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ABSTRACT

The aim of this study is to explore the effects of several hardware faults that
happen during the program execution in a Graphics Processing Unit (GPU) after
injecting the hardware faults into the GPGPU simulator’s program code and executing
multiple NVIDIA kernels out of the official NVIDIA GPU computing SDK. The fault
injection is completely randomized. By randomized, we mean the process of choosing
the register that will be fault injected, the bit that the fault is going to be injected along
with the register’s thread and the cycle, in transient fault cases.

This study also focuses on the effects that hardware faults has on the program’s
executional behavior, matching any errors or defects to a category, and analyzing the
samples multiple executions results through diagrams and conclusions. There has been
a connection on how an error can affect the program’s execution based on the
program’s cycles, the number of the registers and the type of data (either integer values
stored in integer variables or integer arrays) that each program uses.

SUBJECT AREA: Computer Architecture
KEYWORDS: Graphics Processing Units (GPUs), CUDA, Reliability Assessment, Fault
Injection



NEPIAHWH

O okoTo¢ QUTAG TNG TITUXIOKAG €ival n dlepelivnon EMITITWOEWV TwV dla@opwyv Aabwv
UAIKOU Ta OTTOia TTAPOUCIAZoVTal KOTA TNV DIAPKEIQ TNG EKTEAEONG TOU TTPOYPANUATOG O€
Mia povada emeepyaciag ypagikwv (GPU), agou €xouve cloaxBei 1a o@dAuara
Aoyiopikou peca otov Kwodika Tou GPGPU TTpoCOMOIWTA Kol PETA TNV EKTEAEON
TTOAQTTAWYV TTpoypaupdaTwy TG NVIDIA amd 10 emionuo NVIDIA GPU Computing
SDK.Ta o@daApaTa ei0ayovTal TUXaia oToV TTPOCOMOIWTH. H TuXxaidtnTa a@opd 10 TT010G
Kataxwpntg €ival autdg TTou Ba €TTNPEAcTEl ATTO TNV €1I0Qywyr) OQAAPATOG,TO TTOIA
B0éon Ba cival auTtr} TTou Ba €10axBOEi Kal TO TTOI0U VANATOG Ba gival 0 KaTaxwpnTAg 0TTwG
€TTiONG Kal o€ TTolIov KUKAO Ba €icaxBei 1o o@AAua, oTnv TTEPITITWON TTPOCWEIVOU
OQAAPATOG.

H TITUXIOKN ETTIKEVTPWVETAI ETTIONG OTO TTOCO €TTNPEEACOUV TA OQAAUATA UAIKOU
TNV CUUTTEPIPOPA TOU TTPOYPAPMATOG KATA TNV €KTEAEOT, TaipiAlovtag KABe AGBog n
aTéAEI0 O€ Pia KATnyopia Kal avaAUovTag T OTTOTEAECHATA TWV TTOAAQTTAWY EKTEAECEWV
MEOW OlaYyPANMATWY KOl CUUTTEPACTHATWYV. Eyive ouvdeon Tou KaTtd TTO00 £va GQAAPa
MTTOPEI va aviXveuBei kal va eTnpedoel TNV EKTEAEON TOU TTPOYPANPATOG OE OXEON ME
TOV OPIBUO TWV KUKAWV VOGS TTPOYPANUATOG, TOV APIBPO TWV KATOXWPENTWY TOU KABwWG
Kal To €i6o¢ Twv dedouEvwy (€ite apiBuoi TTou atroBnkelovTal o€ dIa PETABANTA yia
OKEPAIOUG EITE £VAG TTIVAKAG) TTOU TO EKACTOTE TTPOYPAUHNA XPNOILOTIOIEI.

OEMATIKH MEPIOXH: Apxitektovikn YTToAoyioTwy, YAIKO YTTOAOYIOTWY
AEZEIZ KAEIAIA: povadeg emregepyaoiag ypagikwy (GPUs),yAwooa TTpoypaupaTiopou
CUDA, pétpnon aglotmaoTiag, eloaywyn EAATTWHATWY



EYXAPIZTIEZ

MNa n diektTepaiwon TG TTapouoag MNruxiakng Epyaciag, 6a BEAAUE va EUXOPIOTIIOOUNE
Twv emPBAETOVTA, KaB. AnuATtpio 'KICOTTOUAO yia TNV KaBodriynon, Tn ouvepyacoia Kai
TAV TTOAUTIUN CUPBOAN TOu 0TV OAOKAAPWON TNG.
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1 INTRODUCTION
1.1 Importance of GPU Programming

A many-core graphics processing unit (GPU), also occasionally called visual
processing unit (VPU), is a specialized electronic circuit designed to rapidly manipulate
and alter memory to accelerate the creation of images in a frame buffer intended for
output to a display. GPUs are used in mobile phones, game consoles, personal
computers, , workstations, embedded systems and supercomputers( in ascending order
of computing power ). Modern GPUs are very efficient for computer graphics and image
processing, and their highly parallel structure makes them more effective than general-
purpose CPUs for algorithms where processing of large blocks of visual data is done in
parallel. In a personal computer, a GPU can be present on a video card, or it can be
embedded on the motherboard or—in certain CPUs—on the CPU die. The former case
is called a “discrete” GPU while the latter is called a “fused” CPU/GPU architecture

General-purpose computing on graphics processing units (GPGPU) became
practical after 2001 with introduction of programmable shaders and floating point support
on graphics processors. GPU programming is ideal for problems involving multi-
dimensional matrices and vectors. As time goes by, and by the natural laws applied to
CPU evolution, slightly declining the expected computing power reached over the years,
there has been an increased amount of interest for GPU to increase the performance of
computing systems.

Increase in graphics hardware performance and improvements in
programmability, has enabled Graphics Processing Units (GPUs) to evolve from a
graphics-specific accelerator to a general-purpose computing device. Consequently,
GPUs have enjoyed wide-spread adoption in various application domains, including
scientific computing [1].

loannis G. Avgeros, Dimitrios K. Gkyrtis 14
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Figure 1: Graph showing the rapid evolution of GPU computation performance compared to the
x86 CPU [2].

As GPUs are increasingly used to accelerate applications by allowing more
flexibility and programmability, their fault tolerance is becoming much more important
than before when they were used only for graphics. In high speed image rendering, the
fault in some pixels is not noticeable by human eyes. But, nowadays that GPUs are
used for general programming use (for DNA sequencing and other problems where
computing correctness is critical) a hardware error [3] might lead to unpredicted
behavior, or erroneous program output. Hardware faults may not lead to immediate
program failure. A single, small hardware failure may often go undetected until it leads
to more serious failures or it may be completely masked leaving program execution
unaffected.

With the current microprocessor fabrication trends, i.e. smaller feature sizes,
lower voltages and faster clock frequencies, microprocessors are becoming increasingly
susceptible to hardware failures. Microprocessors can be protected against failures by
implementing some form of redundancy [4, 5]. Thus, when a failure occurs, it is masked
by the redundancy, keeping the microprocessor functioning as though the failure did not
take place [6].

While graphics processing units (GPUs) have gained wide adoption as
accelerators for general-purpose applications (GPGPU), the end-to-end reliability
implications of their use have not been quantified. Fault injection is a widely used
method for evaluating the reliability of applications. However, building a fault injector for
GPGPU applications is challenging due to their massive parallelism, which makes it
difficult to achieve representativeness being time-efficient. [7]

loannis G. Avgeros, Dimitrios K. Gkyrtis 15
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1.2 PTX

PTX (shortening for a low-level parallel thread execution) is a virtual machine
and instruction set architecture (ISA). PTX provides a stable programming model and
instruction set for general purpose parallel programming. PTX is an intermediate
language, as already mentioned, that is designed to be portable across multiple GPU
architectures. It gets compiled by the compiler component PTXAS into final machine
code, also referred to as SASS, for a particular GPU chip and architecture. A PTX
program specifies the execution of a given thread of a parallel thread array(PTA).

A cooperative thread array, or CTA, is an array of threads that execute a kernel
concurrently or in parallel. Threads within a CTA can communicate with each other. To
coordinate the communication of the threads within the CTA, one can specify
synchronization points where threads wait until all threads in the CTA have arrived.
Each thread has a unique thread identifier within the CTA. Programs use a data parallel
decomposition to partition inputs, work, and results across the threads of the CTA. Each
CTA thread uses its thread identifier to determine its assigned role, assign specific input
and output positions, compute addresses, and select work to perform. Each thread
identifier component ranges from zero up to the number of thread ids in that CTA
dimension.

Threads within a CTA execute in SIMT (single-instruction, multiple-thread)
fashion in groups called warps. A warp is a maximal subset of threads from a single
CTA, such that the threads execute the same instructions at the same time. Threads
within a warp are sequentially numbered. The warp size is a machine-dependent
constant. Typically, a warp has 32 threads. Multiple CTAs may execute concurrently and
in parallel, or sequentially, depending on the GPU chip. Each CTA has a unique CTA
identifier (ctaid) within a grid of CTAs. Each grid of CTAs has a 1D, 2D, or 3D shape
specified by the parameter nctaid. Each grid also has a unique temporal grid identifier
(gridid).

PTX contains a set of registers for general purpose uses. We will explain their use
here:

a) %tid: The thread identifier is a three-element vector tid, (with elements tid.x,
tid.y, and tid.z) that specifies the thread's position within a 1D, 2D, or 3D CTA

b) %rh: are “half registers”. They are 16 bit registers used to save space when
we need to store data only in a short number of bits.

c) %ctaid: CTA identifier within a grid. The %ctaid special register contains a 1D,
2D, or 3D vector, depending on the shape and rank of the CTA grid.

d) %r, %p, %f Registers used for local store of unsigned values, predicate
logic(not only) and local store of floating variables respectively.

loannis G. Avgeros, Dimitrios K. Gkyrtis 16
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_l.ptx 118 (pc= )i Jdoc 16 37 [
_1.ptx 119 (pc= 328): shr.s32 %r24, %ri9, 31;

_1.ptx 120 (pc= 336): mov.s32 %ra2s, 1;

_1.ptx 121 (pc= 344): and.b32 %r26, %r24, %r25;

_1.ptx 122 (pc= 352): add.s32 %r27, %r26, %ri9;

_1.ptx 123 (pc= 368): shr.s3z %ri9, %r27, 1;

_1.ptx 124 (pc= 368): mov . u32 %ras, o;

_1.ptx 125 (pc= 376): setp.gt.s32 %p5, %ri9, %rzs;

_1.ptx 126 (pc= 384): @%p5 bra 5Lt_0_6146;

_1.ptx 127 (pc= ): BLt_0_5634:

_1.ptx 128 (pc= 382): @'%pl bra $Lt_©_7682;

_1.ptx 129 (pc= s .loc 16 53 ]

_1.ptx 130 (pc= 408): ld.shared.f32 %f5, [shared+@];

_1.ptx 131 (pc= 408): 1d.param.u32 %r29, [__cudaparm__Z14timedReductionPKfPfP1_output];
_l.ptx 132 (pc= 416): cvt.s32.ulb %r30, %ctaid.x;

_1.ptx 133 (pc= 424): cvt.ul6.u32 %rh2, %r3o;

_1.ptx 134 (pc= 432): mul.wide.ulf %r31, %rh2, 4;

_1.ptx 135 (pc= 448): add.u32 %rd2, %r29, %r3i;

_l.ptx 136 (pc= 448): st.global.f32  [%r32+8], %f5;

_1l.ptx 137 (pc= ): 5Lt _0_7682:

_l.ptx 138 (pc= Vi .loc 16 56 ] [}
_1.ptx 139 (pc= 456): bar.sync 9;

_1.ptx 140 (pc= 464): @!%pl bra $Lt_0_8194;

_1.ptx 141 (pc= )i .loc 16 57 ]

_1.ptx 142 (pc= 472): mov.u32 %r33, %clock;

_1.ptx 143 (pc= 488): mov.s32 %rad, %ras;

_1.ptx 144 (pc= 488): 1d.param.u32 %r35, [_ cudaparm_ Z14timedReductionPKfPfP1 timer];
_1.ptx 145 (pc= 496): cvt.s32.u16 %r36, %ctaid.x;

_1.ptx 146 (pc= 504): cvt.u32.ul6 %ra7, ¥nctaid.x;

_1.ptx 147 (pc= 512): add.u32 %r38, %r36, %ra7;

_1.ptx 148 (pc= 528): mul.lo.u32 %r3g, %r3se, 4;

_1.ptx 149 (pc= 528): add.u32 %rd@, %r3s, %r3g;

_l.ptx 158 (pc= 536): st.global.s32  [%rd0+8], %r34;

Figure 2:A typical ptx file generated by the GPGPUsim simulator.

The aim of this thesis is to investigate and explore the effects of semi-automated
fault injection into different programs using three types of fault injection also known as
fault insertion testing from certain safety standards. The idea behind fault injection is to
accelerate the occurrence of faults in the system to evaluate its behavior under the
influence of anticipated faults, and to evaluate error handling mechanisms [8]. Before
explaining the three types of fault injection, we categorize the type of hardware faults as
permanent and transient.

a)Permanent Faults: : Faults that remain in a register throughout the execution
of a program and beyond that; a bit of the register is persistently stuck at a specific
value (0 or 1) throughout the execution of the program

b)Transient Faults: Faults that happen in one cycle and exist until another value
is being written over them. A bit is flipped from zero to one or from one to zero for one
cycle during program’s execution.

1.3 Fault Injection

loannis G. Avgeros, Dimitrios K. Gkyrtis 17
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1.3.1 Fault Injection Operators
The three operators we use to inject faults:

a) XOR operator (bit flip): Flips (inverts) the value of a single bit in a random
position of a register. The bit remains flipped until it is overwritten with a new
value. This type is transient fault (also known as soft error).

number A= 1 << x;
That will toggle bit x.

b) OR operator: Performs the “OR” operation in a random bit. “OR” is the
operation that results in each input is 0 if both bits are 0. This type is a
permanent fault.

number |= 1 << x;
That will set bit x. We are going to refer to this category as stuck-at-1.

c) AND operator: Performs the AND operations in a random bit AND is the
operation that a true output results if one, and only one, of the inputs is true.
This is also a permanent fault.

. number &= ~(1 << x);

That will clear bit x. We must invert the bit string with the bitwise NOT operator (~), then
perform the AND operator on it. We are going to refer to this category as stuck-at-0.

1.3.2 Type of Errors

We have categorized the type of errors produced after the program's execution
under the presence of a faulty bit (transient of permanent fault) to the five following
categories:

Masked: There are cases were the injection fault does not have any effect in the
program output, leaving the output exactly the same as in a fault-free program
execution. It may happen because the register access did not alter the value or if in a
sample execution, basic criteria are not met (specific cycle in TRANSIENT FAULT
case). That case is called Masked.

Silent Data Corruption (SDC). The faulty register may have effects on the
output of a program. This error requires extra debugging as there should be at least one
check at the regular output of one program compared to the one that has been fault
injected other.

Crash: The program is abnormally terminated. That means that the altered
register holds, for example, the address of a variable or the index of an array.

Slowdown: The execution time of the program is more that the fault-free time,
meaning that there is a growth in the number of cycles for program execution. The
output of the program remains unchanged.

loannis G. Avgeros, Dimitrios K. Gkyrtis 18
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Speedup: There is a reduction in the execution time of the program, meaning by
that, that there is reduce in the number of cycles the program did. The output of the
program remains unchanged.

Timeout. The program falls in an infinite loop or other erroneous behavior which
does not allow it to complete. For this thesis we define the “infinite loop” as the program
executing for more than twice the normal (fault free) execution time.

These are the main 5 categories we have chosen to differentiate any irregular
case in a sample execution while the program is fault-injected. Categories are mutually
exclusive.

1.3.4 Fault Injection in the GPGPUsim Simulator

As far as our approach for the fault injection is concerned, we altered the
GPGPU simulator C++ code to facilitate injection of permanent and transient faults. We
began, by accessing all the files responsible for the simulation, especially those who
were responsible for storing data into registers, those who were printing out the number
of execution cycles and those who were handling the information of threads.

The function in charge for storing data into a register
isthe ptx_thread_info::set_operand_value located under src/cuda-sim/instructions.cc.
This function has four parameters:

. operand_info &dst. A wrapper class containing a source operand for an
instruction which may be either a register identifier, a memory operand (including
displacement mode information), or an immediate operand.

. ptx_reg t &data: The data to be stored represented by union ptx_reg_t which
holds multiple memory types (unsigned 32, 64 lower/upper bits et cetera).

. ptx_instruction *pl: Contains the full state of a dynamic instruction including the
interfaces required for functional simulation.

. ptx_thread_info *thread: Contains functional simulation state for a single scalar
thread (work item in OpenCL). This includes the following:

. Register value storage

. Local memory storage

. Shared memory storage
. Program counter (PC)

. Call stack
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. Thread IDs (the software ID within a grid launch, and the hardware ID indicating
which hardware thread slot it occupies in timing model) The most important members of
this class are the ones that hold information about the thread IDs:

o unsigned m_hw_sid

o unsigned m_hw_tid

o unsigned m_hw_wid
o unsigned m_hw_ctaid

They are multiple useful structures here for our study. The register is
the “dst” parameter, the data to be stored is the data parameter and the thread
information we were seeking is the thread parameter.

We had to follow different approaches regarding the faults we wanted to inject.
All approaches have a common starting point. There is only one time we set the
variables for the injection. The random cycle variable, random register variable, along
with other crucial variables, all of them are initialized only once. This is achieved by the
global, boolean variable randtime that after the first time that all required variables are
initialized, they never change again. It is the only point where all three of the fault
injection categories have the same approach.

The XOR operator requires to be used only once in a specific cycle. So, we need
to measure the execution cycles. The print_simulation_time() located in
src/gpgpusim_entrypoint.cc prints general statistics about the program, such as
instructions per second, instructions executed and number of cycles. We execute the
program once without fault injection and we store the amount of cycles. Back to the
specific cycle aspect, the first time set_operand_value is called there is a rand function
called, divided by the cycles we have plus one and keep the remainder into RandCycle
variable, along with the RandRegister, which is the random index into the character 2
dimension array variable we have for the registers. Last, but not least we also keep the
random position for bit-flip into RandPosition variable, which normally is a rand function
divided by 64(number of bits for the data) and keeping the remainder

if(RandTime==1)
{
srand (time( 3);
RandTime=0;
srand (time( 3);

randRegister=rand()%85;
srand (time( 1);
randPosition=rand()%64;
srand (time( ));
randCycle=rand()%5637;

Figure 3: The stuck-at-1 case of variable initialization.
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The AND/OR operator (bit in a register stuck at 0 and 1, respectively) also requires the
RandPosition variable and the RandRegister. What is also required is four extra
variables, named mySid, myWid, myTid, myCtaid holding the random thread's ids with
the register malfunction. The two operands affect only one register of one thread, so
there comes a point where we need to identify and separate each unique thread.

if(RandTime==1)
{

srand (time( )):
RandTime=0;
mySid={rand()%6)*3;
srand (time )):
myTid=rand()%512;

srand (time( )):
myWid=rand()%16;

srand (time( )):
myCtaid=0;

srand (time( )):
randRegister=rand( )%85;
srand (time( )):
randPosition=rand()%64;

Figure 4: The stuck-at-1/stuck-at-0 case of RandTime 1.

After the initialization, we proceed with the injection. Due to the difference
between transient fault and stuck-at-O/stuck-at-1, we follow two different strategies.

The first one is that when we have the transient fault case, we perform the
following check:

If(flipBit== && strcmp(name.c_str(),registers[randRegister])== &&
gpu_sim_cycle==randCycle)

loannis G. Avgeros, Dimitrios K. Gkyrtis 21



Reliability Evaluation of Massive Parallel Architectures NVIDIA GPUs on GPGPUsim Simulator

if(gpu_sim_cycle==randCycle)

if(flipBit==0 && strcmp(name.c_str(),registers[randRegister])==0)

{
flipBit=1;

setValue.ué4 »= 1 << randPosition;
.

set_reg(dst.get_symbol(),setValue);

Figure 5: Transient fault case injection along with the check we perform.

FlipBit is responsible for allowing only once the access to the register. When the code
reaches the part for the injection, it changes the value of flipbit to 1. The name.c_str() is
the name of the current register, and we compare it with the random register. The last
check is the current cycle represented by the global variable gpu_sim_cycle, compared
to ours RandCycle, as stuck-at-1 is used for injection in one cycle.

On the other hand the stuck-at-1/stuck-at-0 case has slightly different check.

if(strcmp(name.c_str(),registers[randRegister])==0 && mySid==thread->m_hw_sid
&& myTid==thread->m_hw_tid)

There are two main checks. The first one is again comparing current register with
the random one. The second one, though, checks whether the current thread matches
with the random thread as the bit stuck in a register pertains to only one thread.

After the injection, there is a function call to set_reg. Set reg is a function
responsible for assigning the value (here is setValue ) to each register. The setValue is
a variable of ptx_reg_t type. Ptx_reg_t is a union, with members that save memory data
for each register, such as upper and lower bits, possible float or unsigned value etc.
Set_reg copies the information calculated or passed from the set operand_value
function into the desired register.
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void ptx_thread info::set reg( const symbol *reg, const ptx_reg_t &value )

{

assert( reg != )3

if( reg->name() == "_" ) return;
assert( !m_regs.empty() );
assert( reg->uid() > 0 );

m_regs.back()[ reg ] = value;

if (m_enable_debug_trace )
m_debug_trace_regs_modified.back()[ reg ] = value;

m_last_set_operand_value = value;

Figure 7: set_reg function.

What we should add here is the approach we followed after the injection as far as
the transient fault is concerned. The register with the fault injection must hold the value
for only one cycle. There are two different cases where the register might be used
again. The first one is the case where the register is the one that needs to be read in
order to load its value from the memory, while the second one is the case where the
register is the one that needs to be written in order to store the result of an instruction.

The simulator has already a function implemented for load register values from
memory. It is called get operand _value and the parameters of these functions are
similar to the one for set_operand_value.

We need to store the thread information along with the previous value that would
have been stored if we did not fault inject the register. This happens in the
set_operand_value function:

if(gpu_sim_cycle==randCycle && strcmp(namel.c_str(),registers[randRegister])==0 && flipBit==0)

prevValue=data;
mySid=thread->m_hw_sid;

myTid=thread->m_hw_tid;
myWid=thread->m_hw_wid;
myCtaid=thread->m_hw_ctaid;
}

Figure 8: Thread information and the value to be written in the register.

Every time the get operand_value is called, we perform a check. The check
consists of 2 basic blocks. The first one is whether we have already performed the
injection, and if we did, if the current cycle is different from the one that the fault
injection happened and makes sure that the write back operation of the injected value
happens only once. The second block checks whether we have the same thread as the
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one we fault injected and about having the same register. If the above conditional
statements are satisfied, then we write the previous value in the register.

if(mySid==thread->m_hw_sid && myTid==thread->m_hw_tid && myWid==thread->m_hw_wid && thread->m_hw_ctaid==myCtaid &&
strcmp(name.c_str(),registers[randRegister]) )

{

getRandTime=0;
set_reg(op.get_symbol(),prevvalue);

Figure 9: The basic check in get operand value function.

As far as the second case of re accessing a register is concerned, we didn’t have
to change anything. If the register is not used between the cycle that the fault injection
happened, then consecutive writes on it will erase the previous value with the new one
.We should mention here, though, that this is a pretty rare case as the register allocation
ensures that there will be no dead variables, thus, no dead code . Dead variable is the
variable that is never used after defined. Dead code is when the variable of a
computation is never used.

An example of a dead code is as it follows:
X=y+1;
y=1;
X=2*z;
The first x variable is a dead variable as it stores the addition result but it is never being

actually used, while the next use of the x variables is again for storing operation, thus
overwriting the previous value.

1.4 Noticeable Cases

There were a number of cases we came up a lot during our study, and we are
going to explain and elaborate them here. Mostly each one of the presented samples
projected the cases explained below.

Firstly, mostly in our programs we noticed that they obey a general rule, that the
stuck-at-0 case has significantly less error cases (cases that belong into in any other
category than the masked one) than the stuck-at-1 case .This happens mainly because
the injection is random in a 64 bit variable. The contents of the registers are small
numbers, usually using up to 7 or 8 bits. The random bit, thus, is more likely to be a
zero rather one. stuck-at-0 case keeps a specific bit stuck into zero value through the
whole program execution, so the most probable scenario we have here is a bit already
in zero value not being altered by the stuck-at-0 case.We should call this one the
“failed stuck-at-0”, failed because no matter that the register was accessed and injected
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with the stuck-at-0 operator, there was no change in register's value(Previous values of
register remains unchanged after the stuck-at-0 operation).

Secondly, we should mention here that the GPGPU Simulator is a tested
program that the number of cycles the program has remain stable in normal execution,
without fault injection. The number of cycles is always the same, a focal point for us, as
we needed the executions that had different cycles than the normal ones to be affected
ONLY by the injection.

Thirdly, the registers are randomly selected and all have equal chances of getting
picked for injection. For example, for 2000 execution of a program with 20 registers
every register has a 5% chance to be selected and there is an equality in the number of
each register getting selected as the fault-injected register.

As far as statistics are concerned, we decided to count the most severe fault that
appear, as it was possible to have one execution with multiple errors. The most regular
cases were the combination of SDC and slowdown, where we counted this case as an
SDC and we therefore mention the slowdowns that happened along with the SDC. The
severities of the cases are as follows:

1. Timeout/Crash

2. SDC
3, Slowdown
4 Masked
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2 EXAMPLES
2.1 Sample Introduction

The NVIDIA GPU Computing SDK consisted of more than 50 programs. For the
purposes of this study and due to the large number of executions we performed, the
chosen programs had an average time of execution around 8-10 seconds. We selected
the following benchmarks for our experiments:

VectorAdd: Two vectors initialized and passed as arguments to kernel function where
an addition on each element of the vector is performed, and the result is stored into a
third vector.

Clock: This CUDA function computes a standard parallel reduction and evaluates the
time it takes to do that for each block.

DwtHaar1D: Implements the Haar wavelet transform in a discrete wavelet.
Cpplntegration: Simple test kernel for device functionality .Parameter is memory to
process (in and out).

MatrixMul. Performs matrix multiplication of two vectors and stores the output to a third
one.

SimpleStreams: This sample illustrates the usage of CUDA streams for overlapping
kernel execution with device/host memcopies.

SimpleTemplates:. This sample is a templatized version of the template project. It also
shows how to correctly templatize dynamically allocated shared memory array
Templates: A simple template project that can be used as a starting point to create new
CUDA projects.

SimpleVotelntrinsics: Consisted of two kernels. Kernel #1 tests the across-the-warp
vote (any) intrinsic. Kernel #2 tests the across-the-warp vote (all) intrinsic.

All of the above programs are tested through normal execution for keeping the
number of execution cycles stable. The programs have an average of two and a half
thousand cycles and mostly the programs have thirty to forty registers each.

iy iz -+ Uin b1 bip - by
flgy gz -+ ldan by bay - Doy
A+B= . . . . +
_a'ml Lo e a‘mn_ _bml bm? e bnm_
ay1 + biq ajz +big 0 Ay + by
a9y + boy Aza +boy -+ agn + oy
1 + rbml o ‘I_ bm? e i + bmn

Figure 10: Vector addition.
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The original NVIDIA program created two random vectors. The vectors were
passed as arguments from the host function to the device function. The device function,
at first, calculates the index the thread is responsible to calculate and store the result of
the addition. The condition check whether the index is less than the number of elements
the vector have.

__global__ void VecAdd(const int* A, const int* B, int* C, int N,int *accessed)
{

int i = blockDim.x * blockIdx.> threadIdx.x;

if (i < N)

C[i] = A[1] + B[i]:;

Figure 11: The VectorAdd kernel function.

We altered the source code, reducing the amount of elements the vector
contained from ten thousands to 512 elements. We removed the original function that
initialized the two vectors with random elements, and replaced the values of each
position with their index, e.g. A[0]=0, A[1]=1 et cetera, to check after every execution
whether the result-vector contains the correct elements. A for loop added after the call
to CUDA function to check all the elements in result-vector and find all possible errors.
The loop iterates through the entire vector and checks whether the results in the specific
index is two times the index (position 256, A[256]=256 and B[256]=256, expected result
C[256]=512). If the result is different, we have a silent data corruption case of error.
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while(i<N)

{
if(h_c[i]!=2*1)
{

printf("ERROR:h_cC[%d]=

check=check+1;

“,1,h_C[1]);

Figure 12: Silent Data Corruption check in VectorAdd sample.

2.2.1 Vector Add Results

2.2.1.1 VectorAdd Statistics

Registers
[ ]
[ ]
[ ]

%tid.x
%ntid.x
%ctaid,%p1
%rh1,%rh2

Number of registers: 18

Cycles: 711
Table 1:VectorAdd Execution results.
Transient Fault Stuck-at-0 Stuck-at-1

Masked 1973 1981 1807
SDC 25* 19** 188***
Slowdown 2 - 5

Crash - - -

Timeout - - -
Injections 2000 2000 2000
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*16 slowdowns happened at the same program execution.
**10 slowdowns happened at the same program execution.
***61 slowdowns happened at the same program execution.

Table 2: The slowdown table that shows the number of extra cycles and the number of sample

executions that those extra cycles occurred.

Extra +1 +2 +3 +5 +7 |+9 | +12 | +24 | +36
Cycles
Number of | 24 8 13 9 2 5 4 4 2
executions

2.2.1.2 Chart

Stucl-at-1

Transient Fault

Stl-l Cli_at_lzl _

84% B6% 88% 90% 92% 94% 96% 98% 100%

W asked mSlowdown MTimeout Crash  WsSDC

Figure 13: Chart for VectorAdd.
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2.2.1.3 Comments

There were no crash or timeout cases in this program. This happened because
there was a check inside kernel code that made sure that the program is not going to be
over the bounds of the matrix that holds the addition result of the other two vectors.
There is a general rule that applies to almost all the programs that the stuck-at-0 case
has significantly less error cases than the stuck-at-1 case we have already mentioned.

Another useful notice is that one every three SDC faults we have a slowdown,
where the program is executed .An SDC alters the value of a register and sometimes it
cause the program to execute more cycles due to changed value of the one variable we
have for keeping the index of the vectors. A change into that index may force the
program to have more access cycles into the memory for retrieving data. In a normal
execution, the program, based on locality by reference, would retrieve the specified
object in the index along with the ones that are closer to it based on memory address.
From the moment that we alter the index of the vector, the object may have not been
already brought by the program and extra communication may exist with memory,
contributing to the slowdown case.

What is also worth noted is that we have a big number of silent data corruption
cases. As we can clearly see from the above chart (figure 2.4), almost one every 10
execution’s the program execution ended with a result in the data that was different
from what the original output was.

In addition, this is an execution where the results of the transient fault case and
the results of stuck-at-0 present many similarities, mostly regarding the number of faults
for the SDC category. The vectorAdd calculates the memory offset for three different
arrays. The maijority of the registers hold address value. These values are big numbers
with many digits, thus making the always zero bit to actually have an effect on the
execution of the program and causing a lot of silent data corruption errors. In general, if
a kernel’s variables contain a lot of memory information, there is a high possibility the
number of the silent data corruption in transient faults category and the stuck-at-0 to be
similar.

loannis G. Avgeros, Dimitrios K. Gkyrtis 30



Reliability Evaluation of Massive Parallel Architectures NVIDIA GPUs on GPGPUsim Simulator

(pc= ): SLDWbegin_ Z6VecAddPKiS@®_Piisi_:
(pc= 3 mov.ulsé
(pc= 8): mov.ulé
(pc= 16): mul.wide.ul6
(pc= 24): cvt.u32.ul6
(pc= 32): add.u32 , , %ri;
(pc= 40): ld.param.s32 __cudaparm__Z6VecAddPKiSO_PiiS1__N]:
(pc= 48): p.le.s32 %pl, %r4, %r3;
(pc= 56): @%pl1 bra SLt 8 1026;
[ ): .loc 28 ]
64): mul.lo.u32 % %r3, 4;
72): 1ld.param.u3z 1 cudaparm__ Z6VecAddPKise _Piisl__ A];
80): add.u32
88): 1d.global.s32
96): ld.param.u32
104): add.u32
112): ld.global.s3
120): add.s32 2
128): ld.param.u32 1 s ___Z6VecAddPKise_Piisl__C];
136): add.u32 4 g g
144): st.global.s32
): SLt ©_16026:
) H .loc 28
152): exit;
¥i LDWend Z6VecAddPKis® Piisl :

00 00 0 = =] =J =J =] =,
@ W ®~ oW

1.
1.
1.
1.
1.
1.
1.
1.
1.
o A
1.
1.
1.
p
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

m oo
S VY

Figure 14: PTX file for VectorAdd program.

As we can see from the above picture, the registers responsible for calculating
the index (%r5) are eight out of 18. That means that almost half of the registers are
directly involved into the index calculation. A change in one of those registers is highly
possible to affect the number of cycles increasing the communication traffic with the
memory. Furthermore, even the rest registers hold memory-related values, increasing
the possibility to have a slowdown in our execution.

To sum up, the most important thing we would like to mention here is the strong
correlation between the SDC error and the slowdown. There is a ratio 1/3 (1 slowdown
every 3 SDC'S) resulted by the fact that almost all the registers hold memory related
values.

2.3 Clock

This kernel computes a standard parallel reduction and evaluates the time it
takes to do that for each block. The process of combining multiple parallel threads’
results into one overall result is called reduction [9]. Here the reduction operation is
addition, or sum, and we refer to the reduction as a sum-reduce. (Other programs would
use other reduction operations as part of the same reduction pattern.)
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Values

Figure 15: Example of parallel reduction.

In this code, parallel reduction is implemented as follows: half of the threads will
perform the reading from global memory and writing to shared memory, as showed in
the picture.

You execute a kernel, and now you want to reduce some values, you limit the access
the code above to only to half of the total of threads running. Each step requires half the
threads the previous required. The timing results are stored in device memory.
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__global__ static void timedReduction(const float * input, float * output, clock t * timer)

{

extern __shared__ float shafed[];

const int tid
const int bid

if (tid == 0) timer[bid] clock();

shared[tid] = input[tid];
shared[tid + blockDim.x] input[tid + blockDim.x];

for(int d = blockDim.x; d = 8; d /= 2)
{

__syncthreads();

if (tid < d)

{
float f@ = shared[tid];
float f1 = shared[tid + d];:

if (f1 < fo) {
shared[tid] = f1;

Figure 16: The clock kernel function.

After the call to the device function, the host's main function calculates, in a “for loop”, the
minimum and maximum time and stores the result into two variables maxEnd and minStart.

for (int 1 = 1; 1 < NUM_BLOCKS; i++)
{

minStart = timer[i] = minStart ? timer[i] : minStart;

maxEnd = timer[NUM_BLOCKS+1i] > maxEnd ? timer[NUM_BLOCKS+i] : maxEnd;

Figure 17: MaxEnd and minStart variables.

The check that shows whether the output is the expected one is shown in the next image:
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if (maxEnd-minStart!=4263) printf("[CHECK=1 WRONG TIME");

Figure 18: Check for SDC case.

The subtraction of maxEnd and minStart must produce 4263. If the data stored in
a register holding minStart or maxEnd has changed, then the program prints the error
message(SDC case).

2.3.1 Clock Results
2.3.1.1 Program Statistics

Registers:

o %r1->%r40

o  %f1->%f5

o %p1->%p5
Number of registers: 50

Cycles: 4630

Table 3: Clock execution results.

Transient Fault Stuck-at-0 Stuck-at-1
Masked 1962 2000 1999
SDC - - 1**
Slowdown 12 - -
Crash 26 - -
Timeout - - -
Number Of Injections |2000 2000 2000

**Along with one slowdown.

loannis G. Avgeros, Dimitrios K. Gkyrtis

34




Reliability Evaluation of Massive Parallel Architectures NVIDIA GPUs on GPGPUsim Simulator

Table 4: The slowdown table that shows the number of extra cycles and the number of sample

executions that those extra cycles occurred.

Extra 7 |9 |98 137|180 | 586 | 719
Cycles

Numberof |2 |4 |3 |1 1 1 1
executions

2.3.1.2 Chart

Stuck-at-1

Transient Fault

9% 98% 9% 99% 99% 1 1A

mMasked wmSlowdown  m Timeout Crash msDC

Figure 19: Chart for clock sample.

2.3.1.3 Comments

Clock is a program that computes the minimum and maximum time. It is quite
obvious why the amount of SDC errors in those cases all combined are less than other
programs. The injected fault would lead to an SDC error only if there is a big increase in
the value of the registers that hold the max or minimum value or if the changed value of
a temporary variable leads to altered maxEnd and minStart. Furthermore, we noticed
that during our executions that clock operates with a large number of threads. Fault
injecting a random thread that has access to a specific register (OR/AND cases) is very
difficult and this is why we have only one error in a combined 4000 executions.
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The few errors we had during the clock execution can also be imaged in the
above chart (figure 2.9).The bars begin the percentage from 97 percent, leading to the
observation that in all three cases the number of faults in an execution is below 3%.

Lastly, we should mention here that in the first case there are a big number of
crash cases.. The 26 crashes happened mainly due to an implemented function called
to clean the state of the program .From the moment that we check the kernel
execution’s result and compared to what it should be, the program called built in
function cudaDeviceReset(). CudaDeviceReset causes the driver to clean up all state
.The function is needed to ensure correct operation when the application is being
profiled. Calling cudaDeviceReset causes all profile data to be flushed before the
application exits.

2.4 DwtHaar1d

A discrete wavelet transform (DWT) is any wavelet transform for which the
wavelets are discretely sampled. As with other wavelet transforms, a key advantage it
has over Fourier transforms is temporal resolution: it captures both frequency and
location information (location in time). For an input represented by a list of numbers, the
Haar wavelet transform may be considered to pair up input values, storing the
difference and passing the sum. This process is repeated recursively, pairing up the
sums to provide the next scale, which leads to differences and a final sum.
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for( unsigned int 1 = 1; i1 < dlevels; ++1i)

{

if( tid < num_threads)
{

unsigned int idata1l idata® + offset_neighbor;

archmonkey unsigned int g_wpos (num_threads * gdim) + (bid * num_threads) + tid;

unsigned int c_idata® idata® + (idatae
unsigned int c_idatail idatal + (idata

od[g_wpos] = (shared[c_idata®] - shared[c_idatal]) * INV_SQRT_2;

shared[c idata®@]| = (shared[c idata®] + shared[c idatai]) * INV SORT 2;

num_threads = num_threads >> 1;
offset_neighbor <<= 1;
idatad® = idatad <

if( 8 == tid)
{

}

approx_final[bid] = shared[0];

Figure 20:The DWTHaar1D kernel function.

Large signals are subdivided into sub-signals with 512 elements and the wavelet
transform for these is computed with one block over 10 decomposition levels. The
resulting signal consisting of the approximation coefficients at level X is then processed
in a subsequent step on the device. This requires interblocking syncronization which is
only possible on host side.

The basic of all Wavelet transforms is to decompose a signal into approximation
(a) and detail (d) coefficients where the detail tends to be small or zero which allows /
simplifies compression. The following "graphs" demonstrate the transform for a signal of
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length eight. The index always describes the decomposition level where a coefficient
arises. The input signal is interpreted as approximation signal at level 0. The coefficients
computed on the device are stored in the same scheme as in the example. This data
structure is particularly well suited for compression and also preserves the hierarchical
structure of the decomposition.

After the kernel call, we compare the computed solution and the reference.

2.4.1 DWTHaar1D Results
2.4.1.1 Program statistics

Registers
o %r1->%r58
e Ytid
e Y%ctaid
o %f1->f21
o %p1->p4
Number of registers: 85
Cycles: 5637
Table 5: DWTHaar1D execution results.
Transient Faults Stuck-at-0 Stuck-at-1
Masked 1997 1990 1959
SDC 3 9 37
Slowdown - 1 4
Crash - - -
Timeout - - -
Number Of Injections (2000 2000 2000

*Along with 19 slowdowns.
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Table 6: The slowdown table that shows the number of extra cycles and the number of sample
executions that extra cycles occurred.

Extra 4 17 |11 |17 |19 |94 | 245 | 289 | 386 | 592 | 638 | 1121 | 1425|1739
Cycles
Number of |4 |3 | 3 3 2 1 1 1 1 1 1 1 1 1
executions
2.4.1.3 Chart
O O )

Stuck-at-1

Transient Fault

StLJ Cl{l_at_l:l _

s, el O o
97% 97% h 205 98% 99% 99% 100%% 100%%

B asked ®Slowdown BETimeout Crash WsSDC

Figure 21: Chart for DWTHaar1D.

2.4.1.3 Comments

The transient fault column has only 3 SDC's which is explained by the fact we
have 85 registers and 5637 cycles, making the possibility to match a specific register
being used in a specific cycle reach almost zero per cent(here it is 0.15% possibility to
have an SDC fault).
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There is an increase in the number of SDC cases, moving upwards the chart
image. The red bar increases as we go from the transient fault case to the stuck-at-0
case and finally to the stuck-at-1 case.

2.5 MatrixMul

The next program is about matrix multiplication. In mathematics matrix
multiplication is a binary operation that takes a pair of matrices, and produces another
matrix. Numbers such as the real or complex numbers can be multiplied according
to elementary arithmetic. Computing matrix products is both a central operation in
many numerical algorithms and potentially time consuming, making it one of the most
well-studied problems in numerical computing. Various algorithms have been devised
for
computing C = AB, especially for large matrices.

(AB)“ == Z :Lg,:;Bkj .

k=1

Thus the product AB is defined only if the number of columns in A is equal to the
number of rows in B, in this case m. Each entry may be computed one at a time.
Sometimes, the summation convention is used as it is understood to sum over the
repeated index k.

The sample demonstrates the matrix multiplication. It has been written for clarity
of exposition to illustrate various CUDA programming principles. It had no goal of
implementing the most efficient generic kernel for matrix multiplications, that they are
not part of this thesis.
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template <int BLOCK_SIZE> __global__ void

matrixMulCUDA(float *C, float *A, float *B, int wA, int wB)

{
int bx = blockIdx.x;
int by = blockIdx.y;

int tx = threadIdx.x;
int ty = threadIdx.y;

aBegin = wA * BLOCK_SIZE * by;

akEnd aBegin + WA - 1;

aStep = BLOCK_SIZE;

bBegin = BLOCK_SIZE * bx;

int bStep = BLOCK_SIZE * wB;
float Csub = ©;

for (int a = aBegin, b = bBegin;
a <= aEnd;
a += aStep, b += bStep)

float As[BLOCK_SIZE][BLOCK_SIZE];

float Bs[BLOCK_SIZE][BLOCK_SIZE];

As[ty][tx] Ala + wA * ty + tx];
Bs[ty]l[tx] B[b + wB * ty + tx];

__syncthreads();

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += As[ty]l[k] * Bs[kl[tx]1;

__syncthreads();

int ¢ = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[lc + wB * ty + tx] = Csub;

Figure 22: : MatrixMul kernel code.
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2.5.1 MatrixMul Results
2.5.1.1 Program statistics

Registers:

° %r1->%r56
° %f1->%f50

° %ctaid.x,%ctaid.y

° %p1,%p2
° %tid.x, %tid.y

° %rh1

° Number of registers:113

Cycles: 57901

Table 7: MatrixMul execution results.

Transient Fault Stuck-at-0 Stuck-at-1
Masked 1992 1981 1959
SDC 7 14 19*
Slowdown 1 2 17
Crash - 2 5
Timeout - 1 -
Number of Injections 2000 2000 2000

*Along with 14 slowdowns.
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Table 8: The slowdown table that shows the number of extra cycles and the number of sample

executions that those extra cycles occurred.

loannis G. Avgeros, Dimitrios K. Gkyrtis

Extra Number of | Extra Number of
Cycles | Executions | Cycles Executions
1 4 1456 1

2 5 1567 1

3 6 1587 1

15 2 1769 1

25 1 1932 1

32 1 1997 1

45 1 2482 1

48 1 2789 1

80 1 3456 1

112 1

231 1

278 1

587 1

634 1

765 1

811 1

1078 1

1134 1
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2.5.1.2 Chart

Transient Fault

97% 97% 9% O8% 99% 997 1A 1

m Masked mSlowdown  m Timeout Crash msDC

Figure 23: Chart for MatrixMul.

2.5.1.3 Comments

Due to the large number of cycles and registers, we expected that in all
categories of fault injection there would be only a small number of faults that would lead
to an error.

Worth noted here is the fact that in the stuck-at-0 column we got all types of
errors. The complexity of the program, which explores many fundamental aspects of the
CUDA programming language in purpose of computing the result of multiplying two
matrices, affects our cause with the production of one timeout and two crashes. We set
a rule about the timeout error that if a program run for twice the time it was supposed to,
that would be the case of a timeout. The timeout appeared because the bit stuck with
the 0 value was the register containing the index value inside the main loop. There was
a timeout because every time the index added a value, the bit stuck into zero restrained
the possible values the index would get, limited the maximum value to a one lesser than
the upper boundary of the for loop. As far as the crashes are concerned, they appeared
because the register hold address value, and the AND led to a segmentation fault. In
the stuck-at-1 column, we once again find a connection between the number of silent
data corruption faults and the slowdowns.
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Despite the fact that in this program we have multiple error cases, the number of
faults as a total is below 2% in all three categories. Furthermore, it is the first program
that the number of slowdowns and the number of silent data corruption cases is almost
the same.

2.6 SimpleTemplates

Next sample is simple templates. This sample is a templatized version of the
template project. It also shows how to correctly templatize dynamically allocated shared
arrays.

__global__ wvoid
testKernel( T* g_idata, T* g_odata)
{

SharedMemory<T= smem;
T* sdata = smem.getPointer();
const unsigned int tid = threadIdx.x;

const unsigned int num_threads = blockDim.x;

sdata[tid] = g_idata[tid];
syncthreads();

sdata[tid] = (T) num_threads * sdata[tid];
syncthreads();

g_odata[tid] = sdata[tid];

Figure 24: SimpleTemplates kernel code.

2.6.1 SimpleTemplates Results
2.6.1.1 Program statistics

Registers:

. %r1->%r12
. %f1->%f5

. %tid.x

. Y%ntid.x
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. %rh1
Number of registers: 19
Cycles: 1417
Table 9: SimpleTemplates execution results.
Transient Fault Stuck-at-0 Stuck-at-1
Masked 1997 1964 1713
SDC 3 27 211
Slowdown - 9 76
Crash - - -
Timeout - - -
Number of Injection 2000 2000 2000

Table 10: The slowdown table that shows the number of extra cycles and the number of sample

executions that those extra cycles occurred.

Extra Number of | Extra Number of
Cycles | Executions | Cycles Executions
1 27 158 1

2 18 196 1

3 11 211 1

9 7 256 1

11 2 289 1

14 3 305 1

29 1 311 1

35 1 378 1

67 1

82 1

91 1

97 1

105 1

108 1

124 1
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2.6.1.3 Chart
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Figure 25: Chart for simple templates.

2.6.1.3 Comments

In this sample we had a large number of faults that produced an error, especially
in OR case. The explanation is purely mathematical. The program is a simple program
with 19 registers. Thus, especially in stuck-at-1 and in stuck-at-O case, there is a big
possibility a thread uses the register in a cycle, and the injection has an immediate
effect on the execution of the program.

2.7 Simple Streams

The next NVIDIA program we use was the simple streams. This sample
illustrates the usage of CUDA streams for overlapping kernel execution with device/host
memory copies. The kernel is used to initialize an array to a specific value, after which
the array is copied to the host (CPU) memory. To increase performance, multiple
kernel/memory copy pairs are launched asynchronously, each pair in its kernels are
serialized. Thus, if n pairs are launched, streamed approach can reduce the memory
copy cost to the (1/n)th of a single copy of the entire data set. Additionally, this sample
uses CUDA events to measure elapsed time for CUDA calls. Events are a part of CUDA
APl and provide a system independent way to measure execution times on CUDA
devices with approximately 0.5 microsecond precision. Elapsed times are averaged
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over nreps repetitions (10 by default). After the kernel is launched and the function is
executed, then we compare the result we have with the result we should and expected
to have. Each element should have been incremented by a total of npres*niterations
times, and this is what we compare to . Regarding the result, a message appears
whether the program’s output is normal or altered.

__global__ void init_array(int *g_data, int *factor, int num_iterations)

{

int idx = blockIdx.x * blockDim.:

for(int i=0;i<num_iterations;i++)
g_data[idx] += *factor;

Figure 26:SimpleStreams kernel.

2.7.1 SimpleStreams Results
2.7.1.1 Program Statistics
Registers:

%r1->%r14

*%ctaid.x

*%p1,%p2

*%tid.x

e%ntid.x

¢%rh1,%rh2

Number of registers:21
Cycles:16504

Table 11: SimpleStreams execution results.

Transient Fault Stuck-at-0 Stuck-at-1
Masked 1992 1988 1941
SDC 7" 9** 44>
Slowdown |1 3 7
Crash - - -
Timeout |1 - 8
Injection {2000 2000 2000
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*Along with *Along with 7 slowdowns.

**Along with 3 slowdowns.

****Along with 17 slowdowns.

Table 12: The slowdown table that shows the number of extra cycles and the number of sample

executions that those extra cycles occurred.

loannis G. Avgeros, Dimitrios K. Gkyrtis

Extra Number of | Extra Number of
Cycles | Executions | Cycles Executions
1 3 255 1

2 5 273 1

3 4 281 1

9 3 305 1

10 3 376 1

13 3 379 1

18 2 405 1

27 1 465 1

39 1

55 1

79 1

103 1

137 1

188 1

207 1
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2.7.1.2 Chart
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Figure 27: SimpleStreams chart.

2.7.1.3 Comments

In this sample, the results of fault injection are those we expected. There is a
small number of errors in the transient fault column since we have a program with 21
registers(as we have seen,a program with medium amount of registers) and 16500
cycles. The possibility of matching a specific register to a specific cycle is around 0.04
%, with the main cause being the number of cycles.

Regarding the other columns, the stuck-at-0 has few errors as the main registers
hold small numerical values. The program’s execution results (as seen on the chart)
have a maximum 3% errors in all cases. The stuck-at-1 column has 44 silent data
corruption cases, along with many timeouts (it is the sample with the most timeout
cases-grey bar in all charts), compared to previous samples, mainly attributed to the
small amount of registers. Many of those associate to the computation of the main loop
index as operands and highly affect the sample in terms of timeouts.
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2.8 SimpleVotelntrinsics

SimpleVotelntrinsics is a simple program which demonstrates how to use the Vote (any,
all) intrinsic instruction in a CUDA kernel. It explores two basic warp voting functions, VOTE any
and VOTE.AIl. There are three kernels in this sample. The first one tests the across-the-warp
vote (any) intrinsic.(VoteAnyKernel1). The second one tests the across the warp vote (all)
intrinsic(VoteAnyKernel2). And the third one is a directed test for the across-the-warp vote (all)
intrinsic (VoteAnyKernel3).

_global__ void VoteAnyKernell(unsigned int *input, unsigned int *result, int size)

{

int tx = X3

result[tx] = any(input[tx]);

_global__ void VoteAllKernel2(unsigned int *input, unsigned int *result, int

{

int tx = X3

result[tx] = all(input[tx]);

__global__ void VoteAnyKernel3(bool *info, int warp_size)
1
int tx = X3
bool *offs = info + (tx * 3);

*offs = any((tx >= (warp_size * 3

*(offs + 1) = (tx >

if(all((tx ==

5

Figure 28: SimpleVotelntrinsics kernel.

2.8.1 SimpleVotelntrinsics results
2.8.1.1 Program Statistics
e Registers:
%r1->%r22
*%p1->%p6
*%tid.x
*%rh1
Number of registers:31
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Cycles:2144

Table 13: SimpleVotelntrinsics execution results.

Transient Fault Stuck-at-0 Stuck-at-1
Masked 1995 1994 1969
SDC 4 6* 31**
Slowdown 1 - -
Crash - - -
Timeout - - -
Injection 2000 2000 2000

*Along with one slowdown.

**Along with 20 slowdowns.

Table 14: The slowdown table that shows the number of extra cycles and the number of sample

executions that those extra cycles occurred.

Extra Number of
Cycles | Executions
1 6
2 7
3 5
11 2
15 2
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2.8.1.2 Chart
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Figure 29: SimpleVotelntrinsics chart.

2.8.1.3 Comments

The programs have a 2% error in all cases. The main fault appearing here is the
SDC, contributing to almost 1% percent of total program execution. Despite the small
number of registers and the medium number of cycles, the sample has only 2 %. The
reason behind that is the massive amount of threads running, making the fault injection
for cases OR/AND very difficult.

2.9 Templates

This sample is a more complex implementation of the simple templates sample,
to which we referred previously.
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testKernel( float* g_idata, float* g_odata)
{

extern _ shared__ float sdata[];

const unsigned int tid = tf

const unsigned int num_threads =

SDATA(tid) = g_idata[tid];
__syncthreads();

SDATA(tid) = (float) num_threads * SDATA( tid):
__syncthreads();

g_odata[tid] = SDATA(tid);

Figure 30: Templates kernel function.

2.9.1 Templates Results
2.9.1.1 Program Statistics
Registers:

©%r1->%r8

0%f1->%f5

*%tid.x

¢%ntid.x

*%rh1

Number of registers: 19
Cycles: 629
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Table 15: Template execution results.

Transient Faults Stuck-at-0 Stuck-at-1
Masked 1995 1944 1512
SDC 3 53* 481**
Slowdown 2 3 7
Crash - - -
Timeout - - -
Injection 2000 2000 2000

*Along with 9 slowdowns.

**Along with 276 slowdowns.
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Table 16: The slowdown table that shows the number of extra cycles and the number of sample

executions that those extra cycles occurred.

Extra Number of | Extra Number of | Extra Number of
Cycles | Executions | Cycles Executions | Cycles Executions
1 27 65 1 [170-270] |45

2 24 71 1 [271-351] | 38

3 21 82 1 [352-502] | 34

5 15 85 1 [602-567] |40

9 10 96 1

11 5 101 1

13 7 104 1

15 4 111 1

19 2 115 1

25 2 124 1

32 1 131 1

37 1 136 1

46 1 148 1

53 1 153 1

55 1 157 1

59 1 162 1

63 1 169 1
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2.9.1.2 Chart
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Figure 31: Templates chart.

2.9.1.2 Comments

What is obvious after 2000 executions here is that due to the small number of
registers and cycles, the program has multiple silent data corruption cases. This, along
with the fact that stuck-at-1 case affects specially variables with small numerical values,
explains why we have 481 silent data corruption errors. The big amount of errors
reflects on the chart as it is the only case that the error percentage begins from 0%
percent, whereas other sample charts begin from a value greater than 90 %.

2.10 CPPIntegration

This sample is an example of integration CUDA functions into an existing
application/framework. It consists of two kernels. The first one is a test kernel for device
functionality (kernel). The second one is a kernel that demonstrates one templatized
variable that can be used in the c++ code. This variable is actually a memory to be
processed.
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__global__ wvoid
kernel( int* g _data )

{

const unsigned int tid = t
int data = g _data[tid];

Figure 32: Cpplntegration first kernel.

__global__ void
kernel2( imt2* g_data )

{

const unsigned int tid =
int2z data = g_data[tid];

g_data[tid].x

Figure 33: Cpplintegration second kernel.
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2.10.1 CPPintegration Results
2.10.1.1 Program Statistics

Registers
*%r1->%r21

*%tid.x
¢%rh1
Number of registers:22
Cycles:1247
Table 17: Cppintegration execution results.
Transient Fault Stuck-at-0 Stuck-at-1
Masked 1992 1969 1892
SDC 7* 31** 108**
Slowdown 1 - -
Crash - - -
Timeout - - -
Injections 2000 2000 2000

*Along with one slowdown.

**Along with 1 slowdown.

***Along with 65 slowdowns.
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Table 18: The slowdown table that shows the number of extra cycles and the number of sample

executions that those extra cycles occurred.

Extra Number of | Extra Cycles Number of
Cycles Executions Executions

1 10 68 1
2 89 1
3 112 1
5 179 1
1
1

oo

6 211
12 211
15
19
20
23
29
31
38
41
47
51
55
63
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2.10.1.2 Chart
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Figure 34: CPPIntegration chart.

2.10.1.3 Comments

We can see here that transient fault category has surprisingly few errors
compared to the stuck-at-1/stuck-at-0 cases for the number of registers and cycle
number of the execution. Taking in consideration the fact that the program has small
number of cycles and registers, makes the transient fault case having only 8 errors even
stranger. The reason why this is happening is because the program sets a register in
very few cycles, in approximately, 10 percent of the programs cycle. As a result,
worsening the possibility of a match between a register and a cycle with our
corresponding random initialized variables.

2.11 General Charts

Below we present 3 general charts for all benchmarks. They present the
percentage of the transient faults,stuck-at-0 and stuck-at-1 respectively compared to the
total non-masked cases we encountered.
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Figure 35: Percentage of transient faults according to total non-masked cases.
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Figure 36: Percentage of stuck-at-0 faults according to total non masked cases.
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Figure 37: Percentage of stuck-at-1 faults according to total non masked cases.
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3 SUMMARY

There are few points coming out as a result after finishing this thesis, which we believe
worth to be mentioned, especially in this sector of the document.

The stuck-at-1 and stuck-at-O case were kind of a compliment one to the other .
The 64 bit variables is formed with a big number of zeros towards the beginning bits of
the number stored in every register. As a result, the OR operator is more likely to fall
into a position that holds zero numerical value .The bit alters its value, so there is a
difference between the value before the fault injection and the value after . Registers
that operate with different values than the normal are, obviously, more likely to cause an
error during the execution of a sample and this explains why in all cases the amount of
errors with the OR operator is higher than the amount of errors with the AND operator.

In addition, we noticed that there is a strong connection in many programs
between the silent data corruption and the slowdown. As already explained a SDC
changes the value of a register and sometimes it cause the program to execute more
cycles due to changed value of the one variable we have for keeping the index of the
vectors. Mostly, the programs we studied consisted of man loop that iterated over a
vector. A change into that index may force the program to have more access cycles into
the memory for retrieving data .In a normal execution, the program, based on locality by
reference, would retrieve the specified object in the index along with the ones that are
closer to it based on memory. From the moment that we altered the index of the vector,
the object may have not been already brought by the program and extra communication
may exist with memory , contributing to the slowdown case.

The XOR operator is the one causing always the least errors. The two main
requirements are that the GPU cycle must be the same as the one randomly chosen
inside set_operand_value and that the register chosen must be in the specific
instruction that is executed by the simulator at that time. This is something that lessens
the possibility of an access into register, as it requires the program to have a small
number of cycles(possibly bellow 1000 cycles) and a small number of registers(possibly
below 20 registers per PTX code produced).

The number of timeout cases are limited. The timeout case is the most difficult
error to occur, as it needs to change the value of the executing loop in a value that is
over the upper boundary of the loop. It is up to the program’s nature on how the
program is affected by the number of registers, how many of them contribute to the
index computation, how the program handles over the bounds indexing etc.
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ABBREVIATIONS-ACRONYMS
GPU Graphics Processing Unit
GPGPU General-Purpose computation on Graphics Processing Units
SDK Parallel Thread Execution
CTA Cooperative Thread Array
SIMT Single Instruction Multiple Threads
SDC Silent Data Corruption
DWT Direct Wavelet Transform
EKIA EBviko kal KatrodioTpiakd MavemoTruio ABnvwyv
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