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ABSTRACT 

  

The aim of this study is to explore the effects of several hardware faults that 
happen during the program execution in a Graphics Processing Unit (GPU) after 
injecting the hardware faults into the ύPύPU simulator’s program code and executing 
multiple NVIDIA kernels out of the official NVIDIA GPU computing SDK. The fault 
injection is completely randomized. By randomized, we mean the process of choosing 
the register that will be fault injected, the bit that the fault is going to be injected along 
with the register’s thread and the cycle, in transient fault cases. 
 This study also focuses on the effects that hardware faults has on the program’s 
executional behavior, matching any errors or defects to a category, and analyzing the 
samples multiple executions results through diagrams and conclusions. There has been 
a connection on how an error can affect the program’s execution based on the 
program’s cycles, the number of the registers and the type of data (either integer values 
stored in integer variables or integer arrays) that each program uses. 
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1 INTRODUCTION 

1.1 Importance of GPU Programming 

A many-core graphics processing unit (GPU), also occasionally called visual 
processing unit (VPU), is a specialized electronic circuit designed to rapidly manipulate 
and alter memory to accelerate the creation of images in a frame buffer intended for 
output to a display. GPUs are used in mobile phones, game consoles, personal 
computers, , workstations, embedded systems and supercomputers( in ascending order 
of computing power ). Modern GPUs are very efficient for computer graphics and image 
processing, and their highly parallel structure makes them more effective than general-
purpose CPUs for algorithms where processing of large blocks of visual data is done in 
parallel. In a personal computer, a GPU can be present on a video card, or it can be 
embedded on the motherboard or—in certain CPUs—on the CPU die. The former case 
is called a “discrete” GPU while the latter is called a “fused” CPU/GPU architecture 

General-purpose computing on graphics processing units  (GPGPU) became 
practical after 2001 with introduction of programmable shaders and floating point support 
on graphics processors. GPU programming is ideal for problems involving multi-
dimensional matrices and vectors. As time goes by, and by the natural laws applied to 
CPU evolution, slightly declining the expected computing power reached over the years, 
there has been an increased amount of interest for GPU to increase the performance of 
computing systems.  

Increase in graphics hardware performance and improvements in 
programmability, has enabled Graphics Processing Units (GPUs) to evolve from a 
graphics-specific accelerator to a general-purpose computing device. Consequently, 
GPUs have enjoyed wide-spread adoption in various application domains, including 
scientific computing [1].  

 

https://en.wikipedia.org/wiki/Floating_point
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Figure 1: Graph showing the rapid evolution of GPU computation performance compared to the 

x86 CPU [2]. 

  

As GPUs are increasingly used to accelerate applications by allowing more 
flexibility and programmability, their fault tolerance is becoming much more important 
than before when they were used only for graphics. In high speed image rendering, the 
fault in some pixels is not noticeable by human eyes. But, nowadays that GPUs are 
used for general programming use (for DNA sequencing and other problems where 
computing correctness is critical) a hardware error [3] might lead to unpredicted 
behavior, or erroneous program output. Hardware faults may not lead to immediate 
program failure. A single, small hardware failure may often go undetected until it leads 
to more serious failures or it may be completely masked leaving program execution 
unaffected. 

With the current microprocessor fabrication trends, i.e. smaller feature sizes, 
lower voltages and faster clock frequencies, microprocessors are becoming increasingly 
susceptible to hardware failures. Microprocessors can be protected against failures by 
implementing some form of redundancy [4, 5]. Thus, when a failure occurs, it is masked 
by the redundancy, keeping the microprocessor functioning as though the failure did not 
take place [6].  

While graphics processing units (GPUs) have gained wide adoption as 
accelerators for general-purpose applications (GPGPU), the end-to-end reliability 
implications of their use have not been quantified. Fault injection is a widely used 
method for evaluating the reliability of applications. However, building a fault injector for 
GPGPU applications is challenging due to their massive parallelism, which makes it 
difficult to achieve representativeness being time-efficient. [7] 
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1.2 PTX  

PTX (shortening for a  low-level parallel thread execution ) is a virtual machine 
and instruction set architecture (ISA). PTX provides a stable programming model and 
instruction set for general purpose parallel programming. PTX  is an intermediate 
language, as already mentioned, that is designed to be portable across multiple GPU 
architectures. It gets compiled by the compiler component PTXAS into final machine 
code, also referred to as SASS, for a particular GPU chip and architectureέ A PTX  
program specifies the execution of a given thread of a parallel thread array(PTA)έ    

  A cooperative thread array, or CTA, is an array of threads that execute a kernel 
concurrently or in parallel. Threads within a CTA can communicate with each other. To 
coordinate the communication of the threads within the CTA, one can specify 
synchronization points where threads wait until all threads in the CTA have arrived. 
Each thread has a unique thread identifier within the CTA. Programs use a data parallel 
decomposition to partition inputs, work, and results across the threads of the CTA. Each 
CTA thread uses its thread identifier to determine its assigned role, assign specific input 
and output positions, compute addresses, and select work to perform. Each thread 
identifier component ranges from zero up to the number of thread ids in that CTA 
dimensionέ   

 Threads within a CTA execute in SIMT (single-instruction, multiple-thread) 
fashion in groups called warps. A warp is a maximal subset of threads from a single 
CTA, such that the threads execute the same instructions at the same time. Threads 
within a warp are sequentially numbered. The warp size is a machine-dependent 
constantέ Typically, a warp has γβ threadsέ εultiple CTAs may execute concurrently and 
in parallel, or sequentially, depending on the GPU chip. Each CTA has a unique CTA 
identifier (ctaid) within a grid of CTAs. Each grid of CTAs has a 1D, 2D, or 3D shape 
specified by the parameter nctaid. Each grid also has a unique temporal grid identifier 
(gridid).  

PTX contains a set of registers for general purpose uses. We will explain their use 
hereμ    

a) %tid: The thread identifier is a three-element vector tid, (with elements tid.x,  
tid.y, and tid.z) that specifies the threadΥs position within a 1D, βD, or γD CTA   

b) %rh: are “half registers”. They are 16 bit registers used to save space when 
we need to store data only in a short number of bitsέ   

c) %ctaid: CTA identifier within a grid. The %ctaid special register contains a 1D,     
βD, or γD vector, depending on the shape and rank of the CTA gridέ   

d) %r, %p, %fμ Registers used for local store  of unsigned values, predicate 
logic(not only) and local store of floating variables respectively.  
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  The aim of this thesis is to investigate and explore the effects of semi-automated 
fault injection into different programs using three types of fault injection also known as 
fault insertion testing from certain safety standards. The idea behind fault injection is to 
accelerate the occurrence of faults in the system to evaluate its behavior under the 
influence of anticipated faults, and to evaluate error handling mechanisms [8]. Before 
explaining the three types of fault injection, we categorize the type of hardware faults as 
permanent and transient.  

  

a)Permanent Faults: : Faults that remain in a register throughout the execution 
of a program and beyond that; a bit of the register is persistently stuck at a specific 
value (0 or 1) throughout the execution of the program  

b)Transient Faults: Faults that happen in one cycle and exist until another value 
is being written over them.  A bit is flipped from zero to one or from one to zero for one 
cycle during program’s executionέ  

1.3 Fault Injection 

 Figure 2:A typical ptx file generated by the GPGPUsim simulator. 
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1.3.1 Fault Injection Operators  

 The three operators we use to inject faults:  

a) XOR operator (bit flip): Flips (inverts) the value of a single bit in a random 
position of a register. The bit remains flipped until it is overwritten with a new 
value. This type is transient fault (also known as soft error).  

number ^= 1 << x; 

That will toggle bit x.  

b) OR operator: Performs the “OR” operation in a random bit. “OR” is the 
operation that results in each input is 0 if both bits are 0. This type is a 
permanent fault.  

number |= 1 << x;  

That will set bit x. We are going to refer to this category as stuck-at-1. 

c) AND operator: Performs the AND operations in a random bit AND is the 
operation that a true output results if one, and only one, of the inputs is true. 
This is also a permanent fault.  

 number &= ~(1 << x);  

That will clear bit x. We must invert the bit string with the bitwise NOT operator (~), then 
perform the AND operator on it. We are going to refer to this category as stuck-at-0. 

 

1.3.2 Type of Errors 

We have categorized the type of errors produced after the program's execution 
under the presence of a faulty bit (transient of permanent fault) to the five following 
categories:  

Masked: There are cases were the injection fault does not have any effect in the 
program output, leaving the output exactly the same as in a fault-free program 
execution. It may happen because the register access did not alter the value or if in a 
sample execution, basic criteria are not met (specific cycle in TRANSIENT FAULT 
case). That case is called Masked.  

Silent Data Corruption (SDC): The faulty register may have effects on the 
output of a program. This error requires extra debugging as there should be at least one 
check at the regular output of one program compared to the one that has been fault 
injected other.  

Crash: The program is abnormally terminated. That means that the altered 
register holds, for example, the address of a variable or the index of an array.  

Slowdown: The execution time of the program is more that the fault-free time, 
meaning that there is a growth in the number of cycles for program execution. The 
output of the program remains unchanged.  
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Speedup: There is a reduction in the execution time of the program, meaning by 
that, that there is reduce in the number of cycles the program did. The output of the 
program remains unchanged.  

Timeout: The program falls in an infinite loop or other erroneous behavior which 
does not allow it to complete. For this thesis we define the “infinite loop” as the program 
executing for more than twice the normal (fault free) execution time.  

These are the main 5 categories we have chosen to differentiate any irregular 
case in a sample execution while the program is fault-injected. Categories are mutually 
exclusive. 

  

1.3.4 Fault Injection in the GPGPUsim Simulator  

As far as our approach for the fault injection is concerned, we altered the 
GPGPU simulator C++ code to facilitate injection of permanent and transient faults. We 
began, by accessing all the files responsible for the simulation, especially those who 
were responsible for storing data into registers, those who were printing out the number 
of execution cycles and those who were handling the information of threads.  

The function in charge for storing data into a register 
isthe ptx_thread_info::set_operand_value located under src/cuda-sim/instructions.cc. 
This function has four parameters:  

 operand_info &dst: A wrapper class containing a source operand for an 
instruction which may be either a register identifier, a memory operand (including 
displacement mode information), or an immediate operand.  

  

 ptx_reg_t &data: The data to be stored represented by union ptx_reg_t which 
holds multiple memory types (unsigned 32, 64 lower/upper bits et cetera).  

  

 ptx_instruction *pI: Contains the full state of a dynamic instruction including the 
interfaces required for functional simulation.  

  

  ptx_thread_info *thread: Contains functional simulation state for a single scalar 
thread (work item in OpenCL). This includes the following:  

 

 Register value storage  

 Local memory storage  

 Shared memory storage  

 Program counter (PC)  

 Call stack  
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 Thread IDs (the software ID within a grid launch, and the hardware ID indicating 
which hardware thread slot it occupies in timing model) The most important members of 
this class are the ones that hold information about the thread IDs:  

o unsigned m_hw_sid  

o unsigned m_hw_tid  

o unsigned m_hw_wid  

o unsigned m_hw_ctaid  

  They are multiple useful structures here for our study. The register is 
the “dst” parameter, the data to be stored is the data parameter and the thread 
information we were seeking is the thread parameter.  

We had to follow different approaches regarding the faults we wanted to inject. 
All approaches have a common starting point. There is only one time we set the 
variables for the injection. The random cycle variable, random register variable, along 
with other crucial variables, all of them are initialized only once. This is achieved by the 
global, boolean variable randtime that after the first time that all required variables are 
initialized, they never change again. It is the only point where all three of the fault 
injection categories have the same approach.  

The XOR operator requires to be used only once in a specific cycle. So, we need 
to measure the execution cycles. The print_simulation_time() located in 
src/gpgpusim_entrypoint.cc prints general statistics about the program, such as 
instructions per second, instructions executed and number of cycles. We execute the 
program once without fault injection and we store the amount of cycles. Back to the 
specific cycle aspect, the first time set_operand_value is called there is a rand function 
called, divided by the cycles we have plus one and keep the remainder into RandCycle 
variable, along with the RandRegister, which is the random index into the character 2 
dimension array variable we have for the registers. Last, but not least we also keep the 
random position for bit-flip into RandPosition variable, which normally is a rand function 
divided by 64(number of bits for the data) and keeping the remainder 

 

 

 

 

 

 

 

 

  

 

 Figure 3: The stuck-at-1 case of variable initialization. 
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The AND/OR operator (bit in a register stuck at 0 and 1, respectively) also requires the 
RandPosition variable and the RandRegister. What is also required is four extra 
variables, named mySid, myWid, myTid, myCtaid holding the random thread's ids with 
the register malfunction. The two operands affect only one register of one thread, so 
there comes a point where we need to identify and separate each unique thread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the initialization, we proceed with the injection. Due to the difference 
between transient fault and stuck-at-0/stuck-at-1, we follow two different strategies. 

 The first one is that when we have the transient fault case, we perform the 
following check: 

 If(flipBit==0 && strcmp(name.c_str(),registers[randRegister])==0 && 
gpu_sim_cycle==randCycle) 

Figure 1.4: The stuck-at-1/stuck-at-0 case of RandTime 1 Figure 4: The stuck-at-1/stuck-at-0 case of RandTime 1. 
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FlipBit is responsible for allowing only once the access to the register. When the code 
reaches the part for the injection, it changes the value of flipbit to 1. The name.c_str() is 
the name of the current register, and we compare it with the random register. The last 
check is the current cycle represented by the global variable gpu_sim_cycle, compared 
to ours RandCycle, as stuck-at-1 is used for injection in one cycle.    

 On the other hand the stuck-at-1/stuck-at-0 case has slightly different check. 

if(strcmp(name.c_str(),registers[randRegister])==0 && mySid==thread->m_hw_sid 
&& myTid==thread->m_hw_tid) 

 There are two main checks. The first one is again comparing current register with 
the random one. The second one, though, checks whether the current thread matches 
with the random thread as the bit stuck in a register pertains to only one thread. 

After the injection, there is a function call to set_reg. Set reg is a function 
responsible for assigning the value (here is setValue ) to each register. The setValue is 
a variable of ptx_reg_t type. Ptx_reg_t is a union, with members that save memory data 
for each register, such as upper and lower bits, possible float or unsigned value etc. 
Set_reg copies the information calculated or passed from the set_operand_value 
function into the desired register. 

 

 

 Figure 5: Transient fault case injection along with the check we perform. 

Figure 6: : The check and the injection with the AND and the OR case (inside comments). 
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Figure 7: set_reg function. 

 
 What we should add here is the approach we followed after the injection as far as 
the transient fault is concerned. The register with the fault injection must hold the value 
for only one cycle. There are two different cases where the register might be used 
again. The first one is the case where the register is the one that needs to be read in 
order to load its value from the memory, while the second one is the case where the 
register is the one that needs to be written in order to store the result of an instruction.  
 The simulator has already a function implemented for load register values from 
memory. It is called get_operand_value and the parameters of these functions are 
similar to the one for set_operand_value. 
 
 We need to store the thread information along with the previous value that would 
have been stored if we did not fault inject the register. This happens in the 
set_operand_value function: 

 

 

Figure 8: Thread information and the value to be written in the register. 

  

 
 Every time the get_operand_value is called, we perform a check. The check 
consists of 2 basic blocks. The first one is whether we have already performed the 
injection, and if we did, if the current cycle is different from the one that the fault 
injection happened and makes sure that the write back operation of the injected value 
happens only once. The second block checks whether we have the same thread as the 
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one we fault injected and about having the same register. If the above conditional 
statements are satisfied, then we write the previous value in the register.
 

 

Figure 9: The basic check in get operand value function. 

 

 As far as the second case of re accessing a register is concerned, we didn’t have 
to change anything. If the register is not used between the cycle that the fault injection 
happened, then consecutive writes on it will erase the previous value with the new one 
.We should mention here, though, that this is a pretty rare case as the register allocation 
ensures that there will be no dead variables, thus, no dead code . Dead variable is the 
variable that is never used after defined. Dead code is when the variable of a 
computation is never used. 

An example of a dead code is as it follows: 

x=y+1; 

   y=1; 

x=2*z; 

The first x variable is a dead variable as it stores the addition result but it is never being 
actually used, while the next use of the x variables is again for storing operation, thus 
overwriting the previous value. 

1.4 Noticeable Cases  
 

There were a number of cases we came up a lot during our study, and we are 
going to explain and elaborate them here. Mostly each one of the presented samples 
projected the cases explained below. 

Firstly, mostly in our programs we noticed that they obey a general rule, that the 
stuck-at-0 case has significantly less error cases (cases that belong into in any other 
category than the masked one) than the stuck-at-1 case .This happens mainly because 
the injection is random in a 64 bit variable. The contents of the registers are small 
numbers, usually using up to 7 or 8 bits. The random bit, thus, is more likely to be a 
zero rather one. stuck-at-0 case keeps a specific bit stuck into zero value through the 
whole program execution,  so the most probable scenario we have here is a bit already 
in zero value not being altered  by the stuck-at-0 caseέ We should call this one the 
“failed stuck-at-0”, failed because no matter that the register was accessed and injected 
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with the stuck-at-0 operator, there was no change in register's value(Previous values of 
register remains unchanged after the stuck-at-0 operation).  

Secondly, we should mention here that the GPGPU Simulator is a tested 
program that the number of cycles the program has remain stable in normal execution, 
without fault injection. The number of cycles is always the same, a focal point for us, as 
we needed the executions that had different cycles than the normal ones to be affected 
ONLY by the injection.  

Thirdly, the registers are randomly selected and all have equal chances of getting 
picked for injection. For example, for 2000 execution of a program with 20 registers 
every register has a 5% chance to be selected and there is an equality in the number of 
each register getting selected as the fault-injected register.  

As far as statistics are concerned, we decided to count the most severe fault that 
appear,  as it was possible to have one execution with multiple errors. The most regular 
cases were the combination of SDC and slowdown, where we counted this case as an 
SDC and we therefore mention the slowdowns that happened along with the SDC. The 
severities of the cases are as follows:  

1. Timeout/Crash  

2. SDC  

3. Slowdown  

4. Masked  
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2 EXAMPLES 

2.1 Sample Introduction 

  

The NVIDIA GPU Computing SDK consisted of more than 50 programs. For the 
purposes of this study and due to the large number of executions we performed, the 
chosen programs had an average time of execution around 8-10 seconds. We selected 
the following benchmarks for our experiments: 

• VectorAdd: Two vectors initialized and passed as arguments to kernel function where 
an addition on each element of the vector is performed, and the result is stored into a 
third vector. 

• Clock: This CUDA function computes a standard parallel reduction and evaluates the 
time it takes to do that for each block. 

• DwtHaar1D: Implements the Haar wavelet transform in a discrete wavelet. 
• CppIntegration: Simple test kernel for device functionality .Parameter is memory to 

process (in and out). 
• MatrixMul: Performs matrix multiplication of two vectors and stores the output to a third 

one. 
• SimpleStreams: This sample illustrates the usage of CUDA streams for overlapping 

kernel execution with device/host memcopies. 
• SimpleTemplates:. This sample is a templatized version of the template project. It also 

shows how to correctly templatize dynamically allocated shared memory array 
• Templates: A simple template project that can be used as a starting point to create new 

CUDA projects. 
• SimpleVoteIntrinsics: Consisted of two kernels. Kernel #1 tests the across-the-warp 

vote (any) intrinsic. Kernel #2 tests the across-the-warp vote (all) intrinsic.  
 

All of the above programs are tested through normal execution for keeping the 
number of execution cycles stable. The programs have an average of two and a half 
thousand cycles and mostly the programs have thirty to forty registers each. 
 

 

Figure 10: Vector addition. 
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The original NVIDIA program created two random vectors. The vectors were 
passed as arguments from the host function to the device function. The device function, 
at first, calculates the index the thread is responsible to calculate and store the result of 
the addition. The condition check whether the index is less than the number of elements 
the vector have.  

 

 We altered the source code, reducing the amount of elements the vector 
contained from ten thousands to 512 elements. We removed the original function that 
initialized the two vectors with random elements, and replaced the values of each 
position with their index, e.g. A[0]=0, A[1]=1 et cetera, to check after every execution 
whether the result-vector contains the correct elements. A for loop added after the call 
to CUDA function to check all the elements in result-vector and find all possible errors. 
The loop iterates through the entire vector and checks whether the results in the specific 
index is two times the index (position 256, A[256]=256 and B[256]=256, expected result 
C[256]=512). If the result is different, we have a silent data corruption case of error. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  Figure 11: The VectorAdd kernel function. 
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2.2.1 Vector Add Results 

 

2.2.1.1 VectorAdd Statistics 

Registers 

 %tid.x  

 %ntid.x 

 %ctaid,%p1  

 %rh1,%rh2  
Number of registers: 18 

Cycles: 711  

 

 Table 1:VectorAdd Execution results. 

   Transient Fault   Stuck-at-0  Stuck-at-1 

εasked   1λιγ   1981  1κίι    

SDC   25*  19**  188***   

Slowdown   β   -   η    

Crash   -   -   -    

Timeout   -  -   -    

Injections   βίίί   βίίί   2000   

Figure 2  Figure 12: Silent Data Corruption check in VectorAdd sample. 
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*16 slowdowns happened at the same program execution.  

**10 slowdowns happened at the same program execution.  

***61 slowdowns happened at the same program execution.  

 

 

Table 2: The slowdown table that shows the number of extra cycles and the number of sample 

executions that those extra cycles occurred. 

Extra 
Cycles 

+1 +2 +3 +5 +7 +9  +12 +24 +36 

Number of 
executions 

24 8 13 9 2 5 4 4 2 

 

2.2.1.2 Chart 

 

 

Figure 13: Chart for VectorAdd. 
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2.2.1.3 Comments 

There were no crash or timeout cases in this program. This happened because 
there was a check inside kernel code that made sure that the program is not going to be 
over the bounds of the matrix that holds the addition result of the other two vectors. 
There is a general rule that applies to almost all the programs that the stuck-at-0 case 
has significantly less error cases than the stuck-at-1 case we have already mentioned. 

Another useful notice is that one every three SDC faults we have a slowdown, 
where the program is executed .An SDC alters the value of a register and sometimes it 
cause the program to execute more cycles due to changed value of the one variable we 
have for keeping the index of the vectors. A change into that index may force the 
program to have more access cycles into the memory for retrieving data. In a normal 
execution, the program, based on locality by reference, would retrieve the specified 
object in the index along with the ones that are closer to it based on memory address. 
From the moment that we alter the index of the vector, the object may have not been 
already brought by the program and extra communication may exist with memory, 
contributing to the slowdown case.  

What is also worth noted is that we have a big number of silent data corruption 
cases. As we can clearly see from the above chart (figure 2.4), almost one every 10 
execution’s the program execution ended with a result in the data that was different 
from what the original output was. 

 In addition, this is an execution where the results of the transient fault case and 
the results of stuck-at-0 present many similarities, mostly regarding the number of faults 
for the SDC category. The vectorAdd calculates the memory offset for three different 
arrays. The majority of the registers hold address value. These values are big numbers 
with many digits, thus making the always zero bit to actually have an effect on the 
execution of the program and causing a lot of silent data corruption errors. In general, if 
a kernel’s variables contain a lot of memory information, there is a high possibility the 
number of the silent data corruption in transient faults category and the stuck-at-0 to be 
similar. 
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As we can see from the above picture, the registers responsible for calculating 
the index (%r5) are eight out of 18. That means that almost half of the registers are 
directly involved into the index calculation. A change in one of those registers is highly 
possible to affect the number of cycles increasing the communication traffic with the 
memory. Furthermore, even the rest registers hold memory-related values, increasing 
the possibility to have a slowdown in our execution. 

 To sum up, the most important thing we would like to mention here is the strong 
correlation between the SDC error and the slowdown. There is a ratio 1/3 (1 slowdown 
every 3 SDC'S) resulted by the fact that almost all the registers hold memory related 
values. 

 

2.3 Clock 

 This kernel computes a standard parallel reduction and evaluates the time it 
takes to do that for each block. The process of combining multiple parallel threads’ 
results into one overall result is called reduction [9]. Here the reduction operation is 
addition, or sum, and we refer to the reduction as a sum-reduce. (Other programs would 
use other reduction operations as part of the same reduction pattern.) 

 Figure 14: PTX file for VectorAdd program. 
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In this code, parallel reduction is implemented as follows: half of the threads will 
perform the reading from global memory and writing to shared memory, as showed in 
the picture.  

You execute a kernel, and now you want to reduce some values, you limit the access 
the code above to only to half of the total of threads running. Each step requires half the 
threads the previous required. The timing results are stored in device memory. 

Figure 15: Example of parallel reduction. 
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After the call to the device function, the host's main function calculates, in a “for loop”, the 
minimum and maximum time and stores the result into two variables maxEnd and minStart. 

 

 

 

 

The check that shows whether the output is the expected one is shown in the next image: 

 

Figure 16: The clock kernel function. 

Figure 17: MaxEnd and minStart variables. 
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The subtraction of maxEnd and minStart must produce 4263. If the data stored in 
a register holding minStart or maxEnd has changed, then the program prints the error 
message(SDC case). 

 

2.3.1 Clock Results 

2.3.1.1 Program Statistics 

Registers: 

• %r1->%r40 
• %f1->%f5 
• %p1->%p5 

Number of registers: 50 

Cycles: 4630 

 

 

Table 3: Clock execution results. 

 

.**Along with one slowdown. 

 

 

 Transient Fault Stuck-at-0 Stuck-at-1 

Masked 1962 2000 1999 

SDC - - 1** 

Slowdown 12 - - 

Crash 26 - - 

Timeout - - - 

Number Of Injections 2000 2000 2000 

Figure 18: Check for SDC case. 
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Table 4: The slowdown table that shows the number of extra cycles and the number of sample 

executions that those extra cycles occurred. 

Extra 
Cycles 

7 9 98 137 180 586 719 

Number of 
executions 

2 4 3 1 1 1 1 

 

 

 

2.3.1.2 Chart 

 

Figure 19: Chart for clock sample. 

 

2.3.1.3 Comments 

 

Clock is a program that computes the minimum and maximum time. It is quite 
obvious why the amount of SDC errors in those cases all combined are less than other 
programs. The injected fault would lead to an SDC error only if there is a big increase in 
the value of the registers that hold the max or minimum value or if the changed value of 
a temporary variable leads to altered maxEnd and minStart. Furthermore, we noticed 
that during our executions that clock operates with a large number of threads. Fault 
injecting a random thread that has access to a specific register (OR/AND cases) is very 
difficult and this is why we have only one error in a combined 4000 executions.  
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The few errors we had during the clock execution can also be imaged in the 
above chart (figure 2.9).The bars begin the percentage from 97 percent, leading to the 
observation that in all three cases the number of faults in an execution is below 3%. 

Lastly, we should mention here that in the first case there are a big number of 
crash cases.. The 26 crashes happened mainly due to an implemented  function called 
to clean the state of the program .From the moment that we check the kernel 
execution’s result and compared to what it should be, the program called built in 
function cudaDeviceReset(). CudaDeviceReset causes the driver to clean up all state 
.The function is needed to ensure correct operation when the application is being 
profiled. Calling cudaDeviceReset causes all profile data to be flushed before the 
application exits.  

 

2.4 DwtHaar1d 

A discrete wavelet transform (DWT) is any wavelet transform for which the 
wavelets are discretely sampled. As with other wavelet transforms, a key advantage it 
has over Fourier transforms is temporal resolution: it captures both frequency and 
location information (location in time). For an input represented by a list of numbers, the 
Haar wavelet transform may be considered to pair up input values, storing the 
difference and passing the sum. This process is repeated recursively, pairing up the 
sums to provide the next scale, which leads to differences and a final sum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Wavelet_transform
https://en.wikipedia.org/wiki/Wavelet
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Haar_wavelet
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Large signals are subdivided into sub-signals with 512 elements and the wavelet 
transform for these is computed with one block over 10 decomposition levels. The 
resulting signal consisting of the approximation coefficients at level X is then processed 
in a subsequent step on the device. This requires interblocking syncronization which is 
only possible on host side. 

The basic of all Wavelet transforms is to decompose a signal into approximation 
(a) and detail (d) coefficients where the detail tends to be small or zero which allows / 
simplifies compression. The following "graphs" demonstrate the transform for a signal of 

Figure 20:The DWTHaar1D kernel function. 
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length eight. The index always describes the decomposition level where a coefficient 
arises. The input signal is interpreted as approximation signal at level 0. The coefficients 
computed on the device are stored in the same scheme as in the example. This data 
structure is particularly well suited for compression and also preserves the hierarchical 
structure of the decomposition. 

After the kernel call, we compare the computed solution and the reference. 

 

2.4.1 DWTHaar1D Results 

2.4.1.1 Program statistics 

Registers 

• %r1->%r58 
• %tid 
• %ctaid 
• %f1->f21 
• %p1->p4 

Number of registers: 85 

Cycles: 5637 

 

 

Table 5: DWTHaar1D execution results. 

 Transient Faults Stuck-at-0 Stuck-at-1 

Masked 1997 1990 1959 

SDC 3 9 37* 

Slowdown - 1 4 

Crash - - - 

Timeout - - - 

Number Of Injections 2000 2000 2000 

 

 *Along with 19 slowdowns. 
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Table 6: The slowdown table that shows the number of extra cycles and the number of sample 

executions that extra cycles occurred. 

Extra 
Cycles 

4 7 11 17 19 94 245 289 386 592 638 1121 1425 1739 

Number of 
executions 

4 3 3 3 2 1 1 1 1 1 1 1 1 1 

 

2.4.1.3 Chart 

 

 

Figure 21: Chart for DWTHaar1D. 

 

2.4.1.3 Comments 

 The transient fault column has only 3 SDC's which is explained by the fact we 
have 85 registers and 5637 cycles, making the possibility to match a specific register 
being used in a specific cycle reach almost zero per cent(here it is 0.15% possibility to 
have an SDC fault). 
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 There is an increase in the number of SDC cases, moving upwards the chart 
image. The red bar increases as we go from the transient fault case to the stuck-at-0 
case and finally to the stuck-at-1 case. 

   

  

 

2.5 MatrixMul 

 
The next program is about matrix multiplication. In mathematics matrix 

multiplication is a binary operation that takes a pair of matrices, and produces another 
matrix. Numbers such as the real or complex numbers can be multiplied according 
to elementary arithmetic. Computing matrix products is both a central operation in 
many numerical algorithms and potentially time consuming, making it one of the most 
well-studied problems in numerical computing. Various algorithms have been devised 
for  
computing C = AB, especially for large matrices. 
 

 
 

Thus the product AB is defined only if the number of columns in A is equal to the 
number of rows in B, in this case m. Each entry may be computed one at a time. 
Sometimes, the summation convention is used as it is understood to sum over the 
repeated index k. 
 

The sample demonstrates the matrix multiplication. It has been written for clarity 
of exposition to illustrate various CUDA programming principles. It had no goal of 
implementing the most efficient generic kernel for matrix multiplications, that they are 
not part of this thesis. 
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Figure 22: : MatrixMul kernel code. 
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2.5.1 MatrixMul Results 

2.5.1.1 Program statistics 

Registers:   

• %r1->%r56  

• %f1->%f50  

• %ctaid.x,%ctaid.y  

• %p1,%p2  

• %tid.x,%tid.y  

• %rh1  

• Number of registers:113  

Cycles: 57901  

 
 

 

Table 7: MatrixMul execution results. 

   
*Along with 14 slowdowns. 
 
 
 
 
 
 

  Transient Fault  Stuck-at-0 Stuck-at-1 

Masked  1992  1981  1959  

SDC  7  14  19* 

Slowdown  1  2  17  

Crash  -  2  5  

Timeout  -  1  -  

Number of Injections 2000  2000  2000  
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Table 8: The slowdown table that shows the number of extra cycles and the number of sample 

executions that those extra cycles occurred. 

Extra 
Cycles 

Number of 
Executions 

Extra 
Cycles 

Number of 
Executions 

1 4 1456 1 

2 5 1567 1 

3 6 1587 1 

15 2 1769 1 

25 1 1932 1 

32 1 1997 1 

45 1 2482 1 

48 1 2789 1 

80 1 3456 1 

112 1 

231 1 

278 1 

587 1 

634 1 

765 1 

811 1 

1078 1 

1134 1 
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2.5.1.2 Chart 

 

 

Figure 23: Chart for MatrixMul. 

 

 
  

2.5.1.3 Comments 

 

Due to the large number of cycles and registers, we expected that in all 
categories of fault injection there would be only a small number of faults that would lead 
to an error. 

Worth noted here is the fact that in the stuck-at-0 column we got all types of 
errors. The complexity of the program, which explores many fundamental aspects of the 
CUDA programming language in purpose of computing the result of multiplying two 
matrices, affects our cause with the production of one timeout and two crashes. We set 
a rule about the timeout error that if a program run for twice the time it was supposed to, 
that would be the case of a timeout. The timeout appeared because the bit stuck with 
the 0 value was the register containing the index value inside the main loop. There was 
a timeout because every time the index added a value, the bit stuck into zero restrained 
the possible values the index would get, limited the maximum value to a one lesser than 
the upper boundary of the for loop. As far as the crashes are concerned, they appeared 
because the register hold address value, and the AND led to a segmentation fault. In 
the stuck-at-1 column, we once again find a connection between the number of silent 
data corruption faults and the slowdowns. 
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Despite the fact that in this program we have multiple error cases, the number of 
faults as a total is below 2% in all three categories. Furthermore, it is the first program 
that the number of slowdowns and the number of silent data corruption cases is almost 
the same. 

 

 
 

2.6 SimpleTemplates 

 Next sample is simple templates. This sample is a templatized version of the 
template project. It also shows how to correctly templatize dynamically allocated shared 
arrays. 

 

Figure 24: SimpleTemplates kernel code. 

  

2.6.1 SimpleTemplates Results 

2.6.1.1 Program statistics 

 
Registers:  

 %r1->%r12  

 %f1->%f5  

 %tid.x  

 %ntid.x  
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 %rh1  

Number of registers: 19  

Cycles: 1417 
  

Table 9: SimpleTemplates execution results. 

Table 10: The slowdown table that shows the number of extra cycles and the number of sample 

executions that those extra cycles occurred. 

Extra 
Cycles 

Number of 
Executions 

Extra 
Cycles 

Number of 
Executions 

1 27 158 1 

2 18 196 1 

3 11 211 1 

9 7 256 1 

11 2 289 1 

14 3 305 1 

29 1 311 1 

35 1 378 1 

67 1 

82 1 

91 1 

97 1 

105 1 

108 1 

124 1 

  Transient Fault  Stuck-at-0 Stuck-at-1 

Masked  1997  1964  1713  

SDC  3  27  211  

Slowdown  -  9  76  

Crash  -  -  -  

Timeout  -  -  -  

Number of Injection  2000  2000  2000  
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2.6.1.3 Chart 

 

 

Figure 25: Chart for simple templates. 

 

2.6.1.3 Comments 

In this sample we had a large number of faults that produced an error, especially 
in OR case. The explanation is purely mathematical. The program is a simple program 
with 19 registers. Thus, especially in stuck-at-1 and in stuck-at-0 case, there is a big 
possibility a thread uses the register in a cycle, and the injection has an immediate 
effect on the execution of the program. 

 

2.7 Simple Streams 

The next NVIDIA program we use was the simple streams. This sample 
illustrates the usage of CUDA streams for overlapping kernel execution with device/host 
memory copies. The kernel is used to initialize an array to a specific value, after which 
the array is copied to the host (CPU) memory. To increase performance, multiple 
kernel/memory copy pairs are launched asynchronously, each pair in its kernels are 
serialized. Thus, if n pairs are launched, streamed approach can reduce the memory 
copy cost to the (1/n)th of a single copy of the entire data set. Additionally, this sample 
uses CUDA events to measure elapsed time for CUDA calls. Events are a part of CUDA 
API and provide a system independent way to measure execution times on CUDA 
devices with approximately 0.5 microsecond precision. Elapsed times are averaged 
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over nreps repetitions (10 by default). After the kernel is launched and the function is 
executed, then we compare the result we have with the result we should and expected 
to have. Each element should have been incremented by  a total of npres*niterations 
times, and this is what we compare to . Regarding the result, a message appears 
whether the program’s output is normal or altered.  

 

 

Figure 26:SimpleStreams kernel. 

2.7.1 SimpleStreams Results 

2.7.1.1 Program Statistics 

Registers: 

%r1->%r14 

%ctaid.x 

%p1,%p2 

%tid.x 

%ntid.x 

%rh1,%rh2 

Number of registers:21 

Cycles:16504 

Table 11: SimpleStreams execution results. 

 Transient Fault Stuck-at-0 Stuck-at-1 

Masked 1992 1988 1941 

SDC 7* 9** 44*** 

Slowdown 1 3 7 

Crash - - - 

Timeout 1 - 8 

 Injection 2000 2000 2000 
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*Along with *Along with 7 slowdowns. 

**Along with 3 slowdowns. 

****Along with 17 slowdowns. 

 

 

Table 12: The slowdown table that shows the number of extra cycles and the number of sample 

executions that those extra cycles occurred. 

Extra 
Cycles 

Number of 
Executions 

Extra 
Cycles 

Number of 
Executions 

1 3 255 1 

2 5 273 1 

3 4 281 1 

9 3 305 1 

10 3 376 1 

13 3 379 1 

18 2 405 1 

27 1 465 1 

39 1 

55 1 

79 1 

103 1 

137 1 

188 1 

207 1 
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2.7.1.2 Chart 

 

 

Figure 27: SimpleStreams chart. 

 

 

2.7.1.3 Comments 

In this sample, the results of fault injection are those we expected. There is a 
small number of errors in the transient fault column since we have a program with 21 
registers(as we have seen,a program with medium amount of registers) and 16500 
cycles. The possibility of matching a specific register to a specific cycle is around 0.04 
%, with the main cause being the number of cycles. 

 Regarding the other columns, the stuck-at-0 has few errors as the main registers 
hold small numerical values. The program’s execution results (as seen on the chart) 
have a maximum 3% errors in all cases. The stuck-at-1 column has 44 silent data 
corruption cases, along with many timeouts (it is the sample with the most timeout 
cases-grey bar in all charts), compared to previous samples, mainly attributed to the 
small amount of registers. Many of those associate to the computation of the main loop 
index as operands and highly affect the sample in terms of timeouts. 
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2.8 SimpleVoteIntrinsics 

 SimpleVoteIntrinsics is a simple program which demonstrates how to use the Vote (any, 
all) intrinsic instruction in a CUDA kernel. It explores two basic warp voting functions, VOTE any 
and VOTE.All. There are three kernels in this sample. The first one tests the across-the-warp 
vote (any) intrinsic.(VoteAnyKernel1). The second one tests the across the warp vote (all) 
intrinsic(VoteAnyKernel2).  And the third one is a directed test for the across-the-warp vote (all) 
intrinsic (VoteAnyKernel3). 

 

 

Figure 28: SimpleVoteIntrinsics kernel. 

  

2.8.1 SimpleVoteIntrinsics results 

2.8.1.1 Program Statistics 

 Registers: 

%r1->%r22 

%p1->%p6 

%tid.x 

%rh1 

Number of registers:31 
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 Cycles:2144 

 

  

Table 13: SimpleVoteIntrinsics execution results. 

 

*Along with one slowdown. 

**Along with 20 slowdowns. 

 

Table 14: The slowdown table that shows the number of extra cycles and the number of sample 

executions that those extra cycles occurred. 

Extra 
Cycles 

Number of 
Executions 

1 6 

2 7 

3 5 

11 2 

15 2 

 

 

 

 

 

 

 

 Transient Fault Stuck-at-0 Stuck-at-1 

Masked 1995 1994 1969 

SDC 4 6* 31** 

Slowdown 1 - - 

Crash - - - 

Timeout - - - 

Injection 2000 2000 2000 
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2.8.1.2 Chart 

 

Figure 29:  SimpleVoteIntrinsics chart. 

 

2.8.1.3 Comments 

  The programs have a 2% error in all cases. The main fault appearing here is the 
SDC, contributing to almost 1% percent of total program execution. Despite the small 
number of registers and the medium number of cycles, the sample has only 2 %. The 
reason behind that is the massive amount of threads running, making the fault injection 
for cases OR/AND very difficult. 

 

2.9 Templates 

   This sample is a more complex implementation of the simple templates sample, 
to which we referred previously. 
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Figure 30: Templates kernel function. 

2.9.1 Templates Results 

2.9.1.1 Program Statistics 

Registers: 

%r1->%r8 

%f1->%f5 

%tid.x 

%ntid.x 

%rh1 

Number of registers: 19 

Cycles: 629 
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Table 15: Template execution results. 

 

*Along with 9 slowdowns. 

**Along with 276 slowdowns. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 Transient Faults Stuck-at-0 Stuck-at-1 

Masked 1995 1944 1512 

SDC 3 53* 481** 

Slowdown 2 3 7 

Crash - - - 

Timeout - - - 

Injection 2000 2000 2000 
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Table 16: The slowdown table that shows the number of extra cycles and the number of sample 

executions that those extra cycles occurred. 

Extra 
Cycles 

Number of 
Executions 

Extra 
Cycles 

Number of 
Executions 

Extra 
Cycles 

Number of 
Executions 

1 27 65 1 [170-270] 45 

2 24 71 1 [271-351] 38 

3 21 82 1 [352-502] 34 

5 15 85 1 [502-567] 40 

9 10 96 1 

11 5 101 1 

13 7 104 1 

15 4 111 1 

19 2 115 1 

25 2 124 1 

32 1 131 1 

37 1 136 1 

46 1 148 1 

53 1 153 1 

55 1 157 1 

59 1 162 1 

63 1 169 1 
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2.9.1.2 Chart 

 

 

Figure 31: Templates chart. 

  

  

2.9.1.2 Comments 

What is obvious after 2000 executions here is that due to the small number of 
registers and cycles, the program has multiple silent data corruption cases. This, along 
with the fact that stuck-at-1 case affects specially variables with small numerical values, 
explains why we have 481 silent data corruption errors. The big amount of errors 
reflects on the chart as it is the only case that the error percentage begins from 0% 
percent, whereas other sample charts begin from a value greater than 90 %.  

 

2.10 CPPIntegration 

 This sample is an example of integration CUDA functions into an existing 
application/framework. It consists of two kernels. The first one is a test kernel for device 
functionality (kernel). The second one is a kernel that demonstrates one templatized 
variable that can be used in the c++ code. This variable is actually a memory to be 
processed. 
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Figure 32: CppIntegration first kernel. 

  

 

Figure 33: CppIntegration second kernel. 
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2.10.1 CPPIntegration Results 

2.10.1.1 Program Statistics 

Registers 

%r1->%r21 

%tid.x 

%rh1 

Number of registers:22 

Cycles:1247 

 

 

Table 17: CppIntegration execution results. 

 Transient Fault Stuck-at-0 Stuck-at-1 

Masked 1992 1969 1892 

SDC 7* 31** 108** 

Slowdown 1 - - 

Crash - - - 

Timeout - - - 

Injections 2000 2000 2000 

*Along with one slowdown. 

**Along with 1 slowdown. 

***Along with 65 slowdowns. 
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Table 18: The slowdown table that shows the number of extra cycles and the number of sample 

executions that those extra cycles occurred. 

Extra 
Cycles 

Number of 
Executions 

Extra Cycles Number of 
Executions 

1 10 68 1 

2 8 89 1 

3 7 112 1 

5 9 179 1 

6 6 211 1 

12 5 211 1 

15 3 

19 2 

20 2 

23 1 

29 1 

31 2 

38 1 

41 1 

47 1 

51 1 

55 1 

63 1 
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2.10.1.2 Chart 

 

 

Figure 34: CPPIntegration chart. 

 

2.10.1.3 Comments 

  
We can see here that transient fault category has surprisingly few errors 

compared to the stuck-at-1/stuck-at-0 cases for the number of registers and cycle 
number of the execution. Taking in consideration the fact that the program has small 
number of cycles and registers, makes the transient fault case having only 8 errors even 
stranger. The reason why this is happening is because the program sets a register in 
very few cycles, in approximately, 10 percent of the programs cycle. As a result, 
worsening the possibility of a match between a register and a cycle with our 

corresponding random initialized variables. 

 

 

2.11 General Charts 

Below we present 3 general charts for all benchmarks. They present the 
percentage of the transient faults,stuck-at-0 and stuck-at-1 respectively compared to the 
total non-masked cases we encountered. 
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Figure 35: Percentage of transient faults according to total non-masked cases. 

 

Figure 36: Percentage of stuck-at-0 faults according to total non masked cases. 
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Figure 37: Percentage of stuck-at-1 faults according to total non masked cases. 
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3 SUMMARY 

 

 There are few points coming out as a result after finishing this thesis, which we believe 
worth to be mentioned, especially in this sector of the document.  

The stuck-at-1 and stuck-at-0 case were kind of a compliment one to the other . 
The 64 bit variables is formed with a big number of zeros towards the beginning bits of 
the number stored in every register. As a result, the OR operator is more likely to fall 
into a position that holds zero numerical value .The bit alters its value, so there is a 
difference between the value before the fault injection and the value after . Registers 
that operate with different values than the normal are, obviously, more likely to cause an 
error during the execution of a sample and this explains why in all cases the amount of 
errors with the OR operator is higher than the amount of errors with the AND operator.  

In addition, we noticed that there is a strong connection in many programs 
between the silent data corruption and the slowdown. As already explained a SDC 
changes the value of a register and sometimes it cause the program to execute more 
cycles due to changed value of the one variable we have for keeping the index of the 
vectors. Mostly, the programs we studied consisted of man loop that iterated over a 
vector. A change into that index may force the program to have more access cycles into 
the memory for retrieving data .In a normal execution, the program, based on locality by 
reference, would retrieve the specified object in the index along with the ones that are 
closer to it based on memory. From the moment that we altered the index of the vector, 
the object may have not been already brought by the program and extra communication 
may exist with memory , contributing to the slowdown case.  

The XOR operator is the one causing always the least errors. The two main 
requirements are that the GPU cycle must be the same as the one randomly chosen 
inside set_operand_value and that the register chosen must be in the specific 
instruction that is executed by the simulator at that time. This is something that lessens 
the possibility of an access into register, as it requires the program to have a small 
number of cycles(possibly bellow 1000 cycles) and a small number of registers(possibly 
below 20 registers per PTX code produced).  

The number of timeout cases are limited. The timeout case is the most difficult 
error to occur, as it needs to change the value of the executing loop in a value that is 
over the upper boundary of the loopέ It is up to the program’s nature on how the 
program is affected by the number of registers, how many of them contribute to the 
index computation, how the program handles over the bounds indexing etc.  
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ABBREVIATIONS-ACRONYMS 

 

GPU Graphics Processing Unit 

GPGPU General-Purpose computation on Graphics Processing Units 

SDK Parallel Thread Execution 

CTA Cooperative Thread Array 

SIMT Single Instruction Multiple Threads 

SDC Silent Data Corruption 

DWT Direct Wavelet Transform 

Κ Α  α  Καπ α  α π µ  Α  
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