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ABSTRACT 

 

The aim of this thesis is the presentation of OpenStack. An open software 
management of telecommunications resources in cloud environment. For the 
preparation of this thesis is first a description of the architecture of cloud 
environment, and service models used. Architecture Network Function 
Virtualization occurs then applied to telecommunications in accordance with 
standards set by the European Telecommunications Standards Institute. The 
main topic of the thesis is to present the OpenStack software used by the 
NFV architecture. In these chapters an attempt is as detailed and 
comprehensive description of the OpenStack functions and parts of the colony 
consists. Finally there is one techno-economic analysis of the cost of 
implementing NFV architecture with the current architecture applied to 
Telecommunication networks. The results derived from this work is a lot of 
potential implementation and application of the new architecture and the very 
low operating costs compared with existing technology up to now. 
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ΠΕΡΙΛΗΨΗ 

 

Σκοπός της Διπλωματικής εργασίας είναι η παρουσίαση του OpenStack. Ένα 
ανοιχτό λογισμικό διαχείρισης των τηλεπικοινωνιακών πόρων σε cloud 
περιβάλλον. Για την εκπόνηση της Διπλωματικής εργασίας γίνεται αρχικά μία 
περιγραφή της αρχιτεκτονικής του cloud περιβάλλοντος, και των μοντέλων 
εξυπηρέτησης που χρησιμοποιούνται. Εν συνεχεία παρουσιάζεται η 
αρχιτεκτονική Network Function Virtualization που εφαρμόζεται στις 
τηλεπικοινωνίες σύμφωνα με τα πρότυπα που έχει θέσει ο Ευρωπα’ι’κός 
Οργανισμός Τηλεπικοινωνιακών Προτύπων. Το κύριο θέμα της Διπλωματικής 
Εργασίας είναι η παρουσίαση του λογισμικού OpenStack που χρησιμοποιείται 
από την NFV αρχιτεκτονική. Στα κεφάλαια αυτά γίνεται μία προσπάθεια όσο 
το δυνατόν λεπτομερέστερης και πληρέστερης περιγραφής των λειτουργιών 
του OpenStack καθώς και τα μέρη από τα αποία αποτελείται. Τέλος γίνεται 
μία τεχνοοικονομική ανάλυση του κόστους εφαρμογής της NFV αρχιτεκτονικής 
με την τωρινή αρχιτεκτονική που εφαρμόζεται στα Τηλεπιοκοινωνιακά δίκτυα. 
Τα αποτελέσματα τα οποία προκύπτουν από την παρούσα εργασία είναι η 
πολλές δυνατότητες υλοπόιησης και εφαρμογής της νέας αρχιτεκτονικής 
καθώς και το πολύ χαμηλό κόστος λειτουργίας της σε σχέση με την 
υφιστάμενη εώς τώρα τεχνολογία.  
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1 .Cloud Computing 
 

1.1.1 What does the term of Cloud Computing mean 

Cloud computing [5]   is a computing term or metaphor that evolved in the late 

1990s, based on utility and consumption of computer resources. Cloud 
computing involves application systems which are executed within the cloud 
and operated through internet enabled devices. Purely cloud computing does 
not rely on the use of cloud storage as it will be removed upon users 
download action. Clouds can be classified as public, private and hybrid.  

 

 

Figure 1: Cloud computing 

 

1.1.2 Characteristics of Cloud 

Cloud computing exhibits the following key characteristics: Agility improves 
with users' ability to re-provision technological infrastructure resources. 

Cost reductions claimed by cloud providers. A public-cloud delivery model 
converts capital expenditure to operational expenditure. This purportedly 
lowers barriers to entry, as infrastructure is typically provided by a third party 
and does not need to be purchased for one-time or infrequent intensive 
computing tasks. Pricing on a utility computing basis is fine-grained, with 
usage-based options and fewer IT skills are required for implementation (in-
house 
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Device and location independence enable users to access systems using a 
web browser regardless of their location or what device they use (e.g., PC, 
mobile phone). As infrastructure is off-site (typically provided by a third-party) 
and accessed via the Internet, users can connect from anywhere. 

Maintenance of cloud computing applications is easier, because they do not 
need to be installed on each user's computer and can be accessed from 
different places. 

Multitenancy enables sharing of resources and costs across a large pool of 
users thus allowing for: 
- centralization of infrastructure in locations with lower costs (such as real 
estate, electricity, etc.) 
- peak-load capacity increases (users need not engineer for highest possible 
load-levels) 
- utilisation and efficiency improvements for systems that are often only 10-
20% utilised. 

Performance is monitored, and consistent and loosely coupled architectures 
are constructed using web services as the system interface. 
Productivity may be increased when multiple users can work on the same 
data simultaneously, rather than waiting for it to be saved and emailed. Time 
may be saved as information does not need to be re-entered when fields are 
matched, nor do users need to install application software upgrades to their 
computer. 

Reliability improves with the use of multiple redundant sites, which makes 
well-designed cloud computing suitable for business continuity and disaster 
recovery. 

Scalability and elasticity via dynamic ("on-demand") provisioning of resources 
on a fine-grained, self-service basis in near real-time without users having to 
engineer for peak loads. 

Security can improve due to centralization of data, increased security-focused 
resources, etc., but concerns can persist about loss of control over certain 
sensitive data, and the lack of security for stored kernels. Security is often as 
good as or better than other traditional systems, in part because providers are 
able to devote resources to solving security issues that many customers 
cannot afford to tackle. However, the complexity of security is greatly 
increased when data is distributed over a wider area or over a greater number 
of devices, as well as in multi-tenant systems shared by unrelated users. In 
addition, user access to security audit logs may be difficult or impossible. 
Private cloud installations are in part motivated by users' desire to retain 
control over the infrastructure and avoid losing control of information security. 

The National Institute of Standards and Technology's definition of cloud 
computing identifies "five essential characteristics": 

On-demand self-service. A consumer can unilaterally provision computing 
capabilities, such as server time and network storage, as needed 
automatically without requiring human interaction with each service provider. 

Broad network access. Capabilities are available over the network and 
accessed through standard mechanisms that promote use by heterogeneous 
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thin or thick client platforms (e.g., mobile phones, tablets, laptops, and 
workstations). 

Resource pooling. The provider's computing resources are pooled to serve 
multiple consumers using a multi-tenant model, with different physical and 
virtual resources dynamically assigned and reassigned according to 
consumer demand.  

Rapid elasticity. Capabilities can be elastically provisioned and released, in 
some cases automatically, to scale rapidly outward and inward commensurate 
with demand. To the consumer, the capabilities available for provisioning 
often appear unlimited and can be appropriated in any quantity at any time. 

Measured service. Cloud systems automatically control and optimize resource 
use by leveraging a metering capability at some level of abstraction 
appropriate to the type of service (e.g., storage, processing, bandwidth, and 
active user accounts). Resource usage can be monitored, controlled, and 
reported, providing transparency for both the provider and consumer of the 
utilized service. 

 

1.2 Service models 
Cloud computing providers offer their services according to several 
fundamental models: 

 

 

Figure 2: Service Models of Cloud 

 

1.2.1 Infrastructure as a service (IaaS) 

In the most basic cloud-service model & according to the IETF (Internet 
Engineering Task Force), providers of IaaS offer computers – physical or 

http://en.wikipedia.org/wiki/File:Cloud_computing_layers.png
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(more often) virtual machines – and other resources. (A hypervisor, such 
as Xen, Oracle VirtualBox, KVM, VMware ESX/ESXi, or Hyper-V runs the 
virtual machines as guests. Pools of hypervisors within the cloud operational 
support-system can support large numbers of virtual machines and the ability 
to scale services up and down according to customers' varying requirements.) 
IaaS clouds often offer additional resources such as a virtual-machine disk 
image library, raw block storage, and file or object storage, firewalls, load 
balancers, IP addresses, virtual local area networks (VLANs), and software 
bundles. IaaS-cloud providers supply these resources on-demand from their 
large pools installed in data centers. For wide-area connectivity, customers 
can use either the Internet or carrier clouds (dedicated virtual private 
networks). 

To deploy their applications, cloud users install operating-system images and 
their application software on the cloud infrastructure. In this model, the cloud 
user patches and maintains the operating systems and the application 
software. Cloud providers typically bill IaaS services on a utility computing 
basis: cost reflects the amount of resources allocated and consumed. 

1.2.2 Platform as a service (PaaS) 

In the PaaS models, cloud providers deliver a computing platform, typically 
including operating system, programming language execution environment, 
database, and web server. Application developers can develop and run their 
software solutions on a cloud platform without the cost and complexity of 
buying and managing the underlying hardware and software layers. With 
some PaaS offers like Microsoft Azure and Google App Engine, the 
underlying computer and storage resources scale automatically to match 
application demand so that the cloud user does not have to allocate resources 
manually. The latter has also been proposed by an architecture aiming to 
facilitate real-time in cloud environments. Even more specific application types 
can be provided via PaaS, e.g., such as media encoding as provided by 
services as bitcoding, transcoding cloud or media.io. 

 

1.2.3 Software as a service (SaaS) 

In the business model using software as a service (SaaS), users are provided 
access to application software and databases. Cloud providers manage the 
infrastructure and platforms that run the applications. SaaS is sometimes 
referred to as "on-demand software" and is usually priced on a pay-per-use 
basis or using a subscription fee. 

In the SaaS model, cloud providers install and operate application software in 
the cloud and cloud users access the software from cloud clients. Cloud users 
do not manage the cloud infrastructure and platform where the application 
runs. This eliminates the need to install and run the application on the cloud 
user's own computers, which simplifies maintenance and support. Cloud 
applications are different from other applications in their scalability—which 
can be achieved by cloning tasks onto multiple virtual machines at run-time to 
meet changing work demand. Load balancers distribute the work over the set 
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of virtual machines. This process is transparent to the cloud user, who sees 
only a single access point. To accommodate a large number of cloud users, 
cloud applications can be multitenant, that is, any machine serves more than 
one cloud user organization. 

The pricing model for SaaS applications is typically a monthly or yearly flat fee 
per user, so price is scalable and adjustable if users are added or removed at 
any point. 

Proponents claim SaaS allows a business the potential to reduce IT 
operational costs by outsourcing hardware and software maintenance and 
support to the cloud provider. This enables the business to reallocate IT 
operations costs away from hardware/software spending and personnel 
expenses, towards meeting other goals. In addition, with applications hosted 
centrally, updates can be released without the need for users to install new 
software. One drawback of SaaS is that the users' data are stored on the 
cloud provider's server. As a result, there could be unauthorized access to the 
data. For this reason, users are increasingly adopting intelligent third-party 
key management systems to help secure their data. 

1.3 Cloud clients 
 

Users access cloud computing using networked client devices, such 
as desktop computers, laptops, tablets and smartphones. Some of these 
devices – cloud clients – rely on cloud computing for all or a majority of their 
applications so as to be essentially useless without it. Examples are thin 
clients and the browser-based Chromebook. Many cloud applications do not 
require specific software on the client and instead use a web browser to 
interact with the cloud application. With Ajax and HTML5 these Web user 
interfaces can achieve a similar, or even better, look and feel to native 
applications. Some cloud applications, however, support specific client 
software dedicated to these applications (e.g.,virtual desktop clients and most 
email clients). Some legacy applications (line of business applications that 
until now have been prevalent in thin client computing) are delivered via a 
screen-sharing technology. 
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1.3.1 Deployment models 

 

Figure 3: Deployment Models 

 

 

1.4 Cloud computing types 

1.4.1 Private cloud 

Private cloud is cloud infrastructure operated solely for a single organization, 
whether managed internally or by a third-party, and hosted either internally or 
externally. Undertaking a private cloud project requires a significant level and 
degree of engagement to virtualize the business environment, and requires 
the organization to reevaluate decisions about existing resources. When done 
right, it can improve business, but every step in the project raises security 
issues that must be addressed to prevent serious vulnerabilities. Self-run data 
centers are generally capital intensive. They have a significant physical 
footprint, requiring allocations of space, hardware, and environmental 
controls. These assets have to be refreshed periodically, resulting in 
additional capital expenditures. They have attracted criticism because users 
"still have to buy, build, and manage them" and thus do not benefit from less 
hands-on management, essentially "lacking the economic model that makes 
cloud computing such an intriguing concept". 

1.4.2 Public cloud 

A cloud is called a "public cloud" when the services are rendered over a 
network that is open for public use. Public cloud services may be 
free. Technically there may be little or no difference between public and 
private cloud architecture, however, security consideration may be 
substantially different for services (applications, storage, and other resources) 
that are made available by a service provider for a public audience and when 
communication is effected over a non-trusted network. Saasu is a large public 
cloud. Generally, public cloud service providers like Amazon AWS, Microsoft 
and Google own and operate the infrastructure at their data center and 

http://en.wikipedia.org/wiki/File:Cloud_computing_types.svg
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access is generally via the Internet. AWS and Microsoft also offer direct 
connect services called "AWS Direct Connect" and "Azure ExpressRoute" 
respectively, such connections require customers to purchase or lease a 
private connection to a peering point offered by the cloud provider. 

1.4.3 Hybrid cloud 

Hybrid cloud is a composition of two or more clouds (private, community or 
public) that remain distinct entities but are bound together, offering the 
benefits of multiple deployment models. Hybrid cloud can also mean the 
ability to connect collocation, managed and/or dedicated services with cloud 
resources. 

Gartner, Inc. defines a hybrid cloud service as a cloud computing service that 
is composed of some combination of private, public and community cloud 
services, from different service providers. A hybrid cloud service crosses 
isolation and provider boundaries so that it can't be simply put in one category 
of private, public, or community cloud service. It allows one to extend either 
the capacity or the capability of a cloud service, by aggregation, integration or 
customization with another cloud service. 

Varied use cases for hybrid cloud composition exist. For example, an 
organization may store sensitive client data in house on a private cloud 
application, but interconnect that application to a business intelligence 
application provided on a public cloud as a software service. This example of 
hybrid cloud extends the capabilities of the enterprise to deliver a specific 
business service through the addition of externally available public cloud 
services. Hybrid cloud adoption depends on a number of factors such as data 
security and compliance requirements, level of control needed over data, and 
the applications an organization uses. 

Another example of hybrid cloud is one where IT organizations use public 
cloud computing resources to meet temporary capacity needs that cannot be 
met by the private cloud. This capability enables hybrid clouds to employ 
cloud bursting for scaling across clouds. Cloud bursting is an application 
deployment model in which an application runs in a private cloud or data 
center and "bursts" to a public cloud when the demand for computing capacity 
increases. A primary advantage of cloud bursting and a hybrid cloud model is 
that an organization only pays for extra compute resources when they are 
needed. Cloud bursting enables data centers to create an in-house IT 
infrastructure that supports average workloads, and use cloud resources from 
public or private clouds, during spikes in processing demands. 

The specialized model of hybrid cloud, which is built atop heterogeneous 
hardware, is called "Cross-platform Hybrid Cloud". A cross-platform hybrid 
cloud is usually powered by different CPU architectures, for example, x86-64 
and ARM, underneath. Users can transparently deploy applications without 
knowledge of the cloud's hardware diversity.This kind of cloud emerges from 
the raise of ARM-based system-on-chip for server-class computing. 

1.4.4 Community cloud 
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Community cloud shares infrastructure between several organizations from a 
specific community with common concerns (security, compliance, jurisdiction, 
etc.), whether managed internally or by a third-party, and either hosted 
internally or externally. The costs are spread over fewer users than a public 
cloud (but more than a private cloud), so only some of the cost savings 
potential of cloud computing are realized. 

1.4.5 Distributed cloud 

Cloud computing can also be provided by a distributed set of machines that 
are running at different locations, while still connected to a single network or 
hub service. Examples of this include distributed computing platforms such 
as BOINC and Folding@Home. An interesting attempt in such direction is 
Cloud@Home, aiming at implementing cloud computing provisioning model 
on top of voluntarily shared resources [76] 

Intercloud 

The Intercloud is an interconnected global "cloud of clouds and an extension 
of the Internet "network of networks" on which it is based. The focus is on 
direct interoperability between public cloud service providers, more so than 
between providers and consumers (as is the case for hybrid- and multi-cloud). 

1.4.6 Multicloud 

Multicloud is the use of multiple cloud computing services in a single 
heterogeneous architecture to reduce reliance on single vendors, increase 
flexibility through choice, mitigate against disasters, etc. It differs from hybrid 
cloud in that it refers to multiple cloud services, rather than multiple 
deployment modes (public, private, legacy).[83][84] 
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2. Architecture of Cloud 

 

Figure 4: Cloud computing sample architecture 

 

2.1 Cloud Architecture 

Cloud architecture [8] , the systems architecture of the software 
systems involved in the delivery of cloud computing, typically involves 
multiple cloud components communicating with each other over a loose 
coupling mechanism such as a messaging queue. Elastic provision implies 
intelligence in the use of tight or loose coupling as applied to mechanisms 
such as these and others. 

 

2.1.1 Cloud engineering 

Cloud engineering is the application of engineering disciplines to cloud 
computing. It brings a systematic approach to the high-level concerns of 
commercialization, standardization, and governance in conceiving, 
developing, operating and maintaining cloud computing systems. It is a 
multidisciplinary method encompassing contributions from diverse areas such 
as systems, software, web, performance, information, security, platform, risk, 
and quality engineering. 

2.1.2 Security and privacy 

Cloud computing poses privacy concerns because the service provider can 
access the data that is on the cloud at any time. It could accidentally or 
deliberately alter or even delete information. Many cloud providers can share 
information with third parties if necessary for purposes of law and order even 
without a warrant. That is permitted in their privacy policies which users have 
to agree to before they start using cloud services. Solutions to privacy include 
policy and legislation as well as end users' choices for how data is 
stored. Users can encrypt data that is processed or stored within the cloud to 
prevent unauthorized access.According to the Cloud Security Alliance, the top 
three threats in the cloud are "Insecure Interfaces and API's", "Data Loss & 

http://en.wikipedia.org/wiki/File:CloudComputingSampleArchitecture.svg
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Leakage", and "Hardware Failure" which accounted for 29%, 25% and 10% of 
all cloud security outages respectively — together these form shared 
technology vulnerabilities. In a cloud provider platform being shared by 
different users there may be a possibility that information belonging to 
different customers resides on same data server. Therefore Information 
leakage may arise by mistake when information for one customer is given to 
other.Additionally, Eugene Schultz, chief technology officer at Emagined 
Security, said that hackers are spending substantial time and effort looking for 
ways to penetrate the cloud. "There are some real Achilles' heels in the cloud 
infrastructure that are making big holes for the bad guys to get into". Because 
data from hundreds or thousands of companies can be stored on large cloud 
servers, hackers can theoretically gain control of huge stores of information 
through a single attack — a process he called "hyperjacking". 

There is the problem of legal ownership of the data (If a user stores some 
data in the cloud, can the cloud provider profit from it?). Many Terms of 
Service agreements are silent on the question of ownership. 

Physical control of the computer equipment (private cloud) is more secure 
than having the equipment off site and under someone else's control (public 
cloud). This delivers great incentive to public cloud computing service 
providers to prioritize building and maintaining strong management of secure 
services.Some small businesses that don't have expertise in IT security could 
find that it's more secure for them to use a public cloud. 

There is the risk that end users don't understand the issues involved when 
signing on to a cloud service (persons sometimes don't read the many pages 
of the terms of service agreement, and just click "Accept" without reading). 
This is important now that cloud computing is becoming popular and required 
for some services to work, for example for an intelligent personal 
assistant (Apple's Siri or Google Now). 

Fundamentally private cloud is seen as more secure with higher levels of 
control for the owner, however public cloud is seen to be more flexible and 
requires less time and money investment from the user. 

 

 

 

 

 

 

 

 

 

 

 

 



OpenStack 

24 
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ 

3. NFV Architecture [1] 
 

 

Figure 5: NFV Architecture 
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3.1 Network Function Virtualization Components [4] 

 

 

 

Figure 6: Network Functions Virtualization 

 

 

 

3.1.1 MANO Functional Blocks [2]  

• NFV Orchestrator: – on-boarding of new Network Service (NS), VNF-FG and 
VNF Packages – NS lifecycle management (including instantiation, scale-
out/in, performance measurements, event correlation, termination) – global 
resource management, validation and authorization of NFVI resource 
requests – policy management for NS instances  

• VNF Manager: – lifecycle management of VNF instances – overall 
coordination and adaptation role for configuration and event reporting 
between NFVI and the E/NMS  
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• Virtualised Infrastructure Manager (VIM): – controlling and managing the 
NFVI compute, storage and network resources, within one operator’s 
infrastructure sub-domain – collection and forwarding of performance 
measurements and events 

 

3.1.2 Hypervisor 

In virtualization technology, hypervisor is a software program that manages 
multiple operating systems (or multiple instances of the same operating 
system) on a single computer system. The hypervisor manages the 
system's processor, memory, and other resources to allocate what each 
operating system requires. Hypervisors are designed for a particular 
processor architectureand may also be called virtualization managers. 

A hypervisor is an operating system, which means that it knows how to act as 
a traffic cop to make things happen in an orderly manner. The hypervisor sits 
at the lowest levels of the hardware environment. Because in cloud computing 
you need to support many different operating environments, the hypervisor 
becomes an ideal delivery mechanism. 

The hypervisor lets you show the same application on lots of systems without 
having to physically copy that application onto each system. One twist: 
Because of the hypervisor architecture, it can load any (or many) different 
operating system as though it were just another application. Therefore, the 
hypervisor is a very practical way of getting things virtualized quickly and 
efficiently. 

3.1.3 Scheduling access with the hypervisor 

You should understand the nature of the hypervisor. It’s designed like a 
mainframe OS rather than like the Windows operating system. The hypervisor 
therefore schedules the amount of access that guest OSes have to everything 
from the CPU; to memory; to disk I/O; and to any other I/O mechanisms. With 
virtualization technology, you can set up the hypervisor to split the physical 
computer’s resources. Resources can be split 50-50 or 80-20 between two 
guest OSes, for example. Without the hypervisor, you simply can’t do that with 
Windows. 

The beauty of this arrangement is that the hypervisor does all the heavy 
lifting. The guest operating system doesn’t care (or have any idea) that it’s 
running in a virtual partition; it thinks that it has a computer all to itself. 

3.1.4 Defining types of hypervisors in cloud computing 

Different hypervisors support different aspects of the cloud. Hypervisors come 
in several types: 

Native hypervisors, which sit directly on the hardware platform are most likely 
used to gain better performance for individual users. 

http://www.webopedia.com/TERM/S/software.html
http://www.webopedia.com/TERM/O/operating_system.html
http://www.webopedia.com/TERM/C/computer_system.html
http://www.webopedia.com/TERM/P/processor.html
http://www.webopedia.com/TERM/M/memory.html
http://www.webopedia.com/TERM/A/architecture.html
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Embedded hypervisors are integrated into a processor on a separate chip. 
Using this type of hypervisor is how a service provider gains performance 
improvements. 

Hosted hypervisors run as a distinct software layer above both the hardware 
and the OS. This type of hypervisor is useful both in private and public clouds 
to gain performance improvements. 

 

3.1.5 Hypervisor NFV architecture  

The Nf-Vi-H [1] is the interface between the hypervisor and the Virtualisation 
Infrastructure Manager (VIM) . This interface serves multiple purposes below 
is a description of each purpose:  

1) The hypervisor sends monitoring information to the VIM, of the underlying 
infrastructure. This is currently done through various vendor specific 
packages. It is a requirement of the VIM to utilize the current vendor specific 
packages. There may be a gap in this interface with respect to a common 
standard API requirement in order for the VIM to be able to access various 
different hypervisor schemes and extend the requirements of the interface.A 
common standard hypervisor monitoring API has yet to be defined and 
represents a gap. There are software packages available to implement across 
different hypervisors. However research is needed and input from across NFV 
working groups on the gaps with regard to a standard API,what information is 
transferred (are all the metrics covered) and how the information is transferred 
(CIM, SNMP, etc.).  

2) The VIM is the sole hypervisor controller. All necessary commands, 
configurations, alerts, policies, responses and updates go through this 
interface. 5.2.1 Nature of the Interface The nature of this interface is an 
informational model. There are informational models supporting the data 
communication between the virtualisation layer and the virtualisation 
infrastructure manager (VIM) in deployment today. Vmware, Citrix, Redhat, 
Wind River System., Debian, CentOS all have a VIM. Openstack potentially 
could be used to be the framework of a VIM that would utilize any VIM thru a 
standard method. Currently there are software products on the market today 
that interoperate with the various VIMs in the market place. It is a 
recommendation that there is a standard, or standard opensource that can be 
a VIM to interwork with multiple commercial VIMs in deployment today in 
order to not re-write, re- create current VIMs. Below is a starting point for 
discussion with regards to virtualisation, BIOS, hypervisors, firmware, 
networking and hardware. Ultimately there are levels of Metrics, from high 
level KQIs: (how long does it take to start up the system, how long does it 
take to delete a system, etc.); all the way down to the hardware or compute 
domain. Or alternatively from the compute domain, there are hardware 
capabilities exposed into the software domain via registers, bios, OS, IPMI, 
drivers, up thru the virtualisation domain, which runs algorithms sent into the 
VIM for further calculations and from the VIM to the NFV Orchestrator for 
additional calculations to get to the evaluation of KQIs.Information models are 
used along the way to gather and communicate these metrics, results and 
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performance. The next section gives examples of data contained in an 
information model, followed up by a section that gets into what the hardware 
provides to software in order for the information model to get the data into 
feature designed to calculate SLA performance criteria and requirements.  

3.2 ETSI RECOMMENDATION FOR HYPERVISOR 

ETSI has reported documents for the requirements of Hypervisors. Below we 
introduce these requirements in general and those which are important for the 
NFV architecture. 

As regards with the definition of Hypervisor is: 

• Equivalence: the hypervisor provides an environment for programs which is 
essentially identical to the original machine.  

• Resource control: the hypervisor is in complete control of system resources. 

 • Efficiency: programs run on this (virtualised) environment show at worst 
only minor decreases in speed.  

 

3.2.1 Equivalence  

The environment provided by a hypervisor is functionally equivalent to the 
original machine environment. This implies that the same operating systems, 
tools and application software can be used in the virtual environment. This 
does not preclude para-virtualisation and other optimization techniques which 
may require operating systems, tools and application changes.  

3.2.2 Resource Control  

The hypervisor domain mediates the resources of the computer domain to the 
virtual machines of the software appliances. Hypervisors as developed for 
public and enterprise cloud requirements place great value on the abstraction 
they provide from the actual hardware such that they can achieve very high 
levels of portability of virtual machines. In essence, the hypervisor can 
emulate every piece of the hardware platform even in some cases, completely 
emulating a CPU instruction set such that the VM believes it is running on a 
completely different CPU architecture from the actual CPU on which it is 
running. Such emulation, however, has a significant performance cost. The 
number of actual CPU cycles needed to emulate virtual CPU cycle can be 
large. 

 3.2.3 Efficiency 

 Even when not emulating a complete hardware architecture, there can still be 
aspects of emulation which cause a significant performance hit. Typically, 
computer architectures provide means to offload these aspects to hardware, 
as so called virtualisation extensions, the set of operations that are offloaded 
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and how they are offloaded varies between different hardware architectures 
and hypervisors as innovation improves virtualisation performance.  

example: Intel VT and ARM virtualisation extensions minimise the 
performance impact of virtualisation by offloading to hardware certain 
frequently performed operations. There can be many virtual machines running 
on the same host machine. The VMs on the same host may want to 
communicate between each other and there will be a need to switch between 
the VMs. 

 

 

 

Figure 7:OpenStack in NFV Architecture 

The NFV Infrastructure (NFVI) architecture is primarily concerned with 
describing the Compute, Hypervisor and Infrastructure domains, and their 
associated interfaces. The present document is primarily focused on 
describing the hypervisor domain, which comprise the hypervisor which: 

 • provides sufficient abstract of the hardware to provide portability of software 
appliances;  

• allocates the compute domain resources to the software appliance virtual 
machines;  

• provides a management interface to the orchestration and management 
system which allows for the loading andmonitoring of virtual machines. 
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 3.3 Hypervisor to VIM (Nf-Vi-H) Interface (OpenStack) 

 The Nf-Vi-H is the interface between the hypervisor and the Virtualisation 
Infrastructure Manager (VIM). This interface serves multiple purposes below 
is a description of each purpose:  

1) The hypervisor sends monitoring information to the VIM, of the underlying 
infrastructure. This is currently done through various vendor specific 
packages. It is a requirement of the VIM to utilize the current vendor specific 
packages. There may be a gap in this interface with respect to a common 
standard API requirement in order for the VIM to be able to access various 
different hypervisor schemes and extend the requirements of the interface.A 
common standard hypervisor monitoring API has yet to be defined and 
represents a gap. There are software packages available to implement across 
different hypervisors. However research is needed and input from across NFV 
working groups on the gaps with regard to a standard API,what information is 
transferred (are all the metrics covered) and how the information is transferred 
(CIM, SNMP, etc.).  

2) The VIM is the sole hypervisor controller. All necessary commands, 
configurations, alerts, policies, responses and updates go through this 
interface. 5.2.1 Nature of the Interface The nature of this interface is an 
informational model. There are informational models supporting the data 
communication between the virtualisation layer and the virtualisation 
infrastructure manager (VIM) in deployment today. Vmware, Citrix, Redhat, 
Wind River System., Debian, CentOS all have a VIM. Openstack potentially 
could be used to be the framework of a VIM that would utilize any VIM thru a 
standard method. Currently there are software products on the market today 
that interoperate with the various VIMs in the market place: As an example, 
one such product is Hotlink: http://www.virtualizationpractice.com/hotlink-
supervisor-vcenter-forhyper-v-kvm-and-xenserver-15369/. It is a 
recommendation that there is a standard, or standard opensource that can be 
a VIM to interwork with multiple commercial VIMs in deployment today in 
order to not re-write, re- create current VIMs. Below is a starting point for 
discussion with regards to virtualisation, BIOS, hypervisors, firmware, 
networking and hardware. Ultimately there are levels of Metrics, from high 
level KQIs: (how long does it take to start up the system, how long does it 
take to delete a system, etc.); all the way down to the hardware or compute 
domain. Or alternatively from the compute domain, there are hardware 
capabilities exposed into the software domain via registers, bios, OS, IPMI, 
drivers, up thru the virtualisation domain, which runs algorithms sent into the 
VIM for further calculations and from the VIM to the NFV Orchestrator for 
additional calculations to get to the evaluation of KQIs.Information models are 
used along the way to gather and communicate these metrics, results and 
performance. The next section gives examples of data contained in an 
information model, followed up by a section that gets into what the hardware 
provides to software in order for the information model to get the data into 
feature designed to calculate SLA performance criteria and requirements. 
Neither of these two following sections are anywhere close to be exhaustive. 
Thus, the need for an NFV WI to research what is required above and beyond 
what is available today. 5.2.1.1 Example of MIB information 
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 There are over 1 000 parameters/variables/metrics that are used in 
Virtualisation/ Cloud Service Assurance MIBs. Hypervisors and cloud 
programs use IDs, Bios, IPMI, PCI, I/O Adapters/Drivers, memory 
subsystems, etc. to get to all of the items of current concerns, including 
information for failover, live migration, placement of the VMs/applications. It is 
not clear that there is a gap at this point. The hypervisor team has indicated 
the exposure of the hardware capabilities thru what is in the documentation 
today (id info, impi, drivers, bios, pci, memory subsystems, etc.) has not 
exposed any gaps. The hypervisor team is looking forward to working with the 
Metrics WI, SWA, SEC and MANO for any gaps or requirements beyond what 
is available today. The NFVINF hypervisor domain VIM is expected to 
leverage available managers such as CloudStack, vCenter, Openstack, 
others as packages. There are software packages available today that 
implement this scheme, e.g. HotLink SuperVisor: editor's note to scrub for 
trademarks. Below is an example of some of the components currently in a 
MIB, informational model, that show some of the functions. MIBs are generally 
broken up into 'functional' areas. Below are some examples. MIB 
Functions/objects: 

 • Resources (CPU, Memory, Storage, Adapters, Resource pools, Clusters): - 
Ex: Adapters: PCI ID, I/O, memory, bus, model, status, capabilities. 

 • Systems (Logs, NUMA, I/O, etc.).  

• Events.  

• VM management. 

 • Obsolete/Legacy (compatibility with older versions). 

 • Products (supported products (hw and sw)).  

• Analytics: - Checks the incoming metrics for abnormalities in real time, 
updates health scores, and generates alerts when necessary. - Collects 
metrics and computes derived metrics. - Stores the collected metrics 
statistics. (filesystem). - Stores all other data collected, including objects, 
relationships, events,dynamic thresholds and alerts. 

 • Multicore Processors: - Hyperthreading. - CPU Affinity's. - Power 
management. Table 2 contains some details with regard to the VIM 
information that is gathered. These tables are not complete. Research is 
required to determine the performance characteristics and the gaps of what is 
provided today and what is needed. 

 

 

OpenStack Compute supports many hypervisors, which might make it difficult 
for you to choose one. Most installations use only one hypervisor. However, 
you can use the section called “ComputeFilter” and the section called 
“ImagePropertiesFilter” to schedule different hypervisors within the same 
installation. The following links help you choose a hypervisor. 

The following hypervisors are supported: 
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KVM - Kernel-based Virtual Machine. The virtual disk formats that it supports 
is inherited from QEMU since it uses a modified QEMU program to launch the 
virtual machine. The supported formats include raw images, the qcow2, and 
VMware formats. 

LXC - Linux Containers (through libvirt), use to run Linux-based virtual 
machines. 

QEMU - Quick EMUlator, generally only used for development purposes. 

UML - User Mode Linux, generally only used for development purposes. 

VMware vSphere 4.1 update 1 and newer, runs VMware-based Linux and 
Windows images through a connection with a vCenter server or directly with 
an ESXi host. 

Xen - XenServer, Xen Cloud Platform (XCP), use to run Linux or Windows 
virtual machines. You must install the nova-compute service in a para-
virtualized VM. 

Hyper-V - Server virtualization with Microsoft's Hyper-V, use to run Windows, 
Linux, and FreeBSD virtual machines. Runs nova-computenatively on the 
Windows virtualization platform. 

Bare Metal - Not a hypervisor in the traditional sense, this driver provisions 
physical hardware through pluggable sub-drivers (for example, PXE for image 
deployment, and IPMI for power management). 
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4. Architecture of OpenStack 
 

4.1 Overview 

The OpenStack project [3] is an open source cloud computing platform that 

supports all types of cloud environments. The project aims for simple 
implementation, massive scalability, and a rich set of features. Cloud 
computing experts from around the world contribute to the project. 

OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a 

variety of complemental services. Each service offers an application 

programming interface (API) that facilitates this integration. The following 

table provides a list of OpenStack services: 

 

Table 1:OpenStack services 

Table 1.1. OpenStack services 

Service 
Project 
name 

Description 

Dashboard  Horizon  

Provides a web-based self-service portal to 
interact with underlying OpenStack services, 
such as launching an instance, assigning IP 
addresses and configuring access controls. 

Compute  Nova  

Manages the lifecycle of compute instances in an 
OpenStack environment. Responsibilities include 
spawning, scheduling and decommissioning of 
virtual machines on demand. 

Networking  Neutron  

Enables Network-Connectivity-as-a-Service for 
other OpenStack services, such as OpenStack 
Compute. Provides an API for users to define 
networks and the attachments into them. Has a 
pluggable architecture that supports many 
popular networking vendors and technologies. 

Storage 

Object 

Storage  

Swift  

Stores and retrieves arbitrary unstructured data 

objects via a RESTful, HTTP based API. It is 

highly fault tolerant with its data replication and 
scale out architecture. Its implementation is not 
like a file server with mountable directories. 

Block Storage  Cinder  

Provides persistent block storage to running 
instances. Its pluggable driver architecture 

http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
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Table 1.1. OpenStack services 

Service 
Project 
name 

Description 

facilitates the creation and management of block 
storage devices. 

Shared services 

Identity 

service  

Keystone  

Provides an authentication and authorization 
service for other OpenStack services. Provides a 
catalog of endpoints for all OpenStack services. 

Image 

Service  

Glance  

Stores and retrieves virtual machine disk images. 
OpenStack Compute makes use of this during 
instance provisioning. 

Telemetry  Ceilometer  

Monitors and meters the OpenStack cloud for 
billing, benchmarking, scalability, and statistical 
purposes. 

Higher-level services 

Orchestration  Heat  

Orchestrates multiple composite cloud 
applications by using either the 

native HOTtemplate format or the AWS 

CloudFormation template format, through both an 
OpenStack-native REST API and a 
CloudFormation-compatible Query API. 

Database 

Service  

Trove  

Provides scalable and reliable Cloud Database-
as-a-Service functionality for both relational and 
non-relational database engines. 

 

This guide describes how to deploy these services in a functional test 
environment and, by example, teaches you how to build a production 
environment. Realistically, you would use automation tools such as Ansible, 
Chef, and Puppet to deploy and manage a production environment. 

 

4.1.2 Conceptual architecture 

Launching a virtual machine or instance involves many interactions among 
several services. The following diagram provides the conceptual architecture 
of a typical OpenStack environment. 

  

http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
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Figure 8: OpenStack Arcitecture 

 

4.2 Induction to OpenStack components 

 

The present chapter represents with more analytics the components of 
OpenStack. The role of each component, the interaction with each other and 
the functions they implement.  

 

4.2.1 Horizon 

 

Horizon is the canonical implementation of OpenStack’s Dashboard, which 
provides a web based user interface to OpenStack services including Nova, 
Swift, Keystone, etc. 
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Horizon holds several key values at the core of its design and architecture: 

Core Support: Out-of-the-box support for all core OpenStack projects. 

Extensible: Anyone can add a new component as a “first-class citizen”. 

Manageable: The core codebase should be simple and easy-to-navigate. 

Consistent: Visual and interaction paradigms are maintained throughout. 

Stable: A reliable API with an emphasis on backwards-compatibility. 

Usable: Providing an awesome interface that people want to use. 

 

Core Support 

Horizon ships with three central dashboards, a “User Dashboard”, a “System 
Dashboard”, and a “Settings” dashboard. Between these three they cover the 
core OpenStack applications and deliver on Core Support. 

The Horizon application also ships with a set of API abstractions for the core 
OpenStack projects in order to provide a consistent, stable set of reusable 
methods for developers. Using these abstractions, developers working on 
Horizon don’t need to be intimately familiar with the APIs of each OpenStack 
project. 

Extensible 

A Horizon dashboard application is based around the Dashboard class that 
provides a consistent API and set of capabilities for both core OpenStack 
dashboard apps shipped with Horizon and equally for third-party apps. 
The Dashboard class is treated as a top-level navigation item. 

Should a developer wish to provide functionality within an existing dashboard 
(e.g. adding a monitoring panel to the user dashboard) the simple registration 
pattern makes it possible to write an app which hooks into other dashboards 
just as easily as creating a new dashboard. All you have to do is import the 
dashboard you wish to modify. 

Manageable 

Within the application, there is a simple method for registering a Panel (sub-
navigation items). Each panel contains the necessary logic (views, forms, 
tests, etc.) for that interface. This granular breakdown prevents files (such 
as api.py) from becoming thousands of lines long and makes code easy to 
find by correlating it directly to the navigation. 

Consistent 

By providing the necessary core classes to build from, as well as a solid set of 
reusable templates and additional tools (base form classes, base widget 
classes, template tags, and perhaps even class-based views) we can 
maintain consistency across applications. 

Stable 

By architecting around these core classes and reusable components we 
create an implicit contract that changes to these components will be made in 
the most backwards-compatible ways whenever possible. 

http://docs.openstack.org/developer/horizon/ref/horizon.html#horizon.Dashboard
http://docs.openstack.org/developer/horizon/ref/horizon.html#horizon.Dashboard
http://docs.openstack.org/developer/horizon/ref/horizon.html#horizon.Panel
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Usable 

Ultimately that’s up to each and every developer that touches the code, but if 
we get all the other goals out of the way then we are free to focus on the best 
possible experience. 

 

4.2.2 Neutron 

Management Network  

A management network (a separate network for use by your cloud operators) 
typically consists of a separate switch and separate NICs (network interface 
cards), and is a recommended option. This segregation prevents system 
administration and the monitoring of system access from being disrupted by 
traffic generated by guests. Consider creating other private networks for 
communication between internal components of OpenStack, such as the 
message queue and OpenStack Compute. Using a virtual local area network 
(VLAN) works well for these scenarios because it provides a method for 
creating multiple virtual networks on a physical network. 

Public Addressing Options 

 There are two main types of IP addresses for guest virtual machines: fixed 
IPs and floating IPs. Fixed IPs are assigned to instances on boot, whereas 
floating IP addresses can change their association between instances by 
action of the user. Both types of IP addresses can be either public or private, 
depending on your use case. Fixed IP addresses are required, whereas it is 
possible to run OpenStack without floating IPs. One of the most common use 
cases for floating IPs is to provide public IP addresses to a private cloud, 
where there are a limited number of IP addresses available. Another is for a 
public cloud user to have a "static" IP address that can be reassigned when 
an instance is upgraded or moved. Fixed IP addresses can be private for 
private clouds, or public for public clouds. When an instance terminates, its 
fixed IP is lost. It is worth noting that newer users of cloud computing may find 
their ephemeral nature frustrating 

 

IP Address Planning  

An OpenStack installation can potentially have many subnets (ranges of IP 
addresses) and different types of services in each. An IP address plan can 
assist with a shared understanding of network partition purposes and 
scalability. Control services can have public and private IP addresses, and as 
noted above, there are a couple of options for an instance's public addresses. 
An IP address plan might be broken down into the following sections:  

Subnet router 

 Packets leaving the subnet go via this address, which could be a dedicated 
router or a nova-network service.  

Control services public interfaces 
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 Public access to swift-proxy, nova-api, glance-api, and horizon come to these 
addresses, which could be on one side of a load balancer or pointing at 
individual machines.  

Object Storage  cluster internal communications  

Traffic among object/account/container servers and between these and the 
proxy server's internal interface uses this private network.  

Compute and storage communications  

If ephemeral or block storage is external to the compute node, this network is 
used. 

 Out-of-band remote management  

If a dedicated remote access controller chip is included in servers, often these 
are on a separate network. In-band remote management Often, an extra 
(such as 1 GB) interface on compute or storage nodes is used for system 
administrators or monitoring tools to access the host instead of going through 
the public interface.  

Spare space for future growth 

 Adding more public-facing control services or guest instance IPs should 
always be part of your plan. 

 

For example, take a deployment that has both OpenStack Compute and 
Object Storage, with private ranges 172.22.42.0/24 and 172.22.87.0/26 
available. One way to segregate the space might be as follows:  

172.22.42.0/24: 

 172.22.42.1 - 172.22.42.3 - subnet routers 

 172.22.42.4 - 172.22.42.20 - spare for networks  

172.22.42.21 - 172.22.42.104 - Compute node remote access controllers (inc 
spare) 172.22.42.105 - 172.22.42.188 - Compute node management 
interfaces (inc spare) 172.22.42.189 - 172.22.42.208 - Swift proxy remote 
access controllers (inc spare) 172.22.42.209 - 172.22.42.228 - Swift proxy 
management interfaces (inc spare) 172.22.42.229 - 172.22.42.252 - Swift 
storage servers remote access controllers (inc spare) 172.22.42.253 - 
172.22.42.254 – spare  

172.22.87.0/26: 

 172.22.87.1 - 172.22.87.3 - subnet routers  

172.22.87.4 - 172.22.87.24 - Swift proxy server internal interfaces (inc spare) 

 172.22.87.25 - 172.22.87.63 - Swift object server internal interfaces (inc 
spare)  

A similar approach can be taken with public IP addresses, taking note that 
large, flat ranges are preferred for use with guest instance IPs. Take into 
account that for some OpenStack networking options, a public IP address in 
the range of a guest instance public IP address is assigned to the nova-
compute host. 
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OpenStack Compute with nova-network provides predefined network 
deployment models, each with its own strengths and weaknesses. The 
selection of a network manager changes your network topology, so the choice 
should be made carefully. You also have a choice between the triedand-true 
legacy nova-network settings or the neutron project for OpenStack 
Networking. Both offer networking for launched instances with different 
implementations and requirements. For OpenStack Networking with the 
neutron project, typical configurations are documented with the idea that any 
setup you can configure with real hardware you can re-create with a software-
defined equivalent. Each tenant can contain typical network elements such as 
routers, and services such as DHCP.  

 

VLAN Configuration Within OpenStack VMs VLAN configuration can be as 
simple or as complicated as desired. The use of VLANs has the benefit of 
allowing each project its own subnet and broadcast segregation from other 
projects. To allow OpenStack to efficiently use VLANs, you must allocate a 
VLAN range (one for each project) and turn each compute node switch port 
into a trunk port. For example, if you estimate that your cloud must support a 
maximum of 100 projects, pick a free VLAN range that your network 
infrastructure is currently not using (such as VLAN 200–299). You must 
configure OpenStack with this range and also configure your switch ports to 
allow VLAN traffic from that range. 

 

Multi-NIC Provisioning OpenStack Networking with neutron and OpenStack 
Compute with nova-network have the ability to assign multiple NICs to 
instances. For nova-network this can be done on a per-request basis, with 
each additional NIC using up an entire subnet or VLAN, reducing the total 
number of supported projects. Multi-Host and Single-Host Networking The 
nova-network service has the ability to operate in a multi-host or single-host 
mode. Multi-host is when each compute node runs a copy of nova-network 
and the instances on that compute node use the compute node as a gateway 
to the Internet. The compute nodes also host the floating IPs and security 
groups for instances on that node. Single-host is when a central server—for 
example, the cloud controller—runs the nova-network service. All compute 
nodes forward traffic from the instances to the cloud controller. The cloud 
controller then forwards traffic to the Internet. The cloud controller hosts the 
floating IPs and security groups for all instances on all compute nodes in the 
cloud. There are benefits to both modes. Single-node has the downside of a 
single point of failure. If the cloud controller is not available, instances cannot 
communicate on the network. This is not true with multi-host, but multi-host 
requires that each compute node has a public IP address to communicate on 
the Internet. If you are not able to obtain a significant block of public IP 
addresses, multi-host might not be an option. OpenStack, like any network 
application, has a number of standard considerations to apply, such as NTP 
and DNS.  

NTP  
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Time synchronization is a critical element to ensure continued operation of 
OpenStack components. Correct time is necessary to avoid errors in instance 
scheduling, replication of objects in the object store, and even matching log 
timestamps for debugging. All servers running OpenStack components should 
be able to access an appropriate NTP server. You may decide to set up one 
locally or use the public pools available from the Network Time Protocol 
project.  

DNS  

OpenStack does not currently provide DNS services, aside from the dnsmasq 
daemon, which resides on nova-network hosts. You could consider providing 
a dynamic DNS service to allow instances to update a DNS entry with new IP 
addresses. You can also consider making a generic forward and reverse DNS 
mapping for instances' IP addresses, such as vm-203-0-113-
123.example.com. 

 

Instance Storage Solutions 
 As part of the procurement for a compute cluster, you must specify some 
storage for the disk on which the instantiated instance runs. There are three 
main approaches to providing this temporary-style storage, and it is important 
to understand the implications of the choice. They are:  

• Off compute node storage—shared file system  

• On compute node storage—shared file system  

• On compute node storage—nonshared file system In general, the questions 
you should ask when selecting storage are as follows:  

• What is the platter count you can achieve? • 

 Do more spindles result in better I/O despite network access? 

 • Which one results in the best cost-performance scenario you're aiming for? 

 • How do you manage the storage operationally? Many operators use 
separate compute and storage hosts. Compute services and storage services 
have different requirements, and compute hosts typically require more CPU 
and RAM than storage hosts. Therefore, for a fixed budget, it makes sense to 
have different configurations for your compute nodes and your storage nodes. 
Compute nodes will be invested in CPU and RAM, and storage nodes will be 
invested in block storage. 

However, if you are more restricted in the number of physical hosts you have 
available for creating your cloud and you want to be able to dedicate as many 
of your hosts as possible to running instances, it makes sense to run compute 
and storage on the same machines. We'll discuss the three main approaches 
to instance storage in the next few sections. 

4.2.3 Off Compute Node Storage—Shared File System 

 In this option, the disks storing the running instances are hosted in servers 
outside of the compute nodes. If you use separate compute and storage 
hosts, you can treat your compute hosts as "stateless." As long as you don't 
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have any instances currently running on a compute host, you can take it 
offline or wipe it completely without having any effect on the rest of your cloud. 
This simplifies maintenance for the compute hosts. There are several 
advantages to this approach: 

 • If a compute node fails, instances are usually easily recoverable.  

• Running a dedicated storage system can be operationally simpler. 

 • You can scale to any number of spindles.  

• It may be possible to share the external storage for other purposes. The 
main downsides to this approach are:  

• Depending on design, heavy I/O usage from some instances can affect 
unrelated instances. • Use of the network can decrease performance 

 

On Compute Node Storage—Shared File System 

 In this option, each compute node is specified with a significant amount of 
disk space, but a distributed file system ties the disks from each compute 
node into a single mount. The main advantage of this option is that it scales to 
external storage when you require additional storage. However, this option 
has several downsides:  

• Running a distributed file system can make you lose your data locality 
compared with nonshared storage.  

• Recovery of instances is complicated by depending on multiple hosts. 

 • The chassis size of the compute node can limit the number of spindles able 
to be used in a compute node. 

• Use of the network can decrease performance. 

On Compute Node Storage—Non shared File System 

 In this option, each compute node is specified with enough disks to store the 
instances it hosts. There are two main reasons why this is a good idea: 

 • Heavy I/O usage on one compute node does not affect instances on other 
compute nodes. • Direct I/O access can increase performance. This has 
several downsides:  

• If a compute node fails, the instances running on that node are lost. 

 • The chassis size of the compute node can limit the number of spindles able 
to be used in a compute node. 

 • Migrations of instances from one node to another are more complicated and 
rely on features that may not continue to be developed.  

• If additional storage is required, this option does not scale. Running a shared 
file system on a storage system apart from the computes nodes is ideal for 
clouds where reliability and scalability are the most important factors. Running 
a shared file system on the compute nodes themselves may be best in a 
scenario where you have to deploy to preexisting servers for which you have 
little to no control over their specifications. Running a non shared file system 
on the compute nodes themselves is a good option for clouds with high I/O 
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requirements and low concern for reliability. Issues with Live Migration We 
consider live migration an integral part of the operations of the cloud. This 
feature provides the ability to seamlessly move instances from one physical 
host to another, a necessity for performing upgrades that require reboots of 
the compute hosts, but only works well with shared storage. Live migration 
can also be done with non shared storage, using a feature known as KVM live 
block migration. While an earlier implementation of block-based migration in 
KVM and QEMU was considered unreliable, there is a newer, more reliable 
implementation of block-based live migration as of QEMU 1.4 and libvirt 1.0.2 
that is also compatible with OpenStack. However, none of the authors of this 
guide have first-hand experience using live block migration. 

Choice of File System If you want to support shared-storage live migration, 
you need to configure a distributed file system. Possible options include:  

• NFS (default for Linux)  

• GlusterFS  

• MooseFS  

• Lustre 

 We've seen deployments with all, and recommend that you choose the one 
you are most familiar with operating. If you are not familiar with any of these, 
choose NFS, as it is the easiest to set up and there is extensive community 
knowledge about it. 

Overcommitting OpenStack allows you to overcommit CPU and RAM on 
compute nodes. This allows you to increase the number of instances you can 
have running on your cloud, at the cost of reducing the performance of the 
instances. OpenStack Compute uses the following ratios by default: 

 • CPU allocation ratio: 16:1  

• RAM allocation ratio: 1.5:1  

The default CPU allocation ratio of 16:1 means that the scheduler allocates up 
to 16 virtual cores per physical core. For example, if a physical node has 12 
cores, the scheduler sees 192 available virtual cores. With typical flavor 
definitions of 4 virtual cores per instance, this ratio would provide 48 instances 
on a physical node. The formula for the number of virtual instances on a 
compute node is (OR*PC)/VC, where: 

OR CPU overcommit ratio (virtual cores per physical core) 

 

 PC Number of physical cores 

 VC Number of virtual cores per instance  

Similarly, the default RAM allocation ratio of 1.5:1 means that the scheduler 
allocates instances to a physical node as long as the total amount of RAM 
associated with the instances is less than 1.5 times the amount of RAM 
available on the physical node. For example, if a physical node has 48 GB of 
RAM, the scheduler allocates instances to that node until the sum of the RAM 
associated with the instances reaches 72 GB (such as nine instances, in the 
case where each instance has 8 GB of RAM). 
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Scaling 

Determining the scalability of your cloud and how to improve it is an exercise 
with many variables to balance. No one solution meets everyone's scalability 
goals. However, it is helpful to track a number of metrics. Since you can 
define virtual hardware templates, called "flavors" in OpenStack, you can start 
to make scaling decisions based on the flavors you'll provide. These 
templates define sizes for memory in RAM, root disk size, amount of 
ephemeral data disk space available, and number of cores for starters. 

The starting point for most is the core count of your cloud. By applying some 
ratios, you can gather information about: 

 • The number of virtual machines (VMs) you expect to run, ((overcommit 
fraction × cores) / virtual cores per instance)  

• How much storage is required (flavor disk size × number of instances) You 
can use these ratios to determine how much additional infrastructure you 
need to support your cloud. Here is an example using the ratios for gathering 
scalability information for the number of VMs expected as well as the storage 
needed. The following numbers support (200 / 2) × 16 = 1600 VM instances 
and require 80 TB of storage for /var/lib/nova/instances: 

 • 200 physical cores.  

• Most instances are size m1.medium (two virtual cores, 50 GB of storage) 

. • Default CPU overcommit ratio (cpu_allocation_ratio in nova.conf) of 16:1. 
However, you need more than the core count alone to estimate the load that 
the API services, database servers, and queue servers are likely to 
encounter. You must also consider the usage patterns of your cloud. As a 
specific example, compare a cloud that supports a managed webhosting 
platform with one running integration tests for a development project that 
creates one VM per code commit. In the former, the heavy work of creating a 
VM happens only every few months, whereas the latter puts constant heavy 
load on the cloud controller. You must consider your average VM lifetime, as 
a larger number generally means less load on the cloud controller. 

Aside from the creation and termination of VMs, you must consider the impact 
of users accessing the service—particularly on nova-api and its associated 
database. Listing instances garners a great deal of information and, given the 
frequency with which users run this operation, a cloud with a large number of 
users can increase the load significantly. This can occur even without their 
knowledge—leaving the OpenStack dashboard instances tab open in the 
browser refreshes the list of VMs every 30 seconds. After you consider these 
factors, you can determine how many cloud controller cores you require. A 
typical eight core, 8 GB of RAM server is sufficient for up to a rack of compute 
nodes — given the above caveats. You must also consider key hardware 
specifications for the performance of user VMs, as well as budget and 
performance needs, including storage performance (spindles/core), memory 
availability (RAM/core), network bandwidth (Gbps/core), and overall CPU 
performance (CPU/core). 

4.2.4 Cloud Controller Nodes  
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You can facilitate the horizontal expansion of your cloud by adding nodes. 
Adding compute nodes is straightforward—they are easily picked up by the 
existing installation. However, you must consider some important points when 
you design your cluster to be highly available. Recall that a cloud controller 
node runs several different services. You can install services that 
communicate only using the message queue internally—nova-scheduler and 
nova-console—on a new server for expansion. However, other integral parts 
require more care. You should load balance user-facing services such as 
dashboard, nova-api, or the Object Storage proxy. Use any standard HTTP 
load-balancing method (DNS round robin, hardware load balancer, or 
software such as Pound or HAProxy). One caveat with dashboard is the VNC 
proxy, which uses the WebSocket protocol—something that an L7 load 
balancer might struggle with. See also Horizon session storage. You can 
configure some services, such as nova-api and glance-api, to use multiple 
processes by changing a flag in their configuration file—allowing them to 
share work between multiple cores on the one machine. 

Segregating Your Cloud When you want to offer users different regions to 
provide legal considerations for data storage, redundancy across earthquake 
fault lines, or for low-latency API calls, you segregate your cloud. Use one of 
the following OpenStack methods to segregate your cloud: cells, regions, 
availability zones, or host aggregates. Each method provides different 
functionality and can be best divided into two groups: 

 • Cells and regions, which segregate an entire cloud and result in running 
separate Compute deployments.  

• Availability zones and host aggregates, which merely divide a single 
Compute deployment. 

Cells and Regions  

OpenStack Compute cells are designed to allow running the cloud in a 
distributed fashion without having to use more complicated technologies, or 
be invasive to existing nova installations. Hosts in a cloud are partitioned into 
groups called cells. Cells are configured in a tree. The top-level cell ("API 
cell") has a host that runs the nova-api service, but no nova-compute 
services. Each child cell runs all of the other typical nova-* services found in a 
regular installation, except for the nova-api service. Each cell has its own 
message queue and database service and also runs nova-cells, which 
manages the communication between the API cell and child cells. This allows 
for a single API server being used to control access to multiple cloud 
installations. Introducing a second level of scheduling (the cell selection), in 
addition to the regular nova-scheduler selection of hosts, provides greater 
flexibility to control where virtual machines are run. Unlike having a single API 
endpoint, regions have a separate API endpoint per installation, allowing for a 
more discrete separation. Users wanting to run instances across sites have to 
explicitly select a region. However, the additional complexity of a running a 
new service is not required. The OpenStack dashboard (horizon) can be 
configured to use multiple regions. This can be configured through the 
AVAILABLE_REGIONS parameter. 

Availability Zones and Host Aggregates 
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 You can use availability zones, host aggregates, or both to partition a nova 
deployment. Availability zones are implemented through and configured in a 
similar way to host aggregates. 

Availability zone  

This enables you to arrange OpenStack compute hosts into logical groups 
and provides a form of physical isolation and redundancy from other 
availability zones, such as by using a separate power supply or network 
equipment. You define the availability zone in which a specified compute host 
resides locally on each server. An availability zone is commonly used to 
identify a set of servers that have a common attribute. For instance, if some of 
the racks in your data center are on a separate power source, you can put 
servers in those racks in their own availability zone. Availability zones can 
also help separate different classes of hardware. When users provision 
resources, they can specify from which availability zone they want their 
instance to be built. This allows cloud consumers to ensure that their 
application resources are spread across disparate machines to achieve high 
availability in the event of hardware failure. 

Host aggregates zone 

 This enables you to partition OpenStack Compute deployments into logical 
groups for load balancing and instance distribution. You can use host 
aggregates to further partition an availability zone. For example, you might 
use host aggregates to partition an availability zone into groups of hosts that 
either share common resources, such as storage and network, or have a 
special property, such as trusted computing hardware. A common use of host 
aggregates is to provide information for use with the nova-scheduler. For 
example, you might use a host aggregate to group a set of hosts that share 
specific flavors or images. The general case for this is setting key-value pairs 
in the aggregate metadata and matching key-value pairs in flavor's 
extra_specs metadata. The AggregateInstanceExtraSpecsFilter in the filter 
scheduler will enforce that instances be scheduled only on hosts in 
aggregates that define the same key to the same value. An advanced use of 
this general concept allows different flavor types to run with different CPU and 
RAM allocation ratios so that high-intensity computing loads and low-intensity 
development and testing systems can share the same cloud without either 
starving the high-use systems or wasting resources on low-utilization 
systems. This works by setting metadata in your host aggregates and 
matching extra_specs in your flavor types. The first step is setting the 
aggregate metadata keys cpu_allocation_ratio and ram_allocation_ratio to a 
floating-point value. The filter schedulers AggregateCoreFilter and 
AggregateRamFilter will use those values rather than the global defaults in 
nova.conf when scheduling to hosts in the aggregate. It is important to be 
cautious when using this feature, since each host can be in multiple 
aggregates but should have only one allocation ratio for each resources. It is 
up to you to avoid putting a host in multiple aggregates that define different 
values for the same resource. This is the first half of the equation. To get 
flavor types that are guaranteed a particular ratio, you must set the 
extra_specs in the flavor type to the key-value pair you want to match in the 
aggregate. For example, if you define extra_specs cpu_allocation_ratio to 
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"1.0", then instances of that type will run in aggregates only where the 
metadata key cpu_allocation_ratio is also defined as "1.0." In practice, it is 
better to define an additional key-value pair in the aggregate metadata to 
match on rather than match directly on cpu_allocation_ratio or 
core_allocation_ratio. This allows better abstraction.  

For example, by defining a key overcommit and setting a value of "high," 
"medium," or "low," you could then tune the numeric allocation ratios in the 
aggregates without also needing to change all flavor types relating to them. 

Scalable Hardware 

 While several resources already exist to help with deploying and installing 
OpenStack, it's very important to make sure that you have your deployment 
planned out ahead of time. This guide presumes that you have at least set 
aside a rack for the OpenStack cloud but also offers suggestions for when 
and what to scale.  

Hardware Procurement  

“The Cloud” has been described as a volatile environment where servers can 
be created and terminated at will. While this may be true, it does not mean 
that your servers must be volatile. Ensuring that your cloud’s hardware is 
stable and configured correctly means that your cloud environment remains 
up and running. Basically, put effort into creating a stable hardware 
environment so that you can host a cloud that users may treat as unstable 
and volatile. OpenStack can be deployed on any hardware supported by an 
OpenStack-compatible Linux distribution. Hardware does not have to be 
consistent, but it should at least have the same type of CPU to support 
instance migration. The typical hardware recommended for use with 
OpenStack is the standard value-for-money offerings that most hardware 
vendors stock. It should be straightforward to divide your procurement into 
building blocks such as "compute," "object storage," and "cloud controller," 
and request as many of these as you need. Alternatively, should you be 
unable to spend more, if you have existing servers—provided they meet your 
performance requirements and virtualization technology—they are quite likely 
to be able to support OpenStack. 

Capacity Planning  
OpenStack is designed to increase in size in a straightforward manner. Taking 
into account the considerations that we've mentioned in this chapter—
particularly on the sizing of the cloud controller—it should be possible to 
procure additional compute or object storage nodes as needed. New nodes 
do not need to be the same specification, or even vendor, as existing nodes. 
For compute nodes, nova-scheduler will take care of differences in sizing 
having to do with core count and RAM amounts; however, you should 
consider that the user experience changes with differing CPU speeds. When 
adding object storage nodes, a weight should be specified that reflects the 
capability of the node. 

 

Ephemeral Storage If you deploy only the OpenStack Compute Service 
(nova), your users do not have access to any form of persistent storage by 
default. The disks associated with VMs are "ephemeral," meaning that (from 
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the user's point of view) they effectively disappear when a virtual machine is 
terminated. Persistent Storage Persistent storage means that the storage 
resource outlives any other resource and is always available, regardless of 
the state of a running instance. Today, OpenStack clouds explicitly support 
two types of persistent storage: object storage and block storage. Object 
Storage With object storage, users access binary objects through a REST 
API. You may be familiar with Amazon S3, which is a well-known example of 
an object storage system. Object storage is implemented in OpenStack by the 
OpenStack Object Storage (swift) project. If your intended users need to 
archive or manage large datasets, you want to provide them with object 
storage. In addition, OpenStack can store your virtual machine (VM) images 
inside of an object storage system, as an alternative to storing the images on 
a file system. OpenStack Ops Guide July 27, 2015 62 OpenStack Object 
Storage provides a highly scalable, highly available storage solution by 
relaxing some of the constraints of traditional file systems. In designing and 
procuring for such a cluster, it is important to understand some key concepts 
about its operation. Essentially, this type of storage is built on the idea that all 
storage hardware fails, at every level, at some point. Infrequently encountered 
failures that would hamstring other storage systems, such as issues taking 
down RAID cards or entire servers, are handled gracefully with OpenStack 
Object Storage. A good document describing the Object Storage architecture 
is found within the developer documentation—read this first. Once you 
understand the architecture, you should know what a proxy server does and 
how zones work. However, some important points are often missed at first 
glance. When designing your cluster, you must consider durability and 
availability. Understand that the predominant source of these is the spread 
and placement of your data, rather than the reliability of the hardware. 
Consider the default value of the number of replicas, which is three. This 
means that before an object is marked as having been written, at least two 
copies exist—in case a single server fails to write, the third copy may or may 
not yet exist when the write operation initially returns. Altering this number 
increases the robustness of your data, but reduces the amount of storage you 
have available. Next, look at the placement of your servers. Consider 
spreading them widely throughout your data center's network and power-
failure zones. Is a zone a rack, a server, or a disk? Object Storage's network 
patterns might seem unfamiliar at first. Consider these main traffic flows: • 
Among object, container, and account servers • Between those servers and 
the proxies • Between the proxies and your users Object Storage is very 
"chatty" among servers hosting data—even a small cluster does 
megabytes/second of traffic, which is predominantly, “Do you have the 
object?”/“Yes I have the object!” Of course, if the answer to the 
aforementioned question is negative or the request times out, replication of 
the object begins. Consider the scenario where an entire server fails and 24 
TB of data needs to be transferred "immediately" to remain at three copies—
this can put significant load on the network. OpenStack Ops Guide July 27, 
2015 63 Another fact that's often forgotten is that when a new file is being 
uploaded, the proxy server must write out as many streams as there are 
replicas— giving a multiple of network traffic. For a three-replica cluster, 10 
Gbps in means 30 Gbps out. Combining this with the previous high bandwidth 
demands of replication is what results in the recommendation that your private 
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network be of significantly higher bandwidth than your public need be. Oh, 
and OpenStack Object Storage communicates internally with unencrypted, 
unauthenticated rsync for performance—you do want the private network to 
be private. The remaining point on bandwidth is the public-facing portion. The 
swift-proxy service is stateless, which means that you can easily add more 
and use HTTP load-balancing methods to share bandwidth and availability 
between them. More proxies means more bandwidth, if your storage can keep 
up. Block Storage Block storage (sometimes referred to as volume storage) 
provides users with access to block-storage devices. Users interact with block 
storage by attaching volumes to their running VM instances. These volumes 
are persistent: they can be detached from one instance and re-attached to 
another, and the data remains intact. Block storage is implemented in 
OpenStack by the OpenStack Block Storage (cinder) project, which supports 
multiple back ends in the form of drivers. Your choice of a storage back end 
must be supported by a Block Storage driver. Most block storage drivers allow 
the instance to have direct access to the underlying storage hardware's block 
device. This helps increase the overall read/write IO. However, support for 
utilizing files as volumes is also well established, with full support for NFS, 
GlusterFS and others. These drivers work a little differently than a traditional 
"block" storage driver. On an NFS or GlusterFS file system, a single file is 
created and then mapped as a "virtual" volume into the instance. This 
mapping/translation is similar to how OpenStack utilizes QEMU's file-based 
virtual machines stored in /var/lib/nova/instances.  

OpenStack Storage Concepts 
Choosing Storage Back Ends Users will indicate different needs for their cloud 
use cases. Some may need fast access to many objects that do not change 
often, or want to set a time-to-live (TTL) value on a file. Others may access 
only storage that is mounted with the file system itself, but want it to be 
replicated instantly when starting a new instance. For other systems, 
ephemeral storage— storage that is released when a VM attached to it is shut 
down— is the pre- OpenStack Ops Guide July 27, 2015 65 ferred way. When 
you select storage back ends, ask the following questions on behalf of your 
users: • Do my users need block storage?  

• Do my users need object storage?  

• Do I need to support live migration? 

 • Should my persistent storage drives be contained in my compute nodes, or 
should I use external storage?  

• What is the platter count I can achieve? Do more spindles result in better I/O 
despite network access?  

• Which one results in the best cost-performance scenario I'm aiming for? 

 • How do I manage the storage operationally?  

• How redundant and distributed is the storage? What happens if a storage 
node fails? To what extent can it mitigate my data-loss disaster scenarios? 

 

4.2.5 OpenStack Object Storage (swift)  
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The official OpenStack Object Store implementation. It is a mature technology 
that has been used for several years in production by Rackspace as the 
technology behind Rackspace Cloud Files. As it is highly scalable, it is 
wellsuited to managing petabytes of storage. OpenStack Object Storage's 
advantages are better integration with OpenStack (integrates with OpenStack 
Identity, works with the OpenStack dashboard interface) and better support 
for multiple data center deployment through support of asynchronous eventual 
consistency replication. Therefore, if you eventually plan on distributing your 
storage cluster across multiple data centers, if you need uni-fied accounts for 
your users for both compute and object storage, or if you want to control your 
object storage with the OpenStack dashboard, you should consider 
OpenStack Object Storage. More detail can be found about OpenStack 
Object Storage in the section below.  

Ceph 

 A scalable storage solution that replicates data across commodity storage 
nodes. Ceph was originally developed by one of the founders of DreamHost 
and is currently used in production there. Ceph was designed to expose 
different types of storage interfaces to the end user: it supports object storage, 
block storage, and file-system interfaces, although the file-system interface is 
not yet considered production-ready. Ceph supports the same API as swift for 
object storage and can be used as a back end for cinder block storage as well 
as back-end storage for glance images.  

Ceph supports "thin provisioning," implemented using copy-on-write. This can 
be useful when booting from volume because a new volume can be 
provisioned very quickly. Ceph also supports keystone-based authentication 
(as of version 0.56), so it can be a seamless swap in for the default 
OpenStack swift implementation. Ceph's advantages are that it gives the 
administrator more fine-grained control over data distribution and replication 
strategies, enables you to consolidate your object and block storage, enables 
very fast provisioning of bootfrom-volume instances using thin pro-visioning, 
and supports a distributed file-system interface, though this interface is not yet 
recommended for use in production deployment by the Ceph project. If you 
want to manage your object and block storage within a single system, or if you 
want to support fast boot-fromvolume, you should consider Ceph. 

Gluster  

A distributed, shared file system. As of Gluster version 3.3, you can use 
Gluster to consolidate your object storage and file storage into one unified file 
and object storage solution, which is called Gluster For OpenStack (GFO). 
GFO uses a customized version of swift that enables Gluster to be used as 
the backend storage. The main reason to use GFO rather than regular swift is 
if you also want to support a distributed file system, either to support shared 
storage live migration or to provide it as a separate service to your end users. 
If you want to manage your object and file storage within a single system, you 
should consider GFO. 

 

LVM  
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The Logical Volume Manager is a Linux-based system that provides an 
abstraction layer on top of physical disks to expose logical volumes to the 
operating system. The LVM back-end implements block storage as LVM 
logical partitions. On each host that will house block storage, an administrator 
must initially create a volume group dedicated to Block Storage volumes. 
Blocks are created from LVM logical volumes. 

ZFS  

The Solaris iSCSI driver for OpenStack Block Storage implements blocks as 
ZFS entities. ZFS is a file system that also has the functionality of a volume 
manager. This is unlike on a Linux system, where there is a separation of 
volume manager (LVM) and file system (such as, ext3, ext4, xfs, and btrfs). 
ZFS has a number of advantages over ext4, including improved data-integrity 
checking. The ZFS back end for OpenStack Block Storage supports only 
Solaris-based systems, such as Illumos. While there is a Linux port of ZFS, it 
is not included in any of the standard Linux distributions, and it has not been 
tested with OpenStack Block Storage. As with LVM, ZFS does not provide 
replication across hosts on its own; you need to add a replication solution on 
top of ZFS if your cloud needs to be able to handle storage-node failures. We 
don't recommend ZFS unless you have previous experience with deploying it, 
since the ZFS back end for Block Storage requires a Solaris-based operating 
system, and we assume that your experience is primarily with Linux-based 
systems. 

Sheepdog  

Sheepdog is a userspace distributed storage system. Sheepdog scales to 
several hundred nodes, and has powerful virtual disk management features 
like snapshot, cloning, rollback, thin provisioning. It is essentially an object 
storage system that manages disks and aggregates the space and 
performance of disks linearly in hyper scale on commodity hardware in a 
smart way. On top of its object store, Sheepdog provides elastic volume 
service and http service. Sheepdog does not assume anything about kernel 
version and can work nicely with xattr-supported file systems. 
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5. Description of Costs [7] 
 

5.1 Direct or Directly Attributable Costs 

Are costs which are being generated by the production of a specific service or 
a specific product. These costs will not been generated if the company or 
organization stops the production of this specific product/service. 

Joint Cost: 
A joint cost is an expenditure that benefits more than one product, and for 
which it is not possible to separate the contribution to each product. The 
accountant needs to determine a consistent method for allocating joint costs 
to products.Joint costs are likely to occur to some extent at different points in 
any manufacturing process. 

5.1.1 Common costs 

Costs that are common to several products, processes, activities, 
departments, territories, etc. Often common costs are subsequently allocated 
to each of the joint products, joint processes, etc. in order to determine the 
cost of each 

Such benefits can increase customer satisfaction and reduce churn, which 
may prove to be the tipping point when service providers evaluate whether to 
move certain applications to a cloud platform. 

5.2 NFV and innovation in operations 

Cloud computing and network functions virtualization (NFV) can help manage 
rapid demand growth while reducing capital and operational expenditures 
(CAPEX and OPEX). No wonder service providers are paying attention. 

These savings significantly lower service providers’ total cost of ownership 
(TCO) and increase agility — critical to thriving in today’s challenging telecom 
environment. Virtualizing applications also simplifies complex processes, such 
as healing, scaling, and software upgrades, providing further agility and 
flexibility. 

Much has been said about how virtualization and the cloud may be used in 
the telecom industry to improve the infrastructure and operations TCO. Initial 
efforts centered on virtualization’s ability to optimize hardware. Lately, the 
focus has shifted to operations. 

While virtualizing some network functions will undoubtedly bring CAPEX 
savings, NFV’s greatest contribution will be that it enables a new way of 
approaching telecommunications. This means much more than just optimizing 
inefficiencies inherent in current processes. 

Service providers can — and should — take advantage of NFV technology to 
redefine their current operations. This will require 3 major steps: 

Map out every current process in detail 
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Analyze what can be automated (that is, handled by an NFV platform) to 
reduce complexity 

Redesign operations to be much simpler and more agile 

5.2.1 Cost drivers for NFV 

Many parameters may be considered when developing a business case to 
analyze the impact of migrating an application to NFV (Figure 1). 

There are 3 categories of cost drivers: 

CAPEX: one-time investments in fixed assets with a useful life extending 
beyond the taxable year 

Infrastructure OPEX: ongoing costs directly related to the infrastructure (e.g., 
maintenance) 

Process OPEX: ongoing staffing costs directly related to the daily 
management of activities or processes required to provide services or 
applications 

 

 

Figure 9: Main NFV cost drivers 

5.3 Six areas of cost saving enabled by NFV [6] 

 

 Capacity growth 
Traditional approaches to adding capacity follow a 4-step process (Figure 10) 
to deploy a new server infrastructure. 
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Figure 10: Traditional deployment process 

 

The NFV deployment process (Figure 11) differs from the traditional process 
in a number of ways. 

 

Figure 11: NFV deployment process 

 

Costs for deploying NFV are slightly higher initially due to the professional 
services needed during deployment. However, this is a one-time cost. As the 
service provider becomes more familiar with the infrastructure, it will likely use 
its own operators and perform these tasks in house. With NFV, applications 
can share infrastructure, so the service provider’s operations team will only 
need to be familiar with a very limited number of infrastructure elements. 

In succeeding years, total server replacement and growth process costs are 
greatly reduced. NFV’s virtual scaling and automated application deployment 
capabilities reduce capacity growth process costs significantly. 

Software upgrades 
Today, upgrading with both new programmed software releases and ad-hoc 
patches follows 4 phases: 

Plan 

Obtain the new software 

Test the new software 

Install and configure 
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The last phase generally consumes the most time and resources. 

Introducing an NFV platform doesn’t typically change the way the provider 
plans and obtains software. However, NFV offers a reduced timeline and 
lower costs to stage tests and create environments. Service providers can use 
“sandbox” testing environments without dedicated equipment. This lets them 
create simplified test cases which can be executed in parallel, and reduces 
testing time by about one-third. 

NFV simplifies installation and configuration. 
Traditionally, service providers open maintenance windows at night to install 
and configure a predefined number of servers individually. With NFV, the 
service provider can upgrade 4 servers per night in a 5-hour maintenance 
window. The lead time maintenance window grows over time as the service 
provider increases the number of physical servers to keep up with growing 
traffic needs (Figure 12). 

 

Figure 12: Example of lead times to upgrade software 

NFV changes the whole process. The total number of servers is no longer 
relevant for installation and configuration. Application recipes are used to 
push upgrades automatically, in a matter of minutes, to all servers in parallel. 
This automation provides dramatic gains in agility. 

Healing process 
Device failures can result in loss of service for many users and increase 
churn. To reduce this risk, service providers traditionally deploy fully 
redundant architectures. This costly security buffer requires double the 
amount of physical infrastructure, with much of it standing idle. 

A device failure is not the only issue that can require a healing process. 
Service providers also need to be able to address OS failures, application 
failures and distributed denial of service (DDOS) attacks. 

Traditional healing process 
Today’s healing process consists of 3 stages: 

Issue identification 

Trigger and execute solution process 
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Perform ‘Post-mortem’ root cause analysis (RCA) 

Lead times to identify and solve a problem vary depending on the issue at 
hand. It tends to be simpler and faster at the hardware and operating system 
layers, whereas actually solving an issue tends to be faster at the application 
layer. DDOS attacks are the fastest both to identify and solve, but tend to 
consume more of the operations team’s time because they are so common. 

RCA is performed by operators once service continuity has been assured. 
Identifying the root cause of a problem allows service providers to make the 
changes necessary to avoid reoccurrences. 

NFV healing process 
With NFV, devices run as virtualized functions and are protected by the self-
healing properties of the hypervisor and orchestration layer. The healing 
process is fully redefined as the business continuity process is decoupled 
from the problem itself. To provide end-to-end application resiliency and 
reliability, NFV platforms incorporate mechanisms for automated healing, 
based on the monitored infrastructure and application-level KPIs. When 
failures occur, the system automatically creates a new instance with the same 
specifications to ensure application availability at all times. 

By simplifying the healing process and developing a simple solution using 
automated virtual scaling capabilities, NFV can significantly reduce healing 
costs. 

Floor space, power and cooling 
Real estate, power and cooling are OPEX infrastructure costs. They are 
directly related to the number and characteristics of physical infrastructure 
items managed for a specific deployment. Provided all constants remain 
equal, reducing physical hardware will lower the total costs of real estate, 
power, and cooling by the same proportion. 

The main drivers for these costs are: 

Real estate: number and size of infrastructure items and square foot cost 

Power: rate of energy consumption and cost per kilowatt hour 

Cooling: a factor of 1:1 of power consumption 

With NFV, real estate costs are reduced because the technology requires 
fewer physical infrastructure items. With traditional approaches, load 
balancers and other networking equipment such as switches are placed 
separately from servers. 

Power costs are reduced because NFV makes it possible for service 
providers to replace older servers sooner. Older servers consume about twice 
as much energy as new ones. 

Lastly, cooling costs are generally calculated as a 1:1 ratio to power costs, 
hence, cooling costs decrease in the same proportion as encountered with 
power. 

Maintenance and software licenses 
Maintenance is also an OPEX infrastructure cost. It’s directly related to the 
number and characteristics of physical infrastructure items managed by the 
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operations teams. Many traditional infrastructure elements require a yearly 
maintenance fee, including servers and the network equipment, such as load 
balancers, switches, and routing ports. 

While any chosen NFV system will have associated licenses and 
maintenance fees, there will be considerably fewer licenses than when using 
a traditional approach. This is because far fewer infrastructure elements are 
required, and NFV platforms can be shared between applications or services 
as capacity needs change. 

Hardware infrastructure 
Virtualizing physical assets improves resource utilization by creating virtual 
machines, each with its own operating system on a single physical hardware 
asset. An NFV platform goes a step further. It enables dynamic placement of 
the virtual machines, which further improves hardware optimization. 

Traditional deployments operate in a “siloed” architecture. Servers are 
dedicated to one application, resulting in an inefficiently high number of 
servers. 

NFV enables a new model, where all underlying hardware forms a pool of 
resources shared by all the applications running on the same platform. 
Furthermore, the ability to share the infrastructure permits a new cost model. 
The cost of idle capacity should not be allocated to a specific application, but 
is available for other applications on demand. 

Service providers can expect significant reductions in server costs with NFV, 
since it uses far fewer servers than traditional approaches. More importantly, 
physical appliances, such as load balancers, can be eliminated. 

 

5.4 Comparison of NFV and Hardware Approach 

NFV approach 
Capacity growth Joint Cost as it common for a family of services that a 
company produce. 

Software UpgradesJoint Cost as it is common for a family of services that a 
company produce 

Healing ProcessJoint Cost as it is common for a family of services that a 
company produce 

Real estate, power and coolingJoint Cost 

Maintenance CostDirectly Costs as it is referred to cost for a specific 
service 

Licenses CostJoint Cost as licenses are related to product as a whole and 
not for a specific service 

Hardware infrastructureJoint Cost as hardware in NFV approach is related 
to many elements and services which are being produced by it. 
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Traditional approach 

Capacity growthDirect-Variable Cost 

Software UpgradesDirect-Variable Cost  

Healing Process Direct Fixed Cost 

Real estate, power and coolingJoint Cost 

Maintenance CostsDirectly Cost 

Licenses CostDirectly Cost 

Hardware CostJoint Cost 

 

NFV: 

Direct Cost:  Maintenance Cost  

Joint Cost: Capacity growth-Software Upgrades-RPC-Healing-Licences-
Hardware 

Common Cost 

Traditional: 

Direct Cost:  Maintenance Cost- Licences- Healing- Capacity growth-Software 
Upgrades 

Joint Cost: RPC- Hardware 

Common Cost 

 

If the Common Cost for the two approaches are the same we see that in NFV 
approach most Cost become Joint from Direct where they were in Traditional 
Approach. 

NFV: 

Direct Cost:  Maintenance Cost  

Joint Cost: Capacity growth-Software Upgrades-RPC-Healing-Licences-
Hardware 

Traditional: 

Direct Cost:  Maintenance Cost- Licences- Healing- Capacity growth-Software 
Upgrades 

Joint Cost: RPC- Hardware 

 

As we can figure out from the above analysis of the comparison of sum of 
these costs are as shown below  and this is because the discrete costs of 
NFV are lower than those of Traditional Approach.  So we can write: 

NFV Costs Approach < Traditional Costs Approach  
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NFV Costs (Maintenance Cost + Capacity growth +Software Upgrades+RPC-
Healing+Licences+Hardware ) < Traditional Costs (Maintenance Cost + 
Capacity growth +Software Upgrades+RPC-Healing+Licences+Hardware ) 

In this Chapter we will try to use different types of costing which are being 
used in Telecom industry in order to support the fact that NFV gives less 
Operational Costs to Vendors than the Hardware approach which is being 
used today. For our analysis we will use three different models of costing.  

 

5.5 COSTS 

5.5.1 Fully Distributed Cost (FDC) [9] 

FDC assumes that there exist some accounts that can be specifically 
allocated to a single service, while other accounts are classified as common 
or overhead cost to two or more services. To allocate common costs, input 
coefficients are usually developed as parameters to be estimated when 
dividing common costs among groups of shared inputs. For example, assume 
there are two services, A and B. Total costs for the production of the two 
services is 100, of which 20 is attributable to service A and 30 is attributable 
to service B. The remaining cost of 50 is considered common costs. If the 
input coefficient is 0.5 for each service, then the common costs are shared 
equally, that is 25 for each service. The cost of each service is therefore 45 
for service A and 55 for service B. 

With the above costing method is clear that NFV approach has lower 
operation costs and this is because most costs of NFV are Joint costs. This 
gives the advantage of adding more services to the chain of costs. For 
example in traditional approach for having a Capacity Growth, the cost of this 
issue is being added as a whole something that is not happened in NFV 
architecture where the cost is shared in joint Costs. 

5.5.2 Embedded Direct Cost (EDC) 

This method  calculates only the Direct or Directly attributable Cost. Joint 
Costs and Common Costs are not calculated at all. This method helps in 
understanding the characteristics costs of each service explicitly. These Costs 
are either constant or directly for a service. 

The use of this method is shown to us that NFV approach is better than the 
Traditional. This is because in NFV approach we have only a direct Cost, and 
this is the maintenance Cost, in addition to traditional approach where we 
have  extra services like  Licenses, Healling process, Software Upgrade and 
Capacity Growth. 

NFV: 

Direct Cost:  Maintenance Cost  

Traditional: 
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Direct Cost:  Maintenance Cost- Licences- Healing- Capacity growth-Software 
Upgrades 

So the traditional approach add Licences- Healing- Capacity growth-Software 
Upgrades   extra costs to vendors. 

. 

5.5.3 Stand Alone Cost (SAC) 

Last but not least the approach of stand alone cost calculate its specific cost 
like it would be the only one in the chain of Cost. 

So a cost for a service is the sum of the Direct Cost of that service, the whole 
common Cost and the whole Joint Cost. If we think that Common Cost is the 
same for both approaches then the whole Cost for all services in NFV is as 
below: 

Direct Cost(Maintenance Cost) + Joint Cost ( Licenses-Healing-Capacity 
Growth-Software Upgrade-RPC-Hardware) 

In traditional approach the whole costs is calculated as below: 

Direct Cost(Maintenance Cost) + Joint Cost (RPC-Hardware) + Direct 
Cost(Licenses Cost) + Joint Cost (RPC-Hardware)+ Direct Cost(Healling 
Cost) + Joint Cost (RPC-Hardware) + Direct Cost(Growth Capacity Cost) + 
Joint Cost (RPC-Hardware) + Direct Cost(Software Upgrade Cost) + Joint 
Cost (RPC-Hardware) 

Or 

Direct Cost(Maintenance Cost) + Direct Cost(Licenses Cost) + Direct 
Cost(Healling Cost) + Direct Cost(Growth Capacity Cost) + Direct 
Cost(Software Upgrade Cost) + 5 [Joint Cost (RPC-Hardware)] 

As a result the difference between two approaches if we consider that all 
specific costs, one by one, are the same is: 

SAC(Traditional) - SAC(NFV)  = 4  [Joint Cost (RPC-Hardware)] 

If we think that NFV(RPC) is lower than Traditional(RPC) and NFV(Hardware) 
is lower than Traditional(Hardware), then the difference is more than 4  [Joint 
Cost (RPC-Hardware)]. 
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6. RESULTS 
 

 

From this document there are several results we can find. First of all the use 
of OpenStack software in new Telecommunication architecture is something 
that can be done. OpenStack can be used in order to manage and orchestrate 
better the available hardware sources for the deployment of 
Telecommunication. OpenSatck is also compatible with the general approach 
of NFV architecture which ETSI has described. This is very important because 
an Opensource software can be used for the maintenance of 
Telecommunication networks. But the most important of all is that NFV saves 
money from vendors and especially from OPEX which have to invest for their 
networks. 
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ABBREVIATIONS-ACRONYMS 

NFV Network  Function Virtualization   

VNF Virtual Network Functions  

TCP/IP  Transmission Control Protocol/ Internet Protocol  

FDC Fully Distributed Cost 

EDC Embedded Distributed Cost 

SAC  Stand Alone Cost  

VIM Virtual Infrastructure Management 

W3C  World Wide Web Consortium  

ΕTSI  European Telecommunication Standard Industry  

MANO Maintenance and Orchestration 

CAPEX Capital Expenditure 

OPEX Operational Expenditure 

ΕΚΠΑ  Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών  
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