

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

GRADUATE PROGRAM

COMPUTER, TELECOMMUNICATIONS AND NETWORK ENGINEERING

MSc THESIS

Implementation of live HTTP Adaptive Video Streaming over
Mininet

Konstantina P. Chatzieleftheriou
Gerasimos D. Christodoulou

Supervisor: Lazaros Merakos, Professor

ATHENS

FEBRUARY 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΜΗΧΑΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ, ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΚΤΥΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση ζωντανής προσαρμοστικής ροής βίντεο στο
περιβάλλον Mininet

Κωνσταντίνα Π. Χατζηελευθερίου
Γεράσιμος Δ. Χριστοδούλου

Επιβλέπων: Λάζαρος Μεράκος, Καθηγητής

ΑΘΗΝΑ

ΦΕΒΡΟΥΑΡΙΟΣ 2020

MSc THESIS

Implementation of live HTTP Adaptive Video Streaming over Mininet

Konstantina P. Chatzieleftheriou
S.N.:EN2180009

Gerasimos D. Christodoulou
S.N.:EN2180011

SUPERVISOR: Lazaros Merakos, Professor

ADVISORY COMMITTEE: Lazaros Merakos, Professor
 Nikolaos Passas, LTS Department of Informatics and

Telecommunications NKUA
Stathes Hadjiefthymiades, Associate Professor

 February 2020

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση ζωντανής προσαρμοστικής ροής βίντεο στο περιβάλλον Mininet

Κωνσταντίνα Π. Χατζηελευθερίου
Α.Μ.: EN2180009

Γεράσιμος Δ. Χριστοδούλου

Α.Μ.: EN2180011

Λάζαρος Μεράκος, Καθηγητής

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Λάζαρος Μεράκος, Καθηγητής

 Νικόλαος Πασσάς, ΕΔΙΠ Τμήματος Πληροφορικής και

Τηλεπικοινωνιών ΕΚΠΑ

Στάθης Χατζηευθυμιάδης, Αναπληρωτής Καθηγητής

Φεβρουάριος 2020

ΕΠΙΒΛΕΠΩΝ:

ABSTRACT

Video streaming is growing into a well-known technology for media transmission over
the Internet. Dynamic Adaptive Streaming over HTTP (DASH) permits transmitting data
streams to a user with the largest feasible bit rate in different bandwidth situations which
is especially important for wireless networks. The purpose of this thesis is to analyze
DASH technology as far as live video streaming is concerned, as well as to examine the
Quality of Experience (QoE) on SDN networks, namely to understand the user’s
perspective. Thus, in this thesis, a virtual SDN network was developed in the Mininet
environment to simulate DASH technology. In each experiment, one server transmitted
a video live to a client while the throughput was changing by adding extra traffic to the
network. At the same time, the Wireshark application was monitoring the transmitted
packets from the server to the client, storing various parameters related to the network,
based on which the user’s QoE was calculated. Specifically, the impact of the added
traffic on the quality of the broadcast video was examined, and as a result the impact in
terms of QoE was measured. We concluded that the transmitted data is entirely
connected with the existing traffic in the network and in particular the higher the traffic,
the poorer the selected resolution. However, we observed that the resolution of the
broadcast video would not always change immediately, as a result of the existence of
the buffer at the video client.

The structure of this thesis is the following: Chapter 1 provides a detailed overview of
the mobile networks’ evolution from the first generation to the fifth one. Chapter 2
describes in detail the HTTP Adaptive Streaming (HAS) technology in terms of its
architecture, its advantages and disadvantages. It also describes the architecture of
DASH technology, its implementation and the additional advantages it offers. Chapter 3
is about QoE, the way in which it is calculated through specific models, and its influence
on HTTP video streaming technology. All the necessary programs in order to conduct
the experiments presented in this thesis, as well as any necessary settings, can be
found in Chapter 4. Chapter 5 provides an in-depth analysis of the design of the
experiments, during which a decrease in the quality of the user’s experience was
observed. It also presents the obtained results. Finally, Chapter 6 summarizes the
conclusions of this thesis and discusses future work topics.

SUBJECT AREA: Communications Networks

KEYWORDS: Software Defined Networks, Quality of Experience, Video, Monitoring,
SDN Controller, Dynamic Adaptive Streaming over HTTP, Mininet

ΠΕΡΙΛΗΨΗ

Η μετάδοση βίντεο εξελίσσεται σε μια διαδεδομένη τεχνολογία για τη μετάδοση
δεδομένων μέσω του Διαδικτύου. Η τεχνολογία Dynamic Adaptive Streaming over
HTTP (DASH) επιτρέπει τη μετάδοση ροών δεδομένων σε ένα χρήστη με το μεγαλύτερο
εφικτό ρυθμό δεδομένων κάτω από διαφορετικά εύρη ζώνης, κάτι ιδιαίτερα σημαντικό
για τα ασύρματα δίκτυα. Σκοπός αυτής της διπλωματικής εργασίας είναι η ανάλυση της
τεχνολογίας DASH όσον αφορά την ζωντανή μετάδοση βίντεο, καθώς και την εξέταση
της ποιότητας εμπειρίας σε SDN δίκτυα από την πλευρά του χρήστη. Γι’ αυτό τον
σκοπό αναπτύχθηκε ένα εικονικό SDN δίκτυο στο περιβάλλον Mininet, ούτως ώστε να
προσομοιωθεί η τεχνολογία DASH. Σε κάθε πείραμα, ένας server μετέδιδε ζωντανά ένα
βίντεο σε έναν client, ενώ την ίδια στιγμή μεταβαλλόταν το throughput που
απολάμβαναν και οι δύο, προσθέτοντας επιπλέον δικτυακή κίνηση στο δίκτυο.
Ταυτόχρονα, η εφαρμογή Wireshark παρακολουθούσε τα πακέτα που μεταδίδονταν
από τον server στον client, αποθηκεύοντας διάφορες παραμέτρους του δικτύου, βάση
των οποίων υπολογίστηκε η ποιότητα εμπειρίας του χρήστη. Συγκεκριμένα, εξετάστηκε
η επιρροή που είχε το μέγεθος της προστιθέμενης δικτυακής κίνησης στην ποιότητα του
μεταδιδόμενου βίντεο κι ως αποτέλεσμα στην ποιότητα εμπειρίας του χρήστη.
Συμπεράναμε ότι τα μεταδιδόμενα δεδομένα είναι εξολοκλήρου συνδεδεμένα με την
δικτυακή κίνηση του δικτύου και μάλιστα πιο συγκεκριμένα, όσο μεγαλύτερη είναι η
δικτυακή κίνηση, τόσο χειρότερη είναι η ποιότητα αναπαραγωγής του video. Παρόλα
αυτά, παρατηρήσαμε ότι η ποιότητα του μεταδιδόμενου βίντεο δεν άλλαζε πάντα άμεσα,
λόγω της ύπαρξης του buffer του βίντεο του τελικού χρήστη.

Η δομή της παρούσας διπλωματικής εργασίας είναι η εξής: Στο κεφάλαιο 1
παρουσιάζεται αναλυτικά η εξέλιξη των κινητών δικτύων από την πρώτη γενιά έως και
την πέμπτη. Στη συνέχεια, στο κεφάλαιο 2 περιγράφεται αναλυτικά η τεχνολογία HTTP
Adaptive Streaming (HAS) ως προς την αρχιτεκτονική, τα πλεονεκτήματα και τα
μειονεκτήματά της. Επίσης περιγράφεται η αρχιτεκτονική της τεχνολογίας DASH, η
εφαρμογή της και τα επιπλέον πλεονεκτήματα που προσφέρει. Το κεφάλαιο 3 αφορά
την έννοια της ποιότητας εμπειρίας του χρήστη, τον τρόπο υπολογισμού της μέσω
μοντέλων υπολογισμού καθώς και την επιρροή που έχει στην τεχνολογία HTTP video
streaming. Όλα τα απαραίτητα προγράμματα για την διεξαγωγή των πειραμάτων που
παρουσιάζονται στην παρούσα εργασία, όπως και οι ρυθμίσεις αυτών μπορούν να
βρεθούν στο κεφάλαιο 4. Το κεφάλαιο 5 αναλύει σε βάθος τις σχεδιαστικές
προδιαγραφές των πειραμάτων, κατά την διάρκεια των οποίων παρατηρήθηκε μείωση
της ποιότητας εμπειρίας του χρήστη, ενώ παρουσιάζει και τα αποτελέσματα που
προέκυψαν. Τέλος, το κεφάλαιο 6 συνοψίζει τα συμπεράσματα της παρούσας
διπλωματικής εργασίας και αναφέρει επιγραμματικά ανοιχτά θέματα για μελλοντική
έρευνα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Δίκτυα Επικοινωνιών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Δικτύωση Βασισμένη στο Λογισμικό, Ποιότητα Εμπειρίας, Υπηρεσίες
βίντεο, Dynamic Adaptive Streaming over HTTP, Mininet

Θέλουμε να ευχαριστήσουμε για την ανεκτίμητη βοήθεια, και στήριξή τους

τις οικογένειές μας καθώς και τους φίλους μας.

CONTENTS

PREFACE ... 13

1. INTRODUCTION: NETWORK DEVELOPMENT FROM 1G TO 5G 14

1.1 THE 1ST GENERATION OF MOBILE NETWORKS 1G .. 14

1.2 THE 2ND GENERATION OF MOBILE NETWORKS 2G ... 15

1.3 THE 3RD GENERATION OF MOBILE NETWORKS 3G ... 16

1.4 LONG-TERM EVOLUTION (LTE) ... 17

1.4.1 LTE development .. 18

1.4.2 More about LTE .. 18

1.4.3 LTE-A benefits .. 19

1.4.4 LTE architecture .. 22

1.4.5 OFDM - OFDMA - SC-FDMA technologies .. 22

1.4.6 LTE – QOS .. 24

1.5 THE 5TH GENERATION OF MOBILE NETWORKS 5G ... 24

2. HTTP ADAPTIVE STREAMING .. 26

2.1 INTRODUCTION ... 26

2.2 BENEFITS ... 26

2.3 DYNAMIC ADAPTIVE STREAMING OVER HTTP (DASH) ... 27

2.3.1 Additional advantages ... 28

2.3.2 Implementation .. 28

2.4 MEDIA PRESENTATION DESCRIPTION (MPD) ... 29

2.4.1 Segment referencing schemes ... 29

3. QUALITY OF EXPERIENCE (QOE) .. 31

3.1 INTRODUCTION ... 31

3.2 QoE FACTORS ... 31

3.3 QoE VS QoS – THE IQX HYPOTHESIS .. 32

3.4 QoE MEASURMENTS .. 32

3.5 QoE MANAGEMENT .. 33

3.6 HTTP VIDEO STREAMING INFLUENCED BY QoE FATORS .. 34

3.6.1 Initial delay .. 34

3.6.2 Stalling ... 34

4. ENVIRONMENT SETUP .. 35

4.1 SYSTEM REQUIREMETS ... 35

4.1.1 Operating system (OS) ... 35

4.1.2 Java ... 35

4.1.3 SDN controller deployment ... 35

4.1.4 Mininet ... 38

4.1.5 Mininet’s graphical user interface, MiniEdit ... 39

4.1.6 VLC media player .. 41

4.1.7 FFmpeg ... 42

4.1.8 Dynamic adaptive streaming over HTTP (DASH) ... 42

4.1.9 Project on advanced content (GPAC) ... 43

4.1.10 Wireshark .. 43

4.2 SERVER SETUP ... 47

4.2.1 Making requests in Node.js ... 48

4.2.2 Proposed server implementation .. 49

5. MININET EXPERIMENTS .. 56

5.1 BASIC EXPERIMENT ... 56

5.1.1 Preparation .. 56

5.1.2 Basic simulation .. 59

5.2 TRAFFIC GENERATOR ... 62

5.3 PSNR ... 67

5.3.1 PSNR calculation .. 68

6. CONCLUSION AND FUTURE WORK ... 71

ABBREVIATIONS - ACRONYMS ... 72

REFERENCES .. 77

LIST OF FIGURES

Figure 1: 1G Architecture .. 14

Figure 2: Timeline .. 16

Figure 3: 3G Architecture .. 17

Figure 4: LTE Development Timeline .. 18

Figure 5: Carrier Components ... 19

Figure 6: LTE-A base stations ... 20

Figure 7: Heterogeneous Networks ... 21

Figure 8: Coordinated Multi-Point transmission and reception 21

Figure 9: LTE Architecture ... 22

Figure 10: OFDM ... 23

Figure 11: FDM vs OFDM.. 23

Figure 12: OFDMA .. 23

Figure 13: 5G Architecture... 25

Figure 14: Adaptive Streaming Overview .. 26

Figure 15: HTTP in a nutshell .. 26

Figure 16: HTTP Adaptive Streaming (HAS) ... 27

Figure 17: HTTP Dynamic Adaptive Streaming Timeline... 28

Figure 18: Media Presentation Description (MPD) File .. 29

Figure 19: SegmentBase Arrangement ... 30

Figure 20: SegmentList Arrangement .. 30

Figure 21: SegmentTemplate Arrangement... 30

Figure 22: QoE Factors ... 31

Figure 23: The IQX hypothesis diagram .. 32

Figure 24: QoE Modeling ... 33

Figure 25: QoE Management Entities .. 33

Figure 26: OpenDaylight Login Page ... 36

Figure 27: OpenDaylight Main Page .. 37

Figure 28: Topology Tab.. 37

Figure 29: Nodes Tab .. 38

Figure 30: Basic Topology ... 39

Figure 31: Pingall Output ... 39

Figure 32: MiniEdit main page ... 40

Figure 33: VLC Preferences (1) ... 41

Figure 34: VLC Preferences (2) ... 42

Figure 35: Main Page of Wireshark ... 44

file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930889
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930890
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930891
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930892
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930893
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930894
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930895
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930896
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930897
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930898
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930899
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930901
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930902
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930903
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930904
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930905
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930906
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930907
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930908
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930909
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930911
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930912
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930913
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930914
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930915
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930916
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930917
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930918
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930919
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930920
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930921
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930922

Figure 36: Needed Columns .. 44

Figure 37: Column Preferences Option ... 45

Figure 38: Wireshark Preferences (1) .. 45

Figure 39: New Columns ... 45

Figure 40: Wireshark Preferences (2) .. 46

Figure 41: Wireshark Preferences (3) .. 46

Figure 42: Wireshark Main Page in the end... 47

Figure 43: example.js output ... 48

Figure 44: The procedure described .. 49

Figure 45: Terminal window ... 56

Figure 46: bash.sh execution ... 58

Figure 47: Different versions of the video, mpd file, different segments 59

Figure 48: Custom topology ... 59

Figure 49: Mininet preferences .. 59

Figure 50: xterm h1 ... 60

Figure 51: xterm h2 (1) .. 60

Figure 52: xterm h2 (2) .. 60

Figure 53: Video Playback ... 60

Figure 54: Output of the server terminal .. 61

Figure 55: Updated topology ... 62

Figure 56: Wireshark Conversation window .. 63

Figure 57: Download Rate (Mbps) Vs Resolution 1Mbps .. 63

Figure 58: Download Rate (Mbps) Vs Time 1Mbps ... 64

Figure 59: Download Rate (Mbps) Vs Resolution 3Mbps .. 64

Figure 60: Download Rate (Mbps) Vs Time 3Mbps ... 65

Figure 61: Download Rate (Mbps) Vs Resolution 5Mbps .. 65

Figure 62: Download Rate (Mbps) Vs Time 5Mbps ... 66

Figure 63: Download Rate (Mbps) Vs Resolution 10 Mbps ... 66

Figure 64: Download Rate (Mbps) Vs Time (sec) 10Mbps .. 67

Figure 65: PSNR (Average, Minimum, Maximum) ... 70

file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930923
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930924
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930925
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930926
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930927
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930928
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930929
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930930
file:///C:/Users/Eirini/Documents/Post%20Doc/U3.%20THESES/6.%20Κωνσταντίνα%20Χατζηελευθερίου%20-%20Γεράσιμος%20Χριστοδούλου/Implementation%20of%20live%20HTTP%20Adaptive%20Video%20Streaming%20over%20Mininet.doc%23_Toc32930931

LIST OF TABLES

Table 1: Used tools .. 46

Table 2: Provided resolutions according to selected bandwidth 67

Table 3: PSNR results ... 69

PREFACE

The current MSc thesis was conducted in the Department of Informatics and
Telecommunications of the National and Kapodistrian University of Athens, and more
specifically under the support of the Communication Networks Laboratory of the
Telecommunications and Signal Processing sector. The thesis started being conducted
in June 2019 and ended in February 2020. Professor Lazaros Merakos and Dr. Eirini
Liotou – to whom we owe special thanks - were the supervisors of this MSc Thesis.

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 14

1. INTRODUCTION: NETWORK DEVELOPMENT FROM 1G TO 5G

1.1 THE 1ST GENERATION OF MOBILE NETWORKS 1G

Mobile telecommunication networks have become increasingly more popular in the past
few years due to the fast reformation from 1G to 5G mobile technology. Mobile
telecommunication networks went through several stages of transformation until they
reached their present form and will continue to evolve in the future. Each of the various
evolution stages is called a generation. Hence, the first network is called 1st generation
network – 1G.

The 80s is considered a revolutionary period due to the creation of 1G networks. The
architecture of this model is based on Cellular Networks. Figure 1 illustrates this
architecture. The initial theory divides the geographical area into the cells [1]. Cells have
two characteristics: their size and shape. These two factors depend on general and
geographical characteristics of the area. Examples of such characteristics are the
existence of high barriers such as tall buildings as well as the possibility that the area is
agricultural or urban. What is of high importance is the fact that each cell has a
frequency range. Neighboring cells do not share the same frequency in order to avoid
interference effects. [2]

Figure 1: 1G Architecture

The first commercial cellular network came out in Japan in 1979 by Nippon Telegraph
and Telephone (NTT). It was used for the first time in the metropolitan area of Tokyo.
Finally, the whole Japanese population had outreach to cellular networks during a time
period of 5 years. As for some technical aspects of 1G networks, the systems where
purely analogue and functioned primarily in 150 MHz frequency.

Another point of interest in the history of cellular networks was the first mobile phone
invented in 1972 by the American innovator Martin Cooper [3]. The device he invented
was called “Motorola DynaTAC 8000X”. It was really heavy and bulk for modern
standards as it was 33 cm in height and weighted approximately a pound [4].

1G networks were undeniably revolutionary for the technology sector. However due to
the complexity of human everyday needs, some problems came to the surface.
Problems this first generation could not solve. For example, it was impossible to
continue the call in a transition from one cell to another. This was restrictive for
communication purposes as it would not allow for the user to move while using the
phone. Another problem was the low system performance as the number of users who
could communicate simultaneously was extremely limited. This was due to the fact that
the available bandwidth was not enough. In general, the first systems did not leave any
room for optimization and application of techniques such as compression and coding of
information [5]. All the above, presuppose the use of digital signals [6].

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 15

1.2 THE 2ND GENERATION OF MOBILE NETWORKS 2G

The first generation networks undeniably belong to the past. The second generation
networks did not follow the same course. Many of their features were taken into
consideration in order to design the third generation.

The second generation networks used methods of digital signal modulation. The users
were categorized according to Time Division Multiple Access (TDMA) [7] or Code
Division Multiple Access (CDMA). That is in contrast to the first generation networks
which transmitted analogue signals. Furthermore, in the second generation the
separation of the users in simultaneous wireless media access was conducted by
Frequency Division Multiple Access (FDMA).

There are four major standards for second generation networks. These are the Global
System for Mobile (GSM) communications, the Digital AMPS (DAMPS), the Code
Diνision Multiple Access (CDMA) IS-95 as well as the Personal Digital Cellular (PDC).

The GSM is by far the most successful and widespread system of this generation. The
GSM was created by the need for a global system that would serve European citizens
regardless of their country. The European Technical Standards Institute (ETSI) [8] was
positioned as the responsible organization for the surveillance of this endeavor. This
system became widely known. It had 400 mobile telecommunication networks in 140
countries, with over 350 million users. Finally, it may have started as a European
system but it was adopted globally. Nevertheless, in 2001 the northamerican community
for TDMA decided to adopt the system Wideband CDMA (WCDMA) which was defined
by the Third Generation Partnership Project (3GPP).

The GSM started to function in 1990 in the bandwidth of 900MHz. The International
Telecommunications Union (ITU) provided a pair of frequencies. The first one being
from 890 to 915 MHz and the second from 935 to 960 MHz. The whole system was
named GSM 900 or else known as Standard GSM.

During the year 1991, the system DCS 1800 was developed. In DCS 1800 the structure
of GSM 900 is preserved. However, different pairs of frequencies are used: 1710 -1785
MHz (Uplink) and 1805 -1880 MHz (Downlink). The DCS 1800 was renamed to GSM
1800 during the 1990s in order to enforce the global use of GSM.

The GSM 1900 is used in various countries of the Americas. The structure of GSM 900
is again retained, with different pairs of frequencies: 1850 to 1910 MHz Up link and
1930 to 1990 MHz Down link. The E-GSM was defined by the European
Radiocommunication Community during the end of the 90s in order to replace the
classic GSM 900 preserving the its structure and increasing the bandwidth: 880 - 915
MHz Uplink and 925 - 960 MHz Downlink. Thus, mobile telephone networks were able
to increase their storage space and cover the needs of the increasingly higher client
traffic.

The technical features of the network architecture are divided into three parts:

1) The Mobile Station

2) The Base Station Subsystem

3) The NSS – Network Switching Subsystem

To conclude, the second generation networks made breakthroughs providing multiple
new services. Firstly, it was the first time that a limited access to the Internet was
allowed. Secondly, users could exchange written messages with each other. These
messages are in fact the now well known, yet decreasing in popularity, Short Messaging
Service (SMS) [9].

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 16

1.3 THE 3RD GENERATION OF MOBILE NETWORKS 3G

Third generation mobile networks showed the way for more and more services (Figure
2). It is a fact that their predecessors did not have the capability to offer any of those
services. Some of those services are the VoIP (Voice over Internet Protocol) service as
well as other services using the mobile phone.

As a result, second generation networks develop and the prototype cdma2000 was
created and replaced CDMA, the Wideband-CDMA (W-CDMA) also known as Universal
Mobile Telecommunication System (UMTS), a continuation of GSM, IS-136 and PDC.
The main goal of the third generation networks is to offer services in any place any
given moment in time. This means that a user who uses the network is capable of being
serviced regardless of whether his/her geographical area has 3G signal. These services
are Internet services that combine image with audio in high transmittance rates. It is
important to note that the 3rd generation systems that prevailed in Europe was the
UMTS, in North America the CDMA2000 and in China the ΤD-SCDΜΑ. The UMTS
(Universal Mobile Telecommunications Service) is an idea that started in 1996 as an
upgrade of the GSM system.

It is backwards compatible with the 2G systems GSM, GSΜ, IS-136 and ΡDC as well as
the 2.5G systems GPRS and EDGE. It uses the spread spectrum technique and
requires a minimum band width of 5MHz. The transmit rates can reach and exceed 16
Μchip/sec/user. In the following, the architecture of UTMS is depicted. UTMS is an
extension of the General Packed Radio Service (GPRS).

The CDMA2000, also known as IS-2000, is a technology for the development of CDMA
One/IS – 95 3rd generation services (Figure 3). The evolutionary track of CDMA2000
was designed so that the investment and the effect on the user network is minimized
without interruption of services for the final user. That is achieved through a backward
and forward compatibility, reusing hardware, in-band migrating and setup of a hybrid
network. This unique characteristic of CDMA2000 technologies offered to the user a
significant time-to-market advantage against of the 3G technologies [9].

Figure 2: Timeline

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 17

As it was mentioned above, the main goal was to use a large number of apps using the
beginning of the coordinate system in a way possible. That cannot be achieved by 3G.
The coverage everywhere on the planet is the desirable goal but unfortunately high data
transmission speeds are not available everywhere. In addition, high speeds are not
available in high movement subscriber speeds. Therefore, the rate is confined to about
380 Kbits/sec, while for slower speed it can reach 2Mbits/sec.

The ΤD-SCDΜΑ was implemented by the China Academy of Communications
Technology (CΑΤΤ), together with the Siemens Information and Communication Mobile
Group (ICMobile). The protocol is an alternative 3G technology and in 2003 the first
device using it was presented.

Their view for 3G networks was extremely disappointing. Despite the fact that they
include many upgrades in matters of security compared to 2G, their main goal for the
domination of a global prototype was not achieved, with the exception of America where
three incompatible systems were developed. The data transmission rates were not the
expected, as voice cannot be transferred through the IP. Unfortunately, the 3G network
did not respond to the promises of its manufacturers. However, this was the initial and
trial version of the 3G experience. Lastly, the coming 4G will not only accomplish
transmission of packets (and not circuits as in 3G) but also all its elements will be digital.

1.4 LONG-TERM EVOLUTION (LTE)

The Long-Term Evolution (LTE) is a standard for wireless broadband communication for
mobile devices and data terminals. It is based on GSM / EDGE and UMTS / HSPA
technologies and it was developed by 3GPP. Its first release was announced in Release
8, with minor improvements added in Release 9 later. The rapid increase in the use of
data services along with the development of data applications, such as MMOG
(Multimedia Online Gaming), mobile TV, Web 2.0 and streaming, has prompted 3GPP
to work on LTE towards the 4th generation networks. However, while LTE is often
referred as 4G LTE & Advance 4G, it does not meet the technical criteria of a 4G

Figure 3: 3G Architecture

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 18

wireless network as they have been set by ITU-R. Yet, due to market demand and the
significant progress that WiMAX, Evolved High Speed Packet Access and LTE
standards have brought in 3G technologies, the ITU later decided that LTE and the
other technologies mentioned before can be referred as 4G technologies. The LTE
Advanced standard officially meets ITU-R specifications and can be considered IMT-
Advanced.

1.4.1 LTE development

The development of the LTE standard did not take place within a short period of time.
The creation of LTE was held in 2000 with the presentation of UMTS. The work over its
specifications was done in 2004, then it was approved in 2008 and first presented in
2010 (Figure 4).

1.4.2 More about LTE

LTE was originally developed to achieve a higher transmission rate, specifically
300Mbps downlink and 75 Mbps uplink (maximum values). It is the ideal technology to
support high data rates for services such as VoIP, multimedia streaming,
videoconferencing.

It uses Time Division Duplex (TDD) and Frequency Division Duplex (FDD). In the FDD
uplink and downlink, transmissions use different frequencies, while at TDD both
transmissions use the same carrier and are separated by time. It supports flexible band
carrier ranges together with both FDD and TDD. In an LTE system, designed with a
gradient bandwidth of 1.4 MHz to 20 MHz, the bandwidth choice depends on the
frequency band and the amount of the available spectrum. Moreover, all LTE devices
must support Multiple Input Multiple Output (MIMO) transmissions, allowing the base
station to transmit several data streams to the same player at the same time. All
interfaces between network nodes in LTE are IP based, including the connection of
base stations. Furthermore, Quality of Service (QoS) mechanisms have been
standardized in all interfaces to ensure that voice calls, which require constant delay
and bandwidth zone, can always be satisfied. It works collaboratively with existing GSM
/ EDGE / UMTS systems, 2G and 3G spectrum or new spectrum and it also supports

Figure 4: LTE Development Timeline

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 19

handover and roaming on existing mobile networks. LTE has the ability to handle high
speed moving devices such as the mobile of a user travelling by car. The network
architecture is IP-based and is called Evolved Packet Core (EPC). It was designed to
replace the GPRS Core Network and supports handovers for voice and data at base
stations even with older network technology, such as GSM, UMTS and CDMA2000.
One benefit of this architecture is its simplicity, which results in lower operating costs
(for example, each the E-UTRA cell supports up to four times the voice or data capacity
of HSPA).

1.4.3 LTE-A benefits

LTE-A is the latest and most advanced technology for LTE. From now on all subsequent
improvements will be called LTE-A. LTE-A speeds reach 1 Gbps downlink and 500
Mbps uplink and have additional LTE-like mechanisms such as carrier aggregation and
relaying.

According to 3GPP in the release for LTE-A specs we are able to have downlink speeds
of 1 Gbps and uplink speeds of 500 Mbps. Additionally, less than 5 ms RTT is also
reachable (Round Trip Time). The benefits that LTE-A provides are the following:

1. Carrier Aggregation

In this component there is an increase of the frequency range from 20MHz that we used
to have in LTE, to 100MHz with Carrier Aggregation technique, as it is very difficult to
find 100MHz bands in a row that are not in use. LTE-A is looking for five (maximum)
tracks that call them Carrier Components of different frequencies which uses them as if
they were one (Figure 5). These five tracks can exist in 3 different ways:

 • Intra Band Contiguous Allocation

In this way the tracks could be continuous, however LTE-A will still see them as
separate tracks because it can use up to 20MHz.

 • Intra Band Non Contiguous Allocation

In this way the pieces could be within the same spectrum length. That is to say they are
in the immediate vicinity (in terms of frequency)

 • Inter Band Non Contiguous Allocation

Finally, the tracks could be spaced too far apart, so as to belong to another band.
However, LTE-A can find them and consider them as one.

Figure 5: Carrier Components

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 20

2. Advanced MIMO techniques

MIMO stands for Multiple Input Multiple Output and it is the technique in which multiple
antennas are established. In LTE-A base stations have up to 8 antennas and terminals,
and up to 4 antennas.

As far as how multiple antennas can be used, there are three possibilities:

 • Cooperative MIMO

In this case a terminal is on the border of 3 base stations. Each station uses 2 of its 8
antennas to transmit the signal. The terminal receives the same, yet weak signal 6
times because it is far from all the 3 base stations. In LTE-A the terminal is able to
exploit these copies and compose a signal which is of very good quality (Figure 6).

 • MU-MIMO (Multiple User MIMO)

In this case a base station can send 2 different signals to 2 users so as to provide more
information.

 • SU-MIMO (Single User MIMO)

In this case a base station can send the same signal 4 times from its 4 antennas in
order to make it even more powerful with fewer errors. Therefore, it either achieves
faster speeds or sends 4 different signals where the one will be a continuation of the
other.

3. Heterogeneous Networks and eICIC (enhanced Inter-Cell Interference Coordination)

Generally, there are many interference problems. In order to address this problem we
use eICIC (enhanced Inter-Cell Interference Coordination) where base stations can
communicate with each other and coordinate:

 • In Time

It is the most common method used. In this method there are the Almost Blank
Subframes (ABSFs), as they are called, which leave the macro cell deliberately empty
and inform the femto cell to send to them exclusively so that there is no interference.

 • In Frequency

In this case the stations understand the user who is having the problem and give him
another frequency (in the same bandwidth) to communicate with no problem.

Figure 6: LTE-A base stations

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 21

 • In Power

In this case the base stations communicate after the problem and the femto cell
emission power is reduced which either way has always the best signal and as a result
its power loss does not cause any problems (Figure 7).

4. Broadcasting

In many cases, terminals can be located between buildings either within the subway or
generally at a point where they cannot be covered by a cell. This is where the Relay
Nodes come in. They are meant to capture the signal from a cell and simply relay it to
cover those areas.

5. Coordinated Multi-Point transmission and reception (CoMP)

Coordinated multi-transmission and reception is intended to cover users who are on the
edge of the cell and are not satisfied with any signal from any cell in the area (Figure 8).
This is similar to MIMO in a few words, but we could say it is a Distributed MIMO as the
base stations talk to each other to decide what they will send.

Figure 7: Heterogeneous Networks

Figure 8: Coordinated Multi-Point transmission and reception

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 22

1.4.4 LTE architecture

As it can be observed from the image below, LTE holds data from UMTS. UMTS had
UTRAN and LTE has Enhanced UTRAN (E-UTRAN). Additionally, UMTS had the B
Nodes which were the base stations. LTE has the Enhanced Node B (eNodeB). The UE
is the User Equipment, in other words the user terminal. The MME (Control Plane) /
SAE (User Plane) Gateways are respectively MSC and SGSN. What is changing rapidly
is the X2. X2 is an interface that allows eNodeBs to speak directly to each other,
something that has not been the case until now. Finally, there is the S1 interface for the
communication between the eNodeB and the Gateway (Figure 9).

Its main operating parameters are:

 • Frequency Range: Uses UMTS FDD bands and UMTS TDD bands

 • Channel Bandwidth: 1.4 MHz, 3 MHz, 5 MHz, 15 MHz, 20 MHz

 • Modulation Schemes: QPSK, 16QAM, 64QAM for downlink and uplink

 • Multiple Access: OFDMA for downlink and SC-FDMA for uplink

 • MIMO: A technique in which we utilize multiple antennas for better signal quality

 • Peak Data Rate: From 150-300 Mbps for downlink and 75 Mbps for uplink.

1.4.5 OFDM - OFDMA - SC-FDMA technologies

Orthogonal Frequency-Division Multiplexing (OFDM) technology is an encoding method
of digital data to multiple frequency carriers (Figure 10). The basic natural LTE downlink
resource can be interpreted as a time-frequency framework.

OFDM slots the time and splits the frequency. A user uses all the bits of frequency.
Also, OFDM provides more frequencies in the same band than FDM, because the
maximum of one pulse is at the minimum of another. At each different frequency track,
a different track is transmitted. As a result, if one piece is affected only a small part of
the transmission is affected rather than the whole transmission which can withstand
some interference (Figure 11).

Figure 9: LTE Architecture

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 23

In OFDMA on the other hand, each slot does not have the same duration but fluctuates
depending on the user. In addition, each user only gets a portion of the bits from the
whole band. As a result, we can have even more users within a frequency band at the
same time (Figure 12).

Figure 11: FDM vs OFDM

Figure 10: OFDM

Figure 12: OFDMA

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 24

SC-FDMA is a new Single Carrier multiple access technique that is similar in structure
and performance to OFDMA. Although it is a more sophisticated technique it consumes
less power which is very important as a user primarily downloads and not uploads and
as a result uploading consumes less power. In addition, since most users download,
there will not be too many parallel users uploading, so there is no need of OFDMA for
uplink.

1.4.6 LTE – QOS

QoS on LTE and LTE-A is provided through the bearers. A bearer is a virtual concept
that defines how the user’s data will be handled within the network. It is essentially a set
of network settings designed to provide special treatment.

Each time a device enters a cell, a default bearer is registered, yet it is not unique. If the
user starts a video call, another bearer can be created specifically for this call, which is
called dedicated bearer.

Filtering which package goes to which bearer each time is determined by Traffic Flow
Templates:

1. Uplink TFT: Sending from the user to the network, the packets are filtered from the
terminals and put into a bearer which can be either default or dedicated.

2. Downlink TFT: When the data is coming from the network to the user the filtering will
be done by the network to choose the correct bearer.

In QoS there are 9 different classes or 9 different bearers. Each class is characterized
first by the QCI (QoS Class Identifier) which is essentially the identifier of each bearer
and secondly by the ARP (Allocation and Retention Priority) which defines what will
happen in high congestion situations. Furthermore, there are two types of bearers: GRB
(Guaranteed Bit Rate) which provides specific bit rate requirement and Non-GBR.

The parameters that GBR bearers have are:

1. Guaranteed bit rate (GBR): This is the standard bit rate available.

2. Maximum bit rate (MBR): This is the maximum bit rate.

The non-GBR parameters are:

1. Access Point Name (APN) aggregate maximum bit rate (APN-AMBR): This is the
maximum network transmission rate of all the non-GBR bearers

2. Per UE aggregate maximum bit rate (UE-AMBR): This is the maximum bit rate that a
user from the network can reach.

1.5 THE 5TH GENERATION OF MOBILE NETWORKS 5G

The main purpose of this section is to understand the 5G logic. The network data flow
constantly increases. As a result, their evolution is more than necessary. However, the
constant development of mobile phone devices created the need for developed mobile
phone networks. The main need is the large data volume received or transmitted as well
as the transmission rate. The new technology will provide extra space which will allow
the simultaneous connection of more than one devices. The data volume serviced must
be increased up to 1000 times. Even the transmission rate reaches 100Mbps for 95% of
the users using the network any given moment.
The 5G will dominate the so called “Internet of Things” where this technology is needed
in order for it to function. Its own nature concerns an environment where many devices,
often in a small space, are connected to each other and transmit data in real time.
These devices include: smartphones, sensors, thermostats, cars, robots and other

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 25

technological artifacts connected to the 5G network. The older 4G network does not
have the necessary bandwidth in order to manage the large volume of data that are
transmitted by these devices. In addition, 5G will eliminate the time delay between the
device and the host which communicates with the self-driving vehicles and the
telemedicine applications. Such applications require a reliable connection with zero-time
delay. That is because every loss or delay in the transport of data is literally a matter of
life and death.
In order for 5G networks to achieve all the above-mentioned characteristics, it will be
transmitted through electromagnetic waves of high frequency. Higher frequency equals
to higher speed and wider bandwidth. The problem is that these waves cannot pass
through walls, windows or roofs and the more they travel the more they are weakened.
The companies, carriers of wireless mobile networks will have to install thousands or
even millions of little transmission antennas in every traffic light, building or even every
room. Therefore, even after the introduction of 5G, the new network will not replace its
predecessor. At least for the first few years of its release it will only work as a
supplement.
5G might be the newer technology for wireless networks that will use phones,
smartwatches, cars and other devices in the next few years, but it is not available in
every country simultaneously. Some estimation, such as of Ericsson, predict 1.5 billion
users subscribing in a 5G network until 2024. The coverage will reach over the 40% of
the global population.
A plethora of architecture scenarios have been proposed for the 5G. This is happening
due to the resources and service speed of all the requests. It is important to note that
5G applications use mainly wide bandwidths, as for example in video streaming.
However, the communication applications that deal with machine-to-machine and
machine-to-human make life easier. For example, the introduction of many devices in
the network as well as their connection will offer a plethora of new applications and
services. In addition, a broad spectrum of automation in many new technology sectors
is offered. A well-known model for that is the smart city.
As seen in Figure 13, this is considered the general architecture of 5G networks.

Figure 13: 5G Architecture

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 26

2. HTTP Adaptive Streaming

2.1 INTRODUCTION

HTTP Adaptive Streaming (HAS) is currently paramount as far as video technology for
over-the-top video distribution is concerned, as video streaming applications account for
more than 50% of the traffic on the Internet. In HTTP Adaptive Streaming the video is
split into numerous segments and it is encoded in different quality versions. Each
segment usually ranges from one to ten seconds and can be decoded separately of
other segments. A HAS client first downloads a manifest file, which offers a full
description of the available quality versions and segments of the video. Then he fetches
the segment which is the most appropriate, based on its quality, in order to play the
video smoothly. In this way, video streaming of best-effort is enabled. The selection of
the segments to be downloaded, is determined according to the Rate Determination
Algorithm (RDA), based on the network status and the filling level of the buffer (Figure
14, Figure 15). The RDA tries to improve the Quality of Experience (QoE) from the
client’s perspective. QoE depends on the times the video freezes, the average quality
offered as well as the number of its alterations.

2.2 BENEFITS

HAS is superior to the traditional real-time streaming because it can adjust to different
video qualities depending on the bandwidth of the network, so as to prevent the video
from freezing (Figure 16). Furthermore, HTTP-based video streams are able to go over
firewalls without difficulty and reuse already established HTTP servers, proxies and
Content Delivery Network (CDN) nodes. As a result, companies like Microsoft, Apple,
Adobe and Netflix have chosen to use this algorithm [10].

Figure 14: Adaptive Streaming Overview

Figure 15: HTTP in a nutshell

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 27

HAS provides a solution to two main problems that traditional streaming was not able to
do. The first one is quality. For example, a video with 1280x720 resolution will never
play satisfactorily on a screen of 1920x1080 pixels. On the contrary, it will be stretched
and as a result the quality shown will be low. The second, and equally important
problem is buffering. Buffering appears when the video freezes because of poor
network conditions. Most videos play at 24 frames every second, so the client requires
to download at least 24 frames per second to prevent buffering from happening. In case
of buffering, the video stream is not downloaded as rapidly as it should be, thus it needs
to pause and fetch more data so as to start playing again. In other words, as a large
video is downloaded more slowly than a smaller one, HAS adapts to the current internet
connection of the client to keep the video playing [11]. As a result, content creators and
video suppliers can support exceptional services. The speed of the internet connection
can also be described as bitrate, which explains the reason why adaptive streaming is
also referred as adaptive bitrate streaming. Bitrate is actually the rate of bits of data that
are being transferred to the clients. Even though adaptive bitrate technology demands
further encoding, it reduces the workflow and produces a better outcome. It is important
to mention that avoiding buffering is more essential than retaining the quality of the
video, since the client will be satisfied if the video continues playing even in a lower
quality for a while.

There are two more benefits over traditional streaming methods which is important to
mention. At first, as HAS is guided by the client, he is the one responsible for any
adaptation. This is really beneficial as repeated connections between the server and the
client can be decreased. In addition, session state information does not have to be
maintained on every client which boosts scalability, too.

2.3 DYNAMIC ADAPTIVE STREAMING OVER HTTP (DASH)

The Motion Picture Expert Group (MPEG) suggested the Dynamic Adaptive Streaming
over HTTP (DASH) standard in 2010, which became a Draft International Standard in
January 2011, and an International Standard in November 2011. In 2015 MPEG LA
announced an MPEG-DASH patent portfolio license which includes patents that are
necessary to the standard (Figure 17). A lot of organizations contributed in order to
develop this technology with the most important ones being Maxell, TNO and NTT. The
DASH technology is connected to Adobe Systems HTTP Dynamic Streaming, Apple

Figure 16: HTTP Adaptive Streaming (HAS)

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 28

Inc. HTTP Live Streaming (HLS) and Microsoft Smooth Streaming. It is also based on
HAS in 3GPP and on HAS in Open IPTV Forum [12].

2.3.1 Additional advantages

DASH has many advantages over other adaptive streaming techniques. In the last few
years, DASH has been transformed into a pioneered standard. HTML5 Media Source
Extensions (MSE) presented the playback feature by adding the HTML5 video and
audio tag. More importantly, the HTML5 Encrypted Media Extensions (EME) support
streaming between different clients protected by interoperable Digital Rights
Management (DRM) tools1 MPEG Common Encryption (MPEG-CENC) in combination
with the Hybrid broadcast broadband TV (HbbTV 1.5 and HbbTV 2.0) allows streaming
even on SmartTV platforms. In addition, DASH is in fact an audio/video codec agnostic
standard which means that it does not specify the adaptive bitrate streaming (ABR)
logic as well as the underlying application layer protocol. Hence, it is able to be used
together with any protocol [13].

2.3.2 Implementation

DASH is an adaptive bitrate streaming standard in which a multimedia file is divided into
one or more segments and transferred to a client using HTTP GET requests. The
adaptation is performed by the client for every segment. The client will change to a
higher quality when the network bandwidth allows it. This is really beneficial as the client
is aware of its network abilities and throughput. The client then requests the Media
Presentation Description (MPD) file.

1 Digital rights management (DRM) tools or technological protection measures (TPM) are a group of
access control methods in order to limit the use and distribution of hardware and copyrighted works, for
example of software and multimedia content

Figure 17: HTTP Dynamic Adaptive Streaming Timeline

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 29

2.4 MEDIA PRESENTATION DESCRIPTION (MPD)

A Media Presentation Description (MPD) is an XML file (Figure 18). It is a hierarchical
data model that includes at least one Period. Every Period describes segment
information such as timing, URL, video resolution, bit rates, different view angles or with
different codecs, audio components for different languages and even subtitle or caption
components. Those components are characterized by specific features which cannot
alter during the Period. However, the client is able to adapt during a Period to different
resolutions or bitrates that are available in it. Media components are usually organized
in AdaptationSets and every Period can include numerous of them. It also contains
Subsets which limit associations between AdaptationSets and gives valuable designing
information. An AdaptationSet includes a group of Representations that consist of
information about different resolutions, bitrates etc. A variety of Representations
enables the client to adapt and play the video smoothly regardless of the network
conditions and bandwidth. Representations are divided into Segments which are
specified by a URL or occasionally by an additional byte range. Both Segments and
Representations are equal in terms of their length and are organized according to the
media presentation timeline. Opposing to other techniques, DASH allows different
segment lengths determined by different scenarios. For example, bigger Segments in
length permit better compression or reduced overhead, while shorter Segments are
ideal for live streaming and reliable network conditions as far as the bandwidth is
concerned. It is also possible to divide each Segment into smaller Subsegments which
will demonstrate smaller parts of the Segment.

While the video is being broadcast, it is not feasible to alter Representations. As a
result, Segments cannot overlap and also dependencies between segments are not
permitted. In order to overcome this restriction, MPEG - DASH presented Stream
Access Points (SAP) which presents time and position in segments at which random
access and switching can occur.

2.4.1 Segment referencing schemes

Segments can be arranged in many ways, for instance SegmentBase, SegmentList and
SegmentTemplate, which can provide additional information.

Figure 18: Media Presentation Description (MPD) File

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 30

SegmentBase (Figure 19) is the least effective way to represent segments because it
will be used when only one media segment is present in every Representation.
Otherwise, either SegmentList or SegmentTemplate must be used.

SegmentList (Figure 20) includes a list of SegmentURL elements which will be played at
the order they are presented. A SegmentURL element contains a URL to a segment
and possibly a byte range.

Last but not least, SegmentTemplate (Figure 21) element creates a list of segments
from each template. Its list consists of a few lines that show the way to create a large list
of segments, opposing to SegmentList whose lists are way bigger.

Figure 19: SegmentBase Arrangement

Figure 20: SegmentList Arrangement

Figure 21: SegmentTemplate Arrangement

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 31

3. Quality of Experience (QoE)

3.1 INTRODUCTION

Quality of Experience (QoE), originated from Quality of Service (QoS), is a method that
measures the level of satisfaction or dissatisfaction of a client’s experience with a
particular service such as a phone call, TV broadcasting or streaming to name just a
few. QoE is actually connected with the network, not only the client himself and
concentrates on the whole service experience. Yet, when talking from the client’s point
of view, for his complete service experience, QoE is a subjective measure based on his
aesthetic and needs. In other words, QoE offers an evaluation as for the individual’s
expectations, emotions, apprehension, understanding and fulfillment. In 2013, The
European Cooperation in Science and Technology (COST Association) has defined
QoE as “The degree of delight or annoyance of the user of an application or service. It
results from the fulfillment of his or her expectations with respect to the utility and / or
enjoyment of the application or service in the light of the user’s personality and current
state” [14].

3.2 QoE FACTORS

QoE takes into account three main factors, known as influence factors that are
responsible for the experience that a customer perceives. Firstly, the Human Influence
Factors that refer to the visual and auditory comprehension of the individual, the gender,
the age and the emotional condition that he is in. These are the low-level processing
factors [15]. On the other hand, the high-level processing factors are his mental
processes, his social and cultural background as well as personal wishes and
ambitions. Secondly, the System Influence Factors connected with the Content, the
Media (encoding, resolution, sample rate etc.), the Network (bandwidth, delay,
buffering, etc.) and the Device (screen resolution, display size, etc.). Finally, the Context
Influence Factors related to Physical (location and space), Temporal (time of day,
frequency of use, etc.), Social (personal relations), Economic, Task (multitasking,
interruptions, task type), Technical and Information (relationship between systems)
context (Figure 22).

Figure 22: QoE Factors

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 32

3.3 QoE VS QoS – THE IQX HYPOTHESIS

QoS is not the same as QoE. The first one concerns purely technical aspects while the
latter also reflects end-user satisfaction [16]. Same QoS in two users does not
necessarily mean the same QoE in each one. However, there is an exponential
relationship between QoS and QoE which is called “the IQX hypothesis” and is defined
as QoE = α * e-bQoS + γ (Figure 23):

Figure 23: The IQX hypothesis diagram

The logic behind this relationship is that the more QoS we actually pay for, the higher
QoE we expect to have. However, this relationship is negatively exponential which
means that if we have very good QoS, any slight drop will cost a lot to QoE. Whereas, if
we have very low QoS, a further decline will not matter much. In addition, it is important
to highlight two areas at the beginning and end of the graph (Constant Optimal (Region
1) and Unacceptable (Region 3)). In the first one we see that even if QoS falls slightly,
QoE will remain the same. This is very important to the providers, as they can reduce
their development costs and resources by reducing QoS a little. On the other hand, in
the Unacceptable area both QoS and QoE are very low, so the user will probably give
up using the service.

3.4 QoE MEASURMENTS

It is very important to find a way to measure QoE. QoE measurement is possible by
using the QoE Modeling which includes subjective and objective ways of measuring
QoE (Figure 24). The difference between subjective and objective assessment is that
the first is based on experiments on the subjective view of the client that is using a
service. Subsequently, all subjective estimates are collected and are then used to form
the objective assessment of QoE.

The subjective way, on condition that it is properly designed, is the most reliable
measurement for QoE as it is very accurate and valid and ensures consistency between
subjective measurements. However, it is not real-time and the results cannot be
reproduced at any time. It is also a time consuming and costly process that requires
very good planning so it is complicated, too. The subjective way may also be biased by
users’ opinions due to unconscious psychological factors. For example, users may be
greedy for their QoE demands, so their ratings can be poor.

As for the objective way of measurement, it is an automated QoE forecast, which
means that same inputs always have the same outputs. Also, it can be either real-time
or proactive. Nevertheless, it is really complex and it may not always represent the

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 33

reality. Finally, there is not a universal model to use, so depending on the service we
want to evaluate, it must be different.

3.5 QoE MANAGEMENT

Figure 25 illustrates the three basic QoE Management Entities. The QoE Controller is
the entity that collects the needed data from the network and sends it to the QoE
Monitor entity. QoE Monitor then implements the QoE evaluation model and calculates
a rating for the network. Next, this rating is sent to the QoE Manager entity which will
take some decisions concerning the network and will also update it through the QoE
Controller. Decisions can vary depending on the QoE Manager. For example, a possible
decision could be to give priority to a certain user.

Figure 24: QoE Modeling

Figure 25: QoE Management Entities

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 34

3.6 HTTP VIDEO STREAMING INFLUENCED BY QoE FATORS

HTTP video streaming or video on demand streaming combines download and
playback at the same time. The video is transmitted to the client via HTTP and is saved
to a buffer. Even if the video has not been downloaded completely, yet only an
adequate number of data is available, the video can start playing from the buffer.
However, problems in the network like packet loss, insufficient bandwidth, delay and
jitter can reduce the throughput and create delays. As a result, the buffer loads more
slowly or in some cases depletes. Consequently, the playback has to be paused till
sufficient data has been delivered. These interruptions are called stalling or rebuffering.
Stalling together with the initial delay of the video playback are the two most important
factors that influence QoE.

3.6.1 Initial delay

Initial delay is defined as the time since the user chose to watch the video, or in other
words the time difference between the first HTTP request sent to the server and the
moment the playback begins. In every service, video streaming has a small initial delay,
which depends on the available transmission data rate. Usually, even though the
received amount of segments is sufficient to start the video playback, there is a small
delay in order to fill the buffer with more data. This takes place in case of throughput
reduction, that below a certain threshold will cause stalling. Therefore, saved data in the
buffer allows throughput to return to previous levels and possibly avoid stalling.
However, another problem arises. The more buffered data to prevent stalling, the
greater the initial delay. On the other hand, providing less buffered playtime reduces
initial delay, but increases the likelihood of stalling occurrence. In order to determine
which of these two scenarios is more preferable, the impact on the end-user QoE was
taken into account. The results of a survey [17] showed that 90% of the users preferred
initial delays to stalling. As the users are accustomed to delays before launching a
service, they are willing to tolerate them to some extent. Stalling, however, is an
unexpected event during the service, without acknowledgment of its duration in advance
and creates more inconvenience.

3.6.2 Stalling

Stalling is defined as the interruption of the video playback, since it has already started
because of playout buffer depletion. When the buffer is empty, playback stops until it
gains a certain amount of playtime data. This process is called rebuffering. As a result,
increased stalling duration reduces QoE. It seems that this is probably the parameter
with the greater impact on QoE. Therefore, it is also the parameter that mostly concerns
video streaming providers. In this regard, a service that uses HTTP Adaptive Streaming
should try to avoid stalling by all means.

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 35

4. Environment Setup

This chapter demonstrates all the requirements so as to operate the SDN environment.
In this thesis, the following steps were followed to develop the SDN framework.

4.1 SYSTEM REQUIREMETS

4.1.1 Operating system (OS)

The simulation in the current thesis uses Ubuntu 18.04 LTS OS.

4.1.2 Java

OpenDaylight Controller, used for this thesis, runs in Java Virtual Machine (JVM). Due
to the fact that this is a Java application, it can potentially run in any operating system
and hardware as long as it supports Java. However, a Java 8-compliant JVM is
necessary. For this reason, we executed the following commands from the terminal:

sudo add-apt-repository ppa:openjdk-r/ppa

sudo apt-get update

sudo apt-get install openjdk-8-jdk

Then, the JAVA_HOME variable was set, by adding the following at the end of the
/etc/profile file:

JAVA_HOME=/usr/lib/jvm/java-8-openjdk-i386

PATH=$PATH:$HOME/bin:$JAVA_HOME/bin

export JAVA_HOME

export PATH

The path of the variable can be checked by running this command:

echo $JAVA_HOME

4.1.3 SDN controller deployment

ODL Controller must be installed and configured independently, as a separate
application. ODL Controller can be used as a remote controller; however only the
default features can be installed and used. For its installation the following steps were
followed:

First, we visited the OpenDaylight downloads page2 and we downloaded the
OpenDaylight Controller Boron SR4. When the file had successfully been downloaded,
we unzipped it, opened a terminal in this directory and executed ./bin/karaf so as to
start the ODL controller. For its termination “shutdown –f” or “logout” must be typed.

The OpenDaylight controller is deployed on the concept of Apache Karaf. Apache Karaf
is a modular open source runtime environment. It is a lightweight, powerful, and
enterprise ready container powered by OSGi and can host any kind of applications.
Apache Karaf supports the provisioning of applications as well as modules using the
concept of Karaf Features, which means that it provides a simple and flexible way to
arrange applications, using different features.

2https://www.opendaylight.org/technical-community/getting-started-for-developers/downloads-and-
documentation

https://www.opendaylight.org/technical-community/getting-started-for-developers/downloads-and-documentation
https://www.opendaylight.org/technical-community/getting-started-for-developers/downloads-and-documentation

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 36

A feature describes an application as:

• a name

• a version

• an optional description (eventually with a long description)

• a set of bundles

• optionally a set configurations or configuration files

• optionally a set of dependency features

Once a feature is installed, Apache Karaf installs all resources at the same time. In
other words, it will unconsciously resolve and install all bundles, configurations, and
dependency features described in the feature [18].

In the current thesis several features were installed using the following command in the
karaf console:

feature:install[FEATURE_NAME]

One necessary feature is odl-dlux-all, which provides a Web based user interface for
OpenDaylight. The UI can be found in this link:

http://localhost:8181/index.html

and it is only available when karaf is executed which means that the controller is
running. In any other case, the web page will not load. We can enter, using admin for
both username and password (Figure 26).

Along with the odl-dlux-all feature, the features odl-dlux-core, odl-dlux-node and odl-
dlux-yangui have also been installed and can be found in the panel on the left of ODL
DLUX’s page (Figure 27).

Figure 26: OpenDaylight Login Page

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 37

odl-dlux-core feature: provides the topology tab and shows the graphical representation
of the network topology (Figure 28). Switches are represented as blue boxes, and
available hosts as black boxes. Switches and hosts are connected by lines. We can
view source and destination ports if we click on hosts, links, or switches.

odl-dlux-node feature: Provides the Nodes tab. It demonstrates a table of all the nodes,
node connectors and the statistics (Figure 29). In addition, we can enter a node ID in
the Search Nodes tab and look for it, click on the Node Connector number to view more
details about the port ID or name, the number of ports per switch or even the MAC
Address. Also, we can click on Flows in the Statistics column to view the Flow Table
Statistics for any node like the table ID. Finally, by clicking on Node Connectors we can
view the Node Connector Statistics for a specific node ID.

Figure 27: OpenDaylight Main Page

Figure 28: Topology Tab

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 38

odl-dlux-yangui feature: It provides the Yang UI tab which is an ODL DLUX-based
application designed to simplify application development and testing [19].

4.1.4 Mininet

In order to deploy SDN applications with different network topologies, a network
emulation tool is required, which in our case is Mininet [20]. For its installation, the steps
below were followed:

First, we got the source code with the following command which will get the latest and
greatest version of Mininet:

git clone git://github.com/mininet/mininet

The command to install Mininet is:

Mininet/util/install.sh -a

This installs everything that is included in the Mininet VM, including dependencies like
Open vSwitch. By default, these tools will be built in directories created in the home
directory.

After the installation is completed, the basic Mininet functionality is tested with the
command:

sudo mn --test pingall

The basic mininet topology (Figure 30) as well as the output of the pingall command
(Figure 31) are shown at the respective figures.

Figure 29: Nodes Tab

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 39

4.1.5 Mininet’s graphical user interface, MiniEdit

In the terminal, we execute the following command in order to open Mininet’s graphical
user interface, MiniEdit:

sudo ~/mininet/examples/miniedit.py

The Mininet network simulator includes MiniEdit. It is a simple GUI editor for Mininet.
MiniEdit is an experimental tool in order to show how Mininet can be extended. The
MiniEdit script is located in Mininet’s examples folder. Mininet demands root privileges,
so we use the sudo command. MiniEdit has a simple user interface. Its main page
shows a canvas with a variety of tools on the left and a menu bar on the top of the
window (Figure 32).

Figure 30: Basic Topology

Figure 31: Pingall Output

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 40

The icons, from top to bottom, represent specific tools:

The Select tool enables us to drag nodes around on the canvas. Surprisingly,
we do not have to use the Select tool to select a node or a link. By just either
right-clicking or pressing the Delete key, we can select the node or the link
that we desire and display the configuration menu or even remove each

element.

The Host tool creates nodes which represent host computers. Clicking on the
tool and then clicking in any place on the canvas we can place a node. On
condition that we do not select another tool, we can continue adding hosts. By

right-clicking on the hosts and selecting Properties we are able to configure them.

The Switch tool creates OpenFlow-enabled switches. All switches must be
connected to a controller. Again, we can configure each switch by right-
clicking on it and selecting Properties.

The Legacy Switch tool creates a learning Ethernet switch with default
settings. In contrast to the switches above, these are capable of operating
without a controller and also cannot be configured.

The Legacy Router tool creates a basic router that will operate separately and
cannot be configured, too. It is basically a host with IP Forwarding enabled.

The NetLink tool creates links between nodes. We can connect elements by
clicking any node and dragging the link to the other one. We may configure
each link by right-clicking on it and selecting Properties.

The Controller tool creates a controller. We can add as many controllers as
we want. By default, the MiniEdit creates a mininet openFlow reference
controller, which affects the behaviour of a learning switch. We can configure

other controller types, too. We may configure each controller by right-clicking on it and
selecting Properties.

The Run starts Mininet simulation experiment. On the other hand, the Stop
button stops it. When MininEdit simulation is running, other functions are
available by right-clicking on any element.

Figure 32: MiniEdit main page

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 41

4.1.6 VLC media player

VLC media player is a free and open-source portable cross-platform media player
software and streaming media server designed by the VideoLAN project. VLC is used
for different desktop OS and mobile systems, like Android, iOS, iPadOS, Tizen,
Windows 10 Mobile and Windows Phone. It provides many audio and video
compression techniques and file formats, such as DVD-Video, video CD and streaming
protocols. It is also capable of broadcasting over computer networks and transcoding
multimedia data which is exactly the reason why we used it for our thesis. The default
package of VLC consists of a wide variety of free decoding and encoding libraries. The
libavcodec library from the FFmpeg program offers many of VLC’s codecs, however the
VLC player primarily works with its own muxers and demuxers. It also has its own
protocols. In addition, it uses the libdvdcss DVD decryption library so as to support
Demuxers playback of encrypted DVDs on Linux and macOS for the first time [21].

The command to install VLC is:

sudo apt install vlc

For this thesis and for the sake of Adaptive streaming, certain settings are necessary so
that the VLC would be able to support Adaptive Streaming for DASH/HLS [22]. In the
tab Tools we select Preferences. Then, we select the tab Input/Codecs → Demuxer →
Adaptive and we type dash (Figure 33).

Furthermore, on the same tab Input/Codecs we select Stream filters and we tick the box
HTTP Dynamic Streaming (Figure 34).

Figure 33: VLC Preferences (1)

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 42

Finally, we save our preferences.

4.1.7 FFmpeg

FFmpeg is a free and open-source project which contains a wide software set of
libraries and programs which was extensively used in our thesis for handling video,
audio, and other multimedia files and streams. The name of the project comes from the
MPEG video model, along with "FF" which stands for "fast forward" [23]. The basic body
is the FFmpeg program itself which is created for operations though the command line
window for video and audio files. It is extensively used for format transcoding, basic
editing (trimming and concatenation), video scaling, video post-production effects, and
standards compliance (SMPTE, ITU).

FFmpeg includes libavcodec which is an audio/video codec library, libavformat (Lavf),
an audio/video container mux and demux library and finally the basic FFmpeg
command line program which is a transcoder of multimedia files.

FFmpeg is similar to other software projects, and its libraries are the basis of other
software media players like VLC as mentioned before, YouTube and iTunes. It is a
greatly effective tool for converting both common and uncommon media files into a
single common format.

For the installation process in Ubuntu we must type the following commands in the
command window [24]:

sudo apt-get update

sudo apt-get install ffmpeg

4.1.8 Dynamic adaptive streaming over HTTP (DASH)

Dynamic Adaptive Streaming over HTTP (DASH), also known as MPEG-DASH, is an
adaptive bitrate streaming procedure that implements high quality streaming of media
files over traditional HTTP web servers [25]. It is the first adaptive bit-rate HTTP-based

Figure 34: VLC Preferences (2)

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 43

streaming solution that is an international standard. MPEG-DASH splits the content into
a string of small HTTP-based file segments, which consist of a small recap of the video,
regardless of its duration. Then the segments are available at a range of different bit
rates. While the MPEG-DASH client plays the video, the client runs an Adaptive Bit
Rate (ABR) algorithm to mechanically choose the segment to be displayed, with the
highest bit rate possible. The current MPEG-DASH client dash.js provides not only
buffer-based bit rate adaptation algorithms (BOLA) but also hybrid (DYNAMIC). For
these reasons, an MPEG-DASH client can smoothly fit to unsteady network conditions
and support high quality playback with less stalls or re-buffering events.

We execute the following command to install Node on Ubuntu, which will also install
NPM and other dependent packages [26].

sudo apt-get install nodejs

Node.js is a Javascript-based software development platform mainly used for servers.
In our thesis we used this software in order to create a server. Its development will be
explained in another chapter.

4.1.9 Project on advanced content (GPAC)

It is an application of the MPEG-4 Systems standard and it is written in ANSI C. GPAC
supports means for media playback, vector graphics and 3D rendering, MPEG-4
authoring and distribution. GPAC provides three sets of tools based on a core library
called libgpac. The first is MP4Client which is a multimedia player, MP4Box which is a
multimedia packager as well as some server tools for multiplexing and streaming which
are still under development [27].

For this thesis, we used MP4Box for the preparation of the HTTP Adaptive Streaming
content, specifically to create the DASH manifest and associated files [28]. To install
MP4Box we run the command below:

sudo apt-get install gpac

4.1.10 Wireshark

Wireshark is a free, open-source packet analyzer, complying with the GNU General
Public License. The main reason for its use in our thesis is the fact that it provides
network troubleshooting, analysis, software and communications protocol development,
which were extremely helpful in order to collect certain data. At first the project was
called Ethereal but was later renamed Wireshark because of brand controversies.
Wireshark is a cross-platform [29]. It uses two main tool-kits, the Qt widget which
performs the user interface along with the pcap in order to monitor packets. It is
available on Linux, macOS, BSD, Solaris and Microsoft Windows. In addition, there is a
non-GUI version of Wireshark, called Tshark. Wireshark lets us monitor traffic by using
different controllers in the network interface.

Before we install Wireshark, we need to install all the dependencies needed using the
following command [30]:

sudo apt-get install build-essential checkinstall libcurl4-openssl-dev bison flex qt5-efault
qttools5-dev libssl-dev libgtk-3-dev libpcap-d

Then, we install Wireshark by typing:

sudo apt-get install wireshark

Figure 35 shows the main page of Wireshark and the data displayed.

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 44

There are six default columns in Wireshark. At first, “No.” column. Each frame has a
unique number from the beginning of the pcap. The first one is always number 1. Next,
the “Time” column which breaks down time to nanoseconds from the beginning of the
pcap. The first frame is always 0.000000, too. The “Source” column represents the
address of the source which can be an IPv4, IPv6, or Ethernet address. Moreover, the
“Destination” column represents the address of the destination which can also be an
IPv4, IPv6, or Ethernet address. The ”Protocol” column saves the used protocol in the
Ethernet frame, IP packet or TCP segment. The protocol can be anything among the
following: ARP, DNS, TCP, HTTP, etc. Finally, the “Length” column stands for the
length of the frame in bytes.

Next, we thoroughly present all the adaptations made, so as to display exactly the data
we needed. We right-click on any column header and check the columns that we want
to display or uncheck the columns that we desire to hide. For the experiments
conducted in our thesis we hide the columns No. and Length (Figure 36) as the
information does not come in handy [31].

Figure 35: Main Page of Wireshark

Figure 36: Needed Columns

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 45

In order to add a new column, we right-click on any column header and select Column
Preferences as shown in Figure 37 and Figure 38.

Next, we select the ‘+’ button four times, to add 4 new columns as shown in Figure 39.

We name these new columns Segment, Cookies, Resolution and FilePath. The column
Segment shows a full picture of the request made not only from the client to the server
but also from the server to the client. The Cookie column demonstrates extra
information that the server sends to the client apart from the object itself. This
information is actually the Resolution of the video as well as the FilePath of the file
which can also be seen in two different columns separately, the Resolution and the
FilePath column. We also edit the Type, Fields and Fields Occurrence fields as shown
in Figure 40:

Figure 37: Column Preferences Option

Figure 38: Wireshark Preferences (1)

Figure 39: New Columns

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 46

It is also possible to change the order of the columns by clicking and dragging them
wherever we want. For example, we can transfer the Segment column to the top as can
be seen in Figure 41.

We click OK and save the changes made. The Wireshark main page will look this way
(Figure 42) in the end.

Finally, the table shows all the tools used in our thesis, together with their versions:

Table 1: Used tools

TOOL VERSION

Java Virtual Machine (JVM) 1.8.0_222

SDN Controller Boron SR4

Mininet 2.3.0d6

VLC 3.0.8 Vetinari

FFmpeg 3.4.6-0ubuntu0.18.04.1

Nodejs v8.10.0

MP4Box – GPAC 0.5.2-DEV-revVersion

Wireshark 2.6.10

Figure 40: Wireshark Preferences (2)

Figure 41: Wireshark Preferences (3)

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 47

4.2 SERVER SETUP

Below we present a simple web server, created in node.js which responds “Hello World”
to any request.

var http = require('http');

http.createServer(function (req, res) {

 res.writeHead(200, {'Content-Type': 'text/plain'});

res.end('Hello World\n');

}).listen(1337, '127.0.0.1');

console.log('Server running at http://127.0.0.1:1337/');

In order to include the Hyper Text Transfer Protocol (HTTP) module we need to add the
following method:

var http = require('http');

The HTTP module enables us to create an HTTP server that listens to a specific port.
The server then is able to respond whenever the client makes a request. The creation of
such a server is made by using the method createServer(). According to the previous
code, we create a server that listens to http://127.0.0.1 or localhost to the port 1337.
The server responds to each request with its status code which in our case is 200 that
means success. It also sends back the response headers which is the Content-Type
argument. We can save the server that we have just created to a file named
“example.js” and test it with the following command:

node example.js

Figure 43 shows the output. For our demonstration we have chosen to use the Firefox
Web Browser.

Figure 42: Wireshark Main Page in the end

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 48

4.2.1 Making requests in Node.js

Requests can also be made in the node.js environment. For instance, we can rename
the previous web server file to “server.js” and in addition we can create a new file called
“client.js” which contains the following.

At first, util is necessary for many different operations in the node.js environment, so it
should be placed at the beginning of the code.

const http = require('http');

const util = require('util');

The request() method needs the following mandatory settings. Hostname is actually the
localhost or in other words 127.0.0.1, the port requested is 1337 and finally the method
can be among the following: GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS
or TRACE. For this example, we use the method GET. This method is used to request
data from a specified resource and it is one of the most common methods. The data can
be an htlm page, an audio file etc.

const options = {

hostname: 'localhost',

 port: 1337,

 path: '/',

 method: 'GET'

};

The command console.log is used to check the outcome of the request.

const req = http.request(options, (res) => {

 console.log('statusCode:', res.statusCode);

 console.log('headers:', util.inspect(res.headers, false, null, true /* enable colors */));

 // alternative shortcut

 //console.log('headers:', util.inspect(res.headers, {showHidden: false, depth: null}));

 res.on('data', (d) => {

 process.stdout.write(d);

 });

});

Figure 43: example.js output

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 49

req.on('error', (e) => {

 console.error(e);

});

req.end();

The client can make the request by typing the following to the terminal:

 node client.js

Figure 44 shows the procedure in every detail as well as the results given in the
command line. The text editor used is Atom.

4.2.2 Proposed server implementation

Based on the knowledge gained in the previous sections, we are now able to present
the server used in our thesis.

var http = require('http');

var fs = require('fs');

var path = require('path');

var fs2 = require('fs');

Firstly, the server creates a folder named statistics. In this folder a .csv file will be
created after the completion of the procedure, which contains several statistic
information about it. The created file is called ‘filePath + ','+ myCurrentTime().csv ‘ as
shown below.

//Create directoty for statistics of our server

var dir = './statistics';

Figure 44: The procedure described

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 50

if (!fs2.existsSync(dir)){

 fs2.mkdirSync(dir);

}

//Start write to new File

//let writeStream = fs2.createWriteStream('statistics/results_'+ myCurrentDate() +'.csv');

//writeStream.write('FilePath,DateTime\n');

var filePath = '';

var server = http.createServer(function (request, response) {

The following part of the code is executed when the client makes a request. In case a
segment file is requested, the data is inserted in the file described above.

 filePath = '.' + request.url;

 var datetimeRequestStart = myCurrentDate();

 if(filePath.includes(".mpd") === true){

 console.log('(manifest) : request starting... : ' + filePath + '\n');

 }

 else if (filePath.includes("bbb_30fps_audio") === true){

 console.log('(audio) : request starting... : ' + filePath + '\n');

 }

 else if (filePath.includes("bbb_30fps") === true){

 console.log('(segment) : request starting... : ' + filePath + '\n');

 // write to a new line in file named secret.txt

 //writeStream.write(filePath + ','+ myCurrentTime() + '\n');

 }

 if (filePath == './')

 filePath = './index.html';

The following code is executed in order to identify the content type of the requested
object. The general type of its object is specified as text/html.

 var extname = path.extname(filePath);

 var contentType = 'text/html';

 switch (extname) {

 case '.m4s':

 contentType = 'dash/m4s';

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 51

 break;

 case '_dashinit.mp4':

 contentType = 'dashinit/mp4';

 break;

 case '.mpd':

 contentType = 'manifest/mpd';

 break;

 case '.mp4':

 contentType = 'video/mp4';

 break;

 case '.m4a':

 contentType = 'audio/m4a';

 break;

 }

The data is sent to the client accompanied with an appropriate message. In case of an
ENOEΝT error, the server responds ‘404 Not Found’. ENOEΝT errors occur when the
server does not possess the requested data.

 fs.readFile(filePath, function(error, content) {

 if (error) {

 if(error.code == 'ENOENT'){

 fs.readFile('./404.html', function(error, content) {

 response.writeHead(404, {"Content-Type": "text/html"});

 response.write("404 Not Found\n");

 response.end(content, 'utf-8');

 });

 }

The server responds ‘Sorry, check with the site admin for error: '+error.code+' ..’ where
error.code stands for 500.

 else {

 response.writeHead(500);

 response.end('Sorry, check with the site admin for error: '+error.code+' ..\n');

 response.end();

 }

 }

The server responds to a successfully made request with the status code 200. It also
sends the requested object as well as some relevant information about it in the format of
a Cookie. This information contains the name of the object and the resolution when its
type is relevant.

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 52

 else {

 //response.setHeader('Cookie', ['filePath=' + filePath, 'resolution=' +
myResolution(filePath)]);

 response.setHeader('Cookie', [filePath, myResolution(filePath)]);

 response.writeHead(200, { 'Content-Type': contentType });

 response.end(content, 'utf-8');

 }

 });

 }).listen(1337, '10.0.0.1');

 console.log("Running node.js %s on %s-%s", process.version, process.platform,
process.arch);

 console.log('Server running at http://10.0.0.1:1337/');

//}).listen(1337, '127.0.0.1');

//console.log("Running node.js %s on %s-%s", process.version, process.platform,
process.arch);

//console.log('Server running at http://127.0.0.1:1337/');

The server terminates and also ends the procedure of the creation of the file which was
described previously. In addition, an appropriate message appears, informing the user
that the server is no longer online.

server.on('close', function() {

 // the finish event is emitted when all data has been flushed from the stream

 writeStream.on('finish', () => {

 console.log('Create a new file with statistics of the experiment.\n');

 });

 // close the stream

 writeStream.end();

 console.log('Server stopped.\n');

});

In case of an abrupt termination (kill), which means that the user has typed Ctrl + C or
Ctrl + Χ, the process ends smoothly as shown below:

process.on('SIGINT', function() {

 console.log('User typed : ^C');

 server.close();

});

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 53

The following auxiliary functions were created so as to make our server more
understandable.

The function myCurrentDate() returns the current date in this form
YYYYMMDD_hh:mm:ss.

function myCurrentDate() {

 let date_ob = new Date();

 // current date

 // adjust 0 before single digit date

 let date = ("0" + date_ob.getDate()).slice(-2);

 // current month

 let month = ("0" + (date_ob.getMonth() + 1)).slice(-2);

 // current year

 let year = date_ob.getFullYear();

 // current hours

 let hours = date_ob.getHours();

 // current minutes

 let minutes = date_ob.getMinutes();

 // current seconds

 let seconds = date_ob.getSeconds();

 // current date of server in YYYYMMDD_HH:MM:SS format 3

 let myDate = year + month + date + "_" + hours + ":" + minutes + ":" + seconds

 return myDate; // Function returns myDate

}

The function myCurrentTime() returns the current time in this form hh:mm:ss.sss4.

function myCurrentTime() {

 let date_ob = new Date();

 // current time

 // current hours

 let hours = date_ob.getHours();

 // current minutes

 let minutes = date_ob.getMinutes();

 // current seconds

3 The abbreviation YYYYMMDD_hh:mm:ss stands for: YYY: year ,MM: month ,DD:day ,hh: hour ,mm:
month ,ss: second.

4 The abbreviation hh:mm:ss.sss stands for: hh: hour ,mm: month , ss.sss: second.

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 54

 let seconds = date_ob.getSeconds();

 // current milliseconds

 let milliseconds = date_ob.getMilliseconds();

 // current date of server in HH:MM:SS format

 let myTime = hours + ":" + minutes + ":" + seconds + '.' + milliseconds

 return myTime; // Function returns myTime

}

According to the name of the file (filePath) the function myResolution(filePath) finds and
returns the resolution of the video. The possible resolutions are '430 x 242', '640 x 360',
'849 x 480', '1280 x 720' and '1920 x 1080'.

function myResolution(filePath){

 //Find data from: https://stackoverflow.com/questions/10003683/extract-get-a-number-
from-a-string

 if(filePath.includes(".mpd") === true){

 return ''

 }

 else if (filePath.includes("video_audio") === true){

 return ''

 }

 else if (filePath.includes("video") === true){

 var myNum = filePath.replace(/^\D+|\D.*$/g, "");

 var myResolution = '1920 x 1080';

 if(myNum === '242')

 myResolution = '430 x 242';

 else if(myNum === '360')

 myResolution = '640 x 360';

 else if(myNum === '480')

 myResolution = '849 x 480';

 else if(myNum === '720')

 myResolution = '1280 x 720';

 else if(myNum === '1080')

 myResolution = '1920 x 1080';

 return myResolution

 }

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 55

}

The function simplifiedUnits(input), converts the number input to Bits5.

var units = ["B", "kB", "MB", "TB"];

function simplifiedUnits(input) {

 var unit = units[0];

 var i = 0;

 while (input > 1024 && ++i) {

 unit = units[i];

 input /= 1024;

 }

 return Math.round(input) + " " + unit;

}

As mentioned before, the server can be executed with the following command
[32][33][34]:

 node server.js

5 Bits can be presented as "B", "kB", "MB", "TB".

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 56

5. Mininet Experiments

In this chapter we thoroughly explain the experiments conducted in our thesis. These
experiments were carried out in order to examine the Quality of Experience (QoE) on
SDN networks, namely to understand the user’s perspective.

5.1 BASIC EXPERIMENT

5.1.1 Preparation

In order to carry out an experiment we need a video with resolution 1920x1080 [35]. In
the file where the video is located, we open a new terminal window (Figure 45).

Figure 45: Terminal window

Then, we need to create five different quality versions of the video as well as an audio
file. Thus, we execute the “bash.sh” script, which we have created. This script converts
every .mp4 file in the current folder and subfolder to a multi-bitrate video in MP4-DASH
[36]. It creates five different quality versions, an audio file and an .mpd manifest file.
Below, we explain in every detail the code written for this script.

1. In the beginning, we find the current directory name and save it to a variable.

MYDIR=$(dirname $(readlink -f ${BASH_SOURCE[0]}))

SAVEDIR=$(pwd)

2. Then, we check whether the needed programs, ffmpeg and MP4Box, are installed.
If not, a message appears in the terminal informing the user.

Check programs

if [-z "$(which ffmpeg)"]; then

 echo "Error: ffmpeg is not installed"

 exit 1

fi

if [-z "$(which MP4Box)"]; then

 echo "Error: MP4Box is not installed"

 exit 1

fi

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 57

3. Next, we change directory.

 cd "$MYDIR"

4. Then, there is the main part of the script. We find all the .mp4 or .mov files in the
current folder and subfolder. We save the name of each file without its extension
(.mp4 or .mov) and we start converting each file to a multi-bitrate video in MPEG-
DASH.

 TARGET_FILES=$(find ./ -maxdepth 1 -type f \(-name "*.mov" -or -name "*.mp4"
\))

for f in $TARGET_FILES

do

 fe=$(basename "$f") # fullname of the file

 f="${fe%.*}" # name without extension

 if [! -d "${f}"]; then #if directory does not exist, convert

 echo "Converting \"$f\" to multi-bitrate video in MPEG-DASH"

5. At first, there is the conversion of the audio file.

ffmpeg -i "${fe}" -c:a copy -vn "${f}_audio.mp4"

 -i - the input file

 -c:a - the audio codec

 -vn - do not encode video

6. Next, there are the conversions of the video files to five different quality versions.
The video is encoded using H.264 codec, so that it has a key frame every 24
frames. In other words, this lets us have the video segmented by chunks of 1
second in length. The bitrate is calculated according to the buffer size. It should
be smaller than the rate since the segments are 1 second long, so as to ensure
that the encoding is close to the requested rate. The frames in an H.264 video
are organized in units called GOPs (Group Of Pictures) [37]. The frames are then
divided into three different types, the I-frame that saves the entire picture, the P-
frame which saves only the differences between the present and the earlier
pictures and the B-frame that stores changes with previous or future pictures.

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=24:min-keyint=24:no-scenecut' -
b:v 5300k -maxrate 5300k -bufsize 2650k -vf 'scale=-1:1080' "${f}_1080.mp4"

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=24:min-keyint=24:no-scenecut'
-b:v 2400k -maxrate 2400k -bufsize 1200k -vf 'scale=-1:720' "${f}_720.mp4"

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=24:min-keyint=24:no-scenecut'
-b:v 1060k -maxrate 1060k -bufsize 530k -vf 'scale=-1:478' "${f}_480.mp4"

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=24:min-keyint=24:no-scenecut'
-b:v 600k -maxrate 600k -bufsize 300k -vf 'scale=-1:360' "${f}_360.mp4"

 ffmpeg -i "${fe}" -an -c:v libx264 -x264opts 'keyint=24:min-keyint=24:no-scenecut'
-b:v 260k -maxrate 260k -bufsize 130k -vf 'scale=-1:242' "${f}_242.mp4"

 -i - the input file

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 58

 -an - do not encode audio

 -c:v libx264 specifies the audio codec to use, in this case we want h264

 Κeyint option defines the maximum length of the GOP or in other words
the maximum interval between each keyframe

 min-keyint option defines the minimum length of the GOP. This is
necessary as the encoder might insert a keyframe before the keyint value
and in this way we can limit that

 no-scenecut option eliminates the case when the encoder adds additional
I-frames, which also happen to use a lot of resources

 -b:v is the bitrate we want to encode the video to

 -maxrate the maximum bit rate

 -bufsize is the "rate control buffer"

 -vf ‘scale -1:X’ is used to resize the video, with X being the height of it

 Each new file is given a different name in combination with its original one

Now, there are one audio and five video files. Then, the Media Presentation Description
(MPD) file is created. The MPD file stores all the data for the current project in a
database format [38]. This file is like an index which mentions the different video and
audio tracks available, along with their bitrate, size and order. The MPD file will then be
loaded by the VLC player. The dash option defines the duration of each segment, which
in our case is 1000 ms so as to match the 1 second segments of the videos. We add
the flag -profile dashavc264:live to make it compatible with dash.js player.

 if [-e "${f}_audio.mp4"]; then

MP4Box -dash 1000 -rap -frag-rap -profile onDemand "${f}_1080.mp4"
"${f}_720.mp4" "${f}_480.mp4" "${f}_360.mp4" "${f}_242.mp4" "${f}_audio.mp4" -
out "${f}.mpd"

 fi

To execute the script we type the following (Figure 46):

Figure 46: bash.sh execution

Now, we have created the needed versions, the audio file, the mpd file and moreover
many different segments of the video (.m4s) (Figure 47) [39].

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 59

Figure 47: Different versions of the video, mpd file, different segments

5.1.2 Basic simulation

A custom topology in MiniEdit may look like this in Figure 48:

Figure 48: Custom topology

To set MiniEdit preferences, we must click on Edit → Preferences and check the Start
CLI box (Figure 49):

Figure 49: Mininet preferences

This is important as the MiniEdit console by default does not give access to the Mininet
command line interface. However, if we check the Start CLI box, we are able to use the
Mininet CLI during a simulation.

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 60

Now, we can run the experiment. In Mininet command line interface we execute the
following command and the xterms of each host will appear:

mininet> xterm h1 h2 h2

The h1 host represents the server and the h2 the client. The client not only does he
need to execute the video player but also the wireshark program, so as to monitor the
packets transmitted. For this reason, we execute the following commands in the
different terminals as demonstrated below (Figure 50 - Figure 52), in the following order:

Figure 50: xterm h1

Figure 51: xterm h2 (1)

Figure 52: xterm h2 (2)

First, we start the server in host 1. Secondly, we start monitoring the packets, open the
VLC player and load the MPD file in the client in host 2. Finally, we are able to watch
the video playing (Figure 53) as well as the output of the server terminal (Figure 54).

Figure 53: Video Playback

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 61

Figure 54: Output of the server terminal

The output of the server terminal demonstrates the order of the requested segments,
both video and audio, which are being transmitted from the server to the client during
the live broadcast, as well as the initial request of the manifest file. Even before the
video starts playing, the server starts transmitting segments so that the buffer will be
filled with data and stalling will be prevented. Also, when the available bandwidth is
high, the initial delay is minor and the opposite.

Before stopping the simulation with the Stop button in MiniEdit console window, we
have to quit from the CLI by typing exit at the Mininet prompt in the MiniEdit console
window.

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 62

5.2 TRAFFIC GENERATOR

In this chapter we demonstrate the way to add extra traffic in order to conduct several
experiments. In the beginning, we need to update the topology introduced before as
shown in Figure 55.

Figure 55: Updated topology

First of all, we add a new switch between switch s1 and host h2. Then, we connect the
new switch (s2) to the controller. Next, we add two new hosts h3 and h4, which we
connect to switch s1 and s2 respectively. Our aim is to create a new UDP server in host
h3 and a new client that receives data in host h4 [40]. In order to achieve that, the first
step is to open the terminals of h3 and h4. Then, in the terminal of host h3, we run the
iperf command, as a UDP server [(-s) run as server, (-u) UDP]:

iperf -s -u

Right after that, in the h4 terminal we run the iperf command, however now as a UDP
client [(-c h3) run as client with server on h3, (-u) UDP (-b 490m) 490 Mbps
bandwidth, (-t 80) for 80 seconds]:

iperf -c h3 -u -b 490m -t 80

As a result, traffic has been generated between switches s1 and s2.

We conducted the experiment described using the following bandwidths between h1-s1
and s2-h2:

a. 1 Mbps

b. 3 Mbps

c. 5 Mbps

d. 10 Mbps

We also created traffic after the first 30 seconds of the playback. The results of each
experiment are shown below (Figure 57-Figure 64). We compared the download rate of
the video (Megabits per second) to the time during which the experiment was conducted
(second), as well as to the resolution that the video was broadcast. All the data was
derived using the Wireshark application. Specifically, we exported data as CSV
(Comma Separated Values) files from the Wireshark GUI using: File -> Export Packet
Dissections -> As CSV. Also, other valuable data was exported using the conversation
window (Figure 56). The available columns in the conversation window are the
following: addresses, packet counters, byte counters and the next four additional
columns: the start time of the conversation (“Rel Start”) or (“Abs Start”), the duration of

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 63

the conversation in seconds, and the average bits (not bytes) per second in each
direction. A timeline graph is also drawn across the “Rel Start” / “Abs Start” and
“Duration” columns. Each row in the list shows the statistical values for exactly one
conversation. Using the Copy button the list values were copied to the clipboard in CSV
(Comma Separated Values) [41].

Figure 56: Wireshark Conversation window

a. 1 Mbps

Figure 57: Download Rate (Mbps) Vs Resolution 1Mbps

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 64

Figure 58: Download Rate (Mbps) Vs Time 1Mbps

b. 3 Mbps

Figure 59: Download Rate (Mbps) Vs Resolution 3Mbps

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 65

Figure 60: Download Rate (Mbps) Vs Time 3Mbps

c. 5 Mbps

Figure 61: Download Rate (Mbps) Vs Resolution 5Mbps

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 66

Figure 62: Download Rate (Mbps) Vs Time 5Mbps

d. 10 Mbps

Figure 63: Download Rate (Mbps) Vs Resolution 10 Mbps

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 67

Figure 64: Download Rate (Mbps) Vs Time (sec) 10Mbps

It is clear that in the thirtieth second, or in other words when we add more traffic in the
network, the download rate at the client reduces. However, this does not mean that the
resolution will always change instantly. As described in Chapter 3.6, the video which is
transmitted to the client via HTTP, is saved to a buffer. As long as a sufficient number of
data of the video is available, the video can continue playing from the buffer.
Furthermore, the lower the bandwidth is, the smaller resolution is offered. Yet, the
resolution that the video starts playing is always the lowest (320x180), regardless the
bandwidth that we have chosen. It is important to mention though that there is a big
difference between 1 Mbps and 10 Mbps bandwidths. The first allows only the two
lowest resolutions to be played, whereas the last the two highest. Furthermore, stalling
was observed when the bandwidth was the lowest. Specifically, the selected
bandwidths provide the following resolutions:

Table 2: Provided resolutions according to selected bandwidth

Bandwidth Resolutions

1 Mbps 320x180 480x270 - -

3 Mbps 320x180 - 768x432 -

5 Mbps 320x180 - 768x432 1024x576

10 Mbps 320x180 - 768x432 1024x576

5.3 PSNR

Peak Signal-To-Noise Ratio, also known as PSNR, describes the ratio between the
maximum possible power of a signal and the power of noise which influences the
accuracy of its representation. PSNR is generally used to measure QoE. The signal is
actually the original data and the noise is the error imported by compression or traffic in
the network. The PSNR (in dB) is defined as [42]:

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 68

Common values for the PSNR in lossy image and video compression are between the
range of 30 and 50 dB, where higher values reflect the best QoE. A number between 20
dB and 25 dB, as far as wireless communication quality loss is considered, is
acceptable.

5.3.1 PSNR calculation

After carrying out the experiments described in Chapter 5.1, using 1Mbps, 3Mbps,
5Mbps and 10Mbps as selected bandwidths, we measured the PSNR for each of them
from the client’s perspective. In order to achieve that, we followed the following steps as
the video that was finally broadcast is not available and we needed to recreate it.

At first, using the cat command we created small parts of the broadcast video through
its .m4s files and their corresponding init files.

cat bbb_30fps_320x180_200k_dashinit.mp4

bbb_30fps_320x180_200k_dash1.m4s > part1.mp4

...

cat bbb_30fps_768x432_1500k_dashinit.mp4

bbb_30fps_768x432_1500k_dash51.m4s bbb_30fps_768x432_1500k_dash52.m4s

bbb_30fps_768x432_1500k_dash53.m4s bbb_30fps_768x432_1500k_dash54.m4s

bbb_30fps_768x432_1500k_dash55.m4s bbb_30fps_768x432_1500k_dash56.m4s

bbb_30fps_768x432_1500k_dash57.m4s bbb_30fps_768x432_1500k_dash58.m4s

bbb_30fps_768x432_1500k_dash59.m4s bbb_30fps_768x432_1500k_dash60.m4s

bbb_30fps_768x432_1500k_dash61.m4s bbb_30fps_768x432_1500k_dash62.m4s

bbb_30fps_768x432_1500k_dash63.m4s bbb_30fps_768x432_1500k_dash64.m4s

bbb_30fps_768x432_1500k_dash65.m4s bbb_30fps_768x432_1500k_dash66.m4s

bbb_30fps_768x432_1500k_dash67.m4s bbb_30fps_768x432_1500k_dash68.m4s

bbb_30fps_768x432_1500k_dash69.m4s bbb_30fps_768x432_1500k_dash70.m4s

bbb_30fps_768x432_1500k_dash71.m4s bbb_30fps_768x432_1500k_dash72.m4s

bbb_30fps_768x432_1500k_dash73.m4s bbb_30fps_768x432_1500k_dash74.m4s

bbb_30fps_768x432_1500k_dash75.m4s bbb_30fps_768x432_1500k_dash76.m4s

bbb_30fps_768x432_1500k_dash77.m4s bbb_30fps_768x432_1500k_dash78.m4s

bbb_30fps_768x432_1500k_dash79.m4s bbb_30fps_768x432_1500k_dash80.m4s

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 69

bbb_30fps_768x432_1500k_dash81.m4s bbb_30fps_768x432_1500k_dash82.m4s

bbb_30fps_768x432_1500k_dash83.m4s > part10.mp4

Secondly, all the parts (part1.mp4 ... part10.mp4) must be put together so as to recreate
the final broadcast video. It is really important to mention that all these videos must
have the same dimensions in the end (1920 x 1080) in order to be compared to the
original one. We merge the parts using the command below:

ffmpeg -i part1.mp4 -i part2.mp4 -i part3.mp4 -i part4.mp4 -i part5.mp4 -i part6.mp4 -i
part7.mp4 -i part8.mp4 -i part9.mp4 -i part10.mp4 -
filter_complex"[0:v]scale=1920:1080:force_original_aspect_ratio=1[v0];[1:v]scale=1920:
1080:force_original_aspect_ratio=1[v1];[2:v]scale=1920:1080:force_original_aspect_rati
o=1[v2];[3:v]scale=1920:1080:force_original_aspect_ratio=1[v3];[4:v]scale=1920:1080:f
orce_original_aspect_ratio=1[v4];[5:v]scale=1920:1080:force_original_aspect_ratio=1[v
5];[6:v]scale=1920:1080:force_original_aspect_ratio=1[v6];[7:v]scale=1920:1080:force_
original_aspect_ratio=1[v7];[8:v]scale=1920:1080:force_original_aspect_ratio=1[v8];[9:v
]scale=1920:1080:force_original_aspect_ratio=1[v9];[v0][0:a][v1][1:a][v2][2:a][v3][3:a][v4
][4:a][v5][5:a][v6][6:a][v7][7:a][v8][8:a][v9][9:a]concat=n=10:v=1:a=1[v][a]"-map [v] -map
[a] finalxMbps.mp4

The name of the final broadcast video is finalxMbps.mp4 with x representing the
selected bandwidth, in other words 1 Mbps, 3 Mbps, 5 Mbps or 10 Mbps.

Finally, we are able to compare the original video to the transmitted ones using this
command:

ffmpeg -i output.mp4 -i finalxMbps.mp4 -lavfi '[0]scale=1920:1080[a];[a][1]psnr' -f null -

The results of the four comparisons are demonstrated in the Table below:

Table 3: PSNR results

Bandwidth Y U V Average Minimum Maximum

1 Mbps 20.389619 27.810548 34.136401 21.914616 9.987742 27.492456

3 Mbps 21.587332 29.178792 35.549621 23.121611 10.004065 28.895605

5 Mbps 22.379611 29.371822 37.341615 23.895887 9.988636 28.673364

10 Mbps 22.223866 29.201896 37.258051 23.740011 9.984147 29.090003

As we had expected, while the bandwidth increases, the PSNR values are larger.
Moreover, the results for 5 Mbps and 10 Mbps are really close since the resolutions
provided and the throughput during the experiment were similar. Figure 64
demonstrates the variations of the PSNR Average, Minimum and Maximum values:

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 70

Figure 65: PSNR (Average, Minimum, Maximum)

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 71

6. CONCLUSION AND FUTURE WORK

In this thesis we investigated how to deliver DASH-based content from a server through
Mininet environment. For this purpose, we created a custom Mininet topology, proposed
a server-client implementation for video streaming, and implemented the HTTP
Adaptive Video Streaming logic on top of this environment. Furthermore, we presented
results for a set of experiments aimed at studying the delivery of streaming video under
varying bandwidth conditions. Our findings indicate that the transmitted data is utterly
connected with the existing traffic in the network. By establishing a bandwidth varying
channel, the effects with regard to video resolutions that would be selected by the
media player were as expected, namely the higher the bandwidth the higher the
selected resolution. Yet, we noticed that the resolution of the broadcast video would not
always change instantly. On condition that a sufficient number of data of the video are
available, the video continued playing from the buffer. Also, smaller resolution was
offered when the bandwidth was low.

One big challenge that we faced and overcame in the end, was the recreation of the
transmitted video in order to calculate the QoE of the client. That was quite difficult as
the broadcast was live and we were not able to save the video on the client’s device.
However, as the segments of the video were known in the order of which they were
transmitted, we were able to put them together and recreate the video.

In our thesis all the video segments are uploaded to a single server. An interesting
future direction would be splitting video segments to two different servers and as a
result creating two different MPD files for the client. That would be challenging as then
the client should not only decide which segment he needs to request according to the
available bandwidth, but also determine from which server he should request it from.

Finally, another research approach would be as far as the controller on the SDN
environment is concerned. An SDN controller manages flow control to the switches and
routers to deploy intelligent networks. A differently designed network controller would
determine different paths for the packets across the network of switches and this would
have an impact on the user’s QoE.

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 72

ABBREVIATIONS - ACRONYMS

1G First-Generation Cellular Network

2G Second-Generation Cellular Network

3G Third-Generation Cellular Network

3GPP 3rd Generation Partnership Project

4G Fourth-Generation Cellular Network

5G Fifth-Generation Cellular Network

ABR Adaptive Bit Rate

ABS Adaptive Bitrate Streaming

ABSFs Almost Blank Subframes

ADONIS Article Delivery Over Network Information Systems

ALISE Association for Library Collections and Technical Services

AMBR Aggregate Maximum Bit Rate

ANSI American National Standards Institute

APN Access Point Name

ARP Address Resolution Protocol

ARP Allocation and Retention Priority

ASO Adaptive Streaming Overview

AVC Advanced Video Coding

BOLA Buffer Occupancy based Lyapunov Algorithm

CDMA Code Division Multiple Access

CΑΤΤ China Academy of Communications Technology

CDN Content Delivery Network

CLI Command Line Interface

CoMP Coordinated Multi-Point

COST Cooperation in Science and Technology

CSV Comma Separated Values

DAMPS Digital AMPS

DASH Dynamic Adaptive Streaming over HTTP

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 73

DL-TFT DownLink - Traffic Flow Template

DNS Domain Name System

DRM Digital Rights Management

EDGE Enhanced Data rates for GSM Evolution

EGSM European GSM

eICIC enhanced Inter-Cell Interference Coordination

EME Encrypted Media Extensions

eNodeB Enhanced Node B

EPC Evolved Packet Core

ETSI European Technical Standards Institute

E-UTRA Evolved Universal Terrestrial Radio Access

E-UTRAN Enhanced - UTRAN

FDD Frequency Division Duplex

FDM Frequency Division Multiplexing

FDMA Frequency Division Multiple Access

FFmpeg Fast Forward MPEG

GGSN Gateway GPRS Support Node

GPAC Project on Advanced Content

GPRS General Packet Radio Service

GRB Guaranteed Bit Rate

GSM Global System for Mobile

GUI Graphical User Interface

HAS HTTP Adaptive Streaming

HbbTV Hybrid broadcast broadband TV

HLR Home Location Register

HLS HTTP Live Streaming

HSPA High Speed Packet Access

HTTP HyperText Transfer Protocol

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 74

ICMobile Information and Communication Mobile Group

IMT- Advanced International Mobile Telecommunications - Advanced

IoT Internet of Things

IP address Internet Protocol address

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

IS-95 Interim Standard - 95

ITU International Telecommunication Union

ITU-R
International Telecommunication Union - Radiocommunication
Sector

JVM Java Virtual Machine

LTE Long-Term Evolution

LTE-A LTE Advanced

MAC Media Access Control

MBR Maximum Bit Rate

MIMO Multiple Input Multiple Output

MME Mobility Management Entity

MMOG Multimedia Online Gaming

mobile TV Mobile TeleVision

MPD Media Presentation Description

MPEG Motion Picture Expert Group

MPEG-CENC Motion Picture Expert Group - Common Encryption

MSC Mobile Switching Centre

MSE Media Source Extensions

MU-MIMO Multiple User MIMO

NKUA National and Kapodistrian University of Athens

Non-GBR Non-Guaranteed Bit Rate

NPM Node Package Manager

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 75

NSS Network Switching Subsystem

NTT Nippon Telegraph and Telephone

ODL controller OpenDaylight controller

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OS Operating System

PDC Personal Digital Cellular

PSNR Peak Signal-To-Noise Ratio

QAM Quadrature Amplitude Modulation

QCI QoS Class Identifier

QoE Quality of Experience

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RDA Rate Determination Algorithm

RTT Round-Trip Time

SAE System Architecture Evolution

SAP Stream Access Points

SC-FDMA Single Carrier FDMA

SDN Software Defined Networking

SGSN Serving GPRS Support Node

SMS Short Messaging Service

SU-MIMO Single User MIMO

TCP/IP Transmission Control Protocol / Internet Protocol

TDD Time Division Duplex

TDMA Time Diνision Multiple Access

TD-SCDMA Time Division Synchronous Code Division Multiple Access

TEI Text Encoding Initiative

UDP User Datagram Protocol

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 76

UE User Equipment

UE-AMBR User Equipment - Aggregate Maximum Bit Rate

UL-TFT Uplink Traffic Flow Template

UMTS Universal Mobile Telecommunication System

UNISIST Universal System for information in Science and technology

URL Uniform Resource Locator

UTMS Universal Mobile Telecommunications System

VLC VideoLAN Client

VoIP Voice over Internet Protocol

W3C World Wide Web Consortium

WCDMA Wideband Code Division Multiple Access

WiMAX Worldwide Interoperability for Microwave Access

XML Extensible Markup Language

ΕΕΧI Ένωση Ελλήνων Χρηστών Internet

ΕΚΠΑ Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 77

REFERENCES

[1] https://en.wikipedia.org/wiki/Cellular_network

[2] Chapter 2.1 http://www.ijcta.com/documents/volumes/vol5issue5/ijcta2014050534.pdf

[3] https://en.wikipedia.org/wiki/Martin_Cooper_(inventor)

[4] https://en.wikipedia.org/wiki/Motorola_DynaTAC.

[5] http://www.cslab.ece.ntua.gr/~sgouros/MM-Old/notes4.htm

[6] https://el.wikipedia.org/wiki/%CE%A8%CE%B7%CF%86%CE%B9%CE%B1%CE%BA%CF%8C
_%CF%83%CE%AE%CE%BC%CE%B1

[7] https://www.sciencedirect.com/topics/computer-science/time-division-multiple-access.

[8] https://www.etsi.org/

[9] https://www.researchgate.net/publication/216645569_Short_message_service_SMS_language_a
nd_written_language_skills_Educators'_perspectives

[10] https://bitmovin.com/adaptive-streaming/

[11] https://en.wikipedia.org/wiki/Adaptive_bitrate_streaming

[12] https://www.synopi.com/mpeg-dash/

[13] https://bitmovin.com/dynamic-adaptive-streaming-http-mpeg-dash/

[14] https://en.wikipedia.org/wiki/European_Cooperation_in_Science_and_Technology

[15] https://en.wikipedia.org/wiki/Quality_of_experience

[16] T. Hoßfeld et al., “Quantification of YouTube QoE via crowdsourcing,” in Proc. IEEE Int. Symp.
Multimedia, Dana Point, CA, USA, 2011, pp. 494–499.

[17] A Survey on Quality of Experience of HTTP Adaptive Streaming Michael Seufert, Sebastian
Egger, Martin Slanina, Thomas Zinner, Tobias Hoßfeld, and Phuoc Tran-Gia

[18] https://karaf.apache.org/manual/latest/provisioning

[19] https://opensourceeducation.net/install-ffmpeg-flvtool2-and-mp4box-on-ubuntu-14-04

[20] http://mininet.org/download/

[21] https://en.wikipedia.org/wiki/VLC_media_player

[22] https://www.videolan.org/vlc/download-ubuntu.html

[23] https://en.m.wikipedia.org/wiki/Ffmpeg

[24] https://tecadmin.net/install-ffmpeg-on-linux/

[25] https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP#cite_note-DASH-
ABRLOGIC-1

[26] https://tecadmin.net/install-latest-nodejs-npm-on-ubuntu/

[27] https://en.wikipedia.org/wiki/GPAC_Project_on_Advanced_Content

[28] https://opensourceeducation.net/install-ffmpeg-flvtool2-and-mp4box-on-ubuntu-14-04

[29] https://en.wikipedia.org/wiki/Wireshark

[30] https://linuxtechlab.com/install-wireshark-linux-centosubuntu/

[31] https://unit42.paloaltonetworks.com/unit42-customizing-wireshark-changing-column-display/

[32] https://nodejs.org/api/errors.html

[33] https://nodejs.org/api/process.html

[34] https://www.w3schools.com/nodejs/nodejs_http.asp

[35] //http://www.brianlinkletter.com/how-to-use-miniedit-mininets-graphical-user-interface/

[36] https://video.stackexchange.com/questions/24680/what-is-keyint-and-min-keyint-and-no-
scenecut

https://el.wikipedia.org/wiki/%CE%A8%CE%B7%CF%86%CE%B9%CE%B1%CE%BA%CF%8C_%CF%83%CE%AE%CE%BC%CE%B1
https://el.wikipedia.org/wiki/%CE%A8%CE%B7%CF%86%CE%B9%CE%B1%CE%BA%CF%8C_%CF%83%CE%AE%CE%BC%CE%B1
https://www.sciencedirect.com/topics/computer-science/time-division-multiple-access
https://www.etsi.org/
https://www.researchgate.net/publication/216645569_Short_message_service_SMS_language_and_written_language_skills_Educators'_perspectives
https://www.researchgate.net/publication/216645569_Short_message_service_SMS_language_and_written_language_skills_Educators'_perspectives
https://opensourceeducation.net/install-ffmpeg-flvtool2-and-mp4box-on-ubuntu-14-04

Implementation of live HTTP Adaptive Video Streaming over Mininet

K. Chatzieleftheriou - G. Christodoulou 78

[37] https://blog.desgrange.net/post/2017/04/17/encode-videos-dynamic-adaptive-streaming-http.html

[38] https://rybakov.com/blog/mpeg-dash/

[39] https://gist.github.com/dvlden/b9d923cb31775f92fa54eb8c39ccd5a9

[40] https://onl.wustl.edu/NPR_Tutorial/Filters,_Queues_and_Bandwidth/Generating_Traffic_With_Ipe
rf.html

[41] https://www.wireshark.org/docs/wsug_html_chunked/ChStatConversations.html

[42] https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

