerned. However, comparators can parameterize the constraint hierarchy
schemes thus allowing the comparison of different solutions and choosing the best among
them. These may be locally-better (comparable on 1 level), regionally-better (comparable
in multiple levels where there are no compatible locally-better comparators) or globally-
better. All those comparators require error functions indicating the satisfaction degree of
a specific valuation. Predicate-comparators use the trivial error function, returning 0 for
satisfied constraints and 1 for violated constraints.

When investigating the limits of current satisfaction algorithms, one notices that the gen-
erality of refining method sacrifices the incremental updates of the solution but in return it
allows using arbitrary comparators for all kinds of constraints. On the contrary, local prop-
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agation is incremental and hence execution time is reduced but its major disadvantage is
the preceding planning phase, required to decide constraint satisfaction order. Additionally,
certain limits are imposed by the features of local propagation solvers. For instance, dur-
ing the planning phase, weaker constraints may be disabled unfairly or conflicts cannot be
resolved. The executing phase is linear, meaning that constraints expressed as systems
of linear equations cannot be solved. Local propagation handles only equality (functional)
constraints and it can identify just a single solution because functional constraints are sat-
isfied uniquely.

The author, bearing in mind the aforementioned limits of current algorithms, proposes
a new framework that encapsulates local propagation and refining approaches in order to
combine their advantages, namely efficiency and generalization. The basic idea of this
framework is the organization of the constraint hierarchy into constraint cells containing
constraints of equal strength and partially ordering them in a constraint network. This net-
work represents relationships between constraints and can be traversed by an executing
local propagation algorithm based on the partial order of cells. It is shown that the same
constraint hierarchy may lead to multiple constraint networks. Although the ideas of propa-
gated valuations and order of constraint cells refer to local propagation solvers, solving all
constraints of a cell in one step corresponds to the refining approach. The focus of the de-
scribed method is on constraint network construction which is called planning stage. The
authors set an important rule for solving a constraint hierarchy in the general case, namely
that ”the satisfaction of a stronger constraint is strictly preferred to the satisfaction of an
arbitrary number of weaker constraints”. This intuitive rule means that the satisfaction of
a constraint should not cause the violation of an equally or more strongly preferred con-
straint after propagation in order to guarantee a monotonic behavior during search. More
advanced methods are available that can be used to describe and solve over-constrained
problems and thus be used as generalized CSP resolution frameworks 1.

2.3 Extending CSP with non-static variants
The classic, static model of CSPs we described earlier is a successfully-applied formalism,
sufficient for defining many constraint-related problems, although by its nature is inade-
quate to describe dynamic situations or incomplete knowledge. Thus, various proposals

1http://ktiml.mff.cuni.cz/˜{}bartak/constraints/general.html
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try to enhance the CSP definition with constraints more appropriate for those kinds of prob-
lems. Dechter and Dechter [1988] described and demonstrated that constraint networks,
generated from relevant CSP formalisms, provide ”an attractive paradigm for modeling
dynamically changing environments”. Together with interactive CSP solving techniques
[Madsen, 2003] and explanatory CSP solution methods [Jussien, 2001], these tools can
greatly enhance the ability of an investigator to effectively describe a solvable constraint
satisfaction problem and explore alternative descriptions.

In the following sections we will describe similar but also unique ways to deal with non-
static constraint requirements. Even though we will only focus on Fuzzy CSP (f-CSP) in
subsection 3.2.2, the interested reader may study more about non-static CSP formalisms
via Miguel [2001], where he described how newly developed techniques for solving Dy-
namic CSPs (DCSPs) and Flexible CSPs (FCSPs) can be integrated together and provide
powerful investigation and modeling capabilities.

2.3.1 Flexible CSPs and Preferences
FCSPs relax the requirement of having hard constraints (i.e. all constraints must be sat-
isfied, otherwise there is no solution), partially relaxing some constraints and providing a
partial solution that does not satisfy all of them. This is similar to preferences in preference-
based planning. An early extension following these requirements is MAX-CSP where, given
inconsistent or over-constrained CSPs, the problem is transformed to a maximization prob-
lem with the goal of finding a partial solution satisfying most constraints (or, inversely, a
minimization goal of violating the least constraints possible). There a number of constraints
are allowed to be violated, and the quality of a solution is measured by the number of sat-
isfied constraints [Kask, 2000]. Weighted CSP (WCSP) can be thought as a more specific
type of MAX-CSP where each violation of a constraint is weighted according to a predefined
preference. Another extensively studied formalism, f-CSP (described in depth in section
2.3.3), models constraints as fuzzy relations in which the satisfaction of a constraint is a
continuous function of its variables’ values, going from fully satisfied to fully violated. While
f-CSPs associate a level of preference with each tuple in each constraint, WCSPs assign
a specific cost to search constraint, which facilitates the modeling of the CSP as a spe-
cific optimization problem, where the goal (and thus the aggregation function) is explicitly
defined to minimize the total cost of the required solution. The cost function is defined
by summing up the costs of all constraints, that is the cost of the chosen tuple for each
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constraint accordingly. Thus, the goal is to find a set of tuples that minimize the sum of
costs of their sub-tuples (one for each constraint). Two WCSPs are defined as equiva-
lent when they contain the same variable set and also the same cost distribution over it.
It logically follows that a problem with no solution has no locally consistent labeling with
non-infinite cost. Typical consistency definitions (such as arc, node, pair etc) are extended
to support weighted constraints, and various extensions have been proposed (such as Full
Directional Arc consistency, Existential Directional Arc consistency, Virtual Arc consistency
and Optimal Soft Arc consistency [Levy et al., 2007]). Even though the concept of weight is
used to indicate the relative importance level between entities, the concept of priority can
similarly be used to indicate the importance level of a constraint among some constraints.
There are various definitions concerning WCSPs which deal with the way weight and con-
straint consistencies are treated, focusing on cost transfer operations and the ordering of
constraint requirements [Brown, 2003], which we will not discuss here.

2.3.2 Dynamic CSPs
DCSPs are useful when there are no set requirements for a specific problem and is possi-
ble that its formulation changes during the search process. For example, a specific variable
instantiation represents a real-world condition where requirements or facilities change, typi-
cally because the set of constraints to consider evolves because of the environment. These
changes usually only affect a specific part of the instantiation and thus previous partial so-
lutions may be re-used or slightly tuned without restarting the search process [Verfaillie and
Schiex, 1994]. DCSPs are viewed as a sequence of static CSPs, where each CSP in the
sequence is a transformation of the previous one in which variables and constraints can be
relaxed (removed constraints) or restricted further (added constraints). Thus, information
or partial solutions introduced in initial formulations of the problem can be used to refine
following ones. Various methods of information transfer have been proposed, such as Lo-
cal Repair (where each CSP is re-calculated from the partial solution of a previous one and
any inconsistent constraints are repaired via local search methods), Oracles (where partial
solutions are used as heuristics to guide the resolution of a completely new search for the
current CSP) and Constraint recording (where new constraints are defined in each stage
of the search to represent the learning of inconsistent group of decisions and carried over
to newer formulations). Another way to deal with dynamic constraints is by tagging certain
variables of the constraint network as assumption variables which are initially assigned
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default values but may dynamically change their values during search without requiring
backtracking to the root of the search tree, a process called contradiction resolution.

Mouhoub and Sukpan [2012] propose an interesting extension where they propose a
framework for managing DCSPs with multiple types of preferences (unary, binary, com-
posite and conditional). Their method provides enhanced modeling flexibility, as it can
convert a given CSP into a constraint network where conditional constraints and compos-
ite variables control the addition of metadata to the constraint network in a dynamic manner
during the resolution process. That way, preferences are associated to variable and con-
straint values as well as composite variables, in order to favor some solutions of the con-
straint problem but not sacrifice any local consistency. Composite variables are variables
whose values are existing CSP variables, effectively representing disjunction possibilities
and guiding the search accordingly. Conditional preferences define a preference function
to dynamically determine whether a constraint is to be considered active or inactive, fur-
ther guiding search pruning. Wallace et al. [2009] have experimented on possible heuristics
and search methods in DCSPs and have shown that performance may vary significantly
under certain circumstances even in the presence of subtle feature changes. Problem al-
terations have significant effect on which search subtree is possible to fail first, but mainly
on promising alternatives. This fact means that adaptive contention-based search strate-
gies (i.e. strategies which are evaluating sub-solution similarities and try to order them
by how promising they are for leading to a solution) may not yield predictable search im-
provements. On the other hand, sub-solution caching is a robust and important step of the
search process because it can effectively reduce variability when the problem changes,
leading to more predictable performance.

2.3.3 Fuzzy CSPs
Similarly to CSPs, f-CSPs are defined by 〈X,D,C, P 〉 tuples, where Constraints C are de-
scribed as fuzzy relations between variables in X. The additional P vector contains flexi-
bility (or priority) degrees to each constraint which indicate the minimum degree threshold
that each constraint must be satisfied by. In other words, a constraint restricts the values
these variables can simultaneously take and thus represents the possible combination of
values of a consistent instantiation. Thus, a membership degree of 0 means a constraint
is fully violated and a degree of 1 represents a crisp constraint that is fully satisfied. The
feasible solutions in an f-CSP are complete instantiations satisfying all fuzzy constraints
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simultaneously. The search may also focus on Min-optimal solutions, which are solutions
where the satisfaction degree of the least satisfied constraint is optimal. Intuitively, solving
a f-CSP involves finding a compound label of all variables such that the constraints involved
are satisfied, to some extent, with the compound label.

Based on the goals specified by the fuzzy constraints, a measure is required to make
a decision on which instantiation better satisfies the relevant constrains simultaneously
[Bellman and Zadeh, 1970]. Assuming finite variable domains, the fuzzy sets are defined
by a finite linearly ordered valuation set. Thus, in a partial instantiation, the membership
degree of a specific domain variable represents the maximum satisfaction level of the rel-
evant constraints, while in a full instantiation we know the specific degree by which the
constraint is satisfied. The level of local consistency is the satisfaction level of the least
satisfied constraint. Thus, a fully violated constraint means that the instantiation is locally
inconsistent. It logically follows that a local consistency is always less than or equal to its
global consistency, because additional variable instantiations can only possibly maintain
the consistency level if not reduce it.

The set of feasible solutions is a fuzzy set defined over the set of potential solutions
which satisfy the priority degrees of the constraints. Thus, the best solution is the one with
the largest consistency degree over the set of possible solutions. As with classical CSPs,
additions of constrains is expected to shrink the set of solutions but it may also rule out
any previously best solutions, if the new constraint is satisfied with a too low a degree but
search may continue as long as the instantiation is not completely inconsistent. A new
constraint may be determined as redundant (when the set of best solutions remains the
same), compatible with P (the new optimal solution set is a subset of the previous one),
partially inconsistent with P (constraints are implicitly relaxed due to lower membership
degrees) or totally incompatible (where the set of optimal solutions is empty). Hence, the
set of best solutions does not decrease monotonically when new constraints are added.
This non-monotonic behaviour makes the search process of f-CSPs more complex than
classical CSPs. Constraint relaxation is now more intricate as it is intertwined with the
flexibility of the constraints.

By using the f-CSP formalism, one can model a CSP with priorities on constraints or a
CSP with preferences among the constraint tuples. Furthermore, as both the satisfaction
scale and the priority scale are essentially ordinal scales, one can move between those
to express the same ordering among the potential solutions. This duality is based on the
duality between possibility and necessity already presented in Possibility Theory [Zadeh,
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1978]. Moreover, the FCSP approach bypasses empirical relaxation techniques which
are needed when a set of constraints is globally unfeasible. Constraint relaxation often
happens to be more expensive, difficult to formulate, and leading to suboptimal solutions
[Guo et al., 2006]. On the contrary, the FCSP approach is able to provide solutions to
partially inconsistent problems because a solution (i.e. the instantiation with the maximal
satisfaction degree) can be achieved as long as the specified problem is partially consistent
[Dubois et al., 1996]. Thus, fuzzy constraints are a useful means of investigating problem
modeling by guiding search towards solutions achieving higher satisfaction degrees.

Dubois et al. [1996] provide an extensive overview of the specifics of f-CSP modeling
and search, as well as the handling of uncertainty in CSP with Possibility Theory. Thomas
Schiex extended the previous work on f-CSPs by introducing Possibilistic Logic concepts
in order to integrate soft constraints, preferences and modeling of incomplete knowledge
[Schiex, 1992]. Chang and Mackworth [2005] have described the method of Constraint-
Based Inference (CBI), where they propose a weaker condition of applying generalized
arc consistency enforcing techniques, achieving local consistency in the presence of in-
complete or soft constraints. Guesgen and Philpott [1995] provides an extensive review of
heuristic methods for f-CSPs. Miguel [2003] examines methods for solving fuzzy dynamic
CSPs and how classical planning can be extended via fuzzy sets to enable flexible goals
and preferences to be placed on the use of planning operators for use with CSP-based
planners.

We will investigate the concept of f-CSPs deeper in subsection 3.2.2.

2.3.4 CSPs with numerical or interval constrains
Even though a constraint or optimization problem is determined by the domain ranges of its
variables, another way of modeling is by reasoning with interval values. Interval arithmetic
is an arithmetic defined on sets of intervals, rather than sets of real numbers. Even though
such formalisms focus on numerical analysis applications such as the automatic control of
computational error (formally defined as interval analysis and introduced by Moore [1966]),
they prove to be an intuitive formalism for describing temporal or spatial relations. Spatio-
temporal reasoning can be achieved with various methods and CSPs are shown to be an
adequate formalism for practical applications [Akplogan and Dury, 2011].

Davis [1987] provided one of the first instances of generalizing traditional constraint
propagation of discrete values to intervals. His work was one of the earliest examples of
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constraint propagation via interval labels, providing an extensive review of inference tech-
niques and discussions on the nature and capabilities of using intervals to represent con-
straint values, where he also established that constraints of bounded differences can be
efficiently solved by the Waltz algorithm 2. He based his work on the concept of ”quantity
knowledge bases”, Knowledge Bases (KBs) of quantitative facts which focus on physi-
cal reasoning and contain experimental or inferred relations between physical, real-valued
quantities. One can easily understand that such instances provide inference possibilities
on numerical relations that may readily lead to combinatorial explosion. These kinds of
problems are also described as Numeric CSPs. After discussing the various inference
methods and their capabilities and introducing the concepts of sign and interval labeling
(e.g. applying metadata on data structures representing the expected sign or range of a
variable or complex expression), the author investigates practical ways of expressing qual-
itative relations, important points in relation refinement, and the complexity of such op-
erations. He also suggests that probabilistic metaheuristics, although intuitively useful in
pruning the search space, are unreliable and experimentally shown to be slow and limiting
legitimate alternative solutions. Even though theoretical results on the complexity of the re-
quired operations and expected performance were discouraging, the authors demonstrate
that practical problems and their applications, as well as specific design considerations
and locality considerations, prove to be adequate for practical applications. This position
is alleviated in future work by Faltings [1994] and shown to work on a more general case.
Lhomme [1993] has shown that consistency techniques used for CSP can be adapted to
numeric CSPs over finite or continuous domains and enhanced with incremental label-
ing. Even though searching for a globally consistent instance of valid domain ranges is an
NP-hard problem, the authors suggest a method of aiming for strong arc consistency by
using convex, closed domain bounds and exploiting bound relations (e.g. B-consistency,
an arc consistency restricted to the bounds of domains). Numerical integration methods
such as the Simplex algorithm, the Grobner bases method, indexicals, interval splitting and
approximation methods such as Newton-Raphson or Runge-Kutta are extensively used for
solving such systems, although a complete and general CSP search strategy is still a dif-
ficult problem and also unavoidably prone to slow convergence [Bordeaux et al., 2007].
Carlson and Gupta [1997] demonstrated a hybrid language and system that could utilize
many such methods when solving numerical CSPs.

2https://www.cs.cmu.edu/afs/cs/academic/class/46927-f97/slides/Lec5/sld021.
htm
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Hyvonen [1989] devised a generalized constraint propagation scheme based on inter-
val instead of conventional arithmetic. He introduced the concept of tolerance propagation,
where multiple alternative values (based on the interval bounds of a domain) are simulta-
neously propagated in the constraint network. That way, the search process can execute
more effective constraint propagation without having to iterate through all possible discrete
domain values or perform interval reasoning over real domains. Additionally, problem in-
stances with non-exact input-output (e.g. where the output of a component may affect the
input of another) which would otherwise prove difficult or intractable to model in a CSP,
may be well-defined via appropriate dynamic variables and flexible value intervals.

Allen [1983] introduced an interval calculus for temporal reasoning, acknowledging that
temporal knowledge in many applications is relative or imprecise and therefore representa-
tions based on time instants and dating were inadequate and providing the basis for many
extensions and further research. He employed a temporal representation which takes the
notion of a temporal interval as primitive and then represents the relationships between
temporal intervals in a hierarchical manner. Allen’s interval-based temporal logic scheme
is particularly appealing for its simplicity and for its ease of implementation with constraint
propagation algorithms. This interval algebra calculus for temporal reasoning defines thir-
teen possible relations between time intervals (namely overlaps, starts, finishes, during,
meets, takes place before, their inverses, and is equal to) and provides a composition
(transitivity) table that can be used as a basis for reasoning about temporal descriptions
of events. This approach is useful for modeling processes and process interaction involv-
ing data bases of interactive systems, where the concept of “current time” is dynamic and
techniques such as exact dating are not possible. Allen’s Interval Algebra can be used
for the description of both temporal intervals and spatial configurations. For the latter use,
the relations are interpreted as describing the relative position of spatial objects. This also
works for three-dimensional objects by listing the relation for each coordinate separately.

Using Allen’s calculus, given temporal facts can be formalized and then employed for
automatic reasoning. Relations between intervals are formalized as sets of base relations
and relationships between intervals can be maintained in a network where the nodes rep-
resent individual intervals. Each network arc is labeled to indicate the possible relationship
between the two intervals represented by its nodes. In cases where there is uncertainty
about the relationship, all possible cases are entered on the arc (due to the fact that the thir-
teen possible relationships are mutually exclusive, there is no ambiguity in this notation).
Allen’s algorithm continues to operate as long as it is producing new further constrained
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relationships between intervals, generating a complete constraint network of temporal re-
lations.

In order to reduce the space requirements of the representation without greatly affect-
ing the inferential power of the mechanism, reference intervals are introduced. Formally, a
reference interval is simply another interval in the system, but it is endowed with a special
property; it is used to group together clusters of intervals for which the temporal constraints
between each pair of intervals in the cluster is fully computed. Such a cluster is related to
the rest of the intervals in the system only indirectly via the reference interval. Reference
intervals capture the temporal hierarchy implicit in many domains and enable the precise
control of the amount of deduction performed automatically by the system (e.g, when plan-
ning the activities of a robot, one must model the effects of the robot’s actions on the world
to ensure that a plan will be effective).

2.3.5 Final thoughts
We have established the usefulness of CSP solvers and of various methods they imple-
ment in order to support varying constraints. Nevertheless, such systems typically require
expert domain knowledge and experience in CSP modeling in order to promptly create
fast and adequate representations. Integrating new technologies that would make the vi-
sual representation of CSP design easier and enhance interoperability is an interesting
task which we will discuss in Chapter four, after we introduce relevant technologies and
study Fuzzy Logic in-depth in Chapter three. Concerning interval arithmetic, an extensive
overview not specific to CSPs is provided by Kearfott [1996]. For an extensive overview
of CSP formalisms, as well as in-depth analysis of complete and incomplete specification
solvers, we guide the interested reader to ”Principles of Constraint Programming” by Apt
[2003].
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3. (Fuzzy) Description Logics

3.1 A brief history of fuzziness
The concept of non-classical logic using an additional indeterminate truth value was firstly
introduced by Lukasiewicz [1930] in his work on trivalent logic. After 35 years, Fuzzy
Logic (FL) was officially introduced as a concrete mathematical theory by Lofti A. Zadeh
in his paper on “Fuzzy Sets” [Zadeh, 1965], and later extended with relevant algorithmic
background [Zadeh, 1968]. Novak et al. [1999] write that fuzzy logic “[. . . ] in narrow sense
is a special many-valued logic which aims at providing formal background for the graded
approach to vagueness”. Due to the fact that the mathematics presented on the paper
were unexplored, fuzzy logic met many objectors, which resulted in the slow development
of applications, mainly in the west. On the other hand, the east community openly accepted
this theory and started developing products based on fuzzy logic1. Until 1975, Zadeh
continued his investigation into fuzzy set theory and fuzzy logic was revived in the US
some years later, enhanced by other researchers and used in practical applications. Up
until now fuzzy logic has been used on numerous applications that extend from hardware
controllers and the development of products and sensors (collectively described as “fuzzy
control systems”), to AI software techniques and implementation of programs dealing with
vague information.

3.2 Fuzzy logic systems and fuzzy operators
Fuzzy logic is a form of non-classical logic. In contrast with classical propositional or pred-
icate logic, the rule of excluded middle is rejected from its semantics Garrido [2010] and
multiple truth values (not the traditional binary valuation of logical expressions) are used.
Their arithmetic systems can be either discrete, such as three-valued logics with -1, 0 and
1 as truth values, or defined under a specific real interval such as [0,1]. Thus, we can
describe vague information by defining (in addition to traditional crisp sets) the concept of
fuzzy sets, where each propositional variable is mapped via a membership function into
varying membership degrees.

1http://wing.comp.nus.edu.sg/pris/FuzzyLogic/HistoricalPerspectiveDetailed1.
html
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In the core of Fuzzy Logic and Fuzzy Sets is the membership function µA, used to
describe degrees of truth (or simply degrees) which is the confidence of membership in a
specific (fuzzy) set. The membership function acts as a generalization of the indicator (or
characteristic) function in classical set theory. Degrees are described as a mapping to the
real interval [0, 1], with 0 describing confident non-membership (false) and 1 describing
confident membership (true). In that sense, a variable may be incompletely included to
multiple sets, expressing varying degrees of truth depending on the membership functions
used. Fuzzy Set/Algebra operators act as a generalization of classical logic operators and
are based on the membership function. Fuzzy logics, together with many or infinite-valued
logic, form the T-norm fuzzy logic family. Triangular norms (often noted as T in function
notation and~ in infix notation) act as a generalization of the conjunction operator in logics
(or the intersection operation in lattice theory).

Definition 3.2.1 (Monoidal T-Norm-based propositional fuzzy logic). MTL is an axiomati-
zation of logic where conjunction is defined by a left continuous T-Norm, and implication
is defined as the residuum of the T-Norm. Its models correspond to MTL-algebras that are
prelinearly-ordered, commutative, bounded integral, residuated lattices.

The appropriate connectives for defining generalized intersection and union operations
were a class of associative monotonic connectives known as triangular norms (T-Norms
for short), together with their De Morgan dual triangular co-norms. These operations are
at the basis of the semantics of a class of mathematical fuzzy logical systems that have
been thoroughly studied [Klement and Navara, 1999; Gottwald, 2000; Mazeika et al., 2007;
Noguera et al., 2010].

T-norms are a generalized extension for fuzzy logics of the typical two-valued classical
logical conjunction and are used to construct the intersection of fuzzy sets. We know that
the Boolean conjunction is both commutative and associative. The monotonicity property
ensures that the conjunction degree of truth does not decrease if the conjuncts truth values
increase. The requirement of 1 as an identity element corresponds to the interpretation of
1 as true and consequently 0 as false. Continuity in the framework of fuzzy conjunction,
expresses the important idea that, very small changes in truth values of conjuncts should
not macroscopically affect the truth value of their conjunction.

The connectives defined through the continuous T-Norm conjunctions (continuity with
respect to the left argument is sufficient) are special. Accordingly, there are algebraic pro-
cedures relating them with implications, which have very interesting metalogical properties.
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Any such implication is defined as residuum of a given T-Norm BaczyE•ski and Jayaram
[2008].

Definition 3.2.2 (Fuzzy Logic Residuum). Residuum is an FL operation which acts as the
logical implication operator and is mathematically defined as c ~ a ≤ b ⇐⇒ c ≤ (a ⇒
b),∀a, b, c ∈ [0, 1]

Hajek introduced the basic fuzzy propositional logic, BL-logic, as the logic of continuous
T-Norms on interval [0,1]. The language of BL comprises the connectives of conjunction,
implication and the constant of falsity. The semantics of BL is established by T-Norm
functions and all other functions corresponding to the connectives are derived. A formula
is a BL tautology if and only if under each valuation of propositional variables, compatible
with the functions of connectives, takes the value 1.

Definition 3.2.3 (Basic propositional fuzzy logic). BL is an extension of MTL logic where
conjunction is defined by a continuous T-Norm, and implication is also defined as the
residuum of the T-Norm. Its models correspond to BL-algebras.

In order to clarify the notion of T-Norms, let’s look at the truth function of conjunction,
on which the following constraints are imposed by T-norm fuzzy logics. Commutativity en-
sures that the order of fuzzy propositions, i.e. conjuncts in a conjunction (and disjuncts
in a disjunction) is immaterial, despite the introduction of intermediary truth degrees. As-
sociativity warrants that the grouping in an iterated conjunction (or disjunction) does not
affect the truth-conditions, i.e. that the order of the conjunction operation is immaterial.
Monotony evinces the important fact that augmenting the truth degree of a conjunct should
not lessen the truth degree of the conjunction. Monotonicity in formal logics means that
adding a formula to a theory never produces a reduction of its set of consequences. In-
tuitively, it indicates that acquiring a new piece of knowledge cannot reduce the fuzzy set
of what is known. However, despite the fact that the most prevalent formal logics have
a monotonic consequence relation, one must bear deep in mind, that a monotonic logic
cannot handle various reasoning tasks, such as reasoning by default (consequences may
be derived only because of lack of evidence of the contrary), abductive reasoning (con-
sequences are only deduced as most likely explanations), some important approaches to
reasoning about knowledge (the ignorance of a consequence must be retracted when the
consequence becomes known), and likewise, belief revision (when new knowledge may
contradict old beliefs.)
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The assumption of Neutrality of 1, is in accord with regarding the truth degree 1 as full
truth, without decreasing the truth value of the other conjunct. Combined with the previous
conditions neutrality ensures that the truth degree 0 corresponds to full falsity and also that
any conjunction with it is always fully false.

Continuity (the previous constraints relax the continuity requirement to either argument)
expresses the crucial necessity that microscopic changes of the truth degrees of conjuncts
should not result in a macroscopic change of the truth degree of their conjunction. Conti-
nuity, among other things, ensures the good behavior of (residual) implication derived from
conjunction; to guarantee this good behavior, however, left-continuity (in either argument)
of the function is sufficient. Therefore, only left-continuity is essential, which expresses
the requirement that a microscopic decrease of the truth degree of a conjunct should not
macroscopically decrease the truth degree of conjunction.

The aforementioned assumptions ensure that the truth function of conjunction is a left-
continuous T-Norm. In various other logics further assumptions may be made about the
behavior of conjunction (for example, Godel Logic requires its idempotent) or other con-
nectives (for example, Involutive Monoidal T-Norm based Logic (IMTL) requires the invo-
lutiveness of negation).

Definition 3.2.4 (Interpretation of Many-Valued Logics). Semantically, a many-valued in-
terpretation I maps each basic proposition pi into [0, 1] and is then extended inductively to
all propositions as follows:

• I(a ∧ b) = I(a)⊗ I(b)

• I(a ∨ b) = I(a)⊕ I(b)

• I(a⇒ b) = I(a)B I(b)

• I(¬a) = 	I(a)

where the four operators above are called combination functions. More specifically, these
are the triangular norms (or T-Norms), triangular co-norms (T-Conorms, also called S-
Norms), implication functions, and negation functions respectively, which extend the clas-
sical Boolean conjunction, disjunction, implication, and negation, accordingly, to the Many-
Valued logics Lukasiewicz and Straccia [2008].
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Definition 3.2.5 (Properties of FL systems). Juxtapositions between the systems serving
as a base for particular constructions directed the focus of research towards strong connec-
tives whose corresponding truth functions are associative, commutative, non-decreasing
and have 1 as its neutral (unit) element Behounek [2010]. In order for a fuzzy logic to
be valid, it must satisfy the following basic mathematical properties which derive from
monoidal and lattice algebras:

• Commutativity: a~ b = b~ a

• Monotonicity: a ≤ b⇒ a~ z ≤ b~ z, ∀a, b, c ∈ [0, 1]

• Associativity: a~ (b~ c) = (a~ b)~ c

• Neutral/Identity element: a~ 1 = a

Additionally, residuated lattice logics (MTLs) should satisfy an additional property:

• (Left-)Continuity: a~ b ≤ c ⇐⇒ a ≤ b→ c

Furthermore, all left-continuous T-Norms have a unique residuum, that is interpreted as
a fuzzy version of the modus ponens rule of inference. The residuum of a left-continuous
T-Norm is the weakest function that makes the fuzzy modus ponens valid, and indeed it is
an indispensable truth function for implication in fuzzy logic. Left-continuity of the T-Norm
is the necessary and sufficient condition for this relationship between a T-Norm conjunction
and its residual implication to hold.

One may define truth functions of other propositional connectives via the T-Norm and
its residuum, such as the residual negation or the bi-residual equivalence. In this way,
a left-continuous T-Norm, its residuum, and the truth functions of additional propositional
connectives determine the truth values of complex propositional formulas on the interval
[0, 1].

Tautologies with respect to any left-continuous T-Norm are the formulas that always
evaluate to 1. The set of all tautologies is called the logic of the T-Norm, as these formulas
typify the laws of fuzzy logic (determined by the T-Norm) which hold regardless of the truth
degrees of atomic formulas. Some formulas are tautologies with respect to a larger class
of left-continuous T-Norms. The set of such formulas is called the logic of the class.

A T-Norm is described as continuous, provided it is continuous (as a function) on the
interval [0, 1]. (Similarly for left- and right-continuity.) It is also strict if it is continuous and
strictly monotone.
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Furthermore, a T-Norm ~ is called nilpotent if it is continuous and each x in the open
interval (0,1) is its nilpotent element, that is, there is a natural number n where x~ . . .~ x︸ ︷︷ ︸

n

=

0. Moreover, an Archimedean T-Norm ~ satisfies the Archimedean property, where ∀y ∈
(0, 1)∃x ∈ (0, 1) : x~ . . .~ x︸ ︷︷ ︸

n

≤ y.

The standard partial ordering of T-Norms is pointwise and, being functions, pointwise
larger T-Norms are sometimes termed stronger as compared to the pointwise smaller ones.
Nevertheless, in the semantics of fuzzy logic, the larger a T-Norm is, the weaker conjunc-
tion it represents, in terms of logical strength.

A T-Norm is continuous if and only if it is continuous in one variable. Analogous theo-
rems hold for left- and right-continuity of a T-Norm. A continuous T-Norm is Archimedean if
and only if 0 and 1 are its only idempotents. A continuous Archimedean T-Norm is strict if 0
is its only nilpotent element; otherwise it is nilpotent. By definition, moreover, a continuous
Archimedean T-Norm T is nilpotent if and only if each x < 1 is a nilpotent element of T.
Therefore with a continuous Archimedean T-Norm T, either all or none of the elements of
(0, 1) are nilpotent.

If it is the case that all elements in (0, 1) are nilpotent, then the T-Norm is isomorphic to
the Lukasiewicz T-Norm. If there are no nilpotent elements of T, the T-Norm is isomorphic to
the Product T-Norm. In other words, all nilpotent T-Norms are isomorphic, the Lukasiewicz
T-Norm being their prototypical representative; and all strict T-Norms are isomorphic, with
the Product T-Norm being their prototypical example.

Finally, in the typical semantics of T-Norm based fuzzy logics, where conjunction is
interpreted by a T-Norm, the residuum is a unique binary operation on [0, 1] and plays the
role of implication, which is often termed:

Definition 3.2.6 (R-implication). x⇒ y = max{z|x~ z ≤ y}

Residuated implications make sense and are well-defined only if and only if the gen-
erating T-Norm is left-continuous. Implication is of fundamental importance for fuzzy logic
in the narrow sense. There is another straightforward, though logically less attractive pos-
sibility, in which implication may be defined from conjunction and negation (or disjunction
and negation) using the corresponding tautology of classical logic, called S-implications
Tick and Fodor [2005].

As far as T-conorms (also called S-norms) are concerned, they are dual to T-Norms
under the order-reversing operation which assigns 1−x to x on the [0, 1] interval, an obvious
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generalization of De Morgan’s laws. T-conorms also satisfy Commutativity, Monotonicity,
Associativity and have number 0 as their Identity element. The aforementioned conditions
can be used for an equivalent axiomatic definition of T-Conorms independently of T-Norms.
The main point about T-Conorms is that they are used to represent logical disjunction in
fuzzy logic and union in fuzzy set theory. It is interesting to note that any properties of
T-Conorms can be obtained by dualizing the properties of T-Norms, e.g. for any T-
Conorm the number 1 is the annihilating element. Also, dually to T-Norms, all T-Conorms
are bounded by the Maximum and the Drastic T-Conorm. Maximum T-Conorm, is dual
to the Minimum T-Norm, and is the smallest of all T-Conorms. Probabilistic sum is dual
to the Product t-norm and is the standard semantics for strong disjunction in extensions of
product fuzzy logic over which it is defined, and also expresses the probability of the union
of independent events in Probability theory. Bounded sum is dual to the Lukasiewicz t-
norm and thus is the standard semantics for strong disjunction in Lukasiewicz fuzzy logic.
Finally, Einstein sum is dual to one of the Hamacher T-Norms and, interestingly, is similar
to the velocity-addition formula of special relativity and the law of addition of hyperbolic
tangents. The interested reader may study these operators in depth in Gassert [2004]2.

We may visualize T-Norms as 3D plots, as surfaces in the unit cube or as contour
plots showing the curves (or, more generally, the sets) where the function in question has
constant (equidistant) values, and, occasionally, as diagonal sections. Since T-Norms are
just functions from the unit square into the unit interval, their comparison is done in the
usual way (e.g. pointwise).

Figure 3.1: Comparison of popular T-Norms (source: plato.stanford.edu)

Any system of propositional logic determined by a T-Norm may be appreciated as a
strengthening of BL. For instance, Lukasiewicz, Godel and Product logics result from BL
by one addtional axiom schema:

2Also, a fine summary is available on: http://www.nicodubois.com/bois5.2.htm and http:
//www.inside-r.org/packages/cran/sets/docs/.N.
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• Lukasiewicz: ¬¬a⇒ a

• Godel: a⇒ (a ∧ b)

• Product: ¬¬a⇒ ((a⇒ (a ∧ b))⇒ (b ∧ ¬¬b))

Some salient examples of T-Norms are presented below:

3.2.1 Typical T-Norm systems
Definition 3.2.7 (Minimum T-Norm). Minimum T-Norm (also termed as Godel T-Norm) is
the standard semantics for conjunction in Godel fuzzy logic. It occurs in most T-Norm based
fuzzy logics as presenting the typical semantics for weak conjunction. It is the pointwise
largest T-Norm and also the only T-Norm where each element in [0,1] is an idempotent
element.

It is defined as A~min B = min{A,B}, with residuum A⇒min B =

{
1, ifA ≤ B

B, otherwise

Figure 3.2: Graph of the Minimum T-Norm (3D and contours) (credits: Libor Behounek)
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Definition 3.2.8 (Product T-Norm). Product T-Norm (the ordinary product of real numbers).
Besides other uses, the Product T-Norm is the standard for strong conjunction in product
fuzzy logic. It is a strict, Archimedean T-Norm.

It is defined as A~Π B = AB, with residuum A⇒Π B =

{
1, ifA ≤ B

B/A, otherwise

Figure 3.3: Graph of the Product T-Norm (3D and contours) (credits: Libor Behounek)

Definition 3.2.9 (Lukasiewicz T-Norm). Lukasiewicz T-Norm is named after the fact that it
is the standard T-Norm used for strong conjunction in Lukasiewicz fuzzy logic. Sometimes
it is referred to as the Linear T-Norm. It is a nilpotent, Archimedean T-Norm, pointwise
smaller than the Product T-Norm.

It is defined asA~LB = max{0, A+B−1}, with residuumA⇒L B =

{
1, ifA ≤ B

1− A+B, otherwise
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Figure 3.4: Graph of the Lukasiewicz T-Norm (3D and contours) (credits: Libor Behounek)

Definition 3.2.10 (Drastic T-Norm). Drastic T-Norm is the pointwise smallest T-Norm (hence
the emphatic name drastic.) It is a right-continuous Archimedean T-Norm.

It is defined as A~D B =


B, ifA = 1

A, ifB = 1

0, otherwise

Figure 3.5: Graph of the Drastic T-Norm (3D and contours) (credits: Libor Behounek)

Definition 3.2.11 (Nilpotent T-Norm). Nilpotent minimum is a standard illustration of a left-
continuous T-Norm which is, not continuous. Notwithstanding its name, the nilpotent min-
imum is not a nilpotent T-Norm. An extensive overview of its importance and semantics is
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presented by Fodor [2004].

It is defined as A~nM B =

{
min{A,B}, ifA+B > 1

0, otherwise

Figure 3.6: Graph of the Minimum T-Norm (3D and contours) (credits: Libor Behounek)

Definition 3.2.12 (Hamacher T-Norm). Hamacher product is a strict, Archimedean T-Norm,
and a principal example of the parametric classes of Hamacher T-Norms and Schweizer-
Sklar T-Norms.

It is defined as A~D B =

 0, ifA = B = 0
AB

A+B − AB
, otherwise

Figure 3.7: Graph of the Hamacher T-Norm (3D and contours) (credits: Libor Behounek)
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3.2.2 Fuzzy CSPs and fuzzy operators
In section 2.3.3, we laid the foundations of f-CSPs, which we can now combine with a
deeper understanding of fuzzy logic semantics.

Luo et al. [2003] extend the work of Dubois et al by providing deeper investigation of
axioms concerning the local satisfaction degree of a prioritized constraint, as well as provid-
ing an axiomatic discussion about possibilistic aggregation, trying to distinguish the scale
for priorities from the scale for constraint satisfaction degrees. Finally, they investigate the
relationship between prioritized and weighted f-CSP schemes. Their results indicated that
a Prioritized Fuzzy CSP (PFCSP) is isomorphic to a typical f-CSP and permit the adoption
of existing solution techniques. Additionally, they state and prove a theorem which demon-
strates that new, valid priority operators can be constructed from existing priority operators,
guaranteeing that such a definition is reasonable according to the axiomatic framework of
fuzzy logic. That way, even though many existing systems focus on the G ĺodel (or mini-
mum) T-Norm, a system can easily be extended to use any valid T-Norm, enhancing the
efficiency or applicability of typical constraint solving techniques such as arc-consistency,
even though it still remains a hard problem.

Zadeh’s initial proposal was to use a minimum T-Norm as the generic f-CSP global
satisfaction degree formula. Bellman and Zadeh [1970] later coined this operator as the
confluence of constraints with the possibility of it acquiring different meanings in different
contexts of the problem formulation. Similarly, Zimmermann [2001] makes a case that
the choice of an appropriate aggregation operator depends mostly on the context of the
problem being investigated, with different operators requiring empirical experimentation to
determine their fitness on particular applications. For example, if one wants to find out the
degree to which a compound label satisfies all constraints, a T-norm could be used as the
conjunction operator. Instead, if one intends to get the degree to which a compound label
satisfies at least one of constraints, a T-Conorm is more appropriate.

The generic PFCSP global satisfaction degree outlines the common structure of var-
ious PFCSP global satisfaction degree formulae for aggregating operations on the local
satisfaction degrees of all prioritized fuzzy constraints, where the role of the priority of a
fuzzy constraint can be regarded as a prioritized factor to the local satisfaction degree of
the constraint. Further axioms about priority operators capture some intuitive conclusions,
such that the local satisfaction degree of a prioritized constraint should increase with its
non-prioritized counterpart, and that the satisfaction degree of the corresponding prioritized

Vassileios-Marios Anastassiou 37



Optimization and inference under fuzzy numerical constraints

constraint decreases when the priority increases (as the problem becomes more difficult
or over-constrained). This means that the higher the priority of a constraint, the more suffi-
ciently the constraint should be satisfied in order to focus on a solution with a higher global
satisfaction degree. When a constraint has complete priority, it is practically equal with its
non-prioritized counterpart, while a completely non-prioritized constraint is not required to
be satisfied, so it can be treated as having local satisfaction degree of 1.

3.2.3 (Fuzzy) Constraint Logic Programming and optimization prob-
lems

Constraint Logic Programming (CLP) generalizes logic programming by enhancing tradi-
tional unification with constraint modeling and solving over a particular domain (e.g. inte-
ger, real etc.). This enhancement of logic programming preserves the declarative nature
of logic programming while utilizing existing mature implementations and well-understood
semantics. A CLP engine provides facilities for describing traditional constraint satisfaction
constructs such as domains, constraints, search strategies and others as clauses.

The usual procedure for solving a Constraint Satisfaction Problem using CLP is to de-
fine logical clauses for the 〈X,D,C〉 tuple in order to model all relevant information about
the problem. Afterwards, additional clauses may operate on the constraints in C and drive
the search process on how to find a relevant solution. The last step typically consists of
an enumeration procedure which, combined with the backtracking mechanism inherent in
Prolog engines and possible constraint propagation or editing mechanisms, tries to find an
admissible solution to the problem specified. For these reasons, various research projects
use a representation of a CLP knowledge base as a common representation of knowl-
edge which can easily be transformed in a solvable Prolog program (such systems will be
investigated in the next chapter).

A typical area of its application is combinatorial optimization problems, such as physical
simulation, operational optimization, timetable scheduling, circuit verification and many oth-
ers. Researchers and decision makers have systematically employed classical optimiza-
tion methods to tackle the so-called hard systems (a class of the well-defined optimization
problems) which are solved via the accurate mathematics of crisp objective functions that
are subject to appropriate constraints. However, the random, uncertain and/or vague na-
ture of real-life situations (such as randomness of occurrence of events, imprecision of
sensors and ambiguity of system data, linguistic vagueness, diverse sources, deficits in
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statistical data, subjectivity and preference of human judgment) require a more stochastic
approach to modeling and solving such problems. Stochastic systems of this type which
can deal with incomplete knowledge can be solved by stochastic optimization techniques
using fuzzy logic, probability theory and other incomplete reasoning methods.

Fuzziness can be further classified into vagueness or ambiguity. Vagueness is asso-
ciated with the difficulty of making sharp or precise distinctions, i.e. when the information
cannot be valued sharply or cannot be described clearly in linguistic terms, as in prefer-
ence related information. This type of fuzziness is usually represented by a membership
function that reflects the investigator’s subjectivity and preference on the objects. On the
other hand, we have ambiguity when the choice between two or more alternatives is left
unspecified, and the occurrence of each alternative is unknown owing to lack of tools and
knowledge.

Ambiguity may be further classified into preference-based ambiguity and possibility-
based ambiguity (or just imprecision), from the standpoint of where the ambiguity arises
from. When ambiguity emanates from subjective knowledge or objective tools, it is a
preference-based ambiguity, and is usually described by a membership function. If the
ambiguity is due to incompleteness, it is a possibility-based ambiguity characterized by
a possibility distribution, that simply reflects the possibility of occurrence of an event or
an object. A soft system with vague and ambiguous information has an ill-defined struc-
ture, reflecting human subjectivity and ambiguity/imprecision. It cannot be articulated and
solved efficiently by the traditional mathematics of optimization methods nor by stochastic
optimization methods, which are based upon probability. Nevertheless, fuzzy set theory
and fuzzy optimization techniques are functional and effective tools for modeling and op-
timizing such soft systems. Modeling and optimization within a fuzzy domain is termed
fuzzy modeling and fuzzy optimization Fuller [1998].

The objective of fuzzy modeling is to create a befitting model that stems from the under-
standing of the problem and the analysis of the available fuzzy information, whereas fuzzy
optimization aspires to an optimal solution of the fuzzy model via optimization methods and
tools on the basis of formulation of the fuzzy information in terms of membership functions
and/or possibility distribution functions, etc.

An optimization problem consists of two fundamental elements, i.e. an objective func-
tion (specifying the type of goal that needs to be achieved, such as the maximization of
fitness or minimization of cost) and a feasible space (the search space containing feasible
solutions to the problem). Fuzzy optimization refers to problems where the search goal
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is an extremum of a real function with fuzzy coefficients, where the variable domains are
fuzzily bounded, and/or when the abstract goal of the problem is fuzzy and thus there is no
clear optimization objective. Similarly to deterministic optimization problems, in general,
the FOP may be classified into two different types, namely, fuzzy extremum problems and
fuzzy mathematical programming problems. In any forms of the fuzzy extremum problems,
the extremum of the function is not a unique one, and there are no unique relationships
between the extremum of the objective function and the notion of the optimal decision. The
concepts of maximizing set, maximum and minimum of fuzzy numbers and some integral
methods for fuzzy ranking can be applied to solve the fuzzy extremum problems.

Although there are no clear-cut boundaries between fuzzy modeling and fuzzy optimiza-
tion, they are separate processes. The entire process of fuzzy optimization as applied to
solve intricate problems may be decomposed into the following seven stages, as described
by Yung et al TANG et al. [2004]:

• Understanding the problem. The state, constraints and goals of the system, as well
as the relationships among them are understood and expressed by sets.

• Fuzziness analysis. The collected information is expressed in a semantic but fuzzy
way. The researcher needs to determine which kind of fuzzy information is involved
and what the position (e.g. fuzzy goal, fuzzy system of constraints, fuzzy coefficients)
it takes, as well as the way (e.g. ambiguity/imprecision in quantity, vagueness in
linguistics) in which it is expressed.

• Development of fuzzy model. Utilizing all the collected information is enough to build
a proper fuzzy optimization prototype model by using appropriate mathematical tools
and taking into account the characteristics of the problem. There are two methods for
developing fuzzy models, e.g.. using the principles of cause-and-effect and transi-
tion, or using ordinary equations to express the cause-and-effect relationships. Dur-
ing model evolution, sets and logic relationships are first laid down and expressed as
fuzzy terms. The optimization model may take the form of fuzzy linear programming,
fuzzy nonlinear programming, fuzzy dynamic programming, fuzzy multi-objective pro-
gramming, possibilistic linear programming or another optimization method Floudas
and Pardalos [2008].

• Description and formulation of the fuzzy information. This stage takes care of the
transition from fuzzy modeling to fuzzy optimization. The fuzzy information including
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ambiguity and vagueness has been differentiated and needs to be quantified in terms
of appropriate tools and theory using fuzzy mathematics. Taking into account the way
fuzzy information is expressed, a membership function or a possibility distribution
function can be selected. The membership function is subjectively determined, and
preference-based. It usually applies to situations involving the human factor with its
concomitant vagueness of perception, subjectivity, goals and conception, e.g. fuzzy
goals with aspiration, fuzzy constraints with tolerance. Such goals and constraints
are expressed vaguely without shard thresholds in order to provide the necessary
flexibility of expression. Nevertheless, the possibility distribution function expresses
the possibility measure of occurrence of an instance and can be constructed in either
an objective or subjective way. This usually applies to the cases where ambiguity
in natural language and/or values is involved, e.g. ambiguous coefficients/param-
eters in the objective function and/or the system of constraints. These coefficients
are considered as possibilistic variables restricted by a possibility distribution. The
membership function or the possibility distribution function may take a linear or non-
linear form, depending upon the investigator’s preferences and interpretation of the
problem.

• Transformation of the fuzzy optimization model into an equivalent or an approximate
crisp optimization model. It consists of three procedures, i.e. determination of the op-
timal solution, interpretation and transformation. The type of the optimal solution is
determined, depending on preferences and the understanding of the problem. That
is to say, selection of the type of the optimal solution to a fuzzy model depends abso-
lutely on understanding and definition of the optimal solution in a fuzzy sense. The
subsequent task is to propose an appropriate interpretation method and some new
concepts to support the understanding and definition of the optimal solution, based
on theories and principles on fuzzy mathematics, such as fuzzy ranking, extension
principle, fuzzy arithmetics, etc. Finally, the fuzzy model is transformed into an equiv-
alent or approximate crisp optimization model on the basis of the interpretation. For
a fuzzy model, different forms of crisp optimization models may be built depending
on different types of the optimal solution and interpretations applied.

• Solving the crisp optimization model. Depending on the characteristics of said model
(i.e. whether it is linear or non-linear, single or multi-objectives or containing deci-
sion variables with continuous, discrete or mixed domains) appropriate optimization
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techniques and algorithms such as metaheuristics, rule-based system approaches
or hybrid algorithms, can be utilized for solving the model.

• Validity examination. The obtained optimal solution may not always be reasonable
or applicable, thus further checks may be required to confirm its validity. If the solu-
tion is unreasonable, the fuzzy modeling process and/or the subsequent optimization
process requires iterative improvements to better simulate the problem.

Fuzzy Optimization and decision making is not the focus of this thesis, so the interested
reader may research this issue further in the following resources: Ramik [2001]; Vojtas
[2005]; Lodwick and Kacprzyk [2010]
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3.3 (Fuzzy) Description Logics

3.3.1 A quick introduction
In contrast to First-Order Logic (FOL), which is very expressive but semi-decidable (i.e.
if an axiom is entailed then there is an algorithm to produce it, but if an axiom is not en-
tailed then the reasoning process may not terminate), it is easier to select specific semantic
features to create a logic which is tractable with polynomial-time decision procedures; com-
plete expressiveness (e.g. via using any available boolean operator) makes satisfiability
NP-complete. Description Logics (DLs), also known as terminological languages or con-
cept languages, are a family of logic-based knowledge representation formalisms. A DL
is a logical reconstruction of frame-based knowledge representation languages and de-
scribes the knowledge domain in terms of concepts (called classes, similarly to FOL unary
predicates), roles (i.e. properties of classes, similarly to FOL binary predicates) and indi-
viduals (which are specific instantiations, or objects, of classes, similarly to FOL constants).
DLs are used for inferencing and generating well-defined declarative semantics for most
features of structured representation of knowledge. The fundamental modeling concept of
a DL is the axiom, which is a logical statement relating roles and/or concepts.

Conjunction is an absolute requirement because it is the only way to reason with multiple
properties, while value or existential restrictions are also required for basic reasoning. In
that respect, DLs practically act as decidable fragments of FOL. Two minimal DLs satisfying
those requirements are called FL and EL accordingly. Another one is ALC, the smallest
propositionally-closed DL, which is a combination of EL andFL. S is used to describeALC
extended with role transitivity axioms, with additional letters indicating other extensions 3.
Of course, a more expressive DL comes at a semantic and computational overhead and
requires additional support to implement as part of a DL reasoner.

A Knowledge Base (KB) contains all the knowledge statements described in an ontol-
ogy, described as a tuple 〈ABox, TBox,RBox〉:

• The Assertional Box (ABox) is the set of assertion axioms, containing role assertions
between individuals (isStudentIn(V ASSILIS,DIT ˙UOA)) and membership asser-
tions (Student(V ASSILIS)), describing the instance knowledge of the KB.

3An extensive overview of naming conventions for DLs is available here: https://en.wikipedia.
org/wiki/Description_logic#Naming_convention
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• The Terminological Box (TBox) is the set of terminological axioms describing class
axioms such as subsumptions between concepts ( C1 v C2 ) and equivalence (con-
cept definition, i.e. (C1 ≡ C2)⇔ (C1 v C2uC2 v C1) ), as well as datatype definitions,
describing the schema knowledge of the KB.

• The Role Hierarchy (RBox) is the set of role axioms that describe relations, such as
Object Properties or Data Properties. Most of the time authors implicitly consider
RBox as a part of TBox.

A specific instantiation, i.e. an interpretation I, is a model of a KB if it satisfies the asser-
tions of ABox and the inclusions in TBox, collectively represented I � KB. An interpre-
tation has a domain (with individuals being its elements), concept names (which describe
subsets of said domain) and role names (which describe binary relations over the domain).

Figure 3.8: Axioms in SHOIN (Source: Xu et al. [2006])
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3.3.2 The Semantic Web stack
A lot of standards have been proposed and defined by the World Wide Web Consor-
tium (W3C) with various degrees of support and integration. Even when a standard is
not officially finalized or integration between standards is not complete, a collection of pop-
ular ones may become the de-facto standard which the community is mostly focused on.
A quick overview of such technologies follows:

Figure 3.9: De-facto Semantic Web stack (source: semanticweb.org)

• Extensible Markup Language (XML) is used due to its extensibility and its applica-
bility to both human readers and machine agents, providing the means of describing
specific-purpose schemas useful in higher level ontologies4.

• Resource Description Framework (RDF) is used to define metadata concerning on-
line resources (described via Uniform Resource Identifiers (URIs)). RDF expressions
are 〈subject, predicate, object〉 triples between URIs, where subject is the resource
being described, predicate is the property or definition being attached to the subject,
and object the value being assigned to the predicate.

4A very promising and recent alternative, which provides data manipulation improvements compatible
with RDF, is JSON for Linked Data.
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• Queries on RDF data are executed via the SPARQL Protocol and RDF Query Lan-
guage (SPARQL).

• In order to provide useful descriptions on specific applications (called RDF Vocabu-
laries), extensions to RDF are provided via RDF Schema (RDFS).

• When generating RDF data and vocabularies, we aim to provide formal specifica-
tions to generate semantic meaning via agents working on shared conceptualiza-
tions. Initial work on this regard involved Ontology Inference Layer (OIL), DARPA
Agent Markup Language (DAML) as well as other technologies. These were eventu-
ally superseded by the Web Ontology Language (OWL).

• This ontological description of data gives agents the ability to infer knowledge via a
reasoning process. In order to enhance the reasoning process with Horn-like logical
clauses, standards are introduced such as Rule Interchange Format (RIF) and Se-
mantic Web Rule Language (SWRL) which are used by rule engines. Rule engines
provide transformation utilities: whenever the conditions specified in the antecedent
part of a rule hold, then the conditions specified in the consequent must also hold,
effectively introducing new knowledge in the KB.

3.3.3 OWL and Rules
Over the past years, DLs have gained popularity mainly due to their expressiveness and
algorithmic completeness, as well as their usability in the Semantic Web. One of the top
abstraction layers of the Semantic Web is the popular OWL, the de-facto standard for
knowledge representation and ontologies. The initial OWL specification described three
sub-languages of increasing complexity and expressiveness:

• OWL Lite supported basic classification hierarchies and constraints

• OWL DL provided a more complete correspondence with description logics while
maintaining decidability and basic performance guarantees

• OWL Full provided full expressiveness and syntactic freedom without computational
guarantees while also providing facilities to enhance existing RDF and OWL vocab-
ulary.
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These have now been superseded by OWL 2 which provides more complete facilities
and various fragments/profiles concerning different performance requirements 5.

As description logics focus on describing relations between concepts, standards such
as OWL lack facilities for defining object and data properties through axioms or via reason-
ing on specific individuals. In other words, OWL addresses classification problems that can
be expressed using Description Logic (i.e. tractable subsets of First Order Logic). Practical
applications often need to augment OWL with rules that either cannot be implemented with
OWL or appear prohibitively difficult or counter-intuitive to implement [Rudolph and Hitzler,
2008]. Work on rule engines such as SWRL can help overcome such shortcomings, al-
though they add considerable overhead and possible decidability implications (SWRL is
semi-decidable) [Parsia et al., 2005].

Nevertheless, the reason that a rule engine is, for example, appropriate to implement
complex arithmetic reasoning and integrity constraint relations is that OWL is not expressive
enough to reason about certain attribute values, function symbols are excluded, the arity
of predicates are restricted, and most importantly the interpretation of negation assumes
that the data is incomplete and/or the model inconsistent. For example, the definition of
a relation ”forbidden” between two object classes would require a new operator, while a
flexible cardinality variable is not feasible since this requires the definition of complex re-
lation descriptions (i.e. property descriptions in OWL) or data/individual-centric property
descriptions (e.g. ”no individuals should be included in this object class”), which is not sup-
ported by OWL and either not possible with built-in SWRL methods or impractical without
additional extensions (e.g. the makeOWLThing predicate).

Even though SWRL is the typical rule engine demonstrated, decidability concerns limit
its expressive power and reasoners usually implement the DL-Safe SWRL subset. One of
the main expressivity restriction is that variables bind only to explicitly named individuals,
practically downgrading it from a powerful TBox and RBox axiom to an ABox axiom 6.
Some typical approaches, based on the implementing reasoner, are presented:

• Hoolet: translate SWRL into First Order Logic and demonstrate reasoning tasks with
a theorem prover [Alecha et al., 2009]

• Bossam: translate OWL-DL into rules and feed them to a backward/forward chaining
(RETE-based) inference engine [Jang and Sohn, 2004]

5http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
6http://weblog.clarkparsia.com/2007/08/27/understanding-swrl-part-2-dl-safety/
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• Pellet: expanding the tableaux algorithm to handle rules

Data interchange languages such as RDF and even knowledge representation for-
malisms such as OWL, although they are the basic building blocks of the majority of current
implementations, have some limitations which introduce difficulties when aiming for inter-
operability or when requiring features readily available in custom systems. For example,
Vanekova et al. [2005] demonstrated a system which introduced a Fuzzy RDF specification
which integrated fuzzy logic. This specification was used to translate the RDF Graph data
(i.e. collection of RDF triples) into database data and queries, which in turn were integrated
into two different Inductive logic programming (ILP) systems (Aleph and GOLEM) by trans-
forming the background knowledge into a Prolog-compatible representation. The aim of
their project was to assign ranking metadata to subjects using fuzzy sets transformed into
appropriate database schema and queries, in order to be fed as background knowledge
for the ILP system. There were differences between the systems (e.g. Golem would not
support database queries as rules) and implementation requirements (RDF data had to be
transformed into N-ary or binary predicates, resulting in additional work and harder rep-
resentation). Additionally, the lack of a single, coherent formalism or platform produced a
very specific-purpose system, lacking interoperability and extensibility. Eiter et al. [2008]
provide an extensive overview of using rules to reason with RDF, RDFS and Constraint
Interchange Formalism (CIF) knowledge bases which will not be covered here.

An ontology language such as OWL may be used to describe different classes of rela-
tions, and connections between data concepts can be achieved by utilizing such relations
via a rule engine such as SWRL or RuleML. When managing large or diverse knowledge
bases with the aim of creating interoperable representations, it is apparent that the suc-
cessful modeling of axioms is important, as it alleviates the cumbersome manual genera-
tion of concepts and properties, provides additional inference opportunities, and can lead
to significant semantical enrichment of KBs [Staab and Maedche, 2000]. It was the case
though that systems often failed to visually demonstrate rule axioms similarly to concepts
and properties, which can be a deterrent to their use. This is mainly due to the diverse
specifications for describing rules, further complicated by the different knowledge repre-
sentation technologies on which they are applied. Additionally, the recognition of axiom
semantics is an undecidable task and so axiom specification translation and representation
may not be effectively recognized. Another reason that rule axioms have not been exten-
sively worked on is that their expected functionality ranges from being considered a sub-
set of FOL calculus (to be used only when required, due to its complexity and decidability
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costs), to being knowledge-based application development paradigm by itself (used to pro-
vide readable and extensible axiomatic descriptions). [Staab et al., 2003] argue that rules
should be viewed as a knowledge representation language in order to promote diverse
implementations, although that would mean that maximizing the utility and interoperability
of rule engines would require a standard rule language layer. Meech [2010] discussed that
in order for rule engines to be considered relevant, they have to be usable enough to be
easily integrated and used to describe business rules. He notes that the OWL and SWRL
standards have some adequately complete implementations as well as good community
support, suggesting that their combination has the expressive power required for Busi-
ness Rule Engines, providing a usable alternative to existing rule engine systems although
they still lack mechanisms for dynamically accessing and updating external data sources.
There is no standard system of rules in use and the performance considerations are im-
portant, as such systems typically use exponential time for the inference process. At the
same time, during the modeling and querying phases, fast system response is important
to guide the ontology engineer, but useful time may be wasted on slow implementations
which eventually lead to inconsistent answers.

Mas et al. [2005] discussed how SWRL can be used to add integrity constraints in an
ontology and how such information can be shared among different schemas. Yaguinuma
et al. [2014] introduced “Fuzz-Onto”, a meta-ontology for describing fuzzy terms and rules in
a Semantic Web context. These kinds of problems and relevant work are a demonstration
of ontological engineering, which we will discuss in section 4.2.

Additionally, due to the relevant immaturity of the Semantic Web field, there is great
fragmentation on the tools and standards used to implement tools, and some are promoted
in specific areas and applications while others become stagnant. For example, frameworks
such as SPIN 7, Jena 8, RIF 9, the recently proposed SWRL2 10 and other rule engines can
be considered as ”competing” recommendations or defacto standards. Other extensions,
such as the fuzzy extension SWRL-F [Wlodarczyk and Rong, 2011], may never gain enough
traction in order to become practical and user-friendly tools. Only recently there has been
a push to promote the RuleML and bridge implementations with other standards in a way
that can provide a common ground for the community [Boley et al., 2010].

7http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222/
8https://jena.apache.org/
9http://www.w3.org/TR/rif-overview/

10http://wiki.ruleml.org/index.php/SWRL2
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A lot of work on the semantics of description logics and their inference services, as well
as practical performance requirements when creating DL Reasoners such as Hermit, Pellet
and Fact++, have produced a wide range of optimizations and heuristics for reasoning
with description logics. Many such methods are mentioned in the referenced bibliography
[Sirin et al., 2006; Tsarkov and Horrocks, 2006; Motik et al., 2007; Sirin et al., 2007; Bobillo
et al., 2008b; Glimm et al., 2010]. For an extensive overview and in-depth analysis of all
relevant history, theory, formalisms and practical applications, the ”The Description Logic
Handbook” is a highly suggested, complete and useful resource for further study [Baader
et al., 2007]11.

3.3.4 DLs vs Fuzzy DLs
As we described in previous sections, Description Logics (DLs) are used on a wide range of
applications and, during the last decade, have increasing popularity due to their application
on the Semantic Web Baader et al. [2005]. However, typical description logics are designed
to deal with crisp domains and concepts, while real-world applications deal with incomplete
information. The notion of vagueness on the web means that concepts encountered in the
real world do not usually have specifically defined criteria of membership. This is a major
issue for the traditional DLs since they cannot handle problems that support probabilistic
domains. In addition, current systems pose syntactic or reasoning limitations that require
extensions and enhanced semantics to support said applications. To address this issue,
Straccia [1998] introduced the first Fuzzy Description Logic (f-DL) and the popular FuzzyDL
reasoner [Bobillo and Straccia, 2008] to manipulate and reason with fuzzy domains. There
have been additional reasoners for fuzzy ontologies, before and since then (described in-
depth in later sections), as well as extensive but on-going research on the semantics and
decidability of f-DLs for specific and generalized instances [Stoilos et al., 2006a, 2007;
Liu et al., 2011], as well as integrating or merging multiple ontologies into fuzzy knowledge
bases (e.g. the work of Qi et al. [2004]) which we will not discuss in this thesis. Lukasiewicz
and Straccia [2008] provide an extensive overview concerning the description of imprecise
knowledge via ontologies and according semantics, as well as describing the concepts
of probability, possibility, uncertainty as well as incomplete, vague and fuzzy knowledge.
Additionally, f-DLs have been shown to be isomorphic to classical DLs [Straccia, 2004],

11Another very quick introduction is available here: http://www.isi.edu/˜blythe/cs541/
Readings/loom.pdf
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which means that one may either focus on enhancing existing methods for supporting
fuzzy semantics or produce an equivalent crisp representation of the fuzzy KB and use
existing methods. Examples of both strategies will be discussed in the following section.

3.3.5 Current Fuzzy DL reasoners and implementations

3.3.5.1 yadlr

Konstantopoulos and Apostolikas [2007] described a fuzzy DL inference system used for
vague ontological reasoning on semantic metadata provided by user feedback. Their mod-
ular Prolog system12 integrates variable fuzzy degrees and is able to use multiple deduction
methods and fuzzy arithmetic systems (i.e. algebraic norms), providing ABox reasoning
services via SL-resolution extended with tabling (SLG Resolution) over the SHROIQ de-
scription logic. The aim of the authors was to identify fuzzy degrees that are close to the
initial system’s results and accommodate user input (used to determine what is considered
a satisficing result), by fine-tuning the acceptance levels (i.e. threshold fuzzy degrees for
membership in an abstract concept) based on concrete feedback and back-propagating
this information to the reasoner (for iterative optimization of feature detection). During
SLG Resolution, transformations are applied only when the new rules satisfy the accep-
tance threshold. The consistency of the ABox can be readily verified if all fuzzy degrees
are known. If there are unknown fuzzy degrees, the inference engine iteratively calcu-
lates derivative degrees and integrates more restricted ranges in the KB by applying linear
clp(Q,R) constraints and determines the lower satisfying bounds.

3.3.5.2 FuzzyDL

FuzzyDL [Bobillo and Straccia, 2008] is one of the most popular fuzzy reasoners, mainly
due to the FuzzyOWL2 Protege plugin, its fuzzy ontology specification and the extensive
work of its authors on f-DL semantics. It is a Java inference engine providing full reason-
ing services over SHIF DL13. Different membership functions are pre-defined (namely
Trapezoidal, Triangular, L-function, R-function, Crisp interval and Linear) and fuzzy degrees
are mapped via fuzzy modifiers according to the investigator’s needs, permitting explicit
definition of fuzzy concepts. Additional features implemented are concrete datatypes and

12http://sourceforge.net/projects/yadlr/
13http://gaia.isti.cnr.it/straccia/software/fuzzyDL/download/old/documents/

documents.html
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various concept constructs, such as threshold concepts (which can be used as accep-
tance thresholds during reasoning) and weighted sum concepts (for describing complex
fuzzy concepts). In addition to traditional, crisp operators, Zadeh and Lukasiewicz seman-
tics are supported for fuzzy reasoning. Fuzzy degrees are quantized in a discretized set
of n values in order to accommodate its Mixed-integer linear programming (MILP) engine
for its numerical operations, which also permits degree restrictions and constraint rela-
tions between concepts. An additional interesting feature is the defuzzification operation,
where a fuzzy set is aggregated to produce a single output variable via an operation on
its degrees (such as selecting the smallest, the largest or middle of its maxima). All these
non-classical features are implemented via XML annotation properties and can be shared
via the FuzzyOWL2 specification [Bobillo and Straccia, 2010], making it a system with ex-
tensive fuzzy syntax support and semantics and an appropriate platform for extension and
collaboration.

3.3.5.3 FiRE

The FiRE14 fuzzy reasoner [Simou and Kollias, 2007] is a Java system implementing the
authors’ fKDSHIN f-DL specification, and constitutes the first tableau reasoner for f-DLs.
The system was designed to accommodate, additionally to entailment and subsumption,
TBox and RBox inferencing services and cardinality restrictions, although it does not sup-
port (custom) fuzzy datatypes. ABox consistency is maintained until the first tableau clash,
showcasing the relevant tableau expansion. Optimization queries can be used in order to
determine the most appropriate bounds and support degrees after ABox inferencing. This
prototype implementation is an interesting graphical testbed for extending known tableau
optimizations over fuzzy logic although it utilizes its own, non-standard syntax and file-
saving format.

3.3.5.4 LiFR

A very recently introduced system, LiFR15, is a Java lightweight reasoner extending Pocket-
KRHyper Kleemann [2006] with fuzzy semantics sacrificing some expressive power in or-
der to be usable on mobile platforms for the LinkedTV cloud project, used to implement
the LinkedTV User Model Ontology and perform content filtering based on user profiles

14http://www.image.ece.ntua.gr/˜nsimou/FiRE/
15http://mklab.iti.gr/project/lifr
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[Tsatsou et al., 2014]. An interesting feature of this reasoner is that, in order to achieve the
required performance, its implementation supports the expressive fragment of Description
Logic Program (DLP) [Grosof et al., 2003] (for the interested reader, a DLP is a combina-
tion of DLs under the general FOL semantics with logic programs under the answer set
semantics, covered extensively in [Eiter et al., 2004]). Although the system is restricted to
Zadeh logic operations and crisp rules, its main advantage is performance, as it is shown
to be significantly faster to FuzzyDL and even FiRE.

3.3.5.5 DeLorean

The DeLorean system16, introduced in Bobillo et al. [2008a], optimizes a fuzzy SHOIN
or SROIQ KB and transforms it into an equivalent crisp representation. Although not a
reasoner per se and limited to a trapezoidal fuzzy datatype with a finite chain of degrees
(with Zadeh or G ĺodel semantics), it permits the reuse of classical tools and resources for
operating on a fuzzy KB and also provides a user friendly interface for combining reduction
and optimization methods with crisp reasoning procedures.

3.3.6 Optimization strategies for Fuzzy DLs
During the development of FiRE, Simou et al describe some basic but effective optimiza-
tions implemented in their system that enhance the reasoning performance of the tableau
algorithm (which is the prominent method implemented in DL reasoners), described in the
following three subsections, with all being of polynomial complexity and agnostic to the
fuzzy logic being used [Simou and Mailis, 2010]. Other recent work provides useful insight
on possible ways to parallelize the reasoning capabilities for ABox and even TBox infer-
ences [Bock, 2008; Urbani, 2010; Ren et al., 2012]. Recent work has also aimed to provide
web-scale capabilities to f-DL reasoning via the MapReduce algorithm [Liu et al., 2012].

3.3.6.1 Degree Normalization

Fuzzy ontologies may contain assertions where an individual participates in the same con-
cept with different degrees, via different rules, without forming a contradiction. The ex-
istence of multiple such instances means there are superfluous degrees of truth which

16http://webdiis.unizar.es/˜fbobillo/delorean
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inevitably lead to additional clash checks in the tableau algorithm and degradation of per-
formance. Since a fuzzy ABox may contain multiple assertions with varying degrees, it is
important to compute the optimal upper bound (Least Upper Bound (LUB)) and more im-
portantly lowest bounds (Greatest Lower Bound (GLB)) of the degrees of a fuzzy assertion,
depending on whether T-Norms or S-Norms are used; Straccia defined this requirement
as Best Truth-Value Bound (BTVB). Thus, a process of degree normalization may com-
pact the ABox and improve the performance of the algorithm by keeping the least negative
and largest positive assertions. This method can be enhanced with rules for early clash
detection during tableau reasoning by utilizing these two values (because the sum of the
degrees of a fact and its negation cannot be larger than 1).

3.3.6.2 ABox Partitioning

Due to the hierarchical data structures implemented in the tableau algorithm, expansion
rules may generate independent subtrees. Thus, the assertional component of a fuzzy
knowledge base can be divided in smaller partitions, which can be examined independently
by the algorithm. If all partitions are consistent then the ABox will also be consistent, but if
even one of the partitions is inconsistent then the ABox will be inconsistent and the search
process can break early. During search, any subtrees that are not connected to the node
being partitioned are not affected by the search and can temporarily be disregarded by the
reasoner.

3.3.6.3 Greatest Lower Bound

Efficiently determining the GLB value for each individual’s membership degree to any con-
cept is an important operation, as it is used in most fuzzy operations. Such a decision
process was initially proposed by Straccia [2011], where he determined that the BTVB and
the subsumption problems can be reduced to the entailment problem (i.e. determining
whether a fuzzy assertion is true or, in other words, has an adequate truth degree). This is
achieved, quite intuitively, by partially ordering the assertions and performing binary search
to minimize the required satisfiability checks. Simou et al propose two additional optimiza-
tions to this method: using ABox partitioning to select on selections containing the affected
individual, and caching previous tableau tree expansions to prevent similar expansions and
satisfiability checks.
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3.3.6.4 General Concept Inclusion absorption

Stoilos et al. [2006b] initially described the required semantics for General Concept Inclu-
sion axiom (GCI) absorption methods on f-DLs and provided a more extensive overview in a
recent study [Bobillo and Straccia, 2013] (this concept and some further optimizations were
also discussed by Steigmiller et al. [2014]). GCI formulas are the subsumption and equiv-
alence axioms involving complex (i.e. non-atomic) concepts, a very useful, expressive and
thus expensive feature of Description Logics. Even though the family of tableau algorithms
are easily adaptable and extensible, they have high worst-case complexity and may easily
lead to large fan-out in the reasoning tree due to disjunction or even infinite clause expan-
sion due to a non-acyclic KB; checks and optimizations are required in order to rewrite GCI
axioms and optimize performance, as these cannot be handled by simple tableau expan-
sion. This practically means that C v D must be transformed into > v D t ¬C which the
classical algorithm can check17. An effective optimization for this problem is the absorp-
tion method, where axioms are transformed so that this process of ”internalization” and
the processing of disjunctions during tableau node expansion (leading to fan-out during
the reasoning process) are avoided as much as possible. This is achieved by extracting
easily checked conditions for each axiom of the TBox and only then adding the rest of the
complex expression to the expanded node’s label (otherwise, the axiom is trivially satis-
fied). The Tableau internals and its internal optimizations can be studied in [Ding, 2008].
A simpler optimization enhanced by absorption is decreasing the number of GCI axioms
via composition (e.g. when two axioms can be replaced with one, such as A v B and
A v C combined into A v B u C) or simplification (e.g. eliminating trivially satisfied con-
cepts or transforming trivial complex concepts to atomic ones). Even though GCI are a
very important feature of practical ontologies, there are intuitive and theoretical indications
that they may render such DLs, in the general case, undecidable [Baader and Penaloza,
2011; Borgwardt and Distel, 2014], although specific assumptions and checks (i.e. on the
T-Norm operators used) may be integrated in order to permit practical applications with
adequate performance.

17this feature is not straightforward in a fuzzy context and requires some fuzzy tableau extensions to be
implemented which will not be discussed here
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3.3.6.5 Parallelization of ABox and TBox reasoning

An obvious optimization for reasoning systems is to execute threaded processing of rea-
soning subtrees for faster performance. This is especially true in big data applications
where large data sources and multiple systems are available. When the ABox or TBox
data are internally partitioned in such a way that its formulas are independently distributed,
each tableau subtree can be expanded independently. When executing queries on possi-
bly vast number of RDF triples, other methods are required, such as executing the query
via MapReduce compatible algorithms or using appropriate subset fragments of DL which
may not support the full width of expressivity required. Additional assumptions such as
implementing monotonic reasoning (e.g. not retracting known facts) or caching sub-graph
results may provide an additional performance boost but with non-guaranteed consistency.

3.3.7 Final thoughts
A lot of reasoners are available over broad areas of application, but unfortunately they still
lack practical tools, extensive optimizations and well agreed standards for implementing
and sharing work on f-DLs. Fuzzy Description Logic (f-DL) technology has only recently
matured enough to show its potential as a viable alternative, so new developments and
applications are expected. It is now time to see how one could implement Constraint Sat-
isfaction Problems (CSPs) in f-DL, to investigate the effect or potential of higher-level tools
and what possibilities lie ahead. Dentler et al. [2011] provide an description of performance
characteristics that should be considered important for selecting a reasoner (based on the
performance and expressivity requirements of the system).

Vassileios-Marios Anastassiou 56



Optimization and inference under fuzzy numerical constraints

4. Constraints and Ontologies
As described in chapter 2, constraint satisfaction and optimization problems are applicable
in many areas and, although CSPs are a very mature formalism for describing and solving
such problems, the creation and/or integration of appropriate solver software and the exact
modeling and fine-tuning of instances over broad knowledge domains requires extensive
expertise, experimentation and time. The use of ontologies to provide conceptual contexts
for constraint solving and to ”shield” users from constraint programming details is a general
idea that may be useful in various applications [Wallace et al., 2007]. Additionally, with the
increasing popularity and maturity of the Semantic Web and the Internet of Things (IoT),
ontology-related technologies are becoming expressive and practical formalisms for shar-
ing models and describing interoperable representations of them. As discussed on chapter
3, fuzzy knowledge bases are of special interest as they are under active research and
provide promising representation and reasoning features. In this chapter, we will discuss
current work on the area of fuzzy knowledge engineering and especially fuzzy constraint
satisfaction ontologies, interesting extensions and future possibilities.

A fuzzy ontology system may have additional useful applications which may be modeled
as a fuzzy optimization problem (and thus an f-CSP), including:

• Matchmaking: By specifying fuzzy weighted concepts and implementing restrictions
as fuzzy constrains, a knowledge base may provide a description of services, domain
information and ranges of available options. User preferences may be expressed via
fuzzy degrees, possibly in a linguistic way. The system may then execute fuzzy de-
cision making on user queries to determine whether there are available options that
would satisfy the user’s preferences and, if not, suggest alternative partially consis-
tent configurations [Ruta et al., 2010].

• Fuzzy Control: Fuzzy Control is an old and well-researched area of applications
for fuzzy logic. Nevertheless, new research in ontologies and integration of sensor
data and services on the IoT provides further possibilities for development. Such
an example is the Ontology Web Language for Fuzzy Control (OWL-FC), a domain
independent model formalism useful for re-usable description of such systems. Spec-
ifications and constraints can be modeled as concepts and rules are used to infer the
appropriate instances (i.e. controllers) for the task at hand [Loia et al., 2010]. Such
a formalism may also be applied in multi-agent or robotic control systems, where for
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example CSPs may be used to solve sequential manipulation planning problems or
mobile path tracking [Nacer and Jilani, 2014].

• Classification: By specifying a fuzzy knowledge base describing sensor data or
multimedia signal data, fuzzy reasoning can be used in order to provide classifi-
cation services. Fuzzy DL technologies, including spatial and temporal reasoning
capabilities, may lead to interesting and unexpected applications such as the one
discussed by Eich [2013], where a semantic description of a marine vessel’s space
(represented by a LIDAR point cloud) is used to execute spatial classification and
infer metadata via fuzzy rules concerning the structure of the cargo hold. This appli-
cation is especially useful when a researcher is simply interested in visualizing and
classifying large amounts of vague data, where fuzzy rules may be used in order
to categorize data into appropriate classes and then use this inferred knowledge to
generate relevant visual representations. A fine example of this practice is presented
by Danyaro et al. [2012], where the authors integrate meteorological data into a fuzzy
KB and then reduce the inherent uncertainty and ambiguity by applying fuzzy rules
and annotating them via fuzzy concepts. Another example is the research target
of Simou et al. [2008] on the FiRE reasoner, which is the analysis and classifica-
tion of multimedia content, inserting semantic knowledge into a fuzzy KB and then
permitting the retrieval of content based on semantic metadata. A CSP-based ap-
proach to classification may model a fuzzy optimization problem where the goal is
to maximize correct classifications and at the same time minimizing the information
acquisition cost. Pendharkar [2006] demonstrated such an approach by formulating
this problem as a set of binary variable knapsack optimization problems to be solved
sequentially.

• Web Services: Integration of web services by fuzzy discovery is a relatively new
practice. As a more specific instance of matchmaking, there may be multiple avail-
able and similar web services which may be (fuzzily) evaluated before choosing the
appropriate candidate [Tsetsos et al., 2006]. A novel method of service discovery
may use fuzzy ontologies to describe services, provide integration facilities and then
match appropriate services based on specified criteria, which can be achieved with
constraint-based matchmaking procedure. Based on the recent surge in popularity
of IoT research (e.g. [Wang et al., 2013]), there are interesting possibilities in this
area of research.
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4.1 Managing constraint problems with ontologies
Descriptive Constraint Library (DCL) is a draft formalism we investigated for describing
constraints in an ontology. This tool would facilitate the description of a constraint domain
via concepts and object properties for describing variables, data properties for describing
value domains, and DCL-introduced annotation properties to describe constraints. Such
a formalism could facilitate the investigation problem modeling, constraint interactions or
possible optimizations, providing the means for an ontological description of the CSP prob-
lem which can either facilitate experimentation with inconsistent modeling and constraint
relaxation, or even be transformed to an initial model to be solved (for example, by produc-
ing Constraint Logic Programming (CLP) code). The generalized syntax for describing a
CSP-related ontology will be called DCL-Full, where additional annotation can be inserted
in order to communicate metadata about the model. A simplified version, called DCL-Lite,
would be used to describe the computable model and possibly be translated into other
forms (such as an intermediate specification or a valid CLP program) to be integrated in
existing solvers and reasoning systems. When a specific model of the problem is incon-
sistent or unsolvable in an appropriate time frame, the investigator is typically required
to manually relax some constraints in order to quickly find an initial solution. We have
discussed how interactive constraint satisfaction helps in this regard and our system could
facilitate experimentation on this area. For example, a locally consistent instantiation could
be imported into the system (i.e. a possible partial solution can be asserted and included
in the KB) and then the investigator may execute appropriate changes to the ABox and
TBox description, checking for inconsistencies. Another way to think about this process
is that we introduce a specific instantiation and try to pinpoint the inconsistencies. Before
proceeding into such a venture, we would have to investigate the latest research in order
to find about any efforts made in that direction, its focus and its limitations.

Kim et al. [2003] describe an OWL extension, called Semantic Web Constraint Lan-
guage (SWCL), intended to provide constraint representation in existing Semantic web en-
vironments. They first describe currently used methods to express more information about
existing rules and thus provide richer expressiveness to existing (OWL-based) knowledge
systems. One of such common tools is SWRL which integrates RuleML functionality into
OWL-DL. In other words, OWL KBs can provide further inference capabilities by integrating
Horn rules, even though they trade decidability for expressiveness. Preece et al. [2000] in-
troduced the (CIF/SWRL) formalism, where he provided constraint semantic extensions
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to SWRL via RDFS, initially demonstrated in the KRAFT platform [Hui et al., 2003]. These
descriptions can then be enhanced by different knowledge bases or even transformed to
other formalisms. A different approach could permit arithmetic constraints which could
integrate various solution approaches and optimizations and thus focus on optimization
techniques. The authors introduce said approach by implementing SWCL as the basis of
a system for linear optimization. The main focus of a linear optimization problem is to ex-
press a mathematical relation between variables in a specific numerical domain. Thus, in
an ontology environment, we could express a mathematical relation between concepts via
data properties. The formalisms of OWL and even SWRL are not adequately expressive for
such a formulation, but the SWCL extension provides a basis towards such an approach.

The authors then describe a practical shopping agent example to demonstrate the dif-
ficulty of finding optimal or event relevant shopping information by typical search engines,
making a case for enhanced semantic information which may be provided via SWCL. Even
though the initial OWL and SWRL implementation may describe concepts, individuals and
data properties relevant to a specific shopping model, the formalism is lacking practical
constraints that would efficiently describe hierarchical relations between those elements.
For example, one could not describe a discount policy which would take into consideration
the inferred discount amount when computing the total checkout cost. SWCL not only pro-
vides this facility, but also gives the agent the ability to optimize its shopping order based
on the supplied constraint model in order to achieve the optimal purchase.

More importantly, SWCL provides new axioms to describe linear optimization concepts,
extending the OWL semantics [Patel-Schneider et al., 2004]. The core of the SWCL for-
malism lies in specifying the model of an optimization problem, which is a collection of
objectives and their relevant applied constraints. The authors introduce ”Objective” and
”subject˙to” terms (used to describe optimization goals (specifically min or max) and con-
straint relations between ”factors”, i.e. variables and individuals), which provide a mapping
between SWCL terms and OWL resources and introduce basic constraint and optimization
features in the SWCL ontology. A constraint is simply the expression of an arithmetic con-
straint between two aggregate terms, which is a sum or a product of the values of specific
data properties (applied on classes or specific individuals via ”class factors” and ”individ-
ual factors”). The authors provide a framework which integrates various reasoning and
interface systems together in order to identify possible goal, constraint and model sources,
furnishing an easy way for the user to specify the optimization problem and handle multiple
backends. The ontology and the relevant optimization model are transformed to a CLP de-
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scription which can be solved with typical methods. A problem solver interface is provided
which can be utilized by multiple problem solvers, such as GNU Prolog and ILOG Solver,
and was empirically validated by implementing various optimization problems and check-
ing their execution results in Optimization Programming Language (OPL) via the ILOG POL
Studio solving software.

A possible extension to the system would be to propagate or enable aggregate opera-
tions on data properties. Let us think of an example of a geographical ontology, containing
population, perimeter and area data for various communities and provinces of a country.
Similarly, a data property describing age or time may be aggregatable is some situations
(for example, the average of all ages in a group) but in others not (in the case of summa-
tion of running times for subtasks in a specific project). Such an ontology would contain
an hierarchy of concepts where a country would contain provinces and a province would
contain communities. It follows naturally that the area of different communities equals the
area of a province and, in turn, areas of member provinces equal the area of the country.
In multi-depth hierarchies, this would linearly expand the number of constraints that the
user is required to manually specify. An extension to the system is possible where we can
specify that the area and population data properties are aggregatable on the membership
property and thus the system can automatically infer the relevant constraints. That way,
it is also possible to specify non-aggegatable data properties such as perimeter, as the
perimeter of a country does not equal the perimeter of its provinces.

Croitoru and Compatangelo [2007] propose a visual representation for constraints in
knowledge-rich domains. Their visual mechanism was able to build upon KBs regard-
less of the chosen representation language by building on the semantic properties of
Conceptual Graphs (CGs), which are visual formalisms for intensive domain knowledge
representation initially used for representing conceptual schemas in database systems.
The authors formalize the combination of CSPs and CGs by mathematically defining the
preliminary notions of ordered bipartite graphs, support, conceptual graphs and the projec-
tion (or subsumption) relation. In summary, they define operations on two corresponding
graph sets in order to indicate mapping between concepts and relations. An “ordered bi-
partite graph” is a tuple consisting of a set of concept nodes, a set of relation nodes and a
mapping between the relation nodes and non-empty, finite sequences over concept nodes.
“Support” is simply the domain knowledge defined by the known facts and the taxonomy of
the problem (that is concept and role hierarchy, known individuals and unknown, inferred
concepts). The “projection” operation is a labeled graph homomorphism which defines a
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generalization-specialization relation over the CGs, indicating that a specific graph struc-
ture is more general than another.

Their motivation for a coherent visual representation is based on the thought that Se-
mantic web applications dealing with CSPs should be addressed in a domain oriented
manner in order to exploit the ontological information encoded in the knowledge represen-
tation formalism. They argue that in order to achieve this, a clear visual representation
is required. The central element of their approach is that using CGs provides semantic
metadata for:

• easy knowledge acquisition (instead of traditional CSP formulations, visual represen-
tation of constraints makes the identification of problem-specific constraints easier),

• enhancing the reasoning process (traditional CSP strategies can avoid backtracking
steps by checking CG node labeling because existing partial solutions for sub-graphs
can be saved and reused), and

• permitting the transformation of the intermediate CG representation into various reusable
formalisms such as RIF, OWL or even CLP.

In conclusion, the visual representation of a CG-derived model expresses, via graphs,
all the required information to model a CSP’s variables, their corresponding domains and
the constraints. This representation gives, as such, a static view over the CSP instance
to be addressed. The advantage of this framework is that arbitrary solution and reasoning
methods can be employed, as well as hyperheuristics and local search methods. On the
other side, a static representation of a large domain complicates the constraints in some
complex scenarios with many alternative configurations, such as scheduling and planning.
In those cases, the CG model needs to be extended by new syntactic operations. One way
of solving this problem is to design a dynamic representation; Conceptual Graph Assem-
bliess (CGAs) is a structure which contains a CG along with a combinatorial structure on its
relation nodes and can capture alternative knowledge views on data instead of traditional,
static facts. Bringing together the CSP formalism and visual knowledge representations
has research potential both from a theoretical and an application point of view. The authors’
goal was neither to provide competitive results, nor to propose specific problem driven com-
binations which compete with state of art solvers, but to illustrate the use of this framework
in designing hybrid strategies to addressing CSPs.
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Preece et al. [2008] presented a proposal for representing FCSP with soft constraints
using Semantic Web technologies. Their work was motivated by the need for a service-
providing agent in a Virtual Organization (VO) which could reason about its tasks in a dy-
namic fashion. Semantic Web services, such as e-commerce, e-science and e-response,
constitute a service-provider managing particular resources for satisfying specific goals
and queries. A interesting feature of such organizations is that the commitment of re-
sources to goals is typically governed by service-level agreements, which can be modeled
as soft constraints on resources managed by a FCSP model. When a service provider is
presented with a new potential commitment, it must perform reasoning to determine if it
can take on this commitment, possibly by dropping (breaking) existing lower-utility commit-
ments. Their system is built on CIF and proposes a new ontology for representing FCSPs,
making it potentially usable with other constraint and rule representations. This ontological
description is used as an intermediate form, the goal being to facilitate interchange of in-
formation between a CSP problem constructor and an appropriate solver, where the solver
would execute the reasoning process, determine any possible solutions, and then use this
information to check for commitment violations.

The three essential requirements addressed by the authors are:

1. expressing commitments in terms of Semantic Web Services,

2. associating utility values with constraints in order to reflect their relative importance,
and

3. determining which are satisfied or violated by any given solution and how it affects
other serviced agents.

It is apparent that the increasing number of agents and commitments in live systems
leads to combinatorial explosion and also introduces many antagonizing service requests.
Additionally, the number of trivial solutions also increases, wasting memory and time with-
out introducing significant gain. Thus, in order to support the main characteristic of their
system (i.e. finding adequately different solutions that break commitments), the authors in-
troduce methods for prioritizing commitments and evaluating the “differentiation” between
solutions, in order to quickly determine when an important commitment is being violated.
This “commitment management” system is implemented as combination of reification (i.e.
the creation of a data model) and constraint value labeling in order to provide the re-
quired prioritization and commitment metadata to the solver software. Some additional
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features implemented are: enhancing SWRL with nested quantified implications, a new
Quantifier class, providing an RDF syntax specification which includes definitions for class
constraints, properties such as “hasQuantifiers” and “hasImplication”, list ranges, “OrEx-
pression” and “AndExpression” axioms which are defined as sub-classes of rdf:List, and
a Negation class which uses an SWRL argument property to describe the negated atom.
These axioms have intuitive and apparent mappings to traditional CSP definitions and con-
structs and would ease the transition from an ontological description to a valid program or
specification for reasoning by a CSP solver, as there would be less need for transformation
between those forms.

The authors note that a utility value is not an intrinsic part of a constraint itself but sim-
ply a metadata annotation, which is also the case for constraint satisfaction. Therefore,
a separate ontology was created by the authors to represent a CSP, independent of the
CIF/SWRL representation of the individual constraints themselves. The authors created
two variant representations of their CSP ontology, a DL-Safe one and another enhanced
with SWRL rules. In either case (the latter being easier to express), the modeled informa-
tion is intended only as an interchange format, as the transformation and resolution of the
modeled CSP in a traditional format (such as Prolog or a Java implementation) lies to the
investigator and involves non-trivial conversion and mapping of ontological descriptions
and annotations to traditional CSP concepts. The authors then demonstrated a prototype
interface for supporting a basic RDFS-based representation, which implements services
for bidding agents and provision of video content in response, and expressed their future
plans of creating an appropriate toolchain for linking the generated representation to a tra-
ditional solver and representing multiple solutions with various overall utilities so that the
agent or user can choose a preferred set of commitments.

Other existing work has extended OWL and SWRL in order to specify additional prop-
erties which are then translated either in CIF as XML files [Badra et al., 2011] or straight
to CLP (such as SweetProlog [Laera and Tamma, 2004] and SWCL [Kim et al., 2003]).
These projects, although creating a great initial prototype, provide implementations with
very specific focus and are not aimed as generalized frameworks (possibly with optimiza-
tion capabilities), but only focus on specific problems and systems. Additionally, there has
not been any follow-up work in order to provide an easy to use framework or library and
thus lack integration capabilities into new research. As previously discussed, there is no
standard semantic web technology, let alone a formalism to describe constraints. Even
though there are de-facto standards being implemented and used in the semantic web
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community, there is still no specific focus on the body of work developed. Extensions are
developed and described but few are adequately fine-tuned and standardized (de-facto
standardization is not a quick or even possible process and the same applies to official
standardization by committees, where multiple requirements are proposed). A very simple
testament to this is the inability of using a default value in an OWL description, even though
such a feature is available in Common Information Model (CIM) and Silk Link Specification
Language (SILK) [Grosof et al., 2009]. These facts are an indication that the creation of a
generic and popular framework is a daunting task, and the fact that research focuses on
specific platforms or prototype research solutions indicates that further fragmentation and
lack of coordinated effort is expected.

4.2 Ontology engineering patterns
Investigators working with CSPs are typically using CLP systems to describe and solve
their models. This requires experience and intuition in using FOL and Horn Clauses, which
have important differences from DLs (as discussed in section 3.3). Knowledge engineering
and its prominent technologies require a paradigm shift in order to be used successfully,
especially when enhanced with fuzzy features with are still under extensive research.

Alas, being knowledgeable on the Semantic Web stack technologies is not enough,
because practical ontology design experience is required in order to satisfy the design
requirements and fully represent the required system. Similar to software engineering,
where software development methodologies and knowledge of engineering patterns and
anti-patterns are useful tools for increasing software quality, knowledge engineering prac-
tices are required for creating a generic, usable ontology that can adequately support the
problem model. An efficient problem design practices and re-use of tested solutions are
helpful for detecting uncovered requirements, expressiveness or performance inefficien-
cies, facilitate the addition of new axioms and rules for extending the knowledge base, and
make ontology re-use and integration easier for other interested parties (in contrast to pro-
viding an proof-of-concept prototype which cannot be reused in different projects). Simple
solutions such as “FuzzyOwl2Ontology” by Bobillo and Straccia [2009] are trying to ease
the task of generating fuzzy ontologies and introducing new axioms by creating an onto-
logical description of a fuzzy ontology that the user populates with instances representing
the axioms and the elements of his design. This description can then be used by custom
parsers to generate ontological descriptions for a reasoner of choice. Alas, this procedure
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involves translating axioms of different semantics and satisfying possibly divergent speci-
fications, indicating that a common specification and extensible, reusable practices are of
significant importance.

Ontology Design Patterns (ODPs) describe a reusable successful solution to recurrent
modeling problems, such as describing spatio-temporal data and relations, N-ary rela-
tionships, Composite Property Chains etc. There are both online1 and bibliographic (e.g.
Gangemi [2005]) resources describing such practices, some of which are de-facto stan-
dards while others being tested proposals under current research or application. Since the
early days of the Semantic Web, the need for a formal practice or standard framework for
the identification of requirements, their translation to usable components and the final gen-
eration of ontologies incorporating them was apparent. These may either provide some
standard features to be utilized by investigators in their manual creation of the ontology, or
provide tools for (semi-)supervised automatic generation of ontologies from specifications
and/or data. An unfortunate and under-researched consequence of using ODPs is that they
effectively affect the computational profile of ontologies, possibly compromising language
expressibility constraints, degrading performance or making large ontologies practically
intractable [Horridge et al., 2012].

Figure 4.1: From vague data to the Semantic Web via Fuzzy Ontologies. (source: FOGA,
Quan et al. [2004])

An initial effort of that kind supporting fuzzy knowledge was the Fuzzy Ontology Gen-
eration Framework (FOGA) system. Quan et al. [2004] introduced Fuzzy Formal Concept
Analysis (FFCA), a technique of deriving concept hierarchies (in the form of a lattice) from
specified objects and their properties [Ganter and Wille, 1999], extended to support fuzzy
relations. Input data are linguistically analyzed and ontological information is extracted

1Two of the more useful banks of ODPs are http://ontologydesignpatterns.org/ and http:
//odps.sourceforge.net/
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via conceptual clustering, leading to the construction of a concept lattice and the hierar-
chical relations between concepts. During the application of FFCA, metadata are kept
such as membership values of objects in each fuzzy formal concept and similarities of
fuzzy formal concepts required for the construction of concept hierarchy. This automated
procedure provides the initial hierarchy of the ontology with whichever information can be
extracted, and then the investigator may provide more specific names for relations and
top concepts; similar work was presented by Zhai [2007] but focused on linguistic values
to achieve better expression of generated fuzzy degrees and properties. It was demon-
strated that the initial clustering (based on metrics such as Relaxation Error and Average
Uninterpolated Precision) provides good clustering of concepts and is a good first step
for the generation of an ontology and the bootstrapping of fuzzy degrees. Wallace et al.
[2012] investigated the process of element identification and what tasks are required for
ontology development, identifying fundamentally different tasks that may be singled out
into two distinct layers, namely conceptualization and formalization. By separating tasks
associated with each layer, any conventional ontology engineering methodology may be
modified to facilitate efficient collaboration and communication of requirements between
domain experts and ontology engineers, thus optimizing the overall process with respect
to both effort and quality of results. That knowledge was collected in a comprehensive
methodology by Alexopoulos and Wallace [2012] for the development of IKARUS-Onto, a
methodology for manually creating fuzzy ontologies based on existing, crisp ones. The au-
thors provide an initial overview of existing methodologies for crisp ontology development,
noting that although automatic ontology generation is a helpful first step in the creation of
the basic hierarchy, the real difficulty lies in the early and accurate description of relations,
fuzzy degrees, the quality of expressing the subjective vagueness of the problem and the
ability to create shareable, reusable and intuitive representations for use by other investi-
gators. They identify the concepts of “degree-vagueness” (the difficulty of drawing precise
boundaries for the applicability of a property) and “combinatory vagueness” (the difficulty
of determining and comparing the partial importance of multiple contributing properties for
the definition of a concept) which must be evaluated during the investigation of crisp rela-
tions in the initial ontology. The interpretation of those results is the first step in transforming
the relations to fuzzy ones with appropriate fuzzy degrees. Afterwards, attributes are eval-
uated in order to determine the required fuzzy datatypes and their membership functions
(effectively determining the fuzzy sets). Using all information until now, and taking into
consideration the area of application as well as the datatype and reasoning features of
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the reasoning system in use, the fuzzy ontology elements are formalized in the appropri-
ate language. Last, the result is validated for correctness, completeness, accuracy and
consistency, in order to determined unfulfilled requirements, controversial information etc.
Their findings are summarized in the following figure they provide in their work, and were
also demonstrated by a custom toolchain in Wallace et al. [2012].

Figure 4.2: A complete methodology for manual fuzzy ontology acquisition, representation
and re-use (source: Alexopoulos and Wallace [2012])
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5. Conclusions
The semantics of a fuzzy constraint set requires a-priori knowledge in order to determine
an appropriate membership function and to define its elements. Even though this limits
the researcher’s capability for more complete automatic modeling of problems, epistemic
knowledge is usually enough in order to determine an adequately satisfying model [Lod-
wick, 2010]. A lot of research on optimization and constraint satisfaction problems, as well
as adequate research on incomplete knowledge formalisms such as fuzzy logic prove to
be adequate tools for describing and solving such practical applications.

Concerning the state of reasoning, there have been some methods which exploit spe-
cific arithmetic systems, especially real domains where the ranges of the domains may
be combined or simplified or simply cleverly exploited for better constraint propagation.
Nevertheless, the problem of automatically inferring new constraints and knowledge from
a specific problem description is a difficult problem and seems to be a worse “value-for-
money” compared to empirical optimization strategies and specific purpose systems and
tools. This is especially true for fuzzy problems, where both the semantics, the modeling
and the reasoning requirements become even more difficult.

Little work has been done on using ontologies to model constraint satisfaction problems,
mainly due to the fragmentation of tools and ontologies for describing such formalisms and
the focus of the research community on knowledge integration in the Internet of Things
[Leuf, 2005; Gyrard et al., 2014]. Nevertheless, based on its constraint satisfaction roots
and the traditional modeling process described in the relevant sections, the need for em-
pirical prototyping and interactive refinement of such models remains important. The inter-
operability and expressiveness provided by ontologies, combined with interactive methods
based on CSP and CLP formalisms, may lead to a tool that promotes experimentation and
provides better insight into the specifics of each problem’s domain, aiding in the incremen-
tal modeling of a fuzzy problem.

Incremental steps may be taken in order to transform basic CSP principles into an
initial specific-purpose ontology, which can later be enhanced by domain knowledge in DL
semantics and ontology engineering, as well as integration with existing solvers. Setbacks
for such an endeavor will be the fragmented nature of the Semantic Web ecosystem and its
associated standards and ontologies, the immature/prototype systems currently in use, as
well as the lack in the area of visual design and representation of ontologies and relevant
tools. Now that the Semantic Web and the Internet of Things are at the top of the hype cycle
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1, expectations and standards are expected to settle while at the same time technology and
tools will adequately mature to be production-ready, paving the way for further development
and widespread practical applications.

Figure 5.1: The Internet of Things (and thus the Semantic Web) is at the peak of the hype
circle. Maturity and focus on practical applications will follow. (source: Gartner)

1https://www.gartner.com/newsroom/id/2359715
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Glossary
ABox Assertional Box

BL Basic fuzzy propositional logic

BTVB Best Truth-Value Bound

CG Conceptual Graph

CGA Conceptual Graph Assemblies

CBI Constraint-Based Inference

CIF Constraint Interchange Formalism

CIM Common Information Model

CLP Constraint Logic Programming

CSP Constraint Satisfaction Problem

DAML DARPA Agent Markup Language

DCL Descriptive Constraint Library

DCSP Dynamic CSP

DL Description Logic

DLP Description Logic Program

FC Forward Checking

FCSP Flexible CSP

f-CSP Fuzzy CSP

f-DL Fuzzy Description Logic

FFCA Fuzzy Formal Concept Analysis

FL Fuzzy Logic
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FOGA Fuzzy Ontology Generation Framework

FOL First-Order Logic

FOP Fuzzy Optimization

GCI General Concept Inclusion axiom

GLB Greatest Lower Bound

ILP Inductive logic programming

IMTL Involutive Monoidal T-Norm based Logic

IoT Internet of Things

KB Knowledge Base

LUB Least Upper Bound

MAC Maintaining Arc-Consistency

MILP Mixed-integer linear programming

MTL Monoidal T-Norm-based propositional fuzzy logic

ODP Ontology Design Pattern

OIL Ontology Inference Layer

OPL Optimization Programming Language

OWL Web Ontology Language

OWL-FC Ontology Web Language for Fuzzy Control

PFCSP Prioritized Fuzzy CSP

R-implication Implication associated with a T-Norm

S-implication Implication associated with a T-Conorm and a strong negation

SILK Silk Link Specification Language
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RBox Role Hierarchy

RDF Resource Description Framework

RDFS RDF Schema

RIF Rule Interchange Format

SLD Resolution Selective Linear Definite clause resolution

SLG Resolution SL-resolution extended with tabling

SPARQL SPARQL Protocol and RDF Query Language

SWCL Semantic Web Constraint Language

SWRL Semantic Web Rule Language

T-Norm Triangular norm

T-Conorm Triangular conorm

TBox Terminological Box

URI Uniform Resource Identifier

VO Virtual Organization

WCSP Weighted CSP

W3C World Wide Web Consortium

XML Extensible Markup Language
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