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ΠΕΡΙΛΗΨΗ

Ένα γράφημα G καλείται k-κυκλώσιμο, αν για κάθε k από τις κορυφές
του υπάρχει ένας κύκλος στο G που τις περιέχει. Η κυκλωσιμότητα ενός
γραφήματοςG είναι ο μέγιστος ακέραιος k για τον οποίο τοG είναι k-κυκλώσιμο
και είναι μία παράμετρος που σχετίζεται με τη συνεκτικότητα. Σε αυτή τη
διδακτορική διατριβή μελετάμε, κυρίως από τη σκοπιά της Παραμετρικής Πολυ-
πλοκότητας, το πρόβλημα ΚΥΚΛΩΣΙΜΟΤΗΤΑ: Δεδομένου ενός γραφήματος
G = (V,E) και ενός μη αρνητικού ακεραίου k (η παράμετρος), να αποφασιστεί
αν η κυκλωσιμότητα του G είναι ίση με k.

Το πρώτο μας αποτέλεσμα είναι αρνητικό και δείχνει ότι η ύπαρξη ενός
FPT-αλγορίθμου για την επίλυση του προβλήματος ΚΥΚΛΩΣΙΜΟΤΗΤΑ είναι
απίθανη (εκτός αν FPT = co-W[1], το οποίο θεωρείται απίθανο). Πιο συγκεκριμέ-
να, αποδεικνύουμε ότι το πρόβλημα ΚΥΚΛΩΣΙΜΟΤΗΤΑ είναι co-W[1]-δύσκολο,
ακόμα και αν περιορίσουμε την είσοδο στο να είναι χωριζόμενο γράφημα.

Από την άλλη, δίνουμε έναν FPT-αλγόριθμο για το ίδιο πρόβλημα περι-
ορισμένο στην κλάση των επίπεδων γραφημάτων. Για να το πετύχουμε αυτό
αποδεικνύουμε μια σειρά από συνδυαστικά αποτελέσματα σχετικά με την
κυκλωσιμότητα και εφαρμόζουμε μια εκδοχή δύο βημάτων της περίφημης τεχνι-
κής
της
άσχετης
κορυφής, που εισήχθη από τους Robertson και Seymour στη
σειρά εργασιών τους για Ελλάσονα Γραφήματα, ως ένα κρίσιμο συστατικό του
αλγορίθμου τους για την επίλυση του προβλήματος των ΔΙΑΚΕΚΡΙΜΕΝΩΝ
ΜΟΝΟΠΑΤΙΩΝ. Για να αποδείξουμε την ορθότητα του αλγορίθμου μας εισάγου-



με έννοιες, όπως αυτή των ζωτικών κυκλικών συνδέσμων, και αποδεικνύουμε
αποτελέσματα με ανεξάρτητου γραφοθεωρητικού ενδιαφέροντος.

Κλείνουμε τη μελέτη μας με ένα δεύτερο αρνητικό αποτέλεσμα: Αποδεικνύ-
ουμε ότι για το πρόβλημα της ΚΥΚΛΩΣΙΜΟΤΗΤΑΣ δεν υπάρχουν πολυωνυμικοί
πυρήνες, ακόμα και αν περιοριστούμε σε κυβικά επίπεδα γραφήματα, εκτός
και αν δεν ισχύει μια υπόθεση της κλασσικής Θεωρίας Πολυπλοκότητας (ότι
NP ⊆ co-NP/poly).



ABSTRACT

A graph G is called k-cyclable, if for every k of its vertices there exists a
cycle in G that contains them. The cyclability of G is the maximum integer k
for which G is k-cyclable and it is a connectivity related graph parameter. In
this doctoral thesis we study, mainly from the Parameterized Complexity point
of view, the Cyclability problem: Given a graph G = (V,E) and an integer k
(the parameter), decide whether the cyclability of G is equal to k.

Our first result is a negative one and shows that the existence of an FPT-
algorithm for solving Cyclability is unlikely (unless FPT = co-W[1], which is
considered unlikely). More specifically, we prove that Cyclability is co-W[1]-
hard, even if we restrict the input to be a split graph.

On the other hand, we give an FPT-algorithm for the same problem when
restricted to the class of planar graphs. To do this, we prove a series of com-
binatorial results regarding cyclability and apply a two-step version of the so
called irrelevant
vertex
 technique, which was introduced by Robertson and
Seymour in their Graph Minors series ([83]) as a crucial ingredient for their al-
gorithm solving the Disjoint Paths problem. To prove the correctness of our
algorithm, we introduce notions, like the one of vital cyclic linkages, and give
results of independent graph-theoretic interest.

We conclude our study with a negative result: We prove that Cyclability ad-
mits no polynomial kernel, even when restricted to cubic planar graphs, unless
a classical complexity theoretic assumption (that NP ⊆ co-NP/poly) fails.
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CHAPTER1
INTRODUCTION

1.1 Connectivity
In this first chapter, we give a brief outline of our work by discussing the

main notions and problems involved and by presenting some past research.
This chapter addresses the reader that is already familiar with some basic con-
cepts of graph theory and parameterized complexity. The reader that is ex-
posed to some of the notions for the first time is advised to quickly go through
this introduction and return for a second read after having studied Chapter 2.

Undoubtedly, one of the most important pieces of information that some-
one would like to extract "easily" from a given graph G, is whether two specific
vertices communicate, i.e., if two given are joined by a path in G. Fortunately,
this problem which is widely known as

Reachability
Input: A graph G = (V,E) and two distinct vertices s, t ∈ V .
Question: Is there a path in G with endpoints s and t?

can be solved "easily" (in polynomial time) using several well-known algo-
rithms, such as BFS and DFS, which can be found in any introductory book

1



1.1. CONNECTIVITY

about algorithms (for example see [24] and [61]). As a result, the problem of
deciding whether any two vertices of a graph communicate, more precisely

Connectivity
Input: A graph G = (V,E).
Question: Is it true that for any two vertices in V , there is a path with
these vertices as endpoints?

can also be solved in polynomial time by several algorithms. But why is Con-
nectivity an important problem? Let us mention some examples:

• Suppose that G = (V,E) represents a communication network N , where
each node in V works both as a transmitter and as a receiver, and for any
v, u ∈ V it holds that {v, u} ∈ E if and only if there is a communication
channel between v and u in the network. Clearly, it is crucial to know
whether a piece of information can be made available to every node, if
it is initially announced to a single node and then is successively trans-
mitted using the channels of the network. The answer to the previous
question is exactly the answer for the Connectivity problem, when the
given graph is the one that represents the communication network N .

• Imagine the previous example, where now the elements of E represents
a tube and each node in V represents a tank. We start by pumping
water into a tank. When a tank is full, it starts channeling the water that
it receives to all other tanks connected with it by a tube. The flow of
water stops when there is some tank that is full and all its neighbouring
tanks (connected with it via a tube) are also full. Can we know if all tanks
are full at the time when the flow stops? It is not hard to confirm that we
can, if we know whether the underlying graph of our tank/tube system
is connected.

• Suppose that we have the communication network of the first exam-
ple but we additionally know that a node (can be any member of V ) is
corrupted, meaning that it receives messages but it does not transmit
anything to its neighbours. Can we be sure that a message, initially
transmitted to one of the non-corrupted nodes, will be received by all
the nodes of the network? This question is equivalent to asking whether

2



CHAPTER
1. INTRODUCTION

the underlying graph of our communication networks is 2-connected (we
will formally define k-connectivity in Chapter 2).

In the opening paragraph of his book Extremal
Graph
Theory, Béla Bollobás
notes: "Perhaps
the
most
basic
property
a
graph
may
posses
is
that
of
being
connected. At
a
more
refined
level, there
are
various
functions
that
may
be
said
to
measure
the
connectedness
of
a
connected
graph."
As we have already tried to illustrate with the previous three examples, it
seems that connectivity is a really important property for a graph. This is why
researchers have been studying variants of connectivity or other properties
that seem relevant to it. From the viewpoint of combinatorics there are many
known results but the algorithmic properties of most connectivity measures
remain fairly unexplored. In this thesis we study, mainly from an algorithmic
point of view, a connectivity related graph parameter, namely cyclability.

Cyclability. For a positive integer k, a graph G is k-cyclable if every k vertices
of G lie on a common cycle; we assume that any graph is 1-cyclable trivially.
The cyclability of a graph G, introduced by Chvátal in [17], is the maximum
integer k for which G is k-cyclable. Clearly, a graph G is Hamiltonian if and
only if its cyclability equals |V (G)|. Therefore, we can think of cyclability as a
quantitive measure of Hamiltonicity or a tuning parameter between connec-
tivity and Hamiltonicity. Cyclability is a well studied parameter in the graph
theory literature. We give some references:

• Dirac proved that the cyclability of a k-connected graph is at least k, for
k ≥ 2 [30].

• Watkins and Mesner ([92]) characterized the extremal graphs for the the-
orem of Dirac.

• There is a variant of cyclability restricted only to a set of vertices of a
graph. Generalizing the theorem of Dirac, Flandrin et al. ([40]) proved
that if a set of vertices S in a graph G is k-connected, then there is a
cycle in G through any k vertices of S. (A set of vertices S is k-connected
in G if a pair of vertices in S cannot be separated by removing at most
k − 1 vertices of G.)
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1.1. CONNECTIVITY

• Another avenue of research is lower-bounds on cyclability of graphs in
restricted families

– Every k-connected and K1,4-free graph has cyclability at least 2k
([41]).

– Every 3-connected claw-free graph has cyclability at least 6 ([77]).

– Every 3-connected planar graph has cyclability at least 23 ([4]).

– Every 3-connected and cubic planar graph has cyclability at least
9 ([54]) and the bound is tight (consider, for example, the Petersen
graph).

• A graph G is hypohamiltonian if it is not Hamiltonian but all graphs ob-
tained from G by deleting one vertex are. Clearly, a graph G is hypo-
hamiltonian if and only if its cyclability equals |V (G)| − 1. Hypohamilto-
nian graphs appear in combinatorial optimization and are used to define
facets of the traveling salesman polytope [52]. Curiously, the computa-
tional complexity of deciding whether a graph is hypohamiltonian seems
to be open.

Although cyclability has been extensively studied as a graph parameter, it
has not been studied (to our knowledge) algorithmically so far: There are no
known (non-trivial) algorithms for computing the cyclability of a given graph
and there are no results about the computational complexity of Cyclability. In
this thesis we initiate this study. For this, we consider the following problem.

Cyclability
Input: A graph G and a non-negative integer k.
Question: Is every k-vertex set S in G cyclable, i.e., is there a
cycle C in G such that S ⊆ V (C)?

We postpone the formal description of our results until subsection 1.3 and
proceed with a brief discussion of the ideas and results of the Graph Minors
series, focusing on the techniques that are of great importance for our study.
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1.2 Graph
Minors
In this subsection we discuss some parts of, probably, the most influen-

tial bodies of work in modern Combinatorics, the Graph
Minor
series of Neil
Robertson and Paul Seymour. In their work, which is comprised of 23 pa-
pers published between 1983 and 2011, they managed to prove the Wagner's
conjecture (nowadays known as the Robertson-Seymour
theorem).

More specifically, they proved that the class of undirected graphs partially
ordered by the minor relationship forms a well-quasi-ordering (for every infinite
sequence of graphs there exists two such that on is a minor of the other). An
immediate consequence of this, which has important algorithmic applications,
is that every graph family closed under minors can be characterized by a set
of forbidden minors, the obstruction
set (a graph G belongs to the class if and
only if it contains no member of the obstruction set as a minor).

Unfortunately, their proof is not constructive (and was proved later that
no constructive proof exists [39]) and therefore we cannot hope for an algo-
rithm that, given a minor-closed family of graphs produces the corresponding
obstruction set. On the positive side, Robertson and Seymour also gave a
polynomial time algorithm for checking whether a fixed graph H (whose size
is considered as a parameter) is a minor of a given graph G, or more specifi-
cally they proved that for every fixed graph H there is an O(n3) time algorithm
for solving the following problem

H-Minor Containment
Input: A graph G.
Question: Is some minor of G isomorphic to H?

Looking at the problem from the parameterized complexity point of view
we can rephrase their result: The
problem
of
checking
whether
a
graph H is
contained
as
a
minor
in
a
graph G is
in FPT,
when
parameterized
by
the
size
of H.

Although the systematic study of Parameterized Complexity theory did not
start until the early 90s, the results of the Graph Minors series already con-
tained fruitful ideas, algorithms, and important results which have been re-
visited over and over and today are part of every book on computers and
algorithms. In fact, it can be argued that the notions and ideas introduced in
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the series played an equally crucial role to the development of the theory as
the results themselves.

The Robertson-Seymour theorem combined with the FPT-algorithm for the
H-Minor Containment problem provide a "recipe" for designing FPT-algorithms
for deciding minor-closed properties for graphs:

Given
a
minor-closed
graph
property π and
a
graph G, explicitly
compute
the
corresponding
obstruction
setO(π) and
check
for
everyH ∈ O(π)whether
it
is
contained
as
a
minor
in G. If
all
the
answers
are
negative, then
graph G

satisfies
property π, otherwise
it
does
not.
Actually, the same strategy can also work for immersion-closed graph

classes as a result of the following two theorems from Robertson and Sey-
mour (in the last paper of the Graph Minors series which resolves a conjecture
of Nash Williams), and Gröhe, Kawarabayasi, Marx, and Wollan. Although
we will not concern ourselves with immersions in this thesis, we mention the
results:

Theorem 1.2.1 (Robertson and Seymour [84]). The
class
of
all
finite
graphs
is
well-quasi-ordered
by
the
immersion
relation.

Theorem 1.2.2 (Gröhe, Kawarabayasi, Marx, and Wollan [50]). The
problem
of
checking
whether
a
graph H is
contained
as
an
immersion
(or
topological
minor)
in
a
graph G is
in
FPT when
parameterized
by
the
size
of H.

We will focus on a specific technique, the so called irrelevant
vertex
tech-
nique, that was introduced in the Graph Minors series as a crucial component
for studying the fundamental problem of deciding whether a given graph con-
tains vertex-disjoint paths with certain (given as an input) endpoints. More
precisely, Robertson and Seymour studied the following problem

Disjoint Paths
Input: A graph G and pairs (s1, t1), . . . , (sk, tk) of vertices of G
Question: Do there exist paths P1, . . . , Pk in G that are mutually vertex
disjoint and such that Pi joins si and ti, i ∈ {1, . . . , k}?

The pairs (s1, t1), . . . , (sk, tk) of vertices that we want to link are also called
terminals. It is known that Disjoint Paths is NP-complete, along with its edge-
disjoint and directed variants, even when restricted to the class of planar
graphs ([66, 69, 91]).
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Robertson and Seymour gave an algorithm that solves the Disjoint Paths
problem in f(k)·n3 steps (later the dependance on nwas improved to quadratic
in [57]), which means that the problem is fixed parameter tractable when pa-
rameterized by the number, k, of the requested paths.

Although they dealt with the problem in the 13th paper of the series ([80]),
the proof was completed only after the 22th paper ([83]) which was published
in 2012. The, crucial, missing part was the analysis of the so called irrelevant-
vertex
technique, which has be widely used ever since for studying various
combinatorial problems (see for example [25], [26], [49], [56], [58], and [59]).

The
Robertson-Seymour
Algorithm. The algorithm of Robertson and Sey-
mour for solving the Disjoint Paths problem, strongly relies on the irrelevant
vertex technique. We demonstrate this by giving an outline of the algorithm.
Clearly, any graph either has bounded (by some function of k) treewidth or it
has "large" treewidth.

Case
1. The treewidth of G is bounded. In this case there are standard dynamic
programming arguments for solving the problem, given a tree decom-
position of bounded width.

Case
2. The treewidth of G is large.

Subcase
1. There exists a large clique minor in G. If there exist disjoint paths
from the terminals to the clique minor, then we can exploit the fact
that any two vertices of a clique are connected and link up the ter-
minals in any way we want.
If this is not the case, then the clique minor is, in a sense, cut off
from the terminals, and in it can be proved that some vertex v of
the clique minor is irrelevant, meaning that there exists a solution
for the problem in G if and only if there exists a solution in G \ {v}.

Subcase
2. There is no large clique minor in G. It can be proved that, after delet-
ing a bounded number vertices, we end up with a large subgraph,
that can be considered flat, of large treewidth. This means that the
subgraph contains a large grid minor or a subgraph that spreads in
two dimensions, called a wall. It can be proved that there exists a
"central" vertex of the wall that is irrelevant.

7
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Having analysed all the cases, the algorithm is simple: Iteratively delete
irrelevant vertices (either due to Subcase 1 or to Subcase 2) until the reduced
graph has bounded treewidth, at which point Case 1 applies. For a visualiza-
tion of the operation of the Robertson-Seymour algorithm see Figure 1.1.

However, it is the last subcase which requires almost all the main results
of the Graph Minors series for its analysis. The use of such "heavy" struc-
ture theorems, results to the algorithm having an immense running time (due
to the constants hidden in f(k)), making it practically inapplicable to actual
problems. Another proof that is much shorter and bypasses the involved
graph structure theorem of [81] was given by Kawarabayashi and Wollan in
[60], where they managed to prove an upper bound with f(k) being of mag-

nitude 22
22

Ω(k)

. Unfortunately, the dependence on the parameter is still huge
and renders the algorithm inefficient even for small values of k.

Another route is to try to obtain similar results for restricted graph classes.
A decisive step to this direction was made by Adler, Kolliopoulos, Krause,
Lokshtanov, Saurabh, and Thilikos in [3], where they proved that f(k) can be
just single exponential on k when the input is restricted to be a planar graph.
Note that planar graphs already exclude large clique minors (they exclude Kn

for any n ≥ 5) and the task is to prove that any, large enough, grid minor
contains an irrelevant vertex. As we have already pointed out, this is not an
easy task (it is one of the most deep results in the Graph Minor series) but the
structure of planar graphs proves to be helpful.

1.3 The
results
of
this
thesis

We are now ready to talk about the main contributions of this thesis. We
will present and discuss our results one by one and give an overview of the
underlying ideas and techniques. Some familiarity with classical and param-
eterized complexity is assumed (the reader can always return to this section
after studying Chapter 2, where all necessary definitions are given).

From the classical complexity point of view, determining the cyclability of
a graph is a computationally hard problem as it is easy to see that Cyclability
with k = |V (G)| is Hamiltonicity and Hamiltonicity is NP-complete even for
planar cubic graphs ([46]). Hence, we have the following.
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G

large clique C?

tw(G) small tw(G) large

NO YES

YES NO

G = G \ {v}

G = G \ {v}

large wall W

dp

solution paths on C?

irrelevant vertex
in W

use edges of
clique C

irrelevant vertex
in C

solution

Figure 1.1: Observe that the solution can be obtained in two ways: Either by
deploying a dynamic programming routine on a graph with small treewidth
or by exploiting the fact that the paths intersect a big clique (described in
Subcase 1). The algorithm also iterates in two ways: Either after deleting an
irrelevant vertex located in a big clique (Subcase 1) or by deleting an irrelevant
vertex in an "almost flat" subgraph (Subcase 2).

Proposition 1.3.1. Cyclability is NP-hard
for
cubic
planar
graphs.

As cyclability can be thought of as a tuning parameter between connec-
tivity and hamiltonicity, it is interesting to study it from a parameterized com-
plexity point of view. In this thesis we treat the cyclability k of the input graph
as a parameter and when we mention Cyclability problem we will distinguish
between the standard problem and the parameterized one, unless it is un-
clear from the context. Before stating our results we briefly go through some
notions regarding parameterized complexity.
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Parameterized
complexity. A parameterized
problem is a language L ⊆
Σ∗×N, where Σ is a finite alphabet. The instances of a parameterized problem
are pairs (I, k), where I ⊆ Σ∗ is the main part and k ∈ N is the parameterized
part. Parameterized Complexity settles the question of whether a parame-
terized problem is solvable by an algorithm (we call it FPT-algorithm) of time
complexity f(k) · |I|O(1) where f(k) is a function that does not depend on |I|.
If such an algorithm exists, we say that the parameterized problem belongs to
the class FPT.

In a series of fundamental papers (see [33, 32, 34, 35]), Downey and Fel-
lows defined a series of complexity classes, such as W[1] ⊆ W[2] ⊆ · · · ⊆
W[SAT ] ⊆ W[P ] ⊆ XP and proposed special types of reductions such that
hardness for some of the above classes makes it rather impossible that a
problem belongs to FPT (we stress that FPT ⊆ W[1]). We mention that XP
is the class of parameterized problems such that there is an algorithm that
solves them in time O(|I|f(k)), for some function f (that does not depend on
|I|) and every k.

More notions of Parameterized Complexity are discussed in Section 2.2 of
Chapter 2. We also refer the reader to [22] (see also [31], [42], and [73]).

Algorithm
for Cyclability. In this thesis we deal with the parameterized com-
plexity of Cyclability when parameterized by k. It is easy to see that Cyclability
is in XP:

For a graph G, we can check all possible
(
n
k

)
subsets X of V (G) of size

k. For each subset X, we consider k! orderings of its vertices, and for each
sequence of k vertices x1, . . . , xk of X, we use the main algorithmic result of
Robertson and Seymour in [80], to check whether there are k disjoint paths
that join xi−1 and xi for i ∈ {1, . . . , k} assuming that x0 = xk. We return a
yes-answer if and only if we can obtain the required disjoint paths for each
set X, for some ordering.

Thus, the running time of the previous algorithm is
(
n
k

)
·k! · t(n), where t(n)

is the running time for the Robertson-Seymour algorithm on a n-vertex graph.
This gives an O(f(k) ·nk+3) algorithm for solving Cyclability. This algorithm is
clearly inefficient: Not only the value of the parameter appears as an exponent
of n, but also the dependance of f on k is huge.

The first attempt to brute force towards a solution is not very successful.
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Can we try something more sophisticated? Is it possible that Cyclability is
FPT when parameterized by k?

In this thesis we investigate the parameterized complexity of the Cyclability
problem. In the remaining of this Chapter we present our results along with
some brief discussion for each of them.

1.3.1 Hardness

The first thing one usually tries is either to design an FPT algorithm for the
problem of interest or demonstrate that the existence of such an algorithm is
unlikely. Our first result is that an FPT-algorithm for Cyclability is rather unlikely
as the problem is co-W[1]-hard even when restricted to split graphs, where a
split graph is any graph G whose vertex set can be partitioned into two sets
A and B such that G[A] is a complete graph and G[B] is an edgeless graph.
Specifically the following theorem is proved in Chapter 6:

Theorem 1.3.1. It
 is W[1]-hard
to
decide
for
a
split
graph G and
a
positive
integer k,whetherG has k vertices
such
that
there
is
no
cycle
inG that
contains
these k vertices, when
the
problem
is
parameterized
by k.

This theorem states that the complementary problem of Cyclability, i.e., the
problem of deciding if a given graph G contains k vertices such that no cycle
in G contains them all, is hard (unless FPT = W[1]) when parameterized by
k. In fact it is hard even for a class of graphs with relatively simple structure,
the class of split graphs (graphs that can be partitioned into a clique and an
independent set). In other words, the problem of refuting that a graph is k-
cyclable is hard when parameterized by k. This of course implies that the
problem of interest, Cyclability, is co-W[1]-hard even for split graphs, when
parameterized by k.

The proof (which is presented in detail in Chapter 6) is a (parameterized)
reduction of the natural parameterization of the Clique problem (given a graph
G and a positive integer k decide whether G contains a clique of size k) to the
complement of Cyclability.

This result suggests that (efficiently) solving the Cyclability problem in its
full generality is unlikely. Naturally, we focused our attention on a graph class
that is important and yet is "away" from the class of split graphs: The class of
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planar
graphs, i.e., graphs that can be drawn in the plane in such a way that
any two edges do not intersect except on a common endpoint.

It is well-known that any planar graph excludes Kt as a minor for every
t ≥ 4, thus if a split graph is planar then its complete part should have at most
4 vertices. Moreover, any planar graph excludes Kt,t as a minor for every
t ≥ 3 and thus a split graph that is planar can only be large if its edgeless part
is large. These arguments should be enough to justify that the class of planar
graphs and the class of split graphs do not share many important properties.

Additionally, planar graphs is one of the most studied graph classes in
Graph Theory, both from the combinatorial and the algorithmic point of view.
Reflecting their importance, researchers have created a very rich toolbox along
the years, which can be employed when trying to tackle problems on planar
graphs. Almost in every book on Graph Theory, such as [29, 12] and [11], there
is at least one chapter devoted on planar graphs. There are even entire books
devoted on algorithms on planar graphs (see [74]) or studying the more general
subject of graphs embeddable on surfaces (see for example [51, 88, 48]).

1.3.2 FPT for
planar
graphs
The positive result of this thesis is proving that the Cyclability problem is

fixed-parameter tractable when the input is restricted to be a planar graph.

Theorem 1.3.2. The Cyclability problem, when
parameterized
by k, is
in FPT
when
its
input
graphs
are
restricted
to
be
planar. Moreover, the
corresponding
FPT-algorithm
runs
in 22

O(k2 log k) · n2 steps.

Actually, our algorithm solves as slightly more general problem, where the
input comes with a subset R of annotated vertices and the question is whether
every k-vertex subset of R is cyclable. More specifically, we give an FPT-
algorithm for the following problem:

Planar Annotated Cyclability
Input: A graph planar G, a set R ⊆ V (G), and a non-negative integer k.
Question: Does there exist, for every set S of k vertices in R, a cycle C

of G such that S ⊆ V (C)?

Of course, by setting R to be equal with V (G) we get an instance of the
Cyclability problem with the input graph being planar.
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Outline
of
the
algorithm. The two key ingredients in the proof of Theorem
1.3.2 are a new, two-step, version of the irrelevant
 vertex
 technique and a
new combinatorial concept of cyclic
 linkages along with a strong notion of
"cyclical" vitality on them (vital linkages played an important role in the Graph
Minors series, in [82] and [83]). The proof of Theorem 1.3.2 is presented in
Chapter 4. Next, we give a rough sketch of our method.

We work with a variant of Cyclability in which some vertices (initially all)
are coloured. We only require that every k coloured vertices lie on a common
cycle. If the treewidth of the input graph G is "small" (bounded by an appro-
priate function of k), we employ a dynamic programming routine (presented in
detail in Chapter 4) to solve the problem.

Otherwise, there exists a cycle in a plane embedding of G such that the
graph H in the interior of that cycle is "bidimensional" (contains a large sub-
divided wall) but is still of bounded treewidth. This structure permits to distin-
guish in H a sequence C of, sufficiently many, concentric cycles that are all
traversed by some, sufficiently many, paths of H.

Our first goal is to check whether the distribution of the coloured vertices
in these cycles yields some "big uncoloured area" of H. In this case we de-
clare some "central" vertex of this area problem-irrelevant in the sense that its
removal creates an equivalent instance of the problem.

If such an area does not exists, then R is "uniformly" distributed inside
the cycle sequence C. Our next step is to set up a sequence of instances
of the problem, each corresponding to the graph "cropped" by the interior of
the cycles of C, where all vertices of a sufficiently big "annulus" in it are now
uncoloured.

As the graphs of these instances are subgraphs of H and therefore have
bounded treewidth, we can get an answer for all of them by performing a
sequence of dynamic programming (using the algorithm we present in Chapter
4) calls, each taking a linear number of steps. At this point, we prove that if
one of these instances is a no-instance then initial instance is a no-instance,
so we just report it and stop.

Otherwise, we pick a coloured vertex inside the most "central" cycle of C
and prove that this vertex is colour-irrelevant, i.e., an equivalent instance is
created when this vertex is not any more coloured.

In any case, the algorithm produces either a solution or some "simpler"
equivalent instance that either contains a vertex less or a coloured vertex less.

13
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This permits a linear number of recursive calls of the same procedure. For a
visualization of the described procedure see Figure 1.2

(G,R)

dp

solution

un. ann.

ir. ver.ir. col.

tw(G) small tw(G) large

YES NO

R = R \ {v}

G = G \ {v}

Figure 1.2: Given (G,R) as the input (upper circle), if the tw(G) is small then
we solve by using dynamic programming (mid-left circle). If tw(G) is large and
the annotated vertices are distributed uniformly (mid-right circle), then we find
an irrelevant vertex v (bottom-right), delete it, update the input to (G \ {v}, R)
and iterate. Else (if the annotation is not uniform), find a vertex v whose colour
is irrelevant, uncolour it, update the input to (G,R \ {v}) and iterate.

1.3.3 Combinatorial
results

To prove the existence of irrelevant vertices when the treewidth of the input
graph is large, we have to introduce several combinatorial tools. One of them
is the notion of strongly
vital linkages, a variant of the notion of vital linkages
introduced in [82], which we apply to terminals traversed by cycles instead of
terminals linked by paths, as it has been done in [82]. This notion of "cyclical"
vitality permits a significant restriction of the expansion of cycles which certify
that sets of k vertices are cyclable and is able to justify both critical steps of
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our algorithm. The proofs of the combinatorial results that support our algo-
rithm are presented in Chapter 3 and we believe that they are of independent
combinatorial importance. To give a brief overview we introduce the notion of
graph
linkages (formal definitions are given in 3).

Graph
Linkages. A graph
linkage of a graph G is a pair L = (H,T ) such that
H is a subgraph of G and T is a subset of the vertices of H, called terminals
of L, such that every vertex of H with degree different than 2 is contained in
T . The set P(L), the path
set
of the graph linkage L, contains all paths of H
whose endpoints are in T and do not have any other vertex in T .

The pattern of L is the graph(
T,
{
{s, t} | P(L) contains a path from s to t in H

})
.

Two graph linkages of G are equivalent if they have the same pattern and are
isomorphic if their patterns are isomorphic.

A graph linkage L = (H,T ) is called strongly
vital in G if V (H) = V (G)

and there is no isomorphic graph linkage in G that is different from L. We
call a graph linkage L = (H,T ) linkage (resp. cyclic
linkage) if its pattern is a
collection of paths (resp. a single cycle). We sometimes denote such a linkage
just by writing L.

We say that a linkage L in a graph G is unique if for all linkages L′ in G

equivalent to L, we have that V (L) = V (L′).
The main result of Graph Minors XXI [82] is the following structural theorem:

Theorem 1.3.3 (The Unique Linkage Theorem [82]). For
all k ≥ 1, there
exists
a
value w(k) such
that
the
following
holds. Let L be
a
linkage
of G with |P(L)| =
k and V (G) = V (L). If L is
unique, then
the
treewidth
of G is
at
most w(k).

As we have already mentioned, the dependance of the value w(k) on k is
immense, as the proof in [82] needs the full power of the graph minor structure
theorem. It was substantially improved by Kawarabayashi and Wollan in [60]
(the dependance on k becomes triple exponential) and their proof is also much
shorter.

Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, and Thilikos gave an
improvement for the class of planar graphs [3]. In their work w(k) = O(k3/2·2k)
which is radically better than the bounds known for general graphs.
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Our contribution towards this direction, concerning cyclic
linkages, is the
following

Theorem 1.3.4. If
a
planar
graph G contains
a
strongly
vital
cyclic
linkage
L = (C, T ), then tw(G) = O(|T |3/2).

By thinking of the strong vitality property of a graph linkage as uniqueness
(for more details see chapter 3), we can observe something interesting: The
dependence on the number of the terminals (that corresponds to k) becomes
polynomial (almost linear) when the pattern of the graph linkage is a cycle.
This can lead to improved running times for algorithms on problems where
cyclic linkages can be used.

Unfortunately, this is not the case for Cyclability but the reason is not this
bound. The dynamic programming routine (which we present in chapter 4)
causes the double exponential dependence on k which, we do not believe that
can be substantially improved (see the discussion in the conclusion, Chapter
8).

1.3.4 No
polynomial
kernels

The last result is another negative one. It states that it is unlikely, even
for the case of cubic planar graphs, that Cyclability admits any polynomial
kernel. Before presenting the result we have to talk about kernelization (for a
much more detailed introduction we refer the reader to Section 2.2 of Chapter
2).

Kernelization. The notion of kernelization, which has been proposed as a
formalization of the idea of preprocessing, has recently grown to be a separate
research area in the field of Parameterized Complexity. The main idea is that,
before trying to solve a problem on a given input, we can try to reduce the input
to a smaller one by taking rid of parts that are not relevant for the problem.
This idea, in the framework of Parameterized Complexity, has evolved to the
following definition:

Let L ⊆ Σ∗ × N be a parameterized problem. A kernelization (or kernel)
for a parameterized problem L is an algorithm that given an instance (I, k)

outputs, in time polynomial in |I| and k, an instance (I ′, k′) such that

16



CHAPTER
1. INTRODUCTION

• (I, k) ∈ L if and only if (I ′, k′) ∈ L,

• |I ′| is bounded by a computable function f in k and k′ is bounded by a
computable function g in k.

The output (I ′, k′) of the kernelization is called a kernel and the function f is
the size of the kernel. We say that a kernel is polynomial if f is a polynomial
function.

A somewhat surprising result, is that a parameterized problem is in FPT if
and only if it admits a kernelization algorithm (see Section 2.2 of Chapter 2).
However, when we actually want to implement a preprocessing algorithm we
usually need the polynomial, or even better linear, kernels.

In Chapter 7, we prove that this is unlikely for Cyclability, even for cubic
planar graphs (a graph G is called cubic if degG(v) = 3 for every v ∈ V (G)),
unless some widely believed complexity theoretic assumption fails:

Theorem 1.3.5. Cyclability, parameterized
by k, admits
no
polynomial
kernel
unless NP ⊆ co-NP/poly, even
when
restricted
to
cubic
planar
graphs.

The above result indicates that the Cyclability does not follow the kernel-
ization behaviour of many other problems (see, e.g., [9]) for which surface
embeddability enables the construction of polynomial kernels. For the proof
we use the cross-composition technique introduced by Bodlaender, Jansen,
and Kratsch in [10], and specifically we show that the NP-hard Hamiltonicity
with a Given Edge problem AND-cross-composes to Cyclability.
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CHAPTER2
BASIC DEFINITIONS AND PRELIMINARY RESULTS

In this section we give some basic definitions regarding Complexity Theory,
some basic notions about Graph Theory as well as some preliminary results
to be used in latter sections. Any definition or lemma that is only used at a
particular section is presented in the corresponding section.

Let n ∈ N and let X be a set. We denote by P(X) the powerset of X, i.e.
P(X) is the set that contains all the subsets of X and for every k ≤ n we say
that Y ⊆ X is a k-subset of X if |Y | = k. We denote by X≤k all the i-subsets
of X, for every i ∈ {1, 2, . . . , k}.

2.1 Graphs

2.1.1 Basic
notions
about
graphs
Graphs. An undirected graph, usually denoted by G, is an ordered pair com-
posed by a finite set V (G) and a set of 2-subsets, E(G), of V (G). The ele-
ments of V (G) are called the vertices of the graph and the elements of E(G)

its edges. Sometimes, when it is clear to which graph we refer to, we will write
V and E without denoting the corresponding graph. For an edge e = {u, v} ∈
E(G), we say that the vertices u and v are the endpoints of e. Given a graph G
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we will also assume that it is undirected, unless stated otherwise. We denote
by G the class of all undirected graphs.

We say that two graphs, G and H, are isomorphic if there exists a bijection
f : V (G)→ V (H) such that {u, v} ∈ E(G) if and only if f(u), f(v) ∈ E(H). We
call such a function an isomorphism between G and H and we think of these
two graphs as the same graph.

The usual way to visualise a graph G is to depict each of its vertices as a dot
in the plane and connect two dots with a line if the corresponding vertices are
the endpoints of an edge in E(G). Such a visualisation is called a drawing of
graph G and, obviously, it is not unique

(
for an example see the two drawings

of graph H =
(
{x, y, z, u, v},

{
{x, y}, {x, z}, {x, u}, {y, z}, {y, u}, {y, v}, {z, v},

{u, v}
})

in Figure 2.1
)
.

For every vertex v ∈ V (G), the
neighbourhood of v in G, denoted by NG(v),

is the subset of vertices that are adjacent to v (v is not included), i.e. NG(v) =

{u ∈ V (G) | {v, u} ∈ E(G)}, and its size is called the degree of v in G, denoted
by degG(v). The maximum (respectively minimum) degree ∆(G) (respectively
δ(G)) of a graph G is the maximum (respectively minimum) value taken by
degG(v) over v ∈ V (G).

For any set U ⊆ V (G) we define NG(U) =
∪

u∈U NG(u) \ U . For every
integer n, we denote by Kn the k-clique which is the graph on n vertices which
contains all possible

(
k
2

)
edges. Let S ⊆ V (G) be a subset of the vertices of

graph G. We define the subgraph
of G induced
by S as G[S] =
(
S,
{
{u, v} ∈

E(G) | u, v ∈ S
})

and we define the boundary of S, denoted by ∂S, to be the
set of all vertices v ∈ S such that there exists some edge {v, u} with u ∈ G\S.

For a subset I ⊆ V (G) we say that I forms an independent
set in G if the
induced subgraph G[I] is edgeless, i.e. E

(
G[I]

)
= ∅.

We also denote by EG(v) all the edges of G that have v as an endpoint (or
are adjacent to v), i.e. EG(v) = {e ∈ E(G) | e ∩ v ̸= ∅}.

Paths
and
cycles. A path P = (V,E) is a non-empty graph where, for some
k ∈ {1, 2, 3 . . .}

V = {v1, v2, . . . , vk} and E =
{
{v1, v2}, {v2, v3}, . . . , {vk−1, vk}

}
and vi are all distinct. The vertices v1 and vk are called the endpoints of P
and we say that P links or connects v1 and vk. The vertices of P that are not

20



CHAPTER
2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

x

zy

u v

x

zy

u v

Figure 2.1: Two different drawings of graph H. Observe that at the right one,
the intersection of two edges is always a vertex.

endpoints are the inner vertices of the path. The length of a path equal to the
number of its edges (we allow paths of length 0 which are just a single vertex).
The distance of vertices u and v in G, denoted by distG(u, v), is the minimum
length of a path in G which links v and u.

By v1 . . . vp we denote the path comprised of the vertices v1, . . . , vp and
the edges {v1, v2}, . . . , {vp−1, vp}. For a path P = v1 . . . vp and a vertex u,

uP (Pu resp.) is the path uv1 . . . up (u1 . . . upv resp.). If P1 = u1 . . . up and
P2 = v1 . . . vq are paths such that V (P1) ∩ V (P2) = {up} = {v1}, then P1 + P2

is the concatenation of P1 an P2, i.e., the path u1 . . . up−1v1 . . . vq.
Let P = {P1, P2, . . . , Pl} be a set of paths, for some l ≥ 2. We say that the

paths in P are vertex-disjoint (resp. internally
vertex-disjoint) if no two of them
have any common vertices (resp. if two of them have common vertices then
these vertices are their endpoints).

If P = u1 . . . uk is a path then C = (V (P ), E(P )∪{uk, u1}) is a cycle, i.e. a
cycle is obtained from a path by adding an edge between its endpoints. We
use u1 . . . uku1 to denote the cycle with the vertices u1, . . . , uk and the edges
{u1, xu}, . . . , {up−1, up}, {up, u1}. The length of a cycle is the number of its
edges (which is equal to the number of its vertices). Let C be a cycle in a
graph G. An edge e ∈ E(G) \ E(C) which joins two vertices of C is called a
chord of C. A cycle in G that has no chords is called an induced
cycle in G.
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Graph
connectivity. We say that a graph G is connected if for any two ver-
tices u, v ∈ V (G), there exists at least one path in G with u and v as its end-
points. If G is not connected, we define the connected
components of G to
be the induced subgraphs G[Vi], where V1, . . . , Vk are the maximal (under the
subset relation) vertex sets that induce connected subgraphs of G.

Let k be a positive integer. We say that a graph G is k-connected if for ev-
ery pair u, v of vertices in G, there exist at least k internally vertex disjoint paths
in G that connect u and v. Actually, the above definition is a result from Karl
Menger [68] (known as Menger's
theorem) and gives an equivalent character-
isation of k-connected graphs. The original definition says that a (connected)
graph G is k-connected, if the removal of any k vertices of G results to a con-
nected graph or in other words in order to undermine the connectivity of G
one has to remove at least k + 1 of its vertices.

Trees
and
forests. Let G be a graph. We say that G is a forest if it does not
contain any cycle as a subgraph. If G is a forest and is also connected, then
we say that G is a tree. It is now easy to observe that a graph is a forest if and
only if all its connected components are trees, which also justifies the names
of these graph classes.

Let T be a tree. We say that a vertex t ∈ V (T ) is a leaf of T if degT (t) ≤ 1.
A vertex of T that is not a leaf is called a non-leaf
vertex. It is easy to prove
that any two vertices u and v in a tree T are linked via a unique path of T ,
which we denote by uTv.

Due to their "simple" structure, trees enjoy some nice algorithmic proper-
ties. This is one of the reasons why researchers tried to expand the class of
trees into wider graph classes which, in a way, possess a tree-like structure
and thus share the nice algorithmic properties of trees. We will give more de-
tails about this vague statement later, when we will talk about treewidth and
dynamic
programming
on
graphs
of
bounded
treewidth.

The class of planar graphs is of special importance for us, as one of the
main results of this work is an algorithm solving Cyclability in FPT-time for
this particular class of graphs. Next we define the class of planar graphs and
mention some of the most important notions related to them
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Planar, plane, and
outerplanar
graphs. A graph G is called planar if it can
be embedded in the plane R2 (or equivalently in the sphere S2 = {(x, y, z) ∈
R3 : x + y + z = 1}) in such a way that there are no two edges of it whose
embeddings intersect (they can meet only at their endpoints). Such an embed-
ding is called a planar
embedding
of G and we say that such an embedding
is a plane
graph (observe that a planar graph can have more than one planar
embeddings that can also be different from a topological point of view). Given
a plane graph G we denote its faces by F (G), i.e. F (G) is the set of the con-
nected components of R2 \G (in the operation R2 \G we treat G as the set of
points of R2 corresponding to its vertices and its edges).

The dual, G∗, of a plane (resp. planar) graph G is also a plane (resp. planar)
graph and has one vertex for each face of G. There is an edge between two
vertices of G∗ if and only if the boundaries of their corresponding faces share
an edge (observe that if a plane graph is not connected it can have, two or
more, different (from a topological point of view) dual graphs). For an example
of a plane graph and its corresponding dual graph see Figure 2.1.1.

An outerplanar graph is a plane graph whose vertices are all incident to
the infinite face. If an edge of an outerplanar graph is incident to its infinite
face then we call it external, otherwise we call it internal. The weak
dual of an
outerplanar graph G is the graph obtained from the dual of G after removing
the vertex corresponding to the infinite face of the embedding.

Grids. Let m,n ≥ 1. The (m × n)-grid is the Cartesian product of a path of
length m − 1 and a path of length n − 1. In the case of a square
grid where
m = n, we say that n is the size of the grid. Given that n,m ≥ 2, the corners of
an (m×n)-grid are its vertices of degree 2. When we refer to a (m×n)-grid we
will always assume an orthogonal orientation of it that classifies its corners to
the upper
left, upper
right, down
right, and down
left corner of it.

Given that Γ is an (m×n)-grid, we say that a vertex of G is one of its centers
if its distance from the set of its corners is the maximum possible. Observe
that a square grid of even size has exactly 4 centers. We also consider an
(m × n)-grid embedded in the plane so that, if it has more than 2 faces then
the infinite one is not a square. The outer
cycle of an embedding of a (m×n)-
grid is the one that is the boundary of its infinite face. We also refer to the
horizontal and the vertical
lines of a (m×n)-grid as its paths between vertices
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f1

f2

f3

f1

f2

f3

e1

e2

Figure 2.2: An outerplanar graph at the left and its weak dual at the right. Its
simplicial faces are f1, f2 and f3, e1 is an internal edge, and e2 is an external
edge.

of degree smaller than 4 that are traversing it either "horizontally" or "vertically"
respectively. We make the convention that an (m×n)-grid contains m vertical
lines and n horizontal lines. The lower
horizontal
line and the higher
horizontal
line of Γ are defined in the obvious way (for an example see Figure 2.1.1).

Figure 2.3: A plane graph (black) embedded in the plane along with its dual
graph (red). There is one dual vertex (red square) for every face of the plane
graph. Any edge of the black graph is on the boundary of exactly two of its
faces which are connected by an edge in the dual (red) graph.
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Figure 2.4: A (13× 6)-grid is depicted. Its corners are the red vertices and its
centers are the two blue vertices. The outer cycle is the bold rectangle that
contains the corners of the grid.

2.1.2 Graph
operations
and
relations
between
graphs
Operations
between
graphs. Let G and H be two graphs. We define the
union of G and H as the graph

G ∪H =
(
V (G) ∪ V (H), E(G) ∪ E(H)

)
,

their intersection as the graph

G ∩H =
(
V (G) ∩ V (H), E(G) ∩ E(H)

)
,

and, finally, we define the product of G and H as the graph

G×H =
(
V (G)× V (H),

{
{(u1, v1), (u2, v2)} |

({u1, u2} ∈ E(G) ∧ v1 = v2) ∨ ({v1, v2} ∈ E(H) ∧ u1 = u2)
})

Next we define some basic operations (or transformations) on graphs. Let
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G be a graph and let v ∈ V (G) and e ∈ E(G):

• Vertex
removal (deletion): We denote by G − v (or by G \ v) the graph
obtained from G after removing (deleting) vertex v, i.e. V (G−v) = V (G)\
{v} and E(G − v) = {e ∈ E(G) | v /∈ e}. For S ⊂ V (G), we denote by
G \R the graph obtained from G after deleting from it all vertices in R.

• Edge
removal (deletion): We denote by G − e (or by G \ e) the graph
obtained from G after removing (deleting) edge e, i.e. V (G− e) = V (G)

and E(G − v) = E(G) \ {e}. For F ⊆ E(G), we denote by G \ E the
graph obtained from G after deleting from it all edges in F .

• Vertex
dissolution: Suppose that degG(v) = 2 and {u, v}, {v, w} ∈ E(G).
We denote by G/v the graph obtained from G after deleting vertex v

and adding the edge {u,w} (if this edge does not already exist in G), i.e.
V (G/v) = V (G) \ {v} and E(G/v) = E(G) \

{
{u, v}, {v, w}

}
∪
{
{u,w}

}
.

• Edge
subdivision: The operation of removing an edge e = {u, v} ∈ E(G)

from G and adding a path of length 2 whose endpoints are u and v is
called a subdivision of edge e in G.

• Edge
contraction: Let e = {u, v} ∈ E(G) and let v∗ /∈ V (G). We denote
by G/e the graph obtained from G after removing vertices u and v and
adding the (new) vertex v∗ and an edge between v∗ and every vertex in
NG({u,w}), i.e., V (G/e) = V (G) \ {u,w} ∪ {v∗} and E(G/e) = E(G) \
EG(u) \ EG(w) ∪

{
{v∗, x} | x ∈ NG({u,w})

}
.

Let G and H be two graphs. Using the, previously defined, graph opera-
tions we define some relations on the class of graphs:

• Subgraph: If H can be obtained by applying vertex and edge deletions
on G, we say that H is a subgraph of G and write H ⊆ G.

• Induced
subgraph: If H can be obtained by applying vertex deletions on
G, we say that H is an induced
subgraph of G and write H ⊆in G.

• Spanning
subgraph: If H can be obtained by applying edge deletions
on G, we say that H is a spanning
subgraph of G and write H ⊆sp G.
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• Subdivision: If H can be obtained by applying edge subdivisions on G,
we say that H is a subdivision of G and write H ⊆es G.

• Contraction: If H can be obtained by applying edge contractions on G,
we say that H is a contraction of G and write H ≤c G.

• Topological
minor: If H can be obtained by applying vertex deletions,
edge deletions and vertex dissolutions on G, we say that H is a topo-
logical
minor of G and write H ≤tm G.

• Minor: If H can be obtained by applying vertex deletions, edge deletions
and edge contractions on G, we say that H is a minor of G and write
H ≤m G.

The most well-studied from the previous relations are ⊆, ⊆in, ⊆sp, which
are known as the main subgraph
relations and ≤m, ≤tm, which are known as
the main topological
relations. As it will become obvious later, the topological
relations play a special role in our work, that is why we give an alternative def-
inition for the minor relation, which is probably more intuitive (for an example
see Figure 2.5).

Alternative
definition
of
minor
relation. Let G and H be two graphs. H is
a minor of G if there exists a function f : V (G)→ V (H) such that:

• For every v ∈ V (H), the reverse image of v through f , i.e. f−1(v), is a
connected set in G, and for any u ∈ V (H) \ {v} it holds that f−1(v) ∩
f−1(u) = ∅.

• For every edge {v, u} ∈ E(H), there exists at least one edge with end-
points in f−1(v) and f−1(u) in G.

If such a function exists we also say that G contains H as
a
minor.

Definition 2.1.1. Let G be
a
graph
class
and
let ⊑∈ {⊆,⊆in,⊆s,⊆es,≤c,

≤tm,≤m}. We
say
that G is
closed
with
respect
to ⊑ if
for
every
graph G

G ∈ G and G′ ⊑ G =⇒ G′ ∈ G

27



2.1. GRAPHS

G

H1

H2

Figure 2.5: The graph H1 is a topological minor of the graph G (certified by
the circled vertices of G and the dashed edges of G) and the graph H2 is a
minor of G (consider the function ϕ : V (H) → 2V (G) that sends a vertex of
H2 to the subset of vertices of G of the same colour and observe that each
"colour-class" in G induces a connected subgraph.

2.1.3 Graph
parameters

In this subsection we talk about graph parameters in general and focus on
a specific well known width-parameter, namely treewidth, which is relevant to
our work.

Graph
parameters. A graph parameter is a (partial) function p : G → N, i.e.,
a function that maps graphs to non-negative integers. We say that a parameter
p is computable if there exists an algorithm that given a graph G as an input,
either outputs the value p(G).

Some well known graph parameters are the ∆ (resp. δ) denoting the max-
imum (resp. minimum) degree of a graph, the maximum independent set, the
minimum vertex cover, the feedback vertex set, the chromatic number, the
girth etc.

Given a graph parameter p and a relation ⊑ on graphs, we say that p is ⊑-
closed if for every two graphs G and H with H ⊑ G it holds that p(H) ≤ p(G).

In this thesis we will often refer to a certain parameter, which is the main
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representative of the class of width
parameters and, in a way, reflects the re-
semblance of a graph with a tree. That is why it is called treewidth and one of
the several existing definitions is the following:

Treewidth. A tree
decomposition of a graph G is a pair D = (X , T ) in which
T is a tree and X = {Xi | i ∈ V (T )} is a family of subsets of V (G) such that:

•
∪

i∈V (T ) Xi = V (G)

• for each edge e = {u, v} ∈ E(G) there exists an i ∈ V (T ) such that both
u and v belong to Xi

• for all v ∈ V, the set of nodes {i ∈ V (T ) | v ∈ Xi} forms a connected
subtree of T .

The width of a tree decomposition is defined to be the number max{|Xi| |
i ∈ V (T )}− 1. The treewidth of a graph G (denoted by tw(G)) is the minimum
width over all possible tree decompositions of G. At Figure 2.6, there is a
graph on 10 vertices and a tree decomposition of it with width 3. It is easy to
confirm that any tree decomposition of this graph has width at least 3, thus
the treewidth of this graph its is 2. We give some examples of the values of
treewidth for some specific graph classes.

Trees and forests have, as expected, treewidth 1 and cycles have treewidth
2. The treewidth of an outerplanar graph is at most 2, but the treewidth of a
planar graph can be arbitrarily large (for example the (n×n)-grid has treewidth
n) but still it is sublinear to the number of vertices, more precisely O(

√
n). On

the other hand, every graph G that excludes a planar graph H as a minor has
treewidth at most cH , where cH is a constant that depends on graph H.

The concept of treewidth was originally introduced by Umberto Bertelé
and Francesco Brioschi (1972) under the name of dimension. It was later re-
discovered by Rudolf Halin (1976), and it was rediscovered for a third time
by Neil Robertson and Paul Seymour in [78], and played a crucial role to the
developments of the Graph Minors series papers.

Branchwidth. A branch
decomposition of a graph G is a pair (T, τ), where
T is a tree with vertices of degree one or three and τ is a bijection from E(G)

to the set of leaves of T . The order
function ω : E(T ) → 2V (G) of a branch
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decomposition maps every edge e of T to a subset of vertices ω(e) ⊆ V (G)

as follows. The set ω(e) consists of all vertices v ∈ V (G) such that there exist
edges f1, f2 ∈ E(G) with v ∈ f1 ∩ f2, and such that the leaves τ(f1), τ(f2) are
in different components of T − {e}.

The width of a branch decomposition (T, τ) is equal to maxe∈E(T ) |ω(e)|
and the branchwidth of G, denoted by bw(G), is the minimum width over all
branch decompositions of G.Branchwidth was introduced by Robertson and
Seymour in [79]. For any graph G, bw(G) and tw(G) are within a constant
factor of each other, however, unlike treewidth, branchwidth is computable in
polynomial time on planar graphs.

The following two results combined, imply a relation between the treewidth
of a planar graph and the minimum size of the largest grid-minor that it con-
tains.
Result
1. ([53]) If G is a planar graph and bw(G) ≥ 3k + 1, then G contains a
(k × k)-grid as a minor.

Result
2.([̉79]) If G is a graph, then bw(G) ≤ tw(G) + 1 ≤ 3
2 · bw(G).

Proposition 2.1.1. If
G is
a
planar
graph
and tw(G) ≥ 4.5 · k + 1, then G

contains
a (k × k)-grid
as
a
minor.

2.2 Parameterized
Complexity

2.2.1 Basic
definitions
Let Σ be an alphabet (we usually think of Σ as the set {0, 1}) and let Σ∗ (the

Kleene
star of Σ) be the set of all finite sequences with elements from Σ. An
element of Σ∗ is called a word on the alphabet Σ.

Parameterized
 languages
and
problems. We will call every subset L of
Σ∗ × N a parameterized
language, and for every element ⟨x, k⟩ ∈ L ⊆ Σ∗ × N
we will say that k is the parameter and x the main
input. For every k ∈ N, we
call Lk = {⟨x, k⟩ : ⟨x, k⟩ ∈ L} the kth slice of L.

A decision problem Π is called a parameterized
problem if any instance of
is encoded as a pair ⟨x, k⟩ ⊆ Σ∗ × N. We will say that ⟨x, k⟩ is a yes-instance
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Figure 2.6: An example of a graph of treewith 2 along with a tree-
decomposition of minimum width.

for Π if ⟨x, k⟩ encodes an instance for which the question imposed in problem
Π is answered positively, and will write ⟨x, k⟩ ∈ Π. Otherwise we will say that
⟨x, k⟩ is a no-instance for Π and will write ⟨x, k⟩ /∈ Π. If Π is a parameterized
problem then it naturally defines the parameterized language

LΠ = {⟨x, k⟩ ∈ Σ∗ × N | ⟨x, k⟩ is a yes-instance for Π} =
=

{
⟨x, k⟩ ∈ Σ∗ × N | ⟨x, k⟩ ∈ Π

}
and conversely, a parameterized language L can be associated with the prob-
lem ΠL for which ⟨x, k⟩ is a yes-instance if ⟨x, k⟩ ∈ L and a no-instance oth-
erwise. In what follows we will not distinguish between a parameterized lan-
guage and its corresponding parameterized problem unless it is necessary.

Fixed-parameter
tractability
(the
class FPT). We say that a parameterized
problem Π is fixed-parameter
tractable if there exists an algorithm (or more
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formally a deterministic Turing Machine) A, a constant c, and a computable 1

function f such that, for all ⟨x, k⟩ ∈ Σ∗×N,A
(
⟨x, k⟩

)
runs for at most f(k) · |x|c

steps (where |x| is the length of the encoding of x) and

⟨x, k⟩ ∈ LΠ ⇐⇒ A
(
⟨x, k⟩

)
= 1

where we suppose that the output of algorithm A is 1 if it accepts its input
and 0 otherwise. The class of all fixed-parameter tractable problems is called
FPT and is considered to be the class of efficiently solvable problems in the
framework of Parameterized Complexity (class FPT can also be thought of as
the analog of P in terms of classical complexity).

For a problem in FPT, we sometimes say that it can be solved in FPT-time
or that there exists an FPT-time
algorithm for solving it, meaning that there
exists an algorithm that solves it in f(k) · |x|c time (where k is the parameter,
|x| is the length of the encoding of the input, f is a computable function, and
c is a constant).

2.2.2 Why
Parameterized
Complexity?

The idea of finding a solution to a problem, which can be described as a
series of concrete and "easy" to perform steps, is very old and can be tracked
far back in the history of Mathematics. We are referring, of course, to the idea
that is nowadays widely known as an algorithm. One of the oldest and most
well known algorithms (although at that point this notion did not yet exist) is
the euclidean
algorithm (given by the "father of Geometry", Euclid) for finding
the greatest common divisor of two given integers.

The systematic study of algorithms and problems that admit algorithmic
solutions started less than 100 years ago, in the 1930s, as a branch of Math-
ematics named Computability
Theory. One of the main objects of this field is
to study whether there exists an algorithmic solution for a given problem or
any solution is provably non-constructive. But what does "algorithmic" even
mean? Is it possible to formally define such a notion?

1The weak demand for f to be just computable can be quite alerting. After all, parameterized
complexity is supposed to be related to practical computation. Of course the same issue arises
also with the definition of P and additionally it turns out that, most of the times, constant the c is
small and function the f is tolerable, e.g. is an exponential function of k.
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A widely accepted answer to the previous, nearly philosophical, question
is given from the Church-Turing
thesis which, roughly, states the following:

There
exists
an
algorithmic
solution
for
a
problem
if
and
only
if
there
exists
a
Turing
machine
that
solves
it.

A Turing machine is a computation model introduced by Alan Turing in
1936 [89] and is the predecessor of todays personal computer. As the topic
of computational models is out of the scope of this thesis, for an extensive
introduction see [67] and [86]. Of course the Church-Turing thesis is not a
conjecture that can be proved or disproved in some axiomatic system. It is
more like a meta-conjecture whose "credibility" has been tested throughout
the years.

Having established a framework for arguing about computability and moti-
vated by the rapid improvement of "real" computational models (not just theo-
retical constructions as the Turing machines) who could execute complicated
tasks increasingly fast, researchers took a step forward and started to explore
the notion of efficiency. Efficiency refers to the resources needed for solving
a problem algorithmically. The two main such resources, which are usually
considered as measures of efficiency of an algorithm, are space and time. In
this thesis we will focus on the latter.

Given these new parameters, computational problems can be classified
further in complexity
classes based on the efficiency of algorithms that solve
them. Undoubtedly, the most well known complexity classes are P and NP,
where P contains the problems that can be solved efficiently (there exist de-
terministic algorithms that solve them in time that is bounded by a fixed poly-
nomial on the size of the input) and NP contains the problems which require
nondeterminism in order to be solved in polynomial time. It is widely believed
that P ̸= NP, which can be roughly translated to the fact that there exist com-
putational problems for which any algorithm solving them needs exponential
time. Consequently, most computer scientists face at some point the follow-
ing question when studying a computational problem:
Is
there
an
efficient
algorithm
solving
the
problem
of
interest? If
not, is
it
pos-
sible
to
provide
some
evidence
that
it
cannot
be
solved
efficiently?

The natural approach to address this type of questions is either trying to
come up with a polynomial time algorithm that solves the problem (which
places it in P) or proving that, assuming P ̸= NP, it is in NP but not in P. This
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can be done by reducing an NP-complete problem to the problem of interest.
Roughly speaking, NP-complete problems are the hardest in the class NP and
the reduction of such a problem to another problem suggests that the latter is
at least as hard, thus characterised as intractable. For more information about
the theory of NP-completeness we refer the reader to the monumental work
of Garey and Johnson in [45] and to all introductory Complexity Theory books
such as [75] and [5].

The construction of a polynomial time algorithm is usually the best out-
come one can hope for (although nowadays this claim becomes more and
more inaccurate as we need to solve problems where the input is huge; the
running time of a polynomial n4 algorithm when the input is the web network
does not seem appealing at all! In many cases even a linear algorithm can
be practically useless and this means that the desired algorithm will not even
have the opportunity to access all of its input. For some more information on
the subject we refer the reader to [85]). But what happens if we prove that our
problem is NP-complete? Is this the end of the story? Fortunately, the answer
is no and we briefly present the main side roads one can choose from:

• Approximation: A very important class of problems that attracts much
attention (mainly due to applications in Operational Research) is the one
of optimization
problems where the task is to find the best
solution from
all feasible solutions. Unfortunately, many optimization problems have
proved to be NP-complete. When the need for an exact solution is not
imperative, a way to overcome this difficulty is trying to design efficient
algorithms that find a solution which is guaranteed to be "close" to the
optimal.
Of course an analogue of intractability arises in this setting too and much
work has been done in the direction of obtaining innaproximability and
lower
bounds results. Approximation algorithms have been developed
rapidly in the last decades and proved to be a very fruitful area. For an
extensive introduction we refer the reader to [93] and [90].

• Use
of
randomness: Another tool that can be used to cope with an
NP-complete problem is randomness and the study of randomized al-
gorithms was spurred by the discovery of a randomized primality test
[87]. The main idea of this approach is roughly the following: In or-
der to "prune" some of the branches of computation, which seem to
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be unavoidably exponential (under worst-case analysis) when trying to
solve an NP-complete problem, the randomized algorithm makes some
random choices and based on them, and probably other deterministic
computation, produces an answer.
One has to distinguish between algorithms that use randomness in order
to reduce the expected running time and always terminate in bounded
time producing the right answer (called Las
Vegas
algorithms) and algo-
rithms that terminate in polynomial time but there is a chance that they
produce a wrong answer or no answer at all (called Monte
Carlo
algo-
rithms).
Having designed a randomized algorithm for a problem, it is sometimes
possible to produce a deterministic algorithm for solving the same prob-
lem. This procedure is known as derandomization and has attracted
much attention recently. More information about randomized algorithms
can be found in [71] and [70] and for some information about the com-
plexity classes that arise from randomized algorithms see [75] and [5].

• Parameterization: When a problem is NP-complete, any exact deter-
ministic algorithm that solves it needs (in the worst case) exponential
(or at least superpolynomial) to n time, where n is the length of the in-
put. The parameterized complexity point of view examines whether this
exponential explosion on the running time unavoidably "spreads" to a
large part of the input (meaning a part whose length depends on n) or
there are some particular parameters of the problem that cause the in-
crease on the running time. For some NP-complete problems that are of
great importance in other areas, such as biology, there were algorithms
that, although being exponential in the worst case, worked efficiently in
practice. Then a natural question arose:

Are
there
some
parameters
in
these
particular
problems
which
happen
to
be
bounded
and
this
way
"soften"
the
intractability? Can
theory
formalize
this
phenomenon
and
study
it
methodically?

Research has shown that such parameterizations exist for many, previ-
ously classified as intractable, problems and when restricted to the case
where they are bounded, there exist algorithms that justify their place-
ment into the sphere of tractability. The related area, which has grown to
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be an entire field in Computer Science, is called Parameterized
Complex-
ity and the algorithms designed in this setting are called parameterized
(or multivariate) algorithms. The main introductory texts for Parameter-
ized Complexity are [31], [73], [42], [36], and [22], as they have appeared
chronologically.

All the previously mentioned methods have been studied extensively in
the last decades and each one of them constitutes a wide research area in the
frame of Theoretical Computer Science. Of course, ideas and techniques from
any of these areas "flow" between them and researches are always interested
in combining notions from some of or all the fields, as, for example, indicated
(already in the title) by [72]. In this thesis, we focus on the last suggestion for
"NP-completeness treatment" and we start by explaining, via concrete exam-
ples, why this approach is promising.

Why
Parameterized
Complexity? For an example consider the following
parameterized problem

p-Vertex Cover
Input: A graph G = (V,E) and an integer k.
Parameter: k
Question: Is there a set S ⊆ V such that |S| ≤ k and G \ S has no
edges?

This problem is a parameterized version of the classical Vertex Cover prob-
lem (which is one of the first 21 problems proven to be NP-complete by R.
Karp in [45]), with the natural
parameterization in the sense that the parameter
is chosen to be the size of the desired solution. The problem obtained when
using the natural parameterization of problem Π, will be denoted by p-Π and
when it is clear from the context, we will sometimes omit p.

It is not hard to prove that p-Vertex Cover can be solved in time 2k ·n (using
bounded
search
trees, see [22]), which places it in FPT. Great effort has been
made in order to improve on the parametric dependance for this important
problem and the state of the art algorithm (due to Chen, Kanj, and Xia [15])
runs in time O(1.2738k + k|G|) and uses a series of techniques reflecting the
development of parameterized algorithm design throughout the years. This
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means that, even though Vertex Cover is known to be "hard" from a classic
complexity viewpoint, it becomes tractable even when the solution we are
looking for is big (as its natural parameterization admits an algorithm whose
dependence on the size of the graph is linear and the dependence on the size
of the solution, the parameter k, is low
exponential).

But can we hope that the natural parameterization of any hard, say NP-
complete problem, is enough to place it in the sphere of tractability? Consider
the parameterized version of the well-known Clique problem

p-Clique
Input: A graph G = (V,E) and an integer k.
Parameter: k
Question: Is there a set S ⊆ V such that |S| ≥ k and G[S] has no
edges?

The Clique problem is also one of the first important problems proven to
be NP-complete in [55]. An obvious algorithm for solving p-Clique is to check
all possible subsets of V (G) of size k (also called brute
force), which results to
an O(|G|k)-time algorithm

(
as
(
n
k

)
= O(nk)

)
. The observant reader can spot

the main difference between the running time of this algorithm and even the
simplest one for p-Vertex Cover. The difference is that the parameter k appears
at the exponent of |G| (size of the input) for the case of p-Clique, which makes
the algorithm less attractive. As we will shortly see, the p-Clique problem is
W[1]-complete and thus considered intractable, even from the parameterized
complexity point of view.

As we will see in the following section, class W[1] cannot encapsulate
all fixed-parameter intractable problems. The parameterized versions of two
well-known NP-complete problems that are not believed to be in W[1] are the
following

p-Dominating Set
Input: A graph G = (V,E) and an integer k.
Parameter: k
Question: Is there a setD ⊆ V such that every vertex in V \D is adjacent
to some vertex in D?
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p-Set Cover
Input: A finite set U , a set F ⊆ P(U), and an integer k.
Parameter: k
Question: Is there a C ⊆ F such that |C| = k and

∪
C∈C C = U?

To sum up, even when we only consider natural parameterizations, it be-
comes obvious that the classical complexity landscape is getting refined. Some
of the intractable problems become tractable and some others are charac-
terised as fixed-parameter intractable and are classified in different hardness
classes. Things get even more interesting when more parameters, such as the
maximum
degree, girth, treewidth, cutwidth, cliquewidth, chromatic
number
etc. come in to play. It is often the case that the parameterized complexity of
a problem changes when we focus on different parameters.

The rapid increase of computational power, the exponential growth of in-
formation and the wide use of computers into pretty much every aspect of
human activity, made the classical complexity theory seem outdated (from
the viewpoint of actual implementation of algorithms). Researchers realised
that in order to design efficient algorithms in a highly structured world, one has
to take into account the structural characteristics of the available data. This
imperative need for exploitation of structure lead to the development fine-
grained
analysis and parameterized complexity, which has become a rapidly
growing field of Computer Science, with many theoretical and practical ac-
complishments to show.

2.2.3 Fixed-parameter
intractability
and
the W-hierarchy.

In order to introduce the theory of fixed-parameter intractability, we will first
present an overview of some basic concepts of classical intractability theory.
We will keep the formality simple, for now, as our main goal is develop some
intuition and not to present strict formalism. This chapter will work either as a
brief introduction or as a reminder of some fundamental notions. In any case,
the intention is to create a natural transition to the parameterized complexity
setting, which is essential for some parts of this thesis.

We will define the notion of polynomial
 reductions and the class of NP-
complete problems.
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Reductions. A polynomial-time
many-one
reduction (orKarp
reduction) from
problem B to problem C is a polynomial time algorithm A which, given an
instance x of B, outputs an instance A(x) of C such that

x is a yes-instance of B ⇐⇒ A(x) is a yes-instance of C

This kind of reduction "transfers" computational intractability: If there is no
polynomial-time algorithm for solving problem B, then the same holds for
problem C. On the other hand, if C can be solved in polynomial time then B

is also polynomial-time solvable. Obviously, in order to start benefiting from
this method of reducing a problem to another, one has to identify a "hard"
problem or a problem which is widely believed to be hard. After establishing
such a problem, any other problem reduced to our "hard" problem inherits
the "pessimism". In the late 1960s and early 1970s, Stephen Cook [18] and
Leonid Levin [63] worked (independedly) towards this direction and gave birth
to the theory of computational intractability.

Classical
 intractability
theory. The first, and most widely studied, notion
of computational intractability is undoubtedly the theory
of
NP-completeness.
We give one of the several existing definitions of the class NP: a language
L belongs in the class NP if and only if there exists a polynomial p and a
polynomial relation R (meaning that R can be decided in polynomial time for
any (x, y) pair) such that

x ∈ L ⇐⇒ ∃y
(
|y| ≤ p

(
|x|
)
∧R(x, y) = 1

)
A language L is NP-complete if and only if L ∈ NP and for any language
L′ ∈ NP, L′ is polynomially reducible to L, i.e. L′ ≤p

m A. The definition of
a computational problem being NP-complete is completely analogous to the
one for languages. The most obvious, although somewhat "artificial", NP-
complete problem is the following

Turing Machine Acceptance
Input: A nondeterministic Turing machine M , a string x, and a natural
number n.
Question: Is there a computation path of M accepting x in at most n
steps?

39



2.2. PARAMETERIZED COMPLEXITY

Clearly, Turing Machine Acceptance is NP-complete, as a nondeterministic
Turing machine can guess y and then check if R(x, y) = 1, which roughly
describes a reduction of a problem in NP to Turing Machine Acceptance.

The first natural NP-complete problem is SAT ([18] and [63]), the problem
of deciding, given a boolean formula ϕ, if there exists an assignment to its
variables that make ϕ true. Nowadays, several hundreds of interesting com-
putational problems are known to be NP-complete but the decisive step that
boosted research in this direction was the work of S. Karp [55] who proved the
NP-completeness of 21 important combinatorial problems, initiating a huge
list of results in this direction. Many of these problems have natural structure
which can be translated as hope for the existence of efficient (polynomial) al-
gorithms which are based on a clever exploitation of this structure.

Unfortunately, the NP-completeness of Turing Machine Acceptance, a such
generic and opaque problem, makes the existence of any such algorithm seem
really unreasonable, as this would imply that we could be able to decide in
polynomial time whether a given Turing machine on a given input has some ac-
cepting path. That is why the Cook-Levin theorem is considered to be strong
evidence for the P ̸= NP hypothesis. Today, there is much more evidence to
support this hypothesis but this subject is out of the scope of this thesis.

Next, we define a notion that allows the transfer of "pessimism" in the
Parameterized Complexity framework, or, in other words, it allows the transfer
of fixed-parameter intractability from a parameterized language (or problem)
to another.

Definition 2.2.1 (Parameterized reductions). Let L,L′ ⊆ Σ∗ × N be
two
pa-
rameterized
languages. We
say
that L reduces to L′ by a standard parame-
terized m-reduction if
there
exist, a
constant c and
functions f : Σ∗×N→ Σ∗,
g : N→ N and h : N→ N, such
that

• f(⟨x, k⟩) = x′ can
be
computed
in
time h(k) · |x|c and

• ⟨x, k⟩ ∈ L if
and
only
if
⟨
x′, g(k)

⟩
∈ L′.

Fixed-paramerer
intractability. Following the method for establishing clas-
sical intractability results, researchers tried to prove that a number of combi-
natorial problems are of the same fixed-parameter complexity as a problem
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about nondeterministic Turing machines. The problem of Turing Machine Ac-
ceptance can be naturally generalized by the following (somewhat artificial)
problem:

Short Turing Machine Acceptance
Input: A nondeterministic Turing machine M and a string x.
Parameter: A positive integer k.
Question: Is there a computation path of M accepting x in at most k
steps?

It seems reasonable to support that, if someone accepts that the Turing
Machine Acceptance problem is intractable (in the classical way), then the
Short Turing Machine Acceptance problem is fixed-parameter intractable. In-
deed there are many problems that can be proved (via parameterized reduc-
tions) to have the same parameterized complexity as Short Turing Machine
Acceptance and this strengthens the hypothesis of Short Turing Machine Ac-
ceptance not being fixed-parameter tractable.

In order to define the main hardness classes for Parameterized Complexity,
namely the W-hierarchy, we need to introduce some definitions about circuits,
and more specifically, decision
circuits.

Boolean
circuits. A boolean
circuit is a directed acyclic graph whose nodes
are labeled in the following way:

• every node of indegree 0 is an input
node

• every node of indegree 1 is a negation
node (with ¬ as a symbol)

• every node of indegree at least 2 is either an and-node (with ∧ as a sym-
bol) or an or-node (with ∨ as a symbol)

Exactly one of the nodes with outdegree 0 is labeled as the output
node.
The depth of a boolean circuit is the maximum length of a path from an input
node to the output node. Assigning boolean values, i.e., values in {0, 1}, to
the input nodes determines the value of every node in the obvious way: a
negation node turns 0 to 1 and vice versa, an end-node outputs 1 if and only
if all its inputs are 1, and an or-node outputs 1 if and only if it receives at least
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one 1. If the value of the output node is 1 for an assignment α on the input
variables, then we say that assignment α satisfies the circuit. It can be easily
checked, in polynomial time, if a specific assignment satisfies a given circuit.
We say that a circuit C is satisfiable if there exists an assignment on its input
variables that satisfies C, and the corresponding problem is the following:

Circuit Satisfiability
Input: A boolean circuit C.
Question: Is circuit C satisfiable?

It is not hard to prove that Circuit Satisfiability is NP-complete, as 3-SAT
is polynomially reducible to it (we do not describe the reduction in detail but
we give an example in Figure 2.7). By defining the weight of an assignment to
be the number of input nodes receiving value 1 from the assignment, we can
define a parameterized version of Circuit Satisfiability:

Weighted Circuit Satisfiability (WCS)
Input: A boolean circuit C.
Parameter: A positive integer k.
Question: Is there an assignment of weight k that satisfies C?

The WCS problem can be solved in polynomial time for every fixed k using
brute force, i.e., by trying all the O(nk) assignments of weight k and checking
for each of them whether it satisfies the given circuit. The problem, though,
does not seem to be fixed-parameter tractable as many "hard" parameter-
ized, such as Clique, Independent Set and Dominating Set (all with the natural
parameterization) can be reduced to it.

For a concrete example, we give a reduction from Independent Set to WCS:
Let G = (V,E) be a graph, k be a positive and let (G, k) be an input for the
Independent Set problem. We construct one input node and one negation
node for every vertex of G. We also add an or-node with indegree 2 for every
edge in G. Finally, we add an and-node with indegree |E|. We connect every
input node with its corresponding negation node and every or-node with the
two negation nodes that correspond to the two vertices of G which form the
edge related to this particular or-node. Finally, we connect all or-nodes to the
and-node and we add an output node that gives the value of the and-node as
the output of the circuit. (see also Figure 2.9).
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x1 x2 x3

¬ ¬ ¬
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∧

out

Figure 2.7: The circuit C that corresponds to the 3-CNF formula ϕ = (x1 ∨
¬x2 ∨¬x3)∧ (¬x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨ x3). It is easy to see that, circuit
C is satisfiable if and only if formula ϕ is satisfiable.

x y z u v

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
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∧

x

zy

u v

Figure 2.8: At the right: A graph with G with five vertices and eight edges. At
the left: A decision circuit C (constructed from G as described by the reduc-
tion) satisfied by the independent sets of G. More specifically an independent
set of size k in G corresponds to a satisfying assignment of weight k for C.
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The W-hierarchy. We can define the levels of the W-hierarchy by restricting
the WCS problem to different classes of decision circuits. For this, we distin-
guish between the small
nodes and the large
nodes of a circuit, where a node
is characterised as small when its indegree is at most 2 and large otherwise.
The weft of a circuit is the maximum number of large nodes on a path from an
input node to the output node.

For a class of circuits C, we denote by WCS[C] the restriction of the problem
WCS where the input circuit is a member of C. We denote by Ct,d the class
of all circuits with weft at most t and depth at most d. We are now ready to
define the levels of the W-hierarchy:

Definition 2.2.2. For
a
positive
integer t, we
say
that
a
parameterized
problem
Π belongs
to
 the
class W[t] if
 there
 is
a
parameterized
reduction
 from Π to
WCS[Ct,d] for
some
positive
integer d.

Corollary 2.2.1. Independent Set, parameterized
by
the
size
of
the
solution,
is
in W[1].

Proof. The corollary follows easily from Definition 2.2.2 and the reduction from
Independent Set to WCS[C1,3] (as it was described previously and depicted in
Figure 2.9).

It is also possible to prove that any problem in W[1] can be reduced to
Independent Set but the proof (given in [35]) is nontrivial and out of the scope
of this thesis. Many other well-known problems can be proven to be complete
for some level of the W-hierarchy. We give some of the most important in the
next theorem. For a more extensive introduction to the W-hierarchy and fixed-
parameter intractable problems, we refer the reader to [42], [36], and [22]. We
give some complete problems for the first two levels of the W-hierarchy.

Theorem 2.2.1 ([33], [32], [35]). Dominating Set, Set Cover, and Hitting Set
are W[2]-complete. Independent Set and Clique are W[1]-complete.

2.2.4 Kernelization
Another fundamental concept in the theory of Parameterized Complexity is

kernelization. The idea of preprocessing, or data
reduction, was known several
years before the development of the theory of Parameterized Complexity. This
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idea can be roughly described as follows: Efficiently solve the "easy" parts
of the instance (or even get rid of irrelevant parts) and reduce it to its hard
"core" structure (which is hopefully much smaller than the initial instance) and
then employ a slower (even exponential) exact algorithm to solve the reduced
instance and obtain an answer.

But how to measure the effectiveness of such preprocessing routines?
Suppose that we define such an algorithm as one that, given an instance, pro-
duces in polynomial time an equivalent instance that is at least one bit smaller
than the initial one. Then, the existence of such an algorithm for an NP-hard
problem would imply that P = NP, making the existence of such preprocessing
routines for any NP-hard problem very unlikely.

In the framework of Parameterized Complexity a robust definition of pre-
processing was given, by demanding that instances that are large compared
to their parameter should be "shrunk", while instances that are small com-
pared to the size of their parameter do not need any further preprocessing.
Next we provide some formal definitions and we start by giving, once again,
the formal definition of kernelization.

Definition 2.2.3. Let L ⊆ Σ∗×N be
a
parameterized
problem. A kernelization
(or kernel)
for
the
parameterized
problem L is
an
algorithm
that
given
an
in-
stance (I, k) outputs, in
time
polynomial
in |I| and k, an
instance (I ′, k′) such
that

i) (I, k) ∈ L if
and
only
if (I ′, k′) ∈ L,

ii) |I ′| is
bounded
by
a
computable
function f in k, and

iii) k′ is
bounded
by
a
computable
function g in k.

The
output (I ′, k′) of
the
kernelization
is
called
a kernel and
the
function f is
the
size
of
the
kernel. We
say
that
a
kernel
is polynomial (resp. linear)
if f is
a
polynomial
(resp. linear)
function.

Next, we present the proof of a, somewhat surprising result, which states
that a parameterized problem is in FPT if and only if it admits a kernel. This
means that kernelization is an equivalent way of defining fixed-parameter tractabil-
ity.
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Theorem 2.2.2. A parameterized
problem Q is
in FPT if
and
only
if
it
admits
a
kernelization
algorithm.

Proof. Suppose that Q admits a kernelization algorithm, say A1, and let B1
be an algorithm for solving Q that runs in time h(n), where n is the size of the
input. We define algorithm B2, which on input (I, k) operates as follows: It
runs algorithm A1 as a subroutine and obtains an equivalent instance (I ′, k′),
where |I ′| ≤ f(k) and k′ ≤ g(k) for some polynomial functions f and g. Then
it runs algorithm B1 with (I ′, k′) as an input and outputs the its answer. It is
easy to see that the running time of B1 is O

(
h(f(k) + g(k)

)
, which classifies

problem Q in FPT.
Suppose now that Q is in FPT. Then, there exists an algorithm A2 decid-

ing whether (I, k) ∈ Q in time f ′(k) · |I|c, for some computable function f ′

and a constant c. A kernelization algorithm for Q operates as follows: It runs
algorithm A2 on (I, k) for at most |I|c+1 steps. If A2 terminates it returns the
obtained answer (YES or NO) as the output. If A2 does not terminate in |I|c+1

steps, then it returns (I, k) itself as an output. Observe that, A2 not terminat-
ing in |I|c+1 steps means that f ′(k) · |I|c > |I|c+1, which gives that |I| < f ′(k).
Thus, we have that |I| + k ≤ f ′(k) + k and the output of the kernelization
algorithm on this case is a kernel of size at most f ′(k) + k.

In order to make the notion of a kernelization more clear, we give a simple
kernel for the natural parameterization of the Vertex Cover problem.

Example 1 (Vertex Cover). Let G be
a
graph
and S ⊆ V (G). We
say
that S is
a vertex cover of G if
every
edge
of G has
at
least
one
endpoint
in S and
we
say
that
its size is |S|. Remember
that
the p-Vertex Cover problem
asks, given
a
graph G and
a
positive
integer k as
input, to
check
whether
there
exists
a
vertex
cover
of
size k in G.

We
will
describe
a
kernelization
algorithm
for p-Vertex Cover. We
start
by
giving
two reduction rules that
will
be
used
as
steps
of
the
algorithm:

• R1. IfG contains
an
isolated
vertex v (a
vertex v with degG(v) = 0), delete
v from G. The
new
instance
is (G \ v, k).

• R2. If
there
is
a
vertex v in G such
that degG(v) ≥ k + 1, delete v from G

and
decrement
the
value
of
the
parameter
by
one. The
new
instance
is
(G \ v, k − 1).
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The
application
of
the
reduction
rules R1 and R2 on
an
input (G, k) results
in
equivalent
instances
for
the p-Vertex Cover problem: Obviously, an
isolated
vertex
covers
no
edges
of G so
it
will
never
be
in
a
vertex
cover
and
thus
it
can
be
removed. Additionally, if G contains
a
vertex v of
degree
more
than k, then
v should
be
in
every
vertex
cover
of
size
at
most k (otherwise
all
the, at
least
k + 1, neighbours
of v are
needed
to
cover
all
the
edges
adjacent
to v).

The
exhaustive
application
of
rules R1 and R2 completely
removes
the
ver-
tices
of
degree 0 and
degree
at
least k + 1. Based
on
the
observation
that, a
set
of k vertices
can
cover
at
most k · d edges
in
a
graph
of
maximum
degree
d, we
prove
the
following
lemma:

Lemma 2.2.1. If (G, k) is
a yes-instance
for p-Vertex Cover and
reduction
rules
R1 and R2 are
not
applicable
to G, then |V (G)| ≤ k2 + k and |E(G)| ≤ k2.

Proof. As rule R1 is not applicable, G contains no isolated vertices, thus for
any vertex cover S of G, every vertex in G \ S is adjacent to some vertex of
S. As rule R2 is not applicable, every vertex of G has degree at most k. It
follows that |V (G\S)| ≤ (k+1)|S| ≤ k2+k, where the last inequality holds as
the hypothesis of (G, k) being a yes-instance implies the existence of a vertex
cover S of size at most k in G. Finally, any vertex of a vertex cover can cover
at most k edges of G, thus |E(G)| ≤ k · k = k2.

We
are
now
in
the
position
to
give
our
last
reduction
rule:

• R3. Let (G, k) be
an
instance
such
that
rules R1 and R2 are
not
appli-
cable. If k > 0 and |V (G)| > k2 + k or |E(G)| > k2, then (G, k) is
a
no-instance
for p-Vertex Cover.

We
have
built
up
to
the
following

Theorem 2.2.3. Problem p-Vertex Cover admits
a
kernel
with O(k2) vertices
and O(k2) edges.

Proof. We describe the steps of the kernelization algorithm: Apply reductions
rules R1 and R2 until they cannot be applied anymore. Apply rule R3 on the
reduced instance, say (G′, k′), and output a trivial no-instance if |V (G′)| >
k2+k or |E(G′)| > k2 and (G′, k′) otherwise. The correctness of the algorithm
is obvious from the previous analysis.
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The kernel for p-Vertex Cover that we just described is quadratic (as its
size is quadratic with respect to the parameter k). Of course, we can always
wonder if we can do better: Is it possible to construct a linear kernel for the
same problem? A kernel with 2k vertices and O(k2) edges has been con-
structed (for more on kernelization algorithms for Vertex Cover see [1], [16],
[14]) but there is complexity-theoretic evidence that these sizes cannot be
improved any further. One of the most recent achievements of Parameter-
ized Complexity, which will be briefly discussed in the subsequent section,
is the construction of a theoretical framework for proving kernelization lower
bounds.

2.2.5 Kernelization
lower
bounds
As we have proved in the previous section (Theorem 2.2.2), the existence of

any kernelization algorithm is equivalent to the existence of a fixed-parameter
algorithm for a problem. But is every kernelization algorithm good? It would
be ideal if a linear (or even polynomial) sized kernel was guaranteed for every
fixed-parameter tractable problem. All kind of techniques (even brute force)
could then be applied to the shrunk instance, leading to an efficient solution.
Unfortunately, there are many important parameterized problems which, un-
der some plausible complexity theoretic assumptions, admit no polynomial
kernels. We will gradually build to some of the main theorems starting with a
concrete example, the natural parameterization of the Longest Path problem

p-Longest Path
Input: A graph G.
Parameter: A non-negative integer k.
Question: Is there a path of length k in G?

Assume that this problem admits a kernel with at most k3 vertices, i.e.,
there is an algorithm A that, given an instance (G, k) for p-Longest Path, out-
puts an equivalent instance (G′, k′) such that |V (G′)|, k′ ≤ k3.

It is easy to observe that, the Longest Path problem has the following prop-
erty regarding connectivity: If our input graph G is not connected then we have
a positive answer if and only if we have a positive answer for at least one of
the connected components of G.
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Suppose we are given k7 instances with the same parameter k, denoted by
(G1, k), (G2, k), . . . , (Gk7 , k), and let (H, k) be a new instance where H is the
disjoint union of G1, G2, . . . , Gk7 . From our previous observation, it is clear that
the answer to (H, k) is equal to the logical OR of the answers to the instances
(G1, k), (G2, k), . . . , (Gk7 , k).

By applying the kernelization algorithm A to (H, k) we get an equivalent
instance (H ′, k′) with |V (H ′)|, k′ ≤ k3. We can encode H ′ in

(
k3

2

)
bits and

k′ in 3 log k bits, giving a total of roughly k6/2 + 3 log k bits for the encoding
of our kernel (H ′, k′). But this number is even less than the number of the k7

instances we started from, meaning that there exists at least one instance that
we discarded and that during the kernelization process we "forgot" information
about most of the instances. But is it possible, to evaluate and safely discard
in polynomial time, instances of an NP-hard problem such as the Longest
Path?

Next we provide some evidence that the behaviour of such a kernelization
algorithm would indeed be suspicious, as we will link our skepticism to some
well-established complexity-theoretic assumptions. We proceed with some
definitions.

Definition 2.2.4 (co-NP/poly). We
say
that
a
language L belongs
to
the
com-
plexity
class co-NP/poly if
there
exists
a
Turing
machine M and
a
sequence
of
strings (an)n=0,1,2,... (known
as
the advice)
such
that:

• Machine M , when
given x with |x| = n as
an
input, has
access
at an
and
has
to
decide
whether x ∈ L. Machine M works
in co-deterministic
polynomial time, meaning
that x ∈ L if
and
only
if
the
algorithm
derives
this
conclusion
for
every
possible
run.

• The
size
of
the
advice
is
polynomially
bounded
by
the
size
of
the
input,
i.e. |an| ≤ p(n) for
some
polynomial p(·).

Note
that
the
advice
strings an depend
only
on
the
size
of
the
input
or, in
other
words, inputs
of
the
same
size
come
with
the
same
advice
string.

Definition 2.2.5. Let L,R ⊆ Σ∗ be
two
languages. An OR-distillation of L into
R is
an
algorithm
that, given
a
sequence
of
strings x1, x2, . . . , xt ∈ Σ∗, runs
in
time
polynomial
in

∑t
i=1 |xi| and
outputs
one
string y ∈ Σ∗ such
that

1. |y| ≤ p(maxt
i=1 |xi|) for
some
polynomial p(·).
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2. y ∈ R if
and
only
if
there
exists
at
least
one
index i such
that xi ∈ L.

The
second
condition
asserts
that
the
answer
to
the
output, y, instance
of R
is
equivalent
to
the
logical
OR of
the
answers
to
the
input
instances
of L.

We are now ready to state and prove the crucial result of this section:

Theorem 2.2.4. Let L,R ⊆ Σ∗ be
 two
 languages. If
 there
 exists
 an
OR-
distillation
of L into R, then L ∈ co-NP/poly.

Proof. We can assume, without loss of generality, that Σ = {0, 1}. LetA be an
OR-distillation of L into R and p(·) the polynomial (without loss of generality,
we assume that it is nondecreasing) that bounds the length of the output of
A.
Let K = p(n) so that algorithm A when running on a sequence of strings each
of length at most n, outputs a string of length at most K. Let also t = K + 1.
Thus, algorithm A maps the set D = (Σ≤n)t of t-tuples of input strings into
the set Σ≤K .

Let A = L ∩ Σ≤n (the yes-instances of L of length at most n) and A =

Σ≤n \L (the no-instances of L of length at most n). Similarly, let B = R∩Σ≤K

and B = Σ≤K \ R. From the second condition in 2.2.5 we have that A maps
(A)t into B and D \ (A)t into B.

We will say that a string x ∈ Σ≤n is covered by a string y ∈ Σ≤K if there
exists a t-tuple (x1, x2, . . . , xt) ∈ D such that x = xi for some i ∈ {1, . . . , t},
and A(x1, x2, . . . , xt) = y. We will say that a set X ⊆ Σ≤n is covered by a
set Y ⊆ Σ≤K if every element of X is covered by at least one element of Y .
The following claim, which is the main argument of the proof, states that there
exists a "small" subset of B that covers all the elements of A.

Claim 2.2.1. There
is
a
set Y ⊆ B such
that |Y | ≤ n+ 1 and Y covers A.

Proof
of
claim. We will consecutively choose strings y1, y2, y3, . . . ∈ B until
(after at most n steps) the set Yi = {y1, y2, . . . , yi} covers A. Let Si ⊆ A be
the strings that are not covered by Yi. We initially have that S0 = A. Our
construction will guarantee that |Si| ≤ |A|

2i , for every i = 0, 1, . . .. Obviously,
|S0| = |A| ≤ |A|

20 . Since A ⊆ Σ≤n and therefore |A| ≤ 2n+1, the construction
will terminate after at most n+ 1 steps.
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We now describe how we choose a string yi based on the knowledge of
Yi−1. As algorithm A maps (Si−1)

t ⊆ (A)t into B and |B| ≤ |Σ≤K | < 2K+1,
there exists (by the pigeonhole principle) some y ∈ B such that

|A−1(y) ∩ (Si−1)
t| ≥ |(Si−1)

t|
2K+1

=

(
|Si−1|

2

)t

.

If we set yi = y, then every string from every tuple from the set A−1(y) ∩
(Si−1)

t is contained in Si−1\Si since it gets covered by y. Therefore,A−1(y)∩
(Si−1)

t ⊆ (Si−1 \ Si)
t and(

|Si−1|
2

)t

≤ |A−1(y) ∩ (Si−1)
t| ≤ |(Si−1 \ Si)

t| = |Si−1 \ Si|t.

Hence, we get that |Si−1 \ Si| ≥ |Si−1|
2 , which gives |Si| ≤ |Si−1|/2 and

|Si| ≤ |A|
2i (which is what we want) follows by induction. As the numbered

of uncovered elements gets halved after every step, the construction will ter-
minate after at most n+ 1 steps and Y will be the current set Yi.

It remains to show how Claim 2.2.1 implies Theorem 2.2.4. As we want
to prove that L ∈ co-NP/poly, we need to construct (a) an algorithm deciding
membership in L in co-nondeterministic polynomial time and (b) a sequence
of advice strings an for n = 0, 1, 2, . . ., that will be given to the algorithm along
with an input of size n.

Advice an will be an encoding of the covering set Y which is of polynomial
size as Y contains at most n+1 strings, each of length at most K = p(n). The
algorithm works as follows: Given an input x with |x| = n, it tries to prove that
X /∈ L. If this is the case, then there exists a tuple (x1, . . . , xt) ∈ D such that
x = xi for some i ∈ {1, . . . , t} and A(x1, . . . , xt) = y ∈ Y . The algorithm co-
nondeterministically guesses this tuple, computes A(x1, . . . , xt) and checks
whether the result is contained in the advice string an. If x /∈ L, then there
exists at least one guess for which a string in Y will be computed. This string
is a certificate that x /∈ L since Y ⊆ B. If x ∈ L, then by the second condition
of the definition of an OR-distillation, every tuple containing x is mapped to a
string contained in B, so outside of Y whose encoding is the advice string an.
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Now it is time to study the consequences of the theorem that we just proved:

Corollary 2.2.2. If
an NP-hard
language L ⊆ Σ∗ admits
an
OR-distillation
into
some
language R ⊆ Σ∗, then NP ⊆ co-NP/poly.

Proof. Let L′ be a language in NP. We can check if x ∈ L′ in the following
way: We apply the NP-hardness reduction from L′ to L and obtain a string,
say f(x). We can now decide whether f(x) ∈ L in co-NP/poly as implied by
Theorem 2.2.4. As x ∈ L′ iff f(x) ∈ L, we have constructed an algorithm
resolving membership in L′ in co-NP/poly and therefore NP ⊆ co-NP/poly.

But why is NP ⊆ co-NP/poly considered unlikely? From a complexity-
theoretic point of view, the assumption that NP ⊈ co-NP/poly may be viewed
as a stronger variant of the NP ̸= co-NP hypothesis. It is known that NP ⊆
co-NP/poly implies that ΣP

3 = PH, i.e., the polynomial hierarchy collapses to
its third level. Even though this collapse is not as dramatic as P = NP, it is
widely considered implausible.

But we have not yet stated anything about parameterized languages. How
can these results be translated to kernelization lower bounds for parameter-
ized problems?

Definition 2.2.6. Let Σ be
a
finite
alphabet. An
equivalence
relation R on
the
set
of
strings Σ∗ is
called
a polynomial equivalence relation if
the
following
two
conditions
hold:

1. There
is
an
algorithm
that
given
two
strings x, y ∈ Σ∗ decides
whether x
and y belong
to
the
same
equivalence
class
in
time
polynomial
in |x|+|y|.

2. Relation R restricted
in Σ≤n has
at
most p(n) equivalence
classes, for
some
polynomial p(·).

Definition 2.2.7. LetL ⊆ Σ∗ be
a
language
andQ ⊆ Σ∗×N be
a
parameterized
language. We
say
that L cross-composes into Q, if
there
exists
a
polynomial
equivalence
relation R and
an
algorithm A (the cross composition), satisfy-
ing
the
following
conditions: Algorithm A, when
given
as
 input
a
sequence
x1, x2, . . . , xt of R-equivalent
strings, runs
in
time
polynomial
in

∑t
i=1 |xi|, and

outputs
an
instance (y, k) ∈ Σ∗ × N such
that:

1. k ≤ p(maxt
i=1 |xi|+ log t), for
some
polynomial p(·) and
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2. (y, k) ∈ Q if
and
only
if
there
exists
at
least
one
index i such
that xi ∈ L.

Note
that
this
definition
is
similar
to
the
one
of
OR-distillation, but
here
it
is
only
the
output
parameter
that
has
to
be
"small", while
the
string y can
even
have
the
size
of
the
concatenation
of
the
input
instances.

We need one last definition before stating the main theorem of this section.

Definition 2.2.8. A polynomial compression of
a
parameterized
languageQ ⊆
Σ∗×N into
a
language R ⊆ Σ∗, is
an
algorithm
that
takes
as
input
an
instance
(x, k) ∈ Σ∗×N, works
in
time
polynomial
in |x|+k, and
outputs
a
string y such
that:

1. |y| ≤ p(k), for
some
polynomial p(·) and

2. y ∈ R if
and
only
if (x, k) ∈ Q.

This
definition
 is
similar
 to
the
one
of
a
kernel, and
 indeed
a
polynomial
kernel
 is
also
a
polynomial
compression
by
treating
the
output
kernel
as
an
instance
of
the
unparameterized
version
of Q. The
main
difference
between
the
two
is
that
a
polynomial
compression
is
allowed
to
output
an
instance
of
any
language R, even
an
undecidable
one.

In what follows, we prove that given a cross composition of a language L ∈
Σ∗ into a parameterized language Q ⊆ Σ∗ ×N and a polynomial compression
of Q into some language R, we can construct an OR-distillation of L into R.
The proof, despite being a bit lengthy, does not contain any important ideas
and is just a careful application of the definitions.

Theorem 2.2.5. If
an NP-hard
 language L cross-composes
 into
a
parame-
terized
language Q, then Q does
not
admit
a
polynomial
compression
unless
NP ⊆ co-NP/poly.

Proof. Let A be a cross-composition of L into Q, p0(·) be the polynomial
bounding the parameter of the output instance of A and let R be the poly-
nomial equivalence relation used in the cross-composition.

Assume also that Q admits a polynomial compression, C, into some lan-
guageR and let OR(R) be the language consisting of strings of the form s1#s2#
. . . #sq, such that si ∈ R for at least one index i ∈ {1, . . . , q} (# is a special
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character that is added to Σ). We will conclude that NP ⊆ co-NP/poly by
constructing an OR-distillation of L into OR(R) and using Corollary 2.2.2.

Let x1, x2, . . . , xt be the sequence of input strings and let n = maxt
i=1 |xi|.

We first apply some (polynomial) preprocessing: find and remove all duplicates
in the sequence x1, x2, . . . , xt. The number of the remaining strings is at most
the number of different string over Σ of length at most n. Therefore,

t =
n∑

i=0

|Σ|i ≤ |Σ|n+1.

Hence, after the removal of duplicates, we have that log t = O(n).

Partition the sequence x1, x2, . . . , xt into equivalent classes, say C1, C2, . . . , Cq,
with respect to the relation R. By the Definition 2.2.6 of a polynomial equiv-
alence relation, this can be done in polynomial time and q ≤ p1(n), for some
polynomial p1(·).

For j = 1, 2, . . . , q, apply the cross-composition A to the strings that com-
prise the equivalence class Qj , obtaining an instance (cj , kj) such that kj ≤
p0(maxx∈Cj |x|+ log |Cj |), polynomially bounded in n and log t, and (cj , kj) ∈
Q if and only if there exists some x ∈ Cj such that x ∈ L. As t = O(n), there
exists some polynomial p2(·) such that kj ≤ p2(n), for every j ∈ {1, 2, . . . , q}.

Now apply the compression algorithm C to each instance (cj , kj), thus ob-
taining a string sj such that sj ∈ R if and only if (cj , kj) ∈ Q. As kj ≤ p2(n)

and |sj | ≤ p3(kj) for some polynomial p3(·), we infer that |sj ≤ p4(n) for some
polynomial p4(·).

We conclude the construction by merging all strings sj into one instance
s = s1#s2# . . . #sq. It is clear that, s ∈OR(R) if and only if there exists some
i ∈ {1, 2 . . . , t} such that xi ∈ L. This means that the second condition in the
Definition 2.2.5 of OR-distillation is satisfied. For the first condition, we have
that q ≤ p1(n) and |sj | ≤ p4(n) and therefore, |s| ≤ p1(n) · (p4(n) + 1)− 1 (for
a visualisation of the proof, see Figure ??

As we have already discussed, polynomial compression can be replaced
by polynomial kernel in the previous theorem, making it a useful tool for prov-
ing kernelization lower bounds for NP-hard problems (under the assumption
NP ⊈ co-NP/poly).
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x1 x2 x3 x4 x5 x6 xt−1xt−2 xt

A AA

L

C1 C2 Cq

(c1, k1) (c2, k2) (cq, kq)Q

C C C

. . .

. . .

s1 s2 sq. . .

s = s1#s2# . . .#sq

R

OR(R)

Figure 2.9: This figure gives an intuition about how we can create an OR-
distillation for language L, given a cross-composition A of L into (the param-
eterized language) Q and a polynomial compression C of Q into the language
R.

We conclude this section by applying Theorem 2.2.5 for (formally now)
proving that it is unlikely that p-Longest Path admits a polynomial kernel.

Example 2. We
will
describe
a
cross
composition
of
 the NP-hard
problem
Hamilton Path (which, given
a
graph G, asks
whether
there
exists
a
path
in G

that
meets
all
of
its
vertices)
to
the
parameterized
problem p-Longest Path:
For
the
relation R, we
put
into
one
equivalence
class, say C0 all
the
strings
of
Σ∗ that
do
not
encode
any
graph
and
we
partition
the
remaining
instances
with
respect
to
the
number
of
vertices
of
the
graph, denoting
by Cn the
class
that
includes
the n-vertex
graph, for
every n ≥ 1.

The
cross-composition
algorithm
when
given
a
sequence
of
graphs
in C0,
returns
a
trivial no-instance
for
the p-Longest Path. Given
a
sequence
of n-
vertex
graphs, it
returns
the
encoding
of
their
disjoint
union
together
with
the
parameter k = n.

It
is
not
hard
to
construct
an
encoding
such
that
condition 1 of
Definition
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2.2.7 holds. Condition 2 is
satisfied
as
well, as
the
disjoint
union
of
any
number
of n-vertex
graphs
has
an
path
on n vertices
if
and
only
if
at
least
one
of
the
input
graphs
contains
a
Hamiltonian
path.

It turns out that we can define AND-distillation by replacing condition 2 in
Definition 2.2.5 with the requirement that y ∈ R if and only if for all i we have
xi ∈ L. Similarly, AND-cross-composition can be defined by replacing con-
dition 2 in Definition 2.2.7 by requiring that (y, k) ∈ Q if and only if if for all i
we have xi ∈ L. It is not hard to prove an analogue of Theorem 2.2.5 where
OR-distillations are replaced by AND-distillations. However, the arguments in
the proof of Theorem 2.2.4 break apart when trying to translate them to the
AND-setting. Fortunately, a, much more difficult, proof for this appears in [37].
We will give the formal definitions in Section 7 where we prove that it is un-
likely that Cyclability, parameterized by k, admits a polynomial kernel when
restricted to the class of planar graphs.

2.3 Monadic
second-order
logic

One way to classify a computational problem in a complexity class (either
a classical or a parameterized one) is to place it in the framework of Logic and,
more precisely, to express the problem in the formalism of some specific lan-
guage in the framework of Logic. One of the most well-known results, which
illustrates this parallelism between logic and complexity (the main subject of
descriptive
complexity
theory), is the following theorem which was proved by
Ronald Fagin in his doctoral thesis in 1973 (also appears in [75]).

Theorem 2.3.1 (Fagin's Theorem). The
class
of
all
graph-theoretic
properties
expressible
in
existential
second-order
logic
is
precisely NP.

We do not go into any further details for explaining Fagin's theorem as it is
not directly related to this thesis. We mention it because we think that is can
work as an introduction to the concept of representing a problem as a formula
in the frame of some logic language.

We will instead present a result, namelyCourcelle's
theorem, that is strongly
related to Parameterized Complexity Theory and is similar to Fagin's theorem,
in the sense that it exposes the correlation between a variant of second-order
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logic and the class FPT (a significant difference is that Courcelle's theorem is
algorithmic and is considered to be the archetype of algorithmic metathorems
[20]). For doing so, we next present a brief description of Monadic Second-
Order Logic (shorter MSO2) for graphs.

Monadic
Second-Order
Logic. The syntax of Monadic
Second
Order
Logic
(MSO2) requires an infinite number of individual variables for vertices and edges
(we usually use letters x, y, z. . . .) and an infinite number of set variables for sets
of vertices and sets of edges (we usually use capital letters X,Y, Z, . . .). It also
includes the logical connectives ∧ (conjunction), ∨ (disjunction), ¬ (negation)
(we can also include→ (implication) and↔ (bi-implication) to make the formal-
ism simpler when writing formulas) and the quantifiers ∃ (existential
quantifier)
and ∀ (universal
quantifier) that can be applied to the variables. MSO2 addi-
tionally includes the following five binary relations:

1. u ∈ U , where u is a vertex variable, U is a vertex-set variable and the
interpretation is the obvious.

2. d ∈ D, where u is a edge variable, D is a edge-set variable and the
interpretation is the obvious.

3. inc(d, u), where d is an edge variable, u is a vertex variable and the
interpretation is that the edge d is incident on the vertex u.

4. adj(v, u), where v and u are vertex variables and the interpretation is that
v and u are adjacent vertices.

5. x = y (resp. X = Y ) and the interpretation is equality of variables (resp.
set variables).

The semantics of MSO2 are defined in the obvious way according to the inter-
pretations of the previous binary relations.

Let π be a graph property, G be a graph and G be the class of all graphs. If
G has property π we write π(G). We say that π is expressible
in MSO2 if there
exists some MSO2 formula ϕπ such that

(∀G ∈ G) [G |= ϕπ ⇔ π(G) ]
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To make this definition more clear we give an example of an MSO2 expressible
graph property.

Example 3 (3-colourability). A graph G = (V,E) is
called 3-colourable if
its
vertex
set V can
be
partitioned
into
three
subsets X1, X2, X3 such
that
there
exists
no
edge e = {u, v} ∈ E such
that u, v ∈ Xi for
some i ∈ {1, 2, 3}, i.e.
if
we
consider
the
vertices
of X1, X2, X3 to
have
three
distinct
colours
there
exists
no
bichromatic
edge
in G.

To
express
this
property
in MSO2, it
is
sufficient
to
quantify
the
existence
of
three
subsets X1, X2, X3 which
form
a
partition
of V and
each
of
them
is
an
independent
set.

3colourability = ∃X1,X2,X3⊆V partition(X1, X2, X3)

∧ indp(X1) ∧ indp(X2) ∧ indp(X3)

In
order
for
the 3colourability formula
to
be
short
and
not
too
involved, we
used
two
auxiliary
subformulas, namely partition (verifying
that (X1, X2, X3)

is
a
partition
of
the
vertex
set)
and indp (verifying
that
a
given
vertex
set
is
an
independent
set)
which
we
define
as:

partition(X1, X2, X3) = ∀v∈V

[
(v ∈ X1 ∧ v /∈ X2 ∧ v /∈ X3)

∨ (v /∈ X1 ∧ v ∈ X2 ∧ v /∈ X3)

∨ (v /∈ X1 ∧ v /∈ X2 ∧ v ∈ X3)
]

indp(X) = ∀u,v∈V ¬adj(u, v)

It
is
easy
to
confirm
that
these
two
last
formulas
express
the
desired
properties
and 3colourablity formula
is
an
expression
of
the
property
of
a
graph
being
3-colourable, in MSO2.

We are now in the position to state the celebrated theorem of Courcelle
(see also [7] and [13])

Proposition 2.3.1 (Courcelle's theorem [21, 20]). Given
 a
 graph G and
 an
MSO2 formula ϕ describing
a
graph
property π, and
parameterizing
by tw(G)

(the
treewidth
of G)
and
by |ϕ| (the
size
of
the
formula ϕ), there
exists
a
com-
putable
function f such
that
it
can
be
determined
in
time f(tw(G), |ϕ|) · nO(1)

whether
graph G has
property π.
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The intuition behind Courcelle's theorem is that, if the property of interest
can be expressed in a special fragment of second-order logic, namely MSO2,
then the problem of deciding whether a graph G has this property admits an
algorithmic solution where any"heavy" time requirements depend only on the
treewidth of G (the size of the formula can be ignored because it is usually
small) and the contribution of the size of the whole input can be restricted to
be just linear. On the other hand, function f is huge (and this is unavoidable
unless P=NP, as indicated by Gröhe and Frick in [44]) and the theorem cannot
directly be used, at least in its full strength, for practical purposes.

There have been some efforts to construct practical algorithms for imple-
menting Courcelle's theorem (see [64], [65] for more details and [62] for some
evaluation data) and the future seems promising. For further details on the
topic, we refer the reader to Chapter 13 of [36] and to Chapter 7 of [22].

The reason why we introduced the Monadic Second Order Logic and pre-
sented the theorem of Courcelle, is that Cyclability is MSO2-expressible (as
we prove in Chapter 4) and therefore is in FPT when parameterized by the
treewidth of the input graph. We remind that being able to solve Cyclability on
graphs of bounded treewidth is a crucial ingredient of our algorithm.

However, the heavy time requirements that arise from the use of Cour-
celle's theorem would render our algorithm completely impractical, even though
it would still be an FPT-algorithm. That is why, after giving a MSO2 formula
that expresses the property of a graph being k-cyclable, we also construct (in
Chapter 4) a dynamic programming routine for solving the Cyclability problem
given a tree decomposition of the corresponding graph. This allows the final
running time of our algorithm to be more attractive.

2.4 Cycles, walls
and
annuli

As we have already mentioned, when we gave an overview of our algorithm
for solving Cyclability on planar graphs (Section 1.3 of Chapter 1), we deal with
graphs having "large" treewidth by finding either a colour irrelevant vertex or
a problem irrelevant vertex. In order to do this we have to exploit that the
treewidth being large implies the existence of a large grid-minor in our graph.
This in turn, implies the existence of a large bidimensional subgraph (a wall)
and of another bidimensional structure, which we call railed
annulus.
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In this section, we give formal definitions for this structures, building to-
wards Chapter 3, where we prove some combinatorial results about cyclic
linkages which we uses later (in the analysis of the algorithm) to justify the
existence of irrelevant vertices.

Concentric
cycles. Let G be a graph embedded in the sphere S0 and let
D = {D1, . . . , Dr}, be a sequence of closed disks in S0. We call D concentric
if D1 ⊆ D2 ⊆ · · · ⊆ Dr and no point belongs to the boundary of two disks in
D. We call a sequence C = {C1, . . . , Cr}, r ≥ 2, of cycles of G concentric if
there exists a concentric sequence of closed disks D = {D1, . . . , Dr}, such
that Ci is the boundary of Di, i ∈ {1, . . . , r}. For i ∈ {1, . . . , r}, we set Ci = Di,

C̊i = Ci \ Ci, and Ĉi = G ∩ Di (notice that Ci and C̊i are sets while Ĉi is a
subgraph of G). Given i, j with i ≤ j − 1, we denote by Âi,j the graph Ĉj \ C̊i.
Finally, given a q ≥ 1, we say that a vertex set R ⊆ V (G) is q-dense in C if, for
every i ∈ {1, . . . , r − q + 1}, V (Âi,i+q−1) ∩R ̸= ∅.

It is not hard to observe (we give a formal proof in Chapter 3), that the
existence of a large grid-minor in a planar graph G implies that there exists an
embedding of G such that a large sequence of concentric cycles is formed.
Actually, these concentric cycles are crossed by paths forming what we call a
railed
annulus:

Railed
annulus. Let r ≥ 2 and q ≥ 1 be two integers and let G be a graph
embedded on the sphere S0. A (r, q)-railed
annulus in G is a pair (C,W) such
that C = {C1, C2, . . . , Cr} is a sequence of r concentric cycles that are all
intersected by a sequence W of q paths W1,W2, . . . ,Wq (called rails) in such
a way that ∪∪∪∪∪∪∪∪∪W ⊆ Â1,r and the intersection of a cycle and a rail is always
connected, that is, it is a (possibly trivial) path (see Figure 2.10 for an example).

As it is more convenient to work with subgraphs rather than minors, we
translate the existence of a large grid-minor in a planar graph G to the exis-
tence of a large subgraph, which we call a subdivided
wall, in G.

Walls
and
subdivided
walls. Let h be a integer and h ≥ 1. A wall
of
height
h is the graph obtained from a ((h + 1) × (2 · h + 2))-grid with vertices (x, y),

x ∈ {1, . . . , 2 · h + 4}, y ∈ {1, . . . , h + 1}, after the removal of the "vertical"
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Figure 2.10: A (10,15)-railed annulus.

edges {(x, y), (x, y + 1)} for odd x + y, and then the removal of all vertices
of degree 1. We denote such a wall by Wh. A subdivided
wall
of
height
h is
a wall obtained from Wh after replacing some of its edges by paths without
common internal vertices (see Fig. 2.12 for an example). The perimeter PW of
a subdivided wall W is the cycle defined by its boundary. Let C2 = PW and
let C1 be any cycle of W that has no common vertices with PW . Notice that
C = {C1, C2} is a sequence of concentric cycles in G. We define the compass
KW of W in G as the graph Ĉ2.

Layers
of
a
wall. Let W be a subdivided wall of height h ≥ 2. The layers of W
are recursively defined as follows. The first layer, J1, of W is its perimeter. For
i ∈ {2, . . . , ⌊h2 ⌋}, the i-th layer, Ji, of W is the perimeter of the subwall W ′ ob-
tained from W by removing its perimeter and repetitively removing occurring
vertices of degree 1. We denote the layer
set of W by JW = {J1, . . . , J⌊h

2 ⌋
}

Our last definition is a rather technical one that makes the treatment of
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concentric cycles easier. The tightness of a sequence of concentric cycles in
a plane graph implies that it cannot be extended into a bigger one by adding
another cycle of the graph, which lies in the interior of the outer cycle.

Tight
concentric
cycles. Let G be a graph embedded in the sphere S0. A
sequence C = {C1, . . . , Cr} of concentric cycles of G is tight in G, if

• C1 is surface
minimal, i.e., there is no closed disk D of S0 that is properly
contained in C1 and whose boundary is a cycle of G;

• for every i ∈ {1, . . . , r−1}, there is no closed disk D such that Ci ⊂ D ⊂
Ci+1 and such that the boundary of D is a cycle of G.

See Figure 2.11 for a an example of the tightness definition.

Figure 2.11: A sequence of three tight concentric cycles. The addition of any
of the dashed edges makes the sequence non-tight.
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Figure 2.12: A subdivided wall of height 9. The white squares represent the
subdivision vertices. The bold curves are its layers and the bold-dashed curve
is its perimeter.

Given a graph G we denote by gw(G) the maximum integer h for which G

contains a subdivided wall of height h as a subgraph. The next lemma follows
easily by combining results in [43],[53], and [79] and relates the treewidth of a
planar graph with the maximum height of a subdivided wall in it.

Lemma 2.4.1. If G is
a
planar
graph, then tw(G) ≤ 9 · gw(G) + 1.

We are now ready to proceed to the next chapter where we prove some
combinatorial results about cyclic linkages.
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CHAPTER3
COMBINATORICS OF CYCLIC LINKAGES

In this section, we generalize the notion of a linkage that was introduced by
Robertson and Seymour in [82]. Specifically, we introduce the notion of graph
linkages and study some combinatorial properties of a specific kind of graph
linkage, namely a cyclic
linkage. Cyclic linkages are important for us because
they represent the kind of structure we are looking for in a graph when trying
to estimate its cyclability.

Our goal is to find a relation between the existence of a unique (in a way)
cyclic linkage in a graph and the treewidth of this graph, proving an analogue
of the Unique linkage theorem (in [82]) of Robertson and Seymour, but for
cyclic linkages). This will enable us to justify the existence of irrelevant vertices
for the Cyclability problem on planar graphs, when the treewidth of the input
graph is sufficiently large.

3.1 Graph
linkages
and
cheap
graph
linkages
Graph
Linkages. Let G be a graph. A graph
linkage in G is a pair L = (H,T )

such that H is a subgraph of G without isolated vertices and T is a subset of
the vertices of H, called terminals of L, such that every vertex of H with degree
different than 2 is contained in T . The set P(L), which we call path
set
of the
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graph linkage L, contains all paths of H whose endpoints are in T and do not
have any other vertex in T . The pattern of L is the graph

(T,
{
{s, t} | P(L) contains a path from s to t in H

}
).

Two graph linkages of G are equivalent if they have the same pattern and
are isomorphic if their patterns are isomorphic. A graph linkage L = (H,T )

is called weakly
vital (reps. strongly
vital) in G if V (H) = V (G) and there is
no other equivalent (resp. isomorphic) graph linkage that is different from L.
Clearly, if a graph linkage L is strongly vital then it is also weakly vital. We call
a graph linkage L linkage if its pattern has maximum degree 1 (i.e., it consists
of a collection of paths), in which case we omit H and refer to the linkage just
by using L. We also call a graph linkage L cyclic
linkage if its pattern is a cycle.
For an example of distinct types of cyclic linkages, see Figure 3.1.

Notice that there is a critical difference between equivalence and isomor-
phism of linkages. To see this, suppose that L = (C, T ) is a cyclic linkage of
a graph G and let AG be the set of all cyclic linkages that are isomorphic to L,
while BG is the set of all cyclic linkages that are equivalent to L. Notice that
the cycles in the cyclic linkages of AG should meet the terminals in the same
cyclic order. On the contrary, the cycles of the cyclic linkages of BG may
meet the terminals in any possible cyclic ordering. Consequently AG ⊆ BG.
For example, if L = (C, T ) is the cyclic linkage of the graphs in Figure 3.1,
then |AG1 | = 1, |BG1 | = 1, |AG2 | = 1, |BG2 | = 12, |AG2 | = 4, |BG3 | = 28.

CGL-configurations. Let G be a graph embedded on the sphere S0. Then,
we say that a pairQ = (C,L) is aCGL-configuration of depth r if C = {C1, . . . , Cr}
is a sequence of concentric cycles in G, L = (H,T ) is a graph linkage in G,

and T ∩ V (Ĉr) = ∅, i.e., all vertices in the terminals of L are outside Cr. The
penetration of L in C, pC(L), is the number of cycles of C that are intersected
by the paths of L (when L = (C,S) is cyclic we will sometimes refer to the
penetration of L as the penetration of cycle C). We say that Q is touch-free if
for every path P ∈ L, the number of connected components of P ∩ Cr is not
1. See figure 3.2 for an example of a CGL-configuration.
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G3

v3

v4

v5

v1 v2

v3

v4

v5

v1 v2

G1

v3

v4

v5

v1 v2

G2

Figure 3.1: Three graphs G1, G2, and G3. In each graph the bold edges define
the cycle C = ({v1, . . . , v5}, {{v1, v2}, . . . , {v4, v5}, {v5, v6}}) where T = V (C).
Consider the cyclic linkage L = {C, T} where T = V (C). L is a weakly vital
linkage in G1 and G2 while it is not a weakly vital linkage in G3. Moreover, L
is a strongly vital linkage in G1 while it is not a strongly vital linkage neither in
G2 nor in G3.

Cheap
graph
linkages. Let G be a graph embedded on the sphere S0, let
C = {C1, . . . , Cr} be a sequence of cycles in G, and let L = (H,T ) be a graph
linkage where T ⊆ V (G \ Ĉr) (notice that (C,L) is a CGL-configuration). We
define function c which maps graph linkages of G to non-negative integers
such that

c(L) = |E(L) \
∪

i∈{1,...,r}

E(Ci)|.

A graph linkage L of G is C-strongly
 cheap (resp. C-weakly
 cheap ), if
T (L)∩Ĉr = ∅ and there is no other isomorphic (resp. equivalent) graph linkage
L′ such that c(L) > c(L′). Obviously, if L is C-strongly cheap then it is also
C-weakly cheap.

Tilted
grids. Let G be a graph. A tilted
grid of G is a pair U = (X ,Z) where
X = {X1, . . . , Xr} and Z = {Z1, . . . , Zr} are both sequences of r ≥ 2 vertex-
disjoint paths of G such that

• for each i, j ∈ {1, . . . , r} Ii,j = Xi ∩ Zj is a (possibly edgeless) path of
G,

• for i ∈ {1, . . . , r} the subpaths Ii,1, Ii,2, . . . , Ii,r appear in this order in Xi,
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Figure 3.2: A CLG-configuration Q = (C,L) with L = (H,T ). Here, C is a
sequence of six concentric cycles, H (the bold curve) is a cycle (thus L is a
cyclic linkage) and T is represented by the set of squares. The penetration of
L in C is 4 and Q is touch-free.

• for j ∈ {1, . . . , r} the subpaths I1,j , I2,j , . . . , Ir,j appear in this order in
Zj ,

• E(I1,1) = E(I1,r) = E(Ir,1) = E(Ir,r) = ∅,

• the graphG∗
U taken from the graphGU = (

∪
i∈{1,...,r} Xi)∪(

∪
i∈{1,...,r} Zi)

after contracting all edges in
∪

(i,j)∈{1,...,r}2 Ii,j is isomorphic to the (r×
r)-grid.

We refer to the cardinality r of X (or Z ) as the capacity of U .

Tidy
tilted
grids. Given a plane graph G and a graph linkage L = (H,T )

of G we say that a tilted grid U = (X ,Z) of G is an L-tidy
tilted
grid of G if
T ∩DU = ∅ and DU ∩L =∪∪∪∪∪∪∪∪∪Z where DU is the closed interior of the perimeter
of GU (for an example see Figure 6).
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Figure 3.3: The linkage that corresponds to the cyclic linkage depicted in Fig-
ure 3.2.

In order to be able to use some of the known results for linkages for our
purposes, we associate any cyclic linkage with a linkage in the following way.

From
graph
linkages
to
linkages. Let G be a graph and let L = (H,T ) be
a graph linkage of G. We denote by GL the graph obtained by subdividing all
edges of G incident to terminals and then removing the terminals. Similarly,
we define L∗ = (H∗, T ∗) so that H∗ is the graph obtained by subdividing
all edges incident to terminals, removing the terminals, and considering as
terminals the subdivision vertices. Notice that L∗ is a linkage of GL. Notice
that if L is strongly vital then L∗ is not necessarily strongly vital. However, if L
is weakly vital, then so is L∗ (see Figure 3.3 for an example).

Vertex
dissolving. Let G be a graph and v ∈ V (G) with NG(v) = {u,w}.
The operation of dissolving v in G is the following: Delete v from G and add
edge {u,w} to E(G), allowing the existence of multiple edges.
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3.2 Cyclic
linkages
in
plane
graphs
In this section we prove that the existence of a unique cyclic linkage in

planar graph G forces the treewidth of G to be small.
The following proposition follows from the combination of Lemma 5, Lemma

6, and Observation 3 of [3].

Proposition 3.2.1. Let G be
a
graph
embedded
on
the
sphere S0 and
let Q =

(C,L) be
a
touch-free
CGL-configuration
of G, where C is
tight
in G and L is
a
C-weakly
cheap
linkage
whose
penetration
in C is
at
least r. Then G contains
some L-tidy
tilted
grid
in G of
capacity
at
least r/(4 · |P(L)|).

The following result is somehow surprising as the strongly vitality of a cyclic
linkageL in a plane graph excludesL-tidy tilted grids of any size greater than 3.
The interesting thing is that a similar theorem also holds for (see [3]) for unique
linkages but the size of the excluded tidy tilted grids for this case depends on
the number of the paths k of the linkage (and more specifically its exponential
on k).

Lemma 3.2.1. Let G be
a
graph
embedded
on
the
sphere S0. If G contains
a
strongly
vital
cyclic
linkage L = (C, T ), then G does
not
contain
an L-tidy
tilted
grid
of
capacity 4.

Proof. Assume that L = (C, T ) is a strongly vital cyclic linkage in G and that
Γ is an L-tidy tilted grid of capacity 4 in G. Let also Γ4 be the (4 × 4)-grid.
Observe that Γ4 is the graph that we get after contracting all edges of Γ with
at least one endpoint of degree 2. We contract Γ to Γ4 in G and let G′ be the
resulting graph.

Let V (Γ4) = {vij | i, j ∈ {1, . . . 4}} and

E(Γ4) = {{vij , vi′j′} | |i− i′|+ |j − j′| = 1}.

Observe that Γ4 is also an L-tidy tilted grid of capacity 4 in G′ and that L is
also strongly vital in G′ (if not, then it was not strongly vital in G). Let H = Γ∪C
and H ′ be the contraction of H that we get after contracting all edges of H
whose ends have both degree 2.

Let also
H∗ = Γ4 ∪ P1 ∪ P2 ∪ P3 ∪ P4,
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where for every i ∈ {1, 2, 3, 4}, each Pi is a path of length 2 such that P1

connects v11 with v12, P2 connects v13 with v14, P3 connects v41 with v44 and
P4 connects v42 with v43 (i.e. for every cyclic linkage L = (C, T ) if we contract
all edges of H = Γ∪C whose ends have degree 2, we get a graph isomorphic
to H∗ which is a (4× 4)-grid in addition to some paths that are subgraphs of
C).

It is not hard to confirm that for every possible H, its corresponding con-
traction, H ′, is isomorphic to H∗. It remains to show that there exists a cyclic
linkage L′ = (C ′, T ) in G′, where C ′ is different from C. As H∗ is a unique
graph (up to isomorphism), a way of rerouting C (in order to obtain a different
cyclic linkage) is given in Figure 3.4.

Lemma 3.2.2. Let G be
a
graph
embedded
on
the
sphere S0 that
is
the
union
of r ≥ 2 concentric
cycles C = {C1, . . . , Cr} and
one
more
cycle C of G.
Assume
that C is
tight
in G, T ∩ V (Ĉr) = ∅, the
cyclic
linkage L = (C, T ) is
strongly
vital
in G, and
its
penetration
in C is r. Then r ≤ 16 · |T | − 1.

Proof. Let σ : P(L) → T be such that σ is a bijection that maps each path
of P(L) to one of its endpoints. For every i ∈ {1, . . . , r}, we define Q(i) =

(C(i),L(i)) where C(i) = {C1, . . . , Ci} and L(i) = (C, T (i)) where

T (i) = T \ {σ(P ) | P ∈ P (L) and P ∩ Ĉi = ∅}.

Notice that if some Q(i+1) is not touch-free, then T (i) ≤ T (i+1) − 1 (as, by
the definition of touch-free configurations, there exists at least one path P in
P(L) such that P ∩ Ĉi+1 ̸= ∅ but P ∩ Ĉi = ∅). In the trivial case where every
Q(i) is not touch-free we derive easily that r ≤ |T | and we are done.

Otherwise, let Q′ = (C′,L′) be the touch-free CGL-configuration in {Q(1),

. . . ,Q(r)} of the highest index, say i (as we excluded the trivial case we have
that i ≥ 1). Certainly, C′ = C(i) andQ′ is tight in G. Moreover, L′ is strongly vital
in G. From Lemma 3.2.1, G does not contain an L′-tidy tilted grid of capacity
4. Thus, GL as well does not contain an L′∗-tidy (remember how a linkage
L∗ is created from a graph linkage L after the "duplication" of the terminals
of L) tilted grid of capacity 4. Recall now that, as L′ is strongly vital in G it is
also weakly vital in G and therefore L′∗ is weakly vital in GL′ . Notice also that
Q′∗ = (C′,L′∗) is a CGL-configuration of GL′ where C′ is tight in GL′ . As L′∗

is weakly vital in GL′ , then, by its uniqueness, L′∗ is C′-weakly cheap. Recall
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Figure 3.4: On the left, a simplified L-tidy (4×4)-grid (corresponding to graph
H∗) and on the right, a rerouting of the cycle of L in the grid.

that the penetration of L′ in C′ is r−(i−1) and so is the penetration of L′∗ in C′.
As Q′, and therefore Q′∗ as well, is touch-free we can apply Proposition 3.2.1
and obtain that GL′ contains some L′∗-tidy tilted grid of capacity at least

(r − (i− 1))/(4 · |P(L′∗)|) ≤ (r − (i− 1))/(4(|P(L)| − (i− 1)).

We derive that
(r − (i− 1))/(4(|P(L)| − (i− 1)) < 4,

therefore r ≤ 16 · |P(L)| − 15(i− 1) which implies that r ≤ 16 · |T | − 1.

A corollary of Lemma 3.2.2 is the following.

Corollary 3.2.1. If
a
plane
graph G contains
a
strongly
vital
cyclic
linkage L =

(C, T ), then tw(G) = O(|T |3/2).

This corollary is a combinatorial result of independent importance and we
think that it can be used to study more connectivity related problems. It states
that, the uniqueness of a vital cyclic linkage in a plane graph G implies that
the treewidth of G is bounded by c · t3/2, where c is a constant and t is the
number of terminals of the cyclic linkage.

Notice that, according to what is claimed in [3], we cannot restate the
above corollary for weakly vital linkages, unless we change the bound to be an
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exponential one. That way, the fact that treewidth is (unavoidably, due to [3])
exponential to the number of terminals for (weakly) vital linkages is caused by
the fact that the ordering of the terminals is predetermined.

Lemma 3.2.3. Let G be
a
graph
embedded
on
the
sphere S0 that
is
the
union
of r concentric
cycles C = {C1, . . . , Cr} and
a
Hamiltonian
cycle C of G. Let
also T ∩ V (Ĉr) = ∅. If L = (C, T ) is C-strongly
cheap
then L is
a
strongly
vital
cyclic
linkage
in G.

Proof. Assume that L is not strongly vital in G, i.e., there is a different, iso-
morphic to L = (C, T ), cyclic linkage L′ = (C ′, T ) in G. As L ̸= L′ we have
that C ′ ̸= C, therefore there exists an edge e ∈ E(C ′) \ E(C) (this is because
V (C) = V (C ′) which follows from the strong vitality of L in G).

But, as

E(G) = E(C) ∪
r∪

i=1

E(Ci),

we derive that e ∈
∪r

i=1 E(Ci) (observe that the only way C ′ can be different
from C is by using extra edges from the cycles of C).

Thus, we get that

|E(C ′) ∩
r∪

i=1

E(Ci)| > |E(C) ∩
r∪

i=1

E(Ci)|

and, by the definition of cheap graph linkages, c(L) > c(L′), which contradicts
the assumption that L is C-strongly cheap. Therefore, L = (C, T ) is a strongly
vital cyclic linkage in G, as claimed.

We are now able to prove the main combinatorial result that is used in our
algorithm for solving Cyclability on planar graphs.

Lemma 3.2.4. Let G be
a
plane
graph
containing
some
sequence
of
concen-
tric
cycles C = {C1, . . . , Cr}. Let
also L = (C, T ) be
a
cyclic
linkage
ofGwhere
T ∩ V (Ĉr) = ∅. If L is C-strongly
cheap, then
the
penetration
of L in C is
at
most r ≤ 16 · |T | − 1.

Proof. Suppose that some path P ∈ P(L) intersects at least 16 · |T | cycles of
C. Then, P intersects all cycles in C∗ = {Cr−16·|T |+1, . . . , Cr}.
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Let G′ be the graph obtained by C ∪∪∪∪∪∪∪∪∪∪C∗ after dissolving all the vertices
of degree 2 that do not belong to T and let L′ = (C ′, T ) be the linkage of G′

obtained from L if we dissolve the same vertices in the paths of L. Similarly, by
dissolving vertices of degree 2 in the cycles of C∗ we obtain a new sequence
of concentric cycles which, for notational convenience, we denote by C′ =

{C1, . . . , Cr′}, where r′ = 16 · |T |.
The cyclic linkage L′ is C′-strongly cheap because L is C-strongy cheap

(it is easy to observe that no edge of
∪r

i=1 E(Cr) \ E(C) belongs to E(C ′)).
Notice that C ′ is a Hamiltonian cycle of G′ and, from Lemma 3.2.3, L′ is a
strongly vital cyclic linkage of G′. We also assume that C′ is tight (otherwise
we can replace it by a tight one and observe that, by its uniqueness, L′ will be
cheap to this new one as well). As L′ is C′-strongly cheap and C′ is tight, from
Lemma 3.2.2, r′ ≤ 16 · |T | − 1; a contradiction.

This result can be intuitively described as follows: Any cyclic linkage L =

(C, T ) that penetrates a sequence of concentric cycles C, that does not contain
any of the terminals of T , deep enough (deeper than 16 · |T | − 1), can be
replaced by another linkage L′ = (C ′, T ) (specifically a C-strongly cheap one)
whose penetration in C is at most 16 · |T | − 1.

Or to restate this, when trying to find a cyclic linkage that meets the ter-
minals in T we do not have to go deep into a sequence of concentric cycles
C that does not contain any element of T . This, of course, means that the
vertices "in the central" part of C are irrelevant for our problem.

This is the basis of our application of the irrelevant vertex technique and
will be used for the analysis of our algorithm in Chapter 5. In the next chapter,
we talk about dynamic programming algorithms for problems on graphs of
bounded treewidth and we design such an algorithm for the Cyclability prob-
lem.
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CHAPTER4
ALGORITHMS FOR GRAPHS OF BOUNDED

TREEWIDTH

4.1 Using
Courcelle's
theorem
for Cyclability

We are now ready to show how we can "efficiently" (at the end of this
section, the use of brackets will become clear) solve instances of Cyclability,
when the input graph has bounded treewidth. Remember that this is a cru-
cial step of our algorithm: When the instance, after maybe some deletions of
irrelevant vertices, has sufficiently small treewidth, we solve it using dynamic
programming. More specifically:

We can prove that the Cyclability problem can be solved in FPT-time when
we restrict the treewidth of the input graphs to bounded by some function
of k, by expressing the property of a graph being k-cyclable in MSO2 and
directly employing Courcelle's theorem (as described in Proposition 2.3.1 of
subsection 2.3). It suffices to prove the following lemma:

Lemma 4.1.1. The
property
of
a
graph G being k-cyclable
can
be
expressed
in MSO2 for
every
integer k ≥ 0.
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Proof. Let k be a positive integer. We define

cyclabilityk(G) = ∀S⊆V

[
cardk(S)→

(
∃C⊆E connE(C)∧

∀v∈V deg0or2(v, C) ∧ ∀v∈S deg2(v, C)
)]
,

where cardk(S) is an auxiliary formula that checks whether the cardinality of
the set S ⊆ V is k. Formula connE(C) checks whether the graph (V (C), C)

(where V (C) is the set of all vertices that are endpoints of some edge in C)
is connected and formulas deg0or2(v, C) (resp. deg2(v, C)) verifies that a
vertex v has zero or two adjacent (resp. exactly two) edges belonging to C. It
is now clear that, the formula cyclabilityk is satisfied by a graph G = (V,E) if
and only if the following property holds:

For
every
subset S of V with
cardinality k, there
exists
a
cycle C in G that
contains
all
the
vertices
in S.

Of course this is equivalent to G being k-cyclable. It remains to define the
four auxiliary formulas.

cardk(S) = ∃s1∈S ∃s2∈S . . . ∃sk∈S

(
v ̸= s1 ∧ v ̸= s2 ∧ . . .

∧ v ̸= sk → v /∈ S
)

connE(C) = ∀Y⊆V (C)

[(
∃u∈V (C) u ∈ Y ∧ ∃v∈V (C) v /∈ V (C) \ Y

)
→(

∃e∈C ∃u∈Y ∃v∈V (C)\Y inc(u, e) ∧ inc(v, e)
)]

deg2(v, C) = ∃e1,e2∈C

[
(e1 ̸= e2) ∧ inc(v, e1) ∧ inc(v, e2)∧(

∀e3∈C inc(v, e3)→
(
e1 = e3 ∨ e2 = e3

))]
deg0or2(v, C) = deg2(v, C) ∨ ∀e∈C ¬inc(v, e)

The following theorem is a direct consequence of Proposition 2.3.1 and Lemma
4.1.1 that we just proved

Theorem 4.1.1. Cyclability problem, when
restricted
to
the
class
of
graphs
of
bounded
treewidth
and
parameterized
by k, belongs
to
the
class FPT.

However, as we have already discussed in subsection 2.3, the celebrated
metatheorem of Courcelle, despite its theoretical power, is used almost exclu-
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sively as a classification tool due to the (unavoidably, [44]) immense running
times that result from the construction of the automaton described in the proof.
One way to unlock the door to efficient algorithms for a problem restricted to
graphs of bounded treewidth is to exploit the specific structure of the problem
and use dynamic programming on a "good" tree decomposition of the input
graph. Next, we provide some intuition on this technique and demonstrate
how it can be applied on the Cyclability problem.

4.2 Treewidth
and
dynamic
programming
A very useful property of a tree decomposition, say D = (T,X ), of a graph

G is that the intersection of any two bags that are endpoints of an edge in
T is a separator of G. When trying to solve a problem in graphs of bounded
treewidth, we can sometimes exploit (for example by deploying dynamic pro-
gramming) the fact that our graph can be decomposed into pieces which are
connected through sets of "small" size to obtain an efficient solution. We for-
mally state and prove the property we discussed

Lemma 4.2.1. Let D =
(
T,
{
Xt

}
t∈V (T )

)
be
a
tree
decomposition
of
a
graph

G and
let {a, b} be
an
edge
of T . The
forest T \ {a, b} obtained
by
deleting
the
edge {a, b} from T , consists
of
two
connected
components Ta (that
contains
a)
and Tb (that
contains b). If

A =
∪

t∈V (Ta)

Xt and B =
∪

t∈V (Tb)

Xt,

then
the
set Xa ∩Xb ⊆ V (G) separates A from B in G.

Proof. Both a and b belong to every path with endpoints t1 ∈ T1 and t2 ∈ T2.
Therefore, A ∩ B ⊆ Xa ∩Xb and it now suffices to prove that G has no edge
{u, v} with u ∈ A \ B and b ∈ B \ A. If such an edge {u, v} exists in G then
there is a t ∈ T such that u, v ∈ Xt. By the choice of u and v we have that
t /∈ Ta and t /∈ Tb, a contradiction.

In order to handle a tree decomposition more "smoothly" we would like it
to have some properties, which are presented in the next definition.
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Definition 4.2.1. For
a
tree
decomposition D =
(
T, {Xt}t∈V (T )

)
, we
distin-

guish
a
vertex r ∈ V (T ), which
is
called
the root of T , and
this
way
introducing
parent-child
and
ancestor-descendant
relations
in T . We
say
that
the
rooted
(on r)
tree
decomposition D =

(
T, {Xt}t∈V (T )

)
is nice if
the
following
condi-

tions
hold:

• The
root r and
any
non-leaf
vertex
have
exactly
two
children.

• The
bags
that
correspond
to
the
root
and
the
leaves
of T are
all
empty,
i.e. Xr = Xl = ∅ for
every
leaf l of T .

• Every
non-leaf
node
of T has
one
of
the
following
types:

– Introduce
node: A node t with
exactly
one
child t′ such
that Xt =

Xt′ ∪ {v} for
some v /∈ Xt′ . For
such
a
node
we
say
that v is intro-
duced at t.

– Forget
node: A node t with
exactly
one
child t′ such
 that Xt =

Xt′\{v} for
some v ∈ Xt′ . For
such
a
node
we
say
that v is forgotten
at t.

– Join
node: A node t with
two
children t1, t2 such
that Xt = Xt1 =

Xt2 .

It is not hard to prove the following Lemma (see for example [36] and [22]):

Lemma 4.2.2. If
a
graph G admits
a
tree
decomposition
of
width
at
most k,
then
it
also
admits
a
nice
tree
decomposition
of
width
at
most k. Moreover,
given
a
tree
decomposition D =

(
T, {Xt}t∈V (T )

)
of G of
width
at
most k, one

can
in
time O
(
k2 ·max(|V (T )|, |V (G)|)

)
compute
a
nice
tree
decomposition
of

G of
width
at
most k that
has
at
most O
(
k|V (G)|

)
nodes.

Of course, in order to algorithmically exploit the nice structure of tree de-
compositions we first need to, somehow, obtain a tree decomposition of op-
timum, or approximately optimum, width for the given graph.

It turns out that computing the treewidth of a given graph is an NP-hard
problem ([6]) but it is FPT to check whether its treewidth is at most w, where
w is considered to be the parameter. The later follows from the Robertson-
Seymour theory, as treewidth is a minor-closed parameter: If H is a minor of
a graph G then tw(H) ≤ tw(G).
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As we have already mentioned, this technique is not constructive. Fortu-
nately, here is an algorithm of Bodlaender ([8]), that given a n-vertex graph G

and an integer k, runs in time kO(k3) ·n and either constructs a tree decompo-
sition of G of width at most k or concludes that tw(G) ≥ k.

In this thesis we will not focus on the computation of treewidth and we will
usually assume that an optimal, or nearly optimal, tree decomposition is given.

We proceed by giving some concrete examples of applying dynamic pro-
gramming for problems on graphs of bounded treewidth.

Dynamic
programming. One of the most well known techniques in the al-
gorithms design theory is dynamic
programming. The general idea behind this
technique is that we can solve a complex problem by dividing it into simpler
subproblems, solving each one of them and combining the solutions (which
are stored and used whenever required). More details of these ideas can be
found in any introductory algorithms book such as [24] and [19].

A typical application of dynamic programming is solving problems on trees.
Consider for example the following problem

Weighted Independent Set on Trees
Input: A tree T = (V,E) rooted at a node r ∈ V and a function
w : V → R+.
Goal: Find a set I ⊆ V such that G[I] is edgeless and

∑
i∈I wi is max-

imum.

Let T = (V,E) be tree, r ∈ V be the root of tree T and w : V → R+ be a
function that assigns a weight on every node of the tree. We say that a node
in v ∈ V is a leaf of T if degT (v) = 1. We denote by depT (v) the depth of node
v in tree T and define the depth of the root r to be equal to zero and the depth
of a node v to be its distance from the root r. For any v ∈ V , we define

N1
T (v) = {u ∈ V | depT (u) = depT (v) + 1}

N2
T (v) = {u ∈ V | depT (u) = depT (v) + 2}

We construct a dynamic programming routine for solving Weighted Indepen-
dent Set on Trees. We define
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c[v] =


w(v) if v is a leaf of T

max
{ ∑

u∈N1
T

w[u],
∑

u∈N2
T

w[u] + w[v]

}
otherwise

Clearly, the value c[r] computed in a leaf-to-root manner, is the solution we
are looking for, i.e. c[r] is the value of a maximum independent set in T . The
formula for c[v] is valid, as node v will either be in the solution (excluding its
children in N1

T ) or it will not and thus all nodes in N1
T can be in the solution.

This simple example demonstrates the power of dynamic programming:
The computation that we do on every step depends only on values of some
(usually one or two) of the prior steps. Of course, for this strategy to work
there has to be some special structure in our problem. The crucial property in
our example is that every inner node (different from the root and the leaves)
of a tree is a separator, i.e., the deletion of any inner node makes the graph
disconnected.

It turns out that this idea can be extended to problems on graphs of bounded
treewidth. If G = (V,E) is a graph and D =

(
T, {Xt}t∈V

)
is a tree decomposi-

tion of G of width w then, by Lemma 4.2.1, the vertices in Xt form a separator,
of size at most w, in G. This property of tree decompositions is the basis for
designing dynamic programming routines for problems on graphs of bounded
treewidth, as we will become clear in the next two subsections.

4.2.1 Dynamic
programming
for Weighted Independent Set

Before presenting a (somewhat involved) dynamic programming algorithm
for solving Cyclability on graphs of bounded treewidth, we start with some
simpler applications. We first demonstrate how the technique can be applied
on the Weighted Independent Set problem.

Weighted Independent Set
Input: A graph G = (V,E) and a function w : V → R+.
Goal: Find a set I ⊆ V such that G[I] is edgeless and

∑
i∈I wi is max-

imum.
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Let G = (V,E) be a graph with |V | = n, and let D =
(
T, {Xt}t∈V (T )

)
be

a tree decomposition of G that has width at most k. By Lemma 4.2.2, we
can assume that D is a nice tree decomposition of G, rooted at some node
r ∈ V (T ). We define Vt to be the union of all bags that belong to the subtree of
T that is rooted at t, including the bag, Xt, that corresponds to t. By applying
Lemma 4.2.1 to any edge between some t ̸= r and its parent, we get that
∂Vt ⊆ Xt (the same holds, trivially, for the root r as Vr = V and ∂Vr = ∅). This
fact is crucial because it demonstrates that the subgraph induced by Vt can
communicate with the rest of the graph through Xt which is "small" (as it is a
bag of the decomposition). This means that we can perform time consuming
computations on Xt without getting inefficient and then producing a solution
by, either combining the solutions of the subproblems or by extending our
partial solution at every step. This, somewhat intuitive, strategy becomes clear
when applying it to the Weighted Independent Set problem.

Let G = (V,E) and w : V (G) → R+ be an input for the problem and let
D =

(
T, {Xt}t∈V (T )

)
be a nice tree decomposition of G with width k. An

important observation is that for two given independent sets, I1 and I2, in G,
if I1 ∩ Xt = I2 ∩ Xt and w(I1 ∩ Vt) > w(I2 ∩ Vt), then I2 is definitely not the
optimal solution (as we can replace I2 ∩ Vt with I1 ∩ Vt an independent set of
bigger weight). This holds because Xt separates Vt \Xt from the rest of the
graph and for this specific problem we can naturally extend a partial solution
for Vt to the whole graph G, by making some "local" computation for each bag
of the decomposition. More specifically, for every t ∈ V (T ) and every S ⊆ Xt

we define

c[t, S] = max
{
w(S̃) | S ⊆ S̃ ⊆ Vt, S̃ ∩Xt = S and S̃ is independent

}
If no such S̃ exists (meaning that S is not an independent set) we set c[t, S] =
−∞. Observe that c[t, S] can be computed efficiently (with respect to the
treewidth of G) for every t, as there are at most 2|Xt| choices for the intersec-
tion of S̃ with Xt and we can efficiently check if a vertex set S̃ is independent.
Moreover, it is clear that c[r, ∅] is the maximum weight of an independent set,
as Vr = V and Xr = ∅.

We now show how we can compute the values c[t, S]. As we will shortly
see, the notion of a nice tree decomposition will prove to be very beneficial
because it forces the relation between a bag and the bag of its children to be
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"simple". We give recursive formulas for c[t, S], where leaf nodes correspond
to the base case of the recurrence:

• Leaf
node: If t is a leaf of T , then we have c[t, ∅] = 0

• Introduce
node: If t is an introduce node with child t′, then we have
that Xt = Xt′ ∪ {v}, for some v /∈ Xt′ . Let S ⊆ Xt and assume that S is
independent. Then we set

c[t, S] =

{
c[t′, S] if v /∈ S

c[t′, S \ {v}] + w(v) otherwise

If S is not independent, then we set c[t, S] = −∞. It is easy to check
that our recurrence formula is true, as any partial solution of Vt′ when
extended to Vt will either contain the introduced node v or it will not
contain it.

• Forget
node: If t is a forget node with child t′, then we have that Xt =

Xt′ \ {v}, for some v ∈ Xt′ . Let S ⊆ Xt and assume that S is indepen-
dent. Then we set

c[t, S] = max
{
c[t′, S], c[t′, S ∪ {v}]

}
Again, if S is not independent then we set c[t, S] = −∞. If v ∈ S̃, then
c[t′, S ∪ {v}] ≥ w(S̃) = c[t, S], and if v /∈ S̃ then c[t′, S] ≥ w(S̃) = c[t, S].
As exactly one of this happens we get that

c[t, S] ≤ max
{
c[t′, S], c[t′, S ∪ {v}]

}
.

On the other hand, each set considered in the maximization for c[t′, S] is
also considered for the maximization of c[t, S], and the same holds for
c[t′, S ∪ {v}]. So we get that

c[t, S] ≥ max
{
c[t′, S], c[t′, S ∪ {v}]

}
.

By combining the previous two inequalities we confirm that our recur-
rence relation is true.
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• Join
node: Suppose now that t is a join node with children t1, t2 such
that Xt = Xt1 = Xt2 . Let S ⊆ Xt and assume that S is independent (if
not we set c[t, S] = −∞ as before). We claim that

c[t, S] = c[t1, S] + c[t2, S]− w(S).

This follows from the observation that there is no edge between Vt1 \Xt

and Vt2 \ Xt (by Lemma 4.2.1). This means that we can "join" partial
solutions for the subproblems on Vt1 and Vt2 and take care only of the
common vertices in S.

It now remains to estimate the time needed in order to compute c[r, ∅], which
the solution we are looking for: the maximum weight of an independent set
in G. As we are working on a tree decomposition of width k, we have, for
every t ∈ V (T ), that |Xt| ≤ k + 1 and therefore at every node t we compute
2|Xt| ≤ 2k+1 values of c[t, S] in time 2k ·kO(1) (using a data structure that allows
to perform adjacency queries in O(k) time). Finally, as the number of nodes
of the tree decomposition is O(kn), we obtain the following

Theorem 4.2.1. Let G = (V,E) with |V | = n and w : V (G) → R+. Let
also D =

(
T, {Xt}t∈V (T )

)
be
a
nice
tree
decomposition
of G of
width
at
most

k. Then, the Weighted Independent Set problem
in G can
be
solved
in
time
2k · kO(1) · n.

4.2.2 Dynamic
programming
for Hamiltonian Cycle
The previous example is a typical application of dynamic programming on

a tree decomposition. However, the Weighted Independent Set problem has
nothing to do with our problem, Cyclability.

Before proceeding to the presentation of the dynamic programming algo-
rithm for solving Cyclability we apply the technique on a well known problem,
which is clearly strongly related to Cyclability, namely the Hamiltonian Cycle
problem:

Hamiltonian Cycle
Input: A graph G = (V,E).
Question: Is there a cycle in C in G such that V (C) = V ?
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Let G = (V,E) be a graph of treewidth at most w and let D =
(
T, {Xt}t∈Vt

)
be a nice tree decomposition of width w of G.
Let X be a node (or bag) of D, i.e., X = Xt for some t ∈ V (t). We define

BX = {v ∈ V | v ∈ X}

VX = {v ∈ V | v appears in the subtree of T rooted at X}

Suppose that H is a Hamiltonian cycle in G. Then, as the vertices in VX com-
municate with the rest vertices of V only through the vertices of X (follows
from Lemma 4.2.1), we have that the subgraph H[VX ] of H, is a set of paths
with endpoints in BX . The vertices of BX are partitioned into the three follow-
ing sets according to their degree in H[VX ]:

B0
X = {v ∈ BX | degH[VX ] = 0}

B1
X = {v ∈ BX | degH[VX ] = 1}

B2
X = {v ∈ BX | degH[VX ] = 2}

A subproblem for node X is a quadruple (B0
X , B1

X , B2
X ,M), where M is a

matching of the vertices in B1
X (two matched vertices are the endpoints of

some path). Clearly, the number of different subproblems on a node X is at
most 3w ·ww, as every one of the at most w nodes belongs to exactly one part
of the partition and the different matchings of B1

X (whose size is at most w)
are at most ww.

We call each subproblem (B0
X , B1

X , B2
X ,M) a pattern and what we want

to compute on every node X of the tree decomposition, is if there is a set of
paths with this pattern in G[VX ]. If there is such a set of paths, we say that this
particular subproblem is valid on node X. We assume, for technical reasons,
that the root and the leaves contain exactly one node (they are not empty as
defined in Definition 4.2.2). We argue about the subproblem (B0

X , B1
X , B2

X ,M)

on node X according to its type:

• Node X is
a
leaf
node: Only the trivial subproblem ({v}, ∅, ∅, ∅) is valid
on X, where BX = {v}.

• Node X is
 a
 forget
 node: Suppose that the child of X is node Y

and BX = BY \ {v}. As each node is introduced only once in a nice
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tree decomposition, for a solution H of (B0
X , B1

X , B2
X ,M), vertex v has

degree 2 and therefore (B0
X , B1

X , B2
X ,M) is valid on X if and only if

(B0
X , B1

X , B2
X ∪ {v},M) is valid on Y .

• Node X is
an
introduce
node: Suppose that the child of X is node Y

and BX = BY ∪ {v}.

– Case
1: v ∈ B0
X . It is easy to confirm that (B0

X , B1
X , B2

X ,M) is valid
on X if and only if (B0

X \ {v}, B1
X , B2

X ,M) is valid on Y .

– Case
2: v ∈ B1
X . Then, every neighbour of v in VX has to be in

BY ⊆ BX . Suppose that v is adjacent with just one vertex of BY .
Subproblem (B0

X , B1
X , B2

X ,M) is valid on X if there is a subprob-
lem (B0

Y , B
1
Y , B

2
Y ,M

′) of node Y such that making a vertex of BY

adjacent to v produces a solution to (B0
X , B1

X , B2
X ,M) on node X.

This can be checked in at most w steps.

– Case
2: v ∈ B1
X and v is adjacent with two vertices of BY . The

analysis is similar to Case 2 and the validity of (B0
X , B1

X , B2
X ,M) on

X can be checked in w2 steps (we check for every pair of vertices
in BY if we can produce a solution by connecting them both with
v).

• Node X is
a
join
node: Node X has two children, Y and Z, and BX =

BY = BZ . A solution H on X is the union of a subgraph H1 ⊆ G[VY ] and
a subgraph H2 ⊆ G[VZ ]. For every solution H1 for (B0

Y , B
1
Y , B

2
Y ,M1) of

node Y and every solution H2 for (B0
Z , B

1
Z , B

2
Z ,M2) of node Z, we check

whether their union H1 ∪ H2 is a solution for (B0
X , B1

X , B2
X ,M) of node

X.

Theorem 4.2.2. Given
a
graph G and
a
tree
decomposition
with
width w of G,
the Hamiltonian Cycle problem
on G can
be
solved
in wO(w) · n steps.

The dynamic programming approach for solving Hamiltonian Cycle (and
many other important connectivity problems) that we presented, can be im-
proved with the use of the so called Cut
&
Count technique (see [23] and [22]).
The improved running time, which is 2O(w) · n, is single exponential on the
treewidth of the input graph and linear on the size of the whole input.

85



4.3. DYNAMIC PROGRAMMING FOR CYCLABILITY

After demonstrating the use of dynamic programming for solving problems
on graphs of bounded treewidth, we proceed by applying this technique on
the Cyclability problem, where things get more complicated

4.3 Dynamic
programming
for Cyclability
The construction of the following algorithm is the goal of this section.

Algorithm
DP(G,R, k, q,D)
Input: A graph G, a vertex set R ⊆ V (G), two non-negative integers k and q,

where k ≤ q, and a tree decomposition D of G of width q.
Output: An answer whether (G,R, k) is a yes-instance of Planar Annotated
Cyclability problem, or not.
Running
time: 22O(q·log q) · n.

We observe that the question of Planar Annotated Cyclability can be ex-
pressed in monadic second-order logic (MSO2). It is sufficient to notice that an
instance (G,R, k) is a yes-instance of Planar Annotated Cyclability if and only
if for any (not necessarily distinct) v1, . . . , vk ∈ R, there are sets X ⊆ V (G) and
S ⊆ E(G) such that v1, . . . , vk ∈ X and C = (X,S) is a cycle. The property of
C = (X,S) being a cycle is equivalent to asking whether

i) for any x ∈ X, there are two distinct e1, e2 ∈ S such that x is incident to
e1 and e2,

ii) for any x ∈ X and any three pairwise distinct e1, e2, e3 ∈ S, e1 is not
incident to x or e2 is not incident to x or e3 is not incident to x, and

iii) for any Z1, Z2 ⊆ X such that Z1∩Z2 = ∅, Z1 ̸= ∅, Z2 ̸= ∅ and Z1∪Z2 = X,

there is {x, y} ∈ S such that x ∈ Z1 and y ∈ Z2.

We have already seen (Lemma 4.1.1) that we can express Cyclability in
MSO2 and from Courcelle's theorem we infer that Planar Annotated Cyclability
can be solved in f(q, k) · n steps if the treewidth of an input graph is at most
q, for some computable function f .

As the general estimation of f provided by Courcelle's theorem is immense,
we proceed by giving a dynamic programming algorithm in order to achieve a
more reasonable running time.
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First, we introduce some notation. For every two integers a and b, with
a < b, we denote by Ja, bK the set of integers {a, a + 1, . . . , b}. Let S be a set
and i ∈ N. We define S[i] = {A ⊆ S | |A| = i}.

Sub-cyclic
pairs. Let G be a graph, C a cycle in G, and {A,X,B} a partition
of V (G) such that no edge of G has one endpoint in A and the other in B. The
restriction of C in G[A ∪ X] is called a sub-cyclic pair of G (with respect to
A, X and C). We denote such a sub-cyclic pair by (Q, Z), where Q contains
the connected components of the restriction of C in G[A ∪ X] (observe that
Q can contain isolated vertices, a unique cycle, and disjoint paths) and Z =

V (C) ∩X.

Pairings. Let W be a set. A pairing of W is an undirected graph H with
vertex set V (H) ⊆ W and where each vertex has degree at most 2 (a loop
contributes 2 to the degree of its vertex) and if H contains a cycle then it is
unique and all the vertices not in this cycle are of degree 0. Moreover, H may
also contain the vertex-less loop. We denote by P(W ) the set of all pairings
of W . It is known that if |W | = w then |P(W )| = 2O(w·log w).

Edge
lifts. Let G be a graph and v ∈ V (G) such that degG(v) = 2. Let also
NG(v) = {u,w}. We say that the operation of deleting edges {v, u} and {v, w}
and adding edge {u,w} (if it does not exist, i.e. we do not allow double edges)
is the edge
lift from vertex v. We denote by lift(G, v) the graph resulting from
G after the edge lift from v (for an example see Figure 4.1).

For a vertex set L ⊆ V (G) and a vertex v ∈ V (G) we say that graph
H=lift(G, v) is the result of an L-edge-lift if v ∈ L.

The dynamic programming algorithm that we present in this section works
for the class of all graphs (not just the planar) so we consider the extension of
PAC to the class of all graphs

Annotated Cyclability
Input: A graph G, a set R ⊆ V (G), and a non-negative integer k.
Question: Does there exist, for every set S of k vertices in R, a cycle C

of G such that S ⊆ V (C)?
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u v w u v w

Figure 4.1: A graph G is depicted at the left and at the right there is the graph
lift(G, v) that results from G after the edge lift from vertex v.

Let (G,R, k) be an instance of Annotated Cyclability. Let also D = (T,X , r)
be a nice tree decomposition of G of width w, where r is the root of T . For
every x ∈ V (T ) let Tt be the subtree of T rooted at t (the vertices of Tt are t

and its descendants in T ). Then for every t ∈ V (T ), we define

Gt = G
[ ∪
t′∈V (Tt)

Xt′

]
and Vt = V (Gt).

For every i ∈ Z>0, we set Ri
t = (V (Gt)∩R)[i]. We also denote Rt =

∪k
i=1Ri

t.

If (Q, Z) is a sub-cyclic pair of Gt where Xt is thought of as the separator
and Z ⊆ Xt, we simply say that (Q, Z) is a sub-cyclic
pair
on t. Notice that
each sub-cyclic pair (Q, Z) on t corresponds to a pairing in P(Xt), which we
denote by PQ,Z (just dissolve all vertices of Q that do not belong in Xt).

Let P be a pairing of Xt and S be a subset of V (Gt). We say that vertex
set S realizes P in Gt if there exists a sub-cyclic pair (Q, Z) on t such that
PQ,Z = P and S ⊆ V (∪∪∪∪∪∪∪∪∪Q).

We also define the signature of S in Gt to be the set of all pairings of Xt that
S realizes and we denote it by sigt(S). Notice that sigt(S) ⊆ P(Xt), therefore
|sigt(S)| = 2O(w log w).
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Tables. We describe the tables of the dynamic programming algorithm. For
each t ∈ V (T ), we define Ct = J0, kK×X

[i]
t × P(Xt) and

Ft = {(i,K,P) ∈ Ct | ∃S ∈ Ri
t such that K = Xt ∩ S and sigt(S) = P}

We call Ft the table at node t ∈ V (T ). As |P(Xt)| = 2O(w·log w), it follows that
|F(t)| = 22

O(w·log w) .
Observe that (G,R, k) is a yes-instance of Annotated Cyclability if and only

if Fr = {(0, ∅, Pr), (1, ∅, Pr), . . . , (k, ∅, Pr)}, where Pr is the unique pairing of
P(Xr), i.e., the pairing that is the vertex-less loop (i.e., contains no vertices
and a single edge with no endpoints).

New
pairings
from
old. Before we describe the dynamic programming al-
gorithm we need some more definitions. Suppose that t is an insert node of
D and Xt = Xs ∪ {v}, where s is the only child of t in T and v ∈ V (G). Let
Et

v = {{v, u} ∈ E | u ∈ Xt}. We denote by Paux
v the set of all graphs (V,E)

where V ⊆ NGt(v) ∪ {v} and E ⊆ Et
v. For any P ∈ P(Xs), P̃ ∈ Paux

v , and
L ⊆ Xt, we define

P⊕LP̃ = {P ′ ∈ P(Xt) | P results from P∪P̃ after a sequence of L-edge-lifts}.

See Figure 4.2 for a visualization of the these definitions. For every P ′ ∈
P(Xt) and L ⊆ Xt, we define

ζL(P
′) = {P ∈ P(Xs) | ∃P̃ ∈ Paux

v such that P ′ ∈ P ⊕L P̃}.

We are now ready to describe the dynamic programming algorithm. We
distinguish the following cases for the computation of table(t), t ∈ V (G):

• Node t is a leaf
node: As Xt = ∅, we have that F(t) = {(0, ∅, G∅)}where
G∅ is the void graph.

• Node t is an insert
node: Let Xt = Xs ∪{v}, where s is the unique child
of t in T .

We construct table(t) by using the following procedure:

Procedure make_join
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v v

Xs Xs

v

=⋃

v

v

P̃

P
P̃

Q

P ′

Figure 4.2: At the top we depict the neighborhood of node v in Xs (at the left)
and an element, P̃ of P aux

v at the right. In the middle we depict the result,
Q, of the union P ∪ P̃ , where P ∈ P(Xs). At the bottom we have the result,
P ′ ∈ P(Xs ∪ {v}) = P(Xt), of lifting v in Q.
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Input: a subset A of Cs
Output: a subset B of Ct
let B = ∅
for (i,K,P) ∈ A

if v ∈ R and i < k then
let B = B ∪ {(i+ 1,K ∪ {v},P ′)}

where P ′ = {P ∈ P(Xt) | ζXs\K(P ) ∩ P ≠ ∅}
let B = B ∪ {(i,K,P ′′)}

where P ′′ = {P ∈ P(Xt) | ζXt\K(P ) ∩ P ̸= ∅}

Lemma 4.3.1. Ft = make_join(Fs).

Proof. We first prove that make_join(Fs) ⊆ Ft. Let (i + 1,K ∪ {v},P) ∈
make_join(Fs) with v ∈ R and i < k (the other case is similar). We prove that
(i+ 1,K ∪ {v},P) ∈ Ft.

By the operation of the procedure make_join we have that there exists a
triple (i,K,P) ∈ Fs such that P ′ = {P ∈ P(Xt) | ζXs\K(P ) ∩ P ̸= ∅}. Let
S ⊆ Ri

s be the annotated vertex set which justifies the existence of (i,K,P) in
Fs, i.e. Xs∩S = K and sigs(S) = P. Now, let S′ = S∪{v}. Clearly, S′ ⊆ Ri+1

t

(where i+ 1 ≤ k) and Xt ∩ S′ = K ∪ {v}.
It remains to show that sigt(S

′) = P ′ or, equivalently, ∀P ∈ P(Xt) it holds
that P ∈ sigt(S

′)⇔ ζXs\K(P )∩P ̸= ∅. Let P ∈ sigt(S
′). We distinguish three

cases:

• Case
1: degP (v) = 0. Then, P ∗ = P \ {v} ∈ Xs and P = P ∗ ∪ ({v}, ∅)
(notice that ({v}, ∅) ∈ Paux

v ), which means that P ∗ ∈ ζXs\K(P ). It is not
hard to confirm that P ∗ ∈ P because S realizes P ∗ in Gs. It follows that
P ∈ P ′.

• Case
2: degP (v) = 1. Let u be the only neighbor of v in P . Then,
P ∗ = P \ {v} ∈ Xs and P = P ∗ ∪ ({v}, {v, u}), which means that P ∗ ∈
ζXs\K(P ). Again, P ∗ ∈ P because S realizes P ∗ in Gs, thus P ∈ P ′.

• Case
3: degP (v) = 2. Let NP (v) = {u,w}. Then, P ∗ = P \ {v} ∈ Xs

and P = P ∗ ∪ ({v}, {{v, w}{v, u}}), which means that P ∗ ∈ ζXs\K(P ).
As before, S realizes P ∗ in Gs, thus P ∈ P ′.
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We have proved that sigt(S
′) ⊆ P ′. The converse, P ′ ⊆ sigt(S

′), is clear
from the definition of P ′.

To conclude the proof, we have to show that Ft ⊆ make_join(Fs). Let
(i,K,P) ∈ Ft. From the definition of Ft, there exists a vertex set S ⊆ Ri

t that
realizes every pairing of P and Xt∩S = K. Let P ∈ P and assume that v /∈ R.
We consider three cases and the arguments are similar to the previous ones:

• Case
1: degP (v) = 0. Then, P ∗ = P \ {v} ∈ Xs and P = P ∗ ∪ ({v}, ∅),
which means that P ∗ ∈ ζXs\K(P ).

• Case
2: degP (v) = 1. Let u be the only neighbor of v in P . Then,
P ∗ = P \ {v} ∈ Xs and P = P ∗ ∪ ({v}, {v, u}), which means that P ∗ ∈
ζXs\K(P ).

• Case
3: degP (v) = 2. Let NP (v) = {u,w}. Then, P ∗ = P \ {v} ∈ Xs

and P = P ∗ ∪ ({v}, {{v, w}{v, u}}), which means that P ∗ ∈ ζXs\K(P ).

Let P∗ = {P ∗ ∈ P(Xs) | P ∈ P}. Clearly, for S∗ = S \ {v} ⊆ Ri
t and

K∗ = Xs ∩ S∗, we have that sig(S∗) = P∗ and thus (i− 1,K∗,P∗) ∈ Fs.
The case where v ∈ R is similar. We conclude that Ft ⊆ make_join(Fs),
which completes the proof.

• Node t is a forget
node: Let Xt = Xs \ {v}, where s is the unique child
of t in T . Then

Ft = {(i,K \ {v},P) | ∃(i,K,P ′) ∈ Fs : ∀P ∈ P(Xt), P ∈ P ⇔ lift(P, v) ∈ P ′}

The proof that the set at the right part is equal to Ft, is similar to the one
of Lemma 4.3.1.
• Node t is a join
node: Let s1 and s2 be the children of t in T . Thus,

Xt = Xs1 = Xs2 and clearly P(Xt) = P(Xs1) = P(Xs2). Given a pairing
P ∈ P(Xt), we define

ξ(P ) = {(P1, P2) ∈ P(Xt)×P(Xt) | P1 ∪ P2 = P}
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Then, Ft can be derived from Fs1 and Fs2 as follows:

Ft = {(i,K,P) | ∃(i1,K1,P1) ∈ Fs1 ∃(i2,K2,P2) ∈ Fs2 :

i = i1 + i2 − |K1 ∩K2|,
K1 ∪K2 = K

∀P ∈ P ∃(P1, P2) ∈ ξ(P ) : P1 ∈ P1, P2 ∈ P2}.

Lemma 4.3.2. In
the
case
where t is
a
join
node
with
children s1 and s2, Ft is
computed
as
described
above, given Fs1 and Fs2 .

Proof. Let Ut = {(i,K,P) | ∃(i1,K1,P1) ∈ Fs1 ∃(i2,K2,P2) ∈ Fs2 : i =

i1 + i2 − |K1 ∩ K2|, K1 ∪ K2 = K and ∀P ∈ P ∃(P1, P2) ∈ ξ(P ) : P1 ∈
P1, P2 ∈ P2}.

We will only prove the nontrivial direction: Ft ⊆ Ut. Let (i,K,P) ∈ Ft.
From the definition of Ft, there exists a vertex set S ⊆ Ri

t that realizes every
pairing of P and Xt ∩ S = K. Let P be any pairing of P. Then, there exists
a sub-cyclic pair (Q, Z) on t that corresponds to pairing P . The restriction of
(Q, Z) in Gs1 (resp. Gs2 ) is a sub-cyclic pair (Q1, Z1) on s1 (resp. (Q2, Z2) on
s2) and clearly Z1 ⊆ Xs1 (resp. Z2 ⊆ Xs2 ). These sub-cyclic pairs meet some
subsets S1 and S2 of S respectively and correspond to parings P1 ∈ P1 and
P2 ∈ P2.

Let |S1| = i1 and |S2| = i2. It is now easy to confirm that i = i1+ i2−|K1 ∩
K2|, K1 ∪K2 = Z1 ∪ Z2 = K and that (P1, P2) ∈ ξ(P ).

As P ∈ P was chosen arbitrarily we conclude that (i,K,P) ∈ Ut and we
are done.

The algorithm that we described runs in 22
O(w·log w) ·n steps (where w is the

width of the tree decomposition) and solves the Annotated Cyclability prob-
lem.

We insisted on a detailed presentation of the dynamic programming routine
because (as we prove in Chapter 8) Cyclability (from the classical complexity
point of view) can be classified to the second level of the polynomial hierarchy,
and specifically to ΠP

2 . Actually we believe that it is ΠP
2 -complete, thus it does

not belong to NP unless ΠP
2 = NP. To our knowledge this is one of few, maybe

the first, dynamic programming algorithm for such a problem.
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CHAPTER5
THE ALGORITHM

After constructing our combinatorial tools (Chapter 3) and designing an
algorithm for efficiently solving Cyclability on graphs of bounded treewidth,
we are in the position to construct an FPT-algorithm for solving Cyclability for
planar graphs, as promised.

Thus, this section is devoted to the proof of Theorem 1.3.2. We consider
the following, slightly more general, problem.

Planar Annotated Cyclability
Input: A plane graph G, a set R ⊆ V (G), and a non-negative integer k.
Question: Does there exist, for every set S of k vertices in R, a cycle C

of G such that S ⊆ V (C)?

In this section, for simplicity, we refer to Planar Annotated Cyclability as prob-
lem PAC. Theorem 1.3.2 follows directly from the following lemma.

Lemma 5.0.1. There
is
an
algorithm
that
solves PAC in 22
O(k2 log k) · n2 steps.

The rest of this section is devoted to the proof of Lemma 5.0.1.

Problem/colour-irrelevant
vertices. Let (G, k,R) be an instance of PAC.
We call a vertex v ∈ V (G) \R problem-irrelevant if (G, k,R) is a yes-instance
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if and only if (G \ v, k,R) is a yes-instance. We call a vertex v ∈ R colour-
irrelevant when (G, k,R) is a yes-instance if and only if (G, k,R \ {v}) is a
yes-instance.

Before we present the algorithm of Lemma 5.0.1, we need to introduce
three algorithms that are used in it as subroutines.

Algorithm
DP(G,R, k, q,D)
Input: A graph G, a vertex set R ⊆ V (G), two non-negative integers k and q,

where k ≤ q, and a tree decomposition D of G of width q.
Output: An answer whether (G,R, k) is a yes-instance of PAC or not.
Running
time: 22O(q·log q) · n.

Algorithm DP is based on dynamic programming on tree decompositions
of graphs and is the algorithm that we presented in Section 4.3 of Chapter 4.

Algorithm
Compass(G, q)

Input: A planar graph G and a non-negative integer q.
Output: Either a tree decomposition of G of width at most 18q or a subdivided
wall W of G of height q and a tree decomposition D of the compass KW of W
of width at most 18q.
Running
time: 2qO(1) · n.

We describe algorithm Compass in Section 5.1.

Algorithm
concentric_cycles(G,R, k, q,W )

Input: A planar graph G, a set R ⊆ V (G), a non-negative integer k, and a
subdivided wall W of G of height at least 392k2 + 40k.
Output: Either a problem-irrelevant vertex v or a sequence C = {C1, C2, . . . ,

C98k+2} of concentric cycles of G, with the following properties:

(1) C1 ∩R ̸= ∅.

(2) The set R is 32k-dense in C.

(3) There exists a sequenceW of 2k + 1 paths in KW such that (C,W) is a
(98k + 2, 2k + 1)-railed annulus.

Running
time: O(n).

We describe Algorithm concentric_cycles in Subsection 5.2. We now use
the above three algorithms to describe the main algorithm of this paper which
is the following.
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Algorithm
Planar_Annotated_Cyclability(G,R, k)

Input: A planar graph G, a set R ⊆ V (G), and a non-negative integer k.
Output: An answer whether (G,R, k) is a yes-instance of PAC or not.
Running
time: 22O(k2 log k) · n2.

Step
1. Let r = 98k2 + 2k, y = 16k, and q = 2y + 4r. If Compass(G, q) returns
a tree decomposition of G of width w = 18q, then return DP(G,R, k, w)

and stop. Otherwise, the algorithm Compass(G, q) returns a subdivided
wall W of G of height q and a tree decomposition D of the compass KW

of W of width at most w.

Step
2. If the algorithm concentric_cycles(G,R, k, q,W ) returns a problem-
irrelevant vertex v, then return Planar_Annotated_Cyclability(G \ v,R \
v, k) and stop. Otherwise, it returns a sequence C = {C1, C2, . . . , Cr} of
concentric cycles of G with the properties (1)–(3).

Step
3. For every i ∈ {1, . . . , r − 98k − 2} let wi be a vertex in Âi+k,i+33·k ∩ R

(this vertex exists as, from property (2), R is 32k-dense in C), let Ri =

(R∩ V (Ĉi))∪ {wi}, and let Di be a tree decomposition of Ĉi of width at
most w – this tree decomposition can be constructed in linear time from
D as each Ĉi is a subgraph of KW .

Step
4. If, for some i ∈ {1, . . . , r− 98k− 2}, the algorithm DP(Ĉi, Ri, k, q,Di) re-
turns a negative answer, then return a negative answer and stop. Other-
wise returnPlanar_Annotated_Cyclability(G,R\v, k)where v ∈ V (Ĉ1)∩
R (the choice of v is possible due to property (1)).

For a visualisation of how our algorithm operates, see Figure 5.1.

Proof
of
Lemma 5.0.1. The only non-trivial step in the above algorithm is Step
4. Its correctness follows from Lemma 5.3.1, presented in Subsection 5.3.

We now proceed to the analysis of the running time of the algorithm. Ob-
serve first that the call of Compass(G, q) in Step 1 takes 2k

O(1) · n steps and,
in the case that a tree decomposition is returned, the DP requires 22

O(k2 log k) ·n
steps. For Step 2, the algorithm concentric_cycles takes O(n) steps and if it
returns a problem-irrelevant vertex, then the whole algorithm is applied again
for a graph with one vertex less. Suppose now that Step 2 returns a sequence
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C of concentric cycles of G with the properties (1)–(3). Then, the algorithm DP
is called O(k2) times and this takes in total 22O(k2 log k) · n steps. After that, the
algorithm either concludes to a negative answer or is called again with one
vertex less in the set R. In both cases where the algorithm is called again we
have that the quantity |V (G)| + |R| is becoming smaller. This means that the
recursive calls of the algorithm cannot be more than 2n. Therefore, the total
running time is bounded by 22

O(k2 log k) · n2 as required.

5.1 The
algorithm
Compass

Before we start the description of algorithm Compass we present a result
that follows from Proposition 2.4.1, the algorithms in [76] and [8], and the fact
that finding a subdivision of a planar k-vertex graph H that has maximum
degree 3 in a graphG can be done, using dynamic programming, in 2O(k·log k)·n
steps (see also [2]).

Lemma 5.1.1. There
exists
an
algorithm A1 that, given
a
graph G and
an
in-
teger h, outputs
either
a
 tree
decomposition
of G of
width
at
most 9h or
a
subdivided
wall
of G of
height h. This
algorithm
runs
in 2h

O(1) · n steps.

Description
of
algorithm
Compass. We use a routine, call it A2, that re-
ceives as input a subdivided wall W of G with height equal to some even
number h and outputs a subdivided wall W ′ of G such that W ′ has height h/2
and |V (KW ′)| ≤ |V (G)|/4. A2 uses the fact that, in W, there are 4 vertex-
disjoint subdivided subwalls of W of height h/2. Among them, A2 outputs the
one with the minimum number of vertices and this can be done in O(n) steps.
The algorithm Compass uses as subroutines the routine A2 and the algorithm
A1 of Lemma 5.1.

Algorithm
Compass(G, q)

[Step
1.] if A1(G, 2q) outputs a tree decomposition D of G with
width at most 18q then return D,
otherwise it outputs a subdivided wall W of G of height 2q

[Step
2.] Let W ′ = A2(W )

if A1(KW ′ , 2q) outputs a tree decomposition D of
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KW ′ of width at most 18q then return W ′ and D,
otherwise W ←W ′ and go to Step 2.

Notice that, if A terminates after the first execution of Step 1, then it outputs
a tree decomposition of G of width at most 18q. Otherwise, the output is
a subdivided wall W ′ of height q in G and a tree decomposition of KW ′ of
width at most 18q (notice that as long as this is not the case, the algorithm
keeps returning to step 2). The application of routine A2 ensures that the
number of vertices of every new KW is at least four times smaller than the
one of the previous one. Therefore, the i-th call of the algorithm A1 requires
O(2h

O(1) · n
22(i−1) ) steps. As

∑∞
i=0

1
22i = O(1), algorithm Compass has the

same running time as algorithm A1.

5.2 The
Algorithm
concentric_cycles

We need to introduce two lemmata. The first one is strongly based on the
combinatorial Lemma 3.2.4 that is the main result of Section 3.

Lemma 5.2.1. Let (G,R, k) be
an
instance
of PAC and
let C = {C1, . . . , Cr}
be
a
sequence
of
concentric
cycles
in G such
that V (Ĉr) ∩R = ∅. If r ≥ 16k,

then
all
vertices
in V (Ĉ1) are
problem-irrelevant.

Proof. We observe that for every vertex v ∈ V (G), if (G \ v,R, k) ∈ PAC then
(G,R, k) ∈ PAC because G \ v is a subgraph of G and thus every cycle that
exists in G \ v also exists in G.

Assume now that (G,R, k) ∈ PAC, let v ∈ V (Ĉ1), and let S ⊆ R, |S| ≤ k.
We will prove that there exists a cycle in G \ v containing all vertices of S.

As (G,R, k) ∈ PAC, there is a cyclic linkage L = (C, S) in G. If v /∈ V (C),

thenC is a subgraph ofG\v and we are done. Else, if v ∈ V (C), letL′ = (C ′, S)

be a C-weakly cheap cyclic linkage in the graph H = G[V (C)∪
(∪r

i=1 V (Ci)
)
],

and assume that v ∈ V (C ′) too. Then C ′ meets all cycles of C and its pene-
tration in C is more than 16 · |S|, which contradicts Lemma 3.2.4.

Thus, v /∈ V (C ′) implying that there exists a cyclic linkage with S as its set
of terminals that does not contain v. As S was arbitrarily chosen, vertex v is
problem-irrelevant.
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Lemma 5.2.2. Let y, r, q, z be
positive
integers
such
that y + 1 ≤ z ≤ r, G be
a
graph
embedded
on S0 and
let R ⊆ V (G) be
the
set
of
annotated
vertices
of G. Given
a
subdivided
wall W of
height h = 2 ·max{y, ⌈ q8⌉}+ 4r in G then
either G contains
a
sequence C′ = {C ′

1, C
′
2, . . . , C

′
y} of
concentric
cycles
such

that V (Ĉ ′
y) ∩ R = ∅ or
a
sequence C = {C1, C2, . . . , Cr} of
concentric
cycles

such
that:

1. C1 ∩R ̸= ∅.

2. R is z-dense
in C.

3. There
exists
a
collectionW of q paths
inKW , such
that (C,W) is
a (r, q)-
railed
annulus
in G.

Moreover, a
sequence C′ or C of
concentric
cycles
as
above
can
be
con-
structed
in O(n) steps.

Proof. Let p = max{y, ⌈ q8⌉}. We are given a subdivided wall W of height
h = 2p + 4r and we define C = {C1, . . . , Cr} such that Ci = Jh

2 −p−2i+2, i ∈
{1, . . . , r}. Notice that there is a collectionW of 8p vertex disjoint paths in W

such that (C,W) is a (r, q)-railed annulus. If C1 ∩R = ∅, then

C′ = {Jh
2
, Jh

2 +1, . . . , Jh
2 +y−1}

is a sequence of concentric cycles where J h
2 +y−1 ⊆ C̊1 and we are done.

Otherwise, we have that C satisfies property 1.
Suppose now that Property 2 does not hold for C. Then, there exists some

i ∈ {1, . . . , r} such that Ai,i+z−1∩R = ∅. Notice that Ai,i+z−1 contains 2z−1 >

2y layers of W which are crossed by at least 2y of the paths inW (these paths
certainly exist as 2y < 8p). This implies the existence of a wall of height 2y in
Ai,i+z−1 which, in turn contains a sequence C′ = {C ′

1, . . . , C
′
y} of concentric

cycles. As C
′
y ⊆ Ai,i+z−1 we have that V (Ĉ ′

y) ∩ R = ∅ and we are done. It
remains to verify property 3 for C. This follows directly by including inW ′ any
q ≤ 8p of the disjoint paths of W. Then (C,W ′) is the required (r, q)-railed
annulus. It is easy to verify that all steps of this proof can be turned to an
algorithm that runs in linear, on n, number of steps.
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Description
of
algorithm
concentric_cycles. This algorithm first applies
the algorithm of Lemma 5.2.2 for

y = 16k, r = 98k2 + 2k, q = 2k + 1, and z = 32k.

If the output is a sequence C′ = {C ′
1, C

′
2, . . . , C

′
y} of concentric cycles such

that V (Ĉ ′
y) ∩ R = ∅, then it returns a vertex w of Ĉ ′

1. As V (Ĉr) ∩ R = ∅,
Lemma 5.2.1 implies that w is problem-irrelevant. If the output is a sequence
C then it remains to observe that conditions 1–3 match the specifications of
algorithm concentric_cycles.

5.3 Correctness
of
the
algorithm

As mentioned in the proof of Lemma 5.0.1, the main step – [step
4] – of
algorithm Planar_Annotated_Cyclability is based on Lemma 5.3.1 below.

Lemma 5.3.1. Let (G,R, k) be
an
instance
of
problem PAC and
let b = 98k+2

and r = 98k2 + 2k. Let
also (C,W) be
a (r, 2k + 1)-railed
annulus
in G, where
C = {C1, . . . Cr} is
 a
 sequence
of
concentric
cycles
 such
 that Ĉ1 contains
some
vertex v ∈ R and
that R is 32k-dense
in C. For
every i ∈ {1, . . . , r − b},
let

Ri = (R ∩ V (Ĉi)) ∪ {wi} where wi ∈ V (Âi+k+1,33k+i+1) ∩R.

If (Ĉi+b, Ri, k) is
a no-instance
of PAC,
for
some i ∈ {1, . . . , r−b}, then (G,R, k)

is
a no-instance
of PAC.
Otherwise
vertex v is colour-irrelevant.

We first prove the following lemma, which reflects the use of the rails of a
railed annulus and is crucial for the proof of Lemma 5.3.1.
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u

v

Wi

Wj

x′

y′
x

y

Cr

C1

Cr−1

Figure 5.2: visualisation of proof of Lemma 5.3.2, case 1. The different lining
on the parts of the cycle at the left indicates the different colours of these
paths.

Lemma 5.3.2. Let G be
a
graph
embedded
on
 the
sphere S0, r, k be
 two
positive
integers
such
that r ≥ 16k, and (C,W) be
an (r, 2k+1)-railed
annulus
of G with C = {C1, . . . , Cr} being
 its
sequence
of
concentric
cycles, W =

{W1, . . . ,W2k+1} its
rails. Let
also S ⊆ V (G) such
that S ∩ Ĉr = ∅ and |S| = k.
Then
for
every
two
vertices u, v ∈ V (C1), if
there
exists
a
cyclic
linkage L =

(C, S), with
penetration k + 1 ≤ pC(L) ≤ r − 1, in G, then
there
exists
a
path
Pu,v with
ends u and v that
meets
all
vertices
of S.

Proof. Let {s1, . . . , sk} be an ordering of the set S and let fL : L(P)→ {1, . . . , k}
be a function such that for every i ∈ {1, . . . k − 1}, fL(P ) = i if the endpoints
of P are si and si+1 and fL(P

∗) = k for the unique path P ∗ ∈ P(L) whose
endpoints are sk and s1.

Moreover, as Wi is a path with endpoints w′
i ∈ V (C1) and w′′

i ∈ V (Cr), we
define the ordering {w′

i, . . . , w
′′
i } of V (Wi) and call it the natural ordering of Wi.

Furthermore, for every Wi ∈ W, let mL(Wi) = fL(P ) if P is the first path (with
respect to the natural ordering of Wi) of P(L) that Wi meets and mL(Wi) = 0
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if Wi does not meet C.
Let Cj ∈ C. We pick an arbitrary vertex vj1 ∈ V (Cj) and order V (Cj) starting

from vj1 and continuing in clockwise order. Let {vj1, . . . , v
j
|V (Cj)|} be such an

ordering of the vertices of Cj . We assign to each vertex of vji ∈ Cj a ``colour"
from the set {0, . . . k} as follows: cL(vji ) = 0 if vji /∈ V (Cj)∩V (C) and cL(v

j
i ) =

fL(P ) if vji ∈ V (Cj) ∩ V (P ), where P ∈ P(L).
For the rest of the proof, if P0 is a path, P0(v, w) is the subpath of P0 with

endpoints v and w. We examine two cases:

1. At least k + 1 paths ofW (i.e. rails of the railed annulus) meet C. Then,
as |P(L)| = k, there exist two rails Wi,Wj ∈ W and a path P ∈ P(L)
such that

mL(Wi) = mL(Wj) = fL(P ).

Let V (C1) ∩ V (Wi) be the vertices of path Q1,i and V (C1) ∩ V (Wj) the
vertices of path Q1,j . Then, we let x ∈ V (C1) be the endpoint of Q1,i that
is not w′

i and y ∈ V (C1) be the endpoint of Q1,j that is not w′
j (notice

that x and y can coincide with u and v). Let also x′ be the vertex of
V (P )∩V (Wi) with the least index in the natural ordering of Wi and y′ be
the vertex of V (P )∩V (Wj) with the least index in the natural ordering of
Wj . We observe that there exist two vertex disjoint paths P1 and P2 with
endpoints either v, x and u, y or v, y and u, x, respectively. We define
path

Pu,v = (C \ P (x′, y′)) ∪Wi(x, x
′) ∪Wj(y, y

′) ∪ P1 ∪ P2.

Path Pu,v has the desired properties. See also Figure 5.2.

2. There exist k′ = k + 1 paths, say W ′ = {W1, . . . ,Wk′}, of W that do
not meet C. As the penetration of C is at least k + 1, for every j ∈
{r − k, . . . , r}, V (Cj ∩ C) ̸= ∅. For every i ∈ {1, . . . , k′} and every
j ∈ {r−k, . . . , r} we assign to the vertex wj

i of V (Wi∩Cj) with the least
index in the natural ordering of Wi, a ``colour" from the set {1, . . . , k}
as follows: cL(w

j
i ) = cL(v) if there exists a v ∈ V (C) and a subpath

Cj(w
j
i , v) (starting from wj

i and following Cj in counter-clockwise order)
such that it does not contain any other vertices of V (C) as internal ver-
tices.
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For every Wi ∈ W ′, we assign to Wi a set of colours, χi =
∪k+1

j=1 cL(w
j
i ).

Let P be the set of all maximal paths of Cr without internal vertices in
C. Certainly, any Wi ∈ W ′ intersects exactly one path of P. We define
the equivalence relation ∼ on the set of rails W ′ as follows: Wi ∼ Wl if
and only if Wi and Wl intersect the same path of P. We distinguish two
subcases:

• The number of equivalence classes of ∼ is k′. Then, there exist two
rails Wi,Wl ∈ W ′ and ji, jl ∈ {r − k, . . . , r} such that cL(wji

i ) =

cL(w
ji
l ) = cL(P ) for some path P ∈ P(L).

• The number of equivalence classes of ∼ is strictly less than k′.
Then, there exist two rails Wi,Wl ∈ W ′ such that cL(wj

i ) = cL(w
j
l )

for every j ∈ {r − k, . . . , r}. Therefore, there exist ji, jl ∈ {r −
k, . . . , r} with ji ̸= jl such that

cL(w
ji
i ) = cL(w

jl
l ) = cL(P )

for some path P ∈ P(L) (this holds because |{r−k, . . . , r}| = k+1

– see also Figure 5.3).

For both subcases, as cL(w
ji
i ) = cL(P ), there exist a vj ∈ V (P ) and a

subpath Cj(w
ji
i , vj) of Cj and, similarly, as cL(w

jl
l ) = cL(P ), there exist

a vjl ∈ V (P ) and a subpath Cj(w
jl
l , vjl) of Cj . These two subpaths do

not contain any other vertices of C apart from vji and vjl , respectively.
Moreover, let x be the vertex of V (Wi ∩ C1) of the least index in the
natural ordering of Wi and y the vertex of V (Wl ∩ C1) of the least index
in the natural ordering of Wl. As in case 1, observe that there exist two
vertex disjoint paths P1 and P2 with endpoints either v, x and u, y or v, y
and u, x, respectively. We define the path

Pu,v = (C \ P (vji , vjl)) ∪ Cj(w
ji
i , vji) ∪ Cj(w

jl
l , vjl) ∪

∪Wi(w
ji
i , x) ∪ Wl(w

jl
l , y) ∪ P1 ∪ P2.

Path Pu,v has the desired properties.
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Wi

Wl

y

u

v

vjl

wjl
l

wji
i

vji

Cr

C1

x

Figure 5.3: visualisation of proof of Lemma 5.3.2, case 2, subcase 2.

Proof
of
Lemma 5.3.1. We first prove that if (Ĉi+b, Ri, k) is a yes-instance of
PAC for every i ∈ {1, . . . , r − b}, then (G,R, k) is a yes-instance of PAC iff
(G,R \ v, k) is a yes-instance of PAC.

For the non-trivial direction, we assume that (G,R \ v, k) is a yes-instance
of PAC and we have to prove that (G,R, k) is also a yes-instance of PAC. Let
S ⊆ R with |S| ≤ k. We have to prove that S is cyclable in G. We examine two
cases:

1. v /∈ S. As (G,R \ v, k) is a yes-instance of PAC, clearly there exists a
cyclic linkage L = (C, S) in G, i.e., S is cyclable in G.

2. v ∈ S. As r ≥ k(98k+1) and S ≤ k, there exists i such that Ai,i+98k∩S =

∅. We distinguish two sub-cases:

• Subcase
1. S ⊆ Ci+98k+1. Then, as (Ĉi+98k+1, Ri+98k+1, k) is a
yes-instance of PAC, then S is cyclable in Ĉi+98k+1 and therefore
also in G.

• Subcase
2. There is a partition {S1, S2} of S into two non-empty
sets, such that S1 ⊂ C̊i and S1 ∩ Ci+98k+1 = ∅. As R is 32k-dense
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in C, there exist vertices

v1 ∈ S ∩Ai+k+1,i+33k+1 and v2 ∈ S ∩ A50+k+1,i+82k+1.

For i ∈ {1, 2}, let S′
i = Si ∪ {vi} and observe that |Si| ≤ k. Let

C1 = {Ci+49k, . . . , Ci} and C2 = {Ci+49k, . . . , C98k}.

As (Ĉi+98k+1, R98k+1, k) is a yes-instance of PAC, S′
1 is cyclable

in Ĉi+98k+1. Also, (G,R \ v, k) is a yes-instance, S′
2 is cyclable in

G. For each i ∈ {1, 2}, there exists a cyclic linkage Li = (Ci, S
′
i)

that has penetration at least k + 1 in Ci. We may assume that Li

is Ci-cheap. Then, By Lemma 5.2.1, the penetration of Li in Ci
is at most 49k. Let L′

i = (Ci, Si), i ∈ {1, 2}. For notational con-
venience we rename C1 and C2 where C1 = {C1

1 , . . . , C
1
49k+1} and

C2 = {C2
1 , . . . , C

2
49k+1} (notice that C1

49k+1 = C2
1 ). Let x, y be two

distinct vertices in Ci+49k. For i ∈ {1, 2}, we apply Lemma 5.3.2, for
r = 49k+1, k, Ci,W, and x and y and obtain two paths Pi, i ∈ {1, 2},
such that Si ⊆ V (Pi) and whose endpoints are x and y. Clearly,
P1 ∪ P2 is a cycle whose vertex set contains S as a subset. There-
fore S is cyclable in G, as required (see Figure 5.4).

x

y

Figure 5.4: The squares of the right (resp. left) part represent the vertices of
S1 (resp. S2). The connection between two cycles via rails and through x and
y is derived from a double application of Lemma 5.3.2.
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We have now concluded the presentation and analysis of the FPT-algorithm
for solving the Cyclability problem on planar graphs. The next two chapters
are devoted to our negative results:

In Chapter 6 we prove that Cyclability is hard (unlikely to be in FPT) when
we allow the input to be any graph (even if it is a split graph), and in Chapter 7
we show that it is unlikely that Cyclability admits any polynomial kernel, even
for the class of planar graphs.
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Compass(G, q)

DP(G,R, k, w) concentric cycles(G,R, k, q,W )

Planar Annotated Cyclability(G,R, k)

DP(Ĉ1, R1, k, q,D1)

C = {C1, C2, . . . , Cr} problem irrelevant v

DP(Ĉ2, R2, k, q,D2) DP(Ĉr, Rr, k, q,Dr). . .

∧

solution

small
decomposition

big wall
W

negative answer color irrelevant v

NO YES

G = G \ {v}
R = R \ {v}

k

R = R \ {v}
G

k

Figure 5.1: A visualisation of how our algorithm, Planar_
Annotated_
Cycla-
bility, operates on input (G,R, k) for the Cyclability problem, where G = (V,E)
is a planar graph, S is a subset of V , and k is a non-negative integer.
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CHAPTER6

HARDNESS OF THE CYCLABILITY PROBLEM

In this Chapter, we prove our first negative result, implying that Cyclability
is hard for general graphs. This, in way, justifies why our effort for designing
an FPT-algorithm for the planar case is worth making.

We show that it is unlikely that Cyclability is FPT by proving Theorem 1.3.1
(mentioned in the introduction). For this, we first introduce some further nota-
tion.

A matching is a set of pairwise non-adjacent edges. A vertex v is saturated
in a matching M if v is incident to an edge of M . By x1 . . . xp we denote the
path with the vertices x1, . . . , xp and the edges {x1, x2}, . . . , {xp−1, xp}, and
we use x1 . . . xpx1 to denote the cycle with the vertices x1, . . . , xp and the
edges {x1, x2}, . . . , {xp−1, xp}, {xp, x1}. For a path P = x1 . . . xp and a vertex
y, yP (Py resp.) is the path yx1 . . . xp (x1 . . . xpy resp.). If P1 = x1 . . . xp and
P2 = y1 . . . yq are paths such that V (P1) ∩ V (P2) = {xp} = {y1}, then P1 + P2

is the concatenation of P1 an P2, i.e., the path x1 . . . xp−1y1 . . . yq.

We need some auxiliary results. The following lemma is due to Erdős [38].
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Define the function f(n, δ) by

f(n, δ) =


(
n−δ
2

)
+ δ2 if n ≥ 6δ − 2,(

(n+1)/2
2

)
+ (n−1

2 )2 if n ≤ 6δ − 3 and n is odd,(
(n+2)/2

2

)
+ (n−2

2 )2 if n ≤ 6δ − 4 and n is even.

Lemma 6.0.1 ([38]). Let G be
a
graph
with n ≥ 3 vertices. If δ(G) ≥ n/2 or
|E(G)| > f(n, δ(G)), then G is
Hamiltonian.

Lemma 6.0.2. Let k ≥ 75 be
an
odd
integer
and
let H be
a
graph
such
that

i) (k − 2)(k − 3)/2 < |E(H)| ≤ k(k − 1)/2 + 1,

ii) δ(H) ≥ (k − 1)/2,

iii) there
is
a
set S ⊆ E(H) such
that |S| > (k− 2)(k− 3)/2 and G[S] has
at
most k + 2 vertices.

Then H is
Hamiltonian.

Proof. Let H be an n-vertex graph that satisfies the above three conditions.
Let S ⊆ E(H) be a set such that |S| > (k − 2)(k − 3)/2 and G[S] has at
most k + 2 vertices. Let also U = V (H) \ V (G[S]). Denote by R the set
of edges of G incident to vertices of U . Since |S| > (k − 2)(k − 3)/2 and
|E(H)| ≤ k(k − 1)/2 + 1, |R| ≤ 2k − 3. Because δ(H) ≥ (k − 1)/2, |R| ≥
|U |δ(H)/2 ≥ |U |(k − 1)/4. We have that |U | ≤ 7, i.e., H has at most k + 9

vertices. Then because k ≥ 75, we obtain that n ≥ 6δ(G)− 3,(
(n+ 1)/2

2

)
+
(n− 1

2

)2
≤ (k − 2)(k − 3)

2
< |E(H)|

and (
(n+ 2)/2

2

)
+
(n− 2

2

)2
≤ (k − 2)(k − 3)

2
< |E(H)|.

We have that |E(H)| > f(n, δ(H)), and by Lemma 6.0.1, H is Hamiltonian.

We are now in the position to prove Theorem 1.3.1:

Proof
of
Theorem 1.3.1. We reduce the Clique problem. Recall that Clique
asks for a graph G and a positive integer k, whether G has a clique of size k.
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This problem is well known to be W[1]-complete [35] when parameterized by
k. Notice that Clique remains W[1]-complete when restricted to the instances
where k is odd. To see it, it is sufficient to observe that if the graph G′ is
obtained from a graph G by adding a vertex adjacent to all the vertices of G,

then G has a clique of size k if and only if G′ has a clique of size k+1. Hence,
any instance of Clique can be reduced to the instance with an odd value of
the parameter. Clearly, the problem is still W[1]-hard if the parameter k ≥ c for
any constant c.

Let (G, k) be an instance of Clique where k ≥ 75 is odd. We construct the
graph G′

k as follows.

• For each vertex x ∈ V (G), construct s = (k − 1)/2 vertices vix for i ∈
{1, . . . , s} and form a clique of size ns from all these vertices by joining
them by edges pairwise.

• Construct a vertex w and edges {w, vix} for x ∈ V (G), i ∈ {1, . . . , s}.

• For each edge {x, y} ∈ E(G), construct the vertex uxy and the edges
{uxy, v

i
x}, {uxy, v

i
y} for i ∈ {1, . . . , s}; we assume that uxy = uyx.

Let k′ = k(k− 1)/2+ 1. It is straightforward to see that G′ is a split graph. We
show that G has a clique of size k if and only if there are k′ vertices in G′

k such
that there is no cycle in G′

k that contains these k′ vertices.
Suppose that G has a clique X of size k. Let

Y = {uxy ∈ V (G′)|x, y ∈ X,x ̸= y}

and Z = Y ∪ {w}. Because |X| = k, |Z| = k(k − 1)/2 + 1 = k′. Observe that
Y is an independent set in G′

k and |Y | = |NG′(Y )|. Hence, for any cycle C in
G′

k such that Y ⊆ V (C), V (C) ⊆ Y ∪ NG′
k
(Y ). Because w /∈ Y ∪ NG′

k
(Y ), w

does not belong to any cycle that contains the vertices of Y . We have that no
cycle in G′

k contains Z of size k′.
Now we show that if G has no cliques of size k, then for any Z ⊆ V (G′

k)

of size k′, there is a cycle C in G′
k such that Z ⊆ V (C). We use the following

claim.

Claim. Suppose
 that G has
no
cliques
of
size k. Then
 for
any
non-empty
Z ⊆ {uxy|x, y ∈ V (G)} of
size
at
most k(k − 1)/2 + 1, there
is
a
cycle C in
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G′
k such
that Z ⊆ V (C) ⊆ Z ∪ NG(Z) and C has
an
edge {vix, vjy} for
some

x, y ∈ V (G) and i, j ∈ {1, . . . , s}.

of
Claim. For a set Z ⊆ {uxy|x, y ∈ V (G)}, we denote by S(Z) the set of
edges {{x, y} ∈ E(G)|uxy ∈ Z}, and H(Z) = G[S(Z)].

If Z = {uxy}, then the triangle uxyv
1
xv

2
xuxy is a required cycle, and the

claim holds. Let r = |Z| ≥ 2 and assume inductively that the claim is fulfilled
for smaller sets.

Suppose that H(Z) has a vertex x with degH(Z)(x) ≤ (k − 3)/2. Let
NH(Z)(x) = {y1, . . . , yt}. Notice that t ≤ (k − 3)/2 = s − 1. Denote by Z ′

the set obtained from Z by the deletion of uxy1 , . . . , uxyt , and let H ′ = H(Z ′).
If Z ′ = ∅, then the cycle

C = v1xuxy1v
2
x . . . v

t
xuxytv

t+1
x v1x

satisfies the conditions and the claim holds. Suppose that Z ′ ̸= ∅. Then, by
induction, there is a cycle C ′ in G′

k such that Z ⊆ V (C ′) ⊆ Z ∪NG(Z) and C ′

has an edge {via, v
j
b} for some a, b ∈ V (G) and i, j ∈ {1, . . . , s}. We consider

the path
P = v1xuxy1v

2
x . . . v

t
xuxytv

t+1
x .

Then we delete {via, v
j
b} and replace it by the path viaPvjb . Denote the obtained

cycle by C. It is straightforward to verify that Z ⊆ V (C) ⊆ Z ∪ NG(Z) and
{via, v1x} ∈ E(C), i.e., the claim is fulfilled.

From now we assume that δ(H(Z)) ≥ (k− 1)/2. We consider three cases.

Case
1. r ≤ (k − 2)(k − 3)/2.
Consider the graph G′

k−2. We show that this graph has a matching M of
size r such that every vertex of Z is saturated in M . By the Hall's theorem (see,
e.g., [29]), it is sufficient to show that for any Z ′ ⊆ Z, |Z ′| ≤ |NG′

k−2
(Z ′)|. Let p

be the smallest positive integer such that |Z ′| ≤ p(p − 1)/2. By the definition
of G′

k−2, |NG′
k−2

(Z ′)| ≥ p(k − 3)/2. Because p ≤ k − 2, we have that

|Z ′| ≤ p(p− 1)/2 ≤ p(k − 3)/2 ≤ |NG′
k−2

(Z ′)|.

Let M be a matching in G′
k−2 of size r such that every vertex of Z is sat-

urated in M . Clearly, M is a matching in G′
k that saturates Z as well. Let

112



CHAPTER
6. HARDNESS OF THE CYCLABILITY PROBLEM

x1, . . . , xq be the vertices of G such that for i ∈ {1, . . . , q}, {v1xi
, . . . , vsxi

} con-
tains saturated in M vertices. Because v1xi

, . . . , vsxi
have the same neighbour-

hoods, we assume without loss of generality that for i ∈ {1, . . . , q}, v1xi
, . . . , vtixi

are saturated. Observe that since M is a matching in G′
k−2, ti ≤ s − 1. For

i ∈ {1, . . . , q} and j ∈ {1, . . . , ti}, denote by uj
i the vertex of Z such that

{vjxi
, uj

i} ∈M . We define the path

Pi = v1xi
u1
i v

2
xi
. . . uti

i v
ti+1
xi

, for every i ∈ {1, . . . , q}.

As all the vertices vjxi
are pairwise adjacent, by adding the edges

{vt1+1
x1

, v1x2
}, . . . , {vtq−1+1

xq−1
, v1xq
}, {vsq+1

xq
, v1x1
},

we obtain from the the paths P1, . . . , Pq a cycle. Denote it by C. We have that

Z ⊆ V (C) ⊆ Z ∪NG(Z) and {vt1+1
x1

, v1x2
} ∈ E(C),

and we conclude that the claim holds.

Case
2. (k − 2)(k − 3)/2 < r and for any S ⊆ E(H(Z)) such that |S| >
(k − 2)(k − 3)/2, H(Z)[S] has at least k + 3 vertices.

We use the same approach as in Case 1 and show that G′
k−2 has a match-

ing M of size r such that every vertex of Z is saturated in M . We have to show
that for any Z ′ ⊆ Z, |Z ′| ≤ |NG′

k−2
(Z ′)|. If |Z ′| ≤ (k − 2)(k − 3)/2, we use ex-

actly the same arguments as in Case 1. Suppose that |Z ′| > (k− 2)(k− 3)/2.
Then

|S(Z ′)| = |Z ′| > (k − 2)(k − 3)/2.

Hence, H(Z)[S(Z ′)] has at least k + 3 vertices. It implies that

|NG′
k−2

(Z ′)| ≥ (k + 3)(k − 3)/2.

Because k ≥ 75 and |Z ′| ≤ r ≤ k(k − 1)/2 + 1, we get that

|NG′
k−2

(Z ′)| ≥ (k + 3)(k − 3)/2 ≥ k(k − 1)/2 + 1 ≥ |Z ′|.

Given a matching M that saturates Z, we construct a cycle that contains Z in
exactly the same way as in Case 1 and prove that the claim holds.
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Case
3. (k − 2)(k − 3)/2 < r and there is S ⊆ E(H(Z)) such that |S| >
(k − 2)(k − 3)/2 and H(Z)[S] has at most k + 2 vertices.

By Lemma 6.0.2, H(Z) is Hamiltonian. Let p = |V (H(Z))| and denote by
R = x1 . . . xpx1 a Hamiltonian cycle in H(Z). Let U = {ux1x2 , . . . , uxp−1x1} and
let Z ′ = Z \ U .

We again consider G′
k−2. We show that this graph has a matching M of

size |Z ′| such that every vertex of Z ′ is saturated in M . We have to prove that
for any Z ′′ ⊆ Z ′, |Z ′′| ≤ |NG′

k−2
(Z ′′)|. If |Z ′′| ≤ (k−2)(k−3)/2, we use exactly

the same arguments as in Case 1. Suppose that |Z ′′| > (k−2)(k−3)/2. Let q
be the smallest positive integer such that |Z ′′| ≤ q(q− 1)/2. Clearly, q > k− 2.
We consider the following three cases depending on the value of q.

Case
a. q = k − 1. Then H(Z ′′) has at least k − 1 vertices and at least
(k − 2)(k − 3)/2 + 1 edges. Because |Z| ≤ k(k − 1)/2 + 1, H(Z) has at most
2k− 3 edges that are not edges of H(Z ′′). Because δ(H(Z)) ≥ (k− 1)/2 and
k ≥ 75, H(Z) has at most 4 vertices that are not adjacent to the edges of
H(Z ′′). Then at most 8 edges of the Hamiltonian cycle R in H(Z) do not join
vertices of H(Z ′′) with each other. We obtain that at least k − 9 edges of R
join vertices of H(Z ′′) with each other.

Suppose that H(Z ′′) has k − 1 vertices. Then

|Z ′′| ≤ (k − 1)(k − 2)/2− (k − 9) ≤ (k2 − 5k + 20)/2.

Because H(Z ′′) has k − 1 vertices, |NG′
k−2

(Z ′′)| = (k − 1)(k − 3)/2. Since
k ≥ 75, |Z ′′| ≤ |NG′

k−2
(Z ′′)|.

Suppose that H(Z ′′) has k vertices. If H(Z) has a vertex x that is not
adjacent to the edges of H(Z ′′), then at least (k − 1)/2 vertices of Z that
correspond to the edges incident to x are not in Z ′′. Then

|Z ′′| ≤ |Z| − (k − 1)/2− (k − 9) ≤ (k2 − 4k + 21)/2.

Because |NG′
k−2

(Z ′′)| = k(k − 3)/2 and k ≥ 75, |Z ′′| ≤ |NG′
k−2

(Z ′′)|. If H(Z)

has no vertex that is not adjacent to the edges of H(Z ′′), then the edges of R
join vertices of H(Z ′′) with each other. We have that

|Z ′′| ≤ k(k − 1)/2− k = k(k − 3)/2 and |Z ′′| ≤ |NG′
k−2

(Z ′′)|.
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Finally, if H(Z ′′) has at least k + 1 vertices, then

|NG′
k−2

(Z ′′)| ≥ (k + 1)(k − 3)/2 ≥ (k − 1)(k − 2)/2 ≥ |Z ′′|.

Case
b. q = k. Then H(Z ′′) has at least k vertices and at least (k − 1)(k −
2)/2 + 1 edges. Because |Z| ≤ k(k− 1)/2 + 1, H(Z) has at most k− 1 edges
that are not edges of H(Z ′′). Because δ(H(Z)) ≥ (k− 1)/2 and k ≥ 75, H(Z)

has at most 2 vertices that are not adjacent to the edges of H(Z ′′). Then at
most 4 edges of the Hamiltonian cycle R in H(Z) do not join vertices of H(Z ′′)

with each other. We obtain that at least k−4 edges of R join vertices of H(Z ′′)

with each other.
Suppose that H(Z ′′) has k vertices. If H(Z) has a vertex x that is not

adjacent to the edges of H(Z ′′), then at least (k − 1)/2 vertices of Z that
correspond to the edges incident to x are not in Z ′′. Then

|Z ′′| ≤ |Z| − (k − 1)/2− (k − 4) ≤ (k2 − 4k + 11)/2.

Because |NG′
k−2

(Z ′′)| = k(k − 3)/2 and k ≥ 75, |Z ′′| ≤ |NG′
k−2

(Z ′′)|. If H(Z)

has no vertex that is not adjacent to the edges of H(Z ′′), then the edges of R
join vertices of H(Z ′′) with each other. We have that |Z ′′| ≤ k(k − 1)/2− k =

k(k − 3)/2 and |Z ′′| ≤ |NG′
k−2

(Z ′′)|.
Suppose that H(Z ′′) has at least k + 1 vertices. Then R has at least k + 1

edges and |Z ′| ≤ |Z|−(k+1) ≤ k(k−3)/2. As |NG′
k−2

(Z ′′)| ≥ (k+1)(k−3)/2,
we get that |Z ′′| ≤ |NG′

k−2
(Z ′′)|.

Case
c). q ≥ k + 1. Then H(Z ′′) has at least k + 1 vertices. We have that
R has at least k + 1 edges and |Z ′| ≤ |Z| − (k + 1) ≤ k(k − 3)/2. Because
|NG′

k−2
(Z ′′)| ≥ (k + 1)(k − 3)/2, we get that |Z ′′| ≤ |NG′

k−2
(Z ′′)|.

We conclude that for any Z ′′ ⊆ Z ′, |Z ′′| ≤ |NG′
k−2

(Z ′′)|. Hence, G′
k−2 has

a matching M of size r such that every vertex of Z ′ is saturated in M .
Clearly, M is a matching in G′

k as well. Recall that R = x1 . . . xpx1 is a
Hamiltonian cycle in H(Z) and U = {ux1x2 , . . . , uxp−1x1}. For i ∈ {1, . . . , p}, let
ti be the number of vertices in {v1xi

, . . . , vsxi
} that are saturated in M . Because

M is a matching in G′
k−1, ti ≤ s− 1.

We prove that there is j ∈ {1, . . . , p} such that tj < s − 1. Let q be the
smallest positive integer such that |Z| ≤ q(q − 1)/2. The graph H(Z) has at
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least q vertices. Suppose first that it has exactly q vertices. Then p = q and
Z ′ = Z \U has at most p(p−1)/2−p = p(p−3)/2 vertices. Also |NG′

k−2
(Z)| =

p(k − 3)/2. If p < k, at least one vertex in NG′
k−2

(Z) is not saturated and the
statement holds. Let p = k. Then because G has no cliques of size k, |Z| <
k(k− 1)/2 and |Z ′| < k(k − 3)/2. We have that |Z ′| < |NG′

k−2
(Z)| and at least

one vertex in NG′
k−2

(Z) is not saturated. If p ≥ k+1, then |Z| = k(k−1)/2+1.
We have that |Z ′| ≤ k(k− 3)/2 and |NG′

k−2
(Z)| ≥ (k+1)(k− 3)/2. Hence, the

there is a non-saturated vertex in NG′
k−2

(Z). Suppose now that H(Z) has at
least q+1 vertices. Then p ≥ q+1 and |Z ′| ≤ q(q−1)/2−(q+1) = q(q−3)/2−1.
As |NG′

k−2
(Z)| ≥ (q+1)(k− 3)/2, |Z ′| < |NG′

k−2
(Z)| if q ≤ k. If q ≥ k+1, then

|Z ′| ≤ |Z| − (k + 2) ≤ (k(k − 1)/2 + 1)− (k + 2) ≤ k(k − 3)/2− 1.

Because |NG′
k−2

(Z)| ≥ (k+2)(k−3)/2, we again have a non-saturated vertex
in NG′

k−2
(Z). We considered all cases and conclude that at least one vertex

of NG′
k−2

(Z) is not saturated in M . Hence, there is j ∈ {1, . . . , p} such that
tj < s− 1. Without loss of generality we assume that j = p.

Because v1xi
, . . . , vsxi

have the same neighbourhoods, we assume with-
out loss of generality that for i ∈ {1, . . . , p}, v1xi

, . . . , vtixi
are saturated. For

i ∈ {1, . . . , q} and j ∈ {1, . . . , ti}, denote by uj
i the vertex of Z ′ such that

{vjxi
, uj

i} ∈ M . Notice that it can happen that ti = 0 and we have no such
saturated vertices. We define the path Pi = v1xi

u1
i v

2
xi
. . . usi

i vti+1
xi

if ti ≥ 1 and
let Pi = v1xi

if ti = 0 for i ∈ {1, . . . , p}. Let

P = P1 + vt1+1
x1

ux1x2v
1
x2

+ . . .+ vtp−1+1
xp−1

uxp−1xpv
1
xp

+ Pp

and then form the cycle C from P by joining the end-vertices of P by

vtp+1
xp

vtp+2
xp

uxpx1v
1
x1

using the fact that tp ≤ s − 2. We have that Z ⊆ V (C) ⊆ Z ∪ NG(Z) and
v
tp+1
xp v

tp+2
xp ∈ E(C). It concludes Case 3 and the proof of the claim.

Let Z ⊆ V (G′
k) be a set of size k′. Let

Z ′ = Z ∩ {uxy|{x, y} ∈ E(G)}.
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If Z ′ = ∅, then Z is a clique and there is a cycle C in G′
k such that Z ⊆ V (C).

Suppose that Z ′ ̸= ∅. By Claim, there is a cycle C ′ in G′
k such that Z ′ ⊆

V (C ′) ⊆ Z ′ ∪NG(Z
′) and C ′ has an edge {vix, vjy} for some x, y ∈ V (G′) and

i, j ∈ {1, . . . , s}. Let {u1, . . . , up} = Z \ V (C ′). Notice that these vertices
are pairwise adjacent and adjacent to vix, v

j
y. We construct the cycle C from

C ′ by replacing {vix, vjy} by the path vixu1 . . . upv
j
y. It remains to observe that

Z ⊆ V (C) ⊆ Z ∪NG(Z).

It now remains to present our negative result, stating that Cyclability, re-
stricted to planar graphs, admits no polynomial kernels unless NP ⊆ co-NP/poly.
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CHAPTER7
KERNELIZATION LOWER BOUND FOR

CYCLABILITY

As we have showed in Chapter 5, Cyclabilty becomes tractable, from the
Parameterized Complexity point of view, when we restrict the inputs to be
planar graphs. This is not the case for general graphs, as proved in Chapter
6.

We know (we also proved it in Section 2.2 of Chapter 2), that any problem
in FPT admits a kernelization algorithm. However, a more interesting question
is whether an FPT-problem admits a small sized kernel, meaning a kernel of
polynomial or even linear size.

In this Chapter we prove our second negative result: The Cyclability prob-
lem does not admit a polynomial kernel unless NP ⊆ co-NP/poly. The as-
sumption NP ̸⊆ co-NP/poly is widely believed and is often used in theoretical
computer science when trying to prove the unlikeliness of a statement. That
is why our results implies that it is very unlikely for Cyclability to admit any
polynomial kernel.

The above result indicates that the Cyclability problem does not follow the
kernelization behavior of many other problems (see for example [9]), for which
surface embeddability enables the construction of polynomial kernels.

Before proceeding to the proof of our last result, we need to introduce
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some further notation regarding the kernelization lower bound theory, which
has been rapidly growing in the recent years (for more on kernelization lower
bounds see [22] and [36]).

Definition 7.0.1. Let L ⊆ Σ∗ be
a
language, letR be
a
polynomial
equivalence
relation
on Σ∗, and
let Q ⊆ Σ∗ × N be
a
parameterized
problem. An AND-
cross-composition of L into Q (with
respect
to R)
is
an
algorithm
that, given t

instances x1, x2, . . . , xt ∈ Σ∗ of L belonging
to
the
same
equivalence
class
of
R, takes
time
polynomial
in

∑t
i=1 |xi| and
outputs
an
instance (y, k) ∈ Σ∗ × N

such
that:

1. the
parameter
value k is
polynomially
bounded
in max{|x1|, . . . , |xt|} +
log t,

2. the
instance (y, k) is
a yes-instance
for Q if
and
only
each
instance xi is
a yes-instance
for L for i ∈ {1, . . . , t}.

It
is
said
that L AND-cross-composes into Q if
a
cross-composition
algorithm
exists
for
a
suitable
relation R

In particular, Bodlaender, Jansen and Kratsch [10] proved the following
theorem, which is an analogue if the one that we presented in Section 2.2.5
of Chapter 2, where the assumption of an OR-cross-composition is replaced
by that of an AND-cross-composition. Despite the relevance of the two state-
ments, the original proof of the latter (which relies on the main result of Dracker
[37]) is pretty involved and, thus, not presented here. A simpler proof of the
result in [37] was given by Dell in [27].

Theorem 7.0.1 ([10]). If
an NP-hard
language L AND-cross-composes
into
the
parameterized
problem Q, then Q does
not
admit
a
polynomial
kernelization
unless NP ⊆ co-NP/poly.

In this section we present our last result, i.e., a proof that it is unlikely that
Cyclability, parameterized by k, admits a polynomial kernel when restricted to
planar graphs. The proof uses the cross-composition technique introduced
by Bodlaender, Jansen, and Kratsch in [10].

We consider the auxiliary Hamiltonicity with a Given Edge problem, which
for a graph G and a given edge e ∈ E(G), asks whether G has a Hamiltonian
cycle that contains e. We use the following lemma.
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Lemma 7.0.1. Hamiltonicity with a Given Edge is NP-complete
for
cubic
pla-
nar
graphs.

Proof. It was proved by Garey, Johnson and Tarjan in [46] that Hamiltonicity
is NP-complete for planar cubic graphs. Let G be a planar cubic graph, and
let v be an arbitrary vertex of G. Denote by x, y, z the neighbors of v in G.
We replace v by a gadget F shown in Fig. 7.1. More precisely, we delete v,
construct a copy of F and add theedges {x, x′}, {y, y′} and {z, z′}. Denote
by G′ the obtained graph. Clearly, G′ is a cubic planar graph. We claim that G
is Hamiltonian if and only if G′ has a Hamiltonian cycle that contains the edge
e shown in Fig. 7.1.

c)

x′

x

z′

z

y′

y

e

F

x′

x

z′

z

y′

y

e

F

x′

x

z′

z

y′

y

e

F

a) b)

Figure 7.1: The gadget F ; the edges of Hamiltonian cycles are shown by the
bold lines.

Suppose that G has a Hamiltonian cycle C. Then C contains two edges
incident to v. We construct the Hamiltonian cycle in G′ by replacing these two
edges by paths shown in Fig. 7.1. If C contains {x, v} and {v, y}, then they
are replaced by the path shown in Fig. 7.1 a), if C contains {x, v} and {v, z},
then they are replaced by the path shown in Fig. 7.1 b) and if C contains {y, v}
and {v, z}, then we use the path shown in Fig. 7.1 c). It is easy to see that we
obtain a Hamiltonian cycle that contains e. If G′ has a Hamiltonian cycle, then
it is straightforward to see that G is Hamiltonian as well.

We are now ready to prove Theorem 1.3.5.

Proof
of
Theorem 1.3.5. We construct an AND-cross-composition of Hamil-
tonicity with a Given Edge. By Lemma 7.0.1, the problem is NP-complete.
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We assume that two instances (G, e) and (G′, e′) of Hamiltonicity with a Given
Edge are equivalent if |V (G)| = |V (G′)|. Let (Gi, ei) for i ∈ {1, . . . , t} be equiv-
alent instances of Hamiltonicity with a Given Edge, |V (Gi)| = n. We construct
the graph G as follows (see Fig. 7.2).

i) Construct disjoint copies of G1, . . . , Gt.

ii) For each i ∈ {1, . . . , t}, subdivide ei twice and denote the obtained ver-
tices by ui, vi.

iii) For i ∈ {1, . . . , t}, construct an edge {vi, ui+1} assuming that un+1 = u1.
It is straightforward to see that G is a cubic planar graph.

C3

e1 e2 e3

u1 v1 u2 v2 u3 v3

G1 C1 G2 C2 G3

Figure 7.2: The construction of G for t = 3; the edges of a Hamiltonian cycle
in G are shown by the bold lines.

We claim that G is n + 2-cyclable if and only if (Gi, ei) is a yes-instance
of Hamiltonicity with a Given Edge for every i ∈ {1, . . . , t}. If every Gi has
a Hamiltonian cycle Ci that contains ei, then G is Hamiltonian as well; the
Hamiltonian cycle in G is constructed from C1, . . . , Ct as it is shown in Fig. 7.2.
Since G is Hamiltonian, G is n + 2-cyclable. Suppose now that G is n + 2-
cyclable. Let i ∈ {1, . . . , t}. Consider X = V (Gi) ∪ {ui, vi}. Because |X| =
n + 2, G has a cycle C that goes trough all the vertices of X. It remains to
observe that by the removal of the vertices of V (G)\V (Gi) and by the addition
of the edge ei, we obtain from C a Hamiltonian cycle in Gi that contains ei.

We have proved that it is unlikely that we can apply any efficient prepro-
cessing routine for the Cyclability problem, even when restricted to the class
of planar graphs.

The next, and last, chapter of this thesis contains an overview of our results
and some suggestion for further research.
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CHAPTER8
CONCLUSION

As a conclusion of this thesis, we briefly review our results and suggest
some directions for further research.

8.1 Our
results

Let us quickly review our results:

• In Chapter 5, we construct an algorithm for solving Cyclability on planar
graphs. Actually, we solve a slightly more general version with anno-
tated vertices, which we call PAC. For the analysis of our algorithm we
need the results presented in Chapters 3 and 4, which we think are of
independent interest:

– In Chapter 3, we prove a series of combinatorial results about cyclic
linkages which enable us to use the irrelevant vertex technique.

– In Chapter 4, we design a, somehow unusual, dynamic program-
ming routine for efficiently solving the Cyclability problem on graphs
of bounded treewidth.
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8.2. COMPLEXITY OF CYCLABILITY AND BETTER RUNNING TIME

• In Chapter 6 we prove that it is unlikely that Cyclability is in FPT by giving
a parameterized reduction from the Clique problem to the problem that
is complementary to Cyclability.

• In Chapter 7, we prove that Cyclability, even when restricted to pla-
nar graphs, admits no polynomial kernelization algorithm unless NP ⊆
co-NP/poly.

8.2 Complexity
 of Cyclability and
 better
 running
time

Another way to define the class NP (besides using non-deterministic Turing
Machines), is in terms of existential quantification of polynomial relationships.
More specifically: Let L ⊆ Σ∗ be a language. L ∈ NP if and only if there is a
polynomially decidable and polynomially balanced relation R, such that

L =
{
x : ∃ y [(x, y) ∈ R]

}
,

where R is called polynomially
decidable if there is a deterministic Turing ma-
chine deciding the language

{
x; y : (x, y) ∈ R

}
in polynomial time and is called

polynomially
balanced if (x, y) ∈ R implies |y| ≤ |x|k for some k ≥ 1.
This, equivalent, definition supports the intuition that the class NP consists

of problems where, given an input (corresponding to x) and a short (of size
polynomial to |x|) witness or solution (corresponding to y) it is easy to decide
(in polynomial time) if the given solution verifies that the input is valid for the
problem.

For example, for the Hamiltonicity problem, given an input graph G =

(V,E) with V = {v1, . . . , vn}, a witness w = (vi1 , . . . , vin), is a permutation
of the vertices in V (w is clearly of polynomial size) and the relation R cor-
responds to checking whether the elements of the set

{
{vij , vij+1} | j =

1, . . . , n− 1
}
∪ {vin , vi1} exist in E. Clearly, this check can be done in polyno-

mial time and this way we can prove that Hamiltonicity∈ NP.

The
classical
complexity
of Cyclability. Notice that we have no proof (or
evidence) that Cyclability is in NP. However, using a similar definition to the
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one we just gave for the class NP, we can directly place Cyclability to the
second level of the polynomial hierarchy, and more precisely to the class ΠP

2

(for detailed definitions see [75]).
Let L ⊆ Σ∗ be a language. L ∈ NP if and only if there is a polynomially

decidable and polynomially balanced relation R, such that

L =
{
x : (∀y)(∃z)

[(
x, (y, z)

)
∈ R

)] }
.

We can place Cyclability in ΠP
2 as follows: Given a graph G = (V,E) and an

integer k, the term ∀ y corresponds to every possible k-sized subset of V and
the witness z corresponds to a permutation of some vertices of G. The poly-
nomial relation, similarly to the the case of Hamiltonicity, checks whether there
exist edges in E between all vertices that are successive in the permutation
z (and between the last and the first vertex) and, additionally, whether z con-
tains all the vertices of y. If both conditions are met, then x is a YES-instance
for Cyclability. This classifies Cyclability in ΠP

2 .
Although we do not have a proof, the previous arguments prompt us to

conjecture the following:

Conjecture 8.2.1. Cyclability is ΠP
2-complete.

Moreover, while we have proved that Cyclability is co-W[1]-hard, we have
no evidence regarding which level of the parameterized complexity hierar-
chy it belongs to (lower than the XP class). We find it an intriguing question
whether there is some i ≥ 1 for which Cyclability is W[i]-complete (or co-W[i]-
complete).

Clearly, another challenging question is whether the, double exponential,
parametric dependance of our FPT-algorithm can be substantially improved.
We believe that this is not possible and we suspect that this issue might be
related to Conjecture 8.2.1.

8.3 Generalizations
Another direction of research is to investigate whether Cyclability is in FPT

on more general graph classes.
Actually, all results that were used for our algorithm can be extended on

graphs embeddable on surfaces of bounded genus – see [47, 28, 80, 82, 60]
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– and yield an FPT-algorithm on such graphs (with worst time bounds). We
believe that this is still the case for graph classes excluding some fixed graph
as a minor. However, in our opinion, such an extension, even though possible,
would be too technically involved. Therefore, we state the following

Conjecture 8.3.1. Cyclability is
in FPT when
restricted
to
the
class
of
graphs
embeddable
on
surfaces
of
bounded
genus
and
to
classes
excluding
some
fixed
graph
as
a
minor.

A research direction that is also very interesting is to define and study, both
from a combinatorial and from an algorithmic point of view, problems similar
to Cyclability, where the pattern of the linkages we look for is not a cycle but
some other graph H.

It would be interesting to study the following problem

H-Linkability
Input: A graph G (host), a graph H (pattern) and an integer k.
Question: Is it true that, for every k-element subset S of V (G), there
is a topological minor of G that contains all the vertices of S and is
isomorphic to H?

This, very general, problem can be associated with a cyclability-like pa-
rameter on graphs: We say that a graph G = (V,E) is (H, k)-linkable if for
every k-element subset S of V , there exists a topological minor of G that con-
tains all the vertices of S and is isomorphic to H. The H-linkability of G is
defined to be the greatest integer k for which G is (H, k)-linkable.

From the point of view of structural properties, the property of a graph
having H-linkability equal to k can provide various kinds of information about
the structure of G, depending on H and k. For example:

• If k is big (for example k = Ω(n)), graph G being (H, k)-linkable could
give some information (depending on the pattern H ) of the global struc-
ture of G.

• On the other hand, if k is very small, graph G being (H, k)-linkable could
tell something about local properties of G.
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• Given two patterns H1 and H2 and two integers k1 and k2, we could
study a question of the following form: Given that graph G is (H1, k1)-
linkable, is it true that it is (H2, k2)-linkable? It feels like answering this
kind of questions could give some insight about the structure of the
graph under study and one could try a variety of mixtures of patterns
and integers.

Of course, this problem is computationally hard when examined from the
classical complexity theory point of view, as for k = n and H being any cycle
of length at most n, it is equivalent to the Hamiltonicity problem.

It would be reasonable to study H-Linkability parameterized by k, as we
have done with Cyclability. Unfortunately, the structure of a cyclic linkage is
essential for some parts of our work and it seems that for studying the, much
more general, H-Linkability problem new ideas and techniques need to be
introduced.
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