
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Byzantine fault-tolerant vote collection for D-DEMOS, a
distributed e-voting system

Nikos A. Chondros

ATHENS

NOVEMBER 2016

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Συλλογή ψήφων με ανοχή λαθών Βυζαντινού τύπου για
το κατανεμημένο σύστημα εκλογών D-DEMOS

Νίκος Α. Χονδρός

ΑΘΗΝΑ

ΝΟΕΜΒΡΙΟΣ 2016

PhD THESIS

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

Nikos A. Chondros

SUPERVISOR: Mema Roussopoulos, Associate Professor UoA

THREE-MEMBER ADVISORY COMMITTEE:
Mema Roussopoulos, Associate Professor UoA
Alex Delis, Professor UoA
Aggelos Kiayias, Associate Professor UoA

SEVEN-MEMBER EXAMINATION COMMITTEE

Mema Roussopoulos, Alex Delis,
Associate Professor UoA Professor UoA

Aggelos Kiayias, Yannis Smaragdakis,
Associate Professor UoA Professor UoA

Stathes Hadjiefthymiades, Panagiota Fatourou,

Associate Professor UoA Associate Professor Univer-
sity of Crete

Vassilis Zikas,
Assistant Professor Rensselaer PI

Examination Date: November 29, 2016

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Συλλογή ψήφων με ανοχή λαθών Βυζαντινού τύπου για το κατανεμημένο σύστημα
εκλογών D-DEMOS

Νίκος Α. Χονδρός

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Μέμα Ρουσσοπούλου, Αναπληρώτρια Καθηγήτρια ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Μέμα Ρουσσοπούλου, Αναπληρώτρια Καθηγήτρια ΕΚΠΑ
Αλέξης Δελής, Καθηγητής ΕΚΠΑ
Άγγελος Κιαγιάς, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Μέμα Ρουσσοπούλου, Αλέξης Δελής,
Αναπληρώτρια Καθηγήτρια ΕΚΠΑ Καθηγητής ΕΚΠΑ

Άγγελος Κιαγιάς, Γιάννης Σμαραγδάκης,
Αναπληρωτής Καθηγητής ΕΚΠΑ Καθηγητής ΕΚΠΑ

Ευστάθιος Χατζηευθυμιάδης, Παναγιώτα Φατούρου,

Αναπληρωτής Καθηγητής ΕΚΠΑ Αναπληρώτρια Καθηγήτρια
Πανεπιστήμιο Κρήτης

Βασίλης Ζήκας,
Επίκουρος Καθηγητής Rensselaer PI

Ημερομηνία Εξέτασης: 29 Νοεμβρίου 2016

ABSTRACT

E-voting systems are a powerful technology for improving democracy by reducing election
cost, increasing voter participation, and even allowing voters to directly verify the entire
election procedure. Unfortunately, prior internet voting systems have single points of fail-
ure, which may result in the compromise of availability, voter secrecy, or integrity of the
election results.

In this thesis, we consider increasing the fault-tolerance of voting systems by introducing
distributed components. This is non-trivial as, besides integrity and availability, voting
requires safeguarding confidentiality as well, against a malicious adversary. We focus
on the vote collection phase of the voting system, which is a crucial part of the election
process.

We use the DEMOS state-of-the-art but centralized voting system as the basis for our
study. This system uses vote codes to represent voters’ choices, an Election Authority to
setup the election and handle vote collection and result production, and a Bulletin Board for
storing the election transcript for the long-term. We extract the vote collection mechanism
from the centralized Election Authority component of the original DEMOS system, and
replace it with a distributed system that handles vote collection in a Byzantine fault-tolerant
manner. In this thesis, we present the design, security analysis, prototype implementation
and experimental evaluation of this vote collection component.

We present two versions of this component: one completely asynchronous and one with
minimal timing assumptions but better performance. Both versions provide immediate
assurance to the voter her vote was recorded as cast, without requiring cryptographic
operations on behalf of the voter. This way, a voter may cast her vote using an untrusted
computer or network, and still be assured her vote was recorded as cast. For example,
she may vote via a public web terminal, or by sending an SMS from a mobile phone. Even
in these cases, voter’s privacy is still preserved.

We provide a model and security analysis of the systems we present. We implement
prototypes of the complete systems, we measure their performance experimentally, and
we demonstrate their ability to handle large-scale elections. Finally, we demonstrate the
performance trade-offs between the two versions of the system.

We consider the vote collection components we introduce are applicable to any voting
system that uses the code-voting technique.

SUBJECT AREA: Distributed Systems

KEYWORDS: Byzantine Fault-tolerance, voting system, vote collection

ΠΕΡΙΛΗΨΗ

Τα συστήματα διαχείρισης εκλογών είναι μια δυναμική τεχνολογία που επιτρέπει την βελτί-
ωση της δημοκρατικής διαδικασίας μέσω της μείωσης του κόστους υλοποίησης εκλογών,
της αύξησης της συμμετοχής των ψηφοφόρων και της αμεσότητας παραγωγής αποτελε-
σμάτων. Επίσης, δίνουν την δυνατότητα στους ψηφοφόρους να επιβεβαιώσουν άμεσα την
ορθή λειτουργία ολόκληρης της εκλογικής διαδικασίας. Δυστυχώς, τα υπάρχοντα τέτοια
συστήματα είναι σχεδιασμένα με κεντρικά συστατικά, τα οποία και αποτελούν μοναδικά
σημεία αποτυχίας. Αυτό μπορεί να οδηγήσει στην απώλεια διαθεσιμότητας, εμπιστευτι-
κότητας, καθώς και της ακεραιότητας του εκλογικού αποτελέσματος.

Σε αυτή τη διατριβή εξετάζουμε την εισαγωγή ανοχής λαθών στα εκλογικά συστήματα, μέ-
σω της εισαγωγής κατανεμημένων συστατικών. Αυτό είναι περίπλοκο γιατί, εκτός από
την ακεραιότητα και διαθεσιμότητα, σε ένα εκλογικό σύστημα είναι σημαντικό να διαφυ-
λαχθεί και η εμπιστευτικότητα, απέναντι σε έναν κακόβουλο αντίπαλο. Εστιάζουμε στην
φάση συλλογής ψήφων του εκλογικού συστήματος, η οποία είναι ένα κρίσιμο τμήμα της
εκλογικής διαδικασίας.

Χρησιμοποιούμε το σύγχρονο αλλά κεντρικοποιημένο σύστημα διαχείρισης εκλογών
DEMOS σαν βάση για την μελέτη μας. Αυτό το σύστημα χρησιμοποιεί κωδικούς που αντι-
στοιχούν στις δυνατές επιλογές των ψηφοφόρων, μια Αρχή Εκλογών η οποία αρχικοποιεί
τις εκλογές, συλλέγει τις ψήφους και παράγει το αποτέλεσμα, και έναν Πίνακα Ανακοι-
νώσεων για την διατήρηση των στοιχείων των εκλογών μακροπρόθεσμα. Εξάγουμε τον
μηχανισμό συλλογής ψήφων από την κεντρικοποιημένη Αρχή Εκλογών του αρχικού συ-
στήματος DEMOS, και τον αντικαθιστούμε με ένα κατανεμημένο σύστημα που χειρίζεται
την συλλογή ψήφων με ανοχή σε λάθη Βυζαντινού τύπου. Σε αυτή τη διατριβή, παρουσιά-
ζουμε τον σχεδιασμό, ανάλυση ασφάλειας, την ανάπτυξη και αξιολόγηση της πρωτότυπης
υλοποίησης αυτού του κατανεμημένου συστατικού συλλογής ψήφων.

Παρουσιάζουμε δύο εκδόσεις αυτού του συστατικού: μία πλήρως ασύγχρονη και μία με
ελάχιστες υποθέσεις συγχρονισμού αλλά καλύτερη απόδοση. Και οι δύο εκδόσεις παρέ-
χουν άμεση επιβεβαίωση στην ψηφοφόρο ότι η ψήφος της καταχωρήθηκε όπως υποβλή-
θηκε, χωρίς να απαιτούνται κρυπτογραφικές λειτουργίες από την πλευρά της ψηφοφόρου.
Με αυτόν τον τρόπο, η ψηφοφόρος μπορεί να στείλει την ψήφο της χρησιμοποιώντας έναν
μη ασφαλή υπολογιστή ή δίκτυο, και να συνεχίσει να είναι εξασφαλισμένη ότι η ψήφος της
καταχωρήθηκε σωστά. Για παράδειγμα, μπορεί να ψηφίσει χρησιμοποιώντας έναν δημό-
σιο υπολογιστή, ή στέλνοντας ένα σύντομο μήνυμα μέσω κινητού τηλεφώνου. Ακόμη και
σε αυτές τις περιπτώσεις, η εμπιστευτικότητα της ψήφου διατηρείται στο ακέραιο.

Δίνουμε ένα μοντέλο και μια ανάλυση ασφάλειας για τα συστήματα που παρουσιάζουμε.
Υλοποιούμε πρωτότυπα από τα πλήρη συστήματα, μετράμε την απόδοσή τους πειραματι-
κά, και επιδεικνύουμε την ικανότητά τους να χειρίζονται εκλογές μεγάλου μεγέθους. Τέλος,
παρουσιάζουμε τις διαφορές απόδοσης ανάμεσα στις δύο εκδόσεις του συστήματος.

Θεωρούμε ότι τα συστατικά συλλογής ψήφων που παρουσιάζουμε σε αυτή τη διατριβή
μπορούν να βρουν εφαρμογή σε οποιοδήποτε σύστημα διαχείρισης εκλογών που στηρί-
ζεται στην τεχνική της εκπροσώπησης των επιλογών στα ψηφοδέλτια με κωδικούς.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κατανεμημένα Συστήματα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ανοχή Βυζαντινών λαθών, συστήματα διαχείρισης εκλογών, συλλογή
ψήφων

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

1.1. Εισαγωγή στη διατριβή
Τα συστήματα διαχείρισης εκλογών είναι μια δυναμική τεχνολογία που επιτρέπει την βελτί-
ωση της δημοκρατικής διαδικασίας μέσω της μείωσης του κόστους υλοποίησης εκλογών,
της αύξησης της συμμετοχής των ψηφοφόρων και της αμεσότητας παραγωγής αποτελε-
σμάτων. Επίσης, δίνουν την δυνατότητα στους ψηφοφόρους να επιβεβαιώσουν άμεσα την
ορθή λειτουργία ολόκληρης της εκλογικής διαδικασίας. Δυστυχώς, τα υπάρχοντα τέτοια
συστήματα είναι σχεδιασμένα με κεντρικά συστατικά, τα οποία και αποτελούν μοναδικά
σημεία αποτυχίας. Αυτό μπορεί να οδηγήσει στην απώλεια διαθεσιμότητας, εμπιστευτι-
κότητας, καθώς και της ακεραιότητας του εκλογικού αποτελέσματος.

Σε αυτή τη διατριβή εξετάζουμε την εισαγωγή ανοχής λαθών στα εκλογικά συστήματα, μέ-
σω της εισαγωγής κατανεμημένων συστατικών. Αυτό είναι περίπλοκο γιατί, εκτός από
την ακεραιότητα και διαθεσιμότητα, σε ένα εκλογικό σύστημα είναι σημαντικό να διαφυ-
λαχθεί και η εμπιστευτικότητα, απέναντι σε έναν κακόβουλο αντίπαλο. Εστιάζουμε στην
φάση συλλογής ψήφων του εκλογικού συστήματος, η οποία είναι ένα κρίσιμο τμήμα της
εκλογικής διαδικασίας.

Χρησιμοποιούμε το σύγχρονο αλλά κεντρικοποιημένο σύστημα διαχείρισης εκλογών
DEMOS σαν βάση για την μελέτη μας. Αυτό το σύστημα χρησιμοποιεί κωδικούς που αντι-
στοιχούν στις δυνατές επιλογές των ψηφοφόρων, μια Αρχή Εκλογών η οποία αρχικοποιεί
τις εκλογές, συλλέγει τις ψήφους και παράγει το αποτέλεσμα, και έναν Πίνακα Ανακοι-
νώσεων για την διατήρηση των στοιχείων των εκλογών μακροπρόθεσμα. Εξάγουμε τον
μηχανισμό συλλογής ψήφων από την κεντρικοποιημένη Αρχή Εκλογών του αρχικού συ-
στήματος DEMOS, και τον αντικαθιστούμε με ένα κατανεμημένο σύστημα που χειρίζεται
την συλλογή ψήφων με ανοχή σε λάθη Βυζαντινού τύπου.

Σε αυτή τη διατριβή, παρουσιάζουμε τον σχεδιασμό, ανάλυση ασφάλειας, την ανάπτυξη
και αξιολόγηση της πρωτότυπης υλοποίησης αυτού του κατανεμημένου συστατικού συλ-
λογής ψήφων.

Παρουσιάζουμε δύο εκδόσεις αυτού του συστατικού: μία πλήρως ασύγχρονη και μία με
ελάχιστες υποθέσεις συγχρονισμού αλλά καλύτερη απόδοση. Και οι δύο εκδόσεις παρέ-
χουν άμεση επιβεβαίωση στον ψηφοφόρο ότι η ψήφος του καταχωρήθηκε όπως υποβλή-
θηκε, χωρίς να απαιτούνται κρυπτογραφικές λειτουργίες από την πλευρά του ψηφοφόρου.
Με αυτόν τον τρόπο, ο ψηφοφόρος μπορεί να στείλει την ψήφο του χρησιμοποιώντας έναν
μη ασφαλή υπολογιστή ή δίκτυο, και να συνεχίσει να είναι εξασφαλισμένος ότι η ψήφος
του καταχωρήθηκε σωστά. Για παράδειγμα, μπορεί να ψηφίσει χρησιμοποιώντας έναν δη-
μόσιο υπολογιστή, ή στέλνοντας ένα σύντομο μήνυμα μέσω κινητού τηλεφώνου. Ακόμη
και σε αυτές τις περιπτώσεις, η εμπιστευτικότητα της ψήφου διατηρείται στο ακέραιο.

Συνολικά, σε αυτή τη διατριβή γίνονται οι εξής συνεισφορές:

• Εισάγεται ένα κατανεμημένο πρωτόκολλο συλλογής ψήφων, που απαιτεί ένα και
μόνο σημείο συγχρονισμού για να καταλήξει σε συμφωνία.

• Βελτιώνουμε αυτό το πρωτόκολλο κάνοντάς το πλήρως ασύγχρονο. Και στις δύο
περιπτώσεις πάντως, οι ψηφοφόροι μπορούν να είναι βέβαιοι ότι η ψήφος τους θα
καταμετρηθεί σωστά χωρίς να απαιτείται να χρησιμοποιήσουν έμπιστες συσκευές ή
δίκτυα.

• Παρουσιάζουμε μια ανάλυση ασφάλειας των δύο πρωτοκόλλων, αποδεικνύοντας τις
ιδιότητες ακεραιότητας (safety) και προόδου (liveness) τους.

• Υλοποιούμε πρωτότυπες εκδόσεις των συστημάτων που παρουσιάζουμε, μετράμε
εργαστηριακά την απόδοσή τους, και επιβεβαιώνουμε την δυνατότητά τους να διαχει-
ριστούν εκλογές μεγάλης κλίμακας. Τέλος, παρουσιάζουμε τις διαφορές απόδοσης
ανάμεσα στις δύο εκδόσεις του συστήματος.

Θεωρούμε ότι τα συστατικά συλλογής ψήφων που παρουσιάζουμε σε αυτή τη διατριβή
μπορούν να βρουν εφαρμογή σε οποιοδήποτε σύστημα διαχείρισης εκλογών που στηρί-
ζεται στην τεχνική της εκπροσώπησης των επιλογών στα ψηφοδέλτια με κωδικούς.

1.2. Σύντομη περιγραφή του υπάρχοντος συστήματος DEMOS
Το σύστημα DEMOS είναι ένα σύγχρονο σύστημα διαχείρισης εκλογών, το οποίο παρέχει
επιβεβαιωσιμότητα από άκρη σε άκρη (end-to-end verifiability), επιτρέποντας σε οποιον-
δήποτε να επιβεβαιώσει την σωστή του λειτουργία προς την παραγωγή του αποτελέσμα-
τος. Στο σύστημα αυτό ο ψηφοφόρος μπορεί να επιλέξει 1 απόm επιλογές, και να ψηφίσει
υποβάλλοντας τον κωδικό που αντιστοιχεί στην επιλογή του. Κάθε ψηφοδέλτιο έχει δύο
λειτουργικά ισοδύναμα τμήματα, και ο ψηφοφόρος επιλέγει και χρησιμοποιεί τυχαία ένα
από τα δύο. Κάθε ένα τμήμα περιλαμβάνει ολόκληρη την λίστα με τις ίδιες m επιλογές
και διαφορετικούς αντίστοιχους κωδικούς. Το σύστημα DEMOS περιλαμβάνει μια Αρχή
Εκλογών (ΑΕ), η οποία προετοιμάζει τα ψηφοδέλτια, συλλέγει τις ψήφους, και παράγει
το αποτέλεσμα. Επίσης περιλαμβάνει ένα Πίνακα Ανακοινώσεων στον οποίο αναρτώνται
όλα τα στοιχεία των εκλογών, φυσικά με τρόπο που δεν παραβιάζει την ιδιωτικότητα της
ψήφου.

Το σύστημα DEMOS έχει τα εξής μειονεκτήματα:

• Η ΑΕ και ο Πίνακας Ανακοινώσεων είναι μοναδικά σημεία αποτυχίας (πρόβλημα
διαθεσιμότητας).

• Κατά την συλλογή ψήφων, η ΑΕ περιέχει κρυφό περιεχόμενο το οποίο, αν αποκα-
λυφθεί, μπορεί να επιτρέψει στον επιτιθέμενο είτε να ψηφίσει αντί για τους ψηφοφό-
ρους, είτε να μάθει πως αυτοί ψήφισαν.

• Κατά την διάρκεια της συλλογής ψήφων, οι ψηφοφόροι δεν εξασφαλίζονται ότι η
ψήφος τους καταχωρήθηκε σωστά.

Σε αυτή την διατριβή εστιάζουμε στην ανοχή οποιουδήποτε λάθους στην συλλογή ψήφων,
διατηρώντας παράλληλα τις υπόλοιπες ιδιότητες του συστήματος εκλογών.

2. Επιστημονικό υπόβαθρο
Στο κεφάλαιο αυτό παρουσιάζονται μια σειρά ορισμών και γνώσης απαραίτητης για την
κατανόηση των υπόλοιπων κεφαλαίων. Συγκεκριμένα, παρουσιάζονται οι επιθυμητές ι-
διότητες επιβεβαιωσιμότητας, ιδιωτικότητας και ανοχής λαθών των συστημάτων εκλογών
. Επίσης, ορίζονται αυστηρά τα σύγχρονα και ασύγχρονα συστήματα, και τα προβλήματα
της Βυζαντινού τύπου συμφωνίας (Byzantine Agrement), Βυζαντινού τύπου συναίνεσης
(Byzantine Consensus), και της διαδραστικής συνέπειας (Interactive Consistency), από
την βιβλιογραφία των Κατανεμημένων Συστημάτων. Στη συνέχεια παρουσιάζονται, από
την βιβλιογραφία της Κρυπτογραφίας, οι προσθετικά ομομορφικές δεσμεύσεις (additively
homomorphic commitments), και οι αποδείξεις μηδενικής γνώσης (Zero-knowledge Proofs).
Τέλος, παρουσιάζεται στην πληρότητά του το πλήρως κατανεμημένο σύστημα εκλογών D-
DEMOS, έτσι ώστε ο αναγνώστης να δει το επιθυμητό αποτέλεσμα στο σύνολό του. Να
σημειώσουμε εδώ ότι τα υποσυστήματα συλλογής ψήφων που παρουσιάζονται σε αυτή
τη διατριβή αποτελούν τμήματα του D-DEMOS.

3. Περιγραφή Συστήματος
Στο κεφάλαιο αυτό, αρχικά ορίζεται το μοντέλο του συστήματος. Υποθέτουμε ένα πλήρως
συνδεδεμένο δίκτυο, όπου μηνύματα μπορούν να χαθούν, να επαναληφθούν, ή να πα-
ραδοθούν εκτός σειράς. Όμως υποθέτουμε ότι το δίκτυο τελικά παραδίδει κάθε μήνυμα,
εφόσον ο αποστολέας συνεχώς ξαναπροσπαθεί να το αποστείλει. Δεν υποθέτουμε τίποτα
σχετικά με την ταχύτητα των επεξεργαστών των κόμβων. Υποθέτουμε όμως ότι τα ρολό-
για των κόμβων είναι συγχρονισμένα αρκετά κοντά στην πραγματική ώρα, έτσι ώστε να
μπορούμε να τηρήσουμε τα όρια αρχής και τέλους ψηφοφορίας που θέτουν οι εκλογικές
αρχές. Στοχεύουμε στην ανοχή λαθών Βυζαντινού τύπου γιατί αναμένουμε το σύστημα
να εγκατασταθεί σε κόμβους με διαφορετικούς διαχειριστές, και θέλουμε το σύστημα να
ανεχθεί ανθρώπινα λάθη, όπως η κλοπή στοιχείων πρόσβασης. Τέλος, υποθέτουμε ότι ο
αντίπαλος δεν μπορεί να παραβιάσει την ασφάλεια των κρυπτογραφικών εργαλείων που
χρησιμοποιούμε.

Στη συνέχεια εισάγουμε το υποσύστημα Συλλογής Ψήφων (ΣΨ), το οποίο απαλλάσσει
την ΑΕ από την ομώνυμη διαδικασία και την αναλαμβάνει αυτό. Βελτιώνουμε λοιπόν την
ΑΕ έτσι ώστε να παράγει, εκτός από τον κωδικό που αντιστοιχεί σε κάθε επιλογή (ΚΕ),
και ένα τυχαίο αριθμό που θα αποτελέσει την ”απόδειξη” καταγραφής της ψήφου. Έτσι, η
ΑΕ, αρχικοποιεί τους κόμβους ΣΨ με κρυπτογραφημένους τους ΚΕ (σε δεσμευτική μορ-
φή - committed form), και με τμήματα της απόδειξης, χρησιμοποιώντας μια προσέγγιση
επιβεβαιώσιμου μοιράσματος μυστικών (Verifiable Secret Sharing). Με αυτόν τον τρόπο,
κανένας κόμβος ΣΨ δεν μπορεί να αποκαλύψει τους ΚΕ, ούτε και μεμονωμένα να παρέχει
την απόδειξη καταγραφής ψήφου.

Το σύστημα ΣΨ είναι κατανεμημένο, αποτελείται από Nv κόμβους, και ανέχεται μέχρι και
fv σφάλματα, όπου fv < Nv/3. Οι κόμβοι έχουν ένα μυστικό κανάλι για την μεταξύ τους
επικοινωνία, και ένα δημόσιο για την επικοινωνία με τους ψηφοφόρους. Η χρήση του
υποσυστήματος αυτού έχει ως εξής. Ο ψηφοφόρος επιλέγει έναν κόμβο ΣΨ τυχαία και
υποβάλλει σε αυτόν την ψήφο του μέσω του ΚΕ. Ο κόμβος ΣΨ επιβεβαιώνει την εγκυ-
ρότητα του ΚΕ για το συγκεκριμένο ψηφοδέλτιο, και ξεκινάει μια αλληλεπίδραση με τους
άλλους κόμβους ΣΨ όπου αποκαλύπτει το δικό του τμήμα της απόδειξης και περιμένει
αντίστοιχα μηνύματα από τους άλλους κόμβους ΣΨ, έτσι ώστε να αποκτήσει την από-
δειξη στην ανοικτή της μορφή. Μόλις την αποκτήσει, την αποστέλλει στον ψηφοφόρο, ο
οποίος και την συγκρίνει με αυτήν στο ψηφοδέλτιό του για επιβεβαίωση. Σε περίπτωση
λάθους, ο ψηφοφόρος επιλέγει έναν άλλο κόμβο και ξαναπροσπαθεί. Ονομάζουμε αυτήν
την αλληλεπίδραση μεταξύ των κόμβων ΣΨ Πρωτόκολλο Συλλογής Ψήφων.

Όταν παρέλθει η ώρα τέλους ψηφοφορίας, οι κόμβοι ΣΨ σταματούν να δέχονται ψήφους
και ξεκινούν το Πρωτόκολλο Συμφωνίας Συνόλου Ψήφων. Με αυτό το πρωτόκολλο, όλοι
οι έντιμοι κόμβοι ΣΨ θα συμφωνήσουν σε ένα και μόνο σύνολο από καταγεγραμμένες
ψήφους, φροντίζοντας να συμπεριλάβουν όλες αυτές για τις οποίες αποστάλθηκε από το
σύστημα απόδειξη στον ψηφοφόρο.

Οι δύο παραλλαγές του συστήματος διαφέρουν στα δύο αυτά πρωτόκολλα. Η πρώτη,
D-DEMOS/IC, είναι σύγχρονη και χρησιμοποιεί ένα πρωτόκολλο Διαδραστικής Συνέπειας
για την συμφωνία του συνόλου ψήφων. Η δεύτερη, D-DEMOS/Async, είναι ασύγχρονη.
Χρησιμοποιεί πρωτόκολλο συναίνεσης για κάθε ψηφοδέλτιο, και προσθέτει ένα ακόμη
βήμα κατά το πρωτόκολλα Συλλογής Ψήφων, όπου φροντίζει με την δημιουργία ενός Πι-
στοποιητικού Μοναδικότητας για την μοναδικότητα της ψήφου, χειριζόμενο με αυτόν τον
τρόπο κακόβουλους ψηφοφόρους.

Αμέσως μετά την παρουσίαση κάθε έκδοσης του συστήματος ΣΨ, αποδεικνύουμε δύο
ιδιότητες της ασφάλειάς του. Η πρώτη είναι η ακεραιότητα (safety), όπου δείχνουμε ότι
δεν μπορεί το σύστημα να παράξει λάθος δεδομένα. Η δεύτερη είναι αυτή της προόδου
(liveness), που αποδεικνύει ότι εφόσον ο ψηφοφόρος υποβάλλει την ψήφο του “έγκαιρα”,
αυτή θα καταγραφεί. Δίνουμε μάλιστα έναν τύπο υπολογισμού του χρόνου που χρειάζεται
το σύστημα για να παράξει την απόδειξη καταγραφής ψήφου, φροντίζοντας με αυτόν τον
τρόπο να ορίσουμε αυστηρότερα τον όρο “έγκαιρα”.

4. Συζήτηση
Σε αυτό το κεφάλαιο αναπτύσσονται διάφορα θέματα σχετικά με το συγκεκριμένο αντικεί-
μενο. Αρχικά, αιτιολογούμε την επιλογή μας να μην χρησιμοποιήσουμε μια από τις υπάρ-
χουσες λύσεις Μηχανής Καταστάσεων με Αντίγραφα με ανοχή λαθών Βυζαντινού τύπου
(Byzantine Fault Tolerant Replicated State Machines). Πρώτον, μια τέτοια προσέγγιση δεν
θα προστάτευε την ιδιωτικότητα των στοιχείων εφόσον ο αντίπαλος κατάφερνε να πάρει
τον έλεγχο ενός κόμβου ΣΨ. Δεύτερον, ένας τέτοιος αλγόριθμος θα απαιτούσε ο ψηφοφό-
ρος να χρησιμοποιήσει μια έμπιστη συσκευή για να υποβάλλει την ψήφο του, αφού όλοι
οι σχετικοί αλγόριθμοι απαιτούν, τουλάχιστον, την επαλήθευση ψηφιακών υπογραφών.

Στη συνέχεια αναπτύσσουμε μια σειρά από σενάρια επίθεσης του αντιπάλου, δείχνοντας
σε απλή γλώσσα πως το σύστημά μας τις αντιμετωπίζει με επιτυχία.

Σε περίπτωση κακόβουλης Αρχής Εκλογών, το σύστημα προστατεύεται από τα διπλά
ψηφοδέλτια. Είναι αδύνατον για την ΑΕ να προβλέψει ποια πλευρά θα χρησιμοποιήσει ο
ψηφοφόρος, οπότε αν διαβάλλει την αντιστοιχία κωδικών και επιλογών, κάθε ψηφοφόρος
έχει 1/2 πιθανότητα να το διαπιστώσει.

Την περίπτωση κακόβουλου ψηφοφόρου, ο οποίος προσπαθεί να υποβάλλει διαφορετικές
ψήφους σε διαφορετικούς κόμβους ΣΨ, οι δύο εκδοχές του συστήματος την αντιμετωπί-
ζουν διαφορετικά. Το μεν D-DEMOS/IC το διαχειρίζεται με το Πρωτόκολλο Συμφωνίας
Συνόλου Ψήφων, αφού ο κάθε έντιμος κόμβος έχει πρόσβαση στη γνώση όλων των άλ-
λων έντιμων κόμβων. Το δε D-DEMOS/Async, το διαχειρίζεται στο Πρωτόκολλο Συλλογής
Ψήφων με το Πιστοποιητικό Μοναδικότητας, καθώς το τελευταίο απαγορεύει την αποδοχή
δεύτερης επιλογής για το ίδιο ψηφοδέλτιο.

Τέλος, παρουσιάζουμε τις δυνατότητες του επιτιθέμενου όταν έχει στον έλεγχό του έναν
κόμβο ΣΨ, σε συνεργασία μάλιστα με κακόβουλους ψηφοφόρους. Εξηγούμε ότι από την
στιγμή που ένας έντιμος ψηφοφόρος υποβάλλει τον ΚΕ, αυτός ο κωδικός είναι πλέον δη-
μόσια πληροφορία καθώς εκφράζει την βούληση του ψηφοφόρου χωρίς να αποκαλύπτει
την επιλογή του. Έτσι, πιθανή υποκλοπή του ΚΕ δεν αποτελεί παραβίαση της ιδιωτι-
κότητας του ψηφοφόρου. Την περίπτωση απόπειρας υποβολής πολλαπλών ΚΕ για το
ίδιο ψηφοδέλτιο, το σύστημα τη διαχειρίζεται όπως και όταν προέρχεται από τους ψηφο-
φόρους. Τέλος, αν ένας κακόβουλος κόμβος ΣΨ υποδεχθεί την ψήφο, δεν θα μπορέσει
να επανυπολογίσει την αντίστοιχη απόδειξη παρά μόνο αν επικοινωνήσει με έναν ικανο-
ποιητικό αριθμό έντιμων κόμβων ΣΨ, τέτοιο ώστε να διασφαλίζεται ότι η ψήφος αυτή θα
συμπεριληφθεί στο συμφωνημένο Σύνολο Ψήφων.

5. Υλοποίηση
Υλοποιήσαμε το σύστημα κατά το μεγαλύτερο μέρος χρησιμοποιώντας την γλώσσα προ-
γραμματισμού Java. Δημιουργήσαμε ένα υπόβαθρο ασύγχρονου προγραμματισμού σε
αυτή τη γλώσσα, όπου οι εφαρμογές ανώτερου επιπέδου απλά ζητούν την αποστολή μη-
νυμάτων σε κόμβους, και το υπόβαθρο αναλαμβάνει να τα παραδώσει μέσω συνδέσεων
TLS. Επίσης, δημιουργήσαμε έναν υποδοχέα HTTP σε κάθε κόμβο, ο οποίος και μετατρέ-
πει τις εισερχόμενες αιτήσεις HTTP σε μηνύματα, τα προωθεί στην εφαρμογή για εκτέλεση,
και μετατρέπει τα εξερχόμενα μηνύματα σε απαντήσεις HTTP.

Με το παραπάνω υπόβαθρο, ορίσαμε τα μηνύματα και τους χειριστές τους τόσο για το
πρωτόκολλο Συλλογής Ψήφων, όσο και για αυτό της Συμφωνίας Συνόλου Ψήφων, υλο-
ποιώντας τον κόμβο ΣΨ. Για το D-DEMOS/IC, χρησιμοποιήσαμε ένα υπάρχον πρωτόκολ-
λο διαδραστικής συνέπειας, ενώ για το D-DEMOS/Async υλοποιήσαμε το πρωτόκολλο
Βυζαντινού τύπου συναίνεσης του Bracha πάνω στο υπόβαθρο ασύγχρονου προγραμ-
ματισμού που περιγράψαμε παραπάνω. Προχωρήσαμε δε σε μια υλοποίηση του πρωτο-
κόλλου συναίνεσης η οποία επιτρέπει την εκτέλεση πολλαπλών συναινέσεων (πάνω σε
διαφορετικά θέματα) παράλληλα (batching), εξασφαλίζοντας έτσι αισθητά μειωμένο χρόνο

για την ολοκλήρωση της Συμφωνίας Συνόλου Ψήφων.

6. Αξιολόγηση
Στο κεφάλαιο αυτό περιγράφουμε την διαδικασία και τα αποτελέσματα της εργαστηριακής
αξιολόγησης της πρωτότυπης υλοποίησης των δύο εκδοχών του συστήματος συλλογής
ψήφων. Το εργαστήριο αποτελείται από 12 υπολογιστές συνδεδεμένους άμεσα μεταξύ
τους.

Υλοποιήσαμε έναν οδηγό ο οποίος αναπαριστά μια σειρά ψηφοφόρων. Δεδομένου ενός
συνόλου ψηφοδελτίων, ο οδηγός αυτός τα παίρνει με τυχαία σειρά, επιλέγει τυχαία έναν
κόμβο ΣΨ, συνδέεται και δέχεται την φόρμα υποβολής ψήφου, την αποστέλλει συμπλη-
ρωμένη, περιμένει την απάντηση και συνεχίζει με το επόμενο ψηφοδέλτιο. Εκκινούμε
πολλαπλές παρουσίες (instances) του οδηγού, έτσι ώστε να προσομοιώσουμε ελεγχόμε-
να πολλαπλούς ψηφοφόρους που υποβάλλουν την ψήφο τους.

Εκτελούμε πειράματα στα οποία η βάση δεδομένων βρίσκεται στο δίσκο, και δείχνουμε
ότι η αύξηση των ψηφοφόρων ή των επιλογών στα ψηφοδέλτια δεν αλλάζει σημαντικά την
απόδοση του συστήματος, επιβεβαιώνοντας έτσι τις δυνατότητες κλιμάκωσής του.

Στη συνέχεια, εκτελούμε πειράματα στα οποία τα δεδομένα έχουν φορτωθεί στη μνήμη
των υπολογιστών, έτσι ώστε να μετρήσουμε μόνο την απόδοση των δικτυακών μας πρω-
τοκόλλων. Επίσης προσομοιώνουμε ένα δίκτυο ευρείας περιοχής (WAN), έτσι ώστε να
δείξουμε την επίδρασή του στο σύστημα. Αρχικά δείχνουμε ότι την επιβάρυνση που προ-
κύπτει όταν αυξάνουμε τον αριθμό των κόμβων ΣΨ, τόσο στην απόκριση (response time)
όσο και στην διεκπεραιωτική ικανότητα (throughput). Τέλος δείχνουμε ότι η αύξηση των
ταυτόχρονα συνδεδεμένων ψηφοφόρων δεν επηρεάζει την διεκπεραιωτική ικανότητα του
συστήματος μας.

7. Σχετική Βιβλιογραφία
Στο κεφάλαιο αυτό κάνουμε μια ανασκόπηση της σχετικής βιβλιογραφίας. Ξεκινάμε πα-
ραθέτοντας τα συστήματα διαχείρισης εκλογών τα οποία στοχεύουν στην ανοχή λαθών
και τα συγκρίνουμε με το δικό μας. Στη συνέχεια παραθέτουμε την σχετική βιβλιογραφία
στα θέματα της συναίνεσης, της συμφωνίας, και της διαδραστικής συμφωνίας. Τέλος πα-
ραθέτουμε τα σχετικά συστήματα Μηχανής Καταστάσεων με Αντίγραφα (Replicated State
Machines).

8. Συμπεράσματα
Σε αυτή τη διατριβή παρουσιάσαμε δύο εκδοχές ενός συστήματος συλλογής ψήφων, το
οποίο είναι κατανεμημένο και ανέχεται λάθη Βυζαντινού τύπου. Και οι δύο, επιτρέπουν
στον ψηφοφόρο να ψηφίσει με ασφάλεια χωρίς να χρειάζεται να εμπιστευθεί ούτε την
συσκευή ούτε και το δίκτυο που χρησιμοποιεί. Όλα αυτά διατηρώντας την ιδιότητα για

επιβεβαιωσιμότητα από άκρη σε άκρη του χρησιμοποιηθέντος συστήματος διαχείρισης
εκλογών DEMOS.

Πιστεύουμε ότι αυτή η προσέγγιση μπορεί να φανεί χρήσιμη και σε άλλα συστήματα εκλο-
γών που είναι μονολιθικά, έτσι ώστε να γίνουν κατανεμημένα. Έτσι, θα προκύψουν πιο
αξιόπιστα συστήματα διαχείρισης εκλογών, τα οποία και θα μπορέσουν να αναλάβουν την
ηλεκτρονική διεκπεραίωση εκλογών μεγάλης κλίμακας.

To my wife, my late father and my mother.

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, professor Mema Roussopoulos, for her guid-
ance and support throughout my PhD. She was always available for me, and provided
inspirational guidance, encouragement and unselfish help. She kept “asking the right
questions”, forcing me to understand things better and driving me forward. I don’t think
completing my doctoral work would have been possible without her.

I would also like to thank professors Alex Delis and Aggelos Kiayias, the other two mem-
bers of my doctoral committee, for the great cooperation we had during the project we
worked together.

Next, I would like to thank the members of the Distributed Systems and CRYPTO.SEC
groups, for the very fruitful cooperation we had during all these years.

I would also like to thank the European Research Council for the financing they provided
for my PhD studies, via ERC Starting Grant # 279237.

Special thanks go to my wife, for her patience and support throughout my studies. I cer-
tainly could not have made it without her standing by my side!

Finally, I need to express my gratitude to my parents, for instilling the right principles in
me and setting an example by adhering to them consistently throughout their lives. Their
never ending moral support and encouragement have also been very valuable.

CONTENTS

1 INTRODUCTION 33

1.1 Introduction to this thesis . 33

1.2 Description of DEMOS . 35

1.2.1 Overview . 35

1.2.2 Properties of centralized DEMOS . 36

1.2.3 Drawbacks in centralized DEMOS design 36

2 BACKGROUND 37

2.1 Voting Systems requirements . 37

2.2 Consensus, Agreement, Interactive Consistency 37

2.3 Cryptographic tools . 40

2.3.1 Additively homomorphic commitments 40

2.3.2 Zero-knowledge Proofs . 40

2.4 D-DEMOS Overview . 40

2.4.1 Problem Definition and Goals . 41

2.4.2 System overview . 41

3 SYSTEM DESCRIPTION 45

3.1 System model . 45

3.2 Extracting vote collection from the EA . 45

3.3 Election Authority (EA) . 46

3.3.1 Voter Ballots . 46

3.3.2 BB initialization data . 46

3.3.3 VC initialization data . 47

3.3.4 Trustee initialization data . 48

3.4 Vote Collection Subsystem . 48

3.5 Voter algorithm . 51

3.6 Synchronous VC subsystem . 51

3.6.1 System description . 51

3.6.2 Proofs . 54

3.6.2.1 Liveness . 55

3.6.2.1.1 Liveness of the voting algorithm. 55

3.6.2.1.2 Liveness of the vote set consensus algorithm. . . 57

3.6.2.2 Safety . 57

3.6.2.2.1 Safety of the voting algorithm. 58

3.6.2.2.2 Safety of the vote set consensus algorithm. 58

3.6.2.3 Safety threshold . 59

3.6.2.3.1 Receipt generation time formula. 59

3.6.2.3.2 Safety threshold formula. 61

3.7 Asynchronous VC subsystem . 61

3.7.1 System description . 61

3.7.2 Proofs . 65

3.7.2.1 Liveness . 66

3.7.2.1.1 Liveness of the voting algorithm. 66

3.7.2.1.2 Liveness of the vote set consensus algorithm. . . 69

3.7.2.2 Safety . 69

3.7.2.2.1 Safety of the voting algorithm. 70

3.7.2.2.2 Safety of the vote set consensus algorithm. 70

3.7.2.3 Safety threshold . 71

3.7.2.3.1 Receipt generation time formula. 71

3.7.2.3.2 Safety threshold formula. 74

3.8 Remaining D-DEMOS system components 74

3.8.1 Bulletin Board . 75

3.8.2 Trustees . 75

3.8.3 Auditors . 76

4 DISCUSSION 77
4.1 Why not State Machine Replication for VC 77

4.2 Potential attacks . 77

4.2.1 Malicious Election Authority Component 78

4.2.2 Malicious Voter . 78

4.2.3 Malicious Vote Collector . 79

5 IMPLEMENTATION 81
5.1 Infrastructure . 81

5.2 D-DEMOS Election Authority . 83

5.3 VC node . 83

5.3.1 Voting . 83

5.3.2 Vote Set Consensus . 84

6 EVALUATION 89

7 RELATED WORK 101
7.1 Voting systems . 101

7.2 Consensus, Agreement, Interactive Consistency 101

7.3 State Machine Replication . 103

8 CONCLUSIONS AND FUTURE WORK 107
8.1 Conclusion and future work . 107

ABBREVIATIONS - ACRONYMS 111

APPENDICES 111

A Achieving Interactive Consistency in mostly-asynchronous systems 113
A.1 System Model . 113

A.2 Practical Interactive Consistency . 113

A.2.1 Adapting approaches from synchronous systems 113

A.2.2 Solution using Multi-Valued Consensus 114

A.2.3 Solution using Binary Consensus . 116

REFERENCES 128

LIST OF FIGURES

2.1 High-level diagram of interactions between subsystems and actors. Sub-
systems are distributed systems of their own, but are depicted as a unified
entity in this diagram. Time is depicted flowing downwards. 42

3.1 High-level diagram of component interactions during the voting phase. Mes-
sage exchanges between VC nodes are simplified for this diagram. In this
diagram, there are four VC nodes, tolerating up to one fault. 49

3.2 High-level diagram of component interactions during the vote set consen-
sus phase. Four VC nodes and three BB nodes are shown, where each
subsystem tolerates one fault. After agreeing on a single Vote Set S, each
VC node uploads S to every BB node. Messages are simplified for this
diagram. 50

3.3 Diagram of message exchanges for a single vote during the D-DEMOS/IC
vote collection phase. 53

3.4 High level description of algorithm after IC. 54

3.5 Diagram ofmessage exchanges for a single vote during the D-DEMOS/Async
vote collection phase. 62

3.6 High level description of algorithm for asynchronous vote set consensus.
This algorithm runs for each registered ballot. 64

5.1 A UML Class Diagram of the Asynchronous Communications Stack. 82

5.2 A UML Class Diagram of the voting protocol related classes of the Vote
Collector implementation. 85

5.3 A UML Class Diagram of the Bracha Consensus implementation. 86

6.1 Vote collection throughput graphs for D-DEMOS/IC (6.1a) andD-DEMOS/Async(6.1b),
versus the number of total election ballots n. 90

6.2 Vote collection throughput graphs for D-DEMOS/IC (6.2a) andD-DEMOS/Async(6.2b),
versus the number of election options m. 91

6.3 Vote Collection response time of D-DEMOS/IC (6.3a) and D-DEMOS/Async
(6.3b), versus the number of VC nodes, under a LAN setting. Election pa-
rameters are n = 200,000 and m = 4. 93

6.4 Vote Collection throughput of D-DEMOS/IC (6.4a) and D-DEMOS/Async
(6.4b), versus the number of VC nodes, under a LAN setting. Election pa-
rameters are n = 200,000 and m = 4. 94

6.5 Vote Collection throughput of D-DEMOS/IC (6.5a) and D-DEMOS/Async
(6.5b), versus the number of concurrent clients, under a LAN setting. Plots
illustrate performance for different cardinalities of VC nodes, thus different
fault tolerance settings. Election parameters are n = 200,000 and m = 4. . . 95

6.6 Vote Collection response time of D-DEMOS/IC (6.6a) and D-DEMOS/Async
(6.6b), versus the number of VC nodes, under a WAN setting. Election
parameters are n = 200,000 and m = 4. 96

6.7 Vote Collection throughput of D-DEMOS/IC (6.7a) and D-DEMOS/Async
(6.7b), versus the number of VC nodes, under a WAN setting. Election
parameters are n = 200,000 and m = 4. 97

6.8 Vote Collection throughput of D-DEMOS/IC (6.8a) and D-DEMOS/Async
(6.8b), versus the number of concurrent clients, under a WAN setting. Plots
illustrate performance for different cardinalities of VC nodes, thus different
fault tolerance settings. Election parameters are n = 200,000 and m = 4. . . 98

6.9 This figure illustrates the duration of the voting and vote set consensus, for
a range of number of ballots. Results depicted are for 4 VCs, n = 200,000
and m = 4. All phases are disk based. 99

A.1 Diagram of message exchange for IC,MC-RBB, for a single value of the
result vector (repeated n times to achieve IC). 115

A.2 Diagram of message exchanges for (IC,BC-RBB), for a single value of the
result vector (repeated n times to achieve IC). 116

LIST OF TABLES

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

1. INTRODUCTION

1.1 Introduction to this thesis

E-voting systems are a powerful technology to improve the election process. Kiosk-
based e-voting systems, e.g., [28, 31, 58, 29, 13, 45], allow the tally to be produced
faster, but require the voter’s physical presence at the booth. Internet e-voting systems,
e.g., [43, 4, 36, 76, 61, 115, 28, 29, 115, 72], however, allow voters to cast their votes
remotely. Internet voting systems have the potential to enhance the democratic pro-
cess by reducing election costs and by increasing voter participation for social groups
that face considerable physical barriers and overseas voters. In addition, several in-
ternet voting systems [4, 76, 115, 72] allow voters and auditors to directly verify the in-
tegrity of the entire election process, providing end-to-end verifiability. This is a highly
desired property that has emerged in the last decade, where voters can be assured that
no entities, even the election authorities, have manipulated the election result. Despite
their potential, existing internet voting systems suffer from single points of failure, which
may result in the compromise of voter secrecy, service availability, or integrity of the re-
sult [28, 31, 58, 29, 13, 43, 4, 36, 76, 61, 115, 72].

In this thesis, we consider increasing the fault-tolerance of voting systems by introducing
distributed components. This is non-trivial as, besides integrity and availability (or safety
and liveness, as they are often called in distributed systems terminology), voting requires
safeguarding confidentiality as well, against a malicious adversary.

We use the DEMOS [72] state-of-the-art but centralized voting system as the basis for
our study. This system is the first to provide end-to-end verifiability in the standard model
(i.e., without the random oracle assumption). It also introduces the novel idea of using the
voters choices as a source of randomness, to challenge the zero-knowledge proof (ZKP)
protocols [55] which the system uses to prove its setup is correct without disclosing private
voters’ information. This, in turn, is the means to provide end-to-end verifiability.

In its current form, the DEMOS voting system is centralized, having an Election Authority
component that handles everything from setup, to vote collection, to result production.
This presents a risk to availability, as a failure of this component would prohibit voting.
However, it also presents a risk to voters’ privacy, as an attacker that takes control of
this component can obtain each voter’s ballot contents, which directly violates the voter’s
privacy. Finally, the original centralized DEMOS system had no need to provide feedback
to the voter, besides a simple acknowledgment. In a distributed world though, the voter
needs to obtain feedback to be assured the vote was actually recorded as cast in enough
nodes of the system, something we tackle in this thesis.

One specific attribute of DEMOS is its use of code-voting. In this scheme, there is a
setup component which generates vote codes representing the possible voter’s choices,
and includes them in the voters’ ballots. A voter votes by submitting the vote code cor-
responding to her choice. Because of this technique, the voter does not need to perform

33 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

cryptographic operations on the device she uses to vote. Expanding on this, we set out
to introduce a distributed voting system that uses no client-side cryptography at all. This
allows votes to be cast with a greater variety of client devices over public networks, such
as feature phones using SMS, or (untrusted) public web terminals, while still preserving
voter’s privacy.

In this thesis, we present the design, security analysis, prototype implementation and
experimental evaluation of the vote collection components of the D-DEMOS suite of dis-
tributed, end-to-end verifiable internet voting systems, with no single point of failure during
the election process (that is, besides setup).

We design a distributed Vote Collection (VC) subsystem that is Byzantine fault-tolerant
and able to collect votes from voters and assure them their vote was recorded as cast,
without requiring any cryptographic operation from the client device. This allows voters to
vote via SMS, a simple console client over a telnet session, or a public web terminal, while
preserving their privacy. At election end time, VC nodes agree on a single set of votes.
We introduce two versions of the voting components of D-DEMOS that differ in how they
achieve agreement on the set of cast votes. The D-DEMOS/Async version is completely
asynchronous, while D-DEMOS/IC makes minimal synchrony assumptions but is more
efficient. Once agreement has been achieved, VC nodes upload the set of cast votes
to a second distributed component, the Bulletin Board (BB). This, in turn, is a replicated
service that publishes its data immediately and makes it available to the public forever.

The resulting voting systems are end-to-end verifiable, by the voters themselves and third-
party auditors, while preserving voter privacy. To delegate auditing, a voter provides an
auditor specific information from her ballot. The auditor, in turn, reads from the distributed
BB and verifies the complete election process, including the correctness of the election
setup by election authorities. Additionally, as the number of auditors increases, the prob-
ability of election fraud going undetected diminishes exponentially.

We prove the security attributes of both versions of the vote collection components. We
show the components are both live and safe, under minimal assumptions.

Finally, we implement prototypes of the vote collection components for both D-DEMOS
voting system versions. We measure their performance experimentally, under a variety
of election settings, demonstrating their ability to handle thousands of concurrent connec-
tions, and thus manage large-scale elections. We also compare the two systems and
emphasize the trade-offs between them, regarding security and performance.

To summarize, we make the following contributions:

• We introduce a distributed voting protocol, with a single synchronous round for achiev-
ing consensus.

• We enhance this voting protocol and introduce an asynchronous consensus phase.
Note that, both systems allow voters to verify their vote was tallied-as-intended with-
out the assistance of special software or trusted devices.

• We provide a security analysis proving the safety and liveness properties of both

N. Chondros 34

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

protocols.

• We implement prototypes of the systems, measure their performance and demon-
strate their ability to handle large-scale elections. Finally, we demonstrate the per-
formance trade-offs between the two versions of the system.

1.2 Description of DEMOS

1.2.1 Overview

In this section, we provide a high level description of DEMOS [72]. This description will
become clearer when the distributed version (D-DEMOS) is introduced later in Section 2.4.
DEMOS is a state-of-the-art e-voting system that achieves end-to-end verifiability in the
standard model (i.e., without the random oracle assumption) for the first time. In DEMOS,
each voter may select 1 out of m options and cast her vote using vote-codes listed in
her ballot. Each ballot has two functionally equivalent parts (with a complete list of the m
options in each part), instructing the voter to pick one of the two parts at random.

DEMOS in its original centralized form, involves the following entities:

• The voters that use devices assumed to possess limited computational resources;
i.e., the devices are not required to be capable of cryptographic operations.

• An Election Authority (EA), that administers the entire election procedure. Namely,
the EA is responsible for (i) setting up the election, (ii) generating the ballots and
delivering them to the voters, (iii) collecting the cast votes, and (iv) computing the
tally and publishing the election result.

• A publicly accessible and consistent Bulletin Board (BB).

In the Setup phase, the EA generates n double ballots that consist of two functionally
equivalent parts. Each ballot part contains a complete list of the m options that are ran-
domly associated with m randomly generated vote-codes. The EA commits to correct
ballot formation by tabulating the ballots in committed (encrypted) form, using commit-
ments [105] and zero-knowledge proofs [103]. Finally, the EA distributes the ballots to the
voters.

In the Voting phase, the voter randomly chooses one of the two parts of the ballot to vote
by providing the EA with the vote-code corresponding to her intended option. The voter
keeps the unused part and the submitted vote-code for auditing after the election ends.

In the Tally phase, the EA homomorphically computes the election tally (in committed
form). Then, it posts the election result along with the necessary audit information, i.e.
the zero-knowledge proofs, the opening of the homomorphic tally commitment, and the
openings of all committed values in the unused parts of the voter’s ballots.

35 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

After the election ends, any party can compute the result and verify the validity of the zero-
knowledge proofs. In addition, every voter can verify the correct posting of her ballot in the
BB, by comparing the information in the unused ballot part with the respective commitment
openings.

1.2.2 Properties of centralized DEMOS

Under the security framework introduced in [72], centralized DEMOS achieves the follow-
ing properties:

1. End-to-end verifiability in the standard model [72, Theorem 4] against adver-
saries that (a) control the entire election procedure (i.e. the EA is malicious) and (b)
adaptively corrupt up to a fixed number of voters, assuming only a consistent BB.

2. Voter privacy under the Decisional Diffie-Hellman (DDH) assumption [72, The-
orem 5] against adversaries that (a) statically corrupt up to a fixed number of voters,
(b) schedule and observe the network trace of all Cast protocols, and (c) obtain the
personal audit data (the submitted vote-code and the unused ballot part) of every
voter. The EA and the BB are assumed to be honest.

1.2.3 Drawbacks in centralized DEMOS design

Despite being a state-of-the-art e-voting system, DEMOS has the following weaknesses
in its design:

1. The EA and the BB are single points of failure throughout the election procedure.

2. After Setup, the EA maintains secret state and must remain live until the election
ends. This makes EA a high-profile target whose compromise would severely offset
DEMOS’s privacy.

3. In the Voting phase, the voters do not obtain assurance (i.e., in the form of a receipt
message) to verify the correct recording of their cast votes.

N. Chondros 36

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

2. BACKGROUND

In this section, we provide basic background knowledge required to comprehend the sys-
tem description in the next section. This includes some voting systems terminology, a
quick overview of Interactive Consistency, and a series of cryptographic tools used in the
design of D-DEMOS. Finally, we give an overview of the complete D-DEMOS suite of
systems, so that the reader can put our vote collection algorithms in context.

2.1 Voting Systems requirements

An ideal electronic voting system would address a specific list of requirements (see [94,
70, 32] for an extensive description). Our system addresses the following requirements:

• End-to-end verifiability: the voters can verify that their votes were counted as they
intended and any party can verify that the election procedure was executed correctly.

• Privacy: a party that does not monitor voters during the voting phase of the election,
cannot extract information about the voters’ ballots. In addition, a voter cannot prove
how she voted to any party that did not monitor her during the voting phase of the
election1.

• Fault tolerance: the voting system should be resilient to the faulty behavior of up to
a threshold number of components or parts, and be both live and safe.

2.2 Consensus, Agreement, Interactive Consistency

Our study has unveiled a large incoherence in the literature, regarding the terms “Byzan-
tine Agreement” and “Byzantine Consensus”. These are often used to refer to the same
problem (e.g., [57] and [109]), while others, e.g., [99], use the terms interchangeably, even
though these are two distinct problems. There is also inconsistent use of the term “Inter-
active Consistency”, e.g., [90, 102]. To alleviate any confusion and for clarity, we start with
some basic definitions.

Synchronous System. There are a priori known bounds regarding message delivery,
processing speed, and node clock drifts. Algorithms designed for these systems progress
in a series of lock-step rounds. The number of rounds, as well as the time required for each
round to complete, are built-into the system. A synchronous algorithm can detect crash
faults by simply observing missing messages. Typically, the number of rounds required
by synchronous algorithms is directly dependent on the number of faults the system can
tolerate.

1In [72], this property is referred as receipt-freeness.

37 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

Asynchronous System. There are no bounds regarding message delays and node
speeds. Algorithms for these systems also operate in phases, however, they tend to
be implemented as a collection of message handlers that can be concurrently active for
different phases. Thus, it is possible to receive and process an incoming message that
refers to a phase that is different from the one that the receiving node is currently in. In
contrast to synchronous algorithms, these algorithms do not have a given completion time,
meaning that they might require more, or even less, than their synchronous counterpart to
terminate. Also contrary to a synchronous algorithm, an asynchronous one cannot detect
crash faults by observing missing messages, because there is no built-in bound to the
time required for a message to be delivered after its transmission.

Byzantine Agreement. Assume a system of n nodes, where a single source ni has a
private value vi, and the following must be achieved:

• Agreement: All non-faulty nodes must agree on the same value.

• Validity: If ni is non-faulty, then the agreed upon value by all non-faulty nodes is vi.

• Termination: All non-faulty nodes must decide on a value.

This problem, also known as the “Byzantine Generals Problem”, was introduced by Lam-
port et al. [79]. Earlier work has proved there is no solution for the asynchronous case [15],
when the source is faulty. Agreement algorithms that tolerate Byzantine failures of (non-
source) nodes in asynchronous systems are presented in [17] and [23].

Byzantine Consensus. Assume a system of n nodes, where each node ni has a private
value vi ∈ {0, 1}, and the following must be achieved:

• Agreement: All non-faulty nodes must agree on the same value v.

• Validity: If all non-faulty nodes have the same initial value v, then the agreed upon
value by all non-faulty nodes is v.

• Termination: All non-faulty nodes must decide on a value.

One last distinction, regarding consensus protocols, revolves around the agreed upon
value. All of the aforementioned protocols are binary consensus protocols, i.e., the agreed
upon value is v ∈ {0, 1}. In the multi-valued consensus protocol of Correia et al. [41], the
set of values V is of arbitrary size (while in [40], the output value is further restricted with
allowed and disallowed sets).

Multi-Valued Consensus is formally defined by the following properties:

• MVC1 Validity 1: If all correct processes propose the same value v, then any correct
process that decides, decides v.

N. Chondros 38

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

• MVC2 Validity 2: If a correct process decides v, then v was proposed by some
process or v =⊥.

• MVC3 Validity 3: If a value v is proposed only by corrupt processes, then no correct
process that decides,decides v.

• MVC4 Agreement: No two correct processes decide differently.

• MVC5 Termination: Every correct process eventually decides.

Broadcast Primitives. All asynchronous consensus algorithms employ some form of
reliable broadcast protocol, where a source broadcasts a message m, and every correct
node eventually delivers m (e.g., via an up-call to the application). Such a broadcast
satisfies the following properties ([66]):

• Validity: If a non-faulty node broadcasts a messagem, then it eventually deliversm.

• Agreement: If a non-faulty node delivers a message m, then all non-faulty nodes
eventually deliver m.

• Integrity: For any message m, every non-faulty node delivers m at most once iff m
was previously broadcast by sender(m).

Interactive Consistency. Assume a system of n nodes, where each node ni has a private
value vi, and the following must be achieved:

• Agreement: All non-faulty nodes must agree on the same vector of values V

• Validity: If the private value of the non-faulty node ni is vi, then all non-faulty nodes
agree on V [i] = vi.

• Termination: All non-faulty nodes must decide on a vector V .

In our D-DEMOS/IC system, we use the IC,BC-RBB algorithm from [46], which achieves
IC using a single synchronous round. This algorithm uses two phases to complete. The
synchronousValue Dissemination Phase comes first, aiming to disperse the values across
nodes. Consequently, an asynchronous Result Consensus Phase starts, which results in
each honest node holding a vector with every honest node’s slot filled with the correspond-
ing value. We include the full definition of this algorithm and the rationale behind its design
in Appendix A.

39 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

2.3 Cryptographic tools

2.3.1 Additively homomorphic commitments

To achieve integrity against a malicious election authority, our D-DEMOS utilizes lifted
ElGamal [54] over elliptic curves as a non-interactive commitment scheme that achieves
the following properties:

1. Perfectly binding: no adversary can open a commitment Com(m) of m to a value
other than m.

2. Hiding: there exists a constant c < 1 so that the probability that a commitment
Com(m) to m leaks information about m to an adversary running in O(2λ

c
) steps

is no more than negl(λ) (i.e., it is negligible).

3. Additively homomorphic: ∀m1,m2, we have that Com(m1) · Com(m2) = Com(m1 +
m2) .

2.3.2 Zero-knowledge Proofs

D-DEMOS’s security requires the election authority to show the correctness of the election
setup to the public without compromising privacy. We enable this kind of verification with
the use of zero-knowledge proofs. In a zero-knowledge proof, the prover is trying to con-
vince the verifier that a statement is true, without revealing any information about the state-
ment apart from the fact that it is true [103]. More specifically, we say an interactive proof
system has the honest-verifier zero-knowledge (HVZK) property if there exists a proba-
bilistic polynomial time simulator S that, for any given challenge, can output an accepting
proof transcript that is distributed indistinguishable from the real transcript between an
honest prover and an honest verifier. Here, we adopt Chaum-Pedersen zero-knowledge
proofs [30], which belong in the special class of Σ protocols (i.e., 3-move public-coin spe-
cial HVZK proofs), allowing the Election Authority to show that the content inside each
commitment is a valid option encoding.

2.4 D-DEMOS Overview

The work described in this thesis has been performed in the context of a project aiming to
produce a completely distributed, state-of-the-art, end-to-end verifiable e-voting system,
namely the D-DEMOS system. Specifically, this thesis focuses on distributed vote col-
lection for the D-DEMOS system. To help the reader understand better how exactly vote
collection fits in the complete system, we provide here an overview of the full D-DEMOS’s
design goals and operation.

N. Chondros 40

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

2.4.1 Problem Definition and Goals

D-DEMOS supports an electionwith a single question andm options, for a voter population
of size n, where voting takes place between a certain begin and end time (the voting
hours), and each voter may select a single option.

The major goals in designing D-DEMOS are the following three:

1) It has to be end-to-end verifiable, so that anyone can verify the complete election pro-
cess. Additionally, voters should be able to outsource auditing to third parties, without
revealing their voting choice.

2) It has to be fault-tolerant, so that an attack on system availability and correctness is
hard to mount.

3) Voters should not have to trust the terminals they use to vote, as such devices may be
malicious. Instead, voters should be assured their vote was recorded, without disclos-
ing any information on how they voted to the malicious entity controlling their device.

2.4.2 System overview

D-DEMOS employs an election setup component, which is called the Election Authority
(EA), to alleviate the voter from employing any cryptographic operations. The EA ini-
tializes all other system components, and then gets immediately destroyed to preserve
privacy. The Vote Collection (VC) subsystem collects the votes from the voters during
election hours, and assures them their vote was recorded-as-cast. The Bulletin Board
(BB) subsystem, which is a public repository of all election-related information, is used to
hold all ballots, votes, and the result, either in encrypted or plain form, allowing any party
to read from the BB and verify the complete election process. The VC subsystem uploads
all votes to the BB at election end time. Finally, D-DEMOS’s design includes trustees,
who are persons entrusted with managing all actions needed until result tabulation and
publication, including all actions supporting end-to-end verifiability. Trustees hold the keys
to uncover any information hidden in the BB, and D-DEMOS uses threshold cryptography
to make sure a malicious minority cannot uncover any secrets or corrupt the process.

We outline the interactions between these subsystems and the actors in Figure 2.1. In the
following paragraphs, we explain these interactions in more detail.

D-DEMOS starts with the EA generating initialization data for every component of the
system. The EA encodes each election option, and commits to it using a commitment
scheme, as described below. It encodes the i-th option as e⃗i, a unit vector where the i-th
element is 1 and the remaining elements are 0. The commitment of an option encoding is
a vector of (lifted) ElGamal ciphertexts [53] over elliptic curve, that element-wise encrypts
a unit vector. Note that this commitment scheme is also additively homomorphic, i.e., the
commitment of ea+eb can be computed by component-wise multiplying the corresponding
commitments of ea and eb. The EA then creates a votecode and a receipt for each option.

41 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

D-DEMOS components interaction

Election
Authority

Voter

Vote Collection
Subsystem

Bulletin Board
Subsystem

Trustee

Ballot

VC Initialization Data BB Initialization Data Trustee Initialization Data

Election hours begin

Cast vote

Voting protocol

Receipt

Election hours end

Vote set consensus protocol

Vote Set

Dowload Vote Set related data

Local calculation

Upload result

Obtain result

Figure 2.1: High-level diagram of interactions between subsystems and actors. Subsys-
tems are distributed systems of their own, but are depicted as a unified entity in this dia-
gram. Time is depicted flowing downwards.

Subsequently, the EA prepares one ballot for each voter, with two functionally equivalent
parts. Each part contains a list of options, along with their corresponding vote codes and
receipts. We consider ballot distribution to be outside the scope of this paper, but we
do assume ballots, after being produced by the EA, are distributed in a secure manner to
each voter; thus only each voter knows the vote codes listed in her ballot. In the D-DEMOS
system, vote codes are not stored in clear form anywhere besides the voter’s ballot.

D-DEMOS’s VC subsystem collects the votes from the voters during election hours, by
accepting up to one vote code from each voter. The EA initializes each VC node with
the vote codes and the receipts of the voters’ ballots. However, it hides the vote codes,
using a simple commitment scheme based on symmetric encryption of the plaintext along
with a random salt value. This way, each VC node can verify if a vote code is indeed
part of a specific ballot, but cannot recover any vote code until the voter actually chooses
to disclose it. Additionally, we secret-share each receipt across all VC nodes using an
(N − f,N)-VSS (verifiable secret-sharing) scheme with trusted dealer [105], making sure
that a receipt can be recovered and posted back to the voter only when a strong majority
of VC nodes participates successfully in the voting protocol. With this design, the system
adheres to the following contract with the voters: Any honest voter who receives a valid

N. Chondros 42

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

receipt from a Vote Collector node, is assured her vote will be published on the BB, and
thus it will be included in the election tally.

The voter selects one part of her ballot at random, and posts her selected vote code to
one of the VC nodes. When she receives a receipt, she compares it with the one on her
ballot corresponding to the selected vote code. If it matches, she is assured her vote was
correctly recorded and will be included in the election tally. The other part of her ballot,
the one not used for voting, will be used for auditing purposes. This design is essential for
verifiability, in the sense that the EA cannot predict which part a voter may use, and the
unused part will betray a malicious EA with 1

2
probability per audited ballot.

The second distributed subsystem is the BB, which is a replicated service of isolated
nodes. Each BB node is initialized from the EA with vote codes and associated option
encodings in committed form (again, for vote code secrecy), and each BB node provides
public access to its stored information. At election end time, VC nodes run the Vote Set
Consensus protocol (sections 3.6.1 and 3.7.1, which guarantees all VC nodes agree on a
single set of voted vote codes. After agreement, each VC node uploads this set to every
BB node, which in turn publishes this set once it receives the same copy from enough VC
nodes.

The third distributed subsystem is a set of trustees, who are persons entrusted with man-
aging all actions needed after vote collection, until result tabulation and publication; this
includes all actions supporting end-to-end verifiability. Secrets that may uncover infor-
mation in the BB are shared across trustees, making sure malicious trustees under a
certain threshold cannot uncover and disclose sensitive information. We use Pedersen’s
Verifiable linear Secret Sharing (VSS) [101] to split the election data among the trustees.
In a (k, n)-VSS, at least k shares are required to reconstruct the original data, and any
collection of less than k shares leaks no information about the original data. Moreover,
Pedersen’s VSS is additively homomorphic, i.e., one can compute the share of a + b by
adding the share of a and the share of b respectively. This approach allows trustees to per-
form homomorphic “addition” on the option-encodings of cast vote codes, and contribute
back a share of the opening of the homomorphic “total”. Once enough trustees upload
their shares of the “total”, the election tally is uncovered and published at each BB node.

To ensure voter privacy, the system cannot reveal the content inside an option-encoding
commitment at any point. However, a malicious EA might put an arbitrary value (say
9000 votes for option 1) inside such a commitment, causing an incorrect tally result. To
prevent this, D-DEMOS utilizes the Chaum-Pedersen zero-knowledge proof [30], allowing
the EA to show that the content inside each commitment is a valid option encoding, without
revealing its actual content. Namely, the prover uses a Sigma OR proof to show that each
ElGamal ciphertext encrypts either 0 or 1, and the sum of all elements in a vector is 1.
The zero knowledge proof is organized as follows. First, the EA posts the initial part of
the proofs on the BB. Second, during the election, each voter’s A/B part choice is viewed
as a source of randomness, 0/1, and all the voters’ choices are collected and used as the
challenge of the zero knowledge proof. Finally, the trustees will jointly produce the final
part of the proofs and post it on the BB before the opening of the tally. Hence, everyone
can verify those proofs on the BB. We omit the zero-knowledge proof components in this

43 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

thesis and refer the interested reader to [30] for details.

This design allows any voter to read information from the BB, combine it with her private
ballot, and verify her ballot was included in the tally. Additionally, any third-party auditor
can read the BB and verify the complete election process. As the number of auditors
increases, the probability of election fraud going undetected diminishes exponentially. For
example, even if only 10 people audit, with each one having 1

2
probability of detecting ballot

fraud, the probability of ballot fraud going undetected is only 1
2

10
= 0.00097. Thus, even if

the EA is malicious and, e.g., tries to point all vote codes to a specific option, this faulty
setup will be detected because of the end-to-end verifiability of the complete system.

The D-DEMOS suite comprises two different versions of the voting system, with different
performance and security trade-offs. In the first version, called D-DEMOS/IC, Vote Set
Consensus is realized by an algorithm achieving Interactive Consistency, and thus requir-
ing synchronization. The second version,D-DEMOS/Async, uses an asynchronous binary
consensus algorithm for Vote Set Consensus, and thus is completely asynchronous. The
remainder of this thesis focuses specifically on vote collection. The performance trade-offs
between the two vote collection approaches are analyzed in Section 6.

N. Chondros 44

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

3. SYSTEM DESCRIPTION

3.1 System model

We assume a fully connected network, where each node can reach any other node with
which it needs to communicate. The network can drop, delay, duplicate, or deliver mes-
sages out of order. However, we assume messages are eventually delivered, provided
the sender keeps retransmitting them. For all nodes, we make no assumptions regard-
ing processor speeds. We also assume communication between VC nodes happens via
private and authenticated channels.

For both versions of our system, we assume the clocks of VC nodes are synchronized with
real world time; this is needed to prohibit voters from casting votes outside election hours.
For the safety of D-DEMOS/Async version, we make no further timing assumptions. To
ensure liveness, we assume the adversary cannot delay communication between honest
nodes above a certain threshold.

We consider arbitrary (Byzantine) failures, because we expect our system to be deployed
across separate administrative domains and we wish to tolerate human-factor faults (e.g.,
passwords obtained via social engineering). Finally, we assume the adversary cannot
violate the security of the underlying cryptographic primitives.

3.2 Extracting vote collection from the EA

We observe that vote collection is not an intrinsic function of the Election Authority (EA)
component of DEMOS. In fact, the EA should be limited to setup functionality only; that is,
to generate the initialization data for all other system components and participants. After
that, and before the election starts, the EA should be destroyed, decreasing the system’s
attack surface regarding privacy.

Thus, we introduce the Vote Collection (VC) subsystem and define its functionality and
interaction with the remaining system components as follows:

1. VC is initialized from the EA.

2. VC receives votes from voters.

3. VC accepts at most one vote from each voter.

4. VC provides a receipt back to the voter when the vote is valid.

5. On election end time, VC uploads the set of cast vote codes to the BB.

45 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

3.3 Election Authority (EA)

With the VC subsystem extracted, the EA is reduced to only produce the initialization data
for each election entity in the setup phase. To enhance the system robustness, we let the
EA generate all the public/private key pairs for all the system components (except voters)
without relying on external PKI support. We use zero knowledge proofs to ensure the
correctness of all the initialization data produced by the EA.

3.3.1 Voter Ballots

The EA generates one ballot ballotℓ for each voter ℓ, and assigns a unique 64-bit serial-noℓ
to it. As shown below, each ballot consists of two parts: Part A and Part B. Each part
contains a list of m ⟨vote-code,option, receipt⟩ tuples, one tuple for each election option.
The EA generates the vote-code as a 128-bit random number, unique within the ballot,
and the receipt as 64-bit random number.

serial-noℓ
Part A

vote-codeℓ,1 optionℓ,1 receiptℓ,1
.

vote-codeℓ,m optionℓ,m receiptℓ,m
Part B

vote-codeℓ,1 optionℓ,1 receiptℓ,1
.

vote-codeℓ,m optionℓ,m receiptℓ,m

3.3.2 BB initialization data

The initialization data for all BB nodes is identical, and each BB node publishes its initial-
ization data immediately. The BB’s data is used to show the correspondence between
the vote codes and their associated cryptographic payload. This payload comprises the
committed option encodings, and their respective zero knowledge proofs of valid encoding
(first move of the prover), as described in section 2.4.2. However, the vote codes must be
kept secret during the election, to prevent the adversary from “stealing” the voters’ ballots
and using the stolen vote codes to vote. To achieve this, the EA first randomly picks a
128-bit key, msk, and encrypts each vote-code using AES-128-CBC with random initial-
ization vector (AES-128-CBC$) encryption, denoted as [vote-code]msk. Each BB node is
given Hmsk ← SHA256(msk, saltmsk) and saltmsk, where saltmsk is a fresh 64-bit random
salt. Hence, each BB node can be assured the key it reconstructs from VC key-shares
(see below) is indeed the key that was used to encrypt these vote-codes.

The rest of the BB initialization data is as follows: for each serial-noℓ, and for each ballot

N. Chondros 46

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

part, there is a shuffled list of
⟨
[vote-codeℓ,πX

ℓ (j)]msk,payloadℓ,πX
ℓ (j)

⟩
tuples, where πX

ℓ ∈ Sm

is a random permutation (X is A or B).

(Hmsk, saltmsk)
serial-noℓ

Part A
[vote-codeℓ,πA

ℓ (1)]msk payloadℓ,πA
ℓ (1)

...
...

[vote-codeℓ,πA
ℓ (m)]msk payloadℓ,πA

ℓ (m)

Part B
[vote-codeℓ,πB

ℓ (1)]msk payloadℓ,πB
ℓ (1)

...
...

[vote-codeℓ,πB
ℓ (m)]msk payloadℓ,πB

ℓ (m)

We shuffle the list of tuples of each part to ensure voter’s privacy. This way, nobody can
guess the voter’s choice from the position of the cast vote-code in this list.

3.3.3 VC initialization data

The EA uses an (Nv − fv, Nv)-VSS (Verifiable Secret-Sharing) scheme to split msk and
every receiptℓ,j into Nv shares, denoted as (∥msk∥1, . . . , ∥msk∥Nv) and (∥receiptℓ,j∥1, . . . ,
∥receiptℓ,j∥Nv) respectively. For each vote-codeℓ,j in each ballot, the EA also computes
Hℓ,j ← SHA256(vote-codeℓ,j, saltℓ,j), where saltℓ,j is a 64-bit random number. Hℓ,j allows
each VC node to validate a vote-codeℓ,j individually (without network communication),
while still keeping the vote-codeℓ,j secret. To preserve voter privacy, these tuples are also
shuffled using πX

ℓ .

The initialization data for V Ci is structured as below:

∥msk∥i
serial-noℓ

Part A
(Hℓ,πA

ℓ (1), saltℓ,πA
ℓ (1)) ∥receiptℓ,πA

ℓ (1)∥i
.

(Hℓ,πA
ℓ (m), saltℓ,πA

ℓ (m)) ∥receiptℓ,πA
ℓ (m)∥i

Part B
(Hℓ,πB

ℓ (1), saltℓ,πB
ℓ (1)) ∥receiptℓ,πB

ℓ (1)∥i
.

(Hℓ,πB
ℓ (m), saltℓ,πB

ℓ (m)) ∥receiptℓ,πB
ℓ (m)∥i

47 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

3.3.4 Trustee initialization data

The EA uses (ht, Nt)-VSS to split the opening of encoded option commitments Com(e⃗i)
into Nt shares, denoted as (∥e⃗i∥1, . . . , ∥e⃗i∥Nt).

The initialization data for Trusteei is structured as below:

serial-noℓ
Part A

Com(e⃗πA
ℓ (i)) ∥e⃗πA

ℓ (i)∥ℓ
· · · · · ·

Part B
Com(e⃗πB

ℓ (i)) ∥e⃗πB
ℓ (i)∥ℓ

· · · · · ·

Similarly, the state of zero knowledge proofs for ballot correctness is shared among the
trustees using (ht, Nt)-VSS. For further details, we refer the interested reader to [30].

3.4 Vote Collection Subsystem

We design the VC subsystem as a distributed system of Nv cooperating nodes, tolerating
up to fv Byzantine faults, where fv < Nv/3. Note that, we also tolerate the collusion of an
arbitrary number of malicious voters with the malicious VC nodes. VC nodes have private
communication channels to each other, and a public (unsecured) channel for the voters.

We modify the data generation process of DEMOS’s EA, by adding the following two steps
while generating voter’s ballots:

1. The (random) vote-code corresponding to each election option is provided in com-
mitted form to each VC node.

2. A receipt is generated for each vote code, which is itself a random number. The
receipt is secret shared across VC nodes with a Verifiable Secret Sharing (VSS)
scheme. Each VC node receives one of these shares.

At step 1, the commitment scheme used hashes the plain text message along with a salt.
The salt is provided along with the committed form to each VC node, while the opening of
the commitment is the vote-code itself.

Before going into detail in the design of the Vote Collection subsystem, we give an overview
of its use. VC nodes are initialized from the EA (as above). The voter receives her ballot
also from the EA, along with the addresses of the VC nodes. During the election hours,
VC nodes run the voting protocol, as depicted in Figure 3.1.

For this protocol to start, the voter selects one part of her ballot at random, and posts her
selected vote code to one of theVC nodes. TheVC node that receives her vote validates it,

N. Chondros 48

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

D-DEMOS components interaction during voting

Voter

Vote Collector

Node 1

Vote Collector

Node 2

Vote Collector

Node 3

Vote Collector

Node 4

Election hours begin

Cast vote

Voting protocol messages

Receipt

Election hours end

Figure 3.1: High-level diagram of component interactions during the voting phase. Mes-
sage exchanges between VC nodes are simplified for this diagram. In this diagram, there
are four VC nodes, tolerating up to one fault.

49 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

D-DEMOS components interaction during Vote Set Consensus

Vote

Collector

Node 1

Vote

Collector

Node 2

Vote

Collector

Node 3

Vote

Collector

Node 4

Bulletin

Board

Node 1

Bulletin

Board

Node 2

Bulletin

Board

Node 3

Election hours end

Vote Set
Consensus
Protocol

Vote Set
Consensus
Protocol

Vote Set
Consensus
Protocol

Vote Set Upload
(multicast)

Vote Set Upload
(multicast)

Vote Set Upload
(multicast)

Vote Set Upload
(multicast)

Figure 3.2: High-level diagram of component interactions during the vote set consensus
phase. Four VC nodes and three BB nodes are shown, where each subsystem tolerates
one fault. After agreeing on a single Vote Set S, each VC node uploads S to every BB
node. Messages are simplified for this diagram.

interacts with the other VC nodes to reconstruct the receipt from the shares spread across
the VC nodes, and posts it back to the voter. When she receives a receipt, she compares
it with the one on her ballot corresponding to the selected vote code. If it matches, she
is assured her vote was correctly recorded and will be included in the election tally. The
other part of her ballot, the one not used for voting, will be used for auditing purposes.
This design is essential for verifiability, in the sense that the EA cannot predict which part
a voter may use, and the unused part will betray a malicious EA with 1

2
probability per

audited ballot.

At election end time, VC nodes run our Vote Set Consensus protocol, illustrated in Fig-
ure 3.2, which guarantees all VC nodes agree on a single set of voted vote codes. After
agreement, each VC node uploads this set to every BB node, which in turn publishes this
set once it receives the same copy from enough (fv + 1) VC nodes.

N. Chondros 50

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

3.5 Voter algorithm

We expect the voter, who has received a ballot from the EA, to know the URLs of all
VC nodes. To vote, she picks one part of the ballot at random, selects the vote code
representing her chosen option, and enters the vote casting loop. In this loop, she selects
a VC node at random and posts the vote code. She then waits up to a configuration-
specific timeout. If there is a response within the timeout, and it is a valid receipt, she
exits the loop. Otherwise, she selects the next VC node and repeats the vote-casting
process.

Algorithm 1 Voter algorithm
1: procedure Vote(ballot, selection, VC-List):
2: vote-code := ballot.lines[selection].vote-code
3: VC-List := random-shuffle(VC-List)
4: repeat
5: VC-Node := VC-List.popFirst()
6: send VC-Node VOTE(ballot.serial-no, vote-code)
7: wait up to timeout for receipt
8: VC-List.pushBack(VC-Node)
9: until receipt == ballot.lines[selection].receipt

We depict this process in Algorithm 1, where the voter shuffles the list of VC nodes, pops
the first, tries to vote, and adds the popped VC node to the back of the list again. This way,
the list of VC nodes may be traversed multiple times. Our VC subsystem voting protocol
allows for this as, when the receipt is already generated, the responder VC node simply
sends it back to the voter immediately.

3.6 Synchronous VC subsystem

In this section, we describe the synchronous version of our vote collection subsystem. We
first present the voting protocol, which is used by the voter to cast her vote. This protocol
takes the equivalent of a single round-trip between two VC nodes to produce the receipt,
and uses no explicit signatures. Then, we present the vote set consensus protocol, which
runs on election-end time and guarantees that all honest nodes agree on a single set
of votes. This protocol uses an Interactive Consistency algorithm to achieve agreement
between VC nodes. Finally, we provide proofs of liveness and safety for both protocols.

3.6.1 System description

The algorithms implementing our D-DEMOS/IC voting protocol are presented in Algo-
rithm 2. For simplicity, we present our algorithms operating for a single election.

The voting protocol starts when a voter submits a VOTE⟨serial-no, vote-code⟩ message to
a VC node. We call this node the responder, as it is responsible for delivering the receipt
to the voter. The VC node confirms the current system time is within the defined election

51 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

Algorithm 2 Vote Collector voting protocol algorithms for D-DEMOS/IC
1: procedure on VOTE(serial-no, vote-code) from source:
2: if SysT ime() between start and end
3: if b :=locateBallot(serial-no)
4: if b.status = NotVoted
5: if l := b.VerifyVoteCode(vote-code)
6: b.voter := source ▷ Mark the current node as the responder for source
7: b.status := Pending
8: b.used-vc := vote-code
9: sendAll(VOTE_P⟨serial-no, vote-code, l.share⟩)
10: else if b.status = Voted ∧ b.used-vc = vote-code
11: send (source, b.receipt)
12: procedure on VOTE_P(serial-no, vote-code, share) from source:
13: if SysT ime() between start and end)
14: b :=locateBallot(serial-no)
15: if b.status = NotVoted
16: if l := b.VerifyVoteCode(vote-code)
17: if validShare(share, serial-no, vote-code)
18: b.status := Pending
19: b.used-vc := vote-code
20: b.lrs.Append(share) ▷ Update list of receipt shares
21: sendAll(VOTE_P⟨serial-no, vote-code, l.share⟩)
22: else if b.status = Pending ∧ b.used-vc = vote-code
23: if validShare(share, serial-no, vote-code)
24: b.lrs.Append(share) ▷ Update list of receipt shares
25: if size(b.lrs) = Nv − fv
26: b.receipt := Rec(b.lrs)
27: b.status := Voted
28: if b.voter ▷ If this is the responder node
29: send(b.voter, b.receipt)
30: function Ballot::VerifyVoteCode(vote-code)
31: for l := 1 to ballot_lines do
32: if lines[l].hash = h(vote-code||lines[l].salt)
33: return lines[l]
34: return ⊥

N. Chondros 52

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

hours, and locates the ballot with the specified serial-no. It also verifies this ballot has
not been used for this election, either with the same or a different vote code. Then, it
compares the vote-code against every hashed vote code in each ballot line, until it locates
the correct entry. Subsequently, it obtains from its local database the receipt-share cor-
responding to the specific vote-code. Next, it marks the ballot as pending for the specific
vote-code. Finally, it multicasts a VOTE_P⟨serial-no, vote-code, receipt-share⟩ message to
all VC nodes, disclosing its share of the receipt. In case the located ballot is marked as
voted for the specific vote-code, the VC node sends the stored receipt to the voter without
any further interaction with other VC nodes.

Each VC node that receives a VOTE_P message, first validates the received receipt-share
according to the verifiable secret sharing scheme used. Then, it performs the same valida-
tions as the responder, and multicasts another VOTE_P message (only once), disclosing its
share of the receipt. When a node collects hv = Nv− fv valid shares, it uses the verifiable
secret sharing reconstruction algorithm to reconstruct the receipt (the secret) and marks
the ballot as voted for the specific vote-code. Additionally, the responder node sends this
receipt back to the voter.

A message flow diagram of our voting protocol is depicted in Figure 3.3. As is evident
from the diagram, the time from the multicast of the first VOTE_P message until collecting
all receipt shares, is only slightly longer than a single round-trip between two VC nodes.

Figure 3.3: Diagram of message exchanges for a single vote during the D-DEMOS/IC
vote collection phase.

At election end time, each VC node stops processing VOTE and VOTE_P messages, and
initiates the vote-set consensus protocol. It creates a set V Si of ⟨serial-no, vote-code⟩
tuples, including all voted and pending ballots. Then, it participates in the Interactive Con-

53 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

sistency (IC) protocol of [46], with this set. At the end of IC, each node contains a vector
⟨V S1, . . . , V Sn⟩ with the Vote Set of each node, and follows the algorithm of Figure 3.4.
Step 1 makes sure any ballot with multiple submitted vote codes is discarded. Since vote

Cross-tabulate ⟨V S1, . . . , V Sn⟩ per ballot, creating a list of vote codes for each ballot. Perform
the following actions for each ballot:

1. If the list contains two or more distinct vote codes, mark the ballot as NotVoted and exit.

2. If a vote code vca appears at least Nv − 2fv times in the list, mark the ballot as Voted
for vca and exit.

3. Otherwise, mark the ballot as NotVoted and exit.

Figure 3.4: High level description of algorithm after IC.

codes are private, and cannot be guessed by malicious vote collectors, the only way for
multiple vote codes to appear is if malicious voters are involved, against whom our system
is not obliged to respect our contract.
With a single vote code remaining, step 2 considers the threshold above which to consider
a ballot as voted for a specific vote code. We select theNv−2fv threshold for which we are
certain that even the following extreme scenario is handled. If the responder is malicious,
submits a receipt to an honest voter, but denies it during vote-set consensus, the remain-
ing Nv − 2fv honest VC nodes that revealed their receipt shares for the generation of the
receipt, are enough for the system to accept the vote code (receipt generation requires
Nv − fv nodes, of which fv may be malicious, thus Nv − 2fv are necessarily honest).

Finally, step 3 makes sure vote codes that occur less than Nv − 2fv times are discarded.
Under this threshold, there is no way a receipt was ever generated.

At the end of this algorithm, each node submits the resulting set of voted ⟨serial-no, vote-code⟩
tuples to each BB node, which concludes its operation for the specific election.

3.6.2 Proofs

We now prove the liveness and safety of both phases of our synchronous vote collection
subsystem. Liveness is the property which assures us that an algorithm eventually termi-
nates, producing its output. Safety, on the other hand, assures us that an algorithm does
not exhibit erroneous behavior, i.e., it does not produce wrong output.

We consider a D-DEMOS/IC system, where voters run Algorithm 1 and VCnodes run
Algorithm 2 for voting, and the algorithm of section 3.6.1 for Vote Set Consensus, under
the system model of Section 3.1, where fault tolerance thresholds of Section 3.4 hold, and
the adversary cannot guess any vote code inside honest voters’ ballots. We assume the
adversary can control and coordinate all faulty components, i.e., all corrupt voters and all
corrupt VC nodes.

N. Chondros 54

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

In all remaining text of this section, we refer to an honest voter, against whom we prove
liveness and safety. We define the honest voter as one that follows Algorithm 1 of Sec-
tion 3.5 to the letter, and above all selects and discloses only one vote code from her
ballot, keeping all other vote codes confidential until the election ends.

We also refer to a correct VC node, which we define as one that is not under the control
of the adversary and which does not exhibit faulty behavior.

To further clarify our wording, we explain the way a VC node maintains a status for each
ballot. This status may be NotVoted, which is set when the VC node has not started any
instance of the voting protocol for this ballot, for any vote code. The status may be Pending
for vote code vcode, which means the voting protocol has started for vcode, but the receipt
cannot be reconstructed yet. Finally, the status can be Voted for vote code vcode, which
means the receipt for vcode has been reconstructed. Note that statuses Pending and
Voted are always accompanied by a specific vote code, which we denote by writing “the
status is Voted for vote code vcode”.

3.6.2.1 Liveness

3.6.2.1.1 Liveness of the voting algorithm.
We first prove a few useful lemmas, that will lead to the proof of the main theorem.

Lemma 1. If an honest voter’s ballot with tag serno, at a correct VC node V Ci, has its
status changed to Pending for vote code vcode, and all voting protocol messages for this
instance are delivered before election end-time, then this ballot’s status will eventually
change to Voted for vcode at V Ci.

Proof. The ballot’s status is changed to Pendingwhile processing either the VOTE or VOTE_P
messages, at node V Ci. In both cases, this change is accompanied with the multicast of
a VOTE_P message to all other VC nodes, disclosing V Ci’s receipt share. Because we
assume a lossless network, this VOTE_P message will be delivered to, and be processed
by all correct nodes, as per Algorithm 2.

If a receiving correct node V Cj, has the ballot marked as NotVoted, processing of V Ci’s
VOTE_Pmessage results in marking the ballot as Pending for vcode and disclosing V Cj ’s re-
ceipt share via a new VOTE_Pmessage. This happens because the submitted ⟨serno, vcode⟩
tuple was already found valid by V Ci, and thus will also be found valid by V Cj.

If V Cj has ballot with tag sernomarked as anything other than NotVoted, it has to be so for
vote code vcode, since the voter is honest and the adversary cannot guess and submit any
other vote code for this ballot. As such, V Cj must have already sent its VOTE_P message,
and V Ci will receive it eventually.

In both of the above cases, V Cj ’s VOTE_P message will be delivered at node V Ci, since
the network is lossless. As the above happens for every correct node V Cj, V Ci eventually
receives all receipt shares of all correct nodes, via the corresponding VOTE_P messages.
Because the VSS scheme’s secret recovery threshold (Nv − fv) is equal to the minimum

55 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

correct node count, it is guaranteed that the receipt shares are enough to reconstruct the
receipt and mark the ballot as Voted at node V Ci (passing the threshold check at line 25
of Algorithm 2).

Thus, the ballot will be marked as Voted at node V Ci.

Lemma 1 shows that a status of Pending is temporary for honest voters’ ballots, as the
protocol ensures that such a ballot’s status will eventually switch to Voted.

Lemma 2. If an honest voter posts ⟨serno, vcode⟩ to a correct VC node V Ci after election
start-time, and the status of ballot with tag serno is NotVoted at V Ci, and all voting protocol
messages for this instance are delivered before election end-time, then the status of this
ballot will become Voted for vcode across all correct VC nodes.

Proof. At V Ci, the status changes immediately to Pending and the VOTE_P multicast is
performed. Because of Lemma 1, it will eventually change to Voted for vcode. VOTE_P
messages are delivered at all their destinations, because we have assumed a lossless
network. At each correct VC node that V Ci’s VOTE_P is delivered, the status of the ballot
may be:

• NotVoted, in which case it will change to Pending for vcode.

• Pending, but for the same vote code vcode, as the voter is honest and the adversary
cannot guess the remaining vote codes in the voter’s ballot. In this case, because
of Lemma 1, the status will eventually change to Voted for vcode.

• Voted, but for the same vote code vcode, as the voter is honest and the adversary
cannot guess the remaining vote codes in the voter’s ballot.

In all above cases, the status of the ballot either immediately is, or eventually becomes
Voted for vote code vcode.

Lemma 3. If an honest voter posts ⟨serno, vcode⟩ to a correct VC node V Ci before election
end-time, and the status of ballot with tag serno is Voted at V Ci, she will get a receipt.

Proof. The vote code that caused this ballot to become Voted can only be the same as
the one submitted (vcode), because the voter is honest and the adversary cannot guess
vote codes. As such, Algorithm 2 at line 10 replies immediately to the voter with the stored
receipt.

Theorem 1 (Liveness of D-Demos/IC’s voting algorithm).
If an honest voter starts the voter’s algorithm 1 for ⟨serno, vcode⟩, after the election start-
time and before the election end-time, and the network delivers all protocol messages for
this instance of the voting algorithm 2 before election end-time, then she will get back a
receipt.

N. Chondros 56

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

Proof. The voter’s algorithm loops over VC nodes and the voter will eventually stumble
upon a correct VC node V Ci, because of the fault tolerance thresholds. If the ballot’s
status at V Ci is Voted, it has to be for vcode as the voter is honest and the adversary
cannot guess the other vote codes in her ballot. In this case, because of Lemma 3, the
voter will immediately get back a receipt.

If the ballot’s status at V Ci is Pending, it has to be for vcode as the voter is honest and the
adversary cannot guess the other vote codes in her ballot. In this case, the voter will not
get a reply back immediately. However, because of Lemma 1, this status is temporary,
and it will be switched to Voted for vcode eventually.

The only remaining case is when V Ci’s status for the specific ballot is NotVoted. Because
of Lemma 2, the status for this ballot will eventually change to Voted for vcode across all
correct VC nodes.

Thus, as a worst case, the voter will timeout and keep looping contacting the next VC
node, until she reaches a correct one where the status has become Voted, and she will
get the receipt as a reply because of Lemma 3.

Note that the above liveness proof requires the voter to contact at least two correct VC
nodes before getting the reply: one to start the instance of the protocol, and another to
reach a node with status Voted and obtain the receipt. However, our protocol actually
delivers the receipt back to the voter in one step (Algorithm 2, lines 28-29), as long as the
voter does not timeout when casting the vote to the first correct VC node, and the voter
stumbles upon a correct VC node initially.

In the above proof, we assume all messages for the specific instance of the voting protocol
are delivered before election end-time. To give an estimate of the time needed for the
voting protocol to complete, we provide a formula for a safety threshold in section 3.6.2.3.

3.6.2.1.2 Liveness of the vote set consensus algorithm.
We are interested in the liveness of the vote set consensus algorithm, that is, when this al-
gorithm is started across all correct VC nodes at election end-time, it terminates outputting
a set of voted ⟨serno, vcode⟩ tuples at each node.

The liveness of the vote set consensus algorithm derives directly from the (IC,BC-RBB)
algorithm’s liveness property. This is because the algorithm of Figure 3.4, which runs
immediately after the IC one, has no external communication and also has no condition
under which it does not terminate.

3.6.2.2 Safety

In this section, we prove the safety of the vote collection subsystem of D-DEMOS/IC, in
two steps. First, we show that the voting algorithm produces a valid receipt, or none at all.
Then, we show that if a valid receipt is indeed generated, the corresponding vote code
will be included in the set of voted vote codes that is uploaded to the BB from each node.

57 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

3.6.2.2.1 Safety of the voting algorithm.

Theorem 2 (Safety of D-Demos/IC voting algorithm).
If an honest voter submits a ⟨serno, vcode⟩ tuple, then she will receive a valid receipt or
none at all.

Proof. In the proof of Theorem 1 above, we showed that a receipt will be generated for
a valid tuple submission to the VC system, if the network delivers all messages for this
particular voting protocol instance before election end-time. If the network does not deliver
enough messages for the protocol to complete before election-end time, the system does
not output a receipt, but safety is not violated.

If a receipt is indeed generated, this receipt will be valid because at leastNv−fv correct VC
nodes (including the responder) will submit their receipt’s shares, and these are enough
to reconstruct the correct receipt (this is an attribute of the VSS scheme). Additionally,
because the secret-sharing scheme we use is verifiable, each VC node that reconstructs
the receipt can do so by discarding corrupt shares from malicious VC nodes, and thus,
there is no possibility of incorrect reconstruction.

3.6.2.2.2 Safety of the vote set consensus algorithm.
Beyond our standard assumptions, we additionally assume messages from correct VC
nodes submitted for the Value Dissemination Phase of the used (IC,BC-RBB) algorithm,
are delivered within the defined barrier.

Theorem 3 (Safety of D-Demos/IC vote set consensus).
If an honest voter who submits a ⟨serno, vcode⟩ tuple obtains a valid receipt, then this
tuple will be included in the set of voted tuples of each correct VC node.

Proof. By the safety property of the IC algorithm, we have that each correct VC node will
possess every other correct VC node’s V Si set in the result vector of IC.

Given the above, a ⟨serno, vcode⟩ tuple for which a valid receipt has been received by the
voter, is not included in the set of voted tuples only in the following cases:

1. There is another tuple, with a different vote code, for the same ballot (see Step 1 of
Figure 3.4).
This however contradicts either our honest voter assumption, or the assumption that
the adversary is unable to guess vote codes.

2. The specific tuple appears in the V Si sets of less thanNv−2fv VC nodes (see Step 2
of Figure 3.4).
This is not possible because of the secret-sharing threshold of the VSS scheme
used to share the receipt shares across VC nodes. Specifically, for a receipt to be
generated, Nv− fv shares are required, of which at least Nv−2fv are correct. Thus,
at least Nv − 2fv nodes will include this tuple in their corresponding V Si sets.

N. Chondros 58

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

The above are the only cases where a ⟨serno, vcode⟩ tuple for which a valid receipt has
been received by the voter is not included in the set of voted ballots, and we have shown
that all above cases are invalid under our assumptions.

3.6.2.3 Safety threshold

We remind the reader that election hours, that is, the hours where voters are allowed
to vote, are defined by the election administrator. Our system has to obey these time
constraints, by servicing vote requests only within these election hours. We express our
liveness property without such timing constraints, but we assume the network delivers all
protocol messages within the election hours.

To help the system administrator provide an estimate to the voters as to how long before
the election end-time it is safe to cast a vote, we define a safety threshold. To define
this safety threshold, we need to analyze the time it takes for the responder node from
receiving the vote to producing and responding with the corresponding receipt. We use
worst-case assumptions throughout this definition, preferring to err on the safe side. Such
assumptions, evident in our formulas below, are the following:

• There are fv malicious and fast VC nodes active. A correct node receives erroneous
messages from all malicious nodes first, filters them out, and waits until it receives
incoming messages from all the correct nodes to obtain the needed Nv − fv valid
messages and make progress.

• Propagation of messages from different nodes to a single target happen serially,
because they share the majority of the communication links. Thus, when sendingNv

messages to different hosts, for simplicity we sum the individual propagation delays,
assuming no parallelism at all on the communication links. We apply the same logic
for incoming messages from multiple hosts to a single receiver.

3.6.2.3.1 Receipt generation time formula.
In general, the delay for delivering a message between two nodes is given by the following
formula:

dend−to−end = dtransmission + dpropagation + dqueuing + dprocessing (3.1)

In the above formula, we have the following terms:

• dtransmission is the transmission delay, i.e., the time required for the sender to trans-
mit the complete message over the communication link; the transmission delay is
dependent on the message size.

• dpropagation is the time it takes for the first bit of the message to travel the communi-
cation link between the two nodes, and is dependent on the length of the communi-
cation link (or, the distance between the two nodes).

59 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

• dqueuing is the time the input message waits in the input queue of the receiving node,
and is dependent on the concurrency (load) of the receiving node.

• dprocessing is the time it takes to process the message and, either forward it to the next
node, or produce a reply and enqueue it in the output queue.

In our case, we know the vast majority of the messages nodes exchange are short, and
each message fits in a single Ethernet packet. Because of this, we consider dtransmission

negligible and integrate it into dpropagation in all the following formulas.

Thus, the end-to-end delay dreceipt_ic for the voter obtaining a receipt is given by the fol-
lowing formula:

dreceipt_ic = 2dc_propagation + dr_processing_ic + dqueuing (3.2)

In the above formula we assume there is no processing and queuing delay when obtaining
the receipt on the voter’s device. dc_propagation is the propagation delay between the client
(voter) and the responder VC node, and its factor of 2 expresses the delay until both the
request (vote cast) and the reply (receipt) reach their targets. dqueuing is the queuing delay
of the VOTE message in the responder node.

Finally, dr_processing_ic is the time it takes the responder to generate the receipt. This in-
cludes validating the input, sending out one VOTE_P message to each node in the VC sub-
system, waiting for Nv VOTE_P replies (we assume malicious nodes are active and faster
than correct nodes, which is the worst case), and recreating the receipt from the shares
it receives. We observe a VC node performs a computation, sends a network message,
and either finishes its operation or blocks, waiting for input. To simplify things, we make
the assumption that all such computations take an equal amount of time, which we denote
as dcomputation.

Thus, the formula to calculate dr_processing_ic is:

dr_processing_ic = 2dcomputation+2Nvdv_propagation+Nvdqueuing+(dv_processing_ic+dqueuing) (3.3)

In formula 3.3 above, the terms are as follows:

• 2dcomputation denotes the two computation steps performed at the responder node.
The first is for validating the input and the second is for recreating the receipt from
the shares.

• 2Nvdv_propagation is the propagation delay between VC nodes. The factor 2Nv includes
sending the message to Nv nodes and receiving their replies.

• Nvdqueuing expresses the time theNv replies wait in the queue of the responder node.

• (dv_processing_ic + dqueuing) is the time required for a non-responder VC node to sub-
mit its receipt share, which includes the processing and queuing delay. There is
no Nv factor here, because processing and queuing happen in parallel across VC
nodes. Thus, the responder node actually notices a delay equal to the processing
and queuing time at a single VC node.

N. Chondros 60

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

A non-responder VC node simply validates its input and discloses its receipt share. Thus,
we have that:

dv_processing_ic = dcomputation (3.4)

Combining equations 3.2, 3.3, and 3.4, we derive the following formula:

dreceipt_ic = 2dc_propagation + 2Nvdv_propagation + 3dcomputation + (Nv + 2)dqueuing (3.5)

3.6.2.3.2 Safety threshold formula.
If the voter sets the timeout, for Algorithm 1 when waiting for a receipt, to dreceipt_ic (defined
in formula 3.5 above), we estimate that a safe amount of time the voter can vote and expect
her vote to be registered, to be:

safety_threshold_ic = (fv + 2)dreceipt_ic (3.6)

In the above calculation, we assume the voter contacts all malicious nodes first, then
the first correct node times out (potentially due to high load), and a second correct one
responds properly. Of course, this threshold can be set in a more conservative fashion by
adjusting the factor to multiples of NV , instead of fv, as the voter cycles though all nodes
while voting. For example, a factor of 2Nv instead of fv+2 will guarantee enough time for
the voter to cycle through all VC nodes twice, with an even higher probability of obtaining
the receipt.

3.7 Asynchronous VC subsystem

In this section, we describe the asynchronous version of our vote collection subsystem.
We first present the voting protocol, which is used by the voter to cast her vote. This
protocol requires approximately two round-trips between two VC nodes to produce the
receipt, and also requires signatures. Then, we present the vote set consensus protocol,
which runs on election-end time and guarantees that all honest nodes agree on a single
set of votes. This protocol requires one multicast and one Binary Consensus Instance for
each defined ballot. Finally, we provide proofs of liveness and safety for both protocols.

3.7.1 System description

We make the following enhancements to the Vote Collection subsystem, to achieve the
completely asynchronous version D-DEMOS/Async. During voting we introduce another
step, which guarantees only a single vote code can be accepted (towards producing a
receipt) for a given ballot. We also employ an asynchronous binary consensus primitive
to achieve Vote Set Consensus.

61 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

More specifically, during voting, the responder VC node validates the submitted vote code,
but before disclosing its receipt share, it multicasts an ENDORSE⟨serial-no, vote-code⟩mes-
sage to all VC nodes. Each VC node, after making sure it has not endorsed another vote
code for this ballot, responds with an ENDORSEMENT⟨serial-no, vote-code, sigVCi⟩ message,
where sigVCi is a digital signature of the specific serial-no and vote-code, with V Ci’s private
key. The responder collects Nv − fv valid signatures and forms a uniqueness certificate
UCERT for this ballot. It then discloses its receipt share via the VOTE_P message, but also
includes the formed UCERT in the message.

Each VC node that receives a VOTE_P message, first verifies the validity of UCERT and
discards the message on error. On success, it proceeds as per the D-DEMOS/IC protocol
(validating the receipt share it receives and then disclosing its own receipt share).

The algorithms implementing our D-DEMOS/Async voting protocol are presented in Algo-
rithm 3.

The voting process is outlined in the diagram of Figure 3.5, where we now see two round-
trips are needed before the receipt is reconstructed and posted to the voter.

Figure 3.5: Diagram of message exchanges for a single vote during the D-DEMOS/Async
vote collection phase.

The formation of a valid UCERT gives our algorithms the following guarantees:

a) No matter how many responders and vote codes are active at the same time for the
same ballot, if a UCERT is formed for vote code vca, no other uniqueness certificate
for any vote code different than vca can be formed.

N. Chondros 62

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

Algorithm 3 Vote Collector voting protocol algorithms for D-DEMOS/Async
1: procedure on VOTE(serial-no, vote-code) from source:
2: if SysT ime() between start and end
3: if b :=locateBallot(serial-no)
4: if b.status = NotVoted
5: if l := b.VerifyVoteCode(vote-code)
6: b.voter := source ▷ Mark the current node as the responder for source
7: sendAll(ENDORSE⟨serial-no, vote-code⟩)
8: else if b.status = Voted ∧ b.used-vc = vote-code
9: send (source, b.receipt)
10: procedure on ENDORSEMENT(serial-no, vote-code, signature) from source:
11: if validEndorsement(signature, serial-no, vote-code, source)
12: if SysT ime() between start and end
13: if b :=locateBallot(serial-no)
14: if b.status = NotVoted
15: if l := b.VerifyVoteCode(vote-code)
16: b.UCERT.Append(signature) ▷ Fill in Uniqueness Certificate
17: if size(b.UCERT) = Nv − fv
18: b.status := Pending
19: b.used-vc := vote-code
20: sendAll(VOTE_P⟨serial-no, vote-code, l.share, b.UCERT⟩)
21: procedure on VOTE_P(serial-no, vote-code, share,UCERT) from source:
22: if validUCert(UCERT, serial-no, vote-code)
23: if SysT ime() between start and end
24: if b :=locateBallot(serial-no)
25: if b.status = NotVoted
26: if l := b.VerifyVoteCode(vote-code)
27: if validShare(share, serial-no, vote-code)
28: b.status := Pending
29: b.used-vc := vote-code
30: b.lrs.Append(share) ▷ Update list of receipt shares
31: sendAll(VOTE_P⟨serial-no, vote-code, l.share⟩)
32: else if b.status = Pending AND b.used-vc = vote-code
33: if validShare(share, serial-no, vote-code)
34: b.lrs.Append(share) ▷ Update list of receipt shares
35: if size(b.lrs) = Nv − fv
36: b.receipt := Rec(b.lrs)
37: b.status := Voted
38: if b.voter ▷ If this is the responder node
39: send(b.voter, b.receipt)
40: procedure on ENDORSE(serial-no, vote-code) from source:
41: if SysT ime() between start and end
42: if b :=locateBallot(serial-no)
43: if b.status = NotVoted
44: if l := b.VerifyVoteCode(vote-code)
45: if b.endorsed ∈ {⊥, vote-code}
46: b.endorsed := vote-code
47: s := sign(serial-no, vote-code)
48: send(source, ENDORSEMENT⟨serial-no, vote-code, s⟩)
49: function Ballot::VerifyVoteCode(vote-code)
50: for l := 1 to ballot_lines do
51: if lines[l].hash = h(vote-code||lines[l].salt)
52: return lines[l]
53: return ⊥

63 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

b) By verifying the UCERT before disclosing a VC node’s receipt share, we guarantee the
voter’s receipt cannot be reconstructed unless a valid UCERT is present.

At election end time, each VC node stops processing ENDORSE, ENDORSEMENT, VOTE and
VOTE_P messages, and follows the vote-set consensus algorithm in Figure 3.6, for each
registered ballot.

1. Send ANNOUNCE⟨serial-no, vote-code,UCERT⟩ to all nodes. The vote-code will be ⊥ if
the node knows of no vote code for this ballot.

2. Wait for Nv − fv such messages. If any of these messages contains a valid vote code
vca, accompanied by a valid UCERT, change the local state immediately, by setting vca
as the vote code used for this ballot.

3. Participate in a Binary Consensus protocol, with the subject “Is there a valid vote code
for this ballot?”. Enter with an opinion of 1, if a valid vote code is locally known, or a 0
otherwise.

4. If the result of Binary Consensus is 0, consider the ballot not voted.

5. Else, if the result of Binary Consensus is 1, consider the ballot voted. There are two
sub-cases here:

a) If vote code vca, accompanied by a valid UCERT is locally known, consider the ballot
voted for vca.

b) If, however, vca is not known, send a RECOVER-REQUEST⟨serial-no⟩message to all VC
nodes, wait for the first valid RECOVER-RESPONSE⟨serial-no, vca,UCERT⟩ response,
and update the local state accordingly.

Figure 3.6: High level description of algorithm for asynchronous vote set consensus. This
algorithm runs for each registered ballot.

Steps 1-2 ensure used vote codes are dispersed across nodes. Recall our receipt gen-
eration requires Nv − fv shares to be revealed by distinct VC nodes, of which at least
Nv−2fv are honest. Note that any two Nv−fv subsets of Nv contain at least fv+1 honest
nodes (because fv > Nv/3), and at least one of the fv+1 honest nodes has participated in
receipt generation. Because of this, if a receipt was generated, at least one honest node’s
ANNOUNCE will be processed by every honest node, and all honest VC nodes will obtain the
corresponding vote code in these two steps. Consequently, all honest nodes enter step 3
with an opinion of 1 and binary consensus is guaranteed to deliver 1 as the resulting value,
thus safeguarding our contract against the voters. In any case, step 3 guarantees all VC
nodes arrive at the same conclusion, on whether this ballot is voted or not.

In the algorithm outlined above, the result from binary consensus is translated from 0/1 to a
status of “not-voted” or a unique valid vote code, in steps 4-5. Step 5b requires additional
explanation. Assume, for example, that a voter submitted a valid vote code vca, but a
receipt was not generated before election end time. In this case, an honest vote collector

N. Chondros 64

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

node V Ci may not be aware of vca at step 3, as steps 1-2 do not make any guarantees
in this case. Thus, V Ci may rightfully enter consensus with a value of 0. However, when
honest nodes’ opinions are mixed, the consensus algorithm may produce either 0 or 1. In
case the result is 1, V Ci will not possess the correct vote code vca, and thus will not be able
to properly translate the result. Thus we introduce a recovery protocol with which V Ci will
issue a RECOVER-REQUEST multicast. We claim that another honest node, V Ch, exists that
possesses vca and replies with vca and the correct UCERT. The reason for the existence
of an honest V Ch is straightforward and stems from the properties of the binary consensus
problem definition. If all honest nodes enter binary consensus with the same opinion a, the
result of any consensus algorithm is guaranteed to be a. Since we have an honest node
V Ci, that entered consensus with a value of 0, but a result of 1 was produced, there has
to exist another honest node V Ch that entered consensus with an opinion of 1. Since V Ch

is honest, it must possess vca, along with the corresponding UCERT (as no other vote
code vcb can be active at the same time for this ballot). Again, because V Ch is honest, it
will follow the protocol and reply with a well formed RECOVER-REPLY. Additionally, the
existence of UCERT guarantees that any malicious replies can be safely identified and
discarded by V Ci.

As per D-DEMOS/IC, at the end of this algorithm, each node submits the resulting set of
voted ⟨serial-no, vote-code⟩ tuples to each BB node, which concludes its operation for the
specific election.

3.7.2 Proofs

We now prove the liveness and safety properties of both phases of our asynchronous vote
collection subsystem for D-DEMOS/Async.

We consider a D-DEMOS/Async system, where voters run Algorithm 1 and VC nodes run
Algorithm 3 for voting, and the algorithm of section 3.7.1 for Vote Set Consensus, under
the system model of Section 3.1, where the fault tolerance thresholds of Section 3.4 hold,
and the adversary cannot guess any vote code inside honest voters’ ballots. We assume
the adversary can control and coordinate all faulty components, i.e., all corrupt voters and
all corrupt VC nodes.

We use the same wording as explained in section 3.6.2 for the honest voter, the correct
VC node, and the status of a ballot maintained by a VC node. Note that we have not
defined a separate status for the ballot while the Uniqueness Certificate is formed, so the
possible statuses remain three (NotVoted,Pending,Voted).

The following lemmas will prove useful for both liveness and safety proofs.

Lemma 4. The intersection of every two (Nv − fv)-sized subsets of the set of VC nodes,
contains at least one correct node.

Proof. Because the two subsets have cardinalityNv−fv, their intersection I has cardinality
at leastNv−2fv. Lets assume that all fv corrupt nodes are present in I, which is the worst

65 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

case. This leaves the subset of I with only correct nodes (say CI) with at least Nv − 3fv
nodes. Because Nv > 3f , CI has at least one member, which is correct because all
corrupt nodes have already been subtracted from I.

Lemma 5. If aUCERTUa is formed for a voter’s ballot with tag serno, for vote code vcodea,
then no other UCERT Ub can be assembled for a vote code vcodeb with vcodea ̸= vcodeb,
for the same ballot with tag serno.

Proof. We prove this by contradiction. Assume there is such a Ub for vcodeb, with vcodea ̸=
vcodeb. This means that Nv − fv VC nodes endorsed vcodeb, and these nodes form the
Sb subset of the set of VC nodes.

Because of Ua, Nv − fv VC nodes endorsed vcodea, and these nodes form the Sa subset
of the set of VC nodes.

However, because of Lemma 4, the intersection of Sa and Sb contains at least one correct
VC node.

This means that this correct VC node endorsed two different vote codes for the same
ballot. But this is impossible because the “on ENDORSE” procedure of Algorithm 3 (line 45)
explicitly endorses a single vote code for each ballot. Thus, there cannot be two UCERTs
for two different vote codes for the same ballot.

Note that Lemma 5 is not restricted to honest voters, but applies equally to malicious ones
as well.

3.7.2.1 Liveness

3.7.2.1.1 Liveness of the voting algorithm.
We first prove a few useful lemmas, that will lead to the proof of the main theorem.

Lemma 6. If an honest voter’s ballot with tag serno, at a correct VC node V Ci, has its
status changed to Pending for vote code vcode, and all voting protocol messages for this
instance are delivered before election end-time, then this ballot’s status will eventually
change to Voted for vcode at V Ci.

Proof. The ballot’s status is changed to Pending while processing either the ENDORSEMENT
or VOTE_P messages, at node V Ci. In both cases, this change is accompanied with the
multicast of a VOTE_P message to all other VC nodes, disclosing V Ci’s receipt share, at-
taching a valid UCERT. Because we assume a lossless network, this VOTE_P message
will be delivered to, and be processed by all correct nodes, as per Algorithm 3.

If a receiving correct node V Cj, has the ballot marked as NotVoted, processing of V Ci’s
VOTE_Pmessage results in marking the ballot as Pending for vcode and disclosing V Cj ’s re-
ceipt share via a new VOTE_Pmessage. This happens because the submitted ⟨serno, vcode⟩
tuple was already found valid by V Ci, and thus will also be found valid by V Cj, while the
message contains a valid receipt share and a valid UCERT (since the sender is correct).

N. Chondros 66

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

If V Cj has ballot with tag sernomarked as anything other than NotVoted, it has to be so for
vote code vcode, since the voter is honest and the adversary cannot guess and submit any
other vote code for this ballot. As such, V Cj must have already sent its VOTE_P message,
and V Ci will receive it eventually.

In both of the above cases, V Cj ’s VOTE_P message will be delivered at node V Ci, since
the network is lossless. As this is true for every correct node V Cj, V Ci eventually re-
ceives all receipt shares of all correct nodes, via the corresponding VOTE_P messages.
Because the VSS scheme’s secret recovery threshold (Nv − fv) is equal to the minimum
correct node count, it is guaranteed that the receipt shares are enough to reconstruct the
receipt and mark the ballot as Voted at node V Ci (passing the threshold check at line 35
of Algorithm 3).

Thus, the ballot will be marked as Voted at node V Ci.

Lemma 6 shows that a status of Pending is temporary for honest voters’ ballots, as the
protocol ensures that such a ballot’s status will eventually switch to Voted.

Lemma 7. If an honest voter’s ballot with tag serno, at a correct VC node V Ci, has its
status changed to Pending for vote code vcode, and all voting protocol messages for this
instance are delivered before election end-time, then this ballot’s status will eventually
change to Voted for vcode at all correct VC nodes.

Proof. At V Ci, the status will eventually change to Voted because of Lemma 6. How-
ever, node V Ci also multicasts its VOTE_P message immediately upon switching its status
to Pending for vcode. This multicast will be delivered, because of our lossless network
assumption, at all correct VC nodes.

If a receiving correct node V Cj, has the ballot marked as NotVoted, processing of V Ci’s
VOTE_P message results in marking the ballot as Pending for vote code for vcode. Due to
Lemma 6, the Pending status will eventually change to Voted for vcode.

If V Cj has ballot with tag serno marked as anything other than NotVoted, it has to be so
for vote code vcode, since the voter is honest and the adversary cannot guess and submit
any other vote code for this ballot. Thus, if it is Pending for vcode, because of Lemma 6
this status will eventually change to Voted for vcode. If it already Voted for vcode then our
goal has already been reached.

Lemma 7 shows that our protocol is “unstoppable” by the adversary, since once a correct
node makes the VOTE_P multicast for a ballot and a vote code, all correct nodes will mark
this ballot as Voted for the specific vote code.

Lemma 8. If an honest voter posts ⟨serno, vcode⟩ to a correct VC node V Ci after election
start-time, and the status of ballot with tag serno is NotVoted at V Ci, and all voting protocol
messages for this instance are delivered before election end-time, then the status of this
ballot will become Voted for vcode across all correct VC nodes.

67 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

Proof. Node V Ci begins the UCERT forming process immediately, by multicasting an
ENDORSE message. This message will be delivered across all correct nodes, because of
our lossless network assumption. A correct VC node that processes the ENDORSEmessage
cannot ignore it because it has already endorsed another vote code, because our voter is
honest and the adversary cannot guess other vote codes in the voter’s ballot.

However, it may ignore it because its status has progressed from NotVoted. In this case,
its status of either Pending or Voted has to be for the same vote code vcode (for the same
reasons a node cannot have endorsed a different vote code, explained above).

If a single VC node, however, has a status other than NotVoted for vcode, this means that
at some point the status was Pending for vcode, as no node can reach the Voted status for
a ballot without going through the Pending status for this ballot first. But once that single
VC node’s status of ballot with tag serno became Pending for vcode, because of Lemma 7,
all correct VC nodes will reach the goal of marking the ballot as Voted for vcode.

The last remaining case is if all correct VC nodes have a status of NotVoted for ballot with
tag serno. In this case, all correct nodes will reply with the corresponding ENDORSEMENT
message. All correct nodes are enough to form the UCERT for vcode, and thus node V Ci

will mark the ballot as Pending for vcode. Again because of Lemma 7, this results in all
correct VC nodes reaching the goal of marking the ballot as Voted for vcode.

Lemma 9. If an honest voter posts ⟨serno, vcode⟩ to a correct VC node V Ci before election
end-time, and the status of ballot with tag serno is Voted at V Ci, she will get a receipt.

Proof. The vote code that caused this ballot to become Voted can only be the same as
the one submitted (vcode), because the voter is honest and the adversary cannot guess
vote codes. As such, Algorithm 3 at line 8 replies immediately to the voter with the stored
receipt.

Theorem 4 (Liveness of D-Demos/Async’s voting algorithm).
If an honest voter starts the voter’s algorithm 1 for ⟨serno, vcode⟩, after the election start-
time and before the election end-time, and the network delivers all protocol messages for
this instance of the voting algorithm 3 before election end-time, then she will get back a
receipt.

Proof. The voter’s algorithm loops over VC nodes and the voter will eventually stumble
upon a correct VC node V Ci, because of the fault tolerance thresholds.

If the ballot’s status at V Ci is Voted, it has to be for vcode as the voter is honest and
the adversary cannot guess the other vote codes in her ballot. In this case, because of
Lemma 9, the voter will immediately get back a receipt.

If the ballot’s status at V Ci is Pending, it has to be for vcode as the voter is honest and the
adversary cannot guess the other vote codes in her ballot. In this case, the voter will not
get a reply back immediately. However, because of Lemma 6, this status is temporary,
and it will be switched to Voted for vcode eventually.

N. Chondros 68

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

The only remaining case is when V Ci’s status for the specific ballot is NotVoted. Because
of Lemma 8, the status for this ballot will eventually change to Voted for vcode across all
correct VC nodes.

Thus, as a worst case, the voter will timeout and keep looping contacting the next VC
node, until she reaches a correct one where the status has become Voted, and she will
get the receipt as a reply because of Lemma 9.

Note that the above liveness proof requires the voter to contact at least two correct VC
nodes before getting the reply: one to start the instance of the protocol, and another to
reach a node with status Voted and obtain the receipt. However, our protocol actually
delivers the receipt back to the voter in one step (Algorithm 3, lines 38-39), as long as the
voter does not timeout when casting the vote to the first correct VC node, and the voter
stumbles upon a correct VC node initially.

In the above proof, we assume all messages for the specific instance of the voting protocol
are delivered before election end-time. To give an estimate of the time needed for the
voting protocol to complete, we provide a formula for a safety threshold in section 3.7.2.3.

3.7.2.1.2 Liveness of the vote set consensus algorithm.
We are interested in the liveness of the vote set consensus algorithm, that is, that when
this algorithm is started across all correct VC nodes at election end-time, it terminates
outputting a set of voted ⟨serno, vcode⟩ tuples at each node.

The liveness of the vote set consensus algorithm is achieved because of the following:

1. The wait for ANNOUNCE messages completes because of the fault-tolerance threshold
of the VC subsystem; by assumption, there will always be Nv − fv correct nodes to
send ANNOUNCE messages and complete this phase at each node.

2. The Binary Consensus algorithm completes in accordance with its corresponding
liveness property.

3. The recovery protocol, if needed, terminates because of the existence of a correct
VC node with a valid UCERT for the recovery case (Step 5b) (for the full justification,
see the description of this algorithm in Section 3.7.1).

3.7.2.2 Safety

In this section, we prove the safety of the voting subsystem of D-DEMOS/Async, in two
steps. First, we show that the voting algorithm produces a valid receipt, or none at all.
Then, we show that if a valid receipt is indeed generated, the corresponding vote code is
included in the set of voted vote codes.

69 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

3.7.2.2.1 Safety of the voting algorithm.

Theorem 5 (Safety of D-Demos/Async voting algorithm).
If an honest voter submits a ⟨serno, vcode⟩ tuple, then she will receive a valid receipt or
none at all.

Proof. In the proof of Theorem 4 above, we showed that a receipt will be generated for
a valid tuple submission to the VC system, if the network delivers all messages for this
particular voting protocol instance before election end-time. If the network does not deliver
enough messages for the protocol to complete before election-end time, the system does
not output a receipt, but safety is not violated.

If a receipt is indeed generated, this receipt will be valid because at leastNv−fv correct VC
nodes (including the responder) will submit their receipt’s shares, and these are enough
to reconstruct the correct receipt (this is an attribute of the VSS scheme). Additionally,
because the secret-sharing scheme we use is verifiable, each VC node that reconstructs
the receipt can do so by discarding corrupt shares from malicious VC nodes, and thus,
there is no possibility of incorrect reconstruction.

3.7.2.2.2 Safety of the vote set consensus algorithm.

Theorem 6 (Safety of D-Demos/Async vote set consensus).
If an honest voter who submits a valid ⟨serno, vcode⟩ tuple obtains a valid receipt, then
this tuple will be included in the set of voted tuples of each correct VC node.

Proof. A ⟨serno, vcode⟩ tuple for which a valid receipt has been received by the voter, is
not included in the set of voted tuples only because of one of the following reasons:

1. Not all correct VC nodes possess the vote code and corresponding UCERT, in which
case binary consensus is not guaranteed to produce 1.
This is not possible because of the ANNOUNCE phase. Suppose a correct node V Ci

does not possess the vote code and UCERT. For a receipt to be generated at any
VC node, Nv − fv shares from different VC nodes are required (let’s call this subset
of VC nodes Sr). The ANNOUNCE phase at VC node V Ci requires Nv − fv replies to
progress, from a subset Sa of the set of VC nodes.
However, because of Lemma 4, Sr and Sa have at least one correct VC node in
common. This means that the common correct VC node possesses the vcode and
the corresponding UCERT and will disclose it via the ANNOUNCE message, that is
processed by V Ci. When V Ci processes this ANNOUNCE message, it modifies its
state immediately to include vcode.
Thus, it is impossible for any correct VC node to not possess in its set of votes a
vcode for which a reply was generated.

N. Chondros 70

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

2. A correct node obtains a 1 as the result of binary consensus but has not received
vcode and the UCERT.
This is not possible, because this is what the recovery protocol of the algorithm cov-
ers (Step 5b). In this recovery step, the correct node that misses vcode and the
UCERT broadcasts a RECOVER-REQUEST and at least one correct node will respond
with RECOVER-RESPONSE disclosing vcode and the UCERT. The reason why one such
correct node exists stems from the properties of the binary consensus problem defi-
nition. If all correct nodes enter binary consensus with the same opinion a, the result
of any consensus algorithm is guaranteed to be a. Since we have a correct node
V Ci, that entered consensus with a value of 0, but a result of 1 was produced, there
has to exist another correct node V Cc that entered consensus with an opinion of
1 (otherwise, Binary Consensus’s agreement property assures us a 0 would have
been produced). Since V Cc is correct, it must possess vcode, along with the cor-
responding UCERT (as no other vote code vcodeb can be registered at any correct
VC node for the ballot with tag serno, because of Lemma 5). Again, because V Cc

is correct, it will follow the protocol and reply with a well formed RECOVER-RESPONSE.
Additionally, the existence of UCERT guarantees that any malicious replies can be
safely identified and discarded by V Ci. Thus, it is impossible for any correct VC
node to not possess in its set of votes a vcode for which binary consensus resulted
in 1.

The above are the only cases where a ⟨serno, vcode⟩ tuple for which a valid receipt has
been received by the voter is not included in the set of voted ballots, and we have shown
that all above cases are invalid under our assumptions.

3.7.2.3 Safety threshold

Because of the election end-time hard threshold, which we explained in detail in Sec-
tion 3.6.2.3, we again define a safety threshold for the voter to obtain a receipt with high
probability, based on the receipt generation time formula.

3.7.2.3.1 Receipt generation time formula.
Following the same logic as the one used in formula 3.1, the end-to-end delay for the voter
obtaining a receipt in D-DEMOS/Async is given by the following formula:

dreceipt_async = 2dc_propagation + dr_processing_async + dqueuing (3.7)

In the above formula we assume there is no processing and queuing delay when obtaining
the receipt on the voter’s device. dc_propagation is the propagation delay between the client
(voter) and the responder VC node, and the factor 2 covers both casting the vote and
receiving the receipt.

71 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

Finally, dr_processing_async is the time it takes the responder to generate the receipt. This
includes validating the input, generating the UCERT, sending out one message to each
node in the VC subsystem, waiting for Nv replies (we assume malicious nodes are active
and faster than correct ones, which is the worst case), and recreating the receipt from the
shares it received. Generating a UCERT requires an extra round-trip to the VC nodes,
where each one produces an endorsement by signing the input data, and the responder
verifies each received ENDORSEMENT, which contains a signature. We observe a VC node
performs a computation, sends a network message and either finishes its operation or
blocks waiting for input. To simplify things, we make the assumption that all such compu-
tations take an equal amount of time, which we denote as dcomputation.

Thus, the formula to calculate dr_processing_async is:

dr_processing_async = 2dcomputation + ducert_gen + 2Nvdv_propagation +Nvdqueuing

+ (dv_processing_async + dqueuing) (3.8)

In formula 3.8 above, the terms are as follows:

• 2dcomputation denotes the two computation steps performed at the responder node.
The first is for validating the input and the second is for recreating the receipt from
the shares.

• ducert_gen is the time required to generate the UCERT, and it is defined below.

• 2Nvdv_propagation is the propagation delay between VC nodes. The factor 2Nv includes
sending the message to Nv nodes and receiving their replies.

• Nvdqueuing denotes the time the Nv replies wait in the queue of the responder node.

• (dv_processing_async+dqueuing) is the time required for a non-responder VC node to sub-
mit its receipt share, which includes the processing and queuing delay. There is
no Nv factor here, because processing and queuing happen in parallel across VC
nodes. Thus, the responder node actually notices a delay equal to the processing
and queuing time at a single VC node.

We now define the formula for ducert_gen, as follows:

ducert_gen = 2Nvdv_propagation+(de_processing+dqueuing)+Nvdqueuing+dsig_prod+Nvdsig_ver (3.9)

In formula 3.9, the terms are as follows:

• 2Nvdv_propagation expresses the time required for the responder to send the ENDORSE
message to all VC nodes, and for each VC node to respond with the ENDORSEMENT
message.

N. Chondros 72

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

• (de_processing + dqueuing) is the time required for a non-responder VC node to produce
its response (defined below), plus the delay of the generated ENDORSE message in
the queue of the VC node. As already noted, there is no Nv factor here, because
processing and queuing happen in parallel across VC nodes, so the time responder
actually waits equals the processing and queuing time at a single VC node.

• Nvdqueuing expresses the time all ENDORSEMENT messages wait in the queue of the
responder .

• dsig_prod is the time required for the responder to sign the ENDORSEMENT request (one
signature production).

• Nvdsig_ver expresses the time required for the responder to verify each received
ENDORSEMENT message (one signature verification for each message).

de_processing, the time required to produce an ENDORSEMENT response at aVC node, is defined
as follows:

de_processing = dsig_ver + dcomputation + dsig_prod (3.10)

In the above formula, dcomputation approximates the time required for the VC node to ensure
there is no other vote code already endorsed for the specific ballot. Besides that, the VC
node also verifies the signature of the responder in the ENDORSE message (dsig_ver), and
generates a signature of its own for the ENDORSEMENT reply (dsig_prod).

Besides verifying its input (as in D-DEMOS/IC), each VC node receiving a VOTE_P mes-
sage, also needs to verify the attached UCERT first. As the UCERT comprises Nv − fv
distinct signatures, its processing time is given by the following formula:

ducert_ver = (Nv − fv)dsig_ver (3.11)

The formula for dv_processing_async, the time a VC node takes to produce its receipt share, is
the following:

dv_processing_async = dcomputation + ducert_ver = dcomputation + (Nv − fv)dsig_ver (3.12)

Combining equations 3.7, 3.8, and 3.12, we derive the following formula for receipt gen-

73 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

eration time in D-DEMOS/Async:

dreceipt_async = 2dc_propagation + dr_processing_async + dqueuing

= 2dc_propagation + 2dcomputation + ducert_gen + 2Nvdv_propagation +Nvdqueuing + dv_processing_async

+ dqueuing + dqueuing

= 2dc_propagation+2dcomputation+2Nvdv_propagation+de_processing+dqueuing+Nvdqueuing+dsig_prod

+Nvdsig_ver + 2Nvdv_propagation +Nvdqueuing + dv_processing_async + dqueuing + dqueuing

= 2dc_propagation + 2dcomputation + 2Nvdv_propagation + dsig_ver + dcomputation + dsig_prod + dqueuing

+Nvdqueuing + dsig_prod +Nvdsig_ver + 2Nvdv_propagation +Nvdqueuing + dv_processing_async

+ dqueuing + dqueuing

= 2dc_propagation + 2dcomputation + 2Nvdv_propagation + dsig_ver + dcomputation + dsig_prod + dqueuing

+Nvdqueuing + dsig_prod +Nvdsig_ver + 2Nvdv_propagation +Nvdqueuing + dcomputation

+ (Nv − fv)dsig_ver + dqueuing + dqueuing

= 2dc_propagation + 4Nvdv_propagation + (2Nv + 3)dqueuing + 4dcomputation + 2dsig_prod

+ (2Nv − fv + 1)dsig_ver (3.13)

3.7.2.3.2 Safety threshold formula.
If the voter sets the timeout, for Algorithm 1 when waiting for a receipt, to dreceipt_async
(defined in formula 3.13 above), we estimate that a safe amount of time the voter can vote
and expect her vote to be registered, to be:

safety_threshold_async = (fv + 2)dreceipt_async (3.14)

In the above calculation, we assume the voter stumbles upon all malicious nodes first, then
the first correct node times out (potentially due to high load), and a second correct one
responds properly. Of course, this threshold can be set in a more conservative fashion by
adjusting the factor to multiples of NV , instead of fv, as the voter cycles though all nodes
while voting.

3.8 Remaining D-DEMOS system components

For completeness, we provide a small overview of the BB and the trustees subsystems,
and a short description of the auditor role. Please note that these components are beyond
the scope of this thesis. For details for these components, as well as the proofs for the
privacy and end-to-end verifiability properties of D-DEMOS, we refer the interested reader
to [34] and [35].

N. Chondros 74

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

3.8.1 Bulletin Board

A BB node functions as a public repository of election-specific information. By definition,
it can be read via a public and anonymous channel. Writes, on the other hand, happen
over an authenticated channel, implemented with PKI originating from the voting system.
BB nodes are independent from each other, as a BB node never directly contacts another
BB node. Readers are expected to issue a read request to all BB nodes, and trust the
reply that comes from the majority. Writers are also expected to write to all BB nodes; their
submissions are always verified, and explained in more detail below. The BB subsystem
consists of Nb nodes and tolerates fb < Nb/2 faults.

After the setup phase, eachBB node publishes its initialization data. During election hours,
BB nodes remain inert. After the voting phase, eachBB node receives from eachVC node,
the final vote-code set and the shares of msk. Once it receives fv + 1 identical final vote
code sets, it accepts and publishes the final vote code set. Once it receives Nv − fv valid
key shares (again from VC nodes), it reconstructs the msk, decrypts all the encrypted vote
codes in its initialization data, and publishes them.

At this point, the cryptographic payloads corresponding to the cast vote codes are made
available to the trustees. Trustees, in turn, read from the BB subsystem, perform their
individual calculations and then write to the BB nodes; these writes are verified by the
trustees’ keys, generated by the EA. Once enough trustees have posted valid data, the
BB node combines them and publishes the final election result.

We intentionally designed the BB nodes to be as simple as possible for the reader, refrain-
ing from using a Replicated State Machine, which would require readers to run algorithm-
specific software. The robustness of BB nodes comes from controlling all write accesses
to them. Writes from VC nodes are verified against their honest majority threshold. Further
writes are allowed only from trustees, verified by their keys.

Finally, a reader of the BB nodes should post her read request to all nodes, and accept
what the majority responds with (fb + 1 is enough). We acknowledge there might be
temporary state divergence (among BB nodes), from the time a writer updates the first BB
node, until the same writer updates the last BB node. However, given the fault-tolerance
threshold, this should be only momentary, alleviated with simple retries. Thus, if there is
no reply backed by a clear majority, the reader should retry until there is one.

3.8.2 Trustees

After the end of election hours, each trustee fetches all the election data from the BB
subsystem and verifies its validity. For each ballot, there are two possible valid outcomes:
i) one of the A/B parts are voted, ii) none of the A/B parts are voted. If both A/B parts of
a ballot are marked as voted, then the ballot is considered as invalid and is discarded.
Similarly, trustees also discard those ballots where more than one commitments in an A/B
part are marked as voted.

75 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

In case (i), for each encoded option commitment in the unused part, Trusteeℓ submits its
corresponding share of the opening of the commitment to the BB. For each encoded option
commitment in the voted part, Trusteeℓ computes and posts the share of the final message
of the corresponding zero knowledge proof, showing the validity of those commitments.
Meanwhile, those commitments marked as voted are collected to a tally set Etally. In case
(ii), for each encoded option commitment in both parts, Trusteeℓ submits its corresponding
share of the opening of the commitment to the BB. Finally, denote D(ℓ)

tally as Trusteeℓ’s set
of shares of option encoding commitment openings, corresponding to the commitments
in Etally. Trusteeℓ computes the opening share for Esum as Tℓ =

∑
D∈D(ℓ)

tally
and then submits

Tℓ to each BB node.

3.8.3 Auditors

Auditors are participants of the D-DEMOS system who can verify the election process.
The role of the auditor can be assumed by voters or any other party. After election end
time, auditors read information from the BB and verify the correct execution of the election,
by verifying the following:

1. within each opened ballot, no two vote codes are the same;

2. there are no two submitted vote codes associated with any single ballot part;

3. within each ballot, no more than one part has been used;

4. all the openings of the commitments are valid;

5. all the zero-knowledge proofs associated with the used ballot parts are completed
and valid.

The auditors receive audit information (an unused ballot part and a cast vote code) from
voters who wish to delegate verification, and they can also verify:

6. the submitted vote codes are consistent with the ones received from the voters;

7. the openings of the unused ballot parts are consistent with the ones received from
the voters.

N. Chondros 76

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

4. DISCUSSION

4.1 Why not State Machine Replication for VC

It can be argued that a far simpler design for the VC subsystem would be one using State
Machine Replication (SMR). In such a design, VC nodes would run a Byzantine Fault
Tolerate state machine replication protocol such as [25]. In fact, we analyzed this protocol
early on in our research and provided solutions to some of its shortcomings in [33]. More
specifically, we added management of clients that join and leave the system dynamically,
and we integrated an SQL engine to manage the application level state in an application-
friendly fashion. However, a BFT SMR protocol approach to vote collection poses two
major problems.

The first problem is that of privacy, as such algorithms tolerate faults to liveness and safety,
but not to privacy. That is, if the adversary takes over one of the nodes (still below the
fault tolerance threshold), he obtains knowledge of all the data stored in the node. In our
case, the adversary would gain access to all voters’ ballots and would be able to vote on
behalf of them. There has been work from Yin et al. [114], which proposed distinct roles
for nodes of the system. The define agreement nodes that simply run the agreement pro-
tocol and have no access to application-specific data, and execution nodes that execute
the requests and have access to application data. They also introduce a privacy firewall
between agreement nodes and execution nodes. This approach however, makes the un-
derlying assumption that execution nodes are physically restricted to communicate only
with other execution nodes and firewall nodes. This is impossible to implement when tar-
geting separate administrative domains, as we do. Additionally, it increases considerably
the cost of a solution, because it requires a multitude of physical machines to implement
a single logical replicated state machine (at least 5f + 1 plus the firewall layer nodes).

The second problem is that such a solution would violate our goal of relieving the end-
user from relying on cryptographic computations on the client device. This is because all
SMR protocols require the client device to verify signatures of received messages when
it decides if the reply is correct or not.

For these reasons, we refrained from using SMR and designed our custom voting protocol.

4.2 Potential attacks

In this section, we outline some of the possible attacks against the D-DEMOS systems,
and the way our systems thwart them. This is a high level discussion, aiming to help the
reader understand why our systems work reliably. In Sections 3.6.2 and 3.7.2 we provide
the proofs of liveness and safety, which are the foundation of this discussion.

In this high-level description, we intentionally do not focus on Denial-of-Service attacks,
as these kind of attacks attempt to stop the system from producing a result, or stop voters

77 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

from casting their votes. Although these attacks are important, they cannot be hidden,
as voters will notice immediately the system not responding (either because of our receipt
mechanism and our liveness property, or because of lack of information in theBB). Instead,
we focus on attacks on the correctness of the election result, as these have consequences
simple voters cannot identify easily. In this discussion, we assume the fault thresholds of
section 3.4 are not violated, and the attacker cannot violate the security of the underlying
cryptographic primitives.

In this section, we focus on correctness, noting that our systems’ privacy is achieved by
the security of the cryptographic schemes used , and the partial initialization data that
each node of the distributed subsystems receives during the setup phase.

4.2.1 Malicious Election Authority Component

At a high level, the EA produces vote codes and corresponding receipts. Vote codes
are pointers to the associated cryptographic payload, which includes option encodings.
Option encodings are used to produce the tally using homomorphic addition. If the EA
misencodes any option, it will be identified by the Zero-Knowledge proof validation per-
formed by the Auditors.

The EAmay instead try to “point” a vote code to a valid but different option encoding (than
the one described in the voter’s ballot), in an attempt to manipulate the result. In this case,
the EA cannot predict which one of the two ballot parts the voter will use. Recall that the
unused part of the ballot will be opened in the BB by the trustees, and thus the voters can
read and verify the correctness of their unused ballot parts.

If none of the above attacks take place, there is perfect consistency between each voter’s
ballot and its corresponding information on the BB. Because of this, as well as the correct-
ness and the perfect hiding property of our commitment scheme, the homomorphic tally
will be opened to the actual election result.

4.2.2 Malicious Voter

A malicious voter can try to submit multiple vote codes to the VC subsystem, attempting
to cause disagreement between its nodes. In this case, a receipt may be generated,
depending on the order of delivery of network messages. Note that, our safety contract
allows our system to either accept only one vote code for this ballot, or discard the ballot
altogether, as the voter is malicious and our contract holds only for honest voters.

In the D-DEMOS/IC case, this is resolved at the Vote Set Consensus phase. During the
voting phase, each VC node accepts only the first vote code it receives (via either a VOTE
or a VOTE_P message), and attempts to follow our voting protocol. This results in the
generation of at most one receipt, for one of the posted vote codes. However, during Vote
Set Consensus, honest VC nodes will typically identify the multiple posted vote codes
and discard the ballot altogether, even if a receipt was indeed generated. If the ballot is

N. Chondros 78

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

not discarded (e.g., because malicious vote collector nodes hid the extra vote codes and
honest nodes knew only of one), our Nv − 2fv threshold guarantees that no vote codes
with generated receipts are discarded.

In the D-DEMOS/Async case, this is resolved completely at the voting phase. Each VC
node still accepts only the first vote code it receives, but additionally attempts to build a
UCERT for it. As the generation of a UCERT is guaranteed to be successful only for a
single vote code, the outcome of the voting protocol will be either no UCERT being built,
resulting in considering the ballot as not-voted, or a single UCERT generated.

Thus, the two systems behave differently in the case of multiple posted vote codes, as
D-DEMOS/IC typically discards such ballots, while D-DEMOS/Async may process some
of them, when a UCERT is successfully built.

4.2.3 Malicious Vote Collector

A malicious VC node cannot easily guess the vote codes in the voters’ ballots, as they are
randomly generated. Additionally, because vote codes are encrypted in the local state
of each VC node, VC nodes cannot decode and use them. Note that, a vote code in a
voter’s ballot is considered private until the voter decides to use it and transmits it over
the network. From this point on, the vote code can be intercepted by the attacker, as the
only power it gives him is to cast it.

A malicious VC node can obtain vote codes from colluding malicious voters. In this case,
the only possible attack on correctness is exactly the same as if it originated from the
malicious voter herself, and we already described our counter-measures in Section 4.2.2.

A malicious VC node may become a responder. In this case, this VC node may selectively
transmit the cast vote code to a subset of the remaining VC nodes, potentially including all
the other malicious and colluding nodes, and deliver the receipt to an honest voter. Con-
sequently, the attacker controlling the malicious entities, may try to “confuse” the honest
VC nodes and have them disagree on whether the ballot is voted or not, by having all
malicious VC nodes lie at vote set consensus time, reporting the ballot as not voted.

Recall that, for the receipt to be generated, Nv−fv VC nodes need to cooperate, of which
up to fv may be malicious. This leaves Nv − 2fv honest nodes always present.

In the case of D-DEMOS/IC, these Nv − 2fv honest nodes will show up in the per ballot
cross-tabulation, and will drive the decision to mark the ballot as voted (note that, in the
algorithm of Figure 3.4, Nv−2fv is the lower threshold for a ballot to be marked as voted).
In the case of D-DEMOS/Async, we include the ANNOUNCE-exchanging phase before the
consensus algorithm, to guarantee at least one of the Nv − 2fv honest nodes’ ANNOUNCE
message will be processed by every honest node. In this case, on entering consensus,
all honest nodes will agree that the ballot is voted, which guarantees the outcome of con-
sensus to be in accordance.

79 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

N. Chondros 80

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

5. IMPLEMENTATION

5.1 Infrastructure

The majority of the software for the prototype implementation of D-DEMOS is developed
in Java. We use an asynchronous, event-based approach to software architecture in this
work. To support this architecture, we build an asynchronous communications stack (ACS)
on top of Java, using Netty [38] and the asynchronous PostgreSQL driver from [77].

We build a Communicator class that handles message passing for the upper layers of
the application, while it uses the Node and Message concepts (see Figure 5.1 for a class
diagram). A Node represents a network node that can be the recipient and source of a
Message. A Node has an identifier, an IP Address and port number, and a public key,
that are common across all instances of ACS. Additionally, nodes are grouped into node
groups, allowing nodes to send messages to all nodes of a group. We use TLS authenti-
cated channels for inter-node communication, and provide a public HTTP channel for client
(voter) access. A Message is the object that is exchanged across nodes. It is specialized
in descended classes, which are identified by a unique message identifier (an integer),
and which provide type-specific serialization and deserialization operations. We create
child classes of our AbstractCommunicator for TCP/TLS connections (NettyCommunica-
tor) and for debugging purposes (DummyCommunicator).

Communicator works as follows. It is initialized with the Node instances of all nodes in
the system (we use a static membership model). The application registers handlers for all
messages it can process, via registerMessage. It then gives control to the Communicator
instance via start. The Communicator initializes its structures and all network channels.
With Netty, this means it starts secondary threads to handle network input, which decode
incoming messages and place them in a shared input queue. We use Google Protocol
Buffers [69] to encode and decode messages efficiently. In the main thread, Communica-
tor enters the dispatch loop, where it calls the registered handler for each message in the
input queue, passing along the sending Node as the source. The application uses one of
send, sendAll, or sendGroup to send a message a single, all, or a group of nodes. Note
that Communicator creates the connections (TLS channels) to remote nodes on demand,
when the first message to a specific node is enqueued.

OurNettyCommunicator implementation supports a public HTTP channel with the start(...,
httpPort, httpParser) operation. NettyCommunicator creates an HTTP listening socket on
the specified port, and listens to connections. Once a connection is established, a new
AnonymousNode instance is created to represent the client of this specific channel. Once
an HTTP request is received, it is given to the specified httpParser, which transforms the
request into a Message instance. This Message is then enqueued, along with Anony-
mousNode as the source. This way, the corresponding message handler can respond by
sending a message to the source node, which in turn transforms it in plain text and puts it
in the HTTP response.

81 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

+Message()

+getType() : int

+serialize() : byte []

Message

+Node(id : int)

+Node(id : int, keyStoreFilename : String, keyStorePassword : String)

+getPublicKey() : PublicKey

+getPrivateKey() : PrivateKey

+getAddress() : InetAddress

+getPort() : int

+getGroups() : String []

Node

(gr::uoa::di::dsg::communicator)

+send(other : Node, msg : Message) : void

+sendGroup(group : String, msg : Message) : void

+sendAll(msg : Message) : void

+start(init : Runnable) : void

+stop() : void

+registerMessage(type : int, deser : Deserializer, disp : Dispatcher) : void

+getNumNodes() : int

+getNumNodesOfGroup(group : String) : int

+getNodeIDsOfGroup(group : String) : List<Integer>

+getNodesOfGroup(group : String) : List<Node>

+getOtherNode(nodeId : int) : Node

+getDeserializer(messageType : int) : Deserializer

+getDispatcher(messageType : int) : Dispatcher

+setTimeout(seconds : int, handler : TimeoutHandler) : Object

+cancelTimeout(timeout : Object) : void

+submitBackgroundTask(task : Runnable) : void

+inputEnqueue(source : Node, msg : Message) : void

+setCrashed() : void

AbstractCommunicator

(gr::uoa::di::dsg::communicator)

+deserialize(rawData : byte []) : Message

<<Interface>>

Deserializer

(gr::uoa::di::dsg::communicator)

+dispatchMessage(msg : Message, src : Node) : void

<<Interface>>

Dispatcher

(gr::uoa::di::dsg::communicator)

+NettyCommunicator(current : Node, allNodes : Node [])

+start(appStart : Runnable, httpPort : int, parser : HttpRequestParser) : void

NettyCommunicator

+parse(request : FullHttpMessage) : Message

<<Interface>>

HttpRequestParser

(gr::uoa::di::dsg::communicator)

Figure 5.1: A UML Class Diagram of the Asynchronous Communications Stack.

N. Chondros 82

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

BesidesMessages, Communicator also supports setting and getting notifications of Time-
outs. This allows nodes to progress in case of lack of complete input (normally due to
node crashes). Our Communicator implementation also allows for simulating crashes, by
marking a specific node as crashed (see setCrashed), which simulates a crashed node
by throwing away all application-level messages.

Note that Communicator does not handle multiplexing multiple instances of a specific pro-
tocol. We delegate this to the initial message handler, which maintains a map of instances
and forwards it to the handler of the appropriate instance. For example, each binary con-
sensus instance is identified by a consensus id, and a map stores the mapping from a
consensus id to a ConsensusInstance class. The initial message handler for any consen-
sus message creates a new instance of the ConsensusInstance class to handle incoming
messages for consensus ids not in the map of instances.

Communicator allows offloading long-running tasks to secondary threads. We use this
interface to offload signature operations (signing, verification) to secondary threads. An
event handler calls submitBackgroundTask, which schedules the operation a thread pool.
Once the result is ready, it is enqueued in the input queue. Postgresql [39] database
operations are scheduled via the asynchronous PostgreSQL driver from [77], which uses
its own pool of database connections, and results are again enqueued in the input queue.

5.2 D-DEMOS Election Authority

For this work, we obtained the Election Authority code from the original (centralized) DE-
MOS voting system, implemented in C++, and extended it to generate the receipts and
split the VC initialization data across VC nodes. We use theMIRACL library [91] for elliptic-
curve cryptographic operations.

The EA is a stand-alone executable than takes as input the number of voters, the number
of options and the list of addresses of VC nodes. It proceeds to generate the ballots for
the voters, and the initialization data for VC nodes, BB nodes and trustees.

5.3 VC node

We implement the VC node in Java, on top of ACS.

5.3.1 Voting

We define a VOTE and VOTE_P messages as described in Section 3.4. We also add an
election id parameter, to allow handling of multiple elections. We then define a VoteCol-
lector class which handles processing of above messages. All data access for a specific
election is abstracted behind an Election object, with an ElectionManager class handling
the mapping between an election identifier and an Election object. We provide different

83 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

Election implementations, one which accesses the database for every operation, and an-
other witch loads all ballots in memory on initialization and does not access the database
during voting.

We depict these classes in the UML diagram of Figure 5.2.

The public HTTP channel of the vote collector node offers an HTML form that allows the
voter to input the serial number and vote code of her choice. Once this form is received,
the input is transformed to a VOTE message, and the responder VC node starts the voting
protocol, communicates with the other VC nodes, recreates the receipt, and responds with
it to the voter using the original HTTP channel.

We implement “verifiable secret sharing with honest dealer”, by utilizing Shamir’s Secret
Share library implementation [108], and having the EA sign each share. This way, each
node can verify a share it receives.

5.3.2 Vote Set Consensus

For vote set consensus in D-DEMOS/IC, we use the implementation of IC,BC-RBB (Inter-
active Consistency algorithm, using asynchronous binary consensus and reliable broad-
cast without signatures) from [46]. We use the election end time as a synchronization
point to start the algorithm, and configure the timeout of the first phase of the algorithm
according to the number of VC nodes and the number of ballots in the election. Note that
IC,BC-RBB is implemented on top of the same ACS described above and thus is smoothly
integrated in our system.

For D-DEMOS/Async, we implement Bracha’s Binary Consensus directly on top of the
ACS (see Figure 5.3), and we use that to implement our Vote Set Consensus algorithm
(depicted in Figure 3.6).

Bracha’s consensus includes a Reliable Broadcast Mechanism, which we implement in
the Broadcast class. The class is passed a handler for accepted broadcast on construc-
tion. The node begins a new broadcast using the broadcast operation, specifying the
consensus and broadcast ids, and the value as an array of integers.

Using the broadcast mechanism, we implement a ConsensusManager which manages
multiple instances of a ConsensusInstance. Again, the handler for finished broadcasts
is passed at the constructor, and de-multiplexing is handled using the Consensus Id of
each instance. Our implementation of Bracha’s consensus, handles all corner cases of
a malicious node submitting multiple messages from the same round. We handle this by
keeping separate structures for messages from each origin, and either looking into any
one of them when trying to validate remote input, or selecting only the first one when we
decide for the local node’s next round value.

Finally, we introduce a version of Binary Consensus that operates in batches of arbitrary
size; this way, we achieve greater network efficiency while running one instance of Bi-
nary Consensus for each ballot. Capitalizing on the broadcast primitive’s ability to handle

N. Chondros 84

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

+ElectionManager(voteCollector : VoteCollector)

+getElection(electionID : String, electionProcessor : GetElectionProcessor, errorHandler : ErrorHandler) : void

ElectionManager

(gr::uoa::di::�ner::votecollector)

+getCommunicator()

+getMessageDigest()

+useDigitalSignatures()

+VoteCollector(nodeID, comm, �lename, logger, con�guration)

+VoteCollector(nodeID, comm, logger, databaseHostname, databaseName, port, username, password, con�guration)

+close()

+start()

+getThreshold()

+getTotalNodes()

+getNodeID()

+getNodes()

+getConnection()

+getElectionManager()

+signMessage(byteArray)

+verifySignature(content, signature, sourceID)

+endorseVoteCode(electionId, serialNo, voteCode)

+endorseVoteCodeAsync(electionId, serialNo, voteCode, processor)

+verifyEndorsement(electionId, serialNo, voteCode, signature, source)

+verifyEndorsementAsync(electionId, serialNo, voteCode, signature, source, processor)

+verifyEndorsementsSet(electionId, serialNo, voteCode, endorsementsSet)

+verifyEndorsementsSetAsync(electionId, serialNo, voteCode, endorsementsSet, processor)

+verifyVoteCodeAsync(election, serialNo, voteCode, parts, processor)

+broadcast(msg)

+respond(node, msg)

+respondWithError(recipient, msg, serialNo)

+respondWithReceiptWithoutCommunication(recipient, receipt, serialNo)

+respondWithReceipt(recipient, receipt, serialNo, votecode)

+generateReceiptAsync(serialNo, tuples, processor)

+httpParser(msg)

+onVote(vote, source)

+onVotePart(votePart, source)

+onEndorse(msg, source)

+onEndorsement(msg, source)

+startVoteSetConsensus(electionID, con�guration, callback)

+startAnnounce(electionID, con�guration, callback)

+getLogger()

+sendHelloToGroup(group)

+loadDatabaseToMemory()

+init()

+initLocalTestsOnly()

+initPushToBulletinBoard(bbGroup)

+startPushToBulletinBoard(electionID)

VoteCollector

(gr::uoa::di::�ner::votecollector)

+Election(electionID : String, startTime : Date, endTime : Date, voteCollector : VoteCollector)

+removeVoter(serialNo : String) : Node

+addVoter(serialNo : String, source : Node) : void

+addEndorsementProcessor(serialNo : String, voteCode : String, processor : EndorsementProcessor) : void

+removeEndorsementProcessor(serialNo : String, voteCode : String) : void

+processEndorsement(serialNo : String, voteCode : String, msg : EndorsementMessage, source : Node) : void

+doneWithBallot(serialNo : String) : void

+getBallotStatus(serialNo : String, voteCode : String, ballotStatusProcessor : GetBallotStatusProcessor, errorHandler : ErrorHandler) : void

+setBallotPending(serialNo : String, votecode : String, part : String, vcHash : String, endorsements : List<VCEndorsementElement>, handler : Runnable, concurrencyErrorHandler : Runnable, errorHandler : ErrorHandler) : void

+setBallotPendingAndAddVotePart(votePart : VotePart, part : String, vcHash : String, nodeId : int, endorsements : List<VCEndorsementElement>, handler : Runnable, concurrencyErrorHandler : Runnable, errorHandler : ErrorHandler)

+addShare(votePart : VotePart, nodeId : int, handler : Runnable, errorHandler : ErrorHandler) : void

+getVoteParts(serialNo : String, voteCode : String, processor : GetVotePartsProcessor, errorHandler : ErrorHandler) : void

+addReceipt(votePart : VotePart, receipt : String, handler : Runnable, errorHandler : ErrorHandler, serialNo : String, voteCode : String) : void

+getBallotEndorsed(serialNo : String, voteCode : String, successHandler : Consumer<String>, errorHandler : ErrorHandler) : void

+setBallotEndorsed(serialNo : String, voteCode : String, successHandler : Runnable, errorHandler : ErrorHandler) : void

Election

(gr::uoa::di::�ner::votecollector)

+VoteMessage(electionID : String, serialNo : String, voteCode : String)

+VoteMessage(vote : Vote)

+getSubject() : String

+getType() : int

+serialize() : byte []

+deserialize(data : byte []) : VoteMessage

+toString() : String

+process(voteCollector : VoteCollector, source : Node) : void

VoteMessage

(gr::uoa::di::�ner::votecollector)

+VotePartMessage(applicationID : String, votePart : VotePart)

+getSubject() : String

+getType() : int

+serialize() : byte []

+deserialize(data : byte []) : VotePartMessage

+toString() : String

+process(voteCollector : VoteCollector, source : Node) : void

VotePartMessage

(gr::uoa::di::�ner::votecollector)

-voteCollector

1

-voteCollector

1

Figure 5.2: A UML Class Diagram of the voting protocol related classes of the Vote Col-
lector implementation.

85 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

+Broadcast(communicator : AbstractCommunicator, broadcastGroup : String, acceptor : BroadcastAcceptHandler)

+broadcast(consensusId : int, broadcastId : int, value : int []) : void

Broadcast

(gr::uoa::di::dsg::bracha::broadcast)

~ConsensusInstance(consensusId : int, manager : IConsensusManager, numNodes : int)

+processMessage(nodeId : int, msgPhase : int, msgRound : int, msgValue : boolean, msgDecided : boolean, msgFinished : boolean) : void

+join(opinion : boolean) : void

ConsensusInstance

(gr::uoa::di::dsg::bracha::consensus)

+ConsensusManager(communicator : AbstractCommunicator, broadcastGroup : String, handler : ConsensusDecisionHandler)

+joinConsensus(consensusId : int, opinion : boolean) : void

+send(consensusId : int, phase : int, round : int, value : boolean, decided : boolean, �nished : boolean) : void

+processResult(consensusId : int, value : boolean) : void

+reset() : void

ConsensusManager

(gr::uoa::di::dsg::bracha::consensus)

broadcast

1

+BatchConsensusManager(communicator : AbstractCommunicator, broadcastGroup : String, handler : ConsensusDecisionHandler, batchSize : i

+joinConsensus(�rstConsensusId : int, opinion : boolean [], �lledInCount : int) : void

+joinConsensus(�rstConsensusId : int, opinion : boolean []) : void

+send(consensusId : int, phase : int, round : int, value : boolean, decided : boolean, �nished : boolean) : void

+processResult(consensusId : int, value : boolean) : void

+reset() : void

BatchConsensusManager

(gr::uoa::di::dsg::bracha::consensus)

broadcast

1

Figure 5.3: A UML Class Diagram of the Bracha Consensus implementation.

N. Chondros 86

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

arrays of integers, we encode different broadcasts into such arrays. The class that imple-
ments this is BatchConsensusManager, which is initialized with a batch size. The batch
version of the consensus manager expects the local node to join a series of consensus
instances at once, by providing an array of bit values. It uses the same implementation
of ConsensusInstance but waits for all instances to output their messages, batches them
and starts a single consensus instance for all of them. This reduces greatly the number
of messages required for the batch.

Besides binary consensus batching, we batch most of the asynchronous vote set consen-
sus “announce” phase’s messages. If this phase was implemented without optimization,
it would result in a message complexity of n ∗Nv (individual ANNOUNCE messages), im-
posing a significant network load. This is because each node has to multicast an ANNOUNCE
message for each ballot, and wait for n(Nv − fv) replies to progress.

To optimize this, we have each node consult its local database and detect cases where
another node already knows the correct vote code and UCERT for a specific ballot. This
is feasible because when a node V Cb discloses its share using the VOTE_P message, it
also includes the UCERT, and this fact is recorded in the recipient’s node (V Ca) database
along with the sender node’s share. For these cases, we produce ANNOUNCE_RANGE
messages addressed to individual nodes, having the source node V Ca announce a range
of ballot serial numbers as voted, a fact that is already known to the recipient node V Cb

(because V Ca located the recorded VOTE_P messages from V Cb). We use the same
mechanism to announce ranges of not-voted ballots.

87 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

N. Chondros 88

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

6. EVALUATION

We experimentally evaluate the performance of our voting system, focusing mostly on our
vote collection algorithm, which is the most performance critical part. We conduct our
experiments using a cluster of 12 machines, connected over a Gigabit Ethernet switch.
The first 4 are equipped with Hexa-core Intel Xeon E5-2420 @ 1.90GHz, 16GB RAM, and
one 1TB SATA disk, running CentOS 7 Linux, and we use them to run our VC nodes.
The remaining 8 comprise dual Intel(R) Xeon(TM) CPUs @ 2.80GHz, with 4GB of main
memory, and two 50GB disks, running CentOS 6 Linux, and we use them as clients.

We implement a multi-threaded voting client to simulate concurrency. This client starts
the requested number of threads, each of which loads its corresponding ballots from disk
and waits for a signal to start. From then on, the thread enters a loop where it picks one
VC node and vote code at random, requests the voting page from the selected VC (HTTP
GET), submits its vote (HTTP POST), and waits for the reply (receipt). This simulates
multiple concurrent voters casting their votes in parallel, and gives an understanding of
the behavior of the system under the corresponding load. We employ the PostgreSQL
RDBMS [39] to store all VC initialization data from the EA.

We start off by demonstrating our system’s capability of handling large-scale elections.
To this end, we generate election data for referendums, i.e., m = 2, and vary the total
number of ballots n from 50 million to 250 million (note the 2012 US voting population
size was 235 million). This causes the database size to increase accordingly and impact
queries. We fix the number of concurrent clients to 400 and cast a total of 200,000 ballots,
which are enough for our system to reach its steady-state operation (larger experiments
result in the same throughput). Figure 6.1 shows the throughput of both D-DEMOS/IC and
D-DEMOS/Async declines slowly, even with a five-fold increase in the number of eligible
voters. The cause of the decline is the increase of the database size.

In our second experiment, we explore the effect of m, i.e., the number of election options,
on system performance. We vary the number of options from m = 2 to m = 10. Each
election has a total of n = 200, 000 ballots which we spread evenly across 400 concurrent
clients. As illustrated in Figure 6.2, our vote collection protocol manages to deliver ap-
proximately the same throughput regardless of the value of m, for both D-DEMOS/IC and
D-DEMOS/Async. Notice that the major extra overhead m induces during vote collection,
is the increase in the number of hash verifications during vote code validation, as there
are more vote codes per ballot. The increase in number of options has a minor impact on
the database size as well (as each ballots has 2m options).

Next, we evaluate the scalability of our vote collection protocol by varying the number of
vote collectors and concurrent clients. We eliminate the database, by caching the election
data in memory and servicing voters from the cache, to measure the net communication
and processing costs of our voting protocol. We vary the number of VC nodes from 4
to 16, and distribute them across the 4 physical machines. Note that, co-located nodes
are unable to produce vote receipts via local messages only, since the Nv − fv threshold
cannot be satisfied, i.e., cross-machine communication is still the dominant factor in receipt

89 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

 40

 50

 60

 70

 80

 50 100 150 200 250

T
hr

ou
gh

pu
t (

op
s/

se
c)

n (million ballots)

D-DEMOS/IC throughput versus n, LAN

(a)

 40

 50

 60

 70

 80

 50 100 150 200 250

T
hr

ou
gh

pu
t (

op
s/

se
c)

n (million ballots)

D-DEMOS/Async throughput versus n, LAN

(b)

Figure 6.1: Vote collection throughput graphs for D-DEMOS/IC (6.1a) and D-
DEMOS/Async(6.1b), versus the number of total election ballots n.

N. Chondros 90

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

 160

 170

 180

 190

 200

 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

op
s/

se
c)

m

D-DEMOS/IC throughput versus m, LAN

(a)

 160

 170

 180

 190

 200

 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

op
s/

se
c)

m

D-DEMOS/Async throughput versus m, LAN

(b)

Figure 6.2: Vote collection throughput graphs for D-DEMOS/IC (6.2a) and D-
DEMOS/Async(6.2b), versus the number of election options m.

91 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

generation. For election data, we use the dataset with n = 200, 000 ballots and m = 4
options, which is enough for our system to reach its steady state.

In Figure 6.3, we plot the average response time of both our vote collection protocols,
versus the number of vote collectors, under different concurrency levels, ranging from
500 to 2000 concurrent clients. Results for both systems illustrate an almost linear in-
crease in the client-perceived latency, for all concurrency scenarios, up to 13 VC nodes.
From this point on, when four logical VC nodes are placed on a single physical machine,
we notice a non-linear increase in latency. We attribute this to the overloading of the
memory bus, a resource shared among all processors of the system, which services all
(in-memory) database operations. D-DEMOS/IC has a slower response time with its sin-
gle round intra-VC node communication, while D-DEMOS/Async is slightly slower due to
the extra Uniqueness Certificate round.

Figure 6.4 shows the throughput of both our vote collection protocols, versus the number
of vote collectors, under different concurrency levels. We observe that, in terms of overall
system throughput, the penalty of tolerating extra failures (increasing the number of vote
collectors) manifests early on. We notice an almost 50% decline in system throughput
from 4 to 7 VC nodes for D-DEMOS/IC, and a bigger one for D-DEMOS/Async. How-
ever, further increases in the number of vote collectors lead to a much smoother, linear
decrease. Overall, D-DEMOS/IC achieves better throughput than D-DEMOS/Async, due
to exchanging fewer messages and lacking signature operations.

In Figure 6.5, we plot a different view of both our systems’ throughput, this time versus the
concurrency level (ranging from 100 to 2000). Plots represent number of VC node settings
(4 to 16), thus different fault tolerance levels. Results show both our systems have the
nice property of delivering nearly constant throughput, regardless of the incoming request
load, for a given number of VC nodes.

We repeat the same experiment by emulating a WAN environment using netem [68], a
network emulator for Linux. We inject a uniform latency of 25ms (typical for US coast-
to-coast communication [62]) for each network packet exchanged between vote collector
nodes, and present our results in Figures 6.6, 6.7, and 6.8. A simple comparison between
LAN andWAN plots illustrates our systemmanages to deliver the same level of throughput
and average response time, regardless of the increased intra-VC communication latency.

The benefits of the in-memory approach, expressed both in terms of sub-second client
(voter) response time and increased system throughput, make it an attractive alternative
to the more standard database setup. For instance, in cases where high-end server ma-
chines are available, it would be possible to service mid to large scale elections completely
from memory. We estimate the size of the in-memory representation of a n = 200K ballot
election, with m = 4 options, at approximately 322MB (see [87] for derivation details). In
this size, we include 64-bit Java pointers overhead, as we are using simple hash-maps
of plain old Java classes. This size can be decreased considerably in a more elaborate
implementation, where data is serialized by Google Protocol Buffers, for example.

Finally, in Figure 6.9, we illustrate a breakdown of the duration of the two phases for Vote
Collection, voting and vote set consensus, for D-DEMOS/IC and D-DEMOS/Async, versus

N. Chondros 92

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 5 6 7 8 9 10 11 12 13 14 15 16

R
es

po
ns

e
tim

e
(s

ec
)

#VC

D-DEMOS/IC Response time versus #VC, LAN

500 cc
1000 cc
1500 cc
2000 cc

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 5 6 7 8 9 10 11 12 13 14 15 16

R
es

po
ns

e
tim

e
(s

ec
)

#VC

D-DEMOS/Async Response time versus #VC, LAN

500 cc
1000 cc
1500 cc
2000 cc

(b)

Figure 6.3: Vote Collection response time of D-DEMOS/IC (6.3a) and D-DEMOS/Async
(6.3b), versus the number of VC nodes, under a LAN setting. Election parameters are n
= 200,000 and m = 4.

93 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

op
s/

se
c)

#VC

D-DEMOS/IC throughput versus #VC, LAN

500 cc
1000 cc
1500 cc
2000 cc

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

op
s/

se
c)

#VC

D-DEMOS/Async throughput versus #VC, LAN

500 cc
1000 cc
1500 cc
2000 cc

(b)

Figure 6.4: Vote Collection throughput of D-DEMOS/IC (6.4a) and D-DEMOS/Async
(6.4b), versus the number of VC nodes, under a LAN setting. Election parameters are
n = 200,000 and m = 4.

N. Chondros 94

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

 0
 750

 1500
 2250
 3000
 3750
 4500
 5250
 6000

 0 400 800 1200 1600 2000

T
hr

ou
gh

pu
t (

op
s/

se
c)

#cc

D-DEMOS/IC throughput versus #cc, LAN

4 VC
7 VC

10 VC
13 VC
16 VC

(a)

 0
 750

 1500
 2250
 3000
 3750
 4500
 5250
 6000

 0 400 800 1200 1600 2000

T
hr

ou
gh

pu
t (

op
s/

se
c)

#cc

D-DEMOS/Async throughput versus #cc, LAN

4 VC
7 VC

10 VC
13 VC
16 VC

(b)

Figure 6.5: Vote Collection throughput of D-DEMOS/IC (6.5a) and D-DEMOS/Async
(6.5b), versus the number of concurrent clients, under a LAN setting. Plots illustrate per-
formance for different cardinalities of VC nodes, thus different fault tolerance settings.
Election parameters are n = 200,000 and m = 4.

95 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 5 6 7 8 9 10 11 12 13 14 15 16

R
es

po
ns

e
tim

e
(s

ec
)

#VC

D-DEMOS/IC Response time versus #VC, WAN

500 cc
1000 cc
1500 cc
2000 cc

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 5 6 7 8 9 10 11 12 13 14 15 16

R
es

po
ns

e
tim

e
(s

ec
)

#VC

D-DEMOS/Async Response time versus #VC, WAN

500 cc
1000 cc
1500 cc
2000 cc

(b)

Figure 6.6: Vote Collection response time of D-DEMOS/IC (6.6a) and D-DEMOS/Async
(6.6b), versus the number of VC nodes, under a WAN setting. Election parameters are n
= 200,000 and m = 4.

N. Chondros 96

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

op
s/

se
c)

#VC

D-DEMOS/IC throughput versus #VC, WAN

500 cc
1000 cc
1500 cc
2000 cc

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

op
s/

se
c)

#VC

D-DEMOS/Async throughput versus #VC, WAN

500 cc
1000 cc
1500 cc
2000 cc

(b)

Figure 6.7: Vote Collection throughput of D-DEMOS/IC (6.7a) and D-DEMOS/Async
(6.7b), versus the number of VC nodes, under a WAN setting. Election parameters are n
= 200,000 and m = 4.

97 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

 0
 750

 1500
 2250
 3000
 3750
 4500
 5250
 6000

 0 400 800 1200 1600 2000

T
hr

ou
gh

pu
t (

op
s/

se
c)

#cc

D-DEMOS/IC throughput versus #cc, WAN

4 VC
7 VC

10 VC
13 VC
16 VC

(a)

 0
 750

 1500
 2250
 3000
 3750
 4500
 5250
 6000

 0 400 800 1200 1600 2000

T
hr

ou
gh

pu
t (

op
s/

se
c)

#cc

D-DEMOS/Async throughput versus #cc, WAN

4 VC
7 VC

10 VC
13 VC
16 VC

(b)

Figure 6.8: Vote Collection throughput of D-DEMOS/IC (6.8a) and D-DEMOS/Async
(6.8b), versus the number of concurrent clients, under a WAN setting. Plots illustrate
performance for different cardinalities of VC nodes, thus different fault tolerance settings.
Election parameters are n = 200,000 and m = 4.

N. Chondros 98

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

 0

 500

 1000

 1500

 2000

 2500

50000 100000 150000 200000

D
ur

at
io

n
(s

ec
)

#Ballots cast

D-DEMOS/IC phases duration

Vote Collection
Vote Set Consensus

(a)

 0

 500

 1000

 1500

 2000

 2500

50000 100000 150000 200000

D
ur

at
io

n
(s

ec
)

#Ballots cast

D-DEMOS/Async phases duration

Vote Collection
Vote Set Consensus

(b)

Figure 6.9: This figure illustrates the duration of the voting and vote set consensus, for a
range of number of ballots. Results depicted are for 4 VCs, n = 200,000 and m = 4. All
phases are disk based.

99 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

the total number of ballots cast. We have the voting driver use all ballots to vote, then start
vote set consensus immediately, and we record the time taken to complete each phase.
Comparing the two versions of D-DEMOS, we observe D-DEMOS/IC is faster during both
Vote Collection and Vote Set Consensus phases. This is expected, because of the extra
communication round of D-DEMOS/Async during voting, as well as the more complex
consensus-per-ballot approach to achieving Vote Set Consensus. In fact, D-DEMOS/IC
completes voting 15% faster than D-DEMOS/Async, while it completes vote set consensus
75% faster. However, note that D-DEMOS/Async is more robust than D-DEMOS/IC, as it
does not require any kind of synchronization between nodes.

Overall, althoughwe introduced Byzantine Fault Tolerance during the vote collection phase
of a state-of-the-art voting system, we demonstrate it achieves high performance, enough
to run real-life elections of large electorate bodies.

N. Chondros 100

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

7. RELATED WORK

7.1 Voting systems

Several end-to-end verifiable e-voting systems have been introduced, e.g. the kiosk-
based systems [31, 58, 29, 13, 92] and the internet voting systems [4, 76, 115, 72]. In
all these works, the Bulletin Board (BB) is a single point of failure and has to be trusted.

Dini presents a distributed e-voting system, which however is not end-to-end verifiable [47].
In [45], there is a distributed BB implementation, also handling vote collection, according
to the design of the vVote end-to-end verifiable e-voting system [44], which in turn is an
adaptation of the Prêt à Voter e-voting system [31]. In [45], the proper operation of the BB
during ballot casting requires a trusted device for signature verification. In contrast, our
vote collection subsystem is done so that correct execution of ballot casting can be “hu-
man verifiable”, i.e., by simply checking the validity of the obtained receipt. Additionally,
our vote collection subsystem in D-DEMOS/Async is fully asynchronous, always deciding
with exactly n − f inputs, while in [45], the system uses a synchronous approach based
on the FloodSet algorithm from [86] to agree on a single version of the state.

DEMOS [72] is an end-to-end verifiable e-voting system, which introduces the novel idea
of extracting the challenge of the zero-knowledge proof protocols from the voters’ random
choices; we leverage this idea in our system too. However, DEMOS uses a centralized
Election Authority (EA), which maintains all secrets throughout the entire election proce-
dure, collects votes, produces the result and commits to verification data in the BB. Hence,
the EA is a single point of failure, and because it knows the voters’ votes, it is also a criti-
cal privacy vulnerability. In this thesis, we address these issues by introducing distributed
components for vote collection and result tabulation, and we do not assume any trusted
component during election. Additionally, DEMOS does not provide any recorded-as-cast
feedback to the voter, whereas our system includes such a mechanism.

Furthermore, none of the above works provide any performance evaluation results. Fi-
nally, [8] outlines the difficulties in managing seals for kiosks and ballot boxes, supporting
our position towards the use of internet voting.

7.2 Consensus, Agreement, Interactive Consistency

Consensus. The Byzantine consensus problem is one of the most studied topics in dis-
tributed systems and themain topic of the well-known FLP impossibility result ([57]). There
are several types of consensus protocols. The first distinction revolves around determin-
ism (or non-determinism). In a deterministic consensus protocol, given the set of input
values on all nodes, the message schedule and the failures that occur (if any), the re-
sult will always be the same. Deterministic consensus protocols require a synchronous
system ([51]). In a purely asynchronous system, consensus can be achieved by random-

101 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

ization. FLP is circumvented by having nodes locally toss a coin to decide on their input
values, in round r + 1, in cases where consensus cannot be achieved in round r. Thus,
the result may be different across executions with the same inputs. Examples of random-
ized protocols that employ the local coin construct are introduced by Bracha [15], Bracha
and Toueg [16] and Ben-Or [11]. These algorithms guarantee eventual termination after
a probabilistic number of rounds. In [109], a trusted, non-faulty dealer is additionally em-
ployed to bound the number of rounds required to achieve consensus. In our work, we
leverage the randomized approach by Bracha to ensure termination because we believe
it is controversial to assume a trusted entity in an otherwise Byzantine environment.

Other works ([23], [98]) leverage verifiable secret sharing techniques to implement a shared,
or, common coin. These consensus algorithms are polynomially efficient and terminate
in a constant number of rounds. Canetti et al. [23] present one of most well-established
and signature-free common coin protocols. However, this protocol, although polynomial,
is complex to implement and has very high bit complexity [93]. Mostéfaoui et al. [93] em-
ploy the common coin protocol that is presented in [21] which has guaranteed termination
but requires a trusted dealer. We did not consider these algorithms as they are either
inefficient or require a trusted dealer.

Failure Detectors. In [27], Chandra and Toueg proposed a solution for the consensus
problem, in an asynchronous crash-fault environment, introducing a module called unre-
liable failure detector (FD). It is shown that even if the FD erroneously considers some
processes faulty, it can be used to solve consensus.

There is extensive literature that further expands the family of FDs to a number of applica-
tions ([52, 64, 67, 84, 9, 73]). The muteness failure detector presented in [52] is a failure
detector can detect nodes that, after a time, either crash, or behave arbitrarily. In [64], FDs
are used to solve the transaction commit problem in distributed databases. Mostefaoui
et al. [67], use perfect failure detectors to compute global data, used in the distributed
termination detection problem. Larrea et al. [84] introduces the notion of Eventually Con-
sistent FD and utilizes it to solve the consensus problem in a crash-fault tolerant setting.
Arevalo er al. [9], also solve the problem of consensus in a crash fault environment but
they consider a special case of a “homonymous” network, where processes share the
same identifiers. Finally, Kihlstrom et al. [73], extend the work of Chandra and Toueg and
propose a failure detector that can effectively detect Byzantine behaviour. However, FDs
detecting Byzantine behaviour are no longer autonomous, as they require input from the
higher level algorithm [19].

FDs are an implicit part of leader-based consensus algorithms, hidden behind the leader
election primitives. Such algorithms are Lamport’s Paxos in the crash-fault tolerant set-
ting [80, 82] or the Byzantine-fault tolerant setting [88, 81], and PBFT [25] which is based
on view-stamped replication [96]. The similarities between Paxos and PBFT are analyzed
in [83, 18]. Further performance enhancements to leader-based consensus protocols us-
ing FDs are described in [113].

Although these all provide solutions to consensus, they also solve Atomic Broadcast, i.e.,
enforcing total ordering acrossmultiple events (consensus instances). Additionally, in their

N. Chondros 102

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

Byzantine fault tolerant incarnations, they explicitly require digital signatures. In this work,
we utilize the approach of Bracha [15] for solving consensus, because it is more focused
on the specific problem, as it does not deal with ordering multiple consensus instances,
and does not require digital signatures for its operation.

Finally, Cason et al. [24] study total order broadcast in a type-hybrid model, but only for
LANs and only for crash faults; we target WAN deployments and Byzantine fault tolerance.

Broadcast protocols. In [15], Bracha introduced a n
3
-resilient reliable broadcast primitive

(RBB, for Reliable Broadcast of Bracha) to solve the consensus problem. Another type
of broadcast primitive, with lower message complexity, is consistent broadcast (CB). CB
is designed to relax the agreement property of reliable broadcast, by allowing some non-
faulty nodes to deliver m, while others may deliver nothing. The standard implementation
of consistent broadcast is Reiter’s echo multicast [104].

Interactive Consistency. Interactive consistency was first introduced and studied by
Pease et al. [100], and has been the topic of several research papers ([111, 107, 85, 60,
78, 12]), focusing on synchronous systems. While these approaches might be feasible in
environments such as shared memory multi-processors or digital flight control systems,
we believe they are ill-suited for practical, real-world distributed systems. In [90] and [102],
the authors provide solutions to various forms of consensus, despite their title references
to IC.

A closely related problem to IC is vector consensus [52, 12, 95, 22] (in [22] it is called
“agreement on a core set”). Vector consensus differs from IC only in terms of the Validity
condition, as the former delivers a vector with at least 2t + 1 values, where at least t + 1
values were proposed by non-faulty nodes. That is, in vector consensus, a valid output
vector may freely miss some values from correct nodes. The reason for this difference is
that in asynchronous systems, it is impossible to simultaneously ensure input complete-
ness and liveness [71]. The focus of this work on IC is achieving input completeness in
the fault-free case, while also ensuring liveness when faults occur.

7.3 State Machine Replication

Achieving consensus in the presence of arbitrary faults is a well studied field in distributed
systems. It was first introduced by Pease et al. in a synchronous setting [100], while the
term “Byzantine” was introduced by Lamport et al. in [79]. Consensus is also the basis,
used by Fisher et al. [57], to express the FLP impossibility result in an asynchronous set-
ting, which states the impossibility of achieving deterministic consensus even with one
faulty process. There are several proposed solutions to circumvent the FLP impossibility
result in asynchronous systems. Many of these approaches utilize randomization tech-
niques that ensure termination after a probabilistic number of rounds ([11, 15, 16, 41]),
while others assume trusted modules that can effectively detect the misbehaviour of the
systems’ components ([5, 27, 52, 64, 67]).

Castro et al. [25, 26] introduce a practical Byzantine Fault Tolerant Replicated State Ma-

103 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

chine (RSM) protocol, which could potentially be used for the implementation of the Vote
Collection subsystem. Since this seminal work, there has been a flurry of research activity
focused on improving the BFT middleware performance [114, 75, 3, 42, 59, 74, 110, 37,
48, 112], replication cost [114, 49, 112, 10], and robustness under both faulty servers and
faulty clients [6, 37]. A large majority of these systems [114, 75, 74, 6, 37, 59, 112] are
direct descendants of the Castro and Liskov PBFT system and reuse and build upon the
Castro codebase.

Separating agreement from execution [114] introduced the concept of a separate agree-
ment and execution cluster. It also introduced the privacy firewall, for avoiding leakage of
sensitive information from a faulty execution node. The latter, though, requires (h + 1)2

nodes for tolerating h faults in the privacy firewall cluster.

Several attempts have been made to address the inability of replicated BFT services to
mesh with the rest of the infrastructure in today’s multi-tier world. Merideth et al. [89]
introduced Thema, which aims to mask BFT complexity from the application developer
of web services based applications. An agent, visible to the unaffected outside world,
plays the role of the client of a BFT system. Additionally, a proxy collects the multiple
out-call requests from the replicas of a BFT system, and issues the actual out-call on their
behalf, returning the reply when available. Unfortunately, both the agent and the proxy
are centralized components which are inappropriate for applications such as ours which
require completely distributed design.

Pallemulle et al. [97] focus on interoperability between BFT systems, while enforcing fault
isolation and introduce a new protocol, named Perpetual to achieve this. Sen et al. [106] in
a system called Prophecy, designed to increase BFT performance, introduce a Sketcher
component, that tries to trade space for performance, by storing a historical log of re-
quest/reply pairs and allowing the application to differentiate its requests, asking for pos-
sible log-based replies. In its distributed incarnation, D-Prophecy is simply an attempt
to avoid re-execution of duplicate requests. In the centralized version, Prophecy, the
Sketcher completely avoids BFT access but now becomes a single point of failure.

Amir et al. [7] introduce Steward, a hierarchical BFT architecture, that tries to scale BFT
to a wide-area network, by introducing an abstraction layer above PBFT using a Paxos-
based protocol. It uses a threshold signature scheme to ensure the recipient of a cross-
domain message that enough replicas at the originating site agreed with the request. Both
these features are welcome to security-conscious Internet application services. Unfortu-
nately, no source code is available.

Finally, Guerraoui et al. [63] introduce a new abstraction allowing for the construction of
new BFT protocols with a fraction of the code currently necessary, thus vastly simplifying
the BFT researcher’s task. Having waded through the 20,000 lines of PBFT code while
investigating its use for this project, we applaud this effort and emphasize here the need
to simplify the end application developer’s task as well.

Our system does not use the state machine replication approach to handle vote collec-
tion, as it would be inevitably more costly. Each of our vote collection nodes can validate
a voter’s requests on its own. In addition, we are able to process multiple different vot-

N. Chondros 104

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

ers’ requests concurrently, without enforcing the total ordering inherent in replicated state
machines. Finally, we do not wish voters to use special client-side software to access our
system.

105 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

N. Chondros 106

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusion and future work

E-voting systems are a powerful tool for improving society; they allow more frequent elec-
tions, thus providing for direct democracy. While nation-scale kiosk-based e-voting sys-
tems speed up production of the election result considerably, they pose many undesired
necessities. They require setting up booths throughout a country, which means allocating
physical space and incurring setup costs. They also require voters to physically come to
the booths, instead of voting from the comfort of their home or office. These facts make
them impractical for frequent elections. Thus, in our work we have chosen to focus on
internet (remote) voting systems, and this decision has been the key driver determining
our requirements, each of which we outline below.

We recognize that malware has spread all over the world, making the public unable to
trust their personal computers for such a critical function as selecting a nation’s next gov-
ernment. For this reason, we set the goal of producing a vote collection mechanism that
does not require voters to perform advanced functions, such as storing private keys and
performing cryptographic calculations, on their personal devices. Additionally, we wish to
accommodate voters who do not own computers. Our systems allow such voters to vote
using a public terminal or a friend’s device without compromising their privacy.

Robustness, in the sense of tolerating faulty components, has not received much thought
from the voting community. The only related work we found explicitly focusing on fault
tolerance, produced a robust Web Bulletin Board ([45]) that was used to produce a kiosk-
based voting system ([44]) and not an internet voting one. Most designs from scientific
papers assume centralized components that pose a risk to both availability and privacy (
[28, 31, 58, 29, 13, 43, 4, 36, 76, 61, 115, 72]). Moreover, most real-world implementations,
even kiosk-based ones, use centralized components, making them vulnerable to single
points of failure and/or attack.

The importance of end-to-end verifiability cannot be overstated. As a testimony to this
statement, the results of the US presidential elections of 2016 were recently challenged
in three states [1, 2]. In particular, a number of academics and activists are calling for
US authorities to fully audit or recount the 2016 presidential election vote in the states of
Michigan, Pennsylvania and Wisconsin, in case “the results could have been skewed by
foreign hackers”. In urging for a recount, experts, in essence want to ”verify the votes”
of citizens with ”post-election ballot audits”. This open doubt about the correctness of the
election tally results in the public losing trust in the election system as a whole. All this
could have been avoided if end-to-end verifiable voting systems had been deployed. The
experts could perform their own audits themselves, without requiring cooperation from
the election authorities. If during an audit, the experts found something wrong, they could
prove that the election result was not correct, without unnecessary and prolonged public
discussion or court sessions.

107 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

We chose the DEMOS voting system as a model for our study because it allowed us to
achieve our objectives. Being vote code based, it allowed us to offload cryptography to the
setup component (the Election Authority), allowing voters to use the output of this setup in
a simple manner. We only require basic string-matching skills to verify a receipt, to obtain
recorded-as-cast assurance. Moreover, both our vote collection systems do not require
the use of a public key infrastructure for voters.

We also designed our voter’s algorithm with a human in mind, and not a machine. This
is why the voter is not required to perform multicasts. We only ask the voter to wait for a
while, for a receipt to be sent back, and verify it against the expected one. For example,
the voter can simply access one VC node’s URL, cast her vote by filling an HTML form,
wait for her browser to time out, and in such a case (or in the case of a faulty reply), she
simply accesses another VC node’s URL and casts her vote again.

This thesis work was part of a larger project called FINER from the GRNET ARISTEIA pro-
gram. The goal of the FINER project was to produce a complete and fault-tolerant internet
voting system that is at the same time privacy-preserving and end-to-end verifiable. Both
of our vote collection systems have been integrated into the voting system D-DEMOS,
which is the outcome of project FINER and fulfills all of the above requirements.

Our first approach to vote collection, which resulted in D-DEMOS/IC is simpler and faster.
However, it makes the strong assumption that at a very specific period of time, right after
voting is over, the system is able to deliver all messages from non-faulty nodes. This was
the result of our choice to select an algorithm achieving Interactive Consistency, which is
impossible in asynchronous systems, to obtain Vote Set Consensus. We then focused
on exploring the fundamental reasons behind the inability to achieve consensus in D-
DEMOS/IC. We identified the attack from a malicious voter casting multiple vote codes
across different VC nodes as the major obstacle and decided to prohibit it during voting
instead of during vote set consensus. This new approach resulted in D-DEMOS/Async,
which is the first internet voting system that is, at the same time, Byzantine fault-tolerant,
asynchronous, privacy-preserving and end-to-end verifiable, without requiring the voters
to trust the devices they use to vote.

We made performance comparisons between the two vote collection systems. During
voting, D-DEMOS/IC is faster but only by a small margin of 15%. We thus consider both
systems equally able to handle large-scale elections. However, during vote set consensus,
D-DEMOS/IC is four times faster than D-DEMOS/Async. Considering this is a phase that
runs only once at election end-time, and is, in any case, far faster than manually counting
votes from a ballot box, we claim D-DEMOS/Async is able to handle this phase too for a
real-world election.

While D-DEMOS/Async has advanced the state-of-the-art significantly, a number of chal-
lenges remain before internet voting systems become ubiquitous in election procedures.

First, we have focused our efforts on supporting 1-out-of-m elections, in which voters
choose only one out of m options from their ballots. Real world elections often require
more complex schemes. The next logical step is to handle k-out-of-m elections, where
the voter can select more than one options. Then, there is the more complex variation

N. Chondros 108

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

which adds a weight to each voter choice; e.g., the voter’s first choice is more important
than the second and that needs to be recorded and tallied accordingly. Finally, there are
hierarchical schemes as well, where the voters first select a party to vote for, and then
select the candidates of their choice from the selected party only. We leave as future work
the handling of these more complex voting scenarios.

Second, we have used a setup component (the EA) to prepare the election and initialize
all other components. We have assumed secure out-of-bands communication between
the EA and all other components. Although this may be feasible using a manual process
for initializing the VC nodes, it is troublesome when we consider delivering the ballots to
the voters in a secure and anonymous way. At present, the most secure way to distribute
the ballots to voters is to have the ballots printed and have each voter pick one at random.
All other mechanisms require trusting additional system components (the email server,
the authentication server, etc). Thus, secure ballot distribution is a problem that needs
immediate attention, to allow for really painless frequent elections.

Third, we have relied on the end-to-end verifiability that we inherited from DEMOS and
carefully preserved, to detect a malicious setup of the election. This is feasible as long
as the fault-tolerance thresholds, for all system components are not violated. But what if
they are? What if more that fv VC nodes fall under the control of the adversary? More
importantly, what if other distributed D-DEMOS components, such as the Bulletin Board
nodes or trustees have their fault-tolerance thresholds exceeded? In this case, we cannot
attribute an error to a specific system component. Although this may not seem important
while modeling the system and considering a single adversary coordinating all malicious
components, in the real world, it is important to be able to detect the faulty component that
causes trouble. Thus, fault attribution is an interesting research area for voting systems.

Finally, coercion-resistance is a very important topic for voting systems, and one that is
difficult to define precisely for an internet voting system. In our approach, the voter needs
to preserve the privacy of her ballot and find amoment alone to cast her vote, but that is not
enough to achieve coercion-resistance. We have considered the use of fake ballots. For
example, the voter can obtain one real and one fake ballot from the system, use the real
one to vote while in private, and present her vote via the fake one to the adversary. The
system, during tallying, must count all fake ballots as 0 votes, effectively discarding them.
This does not change vote collection at all, but does affect the end-to-end verifiability of
the voting system as a whole. What if the Election Authority produces and distributes fake
ballots to a targeted subset of the electorate body?

Concluding, the vote collection systems presented in this thesis are applicable to any
voting system that uses the code-voting technique. Thus, we believe our work is a required
step towards producing higher quality voting systems that can handle large-scale elections
efficiently and reliably.

109 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

N. Chondros 110

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

ABBREVIATIONS - ACRONYMS

ACS Asynchronous Communications Stack

AES Advanced Encryption Standard

BB Bulletin Board

BFT Byzantine Fault Tolerant

CBC Cipher Block Chaining

EA Election Authority

FD Failure Detector

HTTP HyperText Transfer Protocol

IC Interactive Consistency

LAN Local Area Network

RSM Replicated State Machine

SMR State-Machine Replication

TLS Transport Layer Security

UCERT Uniqueness Certificate

VC Vote Collection

VSS Verifiable Secret Sharing

WAN Wide Area Network

ZKP Zero-Knowledge Proof

appendix

111 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

N. Chondros 112

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

APPENDIX A. ACHIEVING INTERACTIVE CONSISTENCY IN
MOSTLY-ASYNCHRONOUS SYSTEMS

In this Appendix, we present the details of the Interactive Consistency (IC) algorithm we
used for D-DEMOS/IC. We first present the system model we consider in section A.1,
which is a mostly-asynchronous one because of the impossibility of achieving Interactive
Consistency in asynchronous systems.

After that, in Section A.2 we present our work on developing a series of IC algorithms.
This section provides the rationale behind our approach and system design.

A.1 System Model

We assume a distributed system consisting of n nodes that are fully connected over a
network. The network is mostly asynchronous, i.e., it exhibits one (or more, depending on
the algorithm) period of synchrony, during which message delivery is timely. The network
can drop, delay, duplicate, or deliver messages out of order. However, we assume that
messages are eventually delivered, provided that the corresponding senders keep on re-
transmitting them. We assume authenticated channels, where the receiver of a message
can always identify its sender. Each node has a public/private key pair and all nodes know
the others’ public keys. We use these keys to implement authenticated channels, and sign
messages where needed.

We assume a Byzantine failure model where nodes may deviate arbitrarily from the pro-
tocol. We allow for a strong adversary that can coordinate faulty nodes. However, we
assume he cannot delay the delivery of messages, or processing on correct nodes be-
yond the system’s synchrony assumptions. The adversary is also assumed to be compu-
tationally bounded, meaning he cannot subvert common cryptographic techniques such
as signatures and message authentication codes (MACs).

A.2 Practical Interactive Consistency

A.2.1 Adapting approaches from synchronous systems

The original algorithm of Pease et al. [100] requires a total of t+1 rounds to achieve IC in a
synchronous system, tolerating up to t faults, with a total message complexity of (t+1)n2.
Our first approach is to adapt the same algorithm by simulating synchronous rounds with
timeouts. Messages delivered after the time frame of each round, will be disregarded and
counted towards the t system faults, according to the model presented in [50].

Two issues arise from the use of timeouts, as highlighted in [65]. The first one is efficiency.
Assuming a timeout value of Tr for each round, the system will always require a constant

113 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

amount of time, i.e., (t+1)Tr, to execute a request even in the presence of a single failure.
The second is choosing a correct value for Tr. If we choose a conservative approach and
set a large value for Tr, we could increase the execution time of the algorithm dramatically,
thus, making it less practical. On the contrary, a small valuemight cause some slow nodes,
who are otherwise correct, to be considered faulty. If this occurs multiple times, as is the
case when one relies on multiple timeouts, it is possible that we will exceed the upper
bound t of total failures in the system.

To avoid the issues associated with multiple timeouts, one might attempt to reduce IC to
Byzantine Agreement (BA), by running n parallel instances of BA, as it was suggested for
synchronous systems ([56]). In each instance, a node ni would spread its private value vi
to the rest of the system. In a synchronous setting, this would result in all non-faulty nodes
having the same vector of values. However, in a completely asynchronous environment,
BA is impossible ([15]), as a crashed node may never even start its instance of BA, and
nodes cannot distinguish between crashed nodes and slow nodes. Therefore, the non-
faulty nodes need to decide, at a certain point, to exclude the suspected crashed nodes
from IC and store a default (e.g., null) value at the slot corresponding to each crashed
node. Thus, they need a synchronization point, where they decide on the result vector;
we call this point a barrier. This synchrony assumption allows for the circumvention of the
impossibility of simultaneously achieving input completeness and guaranteed termination
in an asynchronous system ([71]).

The introduction of the barrier introduces a new challenge as, at that point, a BA instance
may have delivered the result in some nodes but not yet in others. This, for example,
may be triggered by an adversary starting his own BA instance near the barrier. Thus,
honest nodes will need to achieve consensus, for each individual slot of the result vector,
on the value to be placed in that slot. We observe that the barrier splits the procedure in
two phases. We call the first phase the value dissemination phase, where we assume the
network delivers all messages of non-faulty nodes by the end of the phase. Recall that,
as we stated in the first paragraph of this section, messages delivered after the time frame
of the first phase will be counted towards the t system faults. We call the second phase,
the result consensus phase, which can be completely asynchronous. Note that we have
employed the costly BA approach for the first phase, but have shown that a consensus
phase is still required.

A.2.2 Solution using Multi-Valued Consensus

With these observations, we seek less costly alternatives for the first phase, i.e., avoiding
BA. Our first approach is to use a simple point-to-point message exchange, where each
node announces its own private value to the rest of the system. As this exchange is unre-
stricted, it may result in each honest node receiving a different value from amalicious node.
Thus, during the result consensus phase, nodes need to agree on the value to be placed
in each slot of the result vector. We employ the multi-valued consensus (MC) algorithm
from [41]; recall that this algorithm utilizes a binary consensus and a reliable broadcast
primitive. We want to refrain from making any further synchrony assumptions, thus, mak-

N. Chondros 114

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

Figure A.1: Diagram of message exchange for IC,MC-RBB, for a single value of the result
vector (repeated n times to achieve IC).

ing the result consensus phase completely asynchronous. In order to circumvent FLP,
which states that achieving deterministic consensus is impossible in purely asynchronous
systems, we employ a randomized consensus protocol. We use Bracha’s binary consen-
sus (BC) and reliable broadcast (RBB) primitives from [14], and we run n parallel instances
of MC, one for each value of the vector.

This algorithm (IC,MC-RBB) achieves IC because, regardless of the unrestricted value
dissemination phase, each instance of MC ensures that nodes agree on a single value for
each slot of the result vector respectively. (IC,MC-RBB) uses only one synchrony barrier,
as opposed to the adaptation of Pease’s algorithm which needs t+1. Its overall message
complexity is 10n4 + 5n3 + n2. Figure A.1 demonstrates the message exchanges for this

115 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

protocol.

A.2.3 Solution using Binary Consensus

Figure A.2: Diagram of message exchanges for (IC,BC-RBB), for a single value of the
result vector (repeated n times to achieve IC).

Our next approach reduces the aforementioned message complexity. We observe multi-
valued consensus uses one binary consensus and two reliable broadcast instances. We
avoid the use of MC by changing the subject on which consensus is required. In the pre-
vious algorithm, the consensus question is “what is the actual value to be placed in the
corresponding slot of the result vector?”, because the first (value dissemination) phase
is insecure. We make the first phase secure by using Consistent Broadcast (CB, [20]).
Here, the source ni first sends its value vi to each node; then it collects signed endorse-
ment responses. A recipient node endorses only the first value for each broadcast. Once
n − t such responses are accumulated, the sender forms a uniqueness certificate ci that

N. Chondros 116

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

includes these endorsements, and sends <ni, ci> to the rest of the nodes. CB delivers vi
iff ci has at least n− t valid signatures. Assuming signatures are unforgeable, it is impos-
sible for a malicious node to construct two valid certificates for two different values. Thus,
this protocol bounds the sender to either send a single value, or not send a value at all.
As this value is guaranteed to be unique, we change the question of the result consensus
phase to “is there a value to be placed in the corresponding slot of the result vector?”. This
question can now be answered by a binary consensus protocol, and we utilize Bracha’s
protocol ([14]) in our approach. Figure A.2 depicts this protocol’s message exchanges.

An outcome of 0 from BC causes each node to place the null value in the corresponding
slot of the result vector. Accordingly, a result of 1 from BC instructs each node to place
the (unique) value vi in the result vector. There are cases, however, where a consensus
instancemay produce a result different than the opinion with which an honest node entered
BC. This can happen when the corresponding instance of CB delivered the value vi at
some nodes, but not at others (e.g., when a malicious CB source sends the value, along
with the uniqueness certificate, only to some nodes). Thus, a node may possess a value
for this slot, and the result of consensus may be 0, in which case it simply replaces the
value with null. However, the contrary may also happen, where a node did not possess
a value when it entered BC, but consensus resulted in 1. For this case, we add a final
recovery phase, where a node asks all other nodes for the correct value of the ith position
of the result vector. Any node that receives such a message replies with the <vi, ci> tuple
it possesses. At least one honest node is guaranteed to exist and submit such a reply, as,
by definition of BC, if all honest nodes entered consensus with 0, the result would have
been 0. As the result is 1, at least one honest node exists which has entered consensus
with 1, thus possessing the correct value and uniqueness certificate for it.

To summarize, this IC algorithm (IC,BC-RBB) achieves IC because: a) during the value
dissemination phase, an honest node either obtains a value guaranteed to be unique, or
no value at all, b) during the result consensus phase, all nodes agree, for each slot of
the result vector, whether to place a (guaranteed unique) value, or the null value, and c)
during the recovery phase, any honest node is guaranteed to obtain missing values. The
overall complexity of (IC,BC-RBB) is 6n4 + 3n3 + 3n2 messages and n3 + 2n2 signature
operations.

Please note that we have only provided an overview of this subject here. For more infor-
mation, including performance evaluation and message complexity derivations, we refer
the interested reader to [46].

117 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

N. Chondros 118

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

BIBLIOGRAPHY

[1] Hillary clinton urged to call for election vote recount in battle-
ground states. https://www.theguardian.com/us-news/2016/nov/23/
hillary-clinton-election-vote-recount-michigan-pennsylvania-wisconsin,
November 2016.

[2] Hillary clinton’s team to join wisconsin recount pushed by
jill stein. http://www.nytimes.com/2016/11/26/us/politics/
clinton-camp-will-join-push-for-wisconsin-ballot-recount.html?_r=0,
November 2016.

[3] M. Abd-El-Malek, G.R. Ganger, G.R. Goodson, M.K. Reiter, and J.J. Wylie. Fault-
scalable byzantine fault-tolerant services. In Proceedings of the 20th ACMSymposium
on Operating Systems Principles, Brighton, UK, pages 59–74. ACM, October 2005.

[4] Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the 17th USENIX
Security Symposium, San Jose, CA, USA, pages 335–348. USENIX Association, July
2008.

[5] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Using the heartbeat failure de-
tector for quiescent reliable communication and consensus in partitionable networks.
Theoretical Computer Science, 220(1):3–30, 1999.

[6] Y. Amir, B.A. Coan, J. Kirsch, and J. Lane. Byzantine replication under attack. In
Proceedings of the 38th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2008), Anchorage, Alaska, USA, pages 197–206. IEEE
Computer Society, Jun 2008.

[7] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-rotaru, J. Olsen, and D. Zage.
Scaling byzantine fault-tolerant replication to wide area networks. In Proceedings of
the International Conference on Dependable Systems and Networks (DSN 2006),
Philadelphia, Pennsylvania, USA, pages 105–114. IEEE Computer Society, June
2006.

[8] AndrewW. Appel. Security seals on votingmachines: A case study. ACMTransactions
on Information and System Security, 14(2):18:1–18:29, September 2011.

[9] Sergio Arévalo, Antonio Fernández Anta, Damien Imbs, Ernesto Jiménez, and Michel
Raynal. Failure detectors in homonymous distributed systems (with an application to
consensus). Journal of Parallel and Distributed Computing, 83:83–95, 2015.

[10] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko
Vukolić. The next 700 bft protocols. ACM Transactions on Computer Systems (TOCS),
32(4):12, 2015.

119 N. Chondros

https://www.theguardian.com/us-news/2016/nov/23/hillary-clinton-election-vote-recount-michigan-pennsylvania-wisconsin
https://www.theguardian.com/us-news/2016/nov/23/hillary-clinton-election-vote-recount-michigan-pennsylvania-wisconsin
http://www.nytimes.com/2016/11/26/us/politics/clinton-camp-will-join-push-for-wisconsin-ballot-recount.html?_r=0
http://www.nytimes.com/2016/11/26/us/politics/clinton-camp-will-join-push-for-wisconsin-ballot-recount.html?_r=0

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

[11] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols. In Proceedings of the Second Annual ACM Symposium on Principles
of Distributed Computing, Montreal, Quebec, Canada, PODC 1983, pages 27–30.
ACM.

[12] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in con-
stant time. Distributed Computing, 16(4):249–262, 2003.

[13] Josh Benaloh, Michael D. Byrne, Bryce Eakin, Philip T. Kortum, Neal McBurnett,
Olivier Pereira, Philip B. Stark, Dan S. Wallach, Gail Fisher, Julian Montoya, Michelle
Parker, and Michael Winn. STAR-vote: A secure, transparent, auditable, and reliable
voting system. In Proceedings of the Electronic Voting Technology Workshop / Work-
shop on Trustworthy Elections, EVT/WOTE ’13, Washington, D.C., USA. USENIX As-
sociation, August 2013.

[14] Gabriel Bracha. An asynchronous [(n−1)/3]-resilient consensus protocol. In PODC,
1984.

[15] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and
Computation, 75(2):130–143, November 1987.

[16] Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of
the Second Annual ACM Symposium on Principles of Distributed Computing, PODC
1983, pages 12–26, New York, NY, USA, August 1983. ACM.

[17] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols.
Journal of the ACM (JACM), 32(4):824–840, 1985.

[18] Christian Cachin. Yet another visit to paxos. IBM Research, Zurich, Switzerland,
Tech. Rep. RZ3754, 2009.

[19] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to reliable and
secure distributed programming. Springer Science & Business Media, 2011.

[20] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and
efficient asynchronous broadcast protocols. In Advances in Cryptology, Crypto 2001.
Springer, 2001.

[21] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography. In Proceedings
of the nineteenth annual ACM symposium on Principles of distributed computing, Port-
land, Oregon, pages 123–132. ACM, July 2000.

[22] Ran Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis,
1996.

[23] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, San Diego, CA, USA. ACM, May 1993.

N. Chondros 120

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

[24] Daniel Cason and Luiz E. Buzato. Time hybrid total order broadcast: Exploiting
the inherent synchrony of broadcast networks. Journal of Parallel and Distributed
Computing, 77:26 – 40, 2015.

[25] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceed-
ings of the Third USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), New Orleans, Louisiana, USA, pages 173–186. USENIX Association,
February 1999.

[26] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

[27] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

[28] David Chaum. Surevote: Technical overview. In Proceedings of the Workshop on
Trustworthy Elections, WOTE, Aug. 2001.

[29] David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc,
Alan Sherman, and Poorvi Vora. Scantegrity: End-to-end voter-verifiable optical-scan
voting. Security & Privacy, IEEE, 6(3):40–46, 2008.

[30] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Proceed-
ings of the 12th Annual International Cryptology Conference on Advances in Cryptol-
ogy - CRYPTO ’92, Santa Barbara, California, USA, pages 89–105. Springer-Verlag,
August 1993.

[31] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-verifiable
election scheme. In Proceedings of the 10th European Symposium on Research in
Computer Security - ESORICS 2005, Milan, Italy, pages 118–139. Springer, Septem-
ber 2005.

[32] Nikos Chondros, Alex Delis, Dina Gavatha, Aggelos Kiayias, Charalampos Kouta-
lakis, Ilias Nicolacopoulos, Lampros Paschos, Mema Roussopoulos, Giorge Sotirelis,
Panos Stathopoulos, Pavlos Vasilopoulos, Thomas Zacharias, Bingsheng Zhang, and
Fotis Zygoulis. Electronic voting systems - from theory to implementation. In E-
Democracy, Security, Privacy and Trust in a Digital World, pages 113–122, Dec. 2013.

[33] Nikos Chondros, Konstantinos Kokordelis, and Mema Roussopoulos. On the practi-
cality of practical byzantine fault tolerance. In Proceedings of the ACM/IFIP/USENIX
13th International Middleware Conference (Middleware 2012), Montreal, QC, Canada,
pages 436–455. Springer, December 2012.

[34] Nikos Chondros, Bingsheng Zhang, Thomas Zacharias, Panos Diamantopoulos,
Stathis Maneas, Christos Patsonakis, Alex Delis, Aggelos Kiayias, and Mema Rous-
sopoulos. D-demos: A distributed, end-to-end verifiable, internet voting system. In
Distributed Computing Systems (ICDCS), 2016 IEEE 36th International Conference
on, Jun 2016.

121 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

[35] Nikos Chondros, Bingsheng Zhang, Thomas Zacharias, Panos Diamantopoulos,
Stathis Maneas, Christos Patsonakis, Alex Delis, Aggelos Kiayias, and Mema Rous-
sopoulos. Distributed, end-to-end verifiable, and privacy-preserving internet voting
systems. CoRR, abs/1608.00849, 2016.

[36] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a
secure voting system. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P 2008), Oakland, California, USA, pages 354–368. IEEE Computer Society, May
2008.

[37] Allen Clement, Edmund LWong, Lorenzo Alvisi, Michael Dahlin, andMirco Marchetti.
Making byzantine fault tolerant systems tolerate byzantine faults. In Proceedings of the
6th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2009, Boston, MA, USA, volume 9, pages 153–168. USENIX Association, April 2009.

[38] Netty community. Netty, an asynchronous event-driven network application frame-
work. http://netty.io/, 2015.

[39] PostgreSQL community. Postgresql rdbms. http://www.postgresql.org/, 2015.

[40] Miguel Correia, AlyssonNeves Bessani, and Paulo Veríssimo. On byzantine generals
with alternative plans. Journal of Parallel and Distributed Computing, 68(9):1291–
1296, 2008.

[41] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. From consensus to
atomic broadcast: Time-free byzantine-resistant protocols without signatures. The
Computer Journal, 49(1):82–96, January 2006.

[42] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. Hq replication: A hybrid
quorum protocol for byzantine fault tolerance. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 177–190. USENIX Association,
Nov 2006.

[43] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and opti-
mally efficient multi-authority election scheme. In Proceedings of the International
Conference on the Theory and Application of Cryptographic Techniques, Advances in
Cryptology - EUROCRYPT ’97, Konstanz, Germany, pages 103–118. Springer, May
1997.

[44] Chris Culnane, Peter Y. A. Ryan, Steve Schneider, and Vanessa Teague. vvote:
A verifiable voting system. ACM Transactions on Information and System Security,
18(1):3:1–3:30, June 2015.

[45] Chris Culnane and Steve Schneider. A peered bulletin board for robust use in verifi-
able voting systems. In Proceedings of the IEEE 27th Computer Security Foundations
Symposium (CSF 2014), Vienna, Austria, pages 169–183. IEEE, July 2014.

N. Chondros 122

http://netty.io/
http://www.postgresql.org/

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

[46] P. Diamantopoulos, S. Maneas, C. Patsonakis, N. Chondros, and M. Roussopoulos.
Interactive consistency in practical, mostly-asynchronous systems. In Proceedings of
the IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS
2015), pages 752–759. IEEE, Dec 2015.

[47] Gianluca Dini. A secure and available electronic voting service for a large-scale
distributed system. Future Generation Computer Systems, 19(1):69–85, 2003.

[48] T. Distler and R. Kapitza. Increasing performance in byzantine fault-tolerant systems
with on-demand replica consistency. In Proceedings of the Sixth European conference
on Computer systems, EuroSys 2011, Salzburg, Austria, pages 91–106. ACM, April
2011.

[49] T. Distler, R. Kapitza, I. Popov, H.P. Reiser, and W. Schroder-Preikschat. Spare:
Replicas on hold. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2011, San Diego, California, USA. The Internet Society, February
2011.

[50] D. Dolev and R. Strong. Distributed Commit with Bounded Waiting. 1982.

[51] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism
needed for distributed consensus. Journal of the ACM (JACM), 34(1):77–97, January
1987.

[52] Assia Doudou and André Schiper. Muteness detectors for consensus with byzantine
processes. In Proceedings of the Seventeenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’98, Puerto Vallarta, Mexico. ACM, June 1998.

[53] Taher El Gamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In Proceedings of Advances in Cryptology (CRYPTO ’84), Santa
Barbara, California, USA, pages 10–18. Springer, August 1984.

[54] Taher El Gamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[55] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal
of Cryptology, 1(2):77–94, 1988.

[56] Michael J Fischer. The consensus problem in unreliable distributed systems (a brief
survey). In FCT, 1983.

[57] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–
382, April 1985.

[58] K. Fisher, R. Carback, and A. Sherman. Punchscan: introduction and system defini-
tion of a high-integrity election system. In IAVoSSWorkshop On Trustworthy Elections
(WOTE 2006), Cambridge, United Kingdom, June 2006.

123 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

[59] R. Garcia, R. Rodrigues, and N. Preguica. Efficient middleware for byzantine fault tol-
erant database replication. In Proceedings of the Sixth European conference on Com-
puter systems, EuroSys 2011, Salzburg, Austria, pages 107–122. ACM, April 2011.

[60] Adria Gascón and Ashish Tiwari. A synthesized algorithm for interactive consistency.
In Proceedings of the 6th NASA International Symposium on Formal Methods, NFM
2014, Houston, TX, USA, pages 270–284. Springer, April 2014.

[61] Kristian Gjøsteen. The norwegian internet voting protocol. IACR Cryptology ePrint
Archive, 2013:473, 2013.

[62] Ilya Grigorik. High performance browser networking: What every web devel-
oper should know about networking and web performance. http://chimera.labs.
oreilly.com/books/1230000000545/ch01.html#PROPAGATION_LATENCY, 2013.

[63] R. Guerraoui, N. Knezevic, V. Quema, and M. Vukolic. The next 700 bft protocols. In
Proceedings of the 5th European conference on Computer systems, EuroSys 2010,
Paris, France, pages 363–376. ACM, April 2010.

[64] Rachid Guerraoui and Petr Kouznetsov. On the weakest failure detector for non-
blocking atomic commit. In Foundations of Information Technology in the Era of Net-
working and Mobile Computing, IFIP 17th World Computer Congress - TC1 Stream
/ 2nd IFIP International Conference on Theoretical Computer Science (TCS 2002),
August 25-30, 2002, Montréal, Québec, Canada, pages 461–473. Springer, August
2002.

[65] Rachid Guerraoui and Andre Schiper. Consensus: the big misunderstanding. In
FTDCS, 1997.

[66] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical Report, 1994.

[67] J.-M. Hélary, M. Hurfin, A. Mostefaoui, M. Raynal, and F. Tronel. Computing global
functions in asynchronous distributed systems with perfect failure detectors. IEEE
Transactions on Parallel and Distributed Systems, 11(9):897–909, September 2000.

[68] Stephen Hemminger et al. Network emulation with netem. In Linux Conference
Australia (linux.conf.au lca2005), Canberra, Australia, pages 18–23, April 2005.

[69] Google Inc. Google protocol buffers. https://code.google.com/p/protobuf/, 2015.

[70] Internet Policy Institute, University of Maryland, and College Park. Report of the
National Workshop on Internet Voting: issues and research agenda. Internet Policy
Institute, March 2001.

[71] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally com-
posable synchronous computation. In Theory of cryptography (TCC), pages 477–498.
Springer, 2013.

N. Chondros 124

http://chimera.labs.oreilly.com/books/1230000000545/ch01.html#PROPAGATION_LATENCY
http://chimera.labs.oreilly.com/books/1230000000545/ch01.html#PROPAGATION_LATENCY
https://code.google.com/p/protobuf/

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

[72] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifiable
elections in the standard model. In Proceedings of the 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Advances
in Cryptology - EUROCRYPT 2015, Sofia, Bulgaria, pages 468–498. Springer, April
2015.

[73] Kim Potter Kihlstrom, Louise E Moser, and P Michael Melliar-Smith. Byzantine fault
detectors for solving consensus. The Computer Journal, 46(1):16–35, 2003.

[74] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative byzan-
tine fault tolerance. InProceedings of the 21st ACMSymposium onOperating Systems
Principles 2007, SOSP 2007, Stevenson, Washington, USA, pages 45–58. ACM, Oct
2007.

[75] R. Kotla and M. Dahlin. High throughput byzantine fault tolerance. In Proceedings
of the International Conference on Dependable Systems and Networks (DSN 2004),
Florence, Italy, pages 575–584. IEEE Computer Society, June 2004.

[76] Miroslaw Kutylowski and Filip Zagórski. Scratch, click & vote: E2E voting over the
internet. In Towards Trustworthy Elections, NewDirections in Electronic Voting, volume
6000 of Lecture Notes in Computer Science, pages 343–356. Springer, 2010.

[77] Antti Laisi. Asynchronous postgresql java driver. https://github.com/alaisi/
postgres-async-driver/, 2015.

[78] Jaynarayan H Lala. A byzantine resilient fault tolerant computer for nuclear power
plant applications. In FTCS 16th annual international symposium on fault-tolerant com-
puting systems (Digest of papers). IEEE, July 1986.

[79] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,
July 1982.

[80] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems
(TOCS), 16(2):133–169, 1998.

[81] Leslie Lamport. Byzantizing paxos by refinement. In Proceedings of the 25th In-
ternational Symposium on Distributed Computing (DISC 2011), Rome, Italy, pages
211–224. Springer, September 2011.

[82] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[83] Butler Lampson. The ABCD’s of paxos. In Proceedings of the Twentieth Annual ACM
Symposium on Principles of Distributed Computing, PODC 2001, Newport, Rhode
Island, USA, page 13. ACM, August 2001.

[84] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. Eventually consistent failure
detectors. Journal of Parallel and Distributed Computing, 65:361–373, 2005.

125 N. Chondros

https://github.com/alaisi/postgres-async-driver/
https://github.com/alaisi/postgres-async-driver/

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

[85] Patrick Lincoln and John Rushby. Formal verification of an interactive consistency
algorithm for the draper FTP architecture under a hybrid fault model. In Proceedings
of the Ninth Annual Conference on Computer Assurance, 1994. COMPASS’94 Safety,
Reliability, Fault Tolerance, Concurrency and Real Time, Security, Gaithersburg, MD,
USA, pages 107–120. IEEE, June 1994.

[86] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[87] Stathis Maneas. Implementation and evaluation of a distributed, end-to-end verifi-
able, internet voting system. Msc. thesis, University of Athens, May 2015.

[88] Jean-Philippe Martin and Lorenzo Alvisi. Fast byzantine paxos. In Proceedings of the
International Conference on Dependable Systems and Networks (DSN 2005), Yoko-
hama, Japan, pages 402–411. IEEE Computer Society, June 2004.

[89] M.G. Merideth, A. Iyengar, T.A. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan.
Thema: Byzantine-fault-tolerant middleware for web-service applications. In Proceed-
ings of the 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05), pages
131–140. IEEE, October 2005.

[90] Zarko Milosevic, Martin Hutle, and André Schiper. Unifying byzantine consensus
algorithms with weak interactive consistency. In Principles of Distributed Systems,
pages 300–314. Springer, 2009.

[91] MIRACL. Miracl multi-precision integer and rational arithmetic c/c++ library. http:
//www.certivox.com/miracl/, 2015.

[92] Tal Moran and Moni Naor. Split-ballot voting: Everlasting privacy with distributed
trust. ACMTransactions on Information and SystemSecurity, 13(2):16:1–16:43, March
2010.

[93] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asyn-
chronous byzantine consensus with t < n/3 and o(n2) messages. In ACM Symposium
on Principles of Distributed Computing, PODC ’14, Paris, France, pages 2–9. ACM,
July 2014.

[94] P.G. Neumann. Security criteria for electronic voting. In Proceedings of the 16th
National Computer Security Conference, Baltimore, Maryland, USA, pages 478–481.
National Institute of Standards and Technology (NIST), September 1993.

[95] Nuno Ferreira Neves, Miguel Correia, and Paulo Veríssimo. Solving vector consen-
sus with a wormhole. IEEE Transactions on Parallel and Distributed Systems (TPDS),
16(12):1120–1131, 2005.

[96] Brian M Oki and Barbara H Liskov. Viewstamped replication: A new primary copy
method to support highly-available distributed systems. In Proceedings of the seventh
annual ACM Symposium on Principles of distributed computing, PODC’88, Toronoto,
ON, Canada, pages 8–17. ACM, August 1988.

N. Chondros 126

http://www.certivox.com/miracl/
http://www.certivox.com/miracl/

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

[97] Sajeeva L. Pallemulle, Haraldur D. Thorvaldsson, and Kenneth J. Goldman. Byzan-
tine fault-tolerant web services for n-tier and service oriented architectures. In 28th
IEEE International Conference on Distributed Computing Systems (ICDCS 2008), Bei-
jing, China, pages 260–268. IEEE Computer Society, June 2008.

[98] Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Asynchronous byzantine
agreement with optimal resilience. Distributed Computing, 27(2):111–146, 2014.

[99] Arpita Patra and C. Pandu Rangan. Communication optimal multi-valued asyn-
chronous byzantine agreement with optimal resilience. In Proceedings of the 5th In-
ternational Conference on Information Theoretic Security - ICITS 2011, Amsterdam,
The Netherlands, pages 206–226. Springer, May 2011.

[100] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM (JACM), 27(2):228–234, April 1980.

[101] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In Proceedings of the 11th Annual International Cryptology Conference,
Advances in Cryptology - CRYPTO ’91, Santa Barbara, California, USA, pages 129–
140. Springer, August 1991.

[102] André Postma and Thijs Krol. Interactive consistency in quasi-asynchronous sys-
tems. In Proceedings of the Second IEEE International Conference on Engineering of
Complex Computer Systems, Montrealm Quebec, Canada, pages 2–9. IEEE, October
1996.

[103] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël
Quisquater, Louis Guillou, Marie Guillou, Gaïd Guillou, Anna Guillou, Gwenolé Guil-
lou, and Soazig Guillou. How to explain zero-knowledge protocols to your children. In
Proceedings of Advances in Cryptology-CRYPTO’89, Santa Barbara, California, USA,
pages 628–631. Springer, August 1990.

[104] Michael K Reiter. Secure agreement protocols: Reliable and atomic group multicast
in rampart. In Proceedings of the 2nd ACM Conference on Computer and Communi-
cations Security, Fairfax, VA, USA, pages 68–80. ACM, November 1994.

[105] Bruce Schneier. Applied cryptography. John Wiley & Sons, 1996.

[106] S. Sen, W. Lloyed, and M. Freedman. Prophecy: Using history for high-throughput
fault tolerance. In Proceedings of the 7th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2010, San Jose, California, USA, pages 345–360.
USENIX Association, April 2010.

[107] Philip M. Thambidurai and You-Keun Park. Interactive consistency with multiple
failure modes. In Proceedings of the Seventh Symposium on Reliable Distributed
Systems - SRDS 1988, Columbus, OH, USA, pages 93–100. IEEE, October 1988.

127 N. Chondros

Byzantine fault-tolerant vote collection for D-DEMOS, a distributed e-voting system

[108] Tim Tiemens. Shamir’s secret share in java. https://github.com/timtiemens/
secretshare, 2015.

[109] Sam Toueg. Randomized byzantine agreements. In Proceedings of the third annual
ACM symposium on Principles of distributed computing, Vancouver, Canada, pages
163–178. ACM, 1984.

[110] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tolerating byzantine faults
in transaction processing systems using commit barrier scheduling. In Proceedings of
the 21st ACM Symposium on Operating Systems Principles (SOSP ’07), Stevenson,
WA, USA, pages 59–72. ACM, October 2007.

[111] Shun-Sheng Wang, Kuo-Qin Yan, and Shu-Ching Wang. Achieving efficient agree-
ment within a dual-failure cloud-computing environment. Expert Systems with Appli-
cations, 38(1):906–915, 2011.

[112] Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and Em-
manuel Cecchet. ZZ and the art of practical BFT execution. In Proceedings of the
Sixth European Conference on Computer Systems, EuroSys 2011, Salzburg, Austria,
pages 123–138. ACM, April 2011.

[113] Weigang Wu, Jiannong Cao, Jin Yang, and Michel Raynal. Using asynchrony and
zero degradation to speed up indulgent consensus protocols. Journal of Parallel and
Distributed Computing, 68(7):984 – 996, 2008.

[114] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Michael
Dahlin. Separating agreement from execution for byzantine fault tolerant services.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles 2003,
SOSP 2003, Bolton Landing, NY, USA, pages 253–267. ACM, October 2003.

[115] Filip Zagórski, Richard T Carback, David Chaum, Jeremy Clark, Aleksander Essex,
and Poorvi L Vora. Remotegrity: Design and use of an end-to-end verifiable remote
voting system. In Proceedings of the 11th International Conference on Applied Cryp-
tography and Network Security, ACNS 2013, Banff, AB, Canada, pages 441–457.
Springer, June 2013.

N. Chondros 128

https://github.com/timtiemens/secretshare
https://github.com/timtiemens/secretshare

	CONTENTS
	INTRODUCTION
	Introduction to this thesis
	Description of DEMOS
	Overview
	Properties of centralized DEMOS
	Drawbacks in centralized DEMOS design

	BACKGROUND
	Voting Systems requirements
	Consensus, Agreement, Interactive Consistency
	Cryptographic tools
	Additively homomorphic commitments
	Zero-knowledge Proofs

	D-DEMOS Overview
	Problem Definition and Goals
	System overview

	SYSTEM DESCRIPTION
	System model
	Extracting vote collection from the EA
	Election Authority (EA)
	Voter Ballots
	BB initialization data
	VC initialization data
	Trustee initialization data

	Vote Collection Subsystem
	Voter algorithm
	Synchronous VC subsystem
	System description
	Proofs
	Liveness
	Liveness of the voting algorithm.
	Liveness of the vote set consensus algorithm.

	Safety
	Safety of the voting algorithm.
	Safety of the vote set consensus algorithm.

	Safety threshold
	Receipt generation time formula.
	Safety threshold formula.

	Asynchronous VC subsystem
	System description
	Proofs
	Liveness
	Liveness of the voting algorithm.
	Liveness of the vote set consensus algorithm.

	Safety
	Safety of the voting algorithm.
	Safety of the vote set consensus algorithm.

	Safety threshold
	Receipt generation time formula.
	Safety threshold formula.

	Remaining D-DEMOS system components
	Bulletin Board
	Trustees
	Auditors

	DISCUSSION
	Why not State Machine Replication for VC
	Potential attacks
	Malicious Election Authority Component
	Malicious Voter
	Malicious Vote Collector

	IMPLEMENTATION
	Infrastructure
	D-DEMOS Election Authority
	VC node
	Voting
	Vote Set Consensus

	EVALUATION
	RELATED WORK
	Voting systems
	Consensus, Agreement, Interactive Consistency
	State Machine Replication

	CONCLUSIONS AND FUTURE WORK
	Conclusion and future work

	ABBREVIATIONS - ACRONYMS
	APPENDICES
	Achieving Interactive Consistency in mostly-asynchronous systems
	System Model
	Practical Interactive Consistency
	Adapting approaches from synchronous systems
	Solution using Multi-Valued Consensus
	Solution using Binary Consensus

	REFERENCES

