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ABSTRACT

The dataflow computational model enables writing highly parallel programs, which will be
deployed on a heterogeneous network, in a concise and readable way. The main advan-
tage is the fact that the system can be conceptually separated into several independent
components that can be run in parallel and deployed on different machines. Therefore,
concurrency and distribution is implicit and little or no responsibility is given to the pro-
grammer. The framework proposed in this thesis constitutes the underlying system that
make this style of programming possible in JVM-based languages (e.g. Java, Scala, Clo-
jure), while at the same time making it easy to integrate other technologies that rely on the
PubSub model, in order to move away from imperative languages and enter a higher level
of abstraction. Particular emphasis was put on three domains, namely Big Data, Robotics
and IoT.

SUBJECT AREA: Programming Languages

KEYWORDS: dataflow programming, frp, stream processing, distributed systems,
declarative languages, implicit concurrency, node placement



ΠΕΡΙΛΗΨΗ

Το υπολογιστικό μοντέλο ροών δεδομένων μας επιτρέπει να γράφουμε προγράμματα με

παραλληλία υψηλού βαθμού, τα οποία θα εκτελεστούν σε ένα ετερογενές δίκτυο, με έναν

συμπαγή και ευανάγνωστο τρόπο. Το κύριο πλεονέκτημα είναι το γεγονός ότι το σύστημα

μπορεί να χωριστεί εννοιολογικά σε διάφορα ανεξάρτητα μέρη τα οποία μπορούν να εκτε-

λεστούν παράλληλα και σε διαφορετικές μηχανές. Ως εκ τούτου, ο ταυτοχρονισμός και

η κατανομή είναι υπονοούμενα και ο προγραμματιστής έχει λίγη, ως καθόλου, ευθύνη γι’

αυτά. Το προγραμματιστικό περιβάλλον που προτείνεται στην παρούσα πτυχιακή εργασία

συνιστά το θεμελιώδες σύστημα που καθιστά δυνατό αυτόν τον τρόπο προγραμματισμού

σε γλώσσες βασισμένες στο JVM (πχ Java, Scala, Closure), ενώ ταυτόχρονα κάνει πιο

εύκολη την ενσωμάτωση άλλων τεχνολογιών που βασίζονται στο PubSub μοντέλο, με

σκοπό να απομακρυνθούμε από τη χρήση προστακτικών γλώσσών και να υπεισέλθουμε

σε ένα υψηλότερο επίπεδο αφαίρεσης. Ιδιαίτερη έμφαση δόθηκε σε τρεις τομείς: Μεγάλα

Δεδομένα, Ρομποτική και Διαδίκτυο των Πραγμάτων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Γλώσσες Προγραμματισμού

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: προγραμματισμός ροών δεδομένων, συναρτησιακός αντιδραστι-

κός προγραμματισμός, επεξεργασία ροών, κατενεμημένα συστή-

ματα, δηλωτικές γλώσσες, υπονοούμενη παραλληλία, τοποθέτηση

κόμβων



”τὰ όντα ιέναι τε πάντα καὶ μένειν ουδέν”
(all entities move and nothing remains still)

- Heraclitus
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PROLOGUE
This bachelor thesis is the continuation of my internship at the National Centre for Sci-
entific Research ”Demokritos”, particularly in the Software and Knowledge Engineering
Laboratory (SKEL).

The main task I was assigned was the implementation of a framework for robot program-
ming using a dataflow approach. During that internship, I came to realize that my work
could be easily generalized to cover a much broader application area than just robot soft-
ware.

The name of the framework stems from the ancient Greek Titaness Rhea(Ρέα), daughter
of earth goddess Gaia(Γαία) and sky god Uranus(Ουρανός) and etymologically derives
from the verb ρέω(to flow).



RHEA: A Reactive, Heterogeneous, Extensible and Abstract Framework for Dataflow Programming

1. INTRODUCTION

1.1 Main concept

The main contribution of this thesis is the design and implementation of a framework for
dataflow programming to be deployed anywhere, ranging from low-performance robots
and sensors to clusters of computer and even the Cloud.

The main idea is to provide the programmer with a different execution model, the dataflow
model, which allows for a more abstract way of thinking and has the advantage of expos-
ing opportunities for parallelism (amongst CPU cores) and distribution (amongst computa-
tional machines), which can then be automatically realised by the sophisticated underlying
system.

Therefore, the programmer will be able to utilize available computational resources without
additional effort, while at the same time reducing development time/cost and maintaining
a much cleaner and easier-to-refactor software system. Resource utilization may appear
in the form of more efficient execution (i.e. by concurrently doing computations on multiple
machines) or more robust error-handling (i.e. by using backup machines to rerun nodes
that were hosted on a faulty machine).

1.2 Motivation

1.2.1 Declarative languages

Software is becoming increasingly more complex each year, as computing capabilities
are strengthened and user needs become more and more demanding. Thus the need for
higher abstraction becomes imperative, as it provides a more structured, easier to debug
and maintainable way of developing software. In other words, abstraction in computer
science acts as a mean to overcome complexity.

In programming languages, the level of the aforementioned abstraction is measured re-
garding the amount of low-level details a programmer has to specify. Therefore, lan-
guages can be divided in two categories: the imperative ones, in which the program-
mer specifies what needs to be done and how to do it, and the declarative ones, where
the programmer only specifies what needs to be done and rely on the underlying com-
piler/interpreter to produce the exact commands that will realize the desired behaviour.
The most well-known declarative programming paradigms are functional and logic pro-
gramming, each providing higher abstraction in different aspects. The proposed approach
has been greatly influenced by the functional paradigm, enabling the programmer to com-
bine and reuse higher-order structures.

1.2.2 Data versus Computation

A common problem in heterogeneous systems is that different representations of the same
entities/data-types coexist in the same software and, as a consequence, pure computa-
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tional tasks are intermingled with data-converting tasks. This makes the code less read-
able and harder to maintain and understand. In the dataflow execution model, where
the program is modelled as directed graph of data flowing between operations, there is
a clear separation of these two aspects as data (edges) are completely decoupled from
computation (nodes). This motivation is strengthened even more, when cross-machine
communication is included, and apart from converting data from one representation to
another, serialization(i.e. conversion to bytes) is also mandatory.

1.2.3 Dataflows in Robotics

In control theory, which is the main background theory used in robotics, most architectures
and/or algorithms are represented as dataflow diagrams for the sake of clarity and intuition.
Translating these diagrams into common ”imperative” software is not an easy task and is
usually a source of bugs. Thus, having a dataflow execution model will nullify the need
for such a translation.

Specifically, most robotic applications follow the Robot Perception Architecture (RPA),
where inputs to system are the robot’s sensors, which are then processed by a dataflow
graph, whose output is given as commands to the robot actuators.

Moreover, robotics typically involve several different robotic systems, whose combination
is even more challenging. If each individual system is represented as a dataflow graph,
composing them together is as trivial as connecting inputs with outputs, which is not the
case in a traditional architecture, which is not component-based.

1.2.4 Dataflows in Big Data

Another reason for following a dataflow approach is the attention that it recently has drawn
in the Big Data field. As data size is growing exponentially and distribution is not a luxury
but a necessity, a more scalable and decentralized architecture was destined to be ex-
amined in more depth. As we will discuss in the Related Work chapter, there are many
recent frameworks that became famous for their scalability due to the fact that they rely
on a dataflow approach. This is mainly due to the fact that Big Data application are de-
ployed on large computational resources (e.g. clusters, mainframes), and therefore the
dataflow model makes it much easier to program them with sufficient resource utilization.
The aforementioned merits are transferable to other domains that imply some sort of task
distribution. For instance, in the Robotics field, robots are getting increasingly cheaper and
at the same time their population increases (i.e. robot swarms), placing task distribution
in the core of the development process.

1.3 Structure of thesis

There are ten chapters which compose this thesis: Introduction, Background, Require-
ments, Approach, Implementation, Optimization, Applications, Related Work, Future
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Work, Conclusions.

Background introduces the reader to basic background knowledge, necessary for com-
plete comprehension.

Requirements sets the desired properties that the proposed system should have.

Approach presents the main characteristics of our approach.

Implementation gives a more detailed specification of the framework.

Applications present some use-cases, ranging from general mathematical problems to
real-life robot scenarios.

Related Work discusses relevant concepts and technologies, which influenced major de-
cisions concerning the design and implementation of the framework.

Future Work suggests some interesting topics for future research, whose embedding in
the framework is meaningful.

Conclusions sums up.
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2. BACKGROUND

2.1 The dataflow computational model

The increased interest in parallelism during the 70’s gave rise to the dataflow execution
model, which is an alternative to the classical ”von-Neumann” model. In the dataflow
model, everything is represented in a dataflow graph, where nodes are independent com-
putational units and edges are communication channels between these units. A node/unit
is fired immediately when its required inputs are available and therefore no explicit control
commands are needed for execution. Figure 1 shows a dataflow graph enumerating the
set N of natural numbers.

..

..1 ..concat ..N

. ..increment

Figure 1: Natural numbers

In the dataflow graph above, we can discern three types of nodes: sources, which do
not have any incoming edge and act as value generators to initiate computation, sinks,
which do not have any outgoing edges and inner nodes, which transform one or more
incoming streams and redirect their output to other nodes. The zero node just produces
a stream with a single value 0 and then terminates. Concat produces a single stream by
concatenating the stream produced by zero and increment, while increment transforms its
input stream by adding one to its values. Finally, the sink node displays the result, which
is the stream of natural numbers.

In a typical scenario of the dataflow execution, all nodes can be active at the same time.
This implies that part of the output can be produced before the whole input is consumed
by the nodes. Moreover, the same holds for the internal nodes.

Streams can be infinite, such as the stream produced by concat because it is the con-
catenation of a single-value stream and an infinite one. Moreover, the graph is cyclic as
concat feeds input to increment and vice versa. The most interesting fact is that there
nodes are independent and therefore can run in parallel. For instance, while increment
is processing value 5 (i.e. to produce value 6), the previous result (i.e. value 5) passes
through concat to reach the sink node, which can concurrently process it to display it.

The main advantage of the dataflow model is its implicit parallelism, deriving from the
fact that the computational units are totally independent and therefore can be executed in
parallel. A possible single-machine implementation could represent edges as in-memory
data storage, whereas a multi-machine one could represent them as channels between
TCP sockets, allowing communication across the network. Its great flexibility and com-
posability makes it a good candidate for the underlying architecture of a framework with a
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high level of abstraction.

2.2 Functional reactive programming

A relatively recent programming paradigm is Functional Reactive Programming (FRP),
which provides a conceptual framework for implementing reactive (i.e. time-varying and
responding to external stimuli) behaviour in hybrid systems (i.e. containing both continu-
ous and discrete components), such as robots, in functional programming languages.

To implement such systems in conventional imperative languages, one must use asyn-
chronous callbacks (i.e. each change is handled by a registered callback function). Al-
though this solution is satisfactory for simple schemes, more complex scenarios eventu-
ally lead to highly incoherent code structure, often called spaghetti code, in the sense that
control rapidly moves between disconnected parts of the system, similar to the notorious
GOTO command. This phenomenon stems from the unary nature of callback functions,
which requires some kind of ”internal plumbing” in order to achieve mechanisms for han-
dling combination of changes (e.g. when multiple changes occur simultaneously). FRP
provides a solution to this shortcoming of callback functions, because changes are repre-
sented as variables (signals), which can be passed as parameters to arbitrary functions,
called signal functions.

FRP first appeared as a composable library for graphic animations [1], but quickly evolved
into a generic paradigm [2, 3, 4]. Moreover, extensive research has investigated FRP as
a framework for robotics [5, 6].

Although appealing at first, FRPwas not appropriate for systemswith real-time constraints,
due to uncontrollable time- and space- leaks [7]. The solution was a generalization of mon-
ads called arrows [8], which provided the necessary guarantees that the aforementioned
common errors do not occur. Let’s see the example of calculating a robot’s x-coordinate.
Here is the mathematical formula drawn from control theory:

x = 1/2
∫

(vr+ vl) cos θ

Below is the FRP code corresponding to the formula above:

1 x = let
2 v = (vrSF &&& vlSF) >>> lift (+)
3 t = thetaSF >>> arr cos
4 in (v &&& t) >>> lift (*) >>> integral >>> lift (/2)

As the above may seem counter-intuitive and difficult to understand, a new notation was
conceived, notably the arrow notation [9]:
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1 x = proc inp -> do
2 vr <- vrSF -< inp
3 vl <- vlSF -< inp
4 theta <- thetaSF -< inp
5 i <- integral-< (vr+vl) * cos(theta)
6 returnA -< (i/2)

Themain advantages of FRP are its close correspondence tomathematics[2], whichmake
it an ideal framework for modelling real-time systems, and its concise representation of
time-varying values via signals.

2.3 Technologies in Robotics and Iot

In the following, we will briefly discuss the underlying technologies that are mainly used
by the Robotics and the IoT domain. First, we will introduce the Publish-Subscribe model
that is used by the aforementioned technologies and then discuss the main Robotic and
IoT frameworks. It is imperative that our proposed framework should integrate naturally
and intuitively with these technologies.

2.3.1 Publish-Subscribe model

Publish/Subscribe (PubSub) is a messaging pattern that became popular due to the loose
coupling of its components, suited for the most recent large-scale distributed applications.

There is no point-to-point communication and no synchronization. Publishers advertise
messages of a given type to a specific message class or topic that is identified by a key-
word, whereas subscribers listen on a specific topic without any knowledge of who the
publishers are. The component responsible for relaying the messages between machines
and/or processes and finding the cheaper dissemination method is called the message
broker. Figure 2 illustrates an abstract representation of the PubSub model.

..Publisher .

Publisher

.

Publisher

.Broker.
Subscriber

.

Subscriber

Figure 2: PubSub typical layout

2.3.2 ROS: Robot Operating System

ROS is an open-source middleware for robot software, which emphasizes large-scale
integrative robotics research [10]. It provides a thin communication layer between het-
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erogeneous computers, from robots to mainframes and it has been widely adopted by
the research community around the world, due to its flexibility and maximal support of
reusability through packaging and composability. It provides a compact solution to the
development complexity introduced by complex robot applications that consist of several
modules and require different device drivers for each individual robot.

It follows a peer-to-peer network topology, implemented using a topic-based PubSubmes-
saging protocol and its architecture reflects many sound design principles. Another great
property of ROS is that it is language-agnostic, meaning that only a minimal specification
language for message transaction has been defined, so contributors are free to imple-
ment small-size clients in different programming languages, with roscpp and rospy being
the most widely used ones.

A typical development scenario is to write several nodes, that subscribe to some topics
and, after doing some computation, publish their results on other topics. The main ar-
chitectural issue here is that subscribing is realized through asynchronous callback func-
tions, so complicated schemes easily lead to unstructured code, which obviously lead to
unreadable and hard-to-maintain code. The proposed approach of this thesis tackles the
aforementioned problem.

2.3.3 Internet of things - MQTT

The birth of the Internet gave rise to a concept called Internet of Things (IoT), which is
essentially the ability of many heterogeneous devices, ranging from low-cost sensors to
vehicles with embedded electronics, to collect data and exchange it amongst themselves
using the Internet. This gave rise to smart grids, smart homes and eventually smart cities.

The development of such systems though, due to their heterogeneity, is rather complex
and costly. Typical software architectures were not meant to be used in such environments
and therefore new tools and concepts needed to be invented. Recent development of a
variety of middleware frameworks, showed that a standard protocol of communication is
imperative along with supporting tools[11]. The most widely spread protocol is MQTT,
which follows the PubSubmessaging pattern and provides a very minimal communication
layer in order not to put a strain on the resource-bounded system[12].

For instance, an IoT application could connect to some sensors by subscribing to their
corresponding topics, taking decisions that would result in some commands to some ac-
tuators, by publishing to their corresponding topics.

Fortunately, the dataflowmodel seems to be rather fitting for these scenarios[13], as every
node in the graph is completely independent, and consequently can be any ”thing”. This
useful property of the model makes it a good architectural choice for such applications.
The only thing to consider is how these things will communicate in a standard way, so as
to be able to add new types of things and integrate it in an effortless way to an existing
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dataflow network.

2.4 The Reactive Streams Standard

PubSub is widely used by different frameworks but still lacks standardization. The Re-
active Streams Standard (RSS) is an initiative to provide a standard for asynchronous
stream processing with non-blocking back-pressure, which tackles the problem of slow
consumers interacting with fast producers. Thus, RSS aims to provide the minimal set of
interfaces, capable of easily defining such behaviours. This encompasses efforts aimed
at runtime environments (JVM and JavaScript) as well as network protocols [14].

RSS defines two minimal interfaces for the roles of Subscriber1 and Publisher2. A Sub-
scriber implementation should define reactions to observed values, including normal and
erroneous termination, whereas a Publisher implementation should accept requests from
Subscribers and start emitting values to them.

Below we see a minimal example of using RSS to define a publisher that emits values
1..10 and a subscriber that prints all observed values and finally connect them together.

1 Publisher<Integer> pub = new Publisher {
2 void subscribe(Subscriber<Integer> sub) {
3 for (int i = 1; i <= 10; i++)
4 sub.onNext(i);
5 sub.onComplete();
6 }
7 };
8

9 Subscriber<Integer> sub = new Subscriber {
10 void onNext(Integer i) {
11 println(i);
12 }
13 void onComplete() {
14 println(”Complete”);
15 }
16 void onError(Throwable t) {
17 t.printStackTrace();
18 }
19 };
20

21 pub.subscribe(sub);

1http://www.reactive-streams.org/reactive-streams-1.0.0-javadoc/org/reactivestreams/Subscriber.html
2http://www.reactive-streams.org/reactive-streams-1.0.0-javadoc/org/reactivestreams/Publisher.html

Orestis Melkonian 23

http://www.reactive-streams.org/reactive-streams-1.0.0-javadoc/org/reactivestreams/Subscriber.html
http://www.reactive-streams.org/reactive-streams-1.0.0-javadoc/org/reactivestreams/Publisher.html


RHEA: A Reactive, Heterogeneous, Extensible and Abstract Framework for Dataflow Programming

3. REQUIREMENTS
The design was heavily influenced by principles set out by the FRP and dataflow models.

3.1 Reactive

The system should be reactive, as close as possible to the definition of the Reactive Man-
ifesto [15].

The system should be responsive, meaning it should be able to handle time-sensitive
scenarios if at all possible. This is the cornerstone of usability and utility, but more than
that, it enables quick error-detection and error-handling.

The system should be resilient, meaning it is able to recover robustly and gracefully af-
ter a failure, due to the fact that nodes in the dataflow graph are completely independent
and recovery of each one can be done in isolation. Another thing to note here is that
special error messages are built-in and make it very easy to propagate errors between
components, in case the error-handling part of a component is decoupled from the com-
putational logic. This leads to much more robust architectures for large-scale systems,
where fault-tolerance is mission-critical.

The system should be elastic, meaning it will adjust itself depending on the available re-
sources and demanded workload. For instance, the granularity of the graph (i.e. number
of nodes) is adjusted so as to match a heuristic-based value (e.g. total number of threads).

The system should be message-driven, meaning it relies solely on asynchronous
message-passing for inter-component communication leading to loose coupling, isolation,
location transparency and the error propagation mentioned above. Location transparency
is critical to preserve the semantics whether on a single host or a machine cluster.

..reactive.

responsive

.resilient .

elastic

. message
driven

Figure 3: Reactive properties
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3.2 Heterogeneous

One of the major concerns while designing the framework was the ability to deploy it any-
where, from low-cost robots to mainframes. Obviously, such attribute would require a very
flexible runtime environment. To satisfy this requirement, the strategy design pattern was
used for evaluation, meaning that the core system only builds the internal representation
of the dataflow graph and partitions it across the available computational resources. From
there onwards, each partial graph can be evaluated by a different EvaluationStrategy (see
Implementation chapter), which could interpret it using the Java 8 Streams library[16] or
even compile into CUDA code for execution on a GPU.

Figure 4 illustrates a simple example of a robot application pipeline, where input to the
dataflow graph is what the robot’s camera senses and, after some image processing and
some computation-heavy decision making, a command to an actuator of the robot is exe-
cuted. Orange nodes are deployed on the robot’s on-board computer, the green node is
deployed on an off-board GPU and the red node is deployed on the main server.

..robot
camera

. compress.. image
processing

.. decision.. robot
command

.

Figure 4: Heterogeneity pipeline

3.3 Extensible

As the work described in this thesis is quite fundamental and ambitious, it seemed highly
unlikely that it would reach closure within the context of an undergraduate thesis. There-
fore, careful consideration was taken to compose the system of different independent
modules, which could easily be extended/modified, allowing many future contributions.

With that concept in mind, generality and abstraction were heavily emphasized during
both the design and the implementation process. We can say now we are satisfied with
the level of abstraction the core system has reached and hope the stressful refactoring
that the framework went through will blossom in the form of future contributions.

3.4 Abstract

The framework is abstract in terms of implementation details, as it is completely agnostic
of any machine-specific requirements. It is designed as a unifying conceptual base for
further extensions and careful consideration was taken not to restrict in any aspect, archi-
tectural or not. This was achieved by making many parts of the core system pluggable,
allowing for easy refactoring on most of its internal functionality. Moreover, the internal
graph representation does not include information on how a node is executed, but only on
its semantics.
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4. APPROACH
This chapter presents the framework’s main characteristics and capabilities.

4.1 System architecture

The RHEA ecosystem consists of several clearly separated modules, whose interconnec-
tion is illustrated in figure 5.

Figure 5: System architecture

The user writes a program in the provided stream language, which constructs a dataflow
graph internally. Afterwards, using information about the available resources in the net-
work, the constructed graph is optimized (i.e. in terms of performance, communication
cost and node placement). The optimized graph is then distributed across the available
machines for evaluation, maybe using a different technique each time.

The following subsections will present the aforementioned stream language, while the
other components, namely optimization, distribution, evaluation, serialization and network
profiling, will be discussed in chapter 5.

4.2 Supported dataflow graphs

The kind of dataflow graph that can be expressed using the framework’s stream language
are directed cyclic graphs with possibly many inputs and outputs. Figure 6 depicts such
a graph, where inputs and outputs are colored red and green respectively.

..

. .. .. .. ..

.. .. .. ..

.. ..

Figure 6: Example of supported graph
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4.3 Stream language

This section presents the framework’s language for defining streams and executing them.
In the examples that will be demonstrated, only a very small subset of the provided oper-
ators will be presented. See the appendix for the complete set of the primitive operators,
from which the whole set can be derived (i.e. by combining them).

4.3.1 The Stream data type

The data channels (i.e. edges of the dataflow graph) are represented using the Stream
data type, which is parametric, meaning that it can emit values of any data type, whether
built-in or user-defined. The stream produced may terminate, successfully or erroneously,
or even be infinite.

4.3.2 Graph construction syntax

The construction of the internal dataflow graph is always implicit, through a rich set of
operators on the Stream data type. Each Stream object contains internally a dataflow
graph of type FlowGraph, which is only to be accessed and manipulated by the internal
module, evaluation strategies and optimizers. Therefore, an application developer only
needs to work with the Stream type.

Source nodes are constructed using built-in functions of type Stream. For instance,
Stream.just(1, 2, 3) produces the stream that emits just the values 1, 2 and 3. The re-
turn variable of these creation function is an object of type Stream.

Processing nodes can be divided into two classes: single input ones and multiple input
ones.

Single input nodes are inserted into an existing Stream object, by calling an operator on
that object. Figure 7 shows an example of a single input node, namely that of map, which
transforms the input stream (i.e. just the values 1, 2 and 3) by applying a user-defined
function to every emitted value (i.e. f(x) = x+ 1).

....just [1, 2, 3] ..map {x+ 1}
1 Stream<Int> source = Stream.just(1, 2, 3);
2 source.map(x -> x + 1);

Figure 7: Single input processing node

Multiple input nodes are constructed by built-in function that take as argument already
existing Stream objects. Figure 8 shows an example of a multiple input node, namely that
of zip, which transforms the input streams (i.e. two stream that emit the values 1..10) by
applying a user-defined function to each emitted pairs of values (i.e. f(x, y) = x+ y). Here
we also see another stream creation function, namely Stream.range.

The variables returns by all processing nodes are Stream objects. These objects can
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..

..1..10

. ..zip {x+ y}

..1..10

1 Stream.zip(
2 Stream.range(1, 10),
3 Stream.range(1, 10),
4 (x, y) -> x + y);

Figure 8: Multiple input processing node

be reused in different parts of the graph to enable splitting a node’s output to different
processing nodes or outputs. Figure 9 shows such an example, where the filter operator
only emits values for which the given function returns true.

..

. ..map f

..1..10

. ..filter g

1 Stream<Int> st = Stream.range(1, 10);
2 st.map(f).print();
3 st.filter(g).print();

Figure 9: Split example

Cycle construction is a bit trickier, as no direct manipulation of the internal graph is per-
mitted. Cycles are constructed using the loop operator, which is a single input processing
node. It requires a function that, given an input stream, constructs a subgraph that redi-
rects its output to that input, therefore creating a feedback loop. Figure 10 shows an
example of the loop operator to represent the natural numbers, just as the graph shown
earlier in figure 1. The concat operator is a multiple input node that concatenates its input
streams.

..

..0 ..concat ..N

. ..map {x+ 1}

1 Stream.just(1)
2 .loop(s -> s.map(i -> i + 1));

Figure 10: Cyclic example

4.3.3 Evaluation syntax

To evaluate a given dataflow graph and do something with its output values, we need
to call the subscribe method of the Stream object. Here we stress the fact that, without
subscribing to a stream, nothing is happening or being evaluated, except the construction
of the internal AST. Therefore, just-in-time optimization and execution are only triggered
by the subscribe operator. The argument passed to subscribe is either a user-defined
action (i.e. function with side-effects) or an object implementing the Subscriber interface
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(see section 5.5). Figure 11 shows an example of printing the output of the single-input
example in figure 7.

..

. ..just [1, 2, 3]

. ..map {x+ 1}

. ..2, 3, 4

1 Stream.just(1, 2, 3)
2 .map(x -> x + 1)
3 .subscribe(System.out::println);

Figure 11: Evaluation example

4.3.4 Operational Semantics

As the execution is completely asynchronous, the order of stream declaration and/or eval-
uation does not matter at all. If there is absolute necessity for control flow management,
the programmer can use the altered BlockingStream type that blocks program execution
to next subscribes until the currently subscribed streams terminate successfully.

Nonetheless, this utility is helpful for rapid prototyping and testing purposes. The source
code below shows an example of accumulating the 10 first natural numbers in a list and
printing that list.

1 Stream<Int> s1 = Stream.nat();
2 BlockingStream<Int> s2 = s1.toBlocking();
3 List<Int> list = s2.toList();
4 System.out.print(list);
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5. IMPLEMENTATION
This chapter delves deeper into the system’s implementation details.

5.1 Software structure

The core system3 is organized in the following top-level packages:

org.rhea_core.internal all internal functionalities such as graphs, expressions and
notifications

org.rhea_core.evaluation everything associated with the evaluation of the con-
structed dataflow graph

org.rhea_core.distribution everything associated with distributing the evaluation
across the available computational resources

org.rhea_core.optimization includes some built-in optimizers for adjusting the granu-
larity of the graph

org.rhea_core.network everything associated with networking
org.rhea_core.io defines the interfaces that sources/sinks should imple-

ment
org.rhea_core.util helpful utilities needed throughout the project

5.2 Internal representation

For representing the internal structure of the dataflow graph, the JGrapht open-source
Java library was used, which provides many graph data structures and common graph-
theory algorithms[17]. The main class representing the internal dataflow graph is Flow-
Graph, which is located in the org.rhea_core.internal package.

5.3 The Strategy design pattern

In software engineering, and especially in object-oriented programming (OOP), a design
pattern is a general repeatable solution to a commonly occurring problem in software
design [18].

One such solution, the Strategy design pattern is used when a particular algorithm can
be implemented by a variety of behaviours/classes [18]. In such a case, a good idea is to
isolate the algorithm in a separate interface and allow the system to select the appropriate
instantiating classes at runtime.

Figure 12 illustrates the basic UML diagram of the strategy design pattern.

To make the system as extensible as possible, most individual critical components are
defined using the strategy design pattern (e.g. EvaluationStrategy, DistributionStrategy,
etc...) and the current implementation offers one or more default concrete strategies for
each one.

3https://github.com/rhea-flow/rhea-core
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Figure 12: Strategy design pattern

5.4 Notifications

Every value passed through the framework’s streams is wrapped inside a Notification ob-
ject, which discriminates stream values into three categories: onNext (when the stream
provides a regular value), onError (when an error occurs) and onComplete (when the
stream completes its output). This is necessary for robust error-handling (i.e. errors
need to be propagated across components/nodes) and some operators that handle finite
streams (e.g. concat).

5.5 External Input-Output

In order to make the framework easy to integrate with other stream and/or dataflow tech-
nologies, every input/output node (i.e. publisher/subscriber in the PubSub terminology
or source/sink in the dataflow terminology) should implement the interfaces that RSS de-
fines4. This also enables users to define new types of sources or sinks, in order to inte-
grate the framework with other general technologies (e.g. system events, HTTP requests,
PubSub implementations, etc).

A sink node (output) should implement the Subscriber interface, which essentially defines
three methods corresponding to reactions to a Notification, one for each of the categories
mentioned above.

A source node (input) should implement the Publisher interface, which defines a single
method subscribe(Subscriber), where a Subscriber requests the Publisher to start emitting
values.

Many existing technologies provide these interfaces, or at least adapters from their internal
representations, and therefore they are very easy to be integrated to the framework.

5.6 Evaluation

Every primitive operator corresponds to an expression implementing the Transformer in-
terface, defined in the org.rhea_core.internal.expressions package.

A complete dataflow is defined by a variable of type Stream and an object implementing
the Output interface, which can be either an Action, a Sink or a list of these.

4http://www.reactive-streams.org/reactive-streams-1.0.0-javadoc/org/reactivestreams/
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In order to evaluate a constructed dataflow graph the strategy design pattern is
used, therefore a class implementing the EvaluationStrategy interface, found in the
org.rhea_core.evaluation package, needs to be provided. An EvaluationStrategy just
takes the Stream variable and its corresponding Output and executes it, however desired.

The evaluation strategies that are provided in the current version of the framework[22] are
the following:

RxJavaEvaluationStrategy
Uses rxjava5, which is a famous and well-maintained library for asynchronous pro-
gramming using the Observable type, which is very close, semantically, to my
Stream type.

RosEvaluationStrategy
Integrates theROSmiddleware into the framework, by providing theRosTopic class,
which implements the AbstractTopic interface defined in the org.rhea_core.io pack-
age. This strategy’s job is to set up a ROS client and configure every RosTopic used
within the dataflow that needs to be evaluated to use this client. After that, evaluation
is propagated to a generic strategy (e.g. rxjava).

MqttEvaluationStrategy
Integrates the MQTT middleware into the framework, in the same way ROS is inter-
grated.

5.7 Distribution

An evaluation strategy executes the requested dataflow graph in a single machine, without
concern about distribution and resource utilization.

For distribution and cluster management, the strategy design pattern is used
again, specifically the DistributionStrategy interface, which is defined in the
org.rhea_core.internal.distribution package. Its responsibility is to take the whole
initial graph that we need to evaluate and, after adjusting its granularity (i.e. size) to fit
the available resources (see Optimization section), partition it across all computational
resources, maybe using different evaluation strategies.

5.7.1 Hazelcast

Due to the RSS being in its infant stage, no formal specification, for superimposing a
network protocol onto it (e.g. RSS over TCP), exists yet. For this reason, I relied upon the
open-source Hazelcast library[19] to discover and manage multiple machines and used
its internal decentralized PubSub model to communicate intermediate results across the
network. Figure 13 illustrates a dataflow graph on the left and the same graph partitioned
over several machines on the right, where each machine, except the last one, outputs its

5https://github.com/ReactiveX/RxJava
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result to a Hazelcast topic, from which another machine gets its input. Hazelcast topics
can immediately be used as inputs and outputs, as they implement both the Subscriber
and Publisher interface.

....1..10 ..map{ f } ..print

...

M1

..

M2

..M3 .

. ..1..10 ..topic1

..from{ topic1 } ..map{ f } ..topic2

..from{ topic2 } ..print

Figure 13: Task distribution

5.7.2 Machine configuration

According to the distribution strategy being used, the available machines will require a
certain initial configuration. For the Hazelcast case, a little piece of setup code needs to
be executed on every member of the cluster, which is together with the main Strategy
class. Moreover, helpful information can also be added at this step, such as number of
CPU cores. It is the distribution strategy’s responsibility to ensure that this information is
properly distributed and handled.

Apart from this initial configuration, the distribution strategy needs to enable members
to declare certain skills that they possess, which are required by specialized nodes. For
instance, a source node emitting values from a ROS topic must be executed on a machine
having ROS installed, in order to set up a ROS client. In the Hazelcast case, these skills
are just strings and are declared in the initialization code of each machine separately.

5.8 Serialization

As communication between machines across a network is mandatory, data types emit-
ted through the streams must be serialized on departure and de-serialized on arrival at
each machine. For this reason, each DistributionStrategy must be configured with a class
implementing the Serializer interface, define in the org.rhea_core.serialization package.
The byte representation of the objects is parametric for maximum flexibility.

A default Serializer is provided with the core system, which can serialize every class im-
plementing the Serializable interface. In addition to that, the JsonIO library[20] is used
which allows serialization of many types of classes, but still does not cover every possible
one. Figure 14 depicts the serialization process in more detail.
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...

departure

..

arrival

.. ..M1 ..materialize ..serialize . . ..de-materialize ..de-serialize ..M2

Figure 14: Serialization process

6. OPTIMIZATION
This chapter describes three stages of optimization the dataflow graph goes through be-
fore being evaluated. To aid extensibility the strategy design pattern is again used, whose
corresponding interface OptimizationStrategy resides in the org.rhea_core.optimization
package. Figure 15 illustrates the optimization stages.

... ..
initial
graph ..

Proactive
Filtering ..

Granularity
Adjustment ..

Node
Placement ..

optimized
graph

Figure 15: Optimization stages

Proactive filtering transforms the graph, by moving filters as earlier in the pipeline as pos-
sible, to achieve less data movement between nodes, which results in better performance.

Granularity adjustment fuses nodes together to dynamically resize the graph to a gran-
ularity that fits the available resources. This step follows proactive filtering, as the latter
enables many opportunities for node fusion.

Node placement decides on which of the available machines each node will be executed,
to achieve better utilization of the available resources. This is the last step, because after
deploying the nodes to the chosen machines, the structure of the dataflow graph remains
static.

Thus, the optimized graph that is the output of the above process is most likely to achieve
better performance and utilization of the available resources than the initial one.

6.1 Proactive filtering

The first optimization stage is a heuristic one, based on the fact that if a filter operation can
bemoved earlier (i.e. closer to source nodes) while preserving the original semantics, then
there will be benefit concerning computational cost and cross-machine communication
overhead. The figures below show the corresponding graph transformations.

6.1.1 Transformations

The figures below illustrate one representative example of each general class of graph
transformation
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... ..map ..take ....take ..map

Figure 16: Take/skip/distinct before map

... ..map f ..filter g ....filter f ◦ g ..map f

Figure 17: Filter before map

..

..x

..y ..concat ..filter g

..z ..

..x ..filter g

..y ..filter g ..concat

..z ..filter g

Figure 18: Filter/distinct before concat/merge

6.1.2 Example

Figure 19 illustrates the proactive filtering optimization stage, using the transformation
shown in figures 23, 18 and 16, in this order. The resulting dataflow graph have much
less data movement, leading to less computation overall, but most importantly, less com-
munication overhead, in the case it is deployed on several remote machines.

..

..x ..y ..z

. ..concat

. ..map f

. ..filter g

. ..take ..

..x ..y ..z

..filter f ◦ g ..filter f ◦ g ..filter f ◦ g

. ..concat

. ..take

. ..map f

Figure 19: Proactive filtering example

6.2 Granularity adjustment

Different nodes of the dataflow graph will be executed on a separate thread/process.
The fact that graphs can grow very big, for instance when programming a big swarm
of millibots[21], poses a problem when available computational resources are limited. For
this reason, the second optimization stage tries to adjust the granularity of the dataflow
graph to a desired value, which is the number of available threads amongst all machines.
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6.2.1 Transformations

To reach the desired granularity, the optimizer applies some semantic-preserving trans-
formation, as shown in the figures below (for simplicity, only a single example of each
general case is demonstrated).

....map f ..map g ....map f ◦ g

Figure 20: Merge maps

....from {L} ..map f ....from {L.stream.mapf}

Figure 21: Embed map in creation

....from {L} ..repeat n ....from {L.repeat(n)}

Figure 22: Embed repeat in creation

....map f ..filter g ....filterMap {f,g}

Figure 23: Combine map with filter

....filter p1 ..exists p2 ....exists p1 ∧ p2

Figure 24: Combine filter with exists

....map f ..exists g ....exists f ◦ g

Figure 25: Combine map with exists

..

..map f1

. ..zip g(x, y)

..map f2

....zip g(f1(x), f2(y))

Figure 26: Combine map with zip
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....zip f ..map g ....zip f ◦ g

Figure 27: Combine zip with map

..

..never

. ..concat

..x

....never

Figure 28: Meaningless nevers

In figure 20 we merge two map operations into one map operation that uses the composi-
tion of the two initial functions, while in figures 21 and 22 we utilize Java’s built-in stream
operators on its collections, namelymap and repeat. In figure 23 amap followed by a filter
is substituted by a more complex equivalent operation, namely filterMap, while in figures
24 and 25 we apply some simple properties of the boolean functions involved to decrease
the number of nodes. In figures 26 and 27 we utilize function composition to embed map
operations into zip operations. Lastly, in figure 28 we remove sub-graphs that are not
reachable, due to never operations.

6.2.2 Example

Figure 29 illustrates how a dataflow graph of granularity equal to 9 is optimized for exe-
cution on a quad-core computer, by applying transformation shown in figures 22, 20, 26
and 27, in this order. The resulting graph has much lower overhead, caused by thread
switching, due to the fact that it takes into account the number of threads available at
runtime.

..

..from L . ..from

..repeat . ..map f2

..map f1 . ..map f3

. ..zip g(x, y)

. ..map h

. ..display

..

..
from

L.repeat . ..from

. ..zip gf1,f2 ◦ h

. ..display

Figure 29: Granularity adjiustment example
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6.3 Node placement

After the first two passes, we have an optimized dataflow graph with fine-tuned granularity.
At this stage, nodes are mapped to tasks and are deployed across the available machines.

If the desired granularity has not been reached yet, the DistributionStrategy applies fusion
to pairs of tasks until it reaches it, as shown in figure 30.

....op1 ..op2 ..op3 ..op4
...

Task1

..

Task2

...op1 ..op2 ..op3 ..op4

Figure 30: Task fusion

The final decision to be made is where each of these newly constructed tasks will be
executed, although some of them need to necessarily be placed on specific machines
with certain skills.

Apart from these hard constraints, we need to minimize communication overhead. For this
purpose, the strategy design pattern is again used, namely the NetworkProfileStrategy
that is defined in the org.rhea_core.distribution package. Its responsibility is to calculate
a network distance between each pair of available machines, which is fed as input to the
NodePlacement optimizer.

At this stage, we identify the aforementioned network distance as cost and apply brute-
force to find the optimal placement of the (groups of) tasks that minimize that cost.
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7. APPLICATIONS
This chapter will demonstrate some use-cases of the framework, which can be found in
the framework repository[22]. At first, a mathematical example is shown, which is followed
by three robotic applications.

7.1 Hamming numbers

Consider the problem of enumerating the Hamming numbers, which are generated by the
mathematical formula H = 2i3j5k, where i, j, k ∈ N. There is an intuitive dataflow solution
to the above problem, taken from the book of Lucid, which is the first functional dataflow
language[23]. Figure 31 shows the dataflow graph on the left and the correspondingRHEA
code on the right.

..

. ..
merge
sort ..x3 ..x2

. ..
merge
sort ..x5

..from 1 ..concat

. .. .. ..

. ..H

1 Stream.just(1)
2 .loop((entry: Stream[Int]) =>
3 (entry.multiply(2) mergeSort entry.multiply(3))
4 mergeSort
5 entry.multiply(5) : Stream[Int])
6 .distinct
7 .print
8

9 class IntStream(stream: Stream[Int]) {
10 def multiply(constant: Int): Stream[Int] =
11 stream.map(i => i * constant)
12

13 def mergeSort(other: Stream[Int]): Stream[Int] = {
14 val queue = new PriorityQueue[Int]()
15 Stream.zip(stream, other, (x, y) => {
16 val min: Int = Math.min(x, y)
17 val max: Int = Math.max(x, y)
18 queue.add(max)
19 if (min < queue.peek())
20 min
21 else {
22 queue.add(min)
23 queue.poll()
24 }})
25 .concatWith(Stream.from(queue))
26 }
27 }
28 implicit def enrichStream(st: Stream[Int]): IntStream =
29 new IntStream(st)

Figure 31: Hamming numbers

The code is written in Scala to utilize the Pimp my library design pattern[24], which is used
to easily add new functions to already existing libraries, using Scala’s implicit conversions
(line 28). In the example above, we define two new Stream operators, namely multiply
(line 10), which just multiplies the stream with a constant, and mergeSort (line 13), which
produces an ordered stream given two ordered streams as input. We also see the power
of the loop operator (line 2), which allows us to define cycles in an effortless manner.
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7.2 Camera surveilance

Moving to a more realistic, but still minimal, use-case, this example demonstrates how
cleanly we can express a surveillance application from a robot’s camera.

The camera should send frames to be displayed on the screen, only when motion is de-
tected. Figure 32 shows the dataflow graph on the left and the corresponding RHEA code
on the right.

..

..camera

..convert ..first ..repeat

. ..zip

. ..sample

. ..timeout

. ..
filter

{motion}

. ..
map

{getLeft}

. ..showImage

1 Stream.configure(new HazelcastDistributionStrategy(
2 RxjavaEvaluationStrategy::new,
3 RosEvaluationStrategy::new,
4 ));
5

6 Stream<Mat> image =
7 Stream.from(new RosTopic<>(”/camera”))
8 .map(CvImage::toCvCopy);
9

10 Stream<Mat> initial = image.first().repeat();
11

12 Stream.zip(image, initial, Pair::new)
13 .sample(100, TimeUnit.MILLISECONDS)
14 .timeout(1, TimeUnit.MINUTES)
15 .filter(Surveillance::motionDetected)
16 .map(Pair::snd)
17 .subscribe(window::showImage);
18

19 boolean motionDetected(Pair<Mat,Mat> pair) {
20 Mat m1 = pair.getLeft(), m2 = pair.getRight(), m = new Mat();
21 Core.absdiff(m1, m2, m);
22 Imgproc.threshold(m, m, 80, 255, Imgproc.THRESH_BINARY);
23 Imgproc.erode(m, m, Imgproc.MORPH_RECT(3,3));
24 for (int i = 0; i < m.rows(); i++)
25 for (int j = 0; j < m.cols(); j++) {
26 double[] pixel = m.get(i, j);
27 double sum = pixel[0] + pixel[1] + pixel[2];
28 if (sum > 50) return true;
29 }
30 return false;
31 }

Figure 32: Camera surveillance

In the code above, we can see how easy it is to view a ROS topic as a stream, using
the RosEvaluationStrategy (line 3). Moreover, there is a nice separation between pro-
gram logic (stream declaration in lines 6-17) and implementation details (motionDetected
function in line 19).

7.3 Robot control panel

This application concerns real-time monitoring of a robot, that is publishing its information
and sensor-data to ROS topics, through a graphical user interface (GUI).
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The /camera/rgb topic provides the frames of the robot’s camera as coloured images, while
the /camera/depth provides frames that provide depth information. The /tf topic publishes
parent-child relations of the internal topics of the robot’s configuration, and finally the /scan/
topic provides information from the robot’s laser that gives horizontal depth information in
polar coordinates.

The GUI displays the laser data embedded on the camera stream, while allowing for real-
time face detection. Additionally, it displays the depth frames and the tf relations as a
tree. Finally, a mock-up battery bar is displayed to show-case the framework’s ability for
simulation. Figure 33 illustrates the dataflow solution to the above problem on the left and
the corresponding RHEA code on the right.

..

..laser

..camera ..depth ..tf ..interval

..convert ..toGray ..take ..map

..sample ..sample ..collect ..
display
battery

..
face
detect ..

display
depth ..

display
TF

..
zip

{embed}

..
display
RGB

1 Stream<LaserScan> laser =
2 Stream.from(new RosTopic<>(”/scan”));
3 Stream<Mat> image =
4 Stream.<Image>from(new RosTopic<>(”/camera/rgb”))
5 .map(CvImage::toCvCopy)
6 .sample(100, TimeUnit.MILLISECONDS)
7 .map(this::faceDetect);
8 Stream.zip(laser, image, this::embedLaser)
9 .subscribe(viz::displayRGB);
10 Stream.from(new RosTopic<>(”/tf”))
11 .take(50)
12 .collect(HashMap::new, (m, msg) -> {
13 List<Transform> transforms = msg.getTransforms();
14 for (Transform transform : transforms) {
15 String parent = transform.getHeader().getFrameId();
16 String child = transform.getChildFrameId();
17 if (!m.containsKey(parent)) {
18 Set<String> init = new HashSet<>();
19 init.add(child);
20 m.put(parent, init);
21 }
22 else m.get(parent).add(child);
23 }})
24 .subscribe(viz::displayTF);
25 Stream.<Image>from(new RosTopic<>(”/camera/depth”))
26 .map(this::toGray)
27 .sample(100, TimeUnit.MILLISECONDS)
28 .subscribe(viz::displayDepth);
29 Stream.interval(2, TimeUnit.SECONDS)
30 .map(v -> (100 - v) / 100.0)
31 .subscribe(viz::displayBattery);

Figure 33: Robot control panel

The implementation details (i.e. the visualization class and methods faceDetect(line 7),
embedLaser(line 8) and toGray(line 26)) are not shown for brevity’s sake. It is evident
that this model of programming encourages a clean separation of concerns between the
individual components, namely between the sensor data manipulation and the actual vi-
sualization on the GUI.
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7.4 Robot hospital guide

As a final example, we will examine a more IoT-based application. Consider a robot that
guides patients to different parts of a hospital, such as the gym or cafeteria. Assuming
map localization , path finding and obstacle avoidance are already implemented, there still
remains a problem with calibrating the robot’s speed according to the patient’s status.

To keep tract of the patient’s distance from the robot, each patient carries a smart-phone
that acts as a bluetooth low-energy (BLE) beacon. The robot uses its bluetooth receiver to
publish the distance from the signal source to an MQTT topic, which is then transformed
by our stream application to velocity commands for the robot, in the form of slowing down
or speeding up.

The first module constitutes the main program logic, where a declared dataflow graph acts
as a stream transformation from beacon information to velocity commands to the robot.
Figure 34 shows the dataflow graph on the left and the corresponding RHEA code on the
right.

..

.. ..BLE ..

..
filter
{near} . ..

filter
{far}

..
map

{speed_up} . ..
map

{slow_down}

.. ..
robot

command ..

1 Stream.configure(new HazelcastDistributionStrategy(
2 RxjavaEvaluationStrategy::new,
3 RosEvaluationStrategy::new,
4 MqttEvaluationStrategy::new
5 ));
6

7 Topic<RobotCommand> vel =
8 new RosTopic<>(”/robot/cmd”);
9

10 Stream<Proximity> ble =
11 Stream.from(new MqttTopic<>(”/ble”));
12

13 ble.filter(Proximity::isNear)
14 .map(d -> Commands.SPEED_UP)
15 .subscribe(vel);
16

17 ble.filter(Proximity::isFar)
18 .map(d -> Commands.SLOW_DOWN)
19 .subscribe(vel);

Figure 34: Robot hospital guide

The second module just uses the ReactiveBeacons library6 to get a stream of beacon
data via rxjava, and then publishes it to a MQTT topic, which is the input of the first
module. The corresponding RHEA code follows:

1 Stream.configure(new HazelcastDistributionStrategy(
2 RxjavaEvaluationStrategy::new,
3 MqttEvaluationStrategy::new

6https://github.com/pwittchen/ReactiveBeacons
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4 ));
5

6 Stream.from(ReactiveBeacons.observe())
7 .map(Beacon::getProximity)
8 .subscribe(new MqttTopic<>(”/ble”));

This example clearly show-cases the framework’s ability to combine different technologies
and act as a high-level, declarative coordination language.
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8. RELATED WORK
This section discusses related work in the fields of Big Data, Robotics and IoT.

8.1 Big Data

The necessity for implicit parallelism and distribution of more and more applications, deal-
ing with huge and/or complex data, has brought increasingly more attention to the dataflow
programming model. The main reason many frameworks have adopted it, is the high level
of abstraction it provides with its declarative approach, making it simple to structure and
maintain a complex system, while at the same time not losing its expressive power.

8.1.1 MapReduce

MapReducewas developed byGoogle and provides a very simplemodel, and correspond-
ing runtime, that allows automatic concurrency/distribution on a cluster by allowing only a
very minimal program structure. First, the user specifies a map function that processes
a key/value pair to generate a set of intermediate key/value pairs, and a reduce function
that merges all intermediate values associated with the same intermediate key. Although
it was widely adopted at first, quickly many problems that could not be expressed with the
above formalism were found and therefore a more expressive model was required.

8.1.2 Flumejava

A generalization of theMapReduce framework is FlumeJava, again developed by Google,
which tries to overcome its MapReduce’s shortcomings, by allowing more expressive
pipelines consisting of multiple MapReduce stages. Additionally, FlumeJava provides
some more abstract operations that, when evaluated, are compiled into primitive MapRe-
duce steps.

Although FlumeJava was more attractive due to its expressibility, still the pipeline con-
structed could not formulate all problems that are needed in many big-data applications.
For instance, the constructed dataflow could not contain cycles, which is an integral part
of incremental computation, used extensively nowadays for machine learning and data
analysis.

8.1.3 Spark

A very well-known and well-adapted framework for scalable large-data processing is
Apache’s Spark[25]. Although not a dataflow framework, it was developed to overcome
the shortcomings of the MapReduce, similar to FlumeJava, by providing a much more
efficient and flexible runtime.

It follows the same general approach as RHEA, in the sense that it is completely generic

Orestis Melkonian 44



RHEA: A Reactive, Heterogeneous, Extensible and Abstract Framework for Dataflow Programming

and encourages domain-specific libraries to be built upon it. For instance,MLib7 is a library
for machine learning and GraphX8 is a library for iterative graph algorithms, both stacked
upon Spark.

It offers a rich set of data-parallel operators (≃ 80) that can be used interactively from
Scala, Python, Java or R. The code below shows the classic word-counting example in
Spark’s Scala API.

1 Spark.textFileStream(”hdfs://...”) /* Get file stream */
2 .flatMap(_.split(” ”)) /* Split into words */
3 .map(x => (x, 1)).reduceByKey(_ + _) /* Count words */

8.1.4 Cloud Dataflow

Continuing the search for more expressive models, Google recently released the Cloud
Dataflow framework[26], which is an evolution of FlumeJava[27], allowing cycles and
therefore incremental computation.

It is a completely domain-agnostic dataflow framework integrated with many other closely-
related technologies from Google9, like Cloud Storage, Cloud PubSub, Cloud Datastore,
Cloud Bigtable and BigQuery.

It is open-source, offers fully automatic resource management that auto-scales for optimal
throughput and provides increased reliability and data consistency. Moreover, it provides
a unified programming model through its API, while allowing data monitoring and demand-
driven execution.

In contrast to RHEA, graphs constructed by Cloud Dataflow are designed to be deployed
only on cloud infrastructures, and therefore no support for complete heterogeneity is pro-
vided. In terms of network optimization, namely node placement, Cloud Dataflow lets the
cloud system targeted to make all decisions, while RHEA profiles the network and decides
autonomously.

8.1.5 Stratosphere

In contrast to the, more or less, imperative approach of all preceding frameworks, which
enables automatic distribution/concurrency by using immutable data structures. On the
other hand, Stratosphere[28], like RHEA, follows a declarative programming approach
which enables writing highly parallel code directly from the language’s semantics.

Apart from offering a language of a much higher abstraction level, Stratosphere has in-
7http://spark.apache.org/mllib/
8http://spark.apache.org/graphx/
9https://cloud.google.com
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ternalised several interesting and novel approaches to optimization of dataflow graphs,
especially concerning cyclic graphs (i.e. incremental computation)[29]. These optimiza-
tions are generic, in the sense that most frameworks can adopt them without much effort.
Integrating these optimization into RHEA, as future work, would certainly be of great ben-
efit to the performance of the system.

8.1.6 Naiad

Another high-level dataflow system that follows a declarative approach similar to RHEA is
Naiad, which unifies incrementally iterative computations with continuous data ingestion
into a new technique called differential computation.

Offering the high throughput of batch processors, the low latency of stream processors and
the ability to perform iterative and incremental computations at the same time is extremely
challenging and none of the aforementioned frameworks manage to provide it. Applica-
tions that need all these features need to rely on multiple platforms, at the expense of
efficiency, maintainability and simplicity.

Naiad[30] combines all of these features in a unifying framework, that provides a generic
low-level platform, that a wide variety of high-level programming models can be built upon,
enabling such diverse tasks as streaming data analysis, iterative machine learning, and
interactive graph mining.

Its main contribution is the definition of a new computational model, namely the Timely
Dataflow model, which is an extension to the dataflow model I introduced in the first chap-
ter, by allowing a more efficient and lightweight coordination mechanism for capturing
opportunities for parallelism. This is achieved by enriching the dataflow model with times-
tamps that represent logical points in the computation.

Figure 35 shows aNaiad application that supports real-time queries on continually updated
data.

Figure 35: Naiad application
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8.1.7 Akka

Definitely one the most mature frameworks for distribution targeting the JVM, Akka[31]
is a toolkit and runtime for highly concurrent, distributed and resilient message-driven
applications. It is also one of the founders of the Reactive Streams[14] initiative.

Its approach follows the Actor model[32], where one perceives abstract computational
agents, called actors, that are distributed in space and communicate with point-to-point
messages that are buffered in a queue. In reaction to a message, an actor can create
more actors, make local decisions, send more messages and determine how to respond
to the next message received.

Similar to the problem of ROS that my framework solved, which is the inappropriate na-
ture of callbacks for complex scenarios, Akka developers also felt the necessity for a
more flexible and composable programming model, so they developed the AkkaStreams
library10 which provides a convenient API for stream processing and also dataflow graph
construction with an interesting DSL. Figure 36 demonstrates a dataflow graph on the left,
generated by the DSL code on the right.

....in ..bcast ..merge ..out.
f1

.

f2

.

f4

. f3

1 val g = FlowGraph { implicit b =>
2 import FlowGraphImplicits._
3 val in = Source(1 to 10)
4 val out = Sink.ignore
5 val bcast = Broadcast[Int]
6 val merge = Merge[Int]
7 val f1, f2, f3, f4 = Flow[Int].map(_ + 10)
8 in ~> f1 ~> bcast ~> f2 ~> merge ~> f3 ~> out
9 bcast ~> f4 ~> merge
10 }

Figure 36: Akka DSL

The main reason RHEA offers a more flexible solution to ROS shortcomings than Akka, is
that Akka is a pretty heavyweight library, and consequently may prove over-abundant for
simple use-cases. On the other hand, RHEA offers the ability to choose between several
EvaluationStrategies to match your application’s needs, therefore a simple application
would just use a lightweight library like rxjava.

8.1.8 dispel4py

A less-known framework for Python is dispel4py[33]. It provides the ability to describe
abstract workflows for distributed data-intensive applications.

Similar to my EvaluationStrategy concept, it allows different mappings to enactment sys-
tems, such as MPI[34] and Apache Storm[35].

10http://doc.akka.io/docs/akka-stream-and-http-experimental/1.0-M2/scala.html
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Its main disadvantages are that it has only an API for Python and only allows low-level
specification of the graph’s nodes, through the definition of Processing Elements. There-
fore, it is inconvenient to compose larger graphs from simpler ones and the source code
becomes chaotic and difficult to maintain.

8.2 Robotics

It is only natural that the dataflow model would make its way through the field of robotics,
as many behaviours in control theory are expressed as dataflow diagrams.

8.2.1 roshask

Roshask[36] is a binding from the Haskell programming language to the basic ROS inter-
faces. Like RHEA, the approach is to overcome the shortcomings of ROS callbacks by
viewing topics as streams. This allows for, and encourages, a higher level of abstraction
in robot programming, while making the fusing, transforming and filtering of streams fully
generic and compositional.

Below is the classic Talker-Listener ROS example, where one node publishes messages
to a topic and another one listens for them.

1 sayHello :: Topic IO S .String
2 sayHello = repeatM (fmap mkMsg getTime)
3 where mkMsg = S .String . (”Hi ”++) . show
4

5 tn :: Node ()
6 tn = advertise ”chatter” (topicRate 1 sayHello)
7

8 main :: IO ()
9 main = runNode ”talker” tn
10

11 showMsg :: S .String -> IO ()
12 showMsg = putStrLn . (”Msg: ”++) . S.data
13

14 main = runNode ”listener” $
15 runHandler showMsg = << subscribe ”chatter”

8.2.2 Yampa

RHEA and roshask were heavily influenced by the work of Hudak’s group (Yale Haskell
Group) on robot DSLs and FRP in general[1, 5, 6, 7, 3, 4].
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Yampa[37] is a DSL embedded in Haskell that realizes the FRP model, using arrows to
minimize time-/space- leaks. Figure 37 shows the primitive stream operators that are
supported.

Figure 37: Yampa operators

8.2.3 Flowstone

Flowstone[38] is a programming environment that mixes graphical and text based pro-
gramming in Ruby that can be used for robotics, image/signal processing and intercon-
necting heterogeneous sources. It follows a variant of the dataflow model, where applica-
tions are built by linking together functional blocks called components. Figure ?? shows
a screenshot of the graphical environment, where we discern both graphical and textual
elements.

Figure 38: Flowstone screenshot

Its main advantage is that it is stand-alone, so no compiling is necessary, which allows for
rapid prototyping.
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8.3 Internet of Things

IoT applications often deal with much heterogeneity, due to the variety of sources that
different devices introduce. Therefore, a component-based approach suits well to solve
this problem and there are some dataflow frameworks that follow that approach.

8.3.1 NoFlo

NoFlo[39] is a JavaScript implementation of Flow-based Programming[40], which is a par-
ticular form of dataflow programming, based on bounded buffers, information packets with
defined lifetimes, named ports and separate definition of connections.

NoFlo applications consist of components that are connected together in a graph. This
allows for clear separation of control flow from the actual software logic, helping you or-
ganize large applications easier than traditional OOP paradigms.

You can design NoFlo applications using a web-based graph editor11, which is depicted
in figure 39.

Figure 39: NoFlo graph editor

8.3.2 Node-RED

Another interesting IoT tool for JavaScript following a dataflow approach isNode-RED[41],
which is a visual tool for wiring together hardware devices, APIs and online services in new
and interesting ways.

Applications called flows, are built immediately on a browser, and can be deployed on the
11https://flowhub.io/
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Cloud with just a single click. The main advantage of this tool is that it encourages social
development, due to the fact that flows are stored in JSON format, which can be easily
imported and exported for sharing with others. The online flow library12 has had a huge
number of contributions so far. Figure 40 shows a screenshot of the editor.

Figure 40: Node-RED graph editor

8.4 Dataflow programming in other domains

8.4.1 TensorFlow

Another dataflow framework from Google is TensorFlow[42], which is an open-source
polyglot library for machine learning and especially construction of neural networks.

The interesting fact is that, although it started out as a rigid neural network library, it
quickly generalized to a dataflow construction library, much similar to my own project,
which started out as a robotics library.

Its main features are its portability to multiple computational architetures (e.g. CPU, GPU,
etc...) and multiple language APIs (e.g. C++, Python), although its main advantage are its
domain-specific operators for neural nets (i.e. common subgraphs, auto-differentiation).

Through the edges/streams connecting the nodes, only a single but flexible data type
is allowed, namely the Tensor type, which essentially is a multi-dimensional array that
usually represents features or weights. In contrast to RHEA’s Streams, Tensors cannot

12http://flows.nodered.org/
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be infinite, mainly due to the fact that their size is determined by the dimensionality of the
problem being solved, which is, in most cases, a fixed constant.

Figure 41 illustrates a neural network as a dataflow graph.

Figure 41: TensorFlow graph

8.4.2 Ziria

The dataflow computational model also found applications in the field of wireless systems
programming, particularly in the domain of software-defined radio (SDR).

Ziria[43] is a DSL that offers programming abstractions suitable for wireless physical (PHY)
layer tasks while emphasizing the pipeline reconfiguration aspects of PHY programming.
Ziria also implements many specialized optimization steps that enable it to be on par and
in many cases outperforms a hand-tuned state-of-the-art C++ implementations on com-
modity CPUs.
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9. FUTURE WORK
This section discusses interesting topics and ideas for future contribution and extension
of the framework.

9.1 More strategies

Every component that was initially intended to be replaceable for the sake of flexibility,
was implemented using the strategy design pattern. So the definite starting point for con-
tribution would be to implement more concrete strategies.

For evaluation, a good idea would be a low-level implementation in C/C++ to allow compat-
ibility with older/smaller systems, not capable of running the JVM. Additionally, more JVM-
based strategies are possible, by using the standard java.util.Stream library[16], Akka
Streams or Scala Iteratees[44].

For distribution, again a more low-level approach written in C/C++ (e.g. using
MPI/OpenMP) would be beneficial to the variety of systems that are allowed to cooperate
freely. Moreover, many frameworks similar to Hazelcast could replace it to allow for easy
integration with applications that are already committed to another framework.

9.2 Dynamic reconfiguration

A definite shortcoming of RHEA is that all configuration takes place initially and remains
static throughout execution. This poses a problem for many scenarios, where environment
is constantly changing and available resources may be introduced or become obsolete.

For instance, in a distributed application that controls the behaviour of a robot swarm and
all communication is done through awireless local area network (WLAN), a robot may lose
signal and become unavailable at runtime. Later on it may rejoin the network, so it is vital
that its sensor input and computational power become quickly available to the system. A
nice DSL that is used to specify adaptive behaviour in robot navigation can be found on
[45].

Apart from robotics, the need for adaptive behaviour of software systems has been evident
for a long time[46]. There have also been attempts for runtime adaptation of, specifically,
stream processing systems, such as the Flextream framework[47].

A JVM-based technology that is relatively easy to integrate into RHEA is HotWave[48],
which is an aspect-oriented programming (AOP) framework, based on the famous As-
pectJ[49] open-source extension of Java, that supports dynamic (re)weaving of previously
loaded classes, and ensures that all classes loaded in a JVM can be (re)woven. The con-
tribution idea here is to integrate HotWave into the org.rhea_core package and then use
it to specify the desired adaptive behaviour for reconfiguring where nodes are executed,
what operation they perform, and so forth.
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9.3 Advanced network profiling

The current strategy for network profiling is based on round-trip time (RTT) which is mea-
sured explicitly by pinging from each machine to every other one. As the number of ma-
chines increase, calculating the RTT becomes extremely expensive and may outweigh
the benefits of exploiting network proximity.

To overcome the aforementioned problem, one could estimate, instead of measuring ex-
actly, the RTT with less computationally expensive methods. There has been extensive
research on RTT estimation for peer-to-peer (P2P) networks[50]. Most of the methods
proposed suffer from the constraint that estimation is calculated on a single machine,
therefore introducing a central point of failure. This is highly unsuited for distributed sys-
tem, where a decentralized approach should be used. One such attractive approach is
the Vivaldi coordinate system[51], which is a simple and lightweight algorithm that as-
signs synthetic coordinates to hosts such that the distance between the coordinates of
two hosts accurately predicts the communication latency between them. The algorithm is
completely decentralized (i.e. the same piece of code runs on every host) and experiments
show that it achieves a median relative error of 11%, where the error is characterised by
the squared-error function:

E =
∑
i

∑
j

(Lij − ||xi − xj||)2

where Lij is the actual RTT between nodes i and j and ||xi − xj|| is the euclidean distance
between their coordinates.

9.4 Advanced fault-tolerance

An aspect that RHEA is far behind from most of its competing frameworks is fault-
tolerance. Although there is a minimal control on back-pressure, available through the
small provided set of such operators, still there are no advanced methods for specifying
behaviour for graceful error-recovery.

The above is essential for large machine clusters, in which systems it is certain that
host failures and other faults will be a common occurrence. The functional nature of the
dataflow model enables fault-tolerance, in addition to parallelism, due to the fact that a
node can be moved to another machine for execution, while preserving the original se-
mantics.

The extension proposed is to first provide low-level functionality for moving nodes across
the network at runtime, and then use that to design high-level error recovery mechanisms.
The issue confronted here is that, at the current state of the system, everything is con-
figured statically before evaluation. To enable runtime configuration, it is mandatory to
refactor major internal components, as previously noted.
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This contribution path can draw heavy influence from recent research on fault-tolerance
for stream processing engines[52, 53, 54]. These provide efficient models for availability
and data recovery/consistency, by using data replication and even parallel recovery of lost
state across the cluster.

9.5 Integration with other technologies

An issue that should not be neglected is interoperability with other dataflow frameworks
mentioned throughout this thesis. Although the usage of RSS partly aids that cause, not
all frameworks for the JVM support it, especially older ones, and is practically useless
concerning non-JVM frameworks.

A nice idea would be an ExportStrategy that provides a one-to-one mapping between dif-
ferent dataflow representations. For instance, the NodeRedExportStrategy would export
a single JSON file ready to be imported into Node-RED and deployed immediately. An
issue that quickly arises is that of expressibility, meaning that the target platform should
be at least as expressible as RHEA. This can be solved by providing a mechanism/DSL
to specify restricted views of the Stream class, which allow for a subset of the original
operation set.

9.6 Visual language

The dataflow programming model also provides a very intuitive graphical representation
to the structure of the software system being implemented. Thus, a helpful tool would
be a graphical environment, where graph construction can be achieved through the user
interface and delegate only the stream declaration part to a text editor. Another useful
functionality would be clustering together sub-graphs by zooming out to provide clarity in
complex systems.

Another useful utility is to provide visual debugging support, so as to be able to monitor
values and errors going through the streams real-time or by playing back the recorded
actions. Moreover, if dynamic reconfiguration is supported, the visual debugger could
display where each node is being executed at each moment in time and other relative
information.

9.7 Stream reasoning

A very helpful extension to any dataflow framework is the ability to reason about, in formal
logic, the ever-changing streams of data. This creates the need for a new formal logic
that is able to capture this flowing notion, which has also troubled the new Semantic Web
field[55]. Fortunately, various sound and efficient logic formalisms have been conceived
recently[56, 57].

Stream reasoning has also been researched in the robotics domain[58], which led to the
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development of a stream reasoning framework for ROS called DyKnown[59]. Integrating
DyKnow with RHEA, as they both can support ROS, would certainly be a meaningful
contribution. Figure 42 shows the general architecture of the DyKnow framework.

Figure 42: DyKnow architecture
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10. CONCLUSIONS
The framework described in this thesis was designed with extensibility in mind, aiming
to act as a fundamental basis, onto which various domain-specific libraries or DSLs will
rely in the future. To that end, a constant effort to generalize and make components as
abstract as possible was made.

The set of operators aided expressibility, making it possible to specify any dataflow graph
in a concise and readable manner. This disallowed optimizations suitable for less expres-
sive models (e.g. Map-Reduce), but recent research has shown that general dataflow
topologies have optimization opportunities that are yet to be found[60]. A minimal opti-
mization stage has been implemented, which paves the path to more advanced optimiza-
tion techniques, such as those used in Naiad[30] and Stratosphere[61].

Figure 43 illustrates all the pluggable components of the framework around the core, which
are normally deployed in separate libraries.

..RHEA.

evaluation

.

optimization

.

distribution

.

serialization

. network
profiling

Figure 43: The RHEA ecosystem

The applications demonstrated the framework’s ability to provide a higher level of ab-
straction, where the language only specifies how different components coordinate, without
knowledge of the implementation details. This is exactly what Ziria accomplishes in the
domain of wireless systems programming[43]. The driving force for both frameworks (i.e.
RHEA and Ziria) is that some specific domains have fixated their methods on low-level
programming, whereas more satisfactory paradigms can solve many shortcomings.

This is a general notion in computer science, owning its existence to the fact that the prob-
lems we are facing are getting increasingly more complex, while resources meet certain
realistic bounds, and therefore a higher abstraction layer is mandatory for maintaining
readability, efficiency and expressibility.

Orestis Melkonian 57



RHEA: A Reactive, Heterogeneous, Extensible and Abstract Framework for Dataflow Programming

ABBREVIATIONS, INITIALS AND ACRONYMS
A table of all abbreviations used throughout the thesis follows.

FRP Functional Reactive Programming
JVM Java Virtual Machine
NCSR National Centre for Scientific Research
ROS Robot Operating System
IoT Internet of Things
CPU Central Processing Unit
TCP Transmission Control Protocol
PubSub Publish/Subscribe
OOP Object-oriented Programming
UML Unified Modelling Language
GPU Graphics Processing Unit
DSL Domain-specific Language
RSS Reactive Streams Standard
API Application Programming Interface
MPI Message Passsing Inteface
JSON JavaScript Object Notation
RTT Round-Trip Time
P2P Peer-To-Peer
AOP Aspect-Oriented Programming
GUI Graphical User Interface
WLAN Wireless Local Area Network
SDR Software-defined Radio
AST Abstract Syntax Tree
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APPENDIX: COMPLETE SET OF STREAM OPERATORS
This section displays the set of primitive operators, from which all the available stream
operators are derived. Type information is not shown for the sake of readability, but all
operations are type-safe.

In the marble diagrams on the right, circles represent onNext notifications, green bars
onComplete and red x signals an onError.

Creation

The following operators act as source nodes in the dataflow graph.
from (Iterable i)

inputs: none
output: i as a stream ...

from[1,2,3]

. 1. 2. 3

fromSource (Source s)
inputs: none
output: the values emitted by s

interval (TimeInterval t)
inputs: none
output: the natural numbers emit-
ted every t

...

interval 1s

. 0. 1. 2

empty
inputs: none
output: an empty stream ...

empty

never
inputs: none
output: a stream that emits no no-
tification

...

never

repeat (int n)
inputs: single
output: repeats the values of the
input stream n times, or infinitely
if n < 0

.....

repeat 2

....

defer (f : () → Stream)
inputs: none
output: the stream generated by
the given stream factory f
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Combining

The following operators combine multiple streams to produce another one.

merge
inputs: many
output: merges the input streams
and completes as soon as any of
them completes .......

merge

...

concat
inputs: many
output: concatenates the input
streams in the given order

......

concat

...

zip (f : A1...An → B)
inputs: many
output: zips the input streams
with the given function f

..

1

.

2

.

1

.

2

.

3

..

zip {x+ y}

. 2. 4

Filtering

The following operators filter the values emitted by another stream.

filter (f : A → Boolean)
inputs: single
output: emits only values i of the
input stream, where f(i) = true .......

filter { not red }

..

filterMap (f: A → B, g: B → Boolean)
inputs: single
output: emits only values f(i) of
the input stream the, where (f ◦
g)(i) = true

distinct
inputs: single
output: removes all duplicate val-
ues of the input stream .......

distinct

...
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take (int n)
inputs: single
output: extracts the first (last) n
values of the input stream, if n >

0(< 0)
......

take 2

..

skip (int n)
inputs: single
output: skips the first (last) n val-
ues of the input stream, if n > 0(<
0)

......

skip 2

.

Conditional

The following operators behave depending on some conditions on their input stream

amb
inputs: many
output: emits the values of one its
input streams, whichever emits a
value or terminates first ........

amb

...

exists (f : A → Boolean)
inputs: single
output: returns True, if the input
stream contains a value i, where
f(i) = true and False otherwise

.......

exists { is red }

. true

takeUntil (Stream s)
inputs: single
output: extracts values of the in-
put stream, until stream s emits a
value

skipUntil (Stream s)
inputs: single
output: skips values of the in-
put stream, until stream s emits a
value
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takeWhile (f : A → Boolean)
inputs: single
output: extracts values of the in-
put stream until a value i is emit-
ted, where f(i) = false

.......

takeWhile {is red}

..

skipWhile (f : A → Boolean)
inputs: single
output: skips values of the input
stream until a value i is emitted,
where f(i) = false

.......

skipWhile { is red }

..

Transformational

The following operators transform their input stream
map (f : A → B)

inputs: single
output: transforms the input
stream by applying function f to
every value emitted

..

1

.

2

.

3

..

map {x = x+ 1}

. 2. 3. 4

scan (B seed, f : B× A → B)
inputs: single
output: transforms the input
stream by sequentially applying
function f to every value emitted
and emitting each result along the
way

..

1

.

2

.

3

..

scan {x+ y}

. 1. 3. 5

buffer (int n)
inputs: single
output: packs together every n
values of the input stream into a
single List item

.......

buffer 2

......

buffer (TimeInterval t)
inputs: single
output: packs together values of
the input stream emitted every t
into a single List item
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Feedback

This operator enables cycles in the dataflow graph.
loop (f : Stream → Stream)

inputs: single
output: attaches a sub-graph to
the input stream’s output, whose
result acts as feedback to the at-
tachment point

..

1

..

loop {s → s.map(+1)}

. 1. 2. 3

Error-handling

The following operators are a mean to handle errors.
onErrorResume (Stream s)

inputs: single
output: mirrors the input stream,
but instead of emitting an onError
Notification when an error occurs,
continues emitting values of the
given stream s

onErrorReturn (f : Throwable → A)
inputs: single
output: mirrors the input stream,
but instead of emitting an onError
Notification when an error e oc-
curs, emits the value f(e) followed
by a onComplete Notification

..

1

.

2

..

onErrorReturn 3

. 1. 2. 3

retry (int n)
inputs: single
output: mirrors the input stream,
but instead of emitting an onError
Notification when an error occurs,
resubscribes to it n times if n > 0,
infinitely otherwise

Backpressure

The following operators specify how a node behaves when the requests are too intense
to handle, computationally or memory-wise. Backpressure is the mechanism that handles
fast publishers that interact with slow subscribers.
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onBackpressureBuffer
inputs: single
output: buffers values that cannot
be handled by the subscriber to
emit them later on

onBackpressureDrop
inputs: single
output: drops values that cannot
be handled by the subscriber, in-
stead of emitting them

onBackpressureLatest
inputs: single
output: drops values that cannot
be handled by the subscriber and
always buffers the last one, in-
stead of emitting them

sample (TimeInterval t)
inputs: single
output: emits only the most-
recent emitted value from the in-
put stream within intervals of t

..

1

.

2

.

3

..

sample 1s

. 1. 3

timeout (TimeInteval t)
inputs: single
output: mirros the input stream,
but emits onError if there is no
emission within windows of t

Utility

The following operators provide some helpful utilities.
doOnNext (Action a)

inputs: single
output: execute Action a when-
ever onNext(Complete/Error) is
called
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cache
inputs: single
output: caches values emitted by
the input stream for future sub-
scribers

delay (TimeInterval t)
inputs: single
output: emits the values of the in-
put stream shifted forward in time
by t

.....

delay 1s

..

materialize
inputs: single
output: wraps all values of input
stream as Notifications .....

materialize

.....

dematerialize
inputs: single
output: reverses the effect ofma-
terialize ........

dematerialize

..

All other operators can be produced by combining the above primitive ones
(e.g. flatMap ≡ map ◦merge).
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