

NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS

FACULTY OF SCIENCES

DEPARTMENT OF INFORMATICS & TELECOMMUNICATION

INTERDEPARTMENTAL POSTGRADUATE PROGRAMME IN
MANAGEMENT & ECONOMICS OF TELECOMMUNICATION NETWORKS

MASTER THESIS

OpenStack

Anargyros.G.KOTZAMANOGLOU

Supervisor: STATHES HADJIEFTHYMIADES, Associate Professor

ATHENS

OCTOBER 2015

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ
ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΔΙΚΤΥΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

OpenStack

Ανάργυρος Γ.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Επιβλέπων: ΕΥΣΤΑΘΙΟΣ ΧΑΤΖΗΕΥΘΥΜΙΑΔΗΣ, Αναπληρωτής
Καθηγητής

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2015

MASTER THESIS

OpenStack

Anargyros.G.KOTZAMANOGLOU

A.M:MOP392

Supervisor: STATHES HADJIEFTHYMIADES, Associate Professor

ATHENS

OCTOBER 2015

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

OpenStack

Ανάργυρος Γ.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Α.Μ.: ΜΟΠ392

Επιβλέπων: ΕΥΣΤΑΘΙΟΣ ΧΑΤΖΗΕΥΘΥΜΙΑΔΗΣ, Αναπληρωτής
Καθηγητής

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2015

ABSTRACT

The aim of this thesis is the presentation of OpenStack. An open software
management of telecommunications resources in cloud environment. For the
preparation of this thesis is first a description of the architecture of cloud
environment, and service models used. Architecture Network Function
Virtualization occurs then applied to telecommunications in accordance with
standards set by the European Telecommunications Standards Institute. The
main topic of the thesis is to present the OpenStack software used by the
NFV architecture. In these chapters an attempt is as detailed and
comprehensive description of the OpenStack functions and parts of the colony
consists. Finally there is one techno-economic analysis of the cost of
implementing NFV architecture with the current architecture applied to
Telecommunication networks. The results derived from this work is a lot of
potential implementation and application of the new architecture and the very
low operating costs compared with existing technology up to now.

SUBJECT AREA: Architecture Core NetWorks

KEYWORDS: OpenStack, NFV, Cloud computing, Management and
Orchestration, Cloud Architecture

ΠΕΡΙΛΗΨΗ

Σκοπός της Διπλωματικής εργασίας είναι η παρουσίαση του OpenStack. Ένα
ανοιχτό λογισμικό διαχείρισης των τηλεπικοινωνιακών πόρων σε cloud
περιβάλλον. Για την εκπόνηση της Διπλωματικής εργασίας γίνεται αρχικά μία
περιγραφή της αρχιτεκτονικής του cloud περιβάλλοντος, και των μοντέλων
εξυπηρέτησης που χρησιμοποιούνται. Εν συνεχεία παρουσιάζεται η
αρχιτεκτονική Network Function Virtualization που εφαρμόζεται στις
τηλεπικοινωνίες σύμφωνα με τα πρότυπα που έχει θέσει ο Ευρωπα’ι’κός
Οργανισμός Τηλεπικοινωνιακών Προτύπων. Το κύριο θέμα της Διπλωματικής
Εργασίας είναι η παρουσίαση του λογισμικού OpenStack που χρησιμοποιείται
από την NFV αρχιτεκτονική. Στα κεφάλαια αυτά γίνεται μία προσπάθεια όσο
το δυνατόν λεπτομερέστερης και πληρέστερης περιγραφής των λειτουργιών
του OpenStack καθώς και τα μέρη από τα αποία αποτελείται. Τέλος γίνεται
μία τεχνοοικονομική ανάλυση του κόστους εφαρμογής της NFV αρχιτεκτονικής
με την τωρινή αρχιτεκτονική που εφαρμόζεται στα Τηλεπιοκοινωνιακά δίκτυα.
Τα αποτελέσματα τα οποία προκύπτουν από την παρούσα εργασία είναι η
πολλές δυνατότητες υλοπόιησης και εφαρμογής της νέας αρχιτεκτονικής
καθώς και το πολύ χαμηλό κόστος λειτουργίας της σε σχέση με την
υφιστάμενη εώς τώρα τεχνολογία.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αρχιτεκτονική Τηλεπικοινωνιακών Δικτύων Κορμού

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Αρχιτεκτονική Σύννεφου, Διαχείριση και Λειτουργία
Τηελπικοινωνιακών δικτύων σύννεφου, Εικονικές Δικτυακές Λειτουργίες,
Αρχιτεκτονική Τηλεπικοινωνιών

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να ευχαριστήσω τον Καθηγητή μου Κ. Χατζηευθημιάδη για την
βοήθεια της ολοκλήρωσης της εργασίας αυτής μέσα από τις παρατηρήσεις και
τα σχολιά του.

CONTENTS

ΠΡΟΛΟΓΟΣ .. 13

1 .Cloud Computing ... 14

1.1.1 What does the term of Cloud Computing mean ... 14

1.1.2 Characteristics of Cloud ... 14

1.2 Service models ... 16

1.2.1 Infrastructure as a service (IaaS) .. 16

1.2.2 Platform as a service (PaaS) .. 17

1.2.3 Software as a service (SaaS) .. 17

1.3 Cloud clients .. 18

1.3.1 Deployment models .. 19

1.4 Cloud computing types ... 19

1.4.1 Private cloud .. 19

1.4.2 Public cloud .. 19

1.4.3 Hybrid cloud ... 20

1.4.4 Community cloud ... 20

1.4.5 Distributed cloud ... 21

1.4.6 Multicloud .. 21

2. Architecture of Cloud .. 22

2.1 Cloud Architecture .. 22

2.1.1 Cloud engineering .. 22

2.1.2 Security and privacy .. 22

3. NFV Architecture [1] ... 24

3.1 Network Function Virtualization Components [4] .. 25

3.1.1 MANO Functional Blocks [2] ... 25

3.1.2 Hypervisor .. 26

3.1.3 Scheduling access with the hypervisor ... 26

3.1.4 Defining types of hypervisors in cloud computing ... 26

3.1.5 Hypervisor NFV architecture ... 27

3.2 ETSI RECOMMENDATION FOR HYPERVISOR .. 28

3.2.1 Equivalence .. 28

3.2.2 Resource Control ... 28

3.2.3 Efficiency .. 28

3.3 Hypervisor to VIM (Nf-Vi-H) Interface (OpenStack) .. 30

4. Architecture of OpenStack .. 33

4.1 Overview ... 33

4.1.2 Conceptual architecture .. 34

4.2 Induction to OpenStack components... 35

4.2.1 Horizon ... 35

4.2.2 Neutron .. 37

4.2.3 Off Compute Node Storage—Shared File System .. 40

4.2.4 Cloud Controller Nodes ... 43

4.2.5 OpenStack Object Storage (swift) ... 48

5. Description of Costs [7] ... 51

5.1 Direct or Directly Attributable Costs .. 51

5.1.1 Common costs.. 51

5.2 NFV and innovation in operations ... 51

5.2.1 Cost drivers for NFV ... 52

5.3 Six areas of cost saving enabled by NFV [6] .. 52

_Toc433712949

5.4 Comparison of NFV and Hardware Approach .. 56

5.5 COSTS .. 58

5.5.1 Fully Distributed Cost (FDC) [9] ... 58

5.5.2 Embedded Direct Cost (EDC) ... 58

5.5.3 Stand Alone Cost (SAC) .. 59

6. RESULTS ... 60

ABBREVIATIONS-ACRONYMS .. 61

REFERENCES .. 62

LIST OF FIGURES

Figure 1: Cloud Computing .. σελ. 14

Figure 2: Service Models of Cloud ... σελ. 16

Figure 3: Deployment Models .. σελ. 19

Figure 4: Cloud computing sample architecture ... σελ. 22

Figure 5: NFV Architecture ... σελ. 24

Figure 6: Network Functions Virtualization ... σελ. 25

Figure 7: OpenStack in NFV Arcitecture .. σελ. 29

Figure 8: OpenStack Architecture .. σελ. 35

Figure 9:Main NFV Cost drivers .. σελ.52

Figure 10: Traditional deployment process .. σελ. 53

Figure 11: NFV deployment process .. σελ. 53

Figure 12: Examples of lead times to upgrade Software .. σελ. 54

LIST OF TABLES

Πίνακας 1: OpeStack Services ... σελ. 33

ΠΡΟΛΟΓΟΣ

Η παρούσα Διπλωματική Εργασία συντάχθηκε στα πλαίσια του
μεταπτυχιακού προγράμματος σπουδών στο Διατμηματικό Τμήμα Οικονομική
και Διοίκηση Τηελεπικοινωνιακών Δικτύων, του Εθνικού Καποδιστριακού
Πανεπιστημίου Αθηνών, Αθήνα Οκτώβριος 2015.

OpenStack

14
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

1 .Cloud Computing

1.1.1 What does the term of Cloud Computing mean

Cloud computing [5] is a computing term or metaphor that evolved in the late

1990s, based on utility and consumption of computer resources. Cloud
computing involves application systems which are executed within the cloud
and operated through internet enabled devices. Purely cloud computing does
not rely on the use of cloud storage as it will be removed upon users
download action. Clouds can be classified as public, private and hybrid.

Figure 1: Cloud computing

1.1.2 Characteristics of Cloud

Cloud computing exhibits the following key characteristics: Agility improves
with users' ability to re-provision technological infrastructure resources.

Cost reductions claimed by cloud providers. A public-cloud delivery model
converts capital expenditure to operational expenditure. This purportedly
lowers barriers to entry, as infrastructure is typically provided by a third party
and does not need to be purchased for one-time or infrequent intensive
computing tasks. Pricing on a utility computing basis is fine-grained, with
usage-based options and fewer IT skills are required for implementation (in-
house

OpenStack

15
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Device and location independence enable users to access systems using a
web browser regardless of their location or what device they use (e.g., PC,
mobile phone). As infrastructure is off-site (typically provided by a third-party)
and accessed via the Internet, users can connect from anywhere.

Maintenance of cloud computing applications is easier, because they do not
need to be installed on each user's computer and can be accessed from
different places.

Multitenancy enables sharing of resources and costs across a large pool of
users thus allowing for:
- centralization of infrastructure in locations with lower costs (such as real
estate, electricity, etc.)
- peak-load capacity increases (users need not engineer for highest possible
load-levels)
- utilisation and efficiency improvements for systems that are often only 10-
20% utilised.

Performance is monitored, and consistent and loosely coupled architectures
are constructed using web services as the system interface.
Productivity may be increased when multiple users can work on the same
data simultaneously, rather than waiting for it to be saved and emailed. Time
may be saved as information does not need to be re-entered when fields are
matched, nor do users need to install application software upgrades to their
computer.

Reliability improves with the use of multiple redundant sites, which makes
well-designed cloud computing suitable for business continuity and disaster
recovery.

Scalability and elasticity via dynamic ("on-demand") provisioning of resources
on a fine-grained, self-service basis in near real-time without users having to
engineer for peak loads.

Security can improve due to centralization of data, increased security-focused
resources, etc., but concerns can persist about loss of control over certain
sensitive data, and the lack of security for stored kernels. Security is often as
good as or better than other traditional systems, in part because providers are
able to devote resources to solving security issues that many customers
cannot afford to tackle. However, the complexity of security is greatly
increased when data is distributed over a wider area or over a greater number
of devices, as well as in multi-tenant systems shared by unrelated users. In
addition, user access to security audit logs may be difficult or impossible.
Private cloud installations are in part motivated by users' desire to retain
control over the infrastructure and avoid losing control of information security.

The National Institute of Standards and Technology's definition of cloud
computing identifies "five essential characteristics":

On-demand self-service. A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed
automatically without requiring human interaction with each service provider.

Broad network access. Capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous

OpenStack

16
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

thin or thick client platforms (e.g., mobile phones, tablets, laptops, and
workstations).

Resource pooling. The provider's computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to
consumer demand.

Rapid elasticity. Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward commensurate
with demand. To the consumer, the capabilities available for provisioning
often appear unlimited and can be appropriated in any quantity at any time.

Measured service. Cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction
appropriate to the type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of the
utilized service.

1.2 Service models
Cloud computing providers offer their services according to several
fundamental models:

Figure 2: Service Models of Cloud

1.2.1 Infrastructure as a service (IaaS)

In the most basic cloud-service model & according to the IETF (Internet
Engineering Task Force), providers of IaaS offer computers – physical or

http://en.wikipedia.org/wiki/File:Cloud_computing_layers.png

OpenStack

17
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

(more often) virtual machines – and other resources. (A hypervisor, such
as Xen, Oracle VirtualBox, KVM, VMware ESX/ESXi, or Hyper-V runs the
virtual machines as guests. Pools of hypervisors within the cloud operational
support-system can support large numbers of virtual machines and the ability
to scale services up and down according to customers' varying requirements.)
IaaS clouds often offer additional resources such as a virtual-machine disk
image library, raw block storage, and file or object storage, firewalls, load
balancers, IP addresses, virtual local area networks (VLANs), and software
bundles. IaaS-cloud providers supply these resources on-demand from their
large pools installed in data centers. For wide-area connectivity, customers
can use either the Internet or carrier clouds (dedicated virtual private
networks).

To deploy their applications, cloud users install operating-system images and
their application software on the cloud infrastructure. In this model, the cloud
user patches and maintains the operating systems and the application
software. Cloud providers typically bill IaaS services on a utility computing
basis: cost reflects the amount of resources allocated and consumed.

1.2.2 Platform as a service (PaaS)

In the PaaS models, cloud providers deliver a computing platform, typically
including operating system, programming language execution environment,
database, and web server. Application developers can develop and run their
software solutions on a cloud platform without the cost and complexity of
buying and managing the underlying hardware and software layers. With
some PaaS offers like Microsoft Azure and Google App Engine, the
underlying computer and storage resources scale automatically to match
application demand so that the cloud user does not have to allocate resources
manually. The latter has also been proposed by an architecture aiming to
facilitate real-time in cloud environments. Even more specific application types
can be provided via PaaS, e.g., such as media encoding as provided by
services as bitcoding, transcoding cloud or media.io.

1.2.3 Software as a service (SaaS)

In the business model using software as a service (SaaS), users are provided
access to application software and databases. Cloud providers manage the
infrastructure and platforms that run the applications. SaaS is sometimes
referred to as "on-demand software" and is usually priced on a pay-per-use
basis or using a subscription fee.

In the SaaS model, cloud providers install and operate application software in
the cloud and cloud users access the software from cloud clients. Cloud users
do not manage the cloud infrastructure and platform where the application
runs. This eliminates the need to install and run the application on the cloud
user's own computers, which simplifies maintenance and support. Cloud
applications are different from other applications in their scalability—which
can be achieved by cloning tasks onto multiple virtual machines at run-time to
meet changing work demand. Load balancers distribute the work over the set

OpenStack

18
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

of virtual machines. This process is transparent to the cloud user, who sees
only a single access point. To accommodate a large number of cloud users,
cloud applications can be multitenant, that is, any machine serves more than
one cloud user organization.

The pricing model for SaaS applications is typically a monthly or yearly flat fee
per user, so price is scalable and adjustable if users are added or removed at
any point.

Proponents claim SaaS allows a business the potential to reduce IT
operational costs by outsourcing hardware and software maintenance and
support to the cloud provider. This enables the business to reallocate IT
operations costs away from hardware/software spending and personnel
expenses, towards meeting other goals. In addition, with applications hosted
centrally, updates can be released without the need for users to install new
software. One drawback of SaaS is that the users' data are stored on the
cloud provider's server. As a result, there could be unauthorized access to the
data. For this reason, users are increasingly adopting intelligent third-party
key management systems to help secure their data.

1.3 Cloud clients

Users access cloud computing using networked client devices, such
as desktop computers, laptops, tablets and smartphones. Some of these
devices – cloud clients – rely on cloud computing for all or a majority of their
applications so as to be essentially useless without it. Examples are thin
clients and the browser-based Chromebook. Many cloud applications do not
require specific software on the client and instead use a web browser to
interact with the cloud application. With Ajax and HTML5 these Web user
interfaces can achieve a similar, or even better, look and feel to native
applications. Some cloud applications, however, support specific client
software dedicated to these applications (e.g.,virtual desktop clients and most
email clients). Some legacy applications (line of business applications that
until now have been prevalent in thin client computing) are delivered via a
screen-sharing technology.

OpenStack

19
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

1.3.1 Deployment models

Figure 3: Deployment Models

1.4 Cloud computing types

1.4.1 Private cloud

Private cloud is cloud infrastructure operated solely for a single organization,
whether managed internally or by a third-party, and hosted either internally or
externally. Undertaking a private cloud project requires a significant level and
degree of engagement to virtualize the business environment, and requires
the organization to reevaluate decisions about existing resources. When done
right, it can improve business, but every step in the project raises security
issues that must be addressed to prevent serious vulnerabilities. Self-run data
centers are generally capital intensive. They have a significant physical
footprint, requiring allocations of space, hardware, and environmental
controls. These assets have to be refreshed periodically, resulting in
additional capital expenditures. They have attracted criticism because users
"still have to buy, build, and manage them" and thus do not benefit from less
hands-on management, essentially "lacking the economic model that makes
cloud computing such an intriguing concept".

1.4.2 Public cloud

A cloud is called a "public cloud" when the services are rendered over a
network that is open for public use. Public cloud services may be
free. Technically there may be little or no difference between public and
private cloud architecture, however, security consideration may be
substantially different for services (applications, storage, and other resources)
that are made available by a service provider for a public audience and when
communication is effected over a non-trusted network. Saasu is a large public
cloud. Generally, public cloud service providers like Amazon AWS, Microsoft
and Google own and operate the infrastructure at their data center and

http://en.wikipedia.org/wiki/File:Cloud_computing_types.svg

OpenStack

20
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

access is generally via the Internet. AWS and Microsoft also offer direct
connect services called "AWS Direct Connect" and "Azure ExpressRoute"
respectively, such connections require customers to purchase or lease a
private connection to a peering point offered by the cloud provider.

1.4.3 Hybrid cloud

Hybrid cloud is a composition of two or more clouds (private, community or
public) that remain distinct entities but are bound together, offering the
benefits of multiple deployment models. Hybrid cloud can also mean the
ability to connect collocation, managed and/or dedicated services with cloud
resources.

Gartner, Inc. defines a hybrid cloud service as a cloud computing service that
is composed of some combination of private, public and community cloud
services, from different service providers. A hybrid cloud service crosses
isolation and provider boundaries so that it can't be simply put in one category
of private, public, or community cloud service. It allows one to extend either
the capacity or the capability of a cloud service, by aggregation, integration or
customization with another cloud service.

Varied use cases for hybrid cloud composition exist. For example, an
organization may store sensitive client data in house on a private cloud
application, but interconnect that application to a business intelligence
application provided on a public cloud as a software service. This example of
hybrid cloud extends the capabilities of the enterprise to deliver a specific
business service through the addition of externally available public cloud
services. Hybrid cloud adoption depends on a number of factors such as data
security and compliance requirements, level of control needed over data, and
the applications an organization uses.

Another example of hybrid cloud is one where IT organizations use public
cloud computing resources to meet temporary capacity needs that cannot be
met by the private cloud. This capability enables hybrid clouds to employ
cloud bursting for scaling across clouds. Cloud bursting is an application
deployment model in which an application runs in a private cloud or data
center and "bursts" to a public cloud when the demand for computing capacity
increases. A primary advantage of cloud bursting and a hybrid cloud model is
that an organization only pays for extra compute resources when they are
needed. Cloud bursting enables data centers to create an in-house IT
infrastructure that supports average workloads, and use cloud resources from
public or private clouds, during spikes in processing demands.

The specialized model of hybrid cloud, which is built atop heterogeneous
hardware, is called "Cross-platform Hybrid Cloud". A cross-platform hybrid
cloud is usually powered by different CPU architectures, for example, x86-64
and ARM, underneath. Users can transparently deploy applications without
knowledge of the cloud's hardware diversity.This kind of cloud emerges from
the raise of ARM-based system-on-chip for server-class computing.

1.4.4 Community cloud

OpenStack

21
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Community cloud shares infrastructure between several organizations from a
specific community with common concerns (security, compliance, jurisdiction,
etc.), whether managed internally or by a third-party, and either hosted
internally or externally. The costs are spread over fewer users than a public
cloud (but more than a private cloud), so only some of the cost savings
potential of cloud computing are realized.

1.4.5 Distributed cloud

Cloud computing can also be provided by a distributed set of machines that
are running at different locations, while still connected to a single network or
hub service. Examples of this include distributed computing platforms such
as BOINC and Folding@Home. An interesting attempt in such direction is
Cloud@Home, aiming at implementing cloud computing provisioning model
on top of voluntarily shared resources [76]

Intercloud

The Intercloud is an interconnected global "cloud of clouds and an extension
of the Internet "network of networks" on which it is based. The focus is on
direct interoperability between public cloud service providers, more so than
between providers and consumers (as is the case for hybrid- and multi-cloud).

1.4.6 Multicloud

Multicloud is the use of multiple cloud computing services in a single
heterogeneous architecture to reduce reliance on single vendors, increase
flexibility through choice, mitigate against disasters, etc. It differs from hybrid
cloud in that it refers to multiple cloud services, rather than multiple
deployment modes (public, private, legacy).[83][84]

OpenStack

22
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

2. Architecture of Cloud

Figure 4: Cloud computing sample architecture

2.1 Cloud Architecture

Cloud architecture [8] , the systems architecture of the software
systems involved in the delivery of cloud computing, typically involves
multiple cloud components communicating with each other over a loose
coupling mechanism such as a messaging queue. Elastic provision implies
intelligence in the use of tight or loose coupling as applied to mechanisms
such as these and others.

2.1.1 Cloud engineering

Cloud engineering is the application of engineering disciplines to cloud
computing. It brings a systematic approach to the high-level concerns of
commercialization, standardization, and governance in conceiving,
developing, operating and maintaining cloud computing systems. It is a
multidisciplinary method encompassing contributions from diverse areas such
as systems, software, web, performance, information, security, platform, risk,
and quality engineering.

2.1.2 Security and privacy

Cloud computing poses privacy concerns because the service provider can
access the data that is on the cloud at any time. It could accidentally or
deliberately alter or even delete information. Many cloud providers can share
information with third parties if necessary for purposes of law and order even
without a warrant. That is permitted in their privacy policies which users have
to agree to before they start using cloud services. Solutions to privacy include
policy and legislation as well as end users' choices for how data is
stored. Users can encrypt data that is processed or stored within the cloud to
prevent unauthorized access.According to the Cloud Security Alliance, the top
three threats in the cloud are "Insecure Interfaces and API's", "Data Loss &

http://en.wikipedia.org/wiki/File:CloudComputingSampleArchitecture.svg

OpenStack

23
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Leakage", and "Hardware Failure" which accounted for 29%, 25% and 10% of
all cloud security outages respectively — together these form shared
technology vulnerabilities. In a cloud provider platform being shared by
different users there may be a possibility that information belonging to
different customers resides on same data server. Therefore Information
leakage may arise by mistake when information for one customer is given to
other.Additionally, Eugene Schultz, chief technology officer at Emagined
Security, said that hackers are spending substantial time and effort looking for
ways to penetrate the cloud. "There are some real Achilles' heels in the cloud
infrastructure that are making big holes for the bad guys to get into". Because
data from hundreds or thousands of companies can be stored on large cloud
servers, hackers can theoretically gain control of huge stores of information
through a single attack — a process he called "hyperjacking".

There is the problem of legal ownership of the data (If a user stores some
data in the cloud, can the cloud provider profit from it?). Many Terms of
Service agreements are silent on the question of ownership.

Physical control of the computer equipment (private cloud) is more secure
than having the equipment off site and under someone else's control (public
cloud). This delivers great incentive to public cloud computing service
providers to prioritize building and maintaining strong management of secure
services.Some small businesses that don't have expertise in IT security could
find that it's more secure for them to use a public cloud.

There is the risk that end users don't understand the issues involved when
signing on to a cloud service (persons sometimes don't read the many pages
of the terms of service agreement, and just click "Accept" without reading).
This is important now that cloud computing is becoming popular and required
for some services to work, for example for an intelligent personal
assistant (Apple's Siri or Google Now).

Fundamentally private cloud is seen as more secure with higher levels of
control for the owner, however public cloud is seen to be more flexible and
requires less time and money investment from the user.

OpenStack

24
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

3. NFV Architecture [1]

Figure 5: NFV Architecture

OpenStack

25
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

3.1 Network Function Virtualization Components [4]

Figure 6: Network Functions Virtualization

3.1.1 MANO Functional Blocks [2]

• NFV Orchestrator: – on-boarding of new Network Service (NS), VNF-FG and
VNF Packages – NS lifecycle management (including instantiation, scale-
out/in, performance measurements, event correlation, termination) – global
resource management, validation and authorization of NFVI resource
requests – policy management for NS instances

• VNF Manager: – lifecycle management of VNF instances – overall
coordination and adaptation role for configuration and event reporting
between NFVI and the E/NMS

OpenStack

26
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

• Virtualised Infrastructure Manager (VIM): – controlling and managing the
NFVI compute, storage and network resources, within one operator’s
infrastructure sub-domain – collection and forwarding of performance
measurements and events

3.1.2 Hypervisor

In virtualization technology, hypervisor is a software program that manages
multiple operating systems (or multiple instances of the same operating
system) on a single computer system. The hypervisor manages the
system's processor, memory, and other resources to allocate what each
operating system requires. Hypervisors are designed for a particular
processor architectureand may also be called virtualization managers.

A hypervisor is an operating system, which means that it knows how to act as
a traffic cop to make things happen in an orderly manner. The hypervisor sits
at the lowest levels of the hardware environment. Because in cloud computing
you need to support many different operating environments, the hypervisor
becomes an ideal delivery mechanism.

The hypervisor lets you show the same application on lots of systems without
having to physically copy that application onto each system. One twist:
Because of the hypervisor architecture, it can load any (or many) different
operating system as though it were just another application. Therefore, the
hypervisor is a very practical way of getting things virtualized quickly and
efficiently.

3.1.3 Scheduling access with the hypervisor

You should understand the nature of the hypervisor. It’s designed like a
mainframe OS rather than like the Windows operating system. The hypervisor
therefore schedules the amount of access that guest OSes have to everything
from the CPU; to memory; to disk I/O; and to any other I/O mechanisms. With
virtualization technology, you can set up the hypervisor to split the physical
computer’s resources. Resources can be split 50-50 or 80-20 between two
guest OSes, for example. Without the hypervisor, you simply can’t do that with
Windows.

The beauty of this arrangement is that the hypervisor does all the heavy
lifting. The guest operating system doesn’t care (or have any idea) that it’s
running in a virtual partition; it thinks that it has a computer all to itself.

3.1.4 Defining types of hypervisors in cloud computing

Different hypervisors support different aspects of the cloud. Hypervisors come
in several types:

Native hypervisors, which sit directly on the hardware platform are most likely
used to gain better performance for individual users.

http://www.webopedia.com/TERM/S/software.html
http://www.webopedia.com/TERM/O/operating_system.html
http://www.webopedia.com/TERM/C/computer_system.html
http://www.webopedia.com/TERM/P/processor.html
http://www.webopedia.com/TERM/M/memory.html
http://www.webopedia.com/TERM/A/architecture.html

OpenStack

27
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Embedded hypervisors are integrated into a processor on a separate chip.
Using this type of hypervisor is how a service provider gains performance
improvements.

Hosted hypervisors run as a distinct software layer above both the hardware
and the OS. This type of hypervisor is useful both in private and public clouds
to gain performance improvements.

3.1.5 Hypervisor NFV architecture

The Nf-Vi-H [1] is the interface between the hypervisor and the Virtualisation
Infrastructure Manager (VIM) . This interface serves multiple purposes below
is a description of each purpose:

1) The hypervisor sends monitoring information to the VIM, of the underlying
infrastructure. This is currently done through various vendor specific
packages. It is a requirement of the VIM to utilize the current vendor specific
packages. There may be a gap in this interface with respect to a common
standard API requirement in order for the VIM to be able to access various
different hypervisor schemes and extend the requirements of the interface.A
common standard hypervisor monitoring API has yet to be defined and
represents a gap. There are software packages available to implement across
different hypervisors. However research is needed and input from across NFV
working groups on the gaps with regard to a standard API,what information is
transferred (are all the metrics covered) and how the information is transferred
(CIM, SNMP, etc.).

2) The VIM is the sole hypervisor controller. All necessary commands,
configurations, alerts, policies, responses and updates go through this
interface. 5.2.1 Nature of the Interface The nature of this interface is an
informational model. There are informational models supporting the data
communication between the virtualisation layer and the virtualisation
infrastructure manager (VIM) in deployment today. Vmware, Citrix, Redhat,
Wind River System., Debian, CentOS all have a VIM. Openstack potentially
could be used to be the framework of a VIM that would utilize any VIM thru a
standard method. Currently there are software products on the market today
that interoperate with the various VIMs in the market place. It is a
recommendation that there is a standard, or standard opensource that can be
a VIM to interwork with multiple commercial VIMs in deployment today in
order to not re-write, re- create current VIMs. Below is a starting point for
discussion with regards to virtualisation, BIOS, hypervisors, firmware,
networking and hardware. Ultimately there are levels of Metrics, from high
level KQIs: (how long does it take to start up the system, how long does it
take to delete a system, etc.); all the way down to the hardware or compute
domain. Or alternatively from the compute domain, there are hardware
capabilities exposed into the software domain via registers, bios, OS, IPMI,
drivers, up thru the virtualisation domain, which runs algorithms sent into the
VIM for further calculations and from the VIM to the NFV Orchestrator for
additional calculations to get to the evaluation of KQIs.Information models are
used along the way to gather and communicate these metrics, results and

OpenStack

28
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

performance. The next section gives examples of data contained in an
information model, followed up by a section that gets into what the hardware
provides to software in order for the information model to get the data into
feature designed to calculate SLA performance criteria and requirements.

3.2 ETSI RECOMMENDATION FOR HYPERVISOR

ETSI has reported documents for the requirements of Hypervisors. Below we
introduce these requirements in general and those which are important for the
NFV architecture.

As regards with the definition of Hypervisor is:

• Equivalence: the hypervisor provides an environment for programs which is
essentially identical to the original machine.

• Resource control: the hypervisor is in complete control of system resources.

 • Efficiency: programs run on this (virtualised) environment show at worst
only minor decreases in speed.

3.2.1 Equivalence

The environment provided by a hypervisor is functionally equivalent to the
original machine environment. This implies that the same operating systems,
tools and application software can be used in the virtual environment. This
does not preclude para-virtualisation and other optimization techniques which
may require operating systems, tools and application changes.

3.2.2 Resource Control

The hypervisor domain mediates the resources of the computer domain to the
virtual machines of the software appliances. Hypervisors as developed for
public and enterprise cloud requirements place great value on the abstraction
they provide from the actual hardware such that they can achieve very high
levels of portability of virtual machines. In essence, the hypervisor can
emulate every piece of the hardware platform even in some cases, completely
emulating a CPU instruction set such that the VM believes it is running on a
completely different CPU architecture from the actual CPU on which it is
running. Such emulation, however, has a significant performance cost. The
number of actual CPU cycles needed to emulate virtual CPU cycle can be
large.

 3.2.3 Efficiency

 Even when not emulating a complete hardware architecture, there can still be
aspects of emulation which cause a significant performance hit. Typically,
computer architectures provide means to offload these aspects to hardware,
as so called virtualisation extensions, the set of operations that are offloaded

OpenStack

29
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

and how they are offloaded varies between different hardware architectures
and hypervisors as innovation improves virtualisation performance.

example: Intel VT and ARM virtualisation extensions minimise the
performance impact of virtualisation by offloading to hardware certain
frequently performed operations. There can be many virtual machines running
on the same host machine. The VMs on the same host may want to
communicate between each other and there will be a need to switch between
the VMs.

Figure 7:OpenStack in NFV Architecture

The NFV Infrastructure (NFVI) architecture is primarily concerned with
describing the Compute, Hypervisor and Infrastructure domains, and their
associated interfaces. The present document is primarily focused on
describing the hypervisor domain, which comprise the hypervisor which:

 • provides sufficient abstract of the hardware to provide portability of software
appliances;

• allocates the compute domain resources to the software appliance virtual
machines;

• provides a management interface to the orchestration and management
system which allows for the loading andmonitoring of virtual machines.

OpenStack

30
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

 3.3 Hypervisor to VIM (Nf-Vi-H) Interface (OpenStack)

 The Nf-Vi-H is the interface between the hypervisor and the Virtualisation
Infrastructure Manager (VIM). This interface serves multiple purposes below
is a description of each purpose:

1) The hypervisor sends monitoring information to the VIM, of the underlying
infrastructure. This is currently done through various vendor specific
packages. It is a requirement of the VIM to utilize the current vendor specific
packages. There may be a gap in this interface with respect to a common
standard API requirement in order for the VIM to be able to access various
different hypervisor schemes and extend the requirements of the interface.A
common standard hypervisor monitoring API has yet to be defined and
represents a gap. There are software packages available to implement across
different hypervisors. However research is needed and input from across NFV
working groups on the gaps with regard to a standard API,what information is
transferred (are all the metrics covered) and how the information is transferred
(CIM, SNMP, etc.).

2) The VIM is the sole hypervisor controller. All necessary commands,
configurations, alerts, policies, responses and updates go through this
interface. 5.2.1 Nature of the Interface The nature of this interface is an
informational model. There are informational models supporting the data
communication between the virtualisation layer and the virtualisation
infrastructure manager (VIM) in deployment today. Vmware, Citrix, Redhat,
Wind River System., Debian, CentOS all have a VIM. Openstack potentially
could be used to be the framework of a VIM that would utilize any VIM thru a
standard method. Currently there are software products on the market today
that interoperate with the various VIMs in the market place: As an example,
one such product is Hotlink: http://www.virtualizationpractice.com/hotlink-
supervisor-vcenter-forhyper-v-kvm-and-xenserver-15369/. It is a
recommendation that there is a standard, or standard opensource that can be
a VIM to interwork with multiple commercial VIMs in deployment today in
order to not re-write, re- create current VIMs. Below is a starting point for
discussion with regards to virtualisation, BIOS, hypervisors, firmware,
networking and hardware. Ultimately there are levels of Metrics, from high
level KQIs: (how long does it take to start up the system, how long does it
take to delete a system, etc.); all the way down to the hardware or compute
domain. Or alternatively from the compute domain, there are hardware
capabilities exposed into the software domain via registers, bios, OS, IPMI,
drivers, up thru the virtualisation domain, which runs algorithms sent into the
VIM for further calculations and from the VIM to the NFV Orchestrator for
additional calculations to get to the evaluation of KQIs.Information models are
used along the way to gather and communicate these metrics, results and
performance. The next section gives examples of data contained in an
information model, followed up by a section that gets into what the hardware
provides to software in order for the information model to get the data into
feature designed to calculate SLA performance criteria and requirements.
Neither of these two following sections are anywhere close to be exhaustive.
Thus, the need for an NFV WI to research what is required above and beyond
what is available today. 5.2.1.1 Example of MIB information

OpenStack

31
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

 There are over 1 000 parameters/variables/metrics that are used in
Virtualisation/ Cloud Service Assurance MIBs. Hypervisors and cloud
programs use IDs, Bios, IPMI, PCI, I/O Adapters/Drivers, memory
subsystems, etc. to get to all of the items of current concerns, including
information for failover, live migration, placement of the VMs/applications. It is
not clear that there is a gap at this point. The hypervisor team has indicated
the exposure of the hardware capabilities thru what is in the documentation
today (id info, impi, drivers, bios, pci, memory subsystems, etc.) has not
exposed any gaps. The hypervisor team is looking forward to working with the
Metrics WI, SWA, SEC and MANO for any gaps or requirements beyond what
is available today. The NFVINF hypervisor domain VIM is expected to
leverage available managers such as CloudStack, vCenter, Openstack,
others as packages. There are software packages available today that
implement this scheme, e.g. HotLink SuperVisor: editor's note to scrub for
trademarks. Below is an example of some of the components currently in a
MIB, informational model, that show some of the functions. MIBs are generally
broken up into 'functional' areas. Below are some examples. MIB
Functions/objects:

 • Resources (CPU, Memory, Storage, Adapters, Resource pools, Clusters): -
Ex: Adapters: PCI ID, I/O, memory, bus, model, status, capabilities.

 • Systems (Logs, NUMA, I/O, etc.).

• Events.

• VM management.

 • Obsolete/Legacy (compatibility with older versions).

 • Products (supported products (hw and sw)).

• Analytics: - Checks the incoming metrics for abnormalities in real time,
updates health scores, and generates alerts when necessary. - Collects
metrics and computes derived metrics. - Stores the collected metrics
statistics. (filesystem). - Stores all other data collected, including objects,
relationships, events,dynamic thresholds and alerts.

 • Multicore Processors: - Hyperthreading. - CPU Affinity's. - Power
management. Table 2 contains some details with regard to the VIM
information that is gathered. These tables are not complete. Research is
required to determine the performance characteristics and the gaps of what is
provided today and what is needed.

OpenStack Compute supports many hypervisors, which might make it difficult
for you to choose one. Most installations use only one hypervisor. However,
you can use the section called “ComputeFilter” and the section called
“ImagePropertiesFilter” to schedule different hypervisors within the same
installation. The following links help you choose a hypervisor.

The following hypervisors are supported:

OpenStack

32
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

KVM - Kernel-based Virtual Machine. The virtual disk formats that it supports
is inherited from QEMU since it uses a modified QEMU program to launch the
virtual machine. The supported formats include raw images, the qcow2, and
VMware formats.

LXC - Linux Containers (through libvirt), use to run Linux-based virtual
machines.

QEMU - Quick EMUlator, generally only used for development purposes.

UML - User Mode Linux, generally only used for development purposes.

VMware vSphere 4.1 update 1 and newer, runs VMware-based Linux and
Windows images through a connection with a vCenter server or directly with
an ESXi host.

Xen - XenServer, Xen Cloud Platform (XCP), use to run Linux or Windows
virtual machines. You must install the nova-compute service in a para-
virtualized VM.

Hyper-V - Server virtualization with Microsoft's Hyper-V, use to run Windows,
Linux, and FreeBSD virtual machines. Runs nova-computenatively on the
Windows virtualization platform.

Bare Metal - Not a hypervisor in the traditional sense, this driver provisions
physical hardware through pluggable sub-drivers (for example, PXE for image
deployment, and IPMI for power management).

OpenStack

33
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

4. Architecture of OpenStack

4.1 Overview

The OpenStack project [3] is an open source cloud computing platform that

supports all types of cloud environments. The project aims for simple
implementation, massive scalability, and a rich set of features. Cloud
computing experts from around the world contribute to the project.

OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a

variety of complemental services. Each service offers an application

programming interface (API) that facilitates this integration. The following

table provides a list of OpenStack services:

Table 1:OpenStack services

Table 1.1. OpenStack services

Service
Project
name

Description

Dashboard Horizon

Provides a web-based self-service portal to
interact with underlying OpenStack services,
such as launching an instance, assigning IP
addresses and configuring access controls.

Compute Nova

Manages the lifecycle of compute instances in an
OpenStack environment. Responsibilities include
spawning, scheduling and decommissioning of
virtual machines on demand.

Networking Neutron

Enables Network-Connectivity-as-a-Service for
other OpenStack services, such as OpenStack
Compute. Provides an API for users to define
networks and the attachments into them. Has a
pluggable architecture that supports many
popular networking vendors and technologies.

Storage

Object

Storage

Swift

Stores and retrieves arbitrary unstructured data

objects via a RESTful, HTTP based API. It is

highly fault tolerant with its data replication and
scale out architecture. Its implementation is not
like a file server with mountable directories.

Block Storage Cinder

Provides persistent block storage to running
instances. Its pluggable driver architecture

http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html

OpenStack

34
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Table 1.1. OpenStack services

Service
Project
name

Description

facilitates the creation and management of block
storage devices.

Shared services

Identity

service

Keystone

Provides an authentication and authorization
service for other OpenStack services. Provides a
catalog of endpoints for all OpenStack services.

Image

Service

Glance

Stores and retrieves virtual machine disk images.
OpenStack Compute makes use of this during
instance provisioning.

Telemetry Ceilometer

Monitors and meters the OpenStack cloud for
billing, benchmarking, scalability, and statistical
purposes.

Higher-level services

Orchestration Heat

Orchestrates multiple composite cloud
applications by using either the

native HOTtemplate format or the AWS

CloudFormation template format, through both an
OpenStack-native REST API and a
CloudFormation-compatible Query API.

Database

Service

Trove

Provides scalable and reliable Cloud Database-
as-a-Service functionality for both relational and
non-relational database engines.

This guide describes how to deploy these services in a functional test
environment and, by example, teaches you how to build a production
environment. Realistically, you would use automation tools such as Ansible,
Chef, and Puppet to deploy and manage a production environment.

4.1.2 Conceptual architecture

Launching a virtual machine or instance involves many interactions among
several services. The following diagram provides the conceptual architecture
of a typical OpenStack environment.

http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html

OpenStack

35
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Figure 8: OpenStack Arcitecture

4.2 Induction to OpenStack components

The present chapter represents with more analytics the components of
OpenStack. The role of each component, the interaction with each other and
the functions they implement.

4.2.1 Horizon

Horizon is the canonical implementation of OpenStack’s Dashboard, which
provides a web based user interface to OpenStack services including Nova,
Swift, Keystone, etc.

OpenStack

36
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Horizon holds several key values at the core of its design and architecture:

Core Support: Out-of-the-box support for all core OpenStack projects.

Extensible: Anyone can add a new component as a “first-class citizen”.

Manageable: The core codebase should be simple and easy-to-navigate.

Consistent: Visual and interaction paradigms are maintained throughout.

Stable: A reliable API with an emphasis on backwards-compatibility.

Usable: Providing an awesome interface that people want to use.

Core Support

Horizon ships with three central dashboards, a “User Dashboard”, a “System
Dashboard”, and a “Settings” dashboard. Between these three they cover the
core OpenStack applications and deliver on Core Support.

The Horizon application also ships with a set of API abstractions for the core
OpenStack projects in order to provide a consistent, stable set of reusable
methods for developers. Using these abstractions, developers working on
Horizon don’t need to be intimately familiar with the APIs of each OpenStack
project.

Extensible

A Horizon dashboard application is based around the Dashboard class that
provides a consistent API and set of capabilities for both core OpenStack
dashboard apps shipped with Horizon and equally for third-party apps.
The Dashboard class is treated as a top-level navigation item.

Should a developer wish to provide functionality within an existing dashboard
(e.g. adding a monitoring panel to the user dashboard) the simple registration
pattern makes it possible to write an app which hooks into other dashboards
just as easily as creating a new dashboard. All you have to do is import the
dashboard you wish to modify.

Manageable

Within the application, there is a simple method for registering a Panel (sub-
navigation items). Each panel contains the necessary logic (views, forms,
tests, etc.) for that interface. This granular breakdown prevents files (such
as api.py) from becoming thousands of lines long and makes code easy to
find by correlating it directly to the navigation.

Consistent

By providing the necessary core classes to build from, as well as a solid set of
reusable templates and additional tools (base form classes, base widget
classes, template tags, and perhaps even class-based views) we can
maintain consistency across applications.

Stable

By architecting around these core classes and reusable components we
create an implicit contract that changes to these components will be made in
the most backwards-compatible ways whenever possible.

http://docs.openstack.org/developer/horizon/ref/horizon.html#horizon.Dashboard
http://docs.openstack.org/developer/horizon/ref/horizon.html#horizon.Dashboard
http://docs.openstack.org/developer/horizon/ref/horizon.html#horizon.Panel

OpenStack

37
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Usable

Ultimately that’s up to each and every developer that touches the code, but if
we get all the other goals out of the way then we are free to focus on the best
possible experience.

4.2.2 Neutron

Management Network

A management network (a separate network for use by your cloud operators)
typically consists of a separate switch and separate NICs (network interface
cards), and is a recommended option. This segregation prevents system
administration and the monitoring of system access from being disrupted by
traffic generated by guests. Consider creating other private networks for
communication between internal components of OpenStack, such as the
message queue and OpenStack Compute. Using a virtual local area network
(VLAN) works well for these scenarios because it provides a method for
creating multiple virtual networks on a physical network.

Public Addressing Options

 There are two main types of IP addresses for guest virtual machines: fixed
IPs and floating IPs. Fixed IPs are assigned to instances on boot, whereas
floating IP addresses can change their association between instances by
action of the user. Both types of IP addresses can be either public or private,
depending on your use case. Fixed IP addresses are required, whereas it is
possible to run OpenStack without floating IPs. One of the most common use
cases for floating IPs is to provide public IP addresses to a private cloud,
where there are a limited number of IP addresses available. Another is for a
public cloud user to have a "static" IP address that can be reassigned when
an instance is upgraded or moved. Fixed IP addresses can be private for
private clouds, or public for public clouds. When an instance terminates, its
fixed IP is lost. It is worth noting that newer users of cloud computing may find
their ephemeral nature frustrating

IP Address Planning

An OpenStack installation can potentially have many subnets (ranges of IP
addresses) and different types of services in each. An IP address plan can
assist with a shared understanding of network partition purposes and
scalability. Control services can have public and private IP addresses, and as
noted above, there are a couple of options for an instance's public addresses.
An IP address plan might be broken down into the following sections:

Subnet router

 Packets leaving the subnet go via this address, which could be a dedicated
router or a nova-network service.

Control services public interfaces

OpenStack

38
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

 Public access to swift-proxy, nova-api, glance-api, and horizon come to these
addresses, which could be on one side of a load balancer or pointing at
individual machines.

Object Storage cluster internal communications

Traffic among object/account/container servers and between these and the
proxy server's internal interface uses this private network.

Compute and storage communications

If ephemeral or block storage is external to the compute node, this network is
used.

 Out-of-band remote management

If a dedicated remote access controller chip is included in servers, often these
are on a separate network. In-band remote management Often, an extra
(such as 1 GB) interface on compute or storage nodes is used for system
administrators or monitoring tools to access the host instead of going through
the public interface.

Spare space for future growth

 Adding more public-facing control services or guest instance IPs should
always be part of your plan.

For example, take a deployment that has both OpenStack Compute and
Object Storage, with private ranges 172.22.42.0/24 and 172.22.87.0/26
available. One way to segregate the space might be as follows:

172.22.42.0/24:

 172.22.42.1 - 172.22.42.3 - subnet routers

 172.22.42.4 - 172.22.42.20 - spare for networks

172.22.42.21 - 172.22.42.104 - Compute node remote access controllers (inc
spare) 172.22.42.105 - 172.22.42.188 - Compute node management
interfaces (inc spare) 172.22.42.189 - 172.22.42.208 - Swift proxy remote
access controllers (inc spare) 172.22.42.209 - 172.22.42.228 - Swift proxy
management interfaces (inc spare) 172.22.42.229 - 172.22.42.252 - Swift
storage servers remote access controllers (inc spare) 172.22.42.253 -
172.22.42.254 – spare

172.22.87.0/26:

 172.22.87.1 - 172.22.87.3 - subnet routers

172.22.87.4 - 172.22.87.24 - Swift proxy server internal interfaces (inc spare)

 172.22.87.25 - 172.22.87.63 - Swift object server internal interfaces (inc
spare)

A similar approach can be taken with public IP addresses, taking note that
large, flat ranges are preferred for use with guest instance IPs. Take into
account that for some OpenStack networking options, a public IP address in
the range of a guest instance public IP address is assigned to the nova-
compute host.

OpenStack

39
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

OpenStack Compute with nova-network provides predefined network
deployment models, each with its own strengths and weaknesses. The
selection of a network manager changes your network topology, so the choice
should be made carefully. You also have a choice between the triedand-true
legacy nova-network settings or the neutron project for OpenStack
Networking. Both offer networking for launched instances with different
implementations and requirements. For OpenStack Networking with the
neutron project, typical configurations are documented with the idea that any
setup you can configure with real hardware you can re-create with a software-
defined equivalent. Each tenant can contain typical network elements such as
routers, and services such as DHCP.

VLAN Configuration Within OpenStack VMs VLAN configuration can be as
simple or as complicated as desired. The use of VLANs has the benefit of
allowing each project its own subnet and broadcast segregation from other
projects. To allow OpenStack to efficiently use VLANs, you must allocate a
VLAN range (one for each project) and turn each compute node switch port
into a trunk port. For example, if you estimate that your cloud must support a
maximum of 100 projects, pick a free VLAN range that your network
infrastructure is currently not using (such as VLAN 200–299). You must
configure OpenStack with this range and also configure your switch ports to
allow VLAN traffic from that range.

Multi-NIC Provisioning OpenStack Networking with neutron and OpenStack
Compute with nova-network have the ability to assign multiple NICs to
instances. For nova-network this can be done on a per-request basis, with
each additional NIC using up an entire subnet or VLAN, reducing the total
number of supported projects. Multi-Host and Single-Host Networking The
nova-network service has the ability to operate in a multi-host or single-host
mode. Multi-host is when each compute node runs a copy of nova-network
and the instances on that compute node use the compute node as a gateway
to the Internet. The compute nodes also host the floating IPs and security
groups for instances on that node. Single-host is when a central server—for
example, the cloud controller—runs the nova-network service. All compute
nodes forward traffic from the instances to the cloud controller. The cloud
controller then forwards traffic to the Internet. The cloud controller hosts the
floating IPs and security groups for all instances on all compute nodes in the
cloud. There are benefits to both modes. Single-node has the downside of a
single point of failure. If the cloud controller is not available, instances cannot
communicate on the network. This is not true with multi-host, but multi-host
requires that each compute node has a public IP address to communicate on
the Internet. If you are not able to obtain a significant block of public IP
addresses, multi-host might not be an option. OpenStack, like any network
application, has a number of standard considerations to apply, such as NTP
and DNS.

NTP

OpenStack

40
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Time synchronization is a critical element to ensure continued operation of
OpenStack components. Correct time is necessary to avoid errors in instance
scheduling, replication of objects in the object store, and even matching log
timestamps for debugging. All servers running OpenStack components should
be able to access an appropriate NTP server. You may decide to set up one
locally or use the public pools available from the Network Time Protocol
project.

DNS

OpenStack does not currently provide DNS services, aside from the dnsmasq
daemon, which resides on nova-network hosts. You could consider providing
a dynamic DNS service to allow instances to update a DNS entry with new IP
addresses. You can also consider making a generic forward and reverse DNS
mapping for instances' IP addresses, such as vm-203-0-113-
123.example.com.

Instance Storage Solutions
 As part of the procurement for a compute cluster, you must specify some
storage for the disk on which the instantiated instance runs. There are three
main approaches to providing this temporary-style storage, and it is important
to understand the implications of the choice. They are:

• Off compute node storage—shared file system

• On compute node storage—shared file system

• On compute node storage—nonshared file system In general, the questions
you should ask when selecting storage are as follows:

• What is the platter count you can achieve? •

 Do more spindles result in better I/O despite network access?

 • Which one results in the best cost-performance scenario you're aiming for?

 • How do you manage the storage operationally? Many operators use
separate compute and storage hosts. Compute services and storage services
have different requirements, and compute hosts typically require more CPU
and RAM than storage hosts. Therefore, for a fixed budget, it makes sense to
have different configurations for your compute nodes and your storage nodes.
Compute nodes will be invested in CPU and RAM, and storage nodes will be
invested in block storage.

However, if you are more restricted in the number of physical hosts you have
available for creating your cloud and you want to be able to dedicate as many
of your hosts as possible to running instances, it makes sense to run compute
and storage on the same machines. We'll discuss the three main approaches
to instance storage in the next few sections.

4.2.3 Off Compute Node Storage—Shared File System

 In this option, the disks storing the running instances are hosted in servers
outside of the compute nodes. If you use separate compute and storage
hosts, you can treat your compute hosts as "stateless." As long as you don't

OpenStack

41
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

have any instances currently running on a compute host, you can take it
offline or wipe it completely without having any effect on the rest of your cloud.
This simplifies maintenance for the compute hosts. There are several
advantages to this approach:

 • If a compute node fails, instances are usually easily recoverable.

• Running a dedicated storage system can be operationally simpler.

 • You can scale to any number of spindles.

• It may be possible to share the external storage for other purposes. The
main downsides to this approach are:

• Depending on design, heavy I/O usage from some instances can affect
unrelated instances. • Use of the network can decrease performance

On Compute Node Storage—Shared File System

 In this option, each compute node is specified with a significant amount of
disk space, but a distributed file system ties the disks from each compute
node into a single mount. The main advantage of this option is that it scales to
external storage when you require additional storage. However, this option
has several downsides:

• Running a distributed file system can make you lose your data locality
compared with nonshared storage.

• Recovery of instances is complicated by depending on multiple hosts.

 • The chassis size of the compute node can limit the number of spindles able
to be used in a compute node.

• Use of the network can decrease performance.

On Compute Node Storage—Non shared File System

 In this option, each compute node is specified with enough disks to store the
instances it hosts. There are two main reasons why this is a good idea:

 • Heavy I/O usage on one compute node does not affect instances on other
compute nodes. • Direct I/O access can increase performance. This has
several downsides:

• If a compute node fails, the instances running on that node are lost.

 • The chassis size of the compute node can limit the number of spindles able
to be used in a compute node.

 • Migrations of instances from one node to another are more complicated and
rely on features that may not continue to be developed.

• If additional storage is required, this option does not scale. Running a shared
file system on a storage system apart from the computes nodes is ideal for
clouds where reliability and scalability are the most important factors. Running
a shared file system on the compute nodes themselves may be best in a
scenario where you have to deploy to preexisting servers for which you have
little to no control over their specifications. Running a non shared file system
on the compute nodes themselves is a good option for clouds with high I/O

OpenStack

42
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

requirements and low concern for reliability. Issues with Live Migration We
consider live migration an integral part of the operations of the cloud. This
feature provides the ability to seamlessly move instances from one physical
host to another, a necessity for performing upgrades that require reboots of
the compute hosts, but only works well with shared storage. Live migration
can also be done with non shared storage, using a feature known as KVM live
block migration. While an earlier implementation of block-based migration in
KVM and QEMU was considered unreliable, there is a newer, more reliable
implementation of block-based live migration as of QEMU 1.4 and libvirt 1.0.2
that is also compatible with OpenStack. However, none of the authors of this
guide have first-hand experience using live block migration.

Choice of File System If you want to support shared-storage live migration,
you need to configure a distributed file system. Possible options include:

• NFS (default for Linux)

• GlusterFS

• MooseFS

• Lustre

 We've seen deployments with all, and recommend that you choose the one
you are most familiar with operating. If you are not familiar with any of these,
choose NFS, as it is the easiest to set up and there is extensive community
knowledge about it.

Overcommitting OpenStack allows you to overcommit CPU and RAM on
compute nodes. This allows you to increase the number of instances you can
have running on your cloud, at the cost of reducing the performance of the
instances. OpenStack Compute uses the following ratios by default:

 • CPU allocation ratio: 16:1

• RAM allocation ratio: 1.5:1

The default CPU allocation ratio of 16:1 means that the scheduler allocates up
to 16 virtual cores per physical core. For example, if a physical node has 12
cores, the scheduler sees 192 available virtual cores. With typical flavor
definitions of 4 virtual cores per instance, this ratio would provide 48 instances
on a physical node. The formula for the number of virtual instances on a
compute node is (OR*PC)/VC, where:

OR CPU overcommit ratio (virtual cores per physical core)

 PC Number of physical cores

 VC Number of virtual cores per instance

Similarly, the default RAM allocation ratio of 1.5:1 means that the scheduler
allocates instances to a physical node as long as the total amount of RAM
associated with the instances is less than 1.5 times the amount of RAM
available on the physical node. For example, if a physical node has 48 GB of
RAM, the scheduler allocates instances to that node until the sum of the RAM
associated with the instances reaches 72 GB (such as nine instances, in the
case where each instance has 8 GB of RAM).

OpenStack

43
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Scaling

Determining the scalability of your cloud and how to improve it is an exercise
with many variables to balance. No one solution meets everyone's scalability
goals. However, it is helpful to track a number of metrics. Since you can
define virtual hardware templates, called "flavors" in OpenStack, you can start
to make scaling decisions based on the flavors you'll provide. These
templates define sizes for memory in RAM, root disk size, amount of
ephemeral data disk space available, and number of cores for starters.

The starting point for most is the core count of your cloud. By applying some
ratios, you can gather information about:

 • The number of virtual machines (VMs) you expect to run, ((overcommit
fraction × cores) / virtual cores per instance)

• How much storage is required (flavor disk size × number of instances) You
can use these ratios to determine how much additional infrastructure you
need to support your cloud. Here is an example using the ratios for gathering
scalability information for the number of VMs expected as well as the storage
needed. The following numbers support (200 / 2) × 16 = 1600 VM instances
and require 80 TB of storage for /var/lib/nova/instances:

 • 200 physical cores.

• Most instances are size m1.medium (two virtual cores, 50 GB of storage)

. • Default CPU overcommit ratio (cpu_allocation_ratio in nova.conf) of 16:1.
However, you need more than the core count alone to estimate the load that
the API services, database servers, and queue servers are likely to
encounter. You must also consider the usage patterns of your cloud. As a
specific example, compare a cloud that supports a managed webhosting
platform with one running integration tests for a development project that
creates one VM per code commit. In the former, the heavy work of creating a
VM happens only every few months, whereas the latter puts constant heavy
load on the cloud controller. You must consider your average VM lifetime, as
a larger number generally means less load on the cloud controller.

Aside from the creation and termination of VMs, you must consider the impact
of users accessing the service—particularly on nova-api and its associated
database. Listing instances garners a great deal of information and, given the
frequency with which users run this operation, a cloud with a large number of
users can increase the load significantly. This can occur even without their
knowledge—leaving the OpenStack dashboard instances tab open in the
browser refreshes the list of VMs every 30 seconds. After you consider these
factors, you can determine how many cloud controller cores you require. A
typical eight core, 8 GB of RAM server is sufficient for up to a rack of compute
nodes — given the above caveats. You must also consider key hardware
specifications for the performance of user VMs, as well as budget and
performance needs, including storage performance (spindles/core), memory
availability (RAM/core), network bandwidth (Gbps/core), and overall CPU
performance (CPU/core).

4.2.4 Cloud Controller Nodes

OpenStack

44
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

You can facilitate the horizontal expansion of your cloud by adding nodes.
Adding compute nodes is straightforward—they are easily picked up by the
existing installation. However, you must consider some important points when
you design your cluster to be highly available. Recall that a cloud controller
node runs several different services. You can install services that
communicate only using the message queue internally—nova-scheduler and
nova-console—on a new server for expansion. However, other integral parts
require more care. You should load balance user-facing services such as
dashboard, nova-api, or the Object Storage proxy. Use any standard HTTP
load-balancing method (DNS round robin, hardware load balancer, or
software such as Pound or HAProxy). One caveat with dashboard is the VNC
proxy, which uses the WebSocket protocol—something that an L7 load
balancer might struggle with. See also Horizon session storage. You can
configure some services, such as nova-api and glance-api, to use multiple
processes by changing a flag in their configuration file—allowing them to
share work between multiple cores on the one machine.

Segregating Your Cloud When you want to offer users different regions to
provide legal considerations for data storage, redundancy across earthquake
fault lines, or for low-latency API calls, you segregate your cloud. Use one of
the following OpenStack methods to segregate your cloud: cells, regions,
availability zones, or host aggregates. Each method provides different
functionality and can be best divided into two groups:

 • Cells and regions, which segregate an entire cloud and result in running
separate Compute deployments.

• Availability zones and host aggregates, which merely divide a single
Compute deployment.

Cells and Regions

OpenStack Compute cells are designed to allow running the cloud in a
distributed fashion without having to use more complicated technologies, or
be invasive to existing nova installations. Hosts in a cloud are partitioned into
groups called cells. Cells are configured in a tree. The top-level cell ("API
cell") has a host that runs the nova-api service, but no nova-compute
services. Each child cell runs all of the other typical nova-* services found in a
regular installation, except for the nova-api service. Each cell has its own
message queue and database service and also runs nova-cells, which
manages the communication between the API cell and child cells. This allows
for a single API server being used to control access to multiple cloud
installations. Introducing a second level of scheduling (the cell selection), in
addition to the regular nova-scheduler selection of hosts, provides greater
flexibility to control where virtual machines are run. Unlike having a single API
endpoint, regions have a separate API endpoint per installation, allowing for a
more discrete separation. Users wanting to run instances across sites have to
explicitly select a region. However, the additional complexity of a running a
new service is not required. The OpenStack dashboard (horizon) can be
configured to use multiple regions. This can be configured through the
AVAILABLE_REGIONS parameter.

Availability Zones and Host Aggregates

OpenStack

45
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

 You can use availability zones, host aggregates, or both to partition a nova
deployment. Availability zones are implemented through and configured in a
similar way to host aggregates.

Availability zone

This enables you to arrange OpenStack compute hosts into logical groups
and provides a form of physical isolation and redundancy from other
availability zones, such as by using a separate power supply or network
equipment. You define the availability zone in which a specified compute host
resides locally on each server. An availability zone is commonly used to
identify a set of servers that have a common attribute. For instance, if some of
the racks in your data center are on a separate power source, you can put
servers in those racks in their own availability zone. Availability zones can
also help separate different classes of hardware. When users provision
resources, they can specify from which availability zone they want their
instance to be built. This allows cloud consumers to ensure that their
application resources are spread across disparate machines to achieve high
availability in the event of hardware failure.

Host aggregates zone

 This enables you to partition OpenStack Compute deployments into logical
groups for load balancing and instance distribution. You can use host
aggregates to further partition an availability zone. For example, you might
use host aggregates to partition an availability zone into groups of hosts that
either share common resources, such as storage and network, or have a
special property, such as trusted computing hardware. A common use of host
aggregates is to provide information for use with the nova-scheduler. For
example, you might use a host aggregate to group a set of hosts that share
specific flavors or images. The general case for this is setting key-value pairs
in the aggregate metadata and matching key-value pairs in flavor's
extra_specs metadata. The AggregateInstanceExtraSpecsFilter in the filter
scheduler will enforce that instances be scheduled only on hosts in
aggregates that define the same key to the same value. An advanced use of
this general concept allows different flavor types to run with different CPU and
RAM allocation ratios so that high-intensity computing loads and low-intensity
development and testing systems can share the same cloud without either
starving the high-use systems or wasting resources on low-utilization
systems. This works by setting metadata in your host aggregates and
matching extra_specs in your flavor types. The first step is setting the
aggregate metadata keys cpu_allocation_ratio and ram_allocation_ratio to a
floating-point value. The filter schedulers AggregateCoreFilter and
AggregateRamFilter will use those values rather than the global defaults in
nova.conf when scheduling to hosts in the aggregate. It is important to be
cautious when using this feature, since each host can be in multiple
aggregates but should have only one allocation ratio for each resources. It is
up to you to avoid putting a host in multiple aggregates that define different
values for the same resource. This is the first half of the equation. To get
flavor types that are guaranteed a particular ratio, you must set the
extra_specs in the flavor type to the key-value pair you want to match in the
aggregate. For example, if you define extra_specs cpu_allocation_ratio to

OpenStack

46
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

"1.0", then instances of that type will run in aggregates only where the
metadata key cpu_allocation_ratio is also defined as "1.0." In practice, it is
better to define an additional key-value pair in the aggregate metadata to
match on rather than match directly on cpu_allocation_ratio or
core_allocation_ratio. This allows better abstraction.

For example, by defining a key overcommit and setting a value of "high,"
"medium," or "low," you could then tune the numeric allocation ratios in the
aggregates without also needing to change all flavor types relating to them.

Scalable Hardware

 While several resources already exist to help with deploying and installing
OpenStack, it's very important to make sure that you have your deployment
planned out ahead of time. This guide presumes that you have at least set
aside a rack for the OpenStack cloud but also offers suggestions for when
and what to scale.

Hardware Procurement

“The Cloud” has been described as a volatile environment where servers can
be created and terminated at will. While this may be true, it does not mean
that your servers must be volatile. Ensuring that your cloud’s hardware is
stable and configured correctly means that your cloud environment remains
up and running. Basically, put effort into creating a stable hardware
environment so that you can host a cloud that users may treat as unstable
and volatile. OpenStack can be deployed on any hardware supported by an
OpenStack-compatible Linux distribution. Hardware does not have to be
consistent, but it should at least have the same type of CPU to support
instance migration. The typical hardware recommended for use with
OpenStack is the standard value-for-money offerings that most hardware
vendors stock. It should be straightforward to divide your procurement into
building blocks such as "compute," "object storage," and "cloud controller,"
and request as many of these as you need. Alternatively, should you be
unable to spend more, if you have existing servers—provided they meet your
performance requirements and virtualization technology—they are quite likely
to be able to support OpenStack.

Capacity Planning
OpenStack is designed to increase in size in a straightforward manner. Taking
into account the considerations that we've mentioned in this chapter—
particularly on the sizing of the cloud controller—it should be possible to
procure additional compute or object storage nodes as needed. New nodes
do not need to be the same specification, or even vendor, as existing nodes.
For compute nodes, nova-scheduler will take care of differences in sizing
having to do with core count and RAM amounts; however, you should
consider that the user experience changes with differing CPU speeds. When
adding object storage nodes, a weight should be specified that reflects the
capability of the node.

Ephemeral Storage If you deploy only the OpenStack Compute Service
(nova), your users do not have access to any form of persistent storage by
default. The disks associated with VMs are "ephemeral," meaning that (from

OpenStack

47
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

the user's point of view) they effectively disappear when a virtual machine is
terminated. Persistent Storage Persistent storage means that the storage
resource outlives any other resource and is always available, regardless of
the state of a running instance. Today, OpenStack clouds explicitly support
two types of persistent storage: object storage and block storage. Object
Storage With object storage, users access binary objects through a REST
API. You may be familiar with Amazon S3, which is a well-known example of
an object storage system. Object storage is implemented in OpenStack by the
OpenStack Object Storage (swift) project. If your intended users need to
archive or manage large datasets, you want to provide them with object
storage. In addition, OpenStack can store your virtual machine (VM) images
inside of an object storage system, as an alternative to storing the images on
a file system. OpenStack Ops Guide July 27, 2015 62 OpenStack Object
Storage provides a highly scalable, highly available storage solution by
relaxing some of the constraints of traditional file systems. In designing and
procuring for such a cluster, it is important to understand some key concepts
about its operation. Essentially, this type of storage is built on the idea that all
storage hardware fails, at every level, at some point. Infrequently encountered
failures that would hamstring other storage systems, such as issues taking
down RAID cards or entire servers, are handled gracefully with OpenStack
Object Storage. A good document describing the Object Storage architecture
is found within the developer documentation—read this first. Once you
understand the architecture, you should know what a proxy server does and
how zones work. However, some important points are often missed at first
glance. When designing your cluster, you must consider durability and
availability. Understand that the predominant source of these is the spread
and placement of your data, rather than the reliability of the hardware.
Consider the default value of the number of replicas, which is three. This
means that before an object is marked as having been written, at least two
copies exist—in case a single server fails to write, the third copy may or may
not yet exist when the write operation initially returns. Altering this number
increases the robustness of your data, but reduces the amount of storage you
have available. Next, look at the placement of your servers. Consider
spreading them widely throughout your data center's network and power-
failure zones. Is a zone a rack, a server, or a disk? Object Storage's network
patterns might seem unfamiliar at first. Consider these main traffic flows: •
Among object, container, and account servers • Between those servers and
the proxies • Between the proxies and your users Object Storage is very
"chatty" among servers hosting data—even a small cluster does
megabytes/second of traffic, which is predominantly, “Do you have the
object?”/“Yes I have the object!” Of course, if the answer to the
aforementioned question is negative or the request times out, replication of
the object begins. Consider the scenario where an entire server fails and 24
TB of data needs to be transferred "immediately" to remain at three copies—
this can put significant load on the network. OpenStack Ops Guide July 27,
2015 63 Another fact that's often forgotten is that when a new file is being
uploaded, the proxy server must write out as many streams as there are
replicas— giving a multiple of network traffic. For a three-replica cluster, 10
Gbps in means 30 Gbps out. Combining this with the previous high bandwidth
demands of replication is what results in the recommendation that your private

OpenStack

48
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

network be of significantly higher bandwidth than your public need be. Oh,
and OpenStack Object Storage communicates internally with unencrypted,
unauthenticated rsync for performance—you do want the private network to
be private. The remaining point on bandwidth is the public-facing portion. The
swift-proxy service is stateless, which means that you can easily add more
and use HTTP load-balancing methods to share bandwidth and availability
between them. More proxies means more bandwidth, if your storage can keep
up. Block Storage Block storage (sometimes referred to as volume storage)
provides users with access to block-storage devices. Users interact with block
storage by attaching volumes to their running VM instances. These volumes
are persistent: they can be detached from one instance and re-attached to
another, and the data remains intact. Block storage is implemented in
OpenStack by the OpenStack Block Storage (cinder) project, which supports
multiple back ends in the form of drivers. Your choice of a storage back end
must be supported by a Block Storage driver. Most block storage drivers allow
the instance to have direct access to the underlying storage hardware's block
device. This helps increase the overall read/write IO. However, support for
utilizing files as volumes is also well established, with full support for NFS,
GlusterFS and others. These drivers work a little differently than a traditional
"block" storage driver. On an NFS or GlusterFS file system, a single file is
created and then mapped as a "virtual" volume into the instance. This
mapping/translation is similar to how OpenStack utilizes QEMU's file-based
virtual machines stored in /var/lib/nova/instances.

OpenStack Storage Concepts
Choosing Storage Back Ends Users will indicate different needs for their cloud
use cases. Some may need fast access to many objects that do not change
often, or want to set a time-to-live (TTL) value on a file. Others may access
only storage that is mounted with the file system itself, but want it to be
replicated instantly when starting a new instance. For other systems,
ephemeral storage— storage that is released when a VM attached to it is shut
down— is the pre- OpenStack Ops Guide July 27, 2015 65 ferred way. When
you select storage back ends, ask the following questions on behalf of your
users: • Do my users need block storage?

• Do my users need object storage?

• Do I need to support live migration?

 • Should my persistent storage drives be contained in my compute nodes, or
should I use external storage?

• What is the platter count I can achieve? Do more spindles result in better I/O
despite network access?

• Which one results in the best cost-performance scenario I'm aiming for?

 • How do I manage the storage operationally?

• How redundant and distributed is the storage? What happens if a storage
node fails? To what extent can it mitigate my data-loss disaster scenarios?

4.2.5 OpenStack Object Storage (swift)

OpenStack

49
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

The official OpenStack Object Store implementation. It is a mature technology
that has been used for several years in production by Rackspace as the
technology behind Rackspace Cloud Files. As it is highly scalable, it is
wellsuited to managing petabytes of storage. OpenStack Object Storage's
advantages are better integration with OpenStack (integrates with OpenStack
Identity, works with the OpenStack dashboard interface) and better support
for multiple data center deployment through support of asynchronous eventual
consistency replication. Therefore, if you eventually plan on distributing your
storage cluster across multiple data centers, if you need uni-fied accounts for
your users for both compute and object storage, or if you want to control your
object storage with the OpenStack dashboard, you should consider
OpenStack Object Storage. More detail can be found about OpenStack
Object Storage in the section below.

Ceph

 A scalable storage solution that replicates data across commodity storage
nodes. Ceph was originally developed by one of the founders of DreamHost
and is currently used in production there. Ceph was designed to expose
different types of storage interfaces to the end user: it supports object storage,
block storage, and file-system interfaces, although the file-system interface is
not yet considered production-ready. Ceph supports the same API as swift for
object storage and can be used as a back end for cinder block storage as well
as back-end storage for glance images.

Ceph supports "thin provisioning," implemented using copy-on-write. This can
be useful when booting from volume because a new volume can be
provisioned very quickly. Ceph also supports keystone-based authentication
(as of version 0.56), so it can be a seamless swap in for the default
OpenStack swift implementation. Ceph's advantages are that it gives the
administrator more fine-grained control over data distribution and replication
strategies, enables you to consolidate your object and block storage, enables
very fast provisioning of bootfrom-volume instances using thin pro-visioning,
and supports a distributed file-system interface, though this interface is not yet
recommended for use in production deployment by the Ceph project. If you
want to manage your object and block storage within a single system, or if you
want to support fast boot-fromvolume, you should consider Ceph.

Gluster

A distributed, shared file system. As of Gluster version 3.3, you can use
Gluster to consolidate your object storage and file storage into one unified file
and object storage solution, which is called Gluster For OpenStack (GFO).
GFO uses a customized version of swift that enables Gluster to be used as
the backend storage. The main reason to use GFO rather than regular swift is
if you also want to support a distributed file system, either to support shared
storage live migration or to provide it as a separate service to your end users.
If you want to manage your object and file storage within a single system, you
should consider GFO.

LVM

OpenStack

50
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

The Logical Volume Manager is a Linux-based system that provides an
abstraction layer on top of physical disks to expose logical volumes to the
operating system. The LVM back-end implements block storage as LVM
logical partitions. On each host that will house block storage, an administrator
must initially create a volume group dedicated to Block Storage volumes.
Blocks are created from LVM logical volumes.

ZFS

The Solaris iSCSI driver for OpenStack Block Storage implements blocks as
ZFS entities. ZFS is a file system that also has the functionality of a volume
manager. This is unlike on a Linux system, where there is a separation of
volume manager (LVM) and file system (such as, ext3, ext4, xfs, and btrfs).
ZFS has a number of advantages over ext4, including improved data-integrity
checking. The ZFS back end for OpenStack Block Storage supports only
Solaris-based systems, such as Illumos. While there is a Linux port of ZFS, it
is not included in any of the standard Linux distributions, and it has not been
tested with OpenStack Block Storage. As with LVM, ZFS does not provide
replication across hosts on its own; you need to add a replication solution on
top of ZFS if your cloud needs to be able to handle storage-node failures. We
don't recommend ZFS unless you have previous experience with deploying it,
since the ZFS back end for Block Storage requires a Solaris-based operating
system, and we assume that your experience is primarily with Linux-based
systems.

Sheepdog

Sheepdog is a userspace distributed storage system. Sheepdog scales to
several hundred nodes, and has powerful virtual disk management features
like snapshot, cloning, rollback, thin provisioning. It is essentially an object
storage system that manages disks and aggregates the space and
performance of disks linearly in hyper scale on commodity hardware in a
smart way. On top of its object store, Sheepdog provides elastic volume
service and http service. Sheepdog does not assume anything about kernel
version and can work nicely with xattr-supported file systems.

OpenStack

51
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

5. Description of Costs [7]

5.1 Direct or Directly Attributable Costs

Are costs which are being generated by the production of a specific service or
a specific product. These costs will not been generated if the company or
organization stops the production of this specific product/service.

Joint Cost:
A joint cost is an expenditure that benefits more than one product, and for
which it is not possible to separate the contribution to each product. The
accountant needs to determine a consistent method for allocating joint costs
to products.Joint costs are likely to occur to some extent at different points in
any manufacturing process.

5.1.1 Common costs

Costs that are common to several products, processes, activities,
departments, territories, etc. Often common costs are subsequently allocated
to each of the joint products, joint processes, etc. in order to determine the
cost of each

Such benefits can increase customer satisfaction and reduce churn, which
may prove to be the tipping point when service providers evaluate whether to
move certain applications to a cloud platform.

5.2 NFV and innovation in operations

Cloud computing and network functions virtualization (NFV) can help manage
rapid demand growth while reducing capital and operational expenditures
(CAPEX and OPEX). No wonder service providers are paying attention.

These savings significantly lower service providers’ total cost of ownership
(TCO) and increase agility — critical to thriving in today’s challenging telecom
environment. Virtualizing applications also simplifies complex processes, such
as healing, scaling, and software upgrades, providing further agility and
flexibility.

Much has been said about how virtualization and the cloud may be used in
the telecom industry to improve the infrastructure and operations TCO. Initial
efforts centered on virtualization’s ability to optimize hardware. Lately, the
focus has shifted to operations.

While virtualizing some network functions will undoubtedly bring CAPEX
savings, NFV’s greatest contribution will be that it enables a new way of
approaching telecommunications. This means much more than just optimizing
inefficiencies inherent in current processes.

Service providers can — and should — take advantage of NFV technology to
redefine their current operations. This will require 3 major steps:

Map out every current process in detail

OpenStack

52
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Analyze what can be automated (that is, handled by an NFV platform) to
reduce complexity

Redesign operations to be much simpler and more agile

5.2.1 Cost drivers for NFV

Many parameters may be considered when developing a business case to
analyze the impact of migrating an application to NFV (Figure 1).

There are 3 categories of cost drivers:

CAPEX: one-time investments in fixed assets with a useful life extending
beyond the taxable year

Infrastructure OPEX: ongoing costs directly related to the infrastructure (e.g.,
maintenance)

Process OPEX: ongoing staffing costs directly related to the daily
management of activities or processes required to provide services or
applications

Figure 9: Main NFV cost drivers

5.3 Six areas of cost saving enabled by NFV [6]

 Capacity growth
Traditional approaches to adding capacity follow a 4-step process (Figure 10)
to deploy a new server infrastructure.

OpenStack

53
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Figure 10: Traditional deployment process

The NFV deployment process (Figure 11) differs from the traditional process
in a number of ways.

Figure 11: NFV deployment process

Costs for deploying NFV are slightly higher initially due to the professional
services needed during deployment. However, this is a one-time cost. As the
service provider becomes more familiar with the infrastructure, it will likely use
its own operators and perform these tasks in house. With NFV, applications
can share infrastructure, so the service provider’s operations team will only
need to be familiar with a very limited number of infrastructure elements.

In succeeding years, total server replacement and growth process costs are
greatly reduced. NFV’s virtual scaling and automated application deployment
capabilities reduce capacity growth process costs significantly.

Software upgrades
Today, upgrading with both new programmed software releases and ad-hoc
patches follows 4 phases:

Plan

Obtain the new software

Test the new software

Install and configure

OpenStack

54
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

The last phase generally consumes the most time and resources.

Introducing an NFV platform doesn’t typically change the way the provider
plans and obtains software. However, NFV offers a reduced timeline and
lower costs to stage tests and create environments. Service providers can use
“sandbox” testing environments without dedicated equipment. This lets them
create simplified test cases which can be executed in parallel, and reduces
testing time by about one-third.

NFV simplifies installation and configuration.
Traditionally, service providers open maintenance windows at night to install
and configure a predefined number of servers individually. With NFV, the
service provider can upgrade 4 servers per night in a 5-hour maintenance
window. The lead time maintenance window grows over time as the service
provider increases the number of physical servers to keep up with growing
traffic needs (Figure 12).

Figure 12: Example of lead times to upgrade software

NFV changes the whole process. The total number of servers is no longer
relevant for installation and configuration. Application recipes are used to
push upgrades automatically, in a matter of minutes, to all servers in parallel.
This automation provides dramatic gains in agility.

Healing process
Device failures can result in loss of service for many users and increase
churn. To reduce this risk, service providers traditionally deploy fully
redundant architectures. This costly security buffer requires double the
amount of physical infrastructure, with much of it standing idle.

A device failure is not the only issue that can require a healing process.
Service providers also need to be able to address OS failures, application
failures and distributed denial of service (DDOS) attacks.

Traditional healing process
Today’s healing process consists of 3 stages:

Issue identification

Trigger and execute solution process

OpenStack

55
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Perform ‘Post-mortem’ root cause analysis (RCA)

Lead times to identify and solve a problem vary depending on the issue at
hand. It tends to be simpler and faster at the hardware and operating system
layers, whereas actually solving an issue tends to be faster at the application
layer. DDOS attacks are the fastest both to identify and solve, but tend to
consume more of the operations team’s time because they are so common.

RCA is performed by operators once service continuity has been assured.
Identifying the root cause of a problem allows service providers to make the
changes necessary to avoid reoccurrences.

NFV healing process
With NFV, devices run as virtualized functions and are protected by the self-
healing properties of the hypervisor and orchestration layer. The healing
process is fully redefined as the business continuity process is decoupled
from the problem itself. To provide end-to-end application resiliency and
reliability, NFV platforms incorporate mechanisms for automated healing,
based on the monitored infrastructure and application-level KPIs. When
failures occur, the system automatically creates a new instance with the same
specifications to ensure application availability at all times.

By simplifying the healing process and developing a simple solution using
automated virtual scaling capabilities, NFV can significantly reduce healing
costs.

Floor space, power and cooling
Real estate, power and cooling are OPEX infrastructure costs. They are
directly related to the number and characteristics of physical infrastructure
items managed for a specific deployment. Provided all constants remain
equal, reducing physical hardware will lower the total costs of real estate,
power, and cooling by the same proportion.

The main drivers for these costs are:

Real estate: number and size of infrastructure items and square foot cost

Power: rate of energy consumption and cost per kilowatt hour

Cooling: a factor of 1:1 of power consumption

With NFV, real estate costs are reduced because the technology requires
fewer physical infrastructure items. With traditional approaches, load
balancers and other networking equipment such as switches are placed
separately from servers.

Power costs are reduced because NFV makes it possible for service
providers to replace older servers sooner. Older servers consume about twice
as much energy as new ones.

Lastly, cooling costs are generally calculated as a 1:1 ratio to power costs,
hence, cooling costs decrease in the same proportion as encountered with
power.

Maintenance and software licenses
Maintenance is also an OPEX infrastructure cost. It’s directly related to the
number and characteristics of physical infrastructure items managed by the

OpenStack

56
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

operations teams. Many traditional infrastructure elements require a yearly
maintenance fee, including servers and the network equipment, such as load
balancers, switches, and routing ports.

While any chosen NFV system will have associated licenses and
maintenance fees, there will be considerably fewer licenses than when using
a traditional approach. This is because far fewer infrastructure elements are
required, and NFV platforms can be shared between applications or services
as capacity needs change.

Hardware infrastructure
Virtualizing physical assets improves resource utilization by creating virtual
machines, each with its own operating system on a single physical hardware
asset. An NFV platform goes a step further. It enables dynamic placement of
the virtual machines, which further improves hardware optimization.

Traditional deployments operate in a “siloed” architecture. Servers are
dedicated to one application, resulting in an inefficiently high number of
servers.

NFV enables a new model, where all underlying hardware forms a pool of
resources shared by all the applications running on the same platform.
Furthermore, the ability to share the infrastructure permits a new cost model.
The cost of idle capacity should not be allocated to a specific application, but
is available for other applications on demand.

Service providers can expect significant reductions in server costs with NFV,
since it uses far fewer servers than traditional approaches. More importantly,
physical appliances, such as load balancers, can be eliminated.

5.4 Comparison of NFV and Hardware Approach

NFV approach
Capacity growth Joint Cost as it common for a family of services that a
company produce.

Software UpgradesJoint Cost as it is common for a family of services that a
company produce

Healing ProcessJoint Cost as it is common for a family of services that a
company produce

Real estate, power and coolingJoint Cost

Maintenance CostDirectly Costs as it is referred to cost for a specific
service

Licenses CostJoint Cost as licenses are related to product as a whole and
not for a specific service

Hardware infrastructureJoint Cost as hardware in NFV approach is related
to many elements and services which are being produced by it.

OpenStack

57
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Traditional approach

Capacity growthDirect-Variable Cost

Software UpgradesDirect-Variable Cost

Healing Process Direct Fixed Cost

Real estate, power and coolingJoint Cost

Maintenance CostsDirectly Cost

Licenses CostDirectly Cost

Hardware CostJoint Cost

NFV:

Direct Cost: Maintenance Cost

Joint Cost: Capacity growth-Software Upgrades-RPC-Healing-Licences-
Hardware

Common Cost

Traditional:

Direct Cost: Maintenance Cost- Licences- Healing- Capacity growth-Software
Upgrades

Joint Cost: RPC- Hardware

Common Cost

If the Common Cost for the two approaches are the same we see that in NFV
approach most Cost become Joint from Direct where they were in Traditional
Approach.

NFV:

Direct Cost: Maintenance Cost

Joint Cost: Capacity growth-Software Upgrades-RPC-Healing-Licences-
Hardware

Traditional:

Direct Cost: Maintenance Cost- Licences- Healing- Capacity growth-Software
Upgrades

Joint Cost: RPC- Hardware

As we can figure out from the above analysis of the comparison of sum of
these costs are as shown below and this is because the discrete costs of
NFV are lower than those of Traditional Approach. So we can write:

NFV Costs Approach < Traditional Costs Approach

OpenStack

58
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

NFV Costs (Maintenance Cost + Capacity growth +Software Upgrades+RPC-
Healing+Licences+Hardware) < Traditional Costs (Maintenance Cost +
Capacity growth +Software Upgrades+RPC-Healing+Licences+Hardware)

In this Chapter we will try to use different types of costing which are being
used in Telecom industry in order to support the fact that NFV gives less
Operational Costs to Vendors than the Hardware approach which is being
used today. For our analysis we will use three different models of costing.

5.5 COSTS

5.5.1 Fully Distributed Cost (FDC) [9]

FDC assumes that there exist some accounts that can be specifically
allocated to a single service, while other accounts are classified as common
or overhead cost to two or more services. To allocate common costs, input
coefficients are usually developed as parameters to be estimated when
dividing common costs among groups of shared inputs. For example, assume
there are two services, A and B. Total costs for the production of the two
services is 100, of which 20 is attributable to service A and 30 is attributable
to service B. The remaining cost of 50 is considered common costs. If the
input coefficient is 0.5 for each service, then the common costs are shared
equally, that is 25 for each service. The cost of each service is therefore 45
for service A and 55 for service B.

With the above costing method is clear that NFV approach has lower
operation costs and this is because most costs of NFV are Joint costs. This
gives the advantage of adding more services to the chain of costs. For
example in traditional approach for having a Capacity Growth, the cost of this
issue is being added as a whole something that is not happened in NFV
architecture where the cost is shared in joint Costs.

5.5.2 Embedded Direct Cost (EDC)

This method calculates only the Direct or Directly attributable Cost. Joint
Costs and Common Costs are not calculated at all. This method helps in
understanding the characteristics costs of each service explicitly. These Costs
are either constant or directly for a service.

The use of this method is shown to us that NFV approach is better than the
Traditional. This is because in NFV approach we have only a direct Cost, and
this is the maintenance Cost, in addition to traditional approach where we
have extra services like Licenses, Healling process, Software Upgrade and
Capacity Growth.

NFV:

Direct Cost: Maintenance Cost

Traditional:

OpenStack

59
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

Direct Cost: Maintenance Cost- Licences- Healing- Capacity growth-Software
Upgrades

So the traditional approach add Licences- Healing- Capacity growth-Software
Upgrades extra costs to vendors.

.

5.5.3 Stand Alone Cost (SAC)

Last but not least the approach of stand alone cost calculate its specific cost
like it would be the only one in the chain of Cost.

So a cost for a service is the sum of the Direct Cost of that service, the whole
common Cost and the whole Joint Cost. If we think that Common Cost is the
same for both approaches then the whole Cost for all services in NFV is as
below:

Direct Cost(Maintenance Cost) + Joint Cost (Licenses-Healing-Capacity
Growth-Software Upgrade-RPC-Hardware)

In traditional approach the whole costs is calculated as below:

Direct Cost(Maintenance Cost) + Joint Cost (RPC-Hardware) + Direct
Cost(Licenses Cost) + Joint Cost (RPC-Hardware)+ Direct Cost(Healling
Cost) + Joint Cost (RPC-Hardware) + Direct Cost(Growth Capacity Cost) +
Joint Cost (RPC-Hardware) + Direct Cost(Software Upgrade Cost) + Joint
Cost (RPC-Hardware)

Or

Direct Cost(Maintenance Cost) + Direct Cost(Licenses Cost) + Direct
Cost(Healling Cost) + Direct Cost(Growth Capacity Cost) + Direct
Cost(Software Upgrade Cost) + 5 [Joint Cost (RPC-Hardware)]

As a result the difference between two approaches if we consider that all
specific costs, one by one, are the same is:

SAC(Traditional) - SAC(NFV) = 4 [Joint Cost (RPC-Hardware)]

If we think that NFV(RPC) is lower than Traditional(RPC) and NFV(Hardware)
is lower than Traditional(Hardware), then the difference is more than 4 [Joint
Cost (RPC-Hardware)].

OpenStack

60
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

6. RESULTS

From this document there are several results we can find. First of all the use
of OpenStack software in new Telecommunication architecture is something
that can be done. OpenStack can be used in order to manage and orchestrate
better the available hardware sources for the deployment of
Telecommunication. OpenSatck is also compatible with the general approach
of NFV architecture which ETSI has described. This is very important because
an Opensource software can be used for the maintenance of
Telecommunication networks. But the most important of all is that NFV saves
money from vendors and especially from OPEX which have to invest for their
networks.

OpenStack

61
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

ABBREVIATIONS-ACRONYMS

NFV Network Function Virtualization

VNF Virtual Network Functions

TCP/IP Transmission Control Protocol/ Internet Protocol

FDC Fully Distributed Cost

EDC Embedded Distributed Cost

SAC Stand Alone Cost

VIM Virtual Infrastructure Management

W3C World Wide Web Consortium

ΕTSI European Telecommunication Standard Industry

MANO Maintenance and Orchestration

CAPEX Capital Expenditure

OPEX Operational Expenditure

ΕΚΠΑ Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

OpenStack

62
Α.ΚΟΤΖΑΜΑΝΟΓΛΟΥ

REFERENCES

[1] http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/004/01.01.01_60/gs_NFV-
INF004v010101p.pdf

[2] http://www.ietf.org/proceedings/88/slides/slides-88-opsawg-6.pdf

[3] http://docs.openstack.org/openstack-ops/openstack-ops-manual.pdf

[4]http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf

[5] https://en.wikipedia.org/wiki/Cloud_computing

[6] https://techzine.alcatel-lucent.com/6-concrete-ways-nfv-can-save-you-money

[7] http://www.investopedia.com/ask/answers/041415/what-are-different-types-costs-cost-
accounting.asp

[8] https://en.wikipedia.org/wiki/Cloud_computing_architecture

[9] http://regulationbodyofknowledge.org/faq/telecommunication-regulation-
interconnection/what-are-common-cost-models-used-for-determining-interconnection-tariffs-
and-how-do-they-deal-with-common-costs/

http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/004/01.01.01_60/gs_NFV-INF004v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/004/01.01.01_60/gs_NFV-INF004v010101p.pdf
http://www.ietf.org/proceedings/88/slides/slides-88-opsawg-6.pdf
http://docs.openstack.org/openstack-ops/openstack-ops-manual.pdf
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://en.wikipedia.org/wiki/Cloud_computing
https://techzine.alcatel-lucent.com/6-concrete-ways-nfv-can-save-you-money
http://www.investopedia.com/ask/answers/041415/what-are-different-types-costs-cost-accounting.asp
http://www.investopedia.com/ask/answers/041415/what-are-different-types-costs-cost-accounting.asp
https://en.wikipedia.org/wiki/Cloud_computing_architecture
http://regulationbodyofknowledge.org/faq/telecommunication-regulation-interconnection/what-are-common-cost-models-used-for-determining-interconnection-tariffs-and-how-do-they-deal-with-common-costs/
http://regulationbodyofknowledge.org/faq/telecommunication-regulation-interconnection/what-are-common-cost-models-used-for-determining-interconnection-tariffs-and-how-do-they-deal-with-common-costs/
http://regulationbodyofknowledge.org/faq/telecommunication-regulation-interconnection/what-are-common-cost-models-used-for-determining-interconnection-tariffs-and-how-do-they-deal-with-common-costs/

