

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Methodologies for Accelerated Analysis of the Reliability and
the Energy Efficiency Levels of Modern Microprocessor

Architectures

Emmanouil E. Kaliorakis

ATHENS

MARCH 2018

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Μεθοδολογίες για την Επιτάχυνση της Ανάλυσης της
Αξιοπιστίας και της Ενέργειας Σύγχρονων Αρχιτεκτονικών

Μικροεπεξεργαστών

Εμμανουήλ Ε. Καληωράκης

ΑΘΗΝΑ

ΜΑΡΤΙΟΣ 2018

PhD THESIS

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency
Levels of Modern Microprocessor Architectures

Emmanouil E. Kaliorakis

ADVISOR: Dimitris Gizopoulos, Professor UoA

THREE-MEMBER ADVISORY COMMITTEE:
Dimitris Gizopoulos, Professor UoA
Antonis Paschalis, Professor UoA
Angeliki Arapoyanni, Professor UoA

SEVEN-MEMBER EXAMINATION COMMITTEE

(Signature)

Dimitris Gizopoulos,
Professor UoA

(Signature)

Antonis Paschalis,
Professor UoA

(Signature)

Ioannis Smaragdakis,
Professor UoA

(Signature)

Dionisios Pnevmatikatos,
Professor TUC

(Signature)

Mihalis Psarakis,
Assistant Professor UniPi

(Signature)

Nectarios Koziris,
Professor NTUA

(Signature)

Dimitrios Soudris,
Associate Professor NTUA

Examination Date 02/03/2018

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Μεθοδολογίες για την Επιτάχυνση της Ανάλυσης της Αξιοπιστίας και της Ενέργειας
Σύγχρονων Αρχιτεκτονικών Μικροεπεξεργαστών

Εμμανουήλ Ε. Καληωράκης

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δημήτρης Γκιζόπουλος, Καθηγητής ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Δημήτρης Γκιζόπουλος, Καθηγητής ΕΚΠΑ
Αντώνης Πασχάλης, Καθηγητής ΕΚΠΑ
Αγγελική Αραπογιάννη, Καθηγήτρια ΕΚΠΑ

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

(Υπογραφή)

Δημήτρης Γκιζόπουλος,
 Καθηγητής ΕΚΠΑ

(Υπογραφή)

Αντώνης Πασχάλης,
Καθηγητής ΕΚΠΑ

(Υπογραφή)

Ιωάννης Σμαραγδάκης,
Καθηγητής ΕΚΠΑ

(Υπογραφή)

Διονύσιος Πνευματικάτος,
Καθηγητής Πολυτεχνείο Κρήτης

(Υπογραφή)

Μιχάλης Ψαράκης,
Επίκουρος Καθηγητής Πα.Πει

(Υπογραφή)

Νεκτάριος Κοζύρης,
Καθηγητής ΕΜΠ

(Υπογραφή)

Δημήτριος Σούντρης,
Αναπληρωτής Καθηγητής ΕΜΠ

Ημερομηνία εξέτασης 02/03/2018

ABSTRACT

The evolution in semiconductor manufacturing technology, computer architecture and
design leads to increase in performance of modern microprocessors, which is also
accompanied by increase in products’ vulnerability to errors. Designers apply different
techniques throughout microprocessors life-time in order to ensure the high reliability
requirements of the delivered products that are defined as their ability to avoid service
failures that are more frequent and more severe than is acceptable.
This thesis proposes novel methods to guarantee the high reliability and energy
efficiency requirements of modern microprocessors that can be applied during the early
design phase, the manufacturing phase or after the chips release to the market. The
contributions of this thesis can be grouped in the two following categories according to
the phase of the CPUs lifecycle that are applied at:

• Early design phase: Statistical fault injection using microarchitectural structures
modeled in performance simulators is a state-of-the-art method to accurately
measure the reliability, but suffers from low simulation throughput. In this thesis,
we firstly present a novel fully-automated versatile microarchitecture-level fault
injection framework (called MaFIN) for accurate characterization of a wide range
of hardware components of an x86-64 microarchitecture with respect to various
fault models (transient, intermittent, permanent faults). Next, using the same tool
and focusing on transient faults, we present several reliability and performance
related studies that can assist design decision in the early design phases.
Moreover, we propose two methodologies to accelerate the statistical fault
injection campaigns. In the first one, we accelerate the fault injection campaigns
after the actual injection of the faults in the simulated hardware structures. In the
second, we further accelerate the microarchitecture level fault injection
campaigns by proposing MeRLiN a fault pre-processing methodology that is
based on the pruning of the initial fault list by grouping the faults in equivalent
classes according to the instruction access patterns to hardware entries.

• Manufacturing phase and release to the market: The contributions of this
thesis in these phases of microprocessors life-cycle cover two important aspects.
Firstly, using the 48-core Intel’s SCC architecture, we propose a technique to
accelerate online error detection of permanent faults for many-core architectures
by exploiting their high-speed message passing on-chip network. Secondly, we
propose a comprehensive statistical analysis methodology to accurately predict at
the system level the safe voltage operation margins of the ARMv8 cores of the X-
Gene 2 chip when it operates in scaled voltage conditions.

SUBJECT AREA: Computer Architecture
KEYWORDS: Dependability, Reliability, Transient Faults, Permanent Faults, Energy

Efficiency, Statistical Analysis

ΠΕΡΙΛΗΨΗ
Η εξέλιξη της τεχνολογίας ημιαγωγών, της αρχιτεκτονικής υπολογιστών και της
σχεδίασης οδηγεί σε αύξηση της απόδοσης των σύγχρονων μικροεπεξεργαστών, η
οποία επίσης συνοδεύεται από αύξηση της ευπάθειας των προϊόντων. Οι σχεδιαστές
εφαρμόζουν διάφορες τεχνικές κατά τη διάρκεια της ζωής των ολοκληρωμένων
κυκλωμάτων με σκοπό να διασφαλίσουν τα υψηλά επίπεδα αξιοπιστίας των
παραγόμενων προϊόντων και να τα προστατέψουν από διάφορες κατηγορίες
σφαλμάτων διασφαλίζοντας την ορθή λειτουργία τους.
Αυτή η διδακτορική διατριβή προτείνει καινούριες μεθόδους για να διασφαλίσει τα
υψηλά επίπεδα αξιοπιστίας και ενεργειακής απόδοσης των σύγχρονων
μικροεπεξεργαστών οι οποίες μπορούν να εφαρμοστούν κατά τη διάρκεια του πρώιμου
σχεδιαστικού σταδίου, του σταδίου παραγωγής ή του σταδίου της κυκλοφορίας των
ολοκληρωμένων κυκλωμάτων στην αγορά. Οι συνεισφορές αυτής της διατριβής
μπορούν να ομαδοποιηθούν στις ακόλουθες δύο κατηγορίες σύμφωνα με το στάδιο της
ζωής των μικροεπεξεργαστών στο οποίο εφαρμόζονται:
• Πρώιμο σχεδιαστικό στάδιο: Η στατιστική εισαγωγή σφαλμάτων σε δομές που

είναι μοντελοποιημένες σε προσομοιωτές οι οποίοι στοχεύουν στην μελέτη της
απόδοσης είναι μια επιστημονικά καθιερωμένη μέθοδος για την ακριβή μέτρηση της
αξιοπιστίας, αλλά υστερεί στον αργό χρόνο εκτέλεσης. Σε αυτή τη διατριβή, αρχικά
παρουσιάζουμε ένα νέο πλήρως αυτοματοποιημένο εργαλείο εισαγωγής σφαλμάτων
σε μικροαρχιτεκτονικό επίπεδο που στοχεύει στην ακριβή αξιολόγηση της αξιοπιστίας
ενός μεγάλου πλήθους μονάδων υλικού σε σχέση με διάφορα μοντέλα σφαλμάτων
(παροδικά, διακοπτόμενα, μόνιμα σφάλματα). Στη συνέχεια, χρησιμοποιώντας το ίδιο
εργαλείο και στοχεύοντας τα παροδικά σφάλματα, παρουσιάζουμε διάφορες μελέτες
σχετιζόμενες με την αξιοπιστία και την απόδοση, οι οποίες μπορούν να βοηθήσουν
τις σχεδιαστικές αποφάσεις στα πρώιμα στάδια της ζωής των επεξεργαστών.
Τελικά, προτείνουμε δύο μεθοδολογίες για να επιταχύνουμε τα μαζικά πειράματα
στατιστικής εισαγωγής σφαλμάτων. Στην πρώτη, επιταχύνουμε τα πειράματα έπειτα
από την πραγματική εισαγωγή των σφαλμάτων στις δομές του υλικού. Στη δεύτερη,
επιταχύνουμε ακόμη περισσότερο τα πειράματα προτείνοντας τη μεθοδολογία με
όνομα MeRLiN, η οποία βασίζεται στη μείωση της αρχικής λίστας σφαλμάτων μέσω
της ομαδοποίησής τους σε ισοδύναμες ομάδες έπειτα από κατηγοριοποίηση
σύμφωνα με την εντολή που τελικά προσπελαύνει τη δομή που φέρει το σφάλμα.

• Παραγωγικό στάδιο και στάδιο κυκλοφορίας στην αγορά: Οι συνεισφορές αυτής
της διδακτορικής διατριβής σε αυτά τα στάδια της ζωής των μικροεπεξεργαστών
καλύπτουν δύο σημαντικά επιστημονικά πεδία. Αρχικά, χρησιμοποιώντας το
ολοκληρωμένο κύκλωμα των 48 πυρήνων με ονομασία Intel SCC, προτείνουμε μια
τεχνική επιτάχυνσης του εντοπισμού μονίμων σφαλμάτων που εφαρμόζεται κατά τη
διάρκεια λειτουργίας αρχιτεκτονικών με πολλούς πυρήνες, η οποία εκμεταλλεύεται το
δίκτυο υψηλής ταχύτητας μεταφοράς μηνυμάτων που διατίθεται στα ολοκληρωμένα
κυκλώματα αυτού του είδους. Δεύτερον, προτείνουμε μια λεπτομερή στατιστική
μεθοδολογία με σκοπό την ακριβή πρόβλεψη σε επίπεδο συστήματος των ασφαλών
ορίων λειτουργίας της τάσης των πυρήνων τύπου ARMv8 που βρίσκονται πάνω στη
CPU X-Gene 2.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αρχιτεκτονική Υπολογιστών
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Αξιοπιστία, Φερεγγυότητα, Παροδικά Σφάλματα, Μόνιμα Σφάλματα,

Ενεργειακή Απόδοση, Στατιστική Ανάλυση

Στην Άννα.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Dimitris Gizopoulos, who gave me the
opportunity to work in very interesting research topics and projects of computer
architecture, while he advised me throughout these years. His guidance and
encouragement especially in times of failure have been invaluable to the conduction of
my dissertation. The interaction with Professor Dimitris Gizopoulos provided me with
several knowledge and skills that would be very helpful in my future career and life.
I also like to thank all my collaborators throughout these years and especially all the
members of Computer Architecture Lab of University of Athens with whom I shared the
good and the bad moments in the lab. I learned a lot from them, hoping the same for
them. I also want to thank Dr. Shidhartha Das from ARM Ltd. in Cambridge for his
hospitality and his guidance during my three-month PhD internship in UK.
Especially, I would also like to thank my family and my friends who always stand by me.
Finally, I would like to thank Anna who encouraged me in the times of failure and
celebrated my successes, while she always shows me the way to become a better man.
I am grateful for her support and I would like to dedicate my dissertation to her.

LIST OF PUBLICATIONS

Peer reviewed conferences:
• G.Papadimitriou, A.Chatzidimitriou, M.Kaliorakis, Y.Vastakis, D.Gizopoulos, “Micro-

Viruses for fast system-level voltage margins characterization in multicore CPUs”,
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2018.

• G.Karakonstantis, K.Tovletoglou, L.Mukhanov, H.Vandierendonck,
D.S.Nikolopoulos, P.Lawthers, P.Koutsovasilis , M.Maroudas, C.D.Antonopoulos,
C.Kalogirou, N.Bellas, S.Lalis, S.Venugopal, A.Prat-Perez, A.Lampropulos,
M.Kleanthous, A.Diavastos, Z.Hadjilambrou, P.Nikolaou, Y.Sazeides, P.Trancoso,
G.Papadimitriou, M.Kaliorakis, A.Chatzidimitriou, D.Gizopoulos, S.Das, “An energy-
efficient and error-resilient server ecosystem exceeding conservative scaling limits”,
IEEE/ACM Design, Automation & Test in Europe Conference (DATE), 2018.

• G.Papadimitriou, M.Kaliorakis, A.Chatzidimitriou, D.Gizopoulos, P.Lawthers, S.Das,
“Harnessing voltage margins for energy efficiency in multicore CPUs”, IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2017.

• G.Papadimitriou, M.Kaliorakis, A.Chatzidimitriou, C.Magdalinos, D.Gizopoulos,
“Voltage margins identification on commercial x86-64 multicore microprocessors”,
IEEE International On-Line Testing Symposium (IOLTS), 2017.  

• A.Chatzidimitriou, M.Kaliorakis, D.Gizopoulos, M.Pipponzi, R.Mariani, S.Di Carlo,
“RT Level vs. microarchitecture level reliability assessment: case study on ARM
Cortex-A9 CPU”, IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2017.

• M.Kaliorakis, D.Gizopoulos, R.Canal, A.Gonzalez, “MeRLiN: Exploiting dynamic
instruction behavior for fast and accurate microarchitecture level reliability
assessment”, ACM/IEEE International Symposium on Computer Architecture
(ISCA), 2017.

• A.Chatzidimitriou, M.Kaliorakis, S.Tselonis, D.Gizopoulos, “Performance-aware
reliability assessment of heterogeneous chips”, IEEE VLSI Test Symposium (VTS),
2017.

• A.Vallero, A.Savino, G.Politano, S.Di Carlo, A.Chatzidimitriou, S.Tselonis,
M.Kaliorakis, D.Gizopoulos, M.R.Villanueva, R.Canal, A.Gonzalez, M.Kooli,
A.Bosio, G.Di Natale, “Cross-Layer system reliability assessment framework for
hardware faults”, IEEE International Test Conference (ITC), 2016.

• S.Tselonis, M.Kaliorakis, N.Foutris, G.Papadimitriou, D.Gizopoulos,
“Microprocessor reliability-performance tradeoffs assessment at the
microarchitecture level”, IEEE VLSI Test Symposium (VTS), 2016.

• M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, D.Gizopoulos, “Accelerated
microarchitectural fault injection-based reliability assessment”, IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFTS), 2015.

• M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, N.Foutris, D.Gizopoulos, “Differential
fault injection on microarchitectural simulators”, IEEE International Symposium on
Workload Characterization (IISWC), 2015.

• A.Vallero, A.Savino, S.Tselonis, N.Fourtis, M.Kaliorakis, G.Politano, D.Gizopoulos,
S.Di Carlo, “Bayesian network early reliability evaluation analysis for both
permanent and transient faults”, IEEE International On-Line Testing Symposium
(IOLTS), 2015.

• A.Vallero, A.Savino, S.Tselonis, N.Fourtis, M.Kaliorakis, G.Politano, D.Gizopoulos,
S.Di Carlo, “A bayesian model for system level reliability estimation”, IEEE
European Test Symposium (ETS), 2015.

• N.Foutris, M.Kaliorakis, S.Tselonis, D.Gizopoulos, “Versatile architecture-level fault
injection framework for reliability evaluation: a first report”, IEEE International On-
Line Testing Symposium (IOLTS), 2014.

• M.Kaliorakis, M.Psarakis, N.Foutris, D.Gizopoulos, “Accelerated online error
detection in many-core microprocessor architectures”, IEEE VLSI Test Symposium
(VTS), 2014.

• M.Kaliorakis, N.Foutris, D.Gizopoulos, M.Psarakis, "Online error detection in
multiprocessor chips: A test scheduling study", IEEE International On-Line Testing
Symposium (IOLTS), 2013.

Peer reviewed journals:
• M.Kaliorakis, A.Chatzidimitriou, G.Papadimitriou, D.Gizopoulos, “Statistical analysis

of multicore CPUs operation in scaled voltage conditions”, IEEE Computer
Architecture Letters (CAL), Jan. 2018.

• A.Vallero, S.Tselonis, N.Foutris, M.Kaliorakis, M.Kooli, A.Savino, G.Politano,
A.Bosio, G.Di Natale, D.Gizopoulos, S.Di Carlo, “Cross-layer reliability evaluation,
moving from the hardware architecture to the system level: a CLERECO EU Project
overview”, Journal of Microprocessors and Microsystems, June 2015.

Peer reviewed conferences/workshops with informal proceedings:
• G.Papadimitriou, M.Kaliorakis, A.Chatzidimitriou, D.Gizopoulos, G.Favor,

K.Sankaran, S.Das, “A system-level voltage/frequency scaling characterization
framework for multicore CPUs”, IEEE Workshop on Silicon Errors in Logic - System
Effects (SELSE), 2017.

• K.Tovletoglou, C.Chalios, G.Karakonstantis, L.Mukhanov, H.Vandierendonck,
D.S.Nikolopoulos, P.Koutsovasilis, M.Maroudas, C.Antonopoulos, C.Kalogirou,
N.Bellas, S.Lalis, M.M.Rafique, S.Venugopal, A.Prat-Perez, A.Diavastos,
Z.Hadjilambrou, P.Nikolaou, Y.Sazeides, P.Trancoso, G.Papadimitriou,
M.Kaliorakis, A.Chatzidimitriou D.Gizopoulos, “An energy-efficient and error-resilient
server ecosystem exceeding conservative scaling limits”, Workshop on Energy-
efficient Servers for Cloud and Edge Computing (EnESCE), in conjunction with
HiPEAC 2017.

• A.Vallero, A.Savino, G.Politano, S.Di Carlo, A.Chatzidimitriou, S.Tselonis,
M.Kaliorakis, D.Gizopoulos, M.Riera, R.Canal, A.Gonzalez, M.Kooli, A.Bosio, G.Di
Natale, “Early component-based system reliability analysis for approximate
computing systems”, 2nd Workshop On Approximate Computing (WAPCO) in
conjunction with HiPEAC, 2016.

• M.Kaliorakis, D.Gizopoulos, “Ensuring dependability of modern computing
systems”, 11th International Summer School on Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems (HiPEAC
ACACES), 2015.

• M.Kaliorakis, M.Psarakis, N.Foutris, D.Gizopoulos, “Parallelizing online error
detection in many-core microprocessor architectures”, Joint Euro-TM/Median
Workshop on Dependable Multicore and Transactional Memory Systems (DMTM) in
conjunction with HiPEAC, 2014.

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ
Η εξέλιξη της τεχνολογίας κατασκευής ημιαγωγικών κυκλωμάτων και της αρχιτεκτονικής
και σχεδίασης υπολογιστών δίνει στους σχεδιαστές ολοκληρωμένων κυκλωμάτων την
ευκαιρία να ενισχύσουν την απόδοση (performance) των σύγχρονων υπολογιστικών
συστημάτων τα οποία χρησιμοποιούνται σε διάφορους τομείς της πληροφορικής και
των τηλεπικοινωνιών. Οι σχεδιαστές υπολογιστών μπορούν να βελτιώσουν την
υπολογιστική απόδοση χρησιμοποιώντας πιο πολύπλοκες πολιτικές λειτουργίας των
επεξεργαστών, καθώς η τεχνολογία ημιαγωγών μειώνει το μέγεθος των τρανζίστορ
δίνοντας έτσι τη δυνατότητα ολοκλήρωσης όλο και περισσότερων τρανζίστορ πάνω στο
ίδιο κύκλωμα. Έτσι από την μια πλευρά, η εξέλιξη της τεχνολογίας ημιαγωγών και της
αρχιτεκτονικής υπολογιστών κάνει τους υπολογιστές όλο και πιο αποδοτικούς ως προς
τις επιδόσεις, αλλά από την άλλη πλευρά τους κάνει όλο και πιο σύνθετους.
Όμως, αυτή η αύξηση σε απόδοση συνοδεύεται και από αύξηση στην ευπάθεια (ή
αντίστοιχα μείωση στην αξιοπιστία) των επεξεργαστών καθώς η ποιότητα των
προϊόντων περιορίζεται εξαιτίας: (α) των αυστηρών χρονοδιαγραμμάτων τα οποία
ορίζονται για να μειωθεί ο χρόνος που απαιτείται μέχρι το προϊόν να κυκλοφορήσει στην
αγορά (άρα και ο χρόνος για τον έλεγχο της αξιοπιστίας του), (β) των σύγχρονων
τεχνικών κατασκευής ολοκληρωμένων κυκλωμάτων όλο και μικρότερης κλίμακας
(κάνοντάς τα όλο και πιο ευάλωτα στην ακτινοβολία και πιο επιρρεπή σε
κατασκευαστικές ατέλειες), και (γ) της αυξημένης πολυπλοκότητας του σχεδίου των
κυκλωμάτων (κάνοντας σε πολλές περιπτώσεις τον έλεγχο ορθής λειτουργίας τους σε
εύλογο χρονικό διάστημα πολύ δύσκολο). Ειδικότερα, οι σύγχρονοι μικροεπεξεργαστές
αντιμετωπίζουν σοβαρά προβλήματα αξιοπιστίας κατά τη διάρκεια της ζωής τους
εξαιτίας: (i) των σφαλμάτων που προέρχονται από την κοσμική ακτινοβολία και από τα
φορτισμένα ηλεκτρικά σωματίδια που βάλλουν τα κυκλώματα ακόμα και στο επίπεδο
της θάλασσας, (ii) της γήρανσης και φθοράς των κυκλωμάτων με την πάροδο του
χρόνου, και (iii) των κατασκευαστικών ατελειών που δημιουργούνται κατά την
παραγωγή των ολοκληρωμένων κυκλωμάτων. Κάποιες από αυτές τις κατασκευαστικές
αστοχίες που κάνουν ακόμα και κυκλώματα που θεωρητικά είναι κατασκευασμένα να
λειτουργούν υπό τις ίδιες συνθήκες τάσης τελικά να λειτουργούν ορθά κάτω από
διαφορετικές συνθήκες, συνήθως ωθούν τους κατασκευαστές ολοκληρωμένων
κυκλωμάτων στην υιοθέτηση απαισιόδοξων ορίων τάσης λειτουργίας, τα οποία κατ’
επέκταση θυσιάζουν την ενεργειακή απόδοση των προϊόντων.
Για τους παραπάνω λόγους οι σχεδιαστές χρειάζεται να διασφαλίσουν υψηλά επίπεδα
αξιοπιστίας και ενεργειακής απόδοσης των ολοκληρωμένων κυκλωμάτων πριν αυτά
διοχετευθούν στην αγορά. Ο σκοπός αυτής της διδακτορικής διατριβής είναι να
προτείνει νέες τεχνικές που εφαρμόζονται σε διαφορετικές φάσεις της διάρκειας ζωής
των ολοκληρωμένων κυκλωμάτων με σκοπό την επίλυση σημαντικών προβλημάτων ως
προς την αξιοπιστία και την ενεργειακή απόδοση των προϊόντων μικροεπεξεργαστών.
Γενικά, η ζωή των ολοκληρωμένων κυκλωμάτων διακρίνεται στα ακόλουθα στάδια: (α)
το πρώιμο σχεδιαστικό στο οποίο καθορίζονται οι απαιτήσεις του κυκλώματος στους
τομείς της απόδοσης, της αξιοπιστίας και της κατανάλωσης ενέργειας, (β) το στάδιο του
σχεδιασμού στο οποίο οι σχεδιαστές υλοποιούν με γλώσσες περιγραφής υλικού το
κύκλωμα σύμφωνα με τις απαιτήσεις του προηγούμενου σταδίου, (γ) το στάδιο της
παραγωγής στο οποίο αρχικά φτιάχνεται ένας μικρός αριθμός από κυκλώματα και μετά
την επιτυχημένη αξιολόγησή τους συνεχίζεται η μαζική παραγωγή κυκλωμάτων, και (δ)
το στάδιο κατά το οποίο τα κυκλώματα διοχετεύονται στην αγορά. Να σημειώσουμε ότι
στο τελευταίο στάδιο της ζωής των ολοκληρωμένων κυκλωμάτων οι σχεδιαστές δεν
έχουν πλέον φυσική επαφή με τα κυκλώματα και κατ’ επέκταση πρέπει από τα
προηγούμενα στάδια να διασφαλίσουν την υψηλή ποιότητα των προϊόντων ως προς
την απόδοση, την αξιοπιστία και την ενεργειακή κατανάλωση.

Οι τεχνικές που προτείνονται σε αυτή τη διδακτορική διατριβή μπορούν να
εφαρμοστούν κατά τη διάρκεια του πρώιμου σχεδιαστικού σταδίου (α), του σταδίου
παραγωγής (γ) ή του σταδίου της κυκλοφορίας των ολοκληρωμένων κυκλωμάτων στην
αγορά (δ). Στη συνέχεια παρουσιάζουμε συνοπτικά τις συνεισφορές της διατριβής αυτής
ανάλογα με το στάδιο της ζωής των ολοκληρωμένων κυκλωμάτων στο οποίο
εφαρμόζονται.

• Πρώιμο σχεδιαστικό στάδιο: Ένα πολύ σημαντικό βήμα κατά τη διάρκεια των
πρώτων σταδίων της σχεδίασης των ολοκληρωμένων κυκλωμάτων είναι η
εκτίμηση της αξιοπιστίας του κυκλώματος ως προς τα παροδικά σφάλματα
(transient faults) που είναι πιθανόν να επηρεάσουν την ορθή λειτουργία των
κυκλωμάτων. Οι απαιτήσεις ως προς της αξιοπιστία και την απόδοση καθορίζουν
σχεδιαστικές αποφάσεις που εφαρμόζονται στα επόμενα στάδια της της ζωής
των ολοκληρωμένων κυκλωμάτων, όπως είναι για παράδειγμα η ενσωμάτωση
μηχανισμών στο κύκλωμα για την προστασία από τέτοιου είδους σφάλματα ή
ακόμα και ο καθορισμός συγκεκριμένων μικροαρχιτεκτονικών παραμέτρων (π.χ.
μέγεθος μικροαρχιτεκτονικών δομών και πολιτικών κλπ.) που μπορούν να
επηρεάσουν τόσο την αξιοπιστία όσο και την απόδοση. Η ακριβής εκτίμηση της
ανθεκτικότητας (ή αντίστροφα της ευπάθειας) των κυκλωμάτων ως προς αυτά τα
σφάλματα είναι ζωτικής σημασίας για να αποφευχθεί κάποια οικονομική
καταστροφή για την εταιρία κατασκευής τους σε περίπτωση που το πρόβλημα
παρουσιαστεί αφού κυκλοφορήσει το προϊόν στην αγορά ή για να
εξοικονομηθούν χρήματα, κόπος και τμήμα από τη διαθέσιμη συνολική επιφάνεια
του ολοκληρωμένου κυκλώματος που μπορεί να σπαταληθεί στην υλοποίηση
κάποιου μηχανισμού προστασίας που στην πραγματικότητα δεν είναι
απαραίτητος. Για αυτούς τους λόγους, οι εταιρίες κατασκευής
μικροεπεξεργαστών δίνουν ιδιαίτερη βαρύτητα σε αυτό το πρώιμο σχεδιαστικό
στάδιο αξιολόγησης της αξιοπιστίας των κυκλωμάτων.
Η στατιστική εισαγωγή παροδικών σφαλμάτων (statistical fault injection) σε
δομές που είναι μοντελοποιημένες σε προσομοιωτές οι οποίοι στοχεύουν στην
μελέτη της απόδοσης (performance simulators) είναι μια επιστημονικά
καθιερωμένη μέθοδος για την ακριβή μέτρηση της αξιοπιστίας, αλλά υστερεί στον
αργό χρόνο εκτέλεσης. Η στατιστική εισαγωγή παροδικών σφαλμάτων
μοντελοποιείται στους προσομοιωτές αυτούς με την τροποποίηση της
πραγματικής τιμής ενός bit μιας δομής υλικού όπως για παράδειγμα η στιγμιαία
αλλαγή της τιμής ενός bit σε ένα αρχείο καταχωρητών ή σε κάποια κρυφή μνήμη.
Η διδακτορική διατριβή παρουσιάζει διάφορες συνεισφορές στο επιστημονικό
πεδίο που σχετίζεται με την αξιολόγηση της αξιοπιστίας των μονάδων υλικού στο
πρώιμο σχεδιαστικό στάδιο των ολοκληρωμένων κυκλωμάτων. Αρχικά, με την
εργασία [27] παρουσιάζουμε ένα νέο πλήρως αυτοματοποιημένο εργαλείο
εισαγωγής σφαλμάτων σε μικροαρχιτεκτονικό επίπεδο (με την ονομασία MaFIN)
που στοχεύει στην ακριβή αξιολόγηση της αξιοπιστίας ενός μεγάλου πλήθους
μονάδων υλικού της μικροαρχιτεκτονικής x86-64, σε σχέση με διάφορα μοντέλα
σφαλμάτων (παροδικά, διακοπτόμενα, μόνιμα σφάλματα). Για την ρεαλιστικότερη
μοντελοποίηση της λειτουργίας των κυκλωμάτων και την ακριβή μέτρηση της
αξιοπιστίας χρειάστηκε να ενσωματωθούν στον μικροαρχιτεκτονικό προσομοιωτή
που χρησιμοποιήθηκε τα πεδία των δεδομένων σε όλες τις κρυφές μνήμες. Να
σημειώσουμε ότι οι προσομοιωτές απόδοσης (performance simulators) είναι
κατασκευασμένοι αποκλειστικά για το σκοπό αυτό με χρήση γλωσσών
προγραμματισμού υψηλού επιπέδου όπως η C/C++ και κάποιες λειτουργίες που
δεν επηρεάζουν τις μετρήσεις ως προς την απόδοση παραλείπονται ή
μοντελοποιούνται με τέτοιο τρόπο ώστε να επιταχύνεται ο χρόνος της

προσομοίωσης. Η ανάπτυξη του εργαλείου που χρησιμοποιείται για την ακριβή
αξιολόγηση τόσο της αξιοπιστίας όσο και της απόδοσης στα πρώτα στάδια
μελέτης αυτής της επιστημονικής περιοχής ήταν απαραίτητη καθώς τέτοιου
είδους εργαλεία δεν υπάρχουν δημοσίως διαθέσιμα. Στη συνέχεια,
χρησιμοποιώντας το ίδιο εργαλείο και στοχεύοντας τα παροδικά σφάλματα,
παρουσιάζουμε δύο διαφορετικές μελέτες σχετιζόμενες με την αξιοπιστία και την
απόδοση, οι οποίες μπορούν να βοηθήσουν τις αποφάσεις των σχεδιαστών
ολοκληρωμένων κυκλωμάτων στα πρώιμα σχεδιαστικά στάδια.
Στην πρώτη μελέτη [28], αξιολογούμε την στενή σύνδεση αξιοπιστίας και
απόδοσης σε μια μικροαρχιτεκτονική x86-64 μεταβάλλοντας τις σχεδιαστικές
παραμέτρους σημαντικών μονάδων του υλικού του μικροεπεξεργαστή.
Συγκεκριμένα, πειραματιζόμαστε με το μέγεθος του αρχείου φυσικών ακεραίων
καταχωρητών (physical integer register file), με τις κρυφές μνήμες πρώτου και
δεύτερου επιπέδου (L1 Instruction cache, L1 Data cache, L2 cache) και με την
ουρά φόρτωσης/αποθήκευσης (load/store queue) και τροποποιούμε
παραμέτρους όπως το μέγεθος όλων των δομών, την πολιτική εγγραφής (write
policy) των κρυφών μνημών, το είδος συσχετιστικότητας των κρυφών μνημών
(cache associativity) και την ύπαρξη ή όχι κυκλωμάτων εκ των προτέρων
προσκόμισης (prefetchers) στις κρυφές μνήμες πρώτου επιπέδου. Στη
συγκεκριμένη μελέτη, για το συγκερασμό των μετρήσεων απόδοσης και
αξιοπιστίας προτείνουμε μια νέα συνάρτηση (με την ονομασία fitness function).
Τα αποτελέσματα αυτής της μελέτης μπορούν να καθοδηγήσουν σχεδιαστικές
αποφάσεις σχετικά με την αξιοπιστία και την απόδοση των πραγματικών
μονάδων υλικού των μικροεπεξεργαστών.
Στη δεύτερη μελέτη [29], χρησιμοποιούμε τον MaFIN μαζί με ένα άλλο εργαλείο
μέτρησης της αξιοπιστίας των μονάδων υλικού σε μικροαρχιτεκτονικό επίπεδο
(με την ονομασία GeFIN [30]) με σκοπό να αξιολογήσουμε: (α) την ευαισθησία
ως προς την αξιοπιστία διάφορων μικροαρχιτεκτονικών δομών του ίδιου
αρχιτεκτονικού συνόλου εντολών (ISA x86-64) που είναι υλοποιημένα σε
διαφορετικούς μικροαρχιτεκτονικούς προσομοιωτές, και (β) την ευαισθησία ως
προς την αξιοπιστία μεταξύ δύο διαφορετικών αρχιτεκτονικών συνόλου εντολών
(ARM και x86-64). Η μελέτη αυτή αποκάλυψε πολύ ενδιαφέροντα συμπεράσματα
για τα χαρακτηριστικά των εργαλείων που χρησιμοποιούνται στις μελέτες
αξιολόγησης της αξιοπιστίας και μπορούν να επηρεάσουν τις μετρήσεις, καθώς
και τις μικροαρχιτεκτονικές διαφορές και τις παραμέτρους των αρχιτεκτονικών
συνόλου εντολών (ISA) που επηρεάζουν την αξιοπιστία. Είναι η πρώτη φορά
που καταγράφεται μια μελέτη αυτού του είδους και τα συμπεράσματά της
μπορούν να βοηθήσουν τους αρχιτέκτονες υπολογιστών στην επιλογή των
εργαλείων για την αξιολόγηση της αξιοπιστίας, στην επιλογή της καταλληλότερης
αρχιτεκτονικής συνόλου εντολών, στην επιλογή της καταλληλότερης υλοποίησης
μια δομής υλικού σε μικροαρχιτεκτονικό επίπεδο και στην επιλογή των
κατάλληλων μηχανισμών προστασίας που χρειάζεται να προστεθούν με τελικό
σκοπό να επιτευχθούν οι υψηλοί στόχοι αξιοπιστίας των προϊόντων που τίθενται
στα πρώιμα σχεδιαστικά στάδια.
Μια μεγάλη πρόκληση για την αξιολόγηση της αξιοπιστίας των μονάδων υλικού
ενάντια σε παροδικά σφάλματα σε μικροαρχιτεκτονικό επίπεδο χρησιμοποιώντας
στατιστική εισαγωγή σφαλμάτων είναι ότι τα μαζικά πειράματα που τελικά
εξασφαλίζουν εκτιμήσεις αξιοπιστίας υψηλής στατιστικής ακρίβειας είναι
εξαιρετικά χρονοβόρα. Στη διδακτορική διατριβή παρουσιάζουμε δύο μελέτες για
να επιταχύνουμε τα μαζικά πειράματα εισαγωγής σφαλμάτων υψηλής ακρίβειας.

Στην πρώτη μελέτη που παρουσιάζουμε [31] χρησιμοποιώντας τον MaFIN,
προτείνουμε δύο διαφορετικές τεχνικές για να επιταχύνουμε τα πειράματα. Οι
τεχνικές αυτές λαμβάνουν χώρα μετά από την πραγματική εισαγωγή των
σφαλμάτων στις δομές του υλικού κατά τη διάρκεια ζωής του σφάλματος μέσα
μέσα στη δομή. Συγκεκριμένα, στην πρώτη τεχνική που προτείνεται σταματάμε
τα πειράματα της εισαγωγής σφαλμάτων μόλις το παροδικό σφάλμα επικαλυφθεί
από κάποια άλλη εγγραφή στην ίδια θέση της μικροαρχιτεκτονικής δομής. Τα
σφάλματα αυτά είμαστε σίγουροι ότι δεν μπορούν να επηρεάσουν τη σωστή
λειτουργία του προγράμματος και κατ’ επέκταση μπορούν να τερματίσουν
πρόωρα χωρίς καθόλου απώλειες ακρίβειας στην τελική εκτίμηση. Στη δεύτερη
τεχνική που προτείνεται στην ίδια μελέτη, σταματάμε τα πειράματα είτε όταν το
σφάλμα έχει επικαλυφθεί (όμοια με την προηγούμενη τεχνική) είτε όταν το
σφάλμα διαβάζεται από μια αρχιτεκτονική εντολή και αυτή η εντολή τελικά
διεκπεραιώνεται (commit) χωρίς να περιμένουμε την ολοκλήρωση του
προγράμματος. Η ανάγνωση αυτή του σφάλματος και η διεκπεραίωσή της από
την εντολή σηματοδοτεί τη μετάβασή του από το μικροαρχιτεκτονικό στο
αρχιτεκτονικό επίπεδο (επίπεδο του λογισμικού). Η δεύτερη προτεινόμενη
τεχνική επιφέρει ακόμα μεγαλύτερη επιτάχυνση από την πρώτη, η οποία όμως
συνοδεύεται από μερική απώλεια ακρίβειας. Η αξιολόγηση των προτεινόμενων
τεχνικών έγινε σε 6 διαφορετικές δομές υλικού: στο αρχείο φυσικών
καταχωρητών, στις κρυφές μνήμες πρώτου και δεύτερου επιπέδου (L1 Data
cache, L1 Instruction cache, L2 cache) και σε δύο πεδία της ουράς
φόρτωσης/αποθήκευσης (load/store queue data and address fields). Από την
πειραματική διαδικασία παρατηρήσαμε ότι η πρώτη τεχνική που δεν επιφέρει
απώλεια ακρίβειας δίνει επιτάχυνση που μπορεί να φτάσει μέχρι τις 2,92 φορές,
ενώ η δεύτερη τεχνική που επιφέρει απώλεια ακρίβειας μπορεί να οδηγήσει σε
επιτάχυνση μέχρι 4,06 φορές. Επιπλέον, παρατηρήσαμε ότι η απώλεια ακρίβειας
που επέρχεται από τη δεύτερη προτεινόμενη τεχνική είναι μικρή (έως 6,58
ποσοστιαίες μονάδες) για τις περιπτώσεις των δομών που βρίσκονται μέσα στον
επεξεργαστή (αρχείο φυσικών καταχωρητών και ουρά φόρτωσης/αποθήκευσης),
ενώ δεν είναι αμελητέα (έως 20,13 ποσοστιαίες μονάδες) στην περίπτωση των
κρυφών μνημών. Κατ’ επέκταση, η δεύτερη τεχνική μπορεί να χρησιμοποιηθεί
χωρίς κίνδυνο απώλειας ακρίβειας για τις δομές που βρίσκονται μέσα στον
επεξεργαστή.
Στη συνέχεια, για να επιταχύνουμε ακόμα περισσότερο τα πειράματα στατιστικής
εισαγωγής σφαλμάτων υψηλής στατιστικής ακρίβειας προτείνουμε μια νέα
τεχνική που εφαρμόζεται σε μικροαρχιτεκτονικό επίπεδο με την ονομασία
MeRLiN [32]. Η μέθοδος αυτή είναι διαφορετική από τις τεχνικές που
περιγράφονται στο [31], γιατί εφαρμόζεται πριν από την πραγματική εισαγωγή
των σφαλμάτων στις μονάδες του υλικού και την εκτέλεση των προσομοιώσεων.
Πιο συγκεκριμένα, η μέθοδος MeRLiN μειώνει το πλήθος της αρχικής λίστας
σφαλμάτων, τα οποία χρησιμοποιούνται σε μαζικά πειράματα εισαγωγής
σφαλμάτων και διασφαλίζουν εκτίμηση αξιοπιστίας υψηλής στατιστικής
ακρίβειας. Αυτή η αρχική λίστα σφαλμάτων χαρακτηρίζεται από το πολύ μεγάλο
πλήθος σφαλμάτων που την αποτελούν, τα οποία επιβάλλεται να εισαχθούν
ώστε η τελική εκτίμηση να είναι υψηλής στατιστικής ακρίβειας. Η εισαγωγή όλων
αυτών των σφαλμάτων είναι από τους σημαντικότερους λόγους για την μεγάλη
καθυστέρηση των μαζικών πειραμάτων.
Η μεθοδολογία MeRLiN βασίζεται σε δύο βασικά βήματα. Στο πρώτο βήμα
γίνεται μια αρχική ανάλυση της εφαρμογής (χωρίς καμία εισαγωγή σφάλματος)
με σκοπό τον εντοπισμό των χρονικών διαστημάτων για κάθε οντότητα υλικού

κατά τη διάρκεια των οποίων ένα σφάλμα είναι σίγουρο ότι δεν πρόκειται να
επηρεάσει την ορθή λειτουργία της εφαρμογής. Αυτά τα σφάλματα έπειτα από
μία και μόνο εκτέλεση της εφαρμογής μπορούν να αφαιρεθούν από την αρχική
λίστα σφαλμάτων χωρίς να χρειάζεται να τρέξουν πειράματα εισαγωγής και
χωρίς να επηρεαστεί η ακρίβεια. Επιπλέον, κατά τη διάρκεια αυτού του βήματος
της μεθοδολογίας καταγράφεται και αποθηκεύεται η πληροφορία της εντολής η
οποία τελικά προσπελαύνει την μονάδα υλικού που φέρει το σφάλμα: δείκτης
εντολής (RIP) και μετρητής μικροπρογράμματος (uPC) της εντολής. Αυτή η
πληροφορία είναι απαραίτητη για το δεύτερο βήμα της μεθόδου. Στο δεύτερο
βήμα της μεθόδου MeRLiN, χρησιμοποιούνται μόνο τα σφάλματα που
απομένουν από το πρώτο βήμα της μεθόδου. Αυτά τα σφάλματα
ομαδοποιούνται ανάλογα με την εντολή που τελικά προσπελαύνει τη μονάδα
υλικού που φέρει το σφάλμα (αυτή η πληροφορία είναι καταχωρημένη από το
πρώτο βήμα της μεθόδου). Μετά την ομαδοποίηση αυτή, μόνο κάποιοι
αντιπρόσωποι από κάθε ομάδα επιλέγονται για εισαγωγή σύμφωνα με τη θέση
του byte της δομής στο οποίο βρίσκεται το σφάλμα. Οι αντιπρόσωποι που έχουν
επιλεγεί από κάθε ομάδα σφαλμάτων αναμένεται ότι επιφέρουν το ίδιο
αποτέλεσμα στην εκτέλεση που προγράμματος με τα άλλα σφάλματα που
περιέχονται στην ίδια ομάδα. Αυτή η υπόθεση έχει αξιολογηθεί στην πειραματική
μας διαδικασία με τη χρήση της μεταβλητής της ομοιογένειας (homogeneity) των
ομάδων που έχουμε ορίσει για το σκοπό αυτό. Η μέθοδος MeRLiN οδηγεί σε
ακριβής εκτιμήσεις της αξιοπιστίας των μονάδων του υλικού, ενώ η εισαγωγή
τελικά μόνο των αντιπροσώπων από κάθε ομάδα οδηγεί σε μεγάλη επιτάχυνση
της διαδικασίας.
Για την αξιολόγηση της μεθοδολογίας του MeRLiN ως προς την επιτάχυνση και
την ακρίβεια στοχεύσαμε τέσσερις αντιπροσωπευτικές μονάδες. Οι τρεις από
αυτές είναι μονάδες που σχετίζονται με δεδομένα: (1) κρυφή μνήμη δεδομένων
πρώτου επιπέδου - L1D cache, (2) αρχείο φυσικών ακέραιων καταχωρητών -
physical integer register file, και (3) ουρά αποθήκευσης - store queue. H τέταρτη
μονάδα σχετίζεται με εντολές (ουρά εντολών - issue queue). Στα πειράματά μας
αξιολογήσαμε τον MeRLiN για διαφορετικά μεγέθη των τεσσάρων μονάδων
υλικού, ενώ το πλήθος σφαλμάτων της αρχικής λίστας σφαλμάτων είναι 60.000
σφάλματα, πλήθος που διασφαλίζει τελικές εκτιμήσεις αξιοπιστίας υψηλής
στατιστικής ακρίβειας (~0,63% error margin, 99.8% confidence level).
Η πειραματική διαδικασία επιβεβαίωσε ότι ο MeRLiN εκτιμά την αξιοπιστία των
δομών υλικού με πολύ μεγάλη ακρίβεια, αλλά ταυτόχρονα προσφέρει επιτάχυνση
93X, 225X, 68X και 28X κατά μέσο όρο για το αρχείο φυσικών καταχωρητών, την
ουρά αποθήκευσης, την κρυφή μνήμη δεδομένων πρώτου επιπέδου και την
ουρά εντολών όταν εκτελούνται 10 μετροπρογράμματα από τη σουίτα MiBench.
Όταν εκτελούμε τη μεθοδολογία MeRLiN με 10 μετροπρογράμματα από τη
σουίτα SPEC CPU2006, τότε κατά μέσo όρο η επιτάχυνση είναι 1644X, 2018X
και 171X για το αρχείο φυσικών καταχωρητών, την ουρά αποθήκευσης και την
κρυφή μνήμη δεδομένων πρώτου επιπέδου, αντίστοιχα. Η επιτάχυνση που
προσφέρει ο MeRLiN σε συνδυασμό με τη διατήρηση της ακρίβειας των
εκτιμήσεων αξιοπιστίας, βοηθούν την ανάλυση της αξιοπιστίας σε
μικροαρχιτεκτονικό επίπεδο με χρήση της μεθοδολογίας στατιστικής εισαγωγής
σφαλμάτων κατά τα πρώιμα σχεδιαστικά στάδια ενός επεξεργαστή μειώνοντας
με αυτό τον τρόπο τον χρόνο που απαιτείται ώστε το προϊόν να κυκλοφορήσει
στην αγορά.
Τέλος, άλλες μελέτες που βασίζονται στα παραπάνω εργαλεία και μεθόδους είναι
οι εξής: [90] [91] [92] [93] [94] [95].

• Παραγωγικό στάδιο και στάδιο κυκλοφορίας στην αγορά: Οι συνεισφορές
της διδακτορικής διατριβής σε αυτά τα στάδια της ζωής των ολοκληρωμένων
κυκλωμάτων καλύπτουν δύο σημαντικά ερευνητικά πεδία: (α) τον εντοπισμό
μονίμων σφαλμάτων σε αρχιτεκτονικές πολλών πυρήνων με σκοπό τη
διασφάλιση της ορθής λειτουργίας τους, και (β) τη διασφάλιση της βέλτιστης
ενεργειακής απόδοσης των πολυπύρηνων ολοκληρωμένων κυκλωμάτων σε
συνδυασμό με τη διατήρηση της αξιοπιστίας τους σε υψηλά επίπεδα.
Η πρώτη συνεισφορά που παρουσιάζουμε συνοπτικά σε αυτό το σημείο της
διατριβής σχετίζεται με την επιτάχυνση της διαδικασίας εντοπισμού των μονίμων
σφαλμάτων σε αρχιτεκτονικές πολλών πυρήνων [33]. Τα σφάλματα αυτού του
είδους μπορούν να προκύψουν από κατασκευαστικές ατέλειες ή μπορούν να
προκύψουν λόγω της γήρανσης του ολοκληρωμένου κυκλώματος αφού αυτό έχει
κυκλοφορήσει και χρησιμοποιηθεί στην αγορά. Οι αρχιτεκτονικές με πολλούς
πυρήνες εμφανίζουν ραγδαία ανάπτυξη τα τελευταία χρόνια, ενώ και η
επιστημονική κοινότητα δίνει ιδιαίτερη βαρύτητα στον εντοπισμό τεχνικών για τη
διασφάλιση της ορθής λειτουργίας τους.
Σε αυτό το πλαίσιο και χρησιμοποιώντας το ολοκληρωμένο κύκλωμα των 48
πυρήνων με ονομασία Intel Single-chip Cloud Computer (SCC), προτείνουμε μια
τεχνική επιτάχυνσης του εντοπισμού μονίμων σφαλμάτων σε αρχιτεκτονικές με
πολλούς πυρήνες κατά τη διάρκεια λειτουργίας τους. Η προτεινομένη μέθοδος
εκμεταλλεύεται το δίκτυο υψηλής ταχύτητας μεταφοράς μηνυμάτων που
διατίθεται στα ολοκληρωμένα κυκλώματα αυτού του είδους με σκοπό την
παραλληλοποίηση του προγράμματος ελέγχου ορθής λειτουργίας. Η επιτάχυνση
εμφανίζεται στις περιπτώσεις που τα προγράμματα ελέγχου ορθής λειτουργίας
δημιουργούν συμφόρηση περισσότερο στη μνήμη του κυκλώματος, παρά στην
ίδια την κεντρική μονάδα επεξεργασίας. Η πειραματική διαδικασία απέδειξε ότι η
προτεινόμενη μεθοδολογία επιτάχυνσης των προγραμμάτων ελέγχου που
δημιουργούν συμφόρηση στη μνήμη μπορεί να επιφέρει επιτάχυνση μέχρι και
38,2Χ για όλους τους πυρήνες του επεξεργαστή. Επιπλέον, χρησιμοποιώντας
την προτεινόμενη μεθοδολογία για προγράμματα ελέγχου λειτουργίας που
δημιουργούν συμφόρηση στη μνήμη και συνδυάζοντάς την παράλληλα με
προγράμματα ελέγχου λειτουργίας που δημιουργούν συμφόρηση στην κεντρική
μονάδα επεξεργασίας μετρήσαμε επιτάχυνση 47,6Χ. Η προτεινόμενη
μεθοδολογία επιταχύνει αισθητά τη διαδικασία εντοπισμού μονίμων σφαλμάτων
σε αρχιτεκτονικές πολλών πυρήνων και μπορεί να χρησιμοποιηθεί είτε κατά την
παραγωγική διαδικασία είτε μετά την κυκλοφορία του επεξεργαστή στην αγορά.
Η δεύτερη συνεισφορά που εφαρμόζεται τόσο στο στάδιο της παραγωγής όσο
και μετά την κυκλοφορία στην αγορά σχετίζεται με την εξασφάλιση της βέλτιστης
ενεργειακής απόδοσης και αξιοπιστίας σε ένα πολυπύρηνο ολοκληρωμένο
κύκλωμα με ονομασία X-Gene 2, το οποίο διαθέτει 8 πυρήνες μικροεπεξεργαστή
τύπου ARMv8. Οι διάφορες κατασκευαστικές ατέλειες των ολοκληρωμένων
κυκλωμάτων προκαλούν τη διαφοροποίηση των ορίων ασφαλούς λειτουργίας
(ως προς την τάση) ακόμα και ανάμεσα σε όμοιους πυρήνες που υποτίθεται ότι
έχουν σχεδιαστεί ώστε να λειτουργούν ορθά υπό τις ίδιες ακριβώς συνθήκες.
Επιπλέον, οι ίδιες ατέλειες και το φαινόμενο της γήρανσης του κυκλώματος
μπορεί να οδηγήσει σε λάθη χρονισμού (timing errors) που μπορούν να
επηρεάσουν την ορθή λειτουργία του κυκλώματος όταν αυτό έχει ήδη
κυκλοφορήσει στην αγορά. Για την αντιμετώπιση αυτών των φαινομένων, οι
σχεδιαστές συχνά υιοθετούν απαισιόδοξα όρια τάσης λειτουργίας των
επεξεργαστών, κατασπαταλώντας με αυτό τον τρόπο την ενεργειακή απόδοση
του κυκλώματος στο βωμό της αξιοπιστίας. Ο εντοπισμός των βέλτιστων τιμών

τάσης λειτουργίας ώστε να υπάρχει μια ισορροπία ανάμεσα στην αξιοπιστία και
την ενεργειακή κατανάλωση είναι ζωτικής σημασίας για τα σύγχρονα
υπολογιστικά συστήματα.
Προς αυτή την επιστημονική κατεύθυνση, στη διατριβή αυτή παρουσιάζουμε τις
μελέτες [35] [167], στις οποίες προτείνουμε μια στατιστική μεθοδολογία που
βασίζεται στη μέθοδο linear regression (γραμμικής παλινδρόμησης) με σκοπό
την ακριβή πρόβλεψη σε επίπεδο συστήματος των ασφαλών ορίων λειτουργίας
της τάσης των πυρήνων τύπου ARMv8 που βρίσκονται πάνω στο ολοκληρωμένο
κύκλωμα X-Gene 2. Η πειραματική διαδικασία απέδειξε ότι μπορούμε να
προβλέψουμε το ασφαλές όριο τάσης λειτουργίας των πυρήνων με πολλή
μεγάλη ακρίβεια κερδίζοντας σε ενέργεια έως 20,28%.

Ελπίζουμε ότι οι τεχνικές που παρουσιάζονται στη διατριβή αυτή, θα ενισχύσουν την
αξιοπιστία και την ενεργειακή απόδοση των σύγχρονων επεξεργαστών. Τέλος,
ελπίζουμε ότι οι προσεγγίσεις μας θα αποτελέσουν εφαλτήριο πολλών μελλοντικών
ερευνητικών μελετών βελτιώνοντας την ποιότητα των σύγχρονων υπολογιστικών
συστημάτων.

TABLE OF CONTENTS

1.	 INTRODUCTION ... 37	

1.1	 The evolution of microprocessor design .. 37	

1.2	 Design life-cycle of microprocessors .. 40	

1.3	 Reliability life-cycle of microprocessors ... 41	

1.4	 Distribution of failures in different phases of the processor life-cycle 43	

1.5	 Contribution of this thesis .. 44	

1.6	 Thesis outline .. 47	

2.	 PRE-SILICON RELIABILITY ANALYSIS ... 49	

2.1	 Background of early reliability estimation at the microarchitecture level 49	
2.1.1	 Metrics used for reliability assessments .. 49	
2.1.2	 Generalized transient fault effect classification ... 51	
2.1.3	 Tools used for early reliability assessments .. 52	
2.1.4	 Methods used for reliability assessments ... 53	
2.1.5	 Statistical fault injection at the microarchitecture level .. 54	

2.2	 MaFIN tool for early microarchitecture level reliability assessments 57	
2.2.1	 MaFIN features and implementation ... 58	
2.2.2	 Reliability – Performance tradeoffs assessment study ... 63	
2.2.3	 Differential studies on microarchitectural fault injectors .. 73	
2.2.4	 Acceleration of fault injection campaigns based on the faults lifetime 81	

3.	 ACCELΕRATION OF RELIABILITY ASSESSMENTS USING MERLIN 91	

3.1	 MeRLiN’s results on data-related structures .. 98	

3.2	 MeRLiN’s results on instruction-related structures ... 109	

3.3	 Comparison of MeRLiN with architecture level fault injection approaches 112	

3.4	 Theoretical analysis of MeRLiN ... 114	

3.5	 Related work .. 116	

3.6	 Findings Summary .. 118	

4.	 POST-SILICON RELIABILITY ANALYSIS .. 121	

4.1	 Online permanent fault detection in many-core architectures ... 121	
4.1.1	 Proposed method to accelerate permanent fault online detection in many-core architectures
 123	
4.1.2	 Experimental Results .. 129	
4.1.3	 Related work ... 130	

4.2	 Statistical analysis to predict the safe voltage margins in multicore CPUs for energy
efficiency ... 131	

4.2.1	 Characterization of the ARM-v8 CPUs .. 133	
4.2.2	 Proposed techniques to predict safe voltage operation margins of ARM-v8 CPUs 139	
4.2.3	 Experimental Results .. 143	
4.2.4	 Related work ... 148	

4.3	 Findings Summary .. 149	

5.	 CONCLUSION AND FUTURE WORK ... 151	

ACRONYMS ... 153	

ANNEX Ι ... 155	

REFERENCES ... 159	

LIST OF FIGURES

Figure 1: The evolution forecast of global connected electronic devices until 2025 in
Billions of electronic devices (source: IHS, www.ihs.com). .. 38	
Figure 2: Transistor density per Million Transistor per mm2 (MTr / mm2) until 2018 [5]. 38	
Figure 3: Increase in processor performance relative to the VAX 11/780 as measured by
the SPECint benchmarks. .. 39	
Figure 4: Processor design life-cycle. .. 41	
Figure 5: Processor reliability life-cycle. .. 43	
Figure 6: Distribution of failures during processor life-cycle. .. 43	
Figure 7: Relative cost of finding bugs throughout processor life-cycle [26]. 44	
Figure 8: Contributions of this thesis in the processor life-cycle. 45	
Figure 9: Generalized concept of transient fault effect classification that is used in
reliability studies. .. 52	
Figure 10: Fault Population vs. Error Margin for Confidence Level 99% and 99.8%. 56	
Figure 11: Fault Population vs. Confidence Level for Error Margin 3% and 1%. 57	
Figure 12: Flowchart of fault effect classification used in our reliability estimation
studies. ... 59	
Figure 13: MaFIN injection framework. .. 61	
Figure 14: Faults classification in L1 Data cache (sizes). .. 66	
Figure 15: Faults classification in L1 Instruction cache (sizes). 67	
Figure 16: Faults classification in Physical Register File (sizes). 67	
Figure 17: Faults classification in LSQ (sizes). .. 67	
Figure 18: Faults classification in L1 Data cache (associativity). 68	
Figure 19: Faults classification in L1 Instruction cache (associativity) 68	
Figure 20: Faults classification in L1 Data cache (write policies). 69	
Figure 21: Faults classification in L1 Instruction cache (write policies). 69	
Figure 22: Faults classification in L2 Unified cache (write policies). 70	
Figure 23: Faults classification in L1 Data cache (prefetcher). 70	
Figure 24: Faults classification in L1 Instruction cache (prefetcher). 70	
Figure 25: Faulty behavior classification for the integer physical register file. 77	
Figure 26: Faulty behavior classification for Load/Store Queue (data field). 78	
Figure 27: Faulty behavior classification for L1D cache (data arrays). 79	
Figure 28: Faulty behavior classification for L1I cache (instruction arrays). 80	
Figure 29: Faulty behavior classification for L2 cache (data arrays). 81	
Figure 30: Baseline mode of operation presented in [31]. .. 84	
Figure 31: ESO mode of operation presented in [31]. .. 84	
Figure 32: ESOR mode of operation presented in [31]. ... 84	

Figure 33: Correlation of classes among the three modes of presented in [31]. 85	
Figure 34: Faulty Behaviors classification of Baseline and ESO mode. 86	
Figure 35: Percentage of over-written or injected on invalid entry faults. 87	
Figure 36: Faulty Behaviors classification of ESOR mode. .. 88	
Figure 37: Structures vulnerability reported by the three operation modes. There is no
loss of accuracy in the vulnerability reports between the baseline mode and the ESO
mode, while ESOR mode reports higher vulnerability in all cases. 89	
Figure 38: Speedup of the three operation modes of study [31]. 89	
Figure 39: Motivation of MeRLiN methodology compared to the four state-of-the-art
methods used for reliability assessments (as described in Section 2.1.4). 92	
Figure 40: Flowchart of MeRLiN. .. 92	
Figure 41: ACE and ACE-like intervals definition example. ... 94	
Figure 42: 1st step example of the grouping algorithm. .. 95	
Figure 43: 2nd step example of the grouping algorithm. ... 96	
Figure 44: Homogeneity of Physical Register File. ... 99	
Figure 45: Homogeneity of Store Queue. ... 99	
Figure 46: Homogeneity of L1 Data cache. .. 100	
Figure 47: Coarse-grained homogeneity (number on top of the bars) and percentage of
groups with perfect homogeneity that is equal to 1.0 (number on the bottom of the bars);
average for 10 MiBench. .. 101	
Figure 48: Fault effect classification of MeRLiN against injection with the remaining
faults after ACE-like step for the Physical Integer Register File; average for 10 MiBench
benchmarks. ... 102	
Figure 49: Fault effect classification of MeRLiN against injection with the remaining
faults after ACE-like step for the Store Queue; average for 10 MiBench benchmarks. 102	
Figure 50: Fault effect classification of MeRLiN against injection with the remaining
faults after ACE-like step for the L1 Data cache; average for 10 MiBench benchmarks.
.. 102	
Figure 51: Final fault effect classification of MeRLiN against comprehensive baseline
fault injection with 60,000 faults for the Physical Register File; average for 10 MiBench
benchmarks. ... 103	
Figure 52: Final fault effect classification of MeRLiN against comprehensive baseline
fault injection with 60,000 faults for the Store Queue; average for 10 MiBench
benchmarks. ... 103	
Figure 53: Final fault effect classification of MeRLiN against comprehensive baseline
fault injection with 60,000 faults for the L1 Data cache; average for 10 MiBench
benchmarks. ... 103	
Figure 54: Final reliability assessment (FIT) for Integer Physical Register File, Store
Queue, and L1 Data cache (average for 10 MiBench benchmarks). 104	
Figure 55: MeRLiN speedup for the three sizes of the Physical Integer Register File
running 10 MiBench benchmarks. .. 106	

Figure 56: MeRLiN speedup for the three sizes of the Store Queue running 10 MiBench
benchmarks. ... 106	
Figure 57: MeRLiN speedup for the three sizes of the L1 Data cache running 10
MiBench benchmarks. .. 107	
Figure 58: MeRLiN speedup for the RF, SQ, and L1D running 10 Simpoints of 100M
committed instructions from SPEC CPU2006. ... 107	
Figure 59: Actual reliability estimation times of the comprehensive baseline injection vs.
MeRLiN for all structures configurations of this study running 10 MiBench benchmarks.
.. 108	
Figure 60: MeRLiN speedup scaling for 0.63% (60K faults) and 0.19% error margin
(600K faults); average for 10 MiBench benchmarks. ... 108	
Figure 61: MeRLiN speedup for the Issue Queue with 32 entries running 10 MiBench
benchmarks. ... 109	
Figure 62: MeRLiN speedup for the Issue Queue with 60 entries running 10 MiBench
benchmarks. ... 109	
Figure 63: Homogeneity of Issue Queue. ... 110	
Figure 64: Fault effect classification of MeRLiN against injection with the remaining
faults after ACE-like step for the Issue Queue; average for 10 MiBench benchmarks. 111	
Figure 65: Final fault effect classification of MeRLiN against comprehensive baseline
fault injection with 60,000 faults for the Issue Queue; average for 10 MiBench
benchmarks. ... 111	
Figure 66: Final reliability assessment (FIT) for the Issue Queue (average for 10
MiBench). ... 112	
Figure 67: Inaccuracy of MeRLiN and Relyzer vs. injection with the remaining faults
after ACE-like; average for 10 MiBench. .. 114	
Figure 68: Intrusive (upper) and non-intrusive (lower) online functional detection
approach. ... 122	
Figure 69: Intel’s many-core SCC Architecture. ... 124	
Figure 70: (a) Serial test program, (b) Naïve parallel test program. 125	
Figure 71: Execution times (in core clock cycles) of loading 8KB test data. Clock
frequency settings: tile/mesh/DDR-533MHz/800MHz/800MHz. 127	
Figure 72: The proposed parallelization method of LAA test program (ldi: core i loads
test patterns from its private memory, aai: core applies and accumulates the test pattern
segment i, cpi: core copies patterns from the MPB of core i). 129	
Figure 73: The proposed parallelization method of LAA-LFSR test program (ldi: core i
loads test patterns from its private memory, cp/app/acc: core copies, applies &
accumulates test patterns). .. 129	
Figure 74: Variation of Vmin between the most sensitive and most robust cores running
10 SPEC CPU2006 benchmarks on X-Gene 2. ... 133	
Figure 75: X-Gene 2 block diagram. .. 134	
Figure 76: Characterization framework used in [35] and [167]. 135	
Figure 77: Regions of operation for 10 benchmarks from SPEC CPU2006 suite running
on the most robust and most sensitive core of the X-Gene 2. 137	

Figure 78: Severity for bwaves benchmark on all cores. .. 138	
Figure 79: Power savings targeting the Vmin or using Severity function. 139	
Figure 80: Overview of the prediction flow used in studies [35] and [167]. 141	
Figure 81: Accuracy of predicting the Vmin of the most sensitive core. 144	
Figure 82: Accuracy of predicting the Vmin of the most robust core. 145	
Figure 83: Accuracy of predicting the Severity of the most sensitive core. 146	
Figure 84: Intuitively representation of the efficiency of the proposed model that targets
the Severity of the most sensitive core of X-Gene 2. ... 147	
Figure 85: Accuracy of predicting the Severity of the most robust core. 148	
Figure 86: Intuitively representation of the efficiency of the proposed model that targets
the Severity of the most robust core of X-Gene 2. ... 148	

LIST OF TABLES
Table 1: Example of estimating reliability of an entire CPU in FIT. 51	
Table 2: Qualitative comparison among the methods used for reliability evaluation. 54	
Table 3: Fault models supported by MaFIN. .. 58	
Table 4: Fault effect classification. ... 60	
Table 5: MaFIN enhancements and supported components. .. 63	
Table 6: Baseline configuration of study [28]. .. 64	
Table 7: Experimental setup used in study [28]. .. 65	
Table 8: FIT, IPC and Fitness values for the L1 Data cache. ... 72	
Table 9: FIT, IPC and Fitness values for the L1 Instruction cache. 72	
Table 10: FIT, IPC and Fitness values for the Integer Physical Register File. 72	
Table 11: FIT, IPC and Fitness values for the LSQ. ... 72	
Table 12: FIT, IPC and Fitness values for the L2 cache. ... 72	
Table 13: State-of-the-art and contributions of [29] in fault injection techniques on
microarchitectural simulators. ... 75	
Table 14: Simulators configurations for [29] study. .. 76	
Table 15: Fault effect classification of Masked category for ESO mode in [31]. 82	
Table 16: Fault effect classification of ESOR mode of study [31]. 83	
Table 17: Vulnerability across modes of operations of study [31]. 84	
Table 18: Baseline configuration of study [31]. .. 85	
Table 19: Baseline configuration used to evaluate MeRLiN on RF, SQ, L1D and IQ with
32 entries. ... 97	
Table 20: Haswell-like configuration used to evaluate MeRLiN on IQ with 60 entries. .. 97	
Table 21: MeRLiN’s accuracy for gcc and bzip2 benchmarks. 105	
Table 22: MeRLiN vs. Relyzer using exhaustive fault list. .. 112	
Table 23: Naïve parallel method vs. serial method (Times in 106 cycles. Numbers in
parentheses denote speedup against serial execution). .. 126	
Table 24: Memory latencies in SCC. .. 127	
Table 25: Execution time of the proposed parallel method of LAA. 130	
Table 26: Execution time of the parallel execution of LAA and LFSR test programs. .. 130	
Table 27: Microarchitectural parameters of APM X-Gene 2. .. 134	
Table 28: Effects classification used in [35] and [167]. .. 136	
Table 29: Weights of Severity function used in [35] and [167]. 138	
Table 30: Vmin prediction model of the most sensitive core of X-Gene 2. 144	
Table 31: Vmin prediction model of the most robust core of X-Gene 2. 145	
Table 32: Severity prediction model of the most sensitive core of X-Gene 2. 146	
Table 33: Severity prediction model of the most robust core of X-Gene 2. 147	

Table 34: Future work. ... 152	

PREFACE
This thesis was conducted in the Department of Informatics and Telecommunications of
the National and Kapodistrian University of Athens during the period 2014-2018.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 37

1. INTRODUCTION

The evolution in semiconductor technology and computer architecture gave designers
the opportunity to boost the performance of modern computing systems that are used in
several domains of information and communication technology systems. Despite the
changes in Moore’s Law [1] and Dennard Scaling [2], computer architects and
designers are still able to improve processor performance by using more aggressive
and sophisticated techniques. The combined effect of the progress in semiconductor
technology and the evolution in computer architecture makes microprocessors more
efficient, but on the other hand much more complex.
However, the scaling in performance is also accompanied by increase in the
vulnerability (or decrease in reliability) of microprocessors due to: (a) the strict deadlines
that are required to minimize Time-to-Market (TTM) (minimizing also the time needed to
test the circuits), (b) the modern device integration techniques that make processors
more vulnerable to the radiation and also increase the occurrence of manufacturing
defects, and (c) the increased design complexity that makes the testing process of the
microprocessor products very difficult and unaffordable for the available TTM.
Specifically, the modern microprocessors face serious reliability issues during their
entire life-cycle due to: (i) the errors that come from transient faults caused by cosmic
rays, alpha particles and electromagnetic interference and are manifested as
instantaneous flips of the values of real hardware bits, (ii) aging that leads to errors that
appear at regular time intervals (intermittent errors) or exist indefinitely (permanent
errors), and (iii) manufacturing defects that can either be manifested as permanent
errors or lead to timing errors when the chips operate beyond their nominal voltage and
frequency conditions. These manufacturing imperfections usually force computer
architects to adopt pessimistic operation margins in terms of voltage in order to protect
the chips, while sacrificing the energy efficiency of the delivered product.
Designers need to ensure sufficient reliability levels (according to the needs of the
application domain) and energy efficiency levels of the chips after they are released to
the market. The goal of this thesis is to propose different techniques that are applied in
different phases of the entire life-cycle of a microprocessor in order to solve important
reliability challenges of current and future microprocessor products.

1.1 The evolution of microprocessor design
The use of electronic devices is increased every year far beyond all the pessimistic
expectations from the 1971’s, when the first commercial processor (Intel 4004 [3]) was
released to the market. Indicatively, Figure 1 presents the increase of population of
global connected electronic devices in the past years (starting from 2015) until
nowadays (in 2018). Also, the same figure presents a forecast for the population of the
devices that are going to be connected each year until 2025. All these devices are used
in all the major fields of the electronics ecosystem such as Desktop PCs, Portable PCs,
Smartphones and Tablets. From 2015 until this year (2018), we observe a 1.50X
increase in the population of consumer electronic devices that corresponds to 23.14
billions of devices, while for the next years there will be an explosion (increase of 3.26X
from 2018 to 2025 that is translated into 75.44 billions of devices). Note that the field of
Internet of Things (IoT) that rapidly evolves the last years is a major contributor to this
explosion of the total population of the electronic devices that are used in the entire
ecosystem of electronics.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 38

Figure 1: The evolution forecast of global connected electronic devices until 2025 in Billions of

electronic devices (source: IHS, www.ihs.com).
Moreover, as the size of transistors shrinks, much more transistors are inserted on the
same silicon die. Figure 2 illustrates the transistor density of a chip die per mm2 in
conjunction with the evolution of technology nodes starting from the 45nm lithography
process that was widely used in 2008, until the 10nm that is currently used. From this
figure, it is observed that there is a large increase equal to 30.55X in the transistors
density that are used in the same die during the last 10 years, starting from 3.3 Millions
per mm2 in 2008 to 100.8 Millions of transistors per mm2 in 2018. Today, the feature
size that is used for the new massively produced chips is in the range of 10nm and is
already announced that some chips will start to use 7nm technology (e.g. AMD is going
to reveal AMD Starship with up to 48 Zen 2 Cores in Q2 of 2018 based on 7nm FinFET
technology process [4]).

Figure 2: Transistor density per Million Transistor per mm2 (MTr / mm2) until 2018 [5].

The increase of transistors density and the evolution in lithography process gives
computer architects the opportunity to implement more aggressive and sophisticated
mechanisms in their chips that deliver superior levels of scalability by building and using
multi-dimensional transistors. These mechanisms that enhance performance of
microprocessors include aggressive speculative mechanisms (e.g. branch prediction
units, data and instruction prefetchers, and value predictors), larger capacity structures
(caches, memories, queues) and mechanisms that exploit parallelism of different levels
(Instruction-Level, Thread-Level and Data-Level parallelism). Figure 3 illustrates the

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 39

increase in microprocessor performance since 1978 compared to the performance
relative of the VAX 11/780. From this figure, we observe a 25% increase in processor
performance per year before 1986 that was largely technology driven. From 1987 to
2004, the increase in performance was about 52% per year that mainly came from more
advanced architectural and organizational ideas. Finally, from 2003 to 2010, processor
performance improvement has dropped to about 22% per year mainly due to the
following obstacles: (a) heat dissemination, (b) little Instruction-Level Parallelism (ILP)
left to exploit, and (c) limitations due to memory delays. These obstacles signal historic
switch from relying solely on ILP to Thread-Level Parallelism (TLP) and Data-Level
Parallelism (DLP) [6].

Figure 3: Increase in processor performance relative to the VAX 11/780 as measured by the

SPECint benchmarks.
However, the implementation of aggressive and sophisticated mechanisms to boost
performance in conjunction with the decrease of the size of transistors make the chips
more and more complex, while they also suffer from many reliability issues that are
manifested before or after they are released to the market. There are many reports of
microprocessors operational failures of real hardware chips that can come from: (i)
transient faults [7] [8] [9], (ii) aging [10], and (iii) manufacturing defects that can be
manifested as permanent errors [11] or can lead to operation divergences among the
chips of the same design; this forces the designers to adopt pessimistic voltage and
frequency operation margins sacrificing a part of the energy efficiency or the
performance of the product in order to ensure the correct operation of microprocessors
[12].
To handle all these reliability issues the major microprocessor manufacturers such as
Intel, AMD, ARM and IBM spend a huge amount of human resources, time, chip area
and money to protect the chips by developing techniques that are implemented either
before or during the fabrication process of the chips or after they are released to the
market. On top of all these challenges that the companies have to handle, they also
have to face the strict deadlines of minimizing Time-to-Market (TTM) and satisfying the
high requirements of the costumers in terms of high reliability, performance and energy
efficient requirements of the consumed electronic devices. Towards this direction, this
thesis provides solutions that can be implemented in different phases of the life-cycle of
microprocessors in order to boost their reliability.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 40

1.2 Design life-cycle of microprocessors
Each microprocessor product has a long life-cycle that consists of many design,
analysis and manufacturing phases before it is integrated in a computing system and
released to the market. Figure 4 presents all the design phases of a microprocessor that
are summarized below:

• Planning: In this phase, computer architects and designers define the
microprocessor product design and manufacturing strategy. In particular, they
define: (i) the product requirements in terms of functionality, performance, power
and reliability, (ii) the technology node that is going to be used, (iii) the design
methodology, and (iv) the tools that are going to be used during the entire
manufacturing procedure. All these decisions are guided according to the nature
of the market segment that the product targets, the budget and finally the TTM.
For instance, a microprocessor that targets the market of aerospace or
automotive should satisfy different reliability and power consumption
requirements compared to a product that is going to be used in the desktop
market segment or in low-end consumer electronics.
Today, during the design planning phase computer architects are able to model in
detail all the major architectural and microarchitectural features of the
microprocessor product (such as all the assembly instructions of the entire
Instruction Set Architecture - ISA, the size of the hardware components, the
different microarchitectural policies etc.) by using tools that are written in a high-
level programming languages, such as C/C++ [13] [14] [15]. Apart from the
processor, these tools give architects the opportunity to model the entire system
stack; starting from the lower hardware levels up to the higher levels of the
firmware and the operating system. This model represents the first formalized
reference of the final system’s behavior. Thus, these models of high abstraction
level make designers able to predict to a certain extend if the features that were
selected for the product at this early design phase are suitable to meet all the
design targets in terms of functionality, performance, reliability and power before
starting the next design and fabrication procedures.

• Development: After satisfying the architectural and microarchitectural
requirements that were defined in high level of abstraction during the design
planning phase, the designers are ready to proceed into the next phase where the
actual hardware design takes place. In the first stage of this phase, a Hardware
Description Language (HDL), such as Verilog or VHDL, is exploited to describe
and simulate the hardware design. The logic design phase passes through three
stages depending on the level of abstraction of the described hardware model.
The first stage is the implementation of the behavior model that maps major
microprocessor events without the time notion. Next, the Register Transfer Level -
RTL models the processor clock along with the detailed description of the events
occurred in each clock cycle and finally, the structural level model that represents
the gate - level implementation of the design.

 The last phase on the development cycle of a microprocessor incorporates the
circuit and layout design processes. The former generates the transistor - level
specification of the logic modelled through the HDL, while the latter maps
transistors and wires on the different layers of the material to make up the circuit.
At the end of the layout design phase, the first silicon prototypes are produced.

• Production: During this phase of processor life-cycle the first silicon prototypes
are manufactured and thoroughly validated. Moreover, during this phase several

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 41

design fixes are applied in order to adjust processor functionality and
performance according to the design specifications.

• Runtime: This is the last phase of the life-cycle of a microprocessor, where the
product is massively shipped to the market. At this stage, the microprocessor is
fully functional and meets all the design specifications. After the release of the
product to the market, the design teams stop to have any interaction with the
developed design.

Figure 4: Processor design life-cycle.

1.3 Reliability life-cycle of microprocessors
As the field of computer architecture evolves and the size of transistors shrinks,
computer architects are facing progressively more challenges to ensure that the
delivered products satisfy high quality levels. Reliability is defined as the trustworthiness
of a computing system which allows reliance to be justifiably placed on the service it
delivers [16] [17]. A product that does not satisfy its reliability requirements could lead to
financial disaster for the manufacturer or even to jeopardize the human life if the product
is used in safety critical computing domains such as automotive or aerospace. Thus,
manufacturers choose to spend extra effort, time, budget and chip area to ensure the
correct operation of the delivered products. To achieve high reliability requirements,
manufacturers apply a sequence of verification tasks during the entire microprocessor
life-cycle in order to protect the chips’ functionality from the different kind of errors that
could be manifested after the products’ release to the market. These verification tasks
that are applied during the processor life-cycle are illustrated in Figure 5 and are
summarized below:

• Reliability Estimation: During this verification task computer architects assess
the expected reliability level of a microprocessor for any fault model (i.e. transient,
permanent or intermittent faults). The early reliability assessment of a
microprocessor is vital for two reasons. Firstly, to determine the microarchitectural
design parameters that could influence the vulnerability of the product in order to
satisfy the defined reliability requirements of the design planning phase. For
instance, the size and design specifics of the hardware structures can influence
the vulnerability of the processor apart from its performance. Secondly, to
determine design decisions related to the required mechanisms for in-field error
detection and recovery/repair. These mechanisms may impose significant area,

Processor
Design

Life-cycle

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 42

power and performance overheads. Thus, inaccurate assessment of the reliability
during the early design phases could easily make the cost of protection
unaffordable or lead to an expensive, over-designed chip. For example, typical
memory error protection and detection techniques can have a cost that ranges
from 1% to 125% in terms of added memory capacity, depending on the
complexity of the protection mechanism [18]. Moreover, detection and protection
mechanisms against any fault model must be decided as early as possible in
order to avoid costly redesign cycles for late integration of such mechanisms.

• Pre-Silicon Verification: This verification task is mainly based on simulation
using tests on RTL model that are compared to those of the golden architectural
model. Any discrepancies and indicators of design bugs are identified during this
stage and fixed. Moreover, the pre-silicon verification engineers employ formal
methods based on mathematical proofs to guarantee the absence of certain types
of errors. Unfortunately, these methods lack of scalability when they target
complex RTL models; thus, they are used only to a few limited blocks.

• Silicon Debug: This is the verification task in which the validation and debugging
of a new microprocessor design on its first silicon prototype chips takes place.
The goal of this task is to detect any “difficult” bug that escaped from the pre-
silicon verification task and to ensure that a chip’s actual silicon implementation
matches its specification as was defined in the early design planning phase. For
this reason, during silicon debug a comprehensive suite of test programs (such as
automated generated random test programs, legacy tests and real word
applications) covering many test scenarios are executed on the prototype chips to
detect any anomalous behavior. When a bug is detected in this stage, the RTL
model has to be modified to correct the issue and the manufacturing process of
some prototypes must start again.

• Manufacturing Testing: This is the next task after the silicon debug, when some
test metrics are used such as stuck-at coverage, transition fault coverage and N-
detect coverage. When a sufficient level of coverage is reached for every single
fabricated chip, then the chip is ready for market release. Manufacturing testing
techniques aim to maximize the fault coverage, while minimizing the test costs in
terms of time and resources. The traditional manufacturing testing approaches
can be divided into functional and structural test approaches [19]. The functional
approaches such as the Software-based Self-testing (SBST) utilize the on-chip
programmable resources to apply at-speed the test and collect the test responses
from memory in order to make the final pass/fail decision. On the contrary,
structural test approaches (such as the scan-based testing) exploit the knowledge
of the circuit structure and the corresponding fault model to generate the test
patterns. Structural testing usually places the design in specific self-test mode
and may cause excessive power consumption and over-testing; consequently, the
yield loss of structural approaches is higher compared to the loss of functional
methods.

• In-field Verification: This task contains all the protection mechanisms that are
implemented on the chips to ensure their functionality after they are released to
the market. Note that at this stage, the designers do not have interaction with the
design product; thus, they should carefully have implemented efficient protection
mechanisms against the aging and wear-out effects, failures that may come from
manufacturing defects and process variation, as long as failures that come from
the environmental phenomena such as cosmic rays, alpha particles and
electromagnetic interference. Dual- and triple- modular redundancy are some

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 43

very common protection techniques, but they are accompanied by high costs.
Also, parity and Error Correction Code (ECC) techniques are very common to
protect buses, memories or other array-based structures of the microprocessor.
Finally, there are many proposed techniques to protect SRAM caches [20],
pipeline flip-flops and combinational logic [21].

Figure 5: Processor reliability

life-cycle.

Figure 6: Distribution of failures during

processor life-cycle.

1.4 Distribution of failures in different phases of the processor life-cycle
There are different types of failures that can be introduced during the lifetime of a
microprocessor. The distribution and the nature of these failures during processor
reliability life-cycle are presented in Figure 6 and summarized below:

• Design bugs: This category contains all the logic, electrical and process-related
bugs [22] [23] that are introduced during the design planning and the
development phase. The common sources of these bugs are [24]: (i) the limited
throughput of the verification techniques that cannot keep pace with the
complexity and the amount of the developed code that are used to design the
modern microprocessors, (ii) the synthesis tools that may impede the accuracy of
the synthesized design leading to functional inaccuracies between the intended
and the developed design, (iii) the inaccuracies that are created during the place
and route process leading to partial achievement of the design specifications
during the layout process, and (iv) the combination of process variations and
smaller design margins that prevents microprocessors to work at the intended
frequency and voltage levels.

• Manufacturing defects [25]: This category contains all the manufacturing-related
defects that are introduced in the design during the high-volume manufacturing
(HVM) phase. These inaccuracies can be the result of optical proximity effects,
airborne impurities, and processing material defects. Moreover, as the gate
oxides have become so thin, transistors functionality can be easily affected by the
variations of the current. Most of these defects are detected by dedicated
machines (testers) with a very time-consuming procedure; but still some untested
defects escape to the field.

Processor
Reliability
Life-cycle

Distribution of
failures
during

processor
life-cycle

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 44

• In-field errors [25]: This category contains all the failures that can be manifested
after the chip is released to the market. These malfunctions can be: (i) transient
errors that can be created by Single Event Upsets (SEUs), which potentially
corrupt the computational logic and state bits, (ii) intermittent and permanent
errors that can come from material aging and wear-out effects, or they could have
also escaped from the high-volume production testing, and (iii) process variation
defects that make microprocessors chips that are designed to be identical to
present divergences in terms of performance and power consumption. Note that
the reliability assessment of the chip concerning the transient, intermittent and
permanent faults takes place in the very early stages of the design.

For the manufacturers, the detection of any kind of malfunction is of great importance to
take place as soon as possible during the life-cycle. The reason is that the cost of
redesign the product and fix any detected bug or add any protection mechanism
increases significantly throughout the microprocessor life-cycle. Figure 7 illustrates the
relative cost of finding bugs for all the phases of the microprocessor’s lifetime [26]. The
cost to re-start the design planning phase when the manufacturer detects a bug before
the start of the layout process ranges to hundreds of dollars, while the cost explodes to
more than tens of million dollars when the detection of the bug takes place after the
massive release of the product to the market.

Figure 7: Relative cost of finding bugs throughout processor life-cycle [26].

1.5 Contribution of this thesis
The validation techniques that are implemented throughout the processor life-cycle in
order to protect the chips from the different types of malfunctions are very important to
ensure the design requirements in terms of functionality, performance, power and
reliability of the delivered products. The goal of this thesis is to provide solutions to
different validation challenges during the products’ lifetime. The contributions of this
thesis can be grouped in the two following categories according to the time interval they
can be used during the microprocessor life-cycle (see Figure 8):

Architectures for Dependable Modern Microprocessors

N.Foutris
48

~
100$

1,000$

10,000$

100,000$

1,000,000$

>>10,000,000$

Design
Planning

Layout Tape
Release

Early
Silicon

Sampling Volume
Production

Relative Cost of Finding Bugs ($)

Figure 6: Relative cost of detecting bugs throughout microprocessor’s life-cycle [37].

Manufacturing defects [86]: Moving into deeper nanometer scale manufacturing
process, an increased amount of manufacturing-related defects will be introduced
into the designs. Optical proximity effects, airborne impurities, and processing
material defects can all lead to the manufacturing of faulty transistors and
interconnects. Moreover, deep-submicron gate oxides have become so thin that
manufacturing variations can lead to currents penetrating the gate, rendering it
unusable. Manufacturing defects are also affected by the immense complexity of
current and forthcoming microprocessor designs. Design complexity makes it
more difficult to test for defects during manufacturing. Semiconductor industry is
forced to either spend more time with parts on the tester, which reduces profits by
increasing time-to-market, or risk the possibility of untested defects escaping to
the field.
In-field errors [86]: Integrated circuits are implemented in miniaturized and
inherently unreliable technologies. This leads to products that are more prone to
transient, intermittent and permanent errors. Single-Event Upsets caused by
neutrons and alpha particles that strike the bulk silicon portion of the die.
Although SEUs do not break the silicon their effect in a logic glitch that can
potentially corrupt computational logic or state bits. Hard errors, on the other side,
appear either because of manufacturing defects that escape high-volume
production manufacturing testing or because of material aging and wear-out
effects. Finally, another source of hardware errors is the process variation, i.e.
variations in device characteristics. In particular, process variation can cause
large fluctuation in performance and power consumption in the manufactured
chips. Current microprocessors show large differences in behaviour although they
are designed to be identical. Process variation is expected to be amplified in the
forthcoming microprocessor designs.

1.5 Contributions of this thesis
The evolution of semiconductor technology and computer architecture has
radically transformed our world throughout the last decades. However, the
combination of technology scaling and extreme chip integration, along with the

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 45

Figure 8: Contributions of this thesis in the processor life-cycle.

• Pre-Silicon Reliability Analysis: A very important task during the early design

phases is the reliability estimation of the hardware structures and the entire chips
against transient faults. The reliability and performance requirements that are
defined during the planning design phase can guide several design decisions in
the next phases of the processor life-cycle, such as implementation of protection
mechanisms or even determination of several microarchitectural features (size of
hardware structures, policies, etc.) that can influence not only the vulnerability of
a chip but also its performance. Statistical fault injection of transient faults (flips of
real hardware bit values) on microarchitectural structures modeled in performance
simulators is a state-of-the-art method to accurately measure the reliability, but
suffers from low simulation throughput.
This thesis presents several contributions in the research field of pre-silicon
reliability analysis phase of processors reliability life-cycle. Firstly, in [27] we
present a novel fully-automated versatile architecture-level fault injection
framework (called MaFIN) that is built on top of a state-of-the-art x86-64
microprocessor simulator (called Marssx86), for thorough and fast
characterization of a wide range of hardware components with respect to various
fault models (transient, intermittent, permanent faults). Next, by using the same
tool and focusing mainly on the transient faults we executed two reliability
evaluation studies. In the first study, we evaluated the reliability and performance
tradeoffs for major hardware components of an x86-64 microprocessor across
several important parameters of their design (size, associativity, write policy, etc.)
[28]. In the second study [29], we used MaFIN in conjunction with a different tool
(called GeFIN [30]) that is also used for early reliability assessments at the
microarchitecture level to evaluate in a differential way: (a) the reliability sensitivity
of several microarchitecture structures for the same ISA (x86-64) implemented on
two different simulators, and (b) the reliability of workloads and microarchitectures
for two popular ISAs (ARM vs. x86-64).

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 46

A major challenge of the early reliability assessments to soft errors at the
microarchitecture level using statistical fault injection is that the campaigns that
provide estimations of high statistical significance require excessively long
experimental time. This thesis addresses this challenge by proposing two
methodologies. Firstly, we propose to accelerate the individual fault injection
campaigns by using several techniques that are implemented in the simulator and
take place after the fault is actually injected in the hardware structure [31].
Secondly, to further accelerate the microarchitecture level fault injection
campaigns we propose MeRLiN methodology [32] that provides a final speedup
of several orders of magnitude, while keeping the accuracy of the assessments
unaffected even for large injection campaigns with very high statistical
significance. The core of this methodology is the pruning of the initial fault list by
grouping the faults in equivalent classes according to the instruction that finally
accesses the faulty entry. Faults that belong to the same group are very likely to
lead to the same fault effect; thus, fault injection is performed only in a few
representatives from each group. MeRLiN methodology constitutes a major
breakthrough in the field of accelerating the reliability estimations of hardware
components at the microarchitecture level with negligible loss of accuracy.

• Post-Silicon Reliability Analysis: Another important phase during the processor
reliability life-cycle is the Post-Silicon Reliability Analysis that consists of the
manufacturing testing and the in-field verification that take place during the
fabrication process and after the release of the chips to the market, respectively.
Note that in contrast to Pre-Silicon Reliability Analysis, in this phase the validation
targets implemented circuits and especially after their release to the market the
designers have no longer interaction with the design. The contributions of this
thesis in this phase of the life-cycle cover two important research fields:
o Acceleration of permanent fault online detection in many-core

architectures: The extreme complexity of many-core processor architectures
and the pressure for reduced time-to-market renders even the most
comprehensive verification and testing campaign before and during mass
production incomplete. A significant population of manufacturing faults
escape in the field of operation and jeopardize correctness of the chip. Online
functional testing is an attractive low-cost error detection solution, but it
should be fast enough in order to not impact the system performance. This
thesis faces this challenge by proposing an effective parallelization
methodology [33] to accelerate online error detection for many-core
architectures by exploiting the high-speed message passing on-chip network
to accelerate the parallel execution of the test preparation phase of memory-
intensive test programs. To demonstrate the efficiency of the proposed
methodology we used a 48-core real hardware chip, Intel’s Single-chip Cloud
Computer (SCC) [34].

o Statistical analysis to predict the safe voltage margins in multicore
CPUs for energy efficiency: Reduction of the voltage operation margins of
multicore chips is a major challenge for the designers to gain in terms of
power. Unfortunately, this reduction leads to several reliability issues due to
the manufacturing defects that make hardware cores of the same chip to
present variations in their safe voltage and frequency operation limits. These
variations that remain constant after the release of the chip to the market are
classified as static variations. On top of that, transistor aging and dynamic
variations in supply voltage and temperature, caused by different workload
interactions can also affect the correct operation of a microprocessor. Thus,

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 47

the designers choose to insert conservative guard-bands in the operating
voltage (and frequency) to protect the chips from the effects of the static and
the dynamic variations, despite the induced cost in terms of energy (and
performance). The contribution of this thesis to this challenge is to propose a
detailed statistical analysis methodology [35] [167] to accurately predict at the
system level the safe voltage operation margins of the eight ARMv8 cores of
the X-Gene 2 chip [36] fabricated on 28nm technology. Our analysis uses as
inputs the microprocessor’s performance counters values of benchmarks that
were collected in nominal voltage conditions execution and the results of the
characterization phase when the chip operates in scaled voltage conditions.

1.6 Thesis outline
The remainder of this thesis is organized as follows:
Chapter 2 and Chapter 3 present all the contributions of this thesis during the Pre-
Silicon Reliability Analysis phase focusing on the early reliability estimation of several
microarchitectural structures to transient faults. Chapter 2 is divided in two parts: the
first part shows the background details of reliability assessment studies, while the
second part firstly presents a versatile fault injection framework (called MaFIN) to
evaluate the reliability of modern x86-64 microprocessors. Next, the same part
illustrates three studies that were launched using MaFIN to: (a) assess the reliability-
performance tradeoffs, (b) evaluate different ISAs, microarchitectures and tools in terms
of reliability, and (c) to accelerate the fault injection runs based on the faults lifetime.
Finally, Chapter 3 illustrates MeRLiN, a state-of-the-art method to accelerate the fault
injection campaigns of high statistical significance with negligible loss of accuracy by
pruning the faults of the initial fault list.
Chapter 4 is divided in two parts that discuss two proposed techniques that can be
implemented during Post-Silicon Reliability Analysis phase, when the massive
production of chips begins or the chips are already released to the market. The first part
presents a proposed technique that targets to accelerate the online detection of
permanent faults in many-core architectures using the 48-core Intel’s SCC architecture
as experimental vehicle, while the second describes a statistical analysis methodology
that was proposed to boost the energy efficiency of the eight ARMv8-based cores of the
X-Gene 2 chip by predicting the safe voltage operation margins of each individual core.
Finally, Chapter 5 presents the conclusions of this thesis and discusses possible
directions for future work.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 48

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 49

2. PRE-SILICON RELIABILITY ANALYSIS

2.1 Background of early reliability estimation at the microarchitecture level
The reliable operation of modern and forthcoming computing systems can be affected
by different types of hardware faults such as transient, intermittent, and permanent
faults [37] [38] [39]. Transient faults (on which this chapter mainly focuses on) can be
caused by external factors such as cosmic rays, alpha particles and electromagnetic
interference. As the size of transistors scales, more and more reliability issues arise due
to transient faults that hit commercial chips and are recorded in the literature [7] [8] [9].
Early assessment of the expected reliability of a computing system (or equivalently its
resiliency to hardware faults including also the transient faults) is an important task
which steers design decisions related to the required mechanisms for the detection and
diagnosis of the faults, and the recovery of the system from their effects. Such fault
tolerance mechanisms always impose area, power and performance overheads.
Straightforward over-protection of the system with inaccurate knowledge of the effect of
the faults can easily make the costs of protection against the hardware faults excessive.
For example, typical memory error detection and correction techniques can have a cost
(in terms of added memory capacity) which ranges from 1% to 125% depending on the
detection and correction capabilities of each technique [18]. Clearly, the selection of the
most appropriate protection techniques depends on the required reliability levels and
studies of its inherent resiliency to hardware faults that take place at the early design
phases.
Section 2.1 is mainly focused on the background concerning the early reliability
estimation of microarchitectural structures to transient faults by presenting the metrics,
the fault effect classification, the tools and the methodologies that are used to evaluate
reliability at the microarchitecture level.

2.1.1 Metrics used for reliability assessments
Firstly, we present all the metrics that are used to measure the reliability (or its
reciprocal – the vulnerability) of an individual hardware structure and of the entire
system as summarized in [40]. Note that in the formulas presented in this section with
the term structures, we define the array-based structures with a particular number of
bits and not the logic structures.
Soft error rate (SER) is the rate at which a device or system encounters or is predicted
to encounter soft errors. The SER is affected by: (i) the technology model (e.g. 22nm
Bulk Planar, 22nm SOI Planar, 20nm Bulk FinFET, etc.), (ii) the voltage, (iii) the
temperature, and (iv) the location (latitude, longitude and altitude) that determine the
relative neutron fluxes [41].
Time to Failure (TTF) expresses the soft error rate, even though the term TTF refers
specifically to failures. As the name suggests, TTF is the time to a fault or an error to
occur. For example, if an error occurs after 3 years of operation, then the TTF of that
system for that instance is 3 years. Similarly, MTTF (Mean Time to Failure) expresses
the mean time elapsed between two faults or errors. Thus, if a system gets an error
every 3 years, then that system’s MTTF is 3 years.
The MTTF of various structures comprising a system can be combined to obtain the
MTTF of the whole system. For example, if a system is composed of two structures,
each with an MTTF of 6 years, then the MTTF of the whole system is:

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 50

More generally,

Apart from the term MTTF, reliability engineers often prefer the term failure in time (FIT),
which is additive. One FIT represents an error in a billion (109) hours of operation. Thus,
if a system is composed of two hardware structures, each having an error rate of 10
FIT, then the system has a total error rate of 20 FIT. The summation assumes that the
errors in each structure are independent. The error rate of a system is often referred to
as its FIT rate. Thus, the FIT rate equation of a system is:

FIT rate and MTTF are inversely related as described by the following equation:

Consequently, one FIT is almost equal with 114K years MTTF or equivalently, one year
of MTTF is almost equal to 114K FIT. The FIT of an individual hardware structure is
calculated according to the following formula:

where,
• FITBit: It represents the raw FIT rate per bit (FIT/bit) and it depends on the

technology model, the voltage, the temperature, and the geographical location
[41].

• AVFstructure: The Architectural Vulnerability Factor (AVF) [40] represents the
probability that a soft error in a bit of the structure affects the program execution.
It takes values in the interval [0, 1] and depends on the microarchitecture
(Hardware Vulnerability Factor – HVF) and the software (Program Vulnerability

MTTFsystem = 1
1

MTTFstructure1
+ 1
MTTFstructure2

= 1
1
6
+ 1
6

= 3 (1)

MTTFsystem = 1
1

MTTFii=1

n

∑
 (2)

FIT ratesystem = FIT ratei
i=1

n

∑ (3)

MTTF in years = 109

FIT rate × 24 hours × 365 days
 (4)

FITstructure= FITBit × AVFstructure × #Bitsstructure (5)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 51

Factor – PVF) that represent the vulnerability that comes from the hardware and
the software level, respectively [42] [43].
For the case of estimating the AVF using fault injection approaches (actual
injection of the fault in the hardware structures), the AVF is the ratio of the
injections that affect the program execution over the total population of injections:

For example, assume that a fault injection campaign of 1000 injections in total
takes place and that 200 of these injections lead to a program corruption. In this
case, the AVF is equal to 0.2 (or 20%). The way that a transient fault can affect
the program execution is described in detail in Section 2.1.2.

• #Bitsstructure : It represents the size of the hardware structure in bits.

In Table 1, we show an informative example that calculates the reliability of an entire
CPU that consists of six hardware structures (first column) of different sizes (third
column), which are fabricated on different technologies (second column). After
estimating the AVF for all these structures (fourth column), we calculate the FIT for each
of these structures (last column) according to equation (5) and the FIT of the entire CPU
that is the sum of the FIT of each individual structure according to equation (3) and is
equal to 38.88 FIT in this example.

Table 1: Example of estimating reliability of an entire CPU in FIT.
Structure Raw FIT/bit Size (bits) AVFstructure FITstructure

A 0.001 1K 0.08 FITA = 0.08
B 0.001 64K 0.12 FITB = 7.68
C 0.001 32K 0.02 FITC = 0.64
D 0.001 8K 0.17 FITD = 1.36
E 0.001 4K 0.24 FITE = 0.96
F 0.001 256K 0.11 FITF = 28.16
 FITCPU = 38.88

2.1.2 Generalized transient fault effect classification
After the occurrence of a transient fault, it is unknown if it is going to affect the program
execution. For example, the fault may not eventually be read, or can be overwritten by
another access on the same hardware entry, or can be even detected and corrected by
a protection mechanism (if one is implemented on the system). All these cases are
formalized in the flowchart that is presented in Figure 9 that presents the generalized
concept of the transient fault effect classification that is used in the reliability studies
[40].
If the faulty bit is not read, then it cannot cause an error and therefore is a benign fault
(case 1 in the figure). However, if the faulty bit is read, then one needs to ask whether
the bit has error protection. If the bit has error detection and correction (e.g., like ECC),
then the fault is corrected, causing no user-visible error (case 2). If the bit has no error

AVFuArch Fault Injection=
#Injections that affect program output

#Total Injections
 (6)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 52

protection (neither error detection nor correction) then one needs to ask whether the bit
flip affected the program outcome. If the answer is no, then the bit does not matter and
that leads to case 3; again a benign fault. However, if the bit flip does affect the program
outcome, then it causes what is known as an SDC (Silent Data Corruption) event (case
4). Now, if the bit only has error detection (e.g., parity bit without the ability to recover
from an error), then it prevents data corruption but can still cause the program to crash.
Then, irrespective of whether the bit matters or not, the program will be usually halted
and crashed as soon as the error is detected. Such error detection events, typically
visible to the user, are called DUE (Detected Unrecoverable Errors). If an error is
declared to be a DUE, it cannot lead to an SDC (since SDC implies no detection – i.e.
silence). Thus, the definition of DUE has the implicit notion of a fail-stop system.
Figure 9 shows that DUE events can be further broken down into false and true DUE
events. False DUE events (case 5) are those DUE that could have been avoided if there
was no error detection mechanism to begin with. For example, certain bits of a wrong-
path instruction may not cause an error. In the absence of an error detection
mechanism, a flip in such a bit would have gone unnoticed and would not have created
any user-visible error. However, because the error detection mechanism detects the
error and possibly reports it, the program or the system may be unnecessarily brought
down. A bit flip that matters (meaning that actually affects the output of the program)
and is detected by the system is a true DUE event (case 6). Protecting a bit with an
error detection mechanism moves category 3 to 5 and 4 to 6.

Figure 9: Generalized concept of transient fault effect classification that is used in reliability

studies.

2.1.3 Tools used for early reliability assessments
Tolerance mechanisms against any fault model must be decided as early as possible to
avoid costly re-design cycles for the late integration of such mechanisms. However,
early decisions on the protection mechanisms are hard to make because during the
early stages of a system design important parameters are unknown: hardware
components sizes, microarchitectural policies, and the workloads.
It is widely recognized that microarchitecture (or performance) simulators, apart from
their importance for performance studies, offer an opportunity for an effective
combination of early, accurate and fast reliability estimations, because:

1. They are available in early design phases. 

faulty bit is
read?

bit has error
protection?

affects program
outcome?

affects program
outcome?

benign fault;
no error

fault corrected;
no error

benign fault;
no error SDC false DUE true DUE

no yes

detection
only

yes
noyesno

no

detection &
correction

1

2

3 4 5 6

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 53

2. They are significantly faster than simulators at more detailed levels of abstraction
(RTL, gate-level) [44] and thus allow studies using large, realistic and complex
workloads.

3. They accurately model important array-based microarchitecture components:
storage arrays which occupy the majority of a chip’s area (e.g. on-chip caches,
register files, buffers, queues) and thus largely determine the vulnerability of the
entire processor to faults.

4. They accurately resemble the behavior of the entire system stack, starting from
the microarchitecture level until the higher levels of the operating system- and the
application-level. This gives the opportunity to the reliability engineers to analyze
the propagation of the faults from the hardware level throughout the entire
system stack.

2.1.4 Methods used for reliability assessments
There are four popular approaches to estimate the reliability of hardware components:
(i) RTL injection [45] [46] [47], (ii) microarchitecture level injection [29] [30] [31] [48] [49],
(iii) ACE (Architecturally Correct Execution) analysis [50] [51] [52] [53] and (iv)
probabilistic models [54] [55] [56] [57].
RTL injection allows very accurate studies of the fault effects in all hardware structures
but these studies are performed too late in the design cycle to facilitate effective
decision-making for error protection. Moreover, RTL injection has excessively low
simulation throughput (2 to 4 orders of magnitude lower than the throughput of the
microarchitectural simulation) [44] which prevents detailed reliability evaluation of
components with statistically significant number of injections and large workloads.
Finally, RTL design usually is not available at the very early stages of the design cycle.
Microarchitecture level injection is less detailed than RTL injection concerning the logic
components but it is very accurate in the implementation of the array-based structures
(caches, memories, queues, latches, etc.) that occupy the majority of chip’s area.
Moreover, it is used for accurate full system studies of fault effects in early design
stages, while it is orders of magnitude faster than RTL injection [44].
ACE analysis and probabilistic models are significantly faster than the two injection
methods because they require only a single or few fault-free runs to report reliability
estimations. They provide a very useful but conservative lower bound of the reliability
(upper bound of the vulnerability) of hardware components [47] [58] [59]. In particular,
[58] reports 7X and [47] reports 3X over-estimation of the AVF that ACE analysis
provides compared to fault injection. As an example, [60] reports about 30% AVF for the
physical integer register file of the out-of-order Alpha 21264 microprocessor with 80
registers using ACE analysis; however, [32] reports that a comprehensive fault injection
campaign of high statistical significance (60,000 transient faults) targeting the same
structure for the same benchmarks on the out-of-order x86-64 microarchitecture
measures only 2.56%, 4.81%, and 8.92% AVF for 256, 128 and 64 physical registers,
respectively. Consequently, the AVF for 80 registers provided by the injection-based
measurement will be about 6%, which shows that ACE analysis leads to a 5X over-
estimation. Finally, ACE analysis is not suitable to evaluate fault tolerant mechanisms
that are based on soft error symptoms, in contrast to injection-based techniques [47]
[61]. Despite its disadvantages, ACE analysis merit in early reliability assessments is
indisputable because it gives the opportunity to estimate the upper bound of
vulnerability for different design options (component sizes, policies, etc.) in very short
time.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 54

Table 2 illustrates a qualitative comparison among the methods that are used for
reliability evaluation in terms of simulation time, fault model accuracy, estimation
accuracy, implementation complexity and availability in the early design phases. ACE
analysis and probabilistic models lead to conservative lower bound of reliability. Fault
injection in the RTL is very accurate but suffers from low simulation throughput, while
RTL designs are not available in the early design phases. On the other hand,
microarchitecture level fault injection is very accurate with relative high simulation
throughput, while performance models exist early in the design phase and
microarchitecture simulators provide many benefits when they are used in reliability
studies as was described in Section 2.1.3. Finally, fault injection methodology is less
complex than: (a) the ACE analysis that requires a lot of effort to make several
modifications in the simulator to achieve better accuracy, and (b) the probabilistic
models that need a more complex mathematical background. To conclude, fault
injection method at the microarchitecture level is the simplest and most suitable
approach for accurate, fast and early reliability assessments.

Table 2: Qualitative comparison among the methods used for reliability evaluation.
 RT-Level

injection
Microarchitecture

level injection
ACE

analysis
Probabilistic

models
Simulation

Time High Medium Low Low

Fault Model
Accuracy High High None None

Estimation
Accuracy High High Low Low

Complexity Low Low High High
Availability in

the early
design phases

No Yes Yes Yes

2.1.5 Statistical fault injection at the microarchitecture level
The most accurate approach to evaluate the reliability of a hardware structure at the
microarchitecture level is to run the exhaustive fault injection campaign that consists of
all flips for every bit of a hardware structure and for every program execution cycle. This
should be repeated multiple times for different hardware structures and different
programs to ensure a safe final reliability assessment for the entire microprocessor by
using a large representative set of programs and input datasets. This massive repetition
of fault injection runs during the exhaustive fault injection in conjunction with the
simulation throughput of a detailed simulation run at the microarchitecture level (105
cycles/sec [15]) make the execution of a complete exhaustive fault injection campaign
infeasible. For instance, according to [32] the exhaustive fault injection to evaluate the
reliability at the microarchitecture level of only three hardware structures (a L1 data
cache of 32KB, a store queue of 16 entries and a physical register file of 64 registers)
for a single benchmark of 1 billion cycles takes about 3x109 years, assuming that a
single hardware thread is used.
Thus, statistical fault sampling is unavoidable in order to make the reliability estimation
at the microarchitecture level feasible without compromising accuracy [32]. For all the
studies concerning the fault injection of transient faults at the microarchitecture level
that are presented in this thesis, we used the statistical fault sampling formula that was
described in [62]. This formula is presented below:

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 55

where,
• n: The total population of faults that are needed after the fault sampling to

provide the final reliability assessment of a fault injection campaign

• N: The initial (exhaustive) population of the faults that comes from the product of
the workload duration in cycles (d) and the size of the hardware structure in bits
(s). Thus,

• e: The predefined error margin of the final estimation

• t: The predefined confidence level of the final estimation

• p: The estimated proportion p of individuals in the population having a given
characteristic (e.g. the estimated probability of faults resulting in a failure). This
parameter defines the standard error and basically corresponds to an estimate of
the true value being searched (e.g. percentage of errors resulting in a failure).
Since this value is a priori unknown (but between 0 and 1), a conservative
approach is to use the value that will maximize the sample size. In other words,
the sample size will be chosen so that it will be sufficient to ensure the expected
margin of error with the expected confidence level, no matter the actual value of
the proportion. It has been demonstrated that this is achieved for p=0.5; it is
therefore sufficient to use this value in all cases [62]. If the expected proportion is
very small or very large, refining this estimate would lead to a reduced sample
size for a given margin of error but the goal is to avoid any a priori assumption on
the results. Instead, after the fault injection campaign to estimate the final
reliability, the refinement targets the error margin, while all the other parameters
of the formula remain the same; this finally leads to the real error margin of the
estimation.
For instance, assuming that two fault injection campaigns take place to evaluate
the reliability of a 64-entry integer register file of 64-bit registers (the size of the
structure is 4096 bits in total) running two different benchmarks of 1 million
cycles. The initial fault list population for the case of the exhaustive fault list
injection campaign is equal to 4096x106 for both cases; thus, the statistical fault
sampling is unavoidable. If the statistical significance of the sampling is
predefined at 3% error margin and 95% confidence level, then the total
population of faults will be 1067 faults according to [62]. Note that, as the final
reliability estimation is a priori unknown, the p parameter must be predefined at
0.5 to ensure the expected margin of error with the expected confidence level. If
the final reliability estimations of the campaigns after injecting the 1067 faults are
different than 50% (that was described to be the expected by defining p
parameter to 0.50), for example 30% vulnerability estimation for the first
benchmark and only 5% for the second one, then we need to refine the formula
of [62] to get the real error margin of the final estimations. After this refinement,

n = N

1+e2×
N-1

t2× p× (1- p)

 (7)

N = d × s (8)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 56

the final error margin will be 2.75% and 1.31% (instead of 3% that was initially
defined) for the first and the second campaigns, respectively. The confidence
level for both the two final estimations remains stable at 95%.

To achieve high statistical significance, the initial fault list should consist of tens or
hundreds of thousands of faults. For instance, an injection campaign targeting a 256-
entry integer register file of 64-bit registers with error margin 2.88%, confidence level
99% and 100 million cycles of program execution time, requires 2000 fault injection
runs. If a higher statistical significance is needed (i.e. 0.63% error margin and 99.8%
confidence level), the total number of injection runs explodes to 60,000 (an
unacceptably large number of injections even for relatively short benchmarks).
To better understand these sizes, we assume a single fault injection campaign of
60,000 faults that runs the sha benchmark as workload under test (a common
benchmark used in reliability studies). A single fault free run of this benchmark lasts
about 66 seconds. Thus, a campaign of 60,000 injections needs about 46 days to
complete using a single thread or about 5.75 days in a machine of 8 threads. Note that
for the reliability assessment of the entire CPU, multiple fault injection campaigns
should be launched to evaluate different benchmarks and microarchitectural structures
for different sizes and policies etc.
According to [62], for estimations of high statistical significance the confidence level and
the error margin dominate in the calculation of the initial fault list population instead of
the duration of the benchmark or the size of the hardware structure. For example, for a
fault injection campaign that targets a hardware structure of 32K bits and runs a
benchmark of 1 billion cycles, Figure 10 presents the increase in the population of faults
when the error margin decreases and the confidence level remains stable at 99% and
99.8%, respectively. For the same example, Figure 11 illustrates the increase of the
fault population, when the confidence level increases, while the error margin remains
stable at 3% and 1%, respectively. From these three figures, it is obvious that the
population of faults explodes when the statistical significance increases (when the
confidence level increases and/or the error margin decreases).

Figure 10: Fault Population vs. Error Margin for Confidence Level 99% and 99.8%.

4147

16587

66347

239 295 373 487 663 955 14922653
5968

23873

95493

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Fa
ul

t P
op

ul
at

io
n

Error Margin

Conf. 99%

Conf. 99.8%

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 57

Figure 11: Fault Population vs. Confidence Level for Error Margin 3% and 1%.

To conclude, exhaustive fault injection at the microarchitecture level is infeasible for a
large combination of benchmarks, input datasets and hardware structures. So, reliability
engineers resort to statistical fault sampling to overcome this issue. However, the
reliability estimations of high statistical significance to ensure the final accuracy still
require very time consuming fault injection campaigns that last from days to months of
execution, in particular for long benchmarks. This thesis proposes techniques to reduce
the execution time of these campaigns without affecting the final accuracy.

2.2 MaFIN tool for early microarchitecture level reliability assessments
Accurate identification of the vulnerabilities of a microprocessor product, early in design
time, assists designers to carefully plan for reliability enhancements with low cost and
high power efficiency. On the contrary, inaccurate reliability estimation often results on
over-designed microprocessors and negatively impacts time-to-market (TTM) and
product costs. Thus, computer architects require tools for fast and accurate assessment
of a component’s reliability, so that they can decide for high level architectural trade-offs
early in the design process without resorting to worst-case and over-protecting
approaches.
As was previously presented in Sections 2.1.3 and 2.1.4, fault injection at the
microarchitecture level using performance simulators is a very efficient method for fast,
early and accurate reliability assessments. Unfortunately, there are not public available
tools to estimate reliability at the microarchitecture level using fault injection. Thus, we
have developed a tool called MaFIN (MARSSx86 Fault INjector) [27] [29] that is based
on a state-of-the-art x86-64 performance simulator (called MARSSx86 [14]).
MARSSx86 is widely used for performance measurements [63] [64] [65] and utilizes
PTLsim [13] to simulate the internal details of an x86-64 microprocessor model. PTLsim
has been used for many reliability measurements [49] [57] [66], as well as silicon
validation [67]. MARSSx86 is a full system, cycle-accurate simulator capable of
simulating a multicore processor with a detailed implementation of the front-end and the
back-end pipeline stages of a modern x86-64 architecture. In addition, MARSSx86
simulates the cache hierarchy, which we extended with the data arrays (to allow realistic
fault injections at all different cache levels L1, L2, L3), and implements several cache
coherency protocols. To provide full system capabilities MARSSx86 is coupled with
QEMU emulator [68].
Before selecting MARSSx86, we have considered a number of publicly available full
system simulators. A recent study [69] on the sources of modeling errors in full system

1067 1843 2653

9604

16587

23873

0

5000

10000

15000

20000

25000

95.0% 99.0% 99.8%

Fa
ul

t P
op

ul
at

io
n

Confidence level

Error Margin 3% Error Margin 1%

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 58

simulators summarizes the publicly available tools and their advantages: Flexus [70],
Gem5 [15], GEMS [71], MARSSx86 [14], OVPsim [72], PTLsim [13], Simics [73].
Among these full system simulators MARSSx86 [14] and Gem5 [15] are: cycle-accurate
(thus can allow per cycle granularity of fault injections at any modeled hardware
component), publicly available, and regularly maintained today by their developers. By
themselves, these properties can justify selecting MARSSx86 and Gem5 the most
suitable for our reliability studies.
As a first choice, we selected MARSSx86 as the kernel of our framework due to the
following reasons: (a) it accurately simulates an x86-64 microprocessor model, (b) its
full system simulation operation provides us with the capability to trace the propagation
of a low-level hardware fault, till its manifestation on the operating system- or on
application-level output, (c) the x86 functional model of MARSSx86 is more accurate
than other publicly available simulators and its memory system better models real
systems [65], (d) it uses QEMU that makes its models to resemble the functionality of a
real full system as close as possible compared to Gem5, and (e) its predecessor
(PTLsim) was previously used in many reliability and performance studies [49] [66].
In the next subsections, we will describe in detail the features and the implementation of
MaFIN (Section 2.2.1), as well as several reliability studies that were launched during
this thesis and used MaFIN as experimental tool (Section 2.2.2 to Section 2.2.4).

2.2.1 MaFIN features and implementation
In this section, we discuss in detail the MaFIN fault injection framework that was
developed during this thesis. Firstly, we will present the fault models and the fault effect
classification that are supported by MaFIN. Next, we will present in detail the
implementation of the fault injection framework.
MaFIN models exactly the three different fault types on microarchitectural array
components: transient, intermittent and permanent faults as well as their combinations.
These three types of fault models allow a wide analysis of the effect of different factors
that affect reliability: fabrication defects, environmental conditions, early-life failures,
device degradation and voltage scaling. Table 3 describes the three basic single bit fault
models.

Table 3: Fault models supported by MaFIN.
Fault model Description of fault model

transient

a storage element’s bit value is flipped in a clock cycle of the
program execution; the bit position and the clock cycle can be set
arbitrarily (randomly or directed). Note that, MaFIN does not
consider transient faults in combinational logic because
microarchitecture simulators do not model such logic accurately;
however, their effects would propagate to storage elements and
thus can be also implicitly studied with our tools

intermittent
a storage element’s bit value is set to ‘0’ or to ‘1’ starting at a clock
cycle and for an arbitrary number of clock cycles; the bit position,
the start time and the duration of the fault can be set arbitrarily
(randomly or directed)

permanent a storage element’s bit value is permanently set to ‘0’ or to ‘1’; the
bit position can be set arbitrarily (randomly or directed)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 59

Moreover, MaFIN supports fault injection experiments for multiple faults in many
different combinations to match both the temporal and the spatial behavior of faults in
hardware structures. Such combinations can include injection of (a) multiple faults of
any type and any duration in a single structure, (b) multiple faults on different structures.
Obviously, the type, the multiplicity and the locations of the faults used in a certain
injection campaign depend on the study that a user of MaFIN wishes to perform.
MaFIN injector classifies the outcomes of each fault injection simulation based on the
impact of the fault on the simulated system. The fault classification is fully configurable
and a user of the injector can modify the classes of the fault effects by changing the
parser of the injection logging information.
For all the reliability studies of this thesis, we modified the flowchart that was presented
in Figure 9 to analyze the results of the fault injection campaigns that are executed on a
microarchitectural simulator. Thus, we concluded to six categories of fault effects
(Masked, SDC, DUE, Timeout, Crash, Assert) that represent typical classes (and
corresponding terminology) used in the reliability literature. The definition for each of
these six classes is presented in Table 4. Finally, the decision tree that was used for all
the reliability estimation studies of this thesis in order to classify an injection run to one
of the six aforementioned categories is presented in Figure 12.
Note that after parsing the results of each fault injection campaign, the sum of the non-
masked categories (SDC, DUE, Timeout, Crash, Assert) represents the AVF that is the
final vulnerability estimation of the fault injection campaign (or equivalently the 100% –
Masked category). For example, if a fault injection campaign led to 64% Masked, 13%
SDC, 7% DUE, 11% Timeout, 2% Crash and 3% Assert, then the AVF estimation is
equal to 36% (the sum of the non-masked categories).

Figure 12: Flowchart of fault effect classification used in our reliability estimation studies.

Simulation
Result

Complete
Execution

Assertion
Raised

Corrupt
output?

Execution
time > 3x

MaskedTimeoutCrash Assert SDC DUE

YES

YES

YES

YES

YES

NO

NO

NO NO

NO
Exceptions?

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 60

Table 4: Fault effect classification.
Fault effect Description of fault effect

Masked

Fault injection runs in which the fault does not affect the execution
of the application (which is executed to its end). The result of an
injection with a masked fault is identical to that of a “golden” (fault-
free) simulation. This practically means that both the output of the
application and the population of exceptions generated during
execution of the fault injection run are identical to the “golden” run.

Silent Data
Corruption (SDC)

Fault injection runs for which the final output of the program that is
written to an output file is corrupted (differs from the output of the
fault-free execution) and no other indication of the fault has been
recorded (an abnormal event such as an exception, etc.).

Detected
Unrecoverable

Error (DUE)

Includes cases in which the simulated process completes
successfully, but with indications of errors. The baseline
microprocessor models do not include any error detection or
protection mechanisms and therefore, the only indication of an
error is the raising of ISA exceptions. Typically, reliability reports in
the literature divide DUEs in two sub-categories: false DUE (the
output is correct despite the error indication) and true DUE (output
is corrupted).

Timeout

Includes all of the cases that lead to either a Deadlock or a
Livelock. A Deadlock describes the condition in which the program
flow has been trapped (due to the injected fault) and cannot
commit any further instructions. A Livelock, on the other hand,
describes a situation where the program flow has been redirected
and continues the execution of instructions on random code areas
(again due to the fault). In order to monitor these cases, a
configurable execution timeout limit is used. In our experimental
results, the limit is three times the fault-free execution time of each
benchmark.

Crash

Includes any case that results in an unrecoverable situation and
stops the simulated program. Crashes involve all three levels of
the simulation, including a process crash, where the simulated
program was abnormally terminated, a system crash, where the
simulated full-system was unable to recover (typical cases of
kernel panic) as well as a simulator crash, where the simulator
process itself was abnormally terminated.

Assert
Includes all cases where the simulator reached, due to injected
fault, a (high level) condition which was unable to handle and an
assertion was raised stopping the simulation.

MaFIN injector is built on three main modules which form the backbone of any fault
injection campaign run on it. Figure 13 visualizes the flow of operation of MaFIN
injector, while the three main modules are defined below:

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 61

Figure 13: MaFIN injection framework.

• 1st module: In the first step, the Fault Mask Generator module produces the fault
masks that are used during the injection campaign. This is a one-step process for
each fault injection campaign that corresponds to a specific combination of
hardware structure and benchmark. The Fault Mask Generator can produce (by
user defined parameters) a random set of fault masks for any type of fault
(transient, intermittent, permanent) for the entire simulation time of the
benchmark.
A fault mask contains information about: (i) the processor core where the fault is
going to be injected (can be used in a multicore architecture), (ii) the
microarchitecture structure on which the fault will be injected, (iii) the exact bit
position of the injection, (iv) the exact simulation cycle or exact instruction on
which injection happens (for transient or intermittent), (v) the type of fault, and
finally (vi) the population of faults (single or multiple). All the generated fault
masks are stored in a “masks repository” from which the Injection Campaign
Controller picks fault masks to apply.

• 2nd module: Provided the “mask repository”, the actual fault injection campaign
can begin. The Injection Campaign Controller reads the masks from the
repository and sends injection requests to the Injector Dispatcher which is the
module that directly communicates with the MARSSx86 simulator. The interface
between the Injection Campaign Controller and the individual Injection
Dispatcher contains the transfer of user defined parameters concerning the
injection to the microarchitectural simulators and the transfer of the results of the
fault injection experiments from the microarchitectural simulator back to the

Fault Mask
Generator

Injection
Campaign
Controller

Parser

Injection
Dispatcher

MARSSx86

masks
repository

benchmarks

logs
repository

Timeouts SDC Masked DUE Crash Assert

benchmark parameters (cycles)

microarchitecture parameters
Step 1

Step 2

Step 3

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 62

Injection Campaign Controller. The last task of the Injection Campaign Controller
is to store the results of the injection in a “logs repository” which contains all log
files for further processing by the Parser.

• 3rd module: The third and last step of the fault injection campaign is the
processing of the injection results and the generation of the fault effects
classification. The processing of the fault injection results is performed by the use
of a Parser. The Parser is an easily reconfigurable script that classifies the faults
into the six final categories described in Table 4: Masked, SDC, DUE, Timeout,
Crash, and Assert. The classification results can be easily modified through small
changes of the Parser code according to the user’s needs as the input of Parser
for an alternative classification is not changed and is already stored into the log
files repository (no new fault injection campaign is required). For example, a
more course-grain classification can be used just separating “Masked” from
“Non-Masked” behavior. On the other hand, a more fine-grain classification may
break down the DUE category in false-DUE and true-DUE (a usual separation in
the reliability literature). Moreover, the user could move the results from the
Simulator Crash subcategory to the Assert category to group together faulty
behaviors attributed to simulator malfunctions due to the injected faults.

Microarchitectural simulators are developed for performance measurements of the
simulated model and their main objective is to save simulation time without modeling
details that are not necessary for performance assessments. As a result, performance
simulators may lack certain functionality necessary to perform accurate fault injection
experiments. For example, the functional and the control logic components are not
implemented in a way that resembles actual hardware structures. Therefore, injectors
like MaFIN focus on reliability studies in hardware structures which are modeled as
arrays in a performance simulator and thus the effect of faults on them can be
accurately measured. The injection of transient, intermittent or permanent fault on a
modeled storage bit of a microarchitectural simulator is largely equivalent to injecting it
on the actual hardware.
Unfortunately, some simulators do not model data arrays of caches (and other
structures such as queues, buffers); MARSSx86 is such a simulator. It models the
control information of cache memories (tags and control bits) but only keeps the actual
data and instructions at the main memory model of the simulation. Without the
implementation of the actual arrays for the data and the instructions on caches of the
different levels, fault injection is not feasible. To address this issue, we enhanced the
initial model of MARSSx86 with the data arrays in all cache levels (L1 data and
instruction cache, unified L2 cache and L3) to allow realistic fault injections at all
different cache levels. This modification of MARSSx86 introduced an approximate
~40% throughput degradation which depends on the memory intensiveness of a
program.
The development of MaFIN went through the following major tasks:

• Identification of existing structures; integration of the fault injector on these
structures.

• Modification of structures that lack of accuracy to perform a fault injection study
(missing bit arrays); integration of the fault injector on these structures.

• Enhancement of the x86 model of MARSSx86 with new components (performance
related) to fully resemble a modern design; integration of the fault injector on these
new structures.  Table 5 summarizes all enhancements made on MARSSx86 for
accurate measurements of the reliability of the hardware structures of x86

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 63

architectures. Note, that MaFIN supports fault injection to all hardware components
of Table 5.

Table 5: MaFIN enhancements and supported components.
Components MaFIN

Existing

Load/Store Queue
Issue Queue

Integer Register File
FP Register File
Caches – Tag

Data TLB – Valid, Tag
Instr. TLB – Valid, Tag

Branch Target Buffer – Uncond. indirect branches

Modified

L1D cache – Data arrays
L1I cache – Instruction arrays

L2 cache – Data arrays
L1I cache – Valid bit
L1D cache – Valid bit
L2 cache – Valid bit

Branch Target Buffer – Uncond. / Cond. direct branches

New Prefetcher in L1D cache
Prefetcher in L1I cache

To conclude, MaFIN tool is an accurate framework for early reliability assessments of
x86-64 microarchitectures using fault injection; it supports a large population of array-
based hardware structures that occupy the majority of chips’ area. For these reasons,
MaFIN was extensively used in many reliability related studies that are presented in
detail in the following subsections. More specifically, in Section 2.2.2 we evaluate the
reliability and performance tradeoffs for major hardware components of an x86-64
microprocessor across several important parameters of their design (size, associativity,
write policy, etc.). In Section 2.2.3, we use MaFIN in conjunction with GeFIN tool [30] to
evaluate in a differential way: (a) the reliability sensitivity of several microarchitecture
structures for the same ISA (x86-64) implemented on two different simulators, and (b)
the reliability of workloads and microarchitectures for two popular ISAs (ARM vs. x86-
64). Finally, in Section 2.2.4 we present some methods to accelerate the fault injection
campaigns using MaFIN as experimental vehicle based on the faults lifetime.

2.2.2 Reliability – Performance tradeoffs assessment study
Early decisions in microprocessor design require a careful consideration of the
corresponding performance and reliability implications of transient faults. The size and
organization of important on-chip hardware components such as caches, register files
and buffers have a direct impact on both the microprocessor resilience to soft errors and
the execution time of the applications. There are some critical design decisions for an
architect concerning the tradeoff of performance and reliability. For instance, how is
performance and reliability affected when the cache size is doubled? Are they going to
the same direction or are they diverging (e.g. performance gets better and reliability
gets worse)?

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 64

In [28], we present a complete fault injection analysis of transient faults which jointly
considers the interplay between reliability and performance of several important design
parameters on a modern out-of-order x86-64 architecture. To achieve this, we also
propose a simple and flexible fitness function that measures the aggregate effect of
such design changes on the reliability and the performance of the studied workload.
In this case study, we focus on five storage arrays of the microprocessor: the physical
register file, the cache memories (split L1 data and L1 instruction cache and the unified
L2 cache) and the load/store queue. We use MaFIN to execute statistical fault injection
and we modify a single parameter of the baseline microarchitecture (presented in Table
6) at a time, to monitor the impact of individual changes on the reliability of the structure
in conjunction with the performance of the application. All the variants of the baseline
model used in our experiments are illustrated in Table 7. In the first two columns, we
refer to the target structures and their microarchitectural features while in the last
column we list the alternative values that each feature had in our experiments.
Summarizing all our experiments, for all the components of our study we modify the
sizes of the hardware structures and assess the impact on reliability and performance.
Also, we study the impact of the different write policies (write back vs. write though) for
the first level and second level caches, while for the L1 caches (both instruction and
data), we extensively evaluate the impact of different associativity points as well as their
behavior in the presence or absence of L1 prefetchers.
We analyze the reliability of each different design point using statistical significant fault
injection campaigns on MaFIN. For each fault injection campaign, we ran 2000 fault
injection experiments corresponding to 2.88% error margin and 99% confidence level
according to [62] as was presented in Section 2.1.5. We classified the fault effects in six
categories (Masked, SDC, DUE, Timeout, Crash, Assert) that were defined in Table 4,
while the final reliability estimation was measured in FIT (failures in time) for all the
cases according to equation (5). Finally, we measured the performance for different
design points using the IPC (instructions per cycle) metric.

Table 6: Baseline configuration of study [28].
Structure Baseline Model
Pipeline OoO

Issue Queue 32 entries
Reorder Buffer 64 entries

Phys. Int. Reg File 256 registers
L1D cache 32KB, 64B, 4-way, write-back, stride pref.
L1I cache 32KB, 64B, 4-way, write-back, sequential pref.

Unified L2 cache 1MB, 64B, 16-way, write-back, w/o pref.
Unified LSQ 32 entries (16 load queue, 16 store queue)

Branch Predictor Tournament Predictor

Branch
Target
Buffer

Direct
branches 1K entries, 4-way

Indirect
branches 512 entries, 4-way

RAS 16 entries
Functional Units 2 Integer ALUs, 2 FP ALUs, 4 AGU

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 65

Table 7: Experimental setup used in study [28].
Structure Parameter Values

Phys. Register File Number of Registers 64/128/256

L1D cache

Size 16KB/32KB/64KB
Associativity 1/2/4/8
Write Policy WB/WT
Prefetcher enabled/disabled

L1I cache

Size 16KB/32KB/64KB
Associativity 1/2/4/8
Write Policy WB/WT
Prefetcher enabled/disabled

L2 cache Write Policy WB/WT
LSQ Number of entries 32/64/96

The reliability information along with the performance information of each design point
can help a microprocessor designer in making informed decisions about the hardware
protection mechanisms required for a particular configuration and workloads [53]. To
assist design decisions, we also define a simple yet flexible fitness function which
describes the combined effect on reliability and performance that certain design
parameters have:

In equation (9), FIT is the fraction of the failures in time (on average for all benchmarks)
that a hardware component with a specific configuration has over the one of the
baseline model (FIT=FITconf/FITbase); therefore, FIT >1 means that the studied
configuration has a higher FIT rate (smaller reliability) than the baseline configuration.
Similarly, IPC is the fault free committed instructions per cycle (on average for all
benchmarks) with a specific hardware configuration over the one with the baseline
hardware configuration (IPC=IPCconf/IPCbase); therefore, IPC>1 means that the studied
configuration is faster than the baseline. Parameter a is designer-defined (taking values
from 0 to 1) and represents a wide range of designs that put more emphasis on the
reliability or on the performance or balances both. The smaller the value of a, the more
importance is given to performance (IPC). On the contrary, the larger the value of a, the
more importance is given to reliability. If a equals 0.5, then the same importance is
given to both performance and reliability. Consequently, every fitness value of equation
(9) represents a design point corresponding to an experimental setup that can be either
better (in terms of reliability and performance) than the baseline configuration (fitnessconf
> fitnessbase) or worse (fitnessconf < fitnessbase), where fitnessbase = 1.00.
Performance and reliability evaluations are workload dependent [43] [53] and a careful
selection of benchmarks is vital for the accuracy of a study. For this study, we carried
out fault injection campaigns during the execution of 7 benchmarks (djpeg, search,
corners, edges, sha, qsort, smooth) from MiBench suite. We selected MiBench

fitness = a × 1
FIT

+(1 - a) × IPC (9)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 66

benchmarks suite for our evaluation because it consists of programs from different
application domains that are very similar in their instruction mixes and instruction
throughput with SPEC2006 benchmarks [74]. Their shorter execution times compared
to SPEC2006 [74] [75] (standard benchmarks for performance studies) make them very
suitable for fault injection and reliability studies and for this reason they have been
extensively used in such a context [58], [60], [76], [77].
Firstly, we present the reliability estimation results of the analysis of [28] using MaFIN
as experimental tool, when we change different microarchitectural features; these
features represent different design decisions. In the bars from Figure 14 to Figure 24,
we present the fault effect classification on average and per benchmark for each
parameter of the hardware components (size in all components, associativity of L1
caches, write policy of all caches and behavior of L1 caches with or without prefetcher).
Figure 14 to Figure 17 show the faulty behavior classification for these four structures
per benchmark and on average for the 7 benchmarks. In the two L1 caches (Figure 14
and Figure 15), there are some benchmarks with opposite behavior but the average
trend shows an increase of the percentage of masked class for larger sizes: the
average masked class of L1 Data cache increases by 7 percentile points and the one of
L1 Instruction cache increases by 5 percentile points from 16KB to 64KB. In the register
file (Figure 16), all benchmarks follow the same trend featuring higher percentage of
masked class when the register file contains more registers and the average
percentage of masked class of register file increases by 7 percentile points from 64 to
256 registers. The LSQ (Figure 17) features a smaller but still important 2 percentile
points increase in the percentage of masked category from 32 to 96 entries.

Figure 14: Faults classification in L1 Data cache (sizes).

60%

65%

70%

75%

80%

85%

90%

95%

100%

64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16

djpeg search smooth edges corners sha qsort avg

L1 Data Cache across different size (KB)

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 67

Figure 15: Faults classification in L1 Instruction cache (sizes).

Figure 16: Faults classification in Physical Register File (sizes).

Figure 17: Faults classification in LSQ (sizes).

60%

65%

70%

75%

80%

85%

90%

95%

100%

64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16

djpeg search smooth edges corners sha qsort avg

L1 Instruction Cache across different size (KB)

Masked SDC DUE Timeout Crash Assert

60%

65%

70%

75%

80%

85%

90%

95%

100%

25
6

12
8 64 25
6

12
8 64 25
6

12
8 64 25
6

12
8 64 25
6

12
8 64 25
6

12
8 64 25
6

12
8 64 25
6

12
8 64

djpeg search smooth edges corners sha qsort avg

Integer Register File across different size (number of regs)

Masked SDC DUE Timeout Crash Assert

60%

65%

70%

75%

80%

85%

90%

95%

100%

96 64 32 96 64 32 96 64 32 96 64 32 96 64 32 96 64 32 96 64 32 96 64 32

djpeg search smooth edges corners sha qsort avg

LSQ across different size (number of LSQ entries)

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 68

In the same concept, Figure 18 and Figure 19 present the reliability results when we
change the associativity parameter of the L1 Data and L1 Instruction cache,
respectively. In Figure 18, the average percentage of masked category of L1 Data
cache is almost insensitive to associativity while the percentage of masked category of
only two benchmarks (djpeg and smooth) features changes for different associativity.
On the other hand in Figure 19, the masked category of L1 Instruction cache increases
by 6 percentile points from a direct-mapped to an 8-way set associative cache (for the
same size of 32KB).

Figure 18: Faults classification in L1 Data cache (associativity).

Figure 19: Faults classification in L1 Instruction cache (associativity)

Figure 20 to Figure 22 show the results of all the caches, when we change their policy
(write back and write through). In Figure 20, the average percentage of masked
category in L1 Data cache increases by 6 percentile points when the write through
policy is used instead of the write back. In Figure 21, the L1 Instruction cache features
almost the same behavior (equivalent percentage of masked category) for both policies
since blocks that are evicted by instruction caches are never dirty and thus cannot

60%

65%

70%

75%

80%

85%

90%

95%

100%

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

djpeg search smooth edges corners sha qsort avg

L1 Data Cache across different associativity (number of ways)

Masked SDC DUE Timeout Crash Assert

60%

65%

70%

75%

80%

85%

90%

95%

100%

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

djpeg search smooth edges corners sha qsort avg

L1 Instruction Cache across different associativity (number of ways)

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 69

propagate the fault to lower levels of memory hierarchy. In Figure 22, the write through
unified L2 cache has higher masking probability than the write back L2 cache (about 2
percentile points on average). A faulty cache line in L2 Cache that is exclusively
allocated to data (not instruction) may propagate the fault to the lower level of memory
hierarchy only if a write back policy is used.
Finally, in Figure 23 the average percentage of masked class of L1 Data cache with
prefetcher is very close to the one without prefetcher. In Figure 24, the average
percentage of masked class of L1 Instruction cache increases by 5 percentile points
when prefetecher is enabled.

Figure 20: Faults classification in L1 Data cache (write policies).

Figure 21: Faults classification in L1 Instruction cache (write policies).

60%

65%

70%

75%

80%

85%

90%

95%

100%

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

djpeg search smooth edges corners sha qsort avg

L1 Data Cache across different write policy

Masked SDC DUE Timeout Crash Assert

60%

65%

70%

75%

80%

85%

90%

95%

100%

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

djpeg search smooth edges corners sha qsort avg

L1 Instruction Cache across different write policy

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 70

Figure 22: Faults classification in L2 Unified cache (write policies).

Figure 23: Faults classification in L1 Data cache (prefetcher).

Figure 24: Faults classification in L1 Instruction cache (prefetcher).

60%

65%

70%

75%

80%

85%

90%

95%

100%

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

djpeg search smooth edges corners sha qsort avg

L2 Unified Cache across different write policy

Masked SDC DUE Timeout Crash Assert

60%
65%
70%
75%
80%
85%
90%
95%

100%

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

djpeg search smooth edges corners sha qsort avg

L1 Data Cache with and without a prefetcher

Masked SDC DUE Timeout Crash Assert

60%

65%

70%

75%

80%

85%

90%

95%

100%

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

djpeg search smooth edges corners sha qsort avg

L1 Instruction Cache with and without a prefetcher

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 71

Next, we present the results of our proposed fitness function to quantify the effect of
modifications in microarchitectural parameters both in terms of performance and
reliability. Assigning different values to parameter a, we adjust the impact of reliability
and performance in the design decisions. Table 8 tο Table 12 present the values of the
fitness function for all the components of our study and for three different values of
parameter a: 0.25 (design focused on performance), 0.50 (design balanced between
reliability and performance), 0.75 (design focused on reliability). Moreover, for each
microarchitectural configuration under study, Table 8 tο Table 12 also show the FIT and
IPC on average for all benchmarks (second row on each table). Individual benchmarks
can be similarly studied. The fitness function values are normalized to the baseline
configuration fitness (which has fitness value equal to 1.00). The “best” fitness values
for different design priorities (the three a values) are highlighted with shaded cells.
Fitness values greater than 1 indicate a design point which improves the fitness
compared to the baseline model.
Finally, from the calculated FIT (Table 8 tο Table 12) we observe that the most
vulnerable component is the L2 cache with 2318.9 FIT for the baseline model (Table 12)
and the most reliable is the LSQ with 0.5 FIT for the baseline model (Table 11). These
results can be explained by the large and the small size of the L2 cache and the LSQ,
respectively. Moreover, we can conclude to some general observations concerning the
dependence of the reliability with the different microarchitectural features:

• Size: All structures follow the trend to feature less FIT rates (more reliable) for
smaller sizes because the size of a structure is more dominant than the
vulnerability factor (percentage of not masked categories) in the computation of
FIT. Especially, the highest reliability (the smaller FIT rate) is observed for 16KB
L1 Data cache (251.1 FIT), 16KB L1 Instruction cache (159.4 FIT), physical
register file of 64 registers (4.3 FIT) and LSQ of 32 entries (0.5 FIT). The trend of
both first level caches is similar to the reported findings in [53], which are based
on ACE analysis and use SPEC2000 benchmarks [75].

• Caches Associativity: In general, the most reliable is the 2-way set associative
L1 Data cache (346.4 FIT) and the 8-way set associative L1 Instruction cache
(193.6 FIT).

• Caches Write Policy: Write through caches are more reliable than write back
caches in all levels of memory hierarchy. In case of write through cache, a
transient fault hitting a bit in the cache can only be propagated to the processor
when the block is read before its eviction. However, in a write back cache the
fault can be propagated to the processor or to the lower levels of memory
hierarchy when the block is evicted and contains dirty data. The write through
caches feature less FIT than write back caches: 240.4 FIT for L1 Data, 264.0 FIT
for L1 Instruction and 1390.1 FIT for unified L2.

• First Level Cache Prefetchers: The L1 Data cache with prefetcher (405.4 FIT)
and the one without prefetcher (392.3 FIT) have almost the same reliability since
their FIT are close. The L1 Instruction cache is more reliable with enabled
prefetcher because it features less failures in time (278.8 to 413.1 FIT with and
without prefetcher respectively). A prefetcher can occasionally reduce the
residency time of a cache line (by replacing it) or fill a cache line with useless
data that is not used by the processor. Our results show that the presence of a
prefetcher enhances only L1 Instruction cache’s reliability.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 72

Similar to [28], in [94] the authors presented a detailed study to evaluate the reliability –
performance tradeoff assessments between three different commercial CPUs (different
ISAs and microarchitectures) and one GPU that execute the same benchmarks.

Table 8: FIT, IPC and Fitness values for the L1 Data cache.

Table 9: FIT, IPC and Fitness values for the L1 Instruction cache.

Table 10: FIT, IPC and Fitness values for the Integer Physical Register File.
Reg.
File

Baseline
256 regs.

size
64regs. 128regs.

FIT
IPC

4.7
0.7932

4.3
0.7057

4.6
0.8097

a Fitness
0.25 1.000 0.937 1.023
0.5 1.000 0.985 1.026

0.75 1.000 1.032 1.028

Table 11: FIT, IPC and Fitness values for the LSQ.

LSQ Baseline
32 entries

size
64 entries 96 entries

FIT
IPC

0.5
0.7932

0.6
0.7889

0.7
0.8025

a Fitness
0.25 1.000 0.973 0.962
0.5 1.000 0.951 0.912

0.75 1.000 0.929 0.863

Table 12: FIT, IPC and Fitness values for the L2 cache.
L2 Baseline WB Policy WT
FIT
IPC

2318.9
0.7932

1390.1
0.7694

a Fitness
0.25 1.000 1.145
0.5 1.000 1.319

0.75 1.000 1.494

L1D Baseline

WB, 4-way
prefetcher,32KB

policy

 WT

Associativity

1-way 2-way 8-way

prefetcher

w/o prefetcher

size

 16KB 64KB
FIT
IPC

405.4
0.7932

240.4
0.7606

366.3
0.7554

346.4
0.7682

383.7
0.7541

392.3
0.8569

251.1
0.7590

637.4
0.8043

a Fitness
0.25 1.000 1.141 0.991 1.019 0.977 1.069 1.121 0.919
0.5 1.000 1.323 1.030 1.069 1.004 1.057 1.286 0.825

0.75 1.000 1.504 1.068 1.120 1.030 1.045 1.450 0.731

L1I Baseline

WB, 4-way
prefetcher,32KB

policy

WT

Associativity

1-way 2-way 8-way

prefetcher

w/o prefetcher

size

 16KB 64KB

FIT
IPC

278.8
0.7932

264.0
0.7606

339.7
0.7554

300.5
0.7682

193.6
0.7541

413.1
0.8569

159.4
0.7590

427.3
0.8043

a Fitness
0.25 1.000 0.983 0.919 0.958 1.073 0.979 1.155 0.924
0.5 1.000 1.007 0.887 0.948 1.195 0.878 1.353 0.833

0.75 1.000 1.032 0.854 0.938 1.318 0.776 1.551 0.743

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 73

2.2.3 Differential studies on microarchitectural fault injectors
Microarchitecture level fault injection tools that are developed on performance
simulators (like MaFIN) are suitable for early reliability estimations as presented in detail
in Section 2.1.3. During the last years, the development and the use of
microarchitectural simulators in computer architecture exploded, giving computer
architects the opportunity to model a great variety of different ISAs or even different
microarchitectures for the same ISA. However, these tools are developed by
programmers using high level description languages to describe all the details of the
real hardware chips for performance studies, without modeling details that can influence
the simulation time and are not necessary for performance assessments. As a result,
some performance simulators may lack certain details necessary to perform accurate
fault injection experiments.
Consequently, some important missing aspects concerning the sensitivity of the
reliability assessments depending on the microarchitecture, the ISA and the simulator
implementation still exist. In [29], we reveal some important insights concerning the
reliability estimations using microarchitectural fault injection. The findings of this study
can give answers to the following important questions:

1. What are the characteristics of a microarchitectural simulator that make it more
suitable as a substrate for fault injection studies?  

2. How sensitive is the vulnerability of hardware structures to the ISA as well as the
microarchitecture (simulator model or hardware structures configurations) for a
given workload?  

The concept of study [29] is to investigate the limits of microarchitecture level fault
injection for x86 and ARM ISAs conducting a differential analysis on two comprehensive
fault injector tools supporting the same fault models and running the same workloads.
Such a differential analysis can bring insights on the sensitivity of the vulnerability of
hardware structures and workloads to the underlying microarchitecture as well as the
ISA of the microprocessor. It can also identify common trends and diverging reliability
reports in the two tools which can lead to informed design decisions for error protection.
We explain the common trends and the sources of difference when diverging reliability
reports are provided by the tools using benchmarks runtime statistics.
The combination of the two fault injection frameworks can also serve many different
studies in the same differential context by injecting hardware faults on actual
microarchitecture structures (all storage arrays: caches, register files, buffers, queues –
not only on architecturally visible points) to better assist design decisions for error
protection of individual components.
The microarchitecture-level fault injection tools that were used in this differential study
[29], called MaFIN [27] [29] and GeFIN [30] (for MARSSx86-based and Gem5-based
Fault Injector, respectively), are built on the two most popular microarchitectural
simulators (MARSSx86 [14] and Gem5 [15]) and the two popular ISAs (x86 and ARM).
We selected MARSSx86 and Gem5 because they are: cycle-accurate (thus can allow
per cycle granularity of fault injections at any modeled hardware component), publicly
available, and regularly maintained today by their developers. By themselves, these
properties can justify the selection of MARSSx86 and Gem5 suitable for reliability
studies, but also:

• They are widely adopted by the computer architecture community. Both
simulators are recent and very popular. Their increased popularity is mainly due

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 74

to their accurate support of important ISAs, their detailed and configurable model
of the memory system [65] and check-pointing support.

• Their combination supports differential reliability studies. The combination of
MARSSx86 and Gem5 supports the purposes of our work – reliability studies on
different ISAs and reliability studies on the same ISA on different simulators. In
particular:

a. Both MARSSx86 and Gem5 support the x86 ISA and thus facilitate
comparison of microarchitectural fault injections in the hardware
components of an x86 microprocessor.

b. Gem5 supports several ISAs; ARM and x86 are among the best supported
and thus a comparative study of these two popular ISAs can be
performed.

c. Both MARSSx86 and Gem5 have a fully configurable model (pipeline
depths and widths, structures sizes and organizations, etc.)  

d. MARSSx86 models both a high-performance OoO pipeline and a simple
in-order (Atom-like) pipeline; a reliability assessment study between these
two models can be implemented (the study of [29] focuses on the OoO
model to compare with the corresponding one of Gem5).
  

An important difference between MARSSx86 and Gem5 is that they require different
development efforts to support fault injection at the microarchitecture level. Gem5
already includes all key microarchitecture components that model hardware arrays on
which faults of any duration and severity can be injected. MARSSx86, on the other
hand, does not contain important arrays needed for fault injection: data/instruction
arrays of caches at all levels. Details about the modifications that were made on the
original model of MARSSx86 to implement MaFIN were presented in Section 2.2.1. 

Both MaFIN and GeFIN injectors have been developed modularly using exactly the
same principles and employ the check-pointing features of the simulators to ensure that
faults affect only the execution of the benchmark being studied as well as to speed up
the injection campaigns. The backbone of both simulators consists of the same three
modules as were presented in Figure 13: a fault mask generator, an injection campaign
controller and a parser of the logged information. The tools allow studies on the full
range of fault models: transient, intermittent and permanent, as well as studies with
multiple faults injected in: (i) different bits of the same entry of a hardware structure, (ii)
different entries of a structure, (iii) different hardware structures simultaneously, (iv) all
combinations of the above. Finally, the parsers of both injectors (for the purposes of our
differential study) were modified to classify the fault effects in the same six fault effect
categories (Masked, SDC, DUE, Timeout, Crash, Assert) as were defined in Table 4.
Table 13 summarizes the state in microarchitectural fault injectors and puts the new
contributions of [29] study in this context. The combination of the two new
microarchitectural fault injectors used for the needs of our differential study cover
several important missing aspects of the research area.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 75

Table 13: State-of-the-art and contributions of [29] in fault injection techniques on
microarchitectural simulators.

Aspect State-of-the-art Our differential
work [29]

Injection framework that
targets all major

microarchitecture structures
None1

Both MaFIN and
GeFIN: all major

structures
Comparison between ISAs

(x86 vs. ARM) None GeFIN
(x86 vs. ARM ISA)

Comparison between
Out-of-Order

microarchitectures
None MaFIN and GeFIN

Comparison between
simulators for same ISA None MaFIN and GeFIN

(for x86 ISA)

Full system fault injection
[15]: Gem5;

[48]: M5;
[78] [79]: GEMS

Both MaFIN and
GeFIN are full

system injectors
New microarchitectural

structures added None MaFIN

Transient, intermittent,
permanent fault models

[48] (not all
hardware structures)

MaFIN and GeFIN:
all fault models

The three different configurations of MARSSx86 and Gem5 on which we performed our
experimental study and analysis are summarized in Table 14. MARSSx86 simulates
x86 ISA while the x86 and ARM ISAs of Gem5 have been used. Both MaFIN and
GeFIN injectors can be easily modified for other values of the parameters shown in
Table 14. Our main focus in setting the parameters was to keep the sizes and
organizations of the hardware structures the same (or as close as possible) in the two
simulators.
For all the fault injection campaigns of our differential study, we injected 2000 transient
faults that correspond to 2.88% error margin and 99% confidence level (according to
[62] as described in Section 2.1.5). Furthermore, we used 10 benchmarks from the
MiBench suite [74] (djpeg, search, smooth, edge, corner, sha, fft, qsort, cjpeg, caes).
From Figure 25 to Figure 29, we present the results of all the fault injection campaigns
of [29] targeting the Integer physical register file (Figure 25), the Load/Store Queue
(Figure 26), the L1D cache (Figure 27), the L1I cache (Figure 28) and the second level
cache (Figure 29). Each graph shows for a particular component the faulty behavior
classification (using the classes of Table 4) for each of the 10 benchmarks and on the
average. For each benchmark the graphs show three stacked bars (each bar
corresponds to a fault injection campaign): one for the execution on the MaFIN-x86
injector (M-x86 bar), one on the GeFIN-x86 configuration (G-x86) and one on the
GeFIN-ARM configuration (G-ARM). For the average case, the same three bars are
shown at the rightmost end of each diagram.

1[58]: integer register file and ROB only; [48]: no injections supported in any cache level.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 76

Table 14: Simulators configurations for [29] study.

Parameter
Simulator / ISA

MARSS/x86 Gem5/x86 Gem5/ARM
Pipeline OoO OoO OoO

Physical register file
256 int; 256 FP;

16 store;
24 branch

256 int; 128 FP 256 int; 128 FP

Issue Queue entries 32 32 32

Load/Store
Queue entries 32 (unified) 16 (load)/

16 (store)
16 (load)/
16 (store)

ROB entries 64 40 40

Functional units
2 int ALUs;
2 FP ALUs;

4 AGUs

6 int ALUs;
2 complex int

ALUs;
4 FP ALUs,

2 FP mul/div,
4 SIMD

2 int ALUs;
1 complex int

ALUs;
2 FP & SIMD

L1 Instruction Cache
32KB, 64B line,

128 sets,
4-way,

write back

32KB, 64B line,
128 sets,

4-way,
write back

32KB, 64B line,
128 sets, 4-way,

write back

L1 Data Cache
32KB, 64B line,

128 sets,
4-ways,

write back

32KB, 64B line,
128 sets,
4-ways,

write back

32KB, 64B line,
128 sets, 4-ways,

write back

L2 Cache
1MB, 64B line,

1024 sets,
16-way,

write back

1 MB, 64B line,
1024 sets,

16-way,
write back

1 MB, 64B line,
1024 sets,

16-way,
write back

Branch Predictor Tournament
predictor

Tournament
predictor

Tournament
predictor

Branch Target Buffer

direct branches
BTB (4-way,
1K entries),

indirect branches
BTB (4-way,
512 entries)

conditional and
unconditional
branches BTB

(direct-mapped,
2K entries)

conditional and
unconditional
branches BTB

(direct-mapped,
2K entries)

RAS 16 entries 16 entries 16 entries

The first observations from the average vulnerability reports at the rightmost bars of
each diagram reveal the following:

• The largest average case vulnerability differences are observed between the two
x86-based configurations (MaFIN-x86 and GeFIN-x86): 7.20 percentile points in
the L1D cache, 3.61 percentile points in the L1I cache, and 1.36 percentile points
in the L2 cache.

• On the contrary, the vulnerability differences between the two ISAs (x86 and
ARM) on GeFIN are much smaller in all components. In the L1D and L2 cache

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 77

the differences between GeFIN-x86 and GeFIN-ARM configurations are only
0.55 and 0.13 percentile points respectively, while in the L1I cache the average
difference is 2.03 percentile points.

Next, we analyze in more detail the results of the classification shown in the diagrams
both on a per-component basis to identify consistent trends and on a per-benchmark
basis to interpret diverging behaviors. We discuss potential (microarchitecture or ISA
related) reasons that explain the differences between the two tools providing execution
statistics for the benchmarks.

Integer Register File and LSQ:
The Integer Register File (Figure 25) and the LSQ (Figure 26) are the least vulnerable
components in all cases (benchmark, ISA and microarchitecture configuration). The
vulnerability (sum of all non-masked classes) of the Register File and the LSQ for each
individual benchmark and on the average across all benchmarks is almost always less
than 3% for all three configurations. This is a consistent behavior that is also compatible
to previous literature reports. The two components hold data of relatively short lifetime
which explains the small vulnerability to transient faults.

• Remark 1 – There is a consistent small difference of ~1 percentile point between
the MaFIN and GeFIN report for the LSQ vulnerability (LSQ in MaFIN is always
slightly more vulnerable than the GeFIN’s LSQ). The reason for this slight
difference is that MARSSx86 implements a unified queue for loads and stores
while Gem5 implements different queues and only the store queue holds data.
Therefore, our injections on GeFIN’s LSQ affect only stores while in MaFIN both
queues are affected by faults.

• Remark 2 – Both the Integer Register File and the LSQ have mixed faulty
behaviors in the non-masked classes. Faults in both components in most cases
can lead to any of the five non-masked faulty behaviors (SDC, DUE, Timeout,
Crash, and Assert). The exact numbers in each class of course depend on the
benchmark.

Figure 25: Faulty behavior classification for the integer physical register file.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

djpeg search smooth edge corner sha fft qsort cjpeg caes avg

Integer Physical Register File

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 78

Figure 26: Faulty behavior classification for Load/Store Queue (data field).

L1 Data Cache:
In general, the first-level cache memories (L1D cache in Figure 27 and L1I cache in
Figure 28) are the most vulnerable components in all cases (benchmark, ISA and
microarchitecture configuration).
The L1D cache vulnerability varies significantly among benchmarks and between ISAs
and microarchitectures. Its vulnerability can be as low as 2.5% (search benchmark in
the MaFIN-x86 setup) and as high as 47.3% (cjpeg benchmark in the GeFIN-x86
setup). On average across benchmarks the L1D cache vulnerability is less than 15% in
MaFIN-x86 while in both ISAs of GeFIN (GeFIN-x86 and GeFIN-ARM) it is more than
22%. The general trend in most (but not all) individual benchmarks is that MaFIN
reports a less vulnerable L1D cache than GeFIN.

• Remark 3 – The significant ~7 percentile point difference between MaFIN and
GeFIN vulnerability reports on the L1D cache can be attributed to two main
differences between the two microarchitectural simulators:
The MARSSx86 CPU model uses more aggressive approaches than Gem5 (and
other simulators) for loads issue. Load instructions are issued as soon as possible
and before aliasing with earlier stores is determined. For this reason, the number
of executed loads in MaFIN is significantly larger than in GeFIN although (for each
benchmark) the number of committed loads is very close to each other. This
significant difference leads to extra masking of the faults in L1D on MaFIN and
along with the previous point consistently explains the L1D cache vulnerability
differences between the two tools. For example, in fft, cjpeg, caes (the
benchmarks with largest difference in L1D between MaFIN-x86 and GeFIN-x86)
MaFIN issues 2.6x, 4.7x, 2.0x more loads than GeFIN; this confirms the general
trend.
MARSSx86 employs the QEMU hypervisor for system functions as well as for
unimplemented instructions. When QEMU is invoked, the cache of the
microarchitecture is not accessed (memory accesses go to the main memory) –
for this reason faults in the L1D cache are masked and do not affect the operation
when QEMU runs (this is not the case in the L1I cache; see below). Gem5 on the

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
-x
86

G
-x
86

G
-A
R
M

M
-x
86

G
-x
86

G
-A
R
M

M
-x
86

G
-x
86

G
-A
R
M

M
-x
86

G
-x
86

G
-A
R
M

M
-x
86

G
-x
86

G
-A
R
M

M
-x
86

G
-x
86

G
-A
R
M

M
-x
86

G
-x
86

G
-A
R
M

M
-x
86

G
-x
86

G
-A
R
M

M
-x
86

G
-x
86

G
-A
R
M

M
-x
86

G
-x
86

G
-A
R
M

M
-x
86

G
-x
86

G
-A
R
M

djpeg search smooth edge corner sha fft qsort cjpeg caes avg

LSQ

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 79

other hand handles the complete system operation internally and does not employ
a hypervisor so this type of masking does not happen.
However, in qsort and smooth the expected higher masking in MaFIN is not
observed. For qsort GeFIN-x86 has smaller L1D read hit rate than in MaFIN-x86
(by 0.64x), while GeFIN-x86 has higher L1D write hit rate than MaFIN-x86 (1.91x
in qsort and 1.57x in smooth); this means that in MaFIN-x86 for these benchmarks
faults in L1D are less likely to be over-written and thus MaFIN-x86 is more
vulnerable than GeFIN-x86.

• Remark 4 – The prevailing faulty behavior in the L1D cache is the SDC class
(intuitively expected) which leads to corrupted benchmark final output. In all
benchmarks and the average case the SDC class is from 3x to 5x larger than the
sum of all four other non-masked classes.  

• Remark 5 – The most remarkable differences between the different ISAs (GeFIN-
x86 and GeFIN-ARM) for the L1D cache are observed in fft, qsort and cjpeg. The
ARM model has 2x more store instructions than that of x86 in the fft benchmark,
while in cjpeg the L1D write misses of the ARM model are 6x more than x86
model, which naturally leads to more vulnerability for the x86 model for these two
benchmarks. The GeFIN-x86 model in qsort follows a completely different memory
access pattern which reports significantly more L1D replacements (4x) than
GeFIN-ARM. This indicates that the ARM model is more vulnerable for qsort than
the x86 model.  

Figure 27: Faulty behavior classification for L1D cache (data arrays).

L1 Instruction Cache:
The L1I cache vulnerability on the other hand (Figure 28), is less variable across
benchmarks than the L1D cache but still it can be as low as 5.3% (smooth benchmark
in the MaFIN-x86 setup) and as high as 34.5% (caes benchmark in the MaFIN-x86
setup). On average across benchmarks, L1I cache vulnerability is around 19% in
MaFIN-x86 while in both ISAs of GeFIN (GeFIN-x86 and GeFIN-ARM) it is more than
14%. Here, the general trend in most (but not all) individual benchmarks is that MaFIN
reports a more vulnerable L1I cache than GeFIN (the opposite trend to L1D reports).  

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

djpeg search smooth edge corner sha fft qsort cjpeg caes avg

L1D cache

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 80

• Remark 6 – Unlike L1D, the QEMU hypervisor does not affect the behavior of L1I
cache. QEMU may be invoked during decode stage only, which is after fetching
(and accessing of L1I). This means that any faults residing in the L1I cache can be
propagated without disturbance by the hypervisor.  On the other hand,
MARSSx86 and Gem5 have differences in the implementation of their front-end
that can lead to different prediction accuracy. Both simulators implement a
Tournament predictor, consisting of a local and a global predictor. A meta-
predictor takes the final decision based on the accuracy of the local and global
ones. The most noticeable difference between MARSSx86 and Gem5 is that the
final prediction is bound to the branch address in the case of MARSSx86 and to
the global branch history in the case of Gem5. Branch address is not taken into
account at all on the decision of Gem5 global predictor as well. This prediction
scheme difference leads to different memory access patterns and L1I cache state;
this can explain the small differences in the masked category between MaFIN-x86
and GeFIN-x86. Unfortunately, there is no consistent trend for all benchmarks. For
instance, in edge, corner and sha benchmarks MaFIN-x86 has by 0.83x, 0.82x,
0.68x less mispredictions than GeFIN-x86 which implies that GeFIN-x86 brings
more L1I blocks from lower levels, increasing the probability to overwrite faults.

• Remark 7 – The fft, qsort, caes are the benchmarks with difference more than 5
percentile points between GeFIN-x86 and GeFIN-ARM. For these benchmarks the
replacements of L1I blocks in ARM model are 4.2x, 2.0x, and 7.2x more than in
the x86; this can explain a more vulnerable x86 behavior than the ARM model.

• Remark 8 – Figure 28 shows that SDCs in the L1I cache are less frequent than in
the L1D cache. The prevailing non-masked behavior in L1I cache in the MaFIN
injector is the Assert class, while in the GeFIN injector the Crash class prevails.
This difference is because MARSSx86 simulator includes a significantly larger
number of assert instructions checking points in its code which are raised during
faulty executions of the benchmarks and stop the simulation abnormally. On the
other hand, assertion checking in Gem5 is compact and less frequent and for this
reason injected faults eventually lead to crashes.  

Figure 28: Faulty behavior classification for L1I cache (instruction arrays).

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

djpeg search smooth edge corner sha fft qsort cjpeg caes avg

L1I cache

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 81

Second-Level Cache (L2):
The L2 cache memory vulnerability (Figure 29) is in all cases (benchmark, ISA and
microarchitecture configuration) a few percentile points higher than the Register File
and LSQ and significantly lower than both first-level caches. On average, it ranges
between 6% and 7% for the three ISA and microarchitecture combinations. The
difference in the L2 cache vulnerability between MaFIN and GeFIN is only about 1
percentile point which shows a consistent behavior between the two tools.

• Remark 9 – Since L2 is unified the vulnerability reports show a balance between
SDCs and other abnormal classes (Crashes etc.).  

• Remark 10 – Vulnerability differences larger than 5 percentile points are observed
in cjpeg and caes benchmarks between MaFIN-x86 and GeFIN-x86 for the L2
cache. In cjpeg GeFIN-x86 has 1.2x more L2 write misses than MaFIN-x86, while
in caes GeFIN-x86 has 1.54x more write hits than MaFIN-x86 increasing the
probability that a fault is overwritten.

• Remark 11 – Concerning the ISA differences between GeFIN-x86 and GeFIN-
ARM, djpeg is the only benchmark with difference larger than 5 percentile points.
In this case, the x86 model has 0.5x less L2 read hits and 6.8x more L2 write
misses than the ARM model, making this benchmark less vulnerable for the x86
architecture.

Figure 29: Faulty behavior classification for L2 cache (data arrays).

2.2.4 Acceleration of fault injection campaigns based on the faults lifetime
Despite the fault injection accuracy, execution time remains the major drawback of this
technique considering that many campaigns must be completed early in design phase,
for different components, microarchitectural characteristics, protection mechanisms and
workloads. Except for leveraging parallelism of modern computing systems to run
simultaneously multiple campaigns in multiple threads and workstations, statistical fault
injection is also used to deliver quick and accurate estimations. Using lower confidence
level and higher error margin, far less experiments could be executed in expense of
accuracy.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

djpeg search smooth edge corner sha fft qsort cjpeg caes avg

L2 cache

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 82

In [31], we extend the baseline mode of an out-of-order cycle accurate full-system x86-
64 fault injection framework (MaFIN) with two extra modes of operation in order to
speed up the statistical fault injection campaigns at the microarchitecture level. The
common characteristic of the two proposed techniques of [31] is that they are
implemented after the actual injection of the fault in the hardware structure during its
lifetime. In the first mode, an injection experiment is forced to completion when the fault
is overwritten before it is read and thus we classify it early and accurately as Masked. In
the second mode, an injection experiment is forced to completion before the end of the
application in two cases: (a) when the fault is overwritten before it is read, or (b) when
an x86 instruction reads the fault from the faulty entry and reaches the commit stage.
The second method provides a tradeoff between speedup and accuracy in order to
deliver a fast but less accurate solution in the early reliability estimation problem. Next,
we will describe in details the proposed methods to accelerate fault injection runs after
the actual injection of the fault.
For the needs of our experiments we used MaFIN framework [29] and we modified it to
support fault injection in three different operation modes: Full Execution (Baseline),
Early Stop on Overwrite (ESO), Early Stop on Overwrite or first Read (ESOR). All
modes adopt different criteria and categories to assess fault injection’s outcome that are
presented below:

• Full Execution – Baseline: In this mode, we run the application to the end and
classify the outcome of a fault injection experiment in comparison with the
outcome of a golden run. The classes used in this mode are the common six
classes used in our reliability estimation studies (Masked, SDC, DUE, Timeout,
Crash, Assert) that were presented in Table 4.

• Early Stop on Overwrite – ESO: In this mode, we run the application to the end
except for the cases that the fault is overwritten before it is read or the fault is
injected in an invalid entry. The former mode (Baseline) has been extended to
identify if the fault is masked prior to its use. In such cases, we can safely
characterize the fault injection experiment as masked and thus stop it early,
before the simulation’s completion. The extra logic raises safely an assertion
message handled by the parser. Thus, the former classification (Baseline) was
extended with the following sub-classes for the masked category that are
presented in Table 15.

Table 15: Fault effect classification of Masked category for ESO mode in [31].
Fault Class Definition

Write After Injection
(WAI)

The fault was overwritten or injected in
an invalid entry

not Write After Injection
(not WAI)

The fault was finally masked but it was
not detected as overwritten or injected

in an invalid entry

Early Stop on Overwrite or first Read – ESOR: In this mode, we run the
application to the end except for the cases that the fault is overwritten or is read
by a committed instruction. The former mode (ESO) has been extended to
identify when corrupted data (in presence of fault) are read. The extra logic
raises an assertion when an instruction reads the faulty bit and passes through

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 83

the commit pipeline stage, meaning that the architectural state has been
corrupted by the fault. This mode of operation consists of four classes of fault
effects that are presented in Table 16. Note that, the sum of WAI and Unused
categories defines a conservative lower boundary of the overall masking
probability of a structure, while the sum of the RAI and Unknown categories
represents the overestimated vulnerability of the structure.

Table 16: Fault effect classification of ESOR mode of study [31].
Fault Class Definition

Read After Injection
(RAI)

The faulty bit is read in the execution stage by an
instruction and then this instruction reaches commit
stage. Undoubtedly, the early stop of experiments
right after the use of corrupted data limits our
potential for accurate reliability characterization
because we ignore any masking on the software
level.

Write After Injection
(WAI)

The faulty bit is written or the fault is injected in an
invalid entry. Thus, the fault experiment is safely
classified as masked in both cases.

Unknown

The corrupted data (due to the fault) are moved
from the target structure to another structure and
are still potentially harmful for the system. These
cases appear in L1 data cache and in the unified
L2 cache of our studied structures as they both
have write-back policy. For instance, a cache line
of a lower cache level or memory updates its data
with a corrupted block of data that was evicted by a
higher level cache. This block could influence the
correct execution of the program during the rest of
its execution, but we do not trace the fault
propagation through the memory system.

Unused

The outcome of the experiment cannot be
classified to any of the above categories i.e. the
moment of injection is close to the completion of
the experiment and its impact never manifests or
the fault is injected in an unused by the program
entry.

We enhanced MaFIN to support ESO and ESOR modes in order to speed up fault
injection campaigns. Fault injection on ESOR mode is a tradeoff between speedup and
accurate reliability estimation because the overestimation of vulnerability is inevitable.
Table 17 summarizes the vulnerability functions used in all modes of operation.
Figure 30, Figure 31 and Figure 32 illustrate the three modes of operation presented in
[31] (Baseline, ESOR and ESOR modes respectively), along with the speedup that
ESOR and ESOR modes provide compared to the Baseline mode.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 84

Table 17: Vulnerability across modes of operations of study [31].
Operation Mode Vulnerability Function

Baseline 1 – Masked

ESO 1 – Masked

ESOR 1 – WAI – Unused

Figure 30: Baseline mode of operation presented in [31].

Figure 31: ESO mode of operation presented in [31].

Figure 32: ESOR mode of operation presented in [31].

Case 1

Case 2

write read read write write

write writeread read read

End of
Application

Experiment’s
Classification

SPEEDUPCase 1

Case 2

write read read write write

write writeread read read

End of
Application

Experiment’s
Classification

Experiment’s
Classification

SPEEDUP

SPEEDUPCase 1

Case 2

write read read write write

write writeread read read

End of
Application

Experiment’s
Classification

Experiment’s
Classification

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 85

Figure 33 illustrates the correlation of categories among the three modes. The
categories of Baseline and ESO mode are equivalent but this is not the case for the
categories of ESOR mode. The WAI and Unused categories of the ESOR mode
certainly lead to Masked but the Unknown and RAI categories may result in any
category of the Baseline or ESO modes.

Figure 33: Correlation of classes among the three modes of presented in [31].

In this study, we used MaFIN to carry out extensive fault injection campaigns of
transient faults in six structures of the microprocessor that hold the majority of chip’s
area: L1 Data cache, L1 Instruction cache, L2 unified cache, Physical Integer Register
File, LSQ (data field) and LSQ (address field). We used seven benchmarks from the
MiBench suite (djpeg, search, smoothing, edges, corners, sha, qsort) [74]. The
microprocessor’s baseline configuration used in all the modes of framework’s operation,
resembles a modern out-of-order x86-64 microprocessor and is illustrated in Table 18.

Table 18: Baseline configuration of study [31].
Component Characteristics of Baseline Model

Pipeline OoO

Physical Integer Register File 256 registers

L1 Data cache 32KB, write-back, 4-way set associative, 64B
block size

L1 Instruction cache 32KB, write-back, 4-way set associative, 64B
block size

L2 cache (unified) 1MB, write-back, 16-way set associative, 64B
block size

LSQ (unified) 32 entries (16 load and 16 store entries)

Each statistical fault injection campaign consists of 2000 experiments and one golden
run. A separate injection campaign was performed for each hardware structure, each
benchmark and each of the three modes of operation. This number of experiments
corresponds to 2.88% error margin and 99% confidence level according to [62]. A total

	

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 86

number of 252,126 injection runs (7 benchmarks x 6 structures x 2001 injections x 3
operation modes) were performed.
Next, we present and analyze the results of the aforementioned three modes of
operation (Baseline, ESO and ESOR), in terms of accuracy of the final reliability
estimation and speedup compared to the Baseline full-execution mode. Each column in
the following graphs corresponds to one microarchitectural structure, representing the
average values obtained from executing statistical fault injection campaigns running the
7 aforementioned MiBench benchmarks of this study.

Full Execution – Baseline mode:
The first part of our analysis concerns the Baseline mode, where the fault injection
experiments run to the end. The results for the six structures of our study are presented
in Figure 34. It is observed that the first level caches are the most vulnerable among the
structures, while the unified L2 cache is the most reliable. The vulnerability of L1D, L1I
and L2 cache is 14.95%, 9.95%, 2.08% respectively. Despite the fact that data in L2
cache may present more residency than in first level caches, the result of more reliable
L2 cache can be explained because cache blocks are more often used from first level
caches than L2 cache, increasing the probability of fault propagation to the core.
Furthermore, the evicted blocks from the write-back L1D cache can probably over-write
the faults that were injected on L2.
Moreover, in L1D cache the SDC category dominates as it hosts data that can corrupt
silently the output of the program, while L1I cache holds mostly data that their corruption
can probably lead to crashes or assertions and termination of the experiment. In Integer
Physical Register File and L2 cache the not-masked categories are well-balanced, while
in LSQ the Assert class dominates among the not-masked categories. The vulnerability
of Register File, LSQ (data field) and LSQ (address field) is 2.86%, 2.60% and 3.78%,
respectively.
The prevailing category is the Masked across all structures and ranges from 85.05% to
97.92%. In general, Masked category consists of faults that are overwritten at
microarchitecture level or application level. Especially, the speedup of the proposed
modes stems mainly from microarchitectural level masking.

Figure 34: Faulty Behaviors classification of Baseline and ESO mode.

70%

75%

80%

85%

90%

95%

100%

Reg. File LSQ(data) LSQ(address) L1D L1I L2

Baseline Mode

Masked SDC DUE Timeout Crash Assert

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 87

Early Stop on Overwrite – ESO mode:
In this mode of operation the experiment is stopped only when the fault is over-written
before it is read or the injection is targeted on an invalid entry. Consequently, ESO
mode decreases the simulation execution time without sacrificing the accuracy of
reliability estimation. For this reason, the reliability classification of this mode is exactly
the same with that of the Baseline mode, illustrated in Figure 34.
In essence, the degree of speedup in our fault injection campaigns using ESO mode is
strongly related to the percentage of experiments that can be definitely characterized as
masked, allowing the termination of the experiment before its completion, without any
loss of accuracy. In Figure 35, the WAI class represents the experiments that can be
safely stopped before the end of the experiment and classified as masked. The worst
case is that of L2 cache that has only 11.71% WAI experiments, while Integer Physical
Register File and LSQ (address field) present the highest amount of WAI (91.36% and
93.95% respectively). Moreover, the WAI category in LSQ (data field), L1D and L1I is
43.20%, 46.71% and 62.84% respectively. The low percentage of WAI category
observed in the caches is related to the access patterns of the workload. In our
experiments, L1D and L1I have more over-written faults as they both have more blocks
coming from the lower level of memory hierarchy and L1D has more store hits than L2
cache. The Register File has a high percentage of over-written faults, because many
injections took place in a period of time when the data of the register were not useful.
Finally, the WAI class of LSQ (data field) is higher than that of LSQ (address field), due
to the forwarding of data from store entries to load entries when a dependency exists
between them.
The major conclusion coming up from Figure 35 is that for all the structures except for
L2 cache there is great potential of injection campaign speedup using ESO mode of
operation. This is based on the fact that the more the over-written faults, the more
speedup will be gained during the fault injection campaign.

Figure 35: Percentage of over-written or injected on invalid entry faults.

Early Stop on Overwrite or first Read – ESOR mode:
The third mode of operation balances between reliability estimation accuracy and
speedup of the injection campaign. Thus, this mode of operation must be evaluated in
terms of accuracy and speedup compared to the full execution of the entire campaign
(Baseline mode). Figure 36 presents the reliability classification of the ESOR mode for
all structures and benchmarks. Note that the reliability of a structure in this mode

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Reg. File LSQ(data) LSQ(address) L1D L1I L2

Over-written faults

WAI not-WAI

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 88

consists of the percentage of WAI and Unused category, while the RAI and Unknown
categories can be potential not-masked, corrupting the correct execution of the
program. Another important note concerning speedup is that Unused category ensures
the accuracy of the estimation, but it does not contribute to speedup, as the experiment
runs to the end for this case.
Moreover in Figure 36, it is observed that the three caches consist of a high percentage
of Unused category (~24% for the first level caches and 79.29% for the L2), omening
that the speedup of caches will be limited by this factor. Conversely, the high
percentage of WAI omens a good speedup for the cases of Integer Physical Register
File and LSQ, which present a percentage of more than 86% in their WAI category. The
percentage of RAI for all structures is less than 10%, except for L1D that has 11.83%
and L1I cache with 23.69%. Finally, L1D cache presents a high percentage (~23%) of
the potentially not-masked category (Unknown), as there are many evictions of dirty
blocks from the L1D cache to the lower memory levels, but this is less intense in L2
cache with only 9.85% Unknown.

Figure 36: Faulty Behaviors classification of ESOR mode.

Based on the definition of vulnerability for the three modes of operation as illustrated in
Table 17 we evaluate the inaccuracy of the ESOR mode of operation as presented in
Figure 37. The inaccuracy between Baseline and ESOR mode is only 2.66 percentile
untits in the Integer Physical Register File, 0.10 in the address field of LSQ, 6.58 in the
data field of LSQ and 8.47 in L2 cache. On the contrary, the inaccuracy in the L1D is
20.13 percentile units and in the L1I is 13.74.
Figure 38 summarizes the speedup of the three operation modes. We can observe that
speedup scales from Baseline mode to ESO mode and from ESO mode to ESOR mode
in all cases. The address field of LSQ presents the best scaling and the best speedup
among all structures (2.92X in ESO mode and 4.06X in ESOR mode) and this is
justified by the highest WAI rate that it features according to Figure 35 and Figure 36.
The worst scaling is presented in L2 cache (~1.06% for both ESO and ESOR modes),
but this can be explained by the high percentage of Unused category illustrated in
Figure 36. In general, all the caches that present a high percentage of the Unused
category do not speedup so well as the structures with low percentage of Unused
category.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Reg. File LSQ(data) LSQ(address) L1D L1I L2

ESOR mode

RAI WAI Unknown Unused

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 89

Figure 37: Structures vulnerability reported by the three operation modes. There is no loss of

accuracy in the vulnerability reports between the baseline mode and the ESO mode, while ESOR
mode reports higher vulnerability in all cases.

Figure 38: Speedup of the three operation modes of study [31].

Combining the results presented in Figure 37 and Figure 38, we conclude that for the
intra core structures (Physical Integer Register File, address and data fields of LSQ),
the best solution to speed up the statistical fault injection campaign is the third mode of
framework’s operation (ESOR mode) with negligible loss of estimation accuracy, getting
a high speedup of 3.38X, 4.06X and 3.37X respectively. Except for ESOR mode, the
ESO mode could be also used for the same structures without any accuracy loss getting
a speedup of 2.63X, 2.92X and 1.46X respectively.
On the other hand, the best choice for an architect to estimate the reliability of caches is
the ESO mode of framework’s operation. This conclusion comes from the fact that the
inaccuracy of caches’ reliability assessment using ESOR mode is not negligible (from
8.47 percentile units for L2 cache to 20.13 units for L1D cache) and the speedup is not
as high as in the intra core structures (for instance only 1.06% for L2 cache).
Consequently, ESO mode is the best choice for caches to speedup campaign (with
1.37X, 1.48X and 1.05X speedup for the L1D, L1I and L2 respectively) and ensure the
estimation accuracy.

0%

10%

20%

30%

40%

50%

Ba
se

 /
ES

O

ES
O

R

Ba
se

 /
ES

O

ES
O

R

Ba
se

 /
ES

O

ES
O

R

Ba
se

 /
ES

O

ES
O

R

Ba
se

 /
ES

O

ES
O

R

Ba
se

 /
ES

O

ES
O

R

Reg. File LSQ(data) LSQ(address) L1D L1I L2

Vulnerability

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Reg. File LSQ(data) LSQ(address) L1D L1I L2

Speedup

baseline Speedup (baseline / ESO) Speedup (baseline / ESOR)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 90

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 91

3. ACCELΕRATION OF RELIABILITY ASSESSMENTS USING MeRLiN

In Section 2.2.4, we have described techniques to accelerate fault injection campaigns
that are implemented after the actual injection of the fault in the hardware structure. In
this chapter, we propose MeRLiN2 methodology that was presented in [32] to accelerate
statistical fault injection campaigns by pruning the faults of the initial fault list before their
actual injection.
Figure 39 reflects the motivation of our MeRLiN methodology compared to the four
state-of-the-art methods used for reliability assessments and presented in Section 2.1.4
in terms of speed and measurement accuracy. An ideal method at the top-right corner
of the figure would provide the highest speed (equal to that of the ACE analysis and
probabilistic models) and the highest accuracy (equal to that of the injection methods
with high statistical significance). MeRLiN approaches the ideal method boosting
microarchitecture level injection-based reliability assessment while keeping its
measurement accuracy unaffected. The backbone of MeRLiN is built on two major
observations:

• A large number of faults in a statistical fault injection campaign are over-written
before being read or are injected in dead or invalid entries of the hardware
structure [31]. These faults can be easily identified and pruned from the initial
fault list in a single run. We call this first part of our method ACE-like, because it
resembles a simple ACE analysis flow.

• The faults that are injected in the same or different entries of a structure during
the same or different vulnerable intervals are very likely to have the same effect
on program execution if these intervals end up to the same static instruction and
the same micro-operation (uop) that reads the faulty entry. MeRLiN groups these
faults together and performs fault injection on a small number of representatives.
While it preserves the accuracy of the reliability measurements, this grouping
drastically reduces the number of required injections because instruction
repetition is an extensively inherent property of all programs [80] [81] [82] [83].

MeRLiN's contributions that make it the state-of-the-art method to accelerate the
statistical fault injection campaigns of high statistical significance at the
microarchitecture level without loss of accuracy are the following:

• It accelerates statistical microarchitecture level fault injection from 1 to 3 orders
of magnitude. Our experiments with full runs of 10 MiBench benchmarks [74]
show 93X, 225X, 68X and 28X speedup on average for different sizes of the
register file, the store queue, the first level data cache and the issue queue,
respectively. When applied to 10 SPEC CPU2006 benchmarks, MeRLiN reveals
larger average speedups of 1644X, 2018X and 171X for the register file, the
store queue and the first level data cache, respectively.

• It reports virtually the same reliability estimations as the baseline
microarchitectural fault injection with extremely high statistical significance.

• It delivers fine-grained insights of the fault effects (Silent Data Corruptions-SDC,
Detected Unrecoverable Errors-DUE, crashes, locks) unlike ACE analysis which
only reports a gross AVF estimate. This can be used to evaluate different
protection schemes or to identify benchmarks more prone to SDCs [61] [84].

2 MeRLiN = Microarchitectural evaluation of Reliability using statisticaL fault iNjection.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 92

Figure 39: Motivation of MeRLiN methodology compared to the four state-of-the-art methods used

for reliability assessments (as described in Section 2.1.4).

MeRLiN methodology consists of three phases: Preprocessing, Fault List Reduction and
Fault Injection Campaign as shown in Figure 40. Next, we describe these three phases
of MeRLiN methodology in detail:

Figure 40: Flowchart of MeRLiN.

sp
ee
d

accuracy

RTL injection

Microarchitecture level
injection

MeRLiN

Ideal methodACE analysis
Probabilistic

models

benchmark configuration param.
• number of entries
• execution time
• error margin
• confidence level

ACE-like analysis

initial fault list

1st step: Grouping according to
RIP and uPC

group Ngroup 1 group 2 group 3 . . .

2nd step: Grouping according to byte position

reliability estimation

Preprocessing

Fault
List Reduction

Fault
Injection
Campaign

vulnerable intervals

groupMgroup 1 group 2 group 3 . . .

fault injection & parsing

reduced fault list

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 93

• Preprocessing:
The first phase of MeRLiN methodology includes two tasks. First, MeRLiN
records all vulnerable intervals of all entries of a hardware structure during the
entire benchmark execution (this task is called ACE-like analysis). Then, MeRLiN
creates the initial fault list repository that consists of a large number of faults for a
statistically significant sampling: very low error margin and very high confidence
level [62] (this task is called Initial Fault List Creation).
During the ACE-like analysis task, the benchmark runs once to completion to
profile the vulnerable intervals (in which a bit flip may lead to corruption) of each
entry of the target hardware structure (e.g. the registers in a physical register
file). For our analysis, a vulnerable interval of an entry:

o Starts with a write operation and ends with a committed read of the same
entry;

o Starts with a committed read and ends with another committed read of the
same entry.

This definition differs from the typical definition of ACE intervals [50] [52] (where
intermediate reads do not define the end of an interval) but the overall vulnerable
time (sum of vulnerable intervals) is the same. Note that, similar to the original
ACE analysis wrong-path execution instructions are not considered as part of the
vulnerable intervals of MeRLiN. We highlight this difference between the two
methods by an example in Figure 41, which represents the lifetime of an entry
during the execution of a benchmark. The arrows directed upwards and
downwards represent read and write operations, respectively. The read
operations at t2, t5 and t6 are finally squashed. MeRLiN divides the interval
between t7 and t9 in two individual vulnerable intervals, while ACE analysis
considers them as a single interval.
This difference between MeRLiN’s first step and classic ACE analysis is very
important for the second phase of MeRLiN, where the faults are grouped with
respect to the instruction pointer (RIP) and the micro program counter (uPC) of
the committed read that accesses the entry at the end of the vulnerable interval.
Our analysis requires both the RIP and the uPC to cover cases where an x86-64
instruction consists of different micro-instructions that access the same or
different entries of the hardware structure in the same or different cycles. These
accesses can lead to different fault effects and are classified separately.
Our ACE-like analysis is significantly lighter in terms of storage overhead (10-
100MB in our experiments) and more easily implemented than the complete
ACE, because it does not trace the transitively dynamically dead (TDD)
instructions [50]. The execution time of the ACE-like single-run step was less
than 5 hours for all our experiments.
At the end of this step, the following information is stored in the vulnerable
intervals repository for every ACE-like vulnerable interval of each entry: (i) start
and end of the interval (cycle numbers), (ii) the instruction pointer (RIP) of the
static x86-64 instruction that reads an entry at the end of the interval, and (iii) the
micro program counter (uPC) of the micro-operation which is part of the x86
instruction and reads an entry at the end of the interval.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 94

Figure 41: ACE and ACE-like intervals definition example.

In the second task of the first phase (the Initial Fault List Creation task), MeRLiN
creates the initial fault list repository according to the statistical sampling
described in [62]. The initial faults population is defined by: (1) the size (in bits) of
the hardware structure, (2) the total execution time (in cycles) of the benchmark,
(3) the statistical confidence level and (4) the statistical error margin. To achieve
high statistical significance, the initial fault list should consist of tens or hundreds
of thousands of faults. For instance, an injection campaign targeting a 256-entry
integer register file of 64-bit registers with error margin 2.88%, confidence level
99% and 100M cycles of program execution time, requires 2000 fault injection
runs [62]. If a higher statistical significance is needed (i.e. 0.63% error margin
and 99.8% confidence level), the total number of injection runs explodes to
60,000 (an unacceptably large number of injections even for relatively short
benchmarks). We use this number of 60K faults to define the baseline injection
campaign for each single component, size and benchmark configuration,
ensuring the same or even slightly higher statistical significance for all our
structures. According to [62], for estimations of high statistical significance the
confidence level and the error margin dominate in the calculation of the initial
fault list population (see more details in Section 2.1.5).
The outputs of the first phase of MeRLiN are the vulnerable intervals repository
and the initial fault list that feed MeRLiN’s second phase (see Figure 40).

• Fault List Reduction:
This phase of MeRLiN classifies the faults in groups running a two-step grouping
algorithm, and creates the reduced fault list that is used for the actual injections.
During the execution of the first step of the algorithm, all faults of the initial fault
list are examined. All faults that target a non-vulnerable interval are directly
classified as Masked as no injection is needed for them. The remaining faults
that hit ACE-like vulnerable intervals are stored in different subdirectories (see
Figure 40) according to the RIP and the uPC of the instruction that reads the
entry at the end of the interval. Each of the created groups consists of transient
faults on the same or different entries of the hardware structure being analyzed,
during the same or different ACE-like vulnerable intervals that are read by an
instruction with the same RIP and the same uPC.
Figure 42 shows an informative example of this first step for three entries of a
hardware component during the execution of the same benchmark. When this
step finishes, four groups are created containing faults that hit different hardware

t1 t2 t3 t4 t5 t6 t7 t8 t9

squashedACE interval ACE interval

MeRLiN’s ACE-like
interval

time

MeRLiN’s ACE-like
interval

MeRLiN’s ACE-like
interval

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 95

entries at different time intervals. The faults with the same color belong to the
same group. The faults belonging to non-vulnerable intervals (gray color) are
characterized as Masked. For instance, the faults in intervals t4-t6, t10-t13 and
t7-t11 are grouped together (red color), because these intervals end up to micro-
instructions with the same ripC and uPC3.

Figure 42: 1st step example of the grouping algorithm.

Due to logical masking, all bits in a given faulty entry may not have the same
effect when read by an instruction. To maximize MeRLiN’s accuracy, especially
for groups with hundreds of faults, we select more than one fault for the actual
fault injection runs in cases that faults hit a different byte of the entry. Moreover,
faults in different bytes are selected from different dynamic instances of the same
static instruction to increase time diversity. This can be further extended to
separate faults hitting different nibbles or bits, but our experiments verify that this
is not necessary.
MeRLiN ensures that for static instructions that are correlated with large
population of faults, several representatives are selected from different dynamic
instances of the same instruction, covering all possible byte positions of different
entries. This per byte selection leads to smaller final groups ensuring the
statistical significance of MeRLiN (see the theoretical analysis in Section 3.4),
while it leads to groups of faults that are extremely likely to have the same effect.
Figure 43 shows an example of the second step of the algorithm for three
different hardware entries (K, L, M) during the execution of a benchmark. Note
that all these faults were classified in the same group (same rip=F and uPC=4)
from the first step of the grouping algorithm. The number next to each fault
corresponds to the group in which the fault is finally classified at the end of the
second step; the faults in circles are stored in the reduced fault list repository and
are the only ones that will be injected. The execution time of the entire MeRLiN’s
single-run group creation algorithm was less than 50 minutes for all our
experiments.
At the end of this phase, the reduced fault list repository contains all the selected
faults. Only these faults are injected using the microarchitecture level fault
injector.

t1 t2en
try

A
en

try
B

t3en
try

C

t4

t9 t10 t13

t6 t8 t12

t5 t7 t11

group 1

group 1

group 1

group 2

group 2

group 3

group 4

rip A
uPC 0

rip D
uPC 3

rip C
uPC 3

rip C
uPC 3

rip A
uPC 0

rip B
uPC 1

rip C
uPC 3

time

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 96

Figure 43: 2nd step example of the grouping algorithm.

• Fault Injection Campaign:

In the last phase of MeRLiN, the fault injection campaign is launched using all
faults of the reduced fault list repository. During the parsing step, the outputs of
all the injection runs per reduced group are compared to that of the golden run to
identify the fault effect and calculate the final reliability estimation of the structure.

To evaluate MeRLiN methodology, we employed GeFIN [29] [30] microarchitectural
injector and extend it to implement and evaluate MeRLiN on four structures of an x86-
64 out-of-order processor covering both data- and instruction-related structures:

• The physical integer Register File (RF) for three sizes: 256, 128, 64 registers.

• The data field of the Store Queue (SQ) of the Load/Store Queue for three sizes:
64 load and 64 store, 32 load and 32 store, and 16 load and 16 store entries.
Gem5 doesn’t implement data fields in the Load Queue.

• The data field of L1 data cache (L1D) for three sizes: 64KB, 32KB and 16KB.

• The destination register of the Issue Queue (IQ) for two sizes: 32 and 60 queue
entries.

The reason of choosing GeFIN fault injector instead of MaFIN is that GeFIN provides
deterministic simulation runs; a feature that is necessary for the ACE-like analysis task
of MeRLiN. On the other hand, MaFIN fault injector tool uses QEMU which on one side
leads to non-deterministic behavior between two consecutive simulation runs, but on the
other side resembles more accurately the full-system stack.
MeRLiN can be also used for: (i) all hardware structures of the CPU (caches, buffers,
queues, registers, etc.), (ii) different input sets and benchmarks, (iii) different
architectures and ISAs. Table 19 shows the baseline microprocessor configuration that
was used for all the injection campaigns that were launched to evaluate MeRLiN
methodology targeting the RF, the SQ, the L1D and the IQ with 32 entries. For all the
injection campaigns that evaluate MeRLiN targeting the IQ of 60 entries, we used a
different configuration that resembles the Intel Haswell-like microprocessor; the major
features of this configuration are presented in Table 20.

bytes

b7

4

3

2
3

1 1

5
4

3

1 1

6

5

4

2

b6

b5

b4

b3

b2

b1

b0

66

timeentry K, rip F, uPC 4 entry L, rip F, uPC 4 entry M, rip F, uPC 4

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 97

Table 19: Baseline configuration used to evaluate MeRLiN on RF, SQ, L1D and IQ with 32 entries.
Parameter x86 microprocessor model
Pipeline OoO

Physical register file 256/128/64 int; 192 FP
Issue Queue entries 32
Load/Store Queue 64/32/16 load & 64/32/16 store entries

ROB entries 100

Functional units 6 int ALUs; 2 complex int ALUs; 4 FP ALUs, 2 FP
mul/div, 4 SIMD

L1 Instruction Cache 32KB,64B line,128 sets,4-way, write back

L1 Data Cache 16KB/32KB/64KB,
64B line,64/128/256 sets,4-ways, write back

L2 Cache 1MB,64B line,1024 sets,16-way, write back
Branch Predictor Tournament predictor

Branch Target Buffer conditional and unconditional branches BTB
(direct-mapped, 4K entries)

Table 20: Haswell-like configuration used to evaluate MeRLiN on IQ with 60 entries.

Parameter Intel Haswell-like microprocessor model
Pipeline OoO

Physical register file 168 int; 168 FP
Issue Queue entries 60
Load/Store Queue 72 load & 46 store entries

ROB entries 192

Functional units 6 int ALUs; 2 complex int ALUs; 4 FP ALUs, 2 FP
mul/div, 4 SIMD

L1 Instruction Cache 32KB,64B line,64 sets,8-ways, write back
L1 Data Cache 32KB,64B line,64 sets,8-ways, write back

L2 Cache 256KB,64B line,512 sets,8-ways, write back
Branch Predictor Tournament predictor

Branch Target Buffer conditional and unconditional branches BTB
(direct-mapped, 4K entries)

For all the experiments, we used machines with Intel Core i7-4771 at 3.5GHz,
16GBytes of RAM at 1600MHz and 1TByte hard disk. To classify the fault effects, we
used the six categories (Masked, SDC, DUE, Timeout, Crash, Assert) that were
presented in Table 4. Moreover, the initial fault list for each campaign of our evaluation
was generated using statistical fault sampling [62] (see Section 2.1.5 for more details)
and consists of 60,000 faults that correspond to 99.8% confidence level and 0.63%
error margin. To study the scalability of MeRLiN (see experimental results), we
increased the initial fault list to 600,000 faults that corresponds to 99.8% confidence
level and 0.19% error margin.
For the evaluation, we used 10 benchmarks from the MiBench suite [74] and 10 from
the SPEC CPU2006 suite [75]. We ran the MiBench benchmarks to the end to evaluate
both MeRLiN’s accuracy and speedup. Their execution time ranges from 1 to 55 million
cycles, while they are very similar in instruction mixes and throughput with SPECs. In
the case of SPEC benchmarks, we evaluate MeRLiN running Simpoint samples of

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 98

100M committed instructions with the largest weight [85]. MeRLiN’s purpose is not to
propose new benchmark intervals sampling approach for reliability evaluation, but any
existing approach can be used (e.g. [86] for large caches or Simpoints that were used in
many reliability studies [50] [52] [54]).
We selected to evaluate MeRLiN’s accuracy executing MiBench benchmarks till the end
instead of running entire SPEC benchmarks, because the execution time of each
baseline comprehensive injection campaign (60,000 faults for each entire SPEC
program, component and configuration) would make the evaluation infeasible. Also, we
evaluated the accuracy of MeRLiN at the end of the Simpoint intervals of two selected
SPEC CPU2006 benchmarks (bzip2 and gcc).
Next, we present the results of MeRLiN’s evaluation when we target either data-related
(RF, SQ and L1D) or instruction-related (IQ) structures in Section 3.1 and Section 3.2,
respectively. We also present a detailed comparison of MeRLiN methodology with other
architecture level fault injection approaches in which the faults are injected at the
software level (Section 3.3) and finally in Section 3.4, we present a theoretical analysis
of MeRLiN approach.

3.1 MeRLiN’s results on data-related structures
In this subsection, we present all the results of MeRLiN’s evaluation when we target
data-related structures. In our case these structures are: (i) the physical integer register
file (RF) with 256, 128, and 64 registers, (ii) the Store Queue (SQ) with 64 load and 64
store, 32 load and 32 store, and 16 load and 16 store entries, and (iii) the L1 Data
cache (L1D) for three different sizes: 64KB, 32KB and 16KB.
First, to measure the effectiveness of our grouping algorithm we define the homogeneity
metric. In equation (10), N is the number of the groups that MeRLiN generates and
#faults is the number of faults of a group. The dominant class of a group is defined as
the category among those of Table 4 that contains the largest number of faults in the
group. Thus, dominant_class% is the percentage of faults of the group that are
classified in the dominant class. When dominant_class% equals 100%, it means that all
the faults in that group have the same fault effect. Finally, #total_faults is the total
population of faults that hit vulnerable intervals. Large values of homogeneity close to
1.0, denote that the vast majority of faults across all groups lead to the same effect, and
the accuracy of the algorithm is high.

Figure 44, Figure 45, and Figure 46 show the homogeneity of the RF, the SQ and the
L1D respectively, for all our experiments running the 10 MiBench. On the average, the
highest homogeneity for the RF is 0.940, for the SQ is 0.982 and for L1D is 0.920. In
general, the homogeneity values are very high for this fine-grained classification (the 6
classes). If homogeneity is calculated in coarser granularity (masked vs. not-masked
faults) and all classes that lead to non-masking are combined together, then
homogeneity is even larger; see the values at the top of each bar in Figure 47. The
value at the bottom of each bar represents the percentage of groups (average for all our
experiments with MiBench) that consist of faults with exactly the same effect (masked,
non-masked) meaning that they have a perfect homogeneity value of 1.0. Finally,
homogeneity climbs to 0.99 if we count the faults excluded by the ACE-like, but here we
focus only on MeRLiN’s grouping part. All these results indicate the extremely high
accuracy of MeRLiN methodology.

homogeneity =
#faults × dominant_class%

group1

groupN

∑
#total_faults × 100%

 (10)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 99

Figure 45: Homogeneity of Store Queue.

0.99

0.99

0.99

0.99

0.97

0.99

0.96

0.98

0.96

0.99

0.98

0.99

0.99

0.98

0.99

0.97

0.98

0.95

0.97

0.94

0.97

0.97

0.98

0.96

0.95

0.97

0.96

0.98

0.94

0.97

0.94

0.97

0.96

0.
80

0.
85

0.
90

0.
95

1.
00

susan_c (64entries)

susan_s (64entries)

susan_e (64entries)

stringsearch (64entries)

djpeg (64entries)

sha (64entries)

fft (64entries)

qsort (64entries)

cjpeg (64entries)

caes (64entries)

average (64entries)

susan_c (32entries)

susan_s (32entries)

susan_e (32entries)

stringsearch (32entries)

djpeg (32entries)

sha (32entries)

fft (32entries)

qsort (32entries)

cjpeg (32entries)

caes (32entries)

average (32entries)

susan_c (16entries)

susan_s (16entries)

susan_e (16entries)

stringsearch (16entries)

djpeg (16entries)

sha (16entries)

fft (16entries)

qsort (16entries)

cjpeg (16entries)

caes (16entries)

average (16entries)

SQ

Ho
m

og
en

ei
ty

 o
f S

Q

0.93

0.93

0.92

0.97

0.92

0.96

0.93

0.93

0.96

0.92

0.94

0.90

0.90

0.90

0.96

0.90

0.95

0.95

0.92

0.97

0.95

0.93

0.94

0.90

0.92

0.96

0.96

0.92

0.95

0.90

0.95

0.93

0.93

0.
80

0.
85

0.
90

0.
95

1.
00

susan_c (256regs)

susan_s (256regs)

susan_e (256regs)

stringsearch (256regs)

djpeg (256regs)

sha (256regs)

fft (256regs)

qsort (256regs)

cjpeg (256regs)

caes (256regs)

average (256regs)

susan_c (128regs)

susan_s (128regs)

susan_e (128regs)

stringsearch (128regs)

djpeg (128regs)

sha (128regs)

fft (128regs)

qsort (128regs)

cjpeg (128regs)

caes (256regs)

average (128regs)

susan_c (64regs)

susan_s (64regs)

susan_e (64regs)

stringsearch (64regs)

djpeg (64regs)

sha (64regs)

fft (64regs)

qsort (64regs)

cjpeg (64regs)

caes (64regs)

average (64regs)

R
F

Ho
m

og
en

ei
ty

 o
f R

F

Figure 44: Homogeneity of Physical
Register File.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 100

Figure 46: Homogeneity of L1 Data cache.

0.90

0.90

0.95

0.92

0.88

0.95

0.94

0.97

0.88

0.88

0.92

0.91

0.89

0.91

0.89

0.90

0.96

0.95

0.96

0.89

0.89

0.92

0.89

0.89

0.92

0.92

0.90

0.92

0.94

0.95

0.89

0.89

0.91

0.
80

0.
85

0.
90

0.
95

1.
00

susan_c (64KB)

susan_s (64KB)

susan_e (64KB)

stringsearch (64KB)

djpeg (64KB)

sha (64KB)

fft (64KB)

qsort (64KB)

cjpeg (64KB)

caes (64KB)

average (64KB)

susan_c (32KB)

susan_s (32KB)

susan_e (32KB)

stringsearch (32KB)

djpeg (32KB)

sha (32KB)

fft (32KB)

qsort (32KB)

cjpeg (32KB)

caes (32KB)

average (32KB)

susan_c (16KB)

susan_s (16KB)

susan_e (16KB)

stringsearch (16KB)

djpeg (16KB)

sha (16KB)

fft (16KB)

qsort (16KB)

cjpeg (16KB)

caes (16KB)

average (16KB)

L1
 d

at
a

ca
ch

e

H
om

og
en

ei
ty

 o
f L

1D
 c

ac
he

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 101

Figure 47: Coarse-grained homogeneity (number on top of the bars) and percentage of groups

with perfect homogeneity that is equal to 1.0 (number on the bottom of the bars); average for 10
MiBench.

We measure the accuracy of the reliability estimations of MeRLiN for the three
components running 10 MiBench benchmarks till the end. We compare MeRLiN's
accuracy against the injection in: (i) the remaining fault list after the exclusion of the
faults that target non-vulnerable intervals (identified by the ACE-like step of the
method), (ii) the comprehensive baseline fault list (60,000 faults). Finally, we evaluate
MeRLiN’s accuracy for the RF with 60K faults using Simpoints from the bzip2 and the
gcc.
The estimation accuracy of MeRLiN for the physical register file, the store queue and
the L1 Data cache against the injection using the remaining fault list after the ACE-like
step is shown in Figure 48, Figure 49, and Figure 50 respectively. Each graph shows
the average fault effect classification across the 10 MiBench benchmarks used in our
study for the three configurations of each structure. The first bar (blue) in each class
corresponds to the results of the fault injection in the remaining fault list after the ACE-
like analysis, while the second bar (red) illustrates the results on the same fault list after
applying MeRLiN’s grouping algorithm and injecting only the selected faults. The values
on top of each bar represent the measurement per fault effect category. Similar
behavior is observed across all benchmarks. For all component configurations, MeRLiN
reports negligible differences compared to the injection using all the faults that hit only
vulnerable intervals.
Figure 51, Figure 52, and Figure 53 show the bigger picture for MeRLiN’s accuracy for
the three data-related structures (RF, SQ and L1D), in which the final fault effect
classification of the comprehensive baseline fault injection of 60,000 faults (blue bar) is
compared to the final classification of MeRLiN (red bar). Each bar represents the
average values across the 10 MiBench benchmarks. Similar behavior is observed
across all benchmarks. MeRLiN for all cases is extremely accurate and delivers virtually
the same reports with the comprehensive injection, but in orders of magnitude faster.

0.
95

2

0.
95

3 0.
96

1

0.
98

3

0.
97

7

0.
97

3

0.
94

4

0.
94

2

0.
93

1

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

256regs 128regs 64regs 64entries 32entries 16entries 64KB 32KB 16KB

RF SQ L1D

Homogeneity using only masked and non-masked categories

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 102

Figure 48: Fault effect classification of MeRLiN against injection with the remaining faults after

ACE-like step for the Physical Integer Register File; average for 10 MiBench benchmarks.

Figure 49: Fault effect classification of MeRLiN against injection with the remaining faults after

ACE-like step for the Store Queue; average for 10 MiBench benchmarks.

Figure 50: Fault effect classification of MeRLiN against injection with the remaining faults after

ACE-like step for the L1 Data cache; average for 10 MiBench benchmarks.

60
.6

1%

8.
01

%

0.
10

%

2.
20

%

28
.9

8%

0.
10

%

61
.0

2%

7.
67

%

0.
12

%

2.
16

%

28
.9

7%

0.
06

%

63
.1

5%

6.
23

%

0.
16

%

3.
13

%

27
.2

9%

0.
04

%

61
.3

4%

8.
47

%

0.
11

%

1.
80

%

28
.2

2%

0.
06

%

61
.0

8%

7.
57

%

0.
11

%

1.
99

%

29
.2

1%

0.
04

%

65
.2

6%

5.
06

%

0.
15

%

3.
37

%

26
.1

0%

0.
06

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

256regs 128regs 64regs

Fault Injection in complete fault list remaining after ACE-like MeRLiN

69
.0

5%

24
.4

4%

0.
31

%

0.
35

%

5.
81

%

0.
04

%

67
.1

5%

24
.1

1%

0.
41

%

0.
34

%

7.
93

%

0.
06

%

68
.7

2%

18
.9

1%

0.
46

%

0.
50

% 11
.3

3%

0.
08

%

69
.4

0%

24
.3

8%

0.
31

%

0.
38

%

5.
49

%

0.
04

%

67
.4

7%

23
.7

9%

0.
30

%

0.
38

%

8.
00

%

0.
06

%

69
.6

4%

17
.8

3%

0.
47

%

0.
48

% 11
.5

0%

0.
08

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

64 entries 32 entries 16 entries

Fault Injection in complete fault list remaining after ACE-like MeRLiN

43
.4

1%

43
.5

2%

2.
16

%

1.
52

% 9.
17

%

0.
22

%

40
.8

5% 48
.4

8%

1.
46

%

1.
67

%

7.
41

%

0.
13

%

44
.2

3%

46
.6

8%

0.
76

%

1.
62

%

6.
63

%

0.
08

%

45
.2

2%

40
.8

0%

2.
67

%

1.
99

%

9.
09

%

0.
23

%

40
.0

0% 49
.5

3%

1.
40

%

1.
60

%

7.
33

%

0.
14

%

42
.0

9% 49
.8

4%

0.
27

%

1.
42

%

6.
31

%

0.
07

%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

64 KB 32 KB 16 KB

Fault Injection in complete fault list remaining after ACE-like MeRLiN

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 103

Figure 51: Final fault effect classification of MeRLiN against comprehensive baseline fault

injection with 60,000 faults for the Physical Register File; average for 10 MiBench benchmarks.

Figure 52: Final fault effect classification of MeRLiN against comprehensive baseline fault

injection with 60,000 faults for the Store Queue; average for 10 MiBench benchmarks.

Figure 53: Final fault effect classification of MeRLiN against comprehensive baseline fault

injection with 60,000 faults for the L1 Data cache; average for 10 MiBench benchmarks.

97
.4

4%

0.
52

%

0.
03

%

0.
14

%

1.
86

%

0.
01

%

95
.1

9%

0.
96

%

0.
04

%

0.
28

%

3.
52

%

0.
01

%

91
.0

8%

1.
53

%

0.
05

%

0.
84

%

6.
48

%

0.
02

%

97
.4

8%

0.
54

%

0.
02

%

0.
12

%

1.
83

%

0.
01

%

95
.1

8%

0.
90

%

0.
03

%

0.
26

%

3.
63

%

0.
00

%

91
.5

6%

1.
26

%

0.
05

%

1.
01

%

6.
10

%

0.
02

%

0%

20%

40%

60%

80%

100%

120%

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

256regs 128regs 64regs

Comprehensive Baseline Fault Injection (60,000 faults) MeRLiN

97
.8

2%

1.
69

%

0.
04

%

0.
02

%

0.
43

%

0.
00

%

97
.3

3%

1.
87

%

0.
05

%

0.
03

%

0.
72

%

0.
00

%

97
.3

4%

1.
39

%

0.
06

%

0.
06

%

1.
14

%

0.
01

%

97
.8

8%

1.
64

%

0.
04

%

0.
03

%

0.
41

%

0.
00

%

97
.3

7%

1.
82

%

0.
04

%

0.
04

%

0.
73

%

0.
00

%

97
.4

4%

1.
31

%

0.
06

%

0.
06

%

1.
12

%

0.
01

%

0%

20%

40%

60%

80%

100%

120%

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

64 entries 32 entries 16 entries

Comprehensive Baseline Fault Injection (60,000 faults) MeRLiN

80
.9

8%

15
.8

9%

0.
49

%

0.
33

%

2.
27

%

0.
04

%

76
.5

8%

19
.8

8%

0.
44

%

0.
54

%

2.
53

%

0.
03

%

77
.8

5%

18
.3

8%

0.
23

%

0.
60

%

2.
91

%

0.
03

%

82
.1

4%

14
.5

1%

0.
61

%

0.
51

%

2.
19

%

0.
04

%

76
.2

9%

20
.2

4%

0.
32

%

0.
53

%

2.
59

%

0.
03

%

76
.9

0%

19
.7

6%

0.
09

%

0.
52

%

2.
70

%

0.
03

%

0%

20%

40%

60%

80%

100%

120%

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

64 KB 32 KB 16 KB

Comprehensive Baseline Fault Injection (60,000 faults) MeRLiN

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 104

Figure 54 demonstrates the final reliability estimation in Failures-in-Time (FIT) rates for
the comprehensive baseline campaign (60,000 faults), the MeRLiN method and the
ACE-like method running the 10 MiBench benchmarks to the end. The reported FIT
rates are the products of AVF, raw FIT rate and number of structure's bits. The AVF of
the injection-based methods is the ratio of the non-masked injections over the total
injections, while the AVF of the ACE-like is measured as in [50]. Any raw FIT rate can
be used; we use 0.01 FIT per bit. MeRLiN reports negligible differences compared to
the comprehensive baseline injection, while the ACE-like delivers a pessimistic lower
bound of structures' reliability.

Figure 54: Final reliability assessment (FIT) for Integer Physical Register File, Store Queue, and L1

Data cache (average for 10 MiBench benchmarks).

The evaluation of MeRLiN’s accuracy for SPEC CPU2006 benchmarks executed until
the end in detailed microarchitectural simulation mode is infeasible as was discussed in
Section 2.1.5. To overcome this difficulty and in order to evaluate the accuracy that
MeRLiN provides for SPEC CPU2006 benchmarks, we applied MeRLiN injecting faults
in the physical register file for the gcc and bzip2 benchmarks and terminating the fault
injection runs at the end of the Simpoint interval. The configuration for these
experiments is the one of Table 19 with 128 physical registers, 16 store and 16 load
queue entries and a 32KB L1 data cache.
As we do not execute the fault injection runs to the end, we are not able to identify
SDCs, timeouts or any other abnormal behavior after the end of the Simpoint interval.
Thus, only for these experiments we used a different fault effect classification than the
classification presented in Table 4. The classification consists of the following
categories: (i) Masked; indicates a fault that was not over-written or hit a non-vulnerable
interval without affecting program execution, (ii) DUE (as in Table 4), (iii) Crash (as in
Table 4), (iv) Assert (as in Table 4), and (v) Unknown; indicates a fault that still exists
but at the end of the Simpoint interval it is not known if it will eventually be classified in
one of the previous classes or if it will lead to an abnormal behavior.
Table 21 summarizes our measurements per fault effect category using MeRLiN and
the comprehensive baseline fault list of 60K faults for the two benchmarks. In both

4.
19

6
4.

12
5

12
.2

62

3.
94

1
3.

94
7

12
.3

13

3.
65

3
3.

45
9

12
.0

58

0.
89

2
0.

86
7

4.
40

7

0.
54

9
0.

53
9 2.

56
6

0.
27

2
0.

26
2

1.
45

6

99
7

93
7

24
59

61
4

62
2

11
20

29
0

30
3

63
6

0

400

800

1200

1600

2000

2400

0

2

4

6

8

10

12

14

16

18

20

Ba
se

lin
e

M
eR

Li
N

AC
E-

lik
e

Ba
se

lin
e

M
eR

Li
N

AC
E-

lik
e

Ba
se

lin
e

M
eR

Li
N

AC
E-

lik
e

Ba
se

lin
e

M
eR

Li
N

AC
E-

lik
e

Ba
se

lin
e

M
eR

Li
N

AC
E-

lik
e

Ba
se

lin
e

M
eR

Li
N

AC
E-

lik
e

Ba
se

lin
e

M
eR

Li
N

AC
E-

lik
e

Ba
se

lin
e

M
eR

Li
N

AC
E-

lik
e

Ba
se

lin
e

M
eR

Li
N

AC
E-

lik
e

256 regs 128 regs 64 regs 64 entries 32 entries 16 entries 64KB 32KB 16KB

Register File Store Queue L1 data cache

FITFI
T

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 105

cases, MeRLiN delivers very accurate results per fault effect category compared to the
comprehensive baseline method, while the maximum inaccuracy that was observed is
only 1.11 percentile points for the Unknown category of the bzip2 benchmark.

Table 21: MeRLiN’s accuracy for gcc and bzip2 benchmarks.

Category gcc
(MeRLiN)

gcc
(baseline 60K faults)

bzip2
(MeRLiN)

bzip2
(baseline 60K faults)

Masked 85.08% 85.08% 84.98% 84.98%

DUE 0.06% 0.07% 0.29% 0.81%

Crash 3.67% 3.13% 3.50% 4.10%

Assert 0.01% 0.01% 0.03% 0.02%

Unknown 11.18% 11.71% 11.20% 10.09%

Next, we evaluate the speedup of MeRLiN for three data-related targeted structures that
are commonly used in reliability assessment studies (RF, SQ and L1D cache) against
the comprehensive baseline fault injection campaigns (60,000 faults). Figure 55
presents the speedup of the method for 256, 128 and 64 physical registers for the 10
MiBench benchmarks. The lower (blue) segment and the value on top of it indicate the
speedup compared to the comprehensive baseline injection method (60,000 faults) after
the first ACE-like pass. The higher (red) segment of each bar indicates the speedup
achieved by the grouping algorithm on top of the first ACE-like step. The value on top of
the red bar represents the final speedup achieved by MeRLiN. For example, for 64
registers and the qsort benchmark the ACE-like step reduces the initial fault list by 4.1X
(60,000/14,757). The remaining 14,757 faults are further reduced by the grouping
algorithm to 1126 faults that should be actually injected; this totally corresponds to
53.3X (60,000/1126) reduction of the initial fault list. The average speedups are 93.1X,
62.1X and 43.7X for 256, 128 and 64 registers, respectively. Similarly, Figure 56 and
Figure 57 present the speedup for the store queue and the data cache, respectively.
The average speedups for the store queue are 224.9X, 186.7X and 146.9X for 64, 32
and 16 entries respectively, while for the data cache they are 67.9X, 61.6X and 59.0X
for 64KB, 32KB and 16KB respectively.
To evaluate the efficiency of MeRLiN in terms of speedup in larger benchmarks, we ran
Simpoint samples of 100M committed instructions with the highest weight from 10
selected integer benchmarks of the SPEC CPU2006 suite assuming an initial fault list of
60,000 faults. We used the configuration of Table 19 with 128 physical integer registers,
16 store and 16 load queue entries and a 32KB L1 data cache. The results of the
speedup that MeRLiN delivers are reported in Figure 58. MeRLiN leads to very high
final speedups of 1644X, 2018X and 171X on average for the RF, the SQ and the L1D
cache, respectively, which are higher than the speedups obtained for MiBench
programs since the Simpoint samples we used for SPECs correspond to the most
representative part of their execution.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 106

6.
3

12
1.
7

10
.1

8.
7

8.
5

37
.2

17
.8

2.
7

24
.0

24
.6

26
.2

5.
9

10
5.
3

9.
8

7.
9

7.
9

26
.9

10
.7

2.
4

19
.4

20
.3

21
.6

5.
5

86
.7

10
.0

7.
1

25
.8

18
.8

8.
0

2.
4

14
.4

13
.1

19
.2

14
7.
1

70
5.
9

17
0.
9
12
6.
1
11
5.
8

21
9.
8
15
0.
4
15
3.
1
19
2.
3

26
7.
9
22
4.
9

10
5.
3

56
0.
7

14
8.
1
88
.5

99
.0

20
9.
8

14
1.
8
13
8.
2
15
1.
5
22
3.
9
18
6.
7

84
.6

38
7.
1

11
0.
1
66
.2

14
8.
1
12
7.
9
13
8.
9
12
2.
7
12
1.
7
16
1.
7
14
6.
9

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

susan_c

susan_s

susan_e

stringsearch

djpeg

sha

fft

qsort

cjpeg

caes

average

susan_c

susan_s

susan_e

stringsearch

djpeg

sha

fft

qsort

cjpeg

caes

average

susan_c

susan_s

susan_e

stringsearch

djpeg

sha

fft

qsort

cjpeg

caes

average

64
en

tri
es

32
en

tri
es

16
en

tri
es

Speedup

S
pe

ed
up

 fr
om

 A
C

E
-li

ke
S

pe
ed

up
 fr

om
 G

ro
up

in
g

16
.7

16
.2

13
.7

14
.7

14
.9

14
.4

16
.7

16
.1

14
.1

16
.9

15
.4

8.
4

8.
0

7.
1

7.
6

7.
3

7.
3

8.
1

8.
1

7.
1

16
.9

8.
6

4.
1

4.
2

3.
6

3.
9

3.
3

3.
9

4.
1

4.
1

3.
7

4.
1

3.
9

52
.0

27
5.
2

54
.6

35
.8

62
.9

10
7.
7

74
.9

11
1.
5
89
.8

66
.6

93
.1

32
.3

15
5.
8

35
.3

23
.5

43
.7

71
.2

54
.5

74
.6

59
.8

70
.1

62
.1

21
.0

11
5.
8

24
.5

15
.7

41
.0

43
.9

42
.8

53
.3

41
.8

37
.2

43
.7

05010
0

15
0

20
0

25
0

30
0

susan_c

susan_s

susan_e

stringsearch

djpeg

sha

fft

qsort

cjpeg

caes

average

susan_c

susan_s

susan_e

stringsearch

djpeg

sha

fft

qsort

cjpeg

caes

average

susan_c

susan_s

susan_e

stringsearch

djpeg

sha

fft

qsort

cjpeg

caes

average

25
6r

eg
s

12
8r

eg
s

64
re

gs

Speedup

S
pe

ed
up

 fr
om

 A
C

E
-li

ke
S

pe
ed

up
 fr

om
 G

ro
up

in
g

Figure 56: MeRLiN speedup for the three sizes
of the Store Queue running 10 MiBench

benchmarks.

Figure 55: MeRLiN speedup for the three
sizes of the Physical Integer Register File

running 10 MiBench benchmarks.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 107

Figure 57: MeRLiN speedup for the three
sizes of the L1 Data cache running 10

MiBench benchmarks.

Figure 58: MeRLiN speedup for the RF, SQ, and
L1D running 10 Simpoints of 100M committed

instructions from SPEC CPU2006.

4.
4

5.
1

2.
7

8.
6

5.
6

9.
2

2.
2

1.
8

1.
4

2.
1

4.
3

4.
2

3.
3

1.
9

7.
6

2.
1

5.
9

2.
0

1.
8

1.
5

1.
7

3.
2

4.
6

2.
4

1.
9

6.
0

2.
7

4.
5

2.
2

1.
9

1.
9

1.
5

3.
0

54
.9

95
.2

61
.8

43
.1

44
.4

72
.5

71
.5

11
7.
2

67
.2

51
.5

67
.9

42
.6

10
0.
0

49
.5

36
.4

47
.4

69
.4

68
.2

90
.5

61
.5

50
.3

61
.6

35
.5

96
.8

41
.3

34
.8

48
.0

69
.0

68
.3

87
.3

46
.7

61
.9

59
.0

02040608010
0

12
0

14
0

susan_c

susan_s

susan_e

stringsearch

djpeg

sha

fft

qsort

cjpeg

caes

average

susan_c

susan_s

susan_e

stringsearch

djpeg

sha

fft

qsort

cjpeg

caes

average

susan_c

susan_s

susan_e

stringsearch

djpeg

sha

fft

qsort

cjpeg

caes

average

64
K

B
32

K
B

16
K

B

Speedup

S
pe

ed
up

 fr
om

 A
C

E
-li

ke
S

pe
ed

up
 fr

om
 G

ro
up

in
g

7

51
7

6
7

29
4

6
7

26
4

5
7

26
8

6
7

25
3

5
7

29
7

5
7

26
0

5
7

25
5

6
7

23
7

6
7

24
4

5
7

28
9

6

1,
87
5

2,
30
8 17
5

1,
93
52,
50
0

16
8

1,
93
5

2,
22
2 17

8

40
5

1,
53
8 18

8

1,
81
8

2,
22
2 16

8

2,
00
0

2,
14
3 17
2

1,
07
1

1,
62
2 15
0

1,
81
8

1,
93
5 17
5

1,
76
5

1,
81
8 16
9

1,
81
8
1,
87
5 17
2

1,
64
4

2,
01
8 17

1

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

R
F

S
Q

L
1

D
R

F
S

Q
L

1
D

R
F

S
Q

L
1

D
R

F
S

Q
L

1
D

R
F

S
Q

L
1

D
R

F
S

Q
L

1
D

R
F

S
Q

L
1

D
R

F
S

Q
L

1
D

R
F

S
Q

L
1

D
R

F
S

Q
L

1
D

R
F

S
Q

L
1

D

b
z
ip

2
g

c
c

m
c
f

g
o

b
m

k
h

m
m

e
r

s
je

n
g

li
b

q
u

a
n

tu
m

h
2

6
4

re
f

o
m

n
e

tp
p

a
s
ta

r
a

v
e

ra
g

e

Speedup

S
p

e
e

d
u

p
 f
ro

m
 A

C
E

-l
ik

e
S

p
e

e
d

u
p

 f
ro

m
 G

ro
u

p
in

g

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 108

Figure 59 depicts the actual time (in months) required for the fault injection campaigns
in the three structures (RF, SQ and L1D) with the comprehensive fault injection method
(60,000 faults per campaign; blue bars) and MeRLiN method (red bars) for all MiBench
benchmarks and all component configurations. We assume that all injections run
sequentially in the same machine.

Figure 59: Actual reliability estimation times of the comprehensive baseline injection vs. MeRLiN

for all structures configurations of this study running 10 MiBench benchmarks.

The higher the statistical significance of the initial fault list the larger the speedup that
MeRLiN offers. In our initial set of campaigns, we ran all MiBench benchmarks using
60,000 faults per campaign (99.8% confidence level and 0.63% error margin). To stress
MeRLiN even further, we repeated all these campaigns using a huge 10 times larger
initial list of 600,000 faults (99.8% confidence level and 0.19% error margin). Figure 60
presents the average speedup achieved for these two sets of campaigns by the ACE-
like (lower purple segment of each bar) and the grouping step (upper white segment) of
MeRLiN, as well as the final speedup achieved (value on top of each bar) for each
configuration. The final speedup was scaled up 3.46 times on average; practically
meaning that for 10 times increase of the initial fault list, MeRLiN finally applies only
2.89 times more faults.

Figure 60: MeRLiN speedup scaling for 0.63% (60K faults) and 0.19% error margin (600K faults);

average for 10 MiBench benchmarks.

40.68

77.07
82.09

199.84

0.65 0.49 1.28 2.42

0

50

100

150

200

Register File Store Queue L1 data cache Final Estimation Time

M
on
th
s

Comprehensive fault injection (60,000 faults) MeRLiN

69.2 70.1 69.5

298.0 252.8
200.5

130.2 81.3 60.9

348.5 303.8 292.6

929.5

686.5

547.3

367.1
259.6

183.7

0
100
200
300
400
500
600
700
800
900
1000
1100
1200

64
K

B

32
K

B

16
K

B

64
en

tri
es

32
en

tri
es

16
en

tri
es

25
6r

eg
s

12
8r

eg
s

64
re

gs

64
K

B

32
K

B

16
K

B

64
en

tri
es

32
en

tri
es

16
en

tri
es

25
6r

eg
s

12
8r

eg
s

64
re

gs

L1D SQ RF L1D SQ RF

Error margin 0.63% Error margin 0.19%

Sp
ee
du
p

Speedup from ACE-like Speedup from Grouping

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 109

3.2 MeRLiN’s results on instruction-related structures
Apart from the data-related structures (RF, SQ and L1D) that were targeted to evaluate
MeRLiN methodology, we also evaluated MeRLiN on an instruction-related structure,
the destination register field of the Issue Queue (IQ) with two different sizes: (a) 32
entries using the configuration of Table 19, and (b) 60 entries using the configuration of
Table 20 that resembles an Intel Haswell-like microprocessor.
The evaluation of MeRLiN on the Issue Queue has fundamental differences compared
to the other data-related structures. The reason is that a fault in this structure can only
affect the indexing of the instructions that reside in the pipeline of an OoO processor;
this is not the case for the L1D, the SQ and the RF where the data integrity is mainly
affected.
In Figure 61 and Figure 62, we illustrate the results concerning the speedup when
MeRLiN is applied on an IQ with 32 and 60 entries, respectively. The blue bars and the
values on top of them indicate the speedup compared to the comprehensive baseline
injection method (60,000 faults) after the first ACE-like pass. The red bars and the
numbers on top of them indicate the final speedup achieved by MeRLiN. The average
speedup that MeRLiN finally provides is 22.2X and 27.5X for 32 and 60 entries,
respectively.

Figure 61: MeRLiN speedup for the Issue Queue with 32 entries running 10 MiBench benchmarks.

Figure 62: MeRLiN speedup for the Issue Queue with 60 entries running 10 MiBench benchmarks.

2.
7

1.
6

2.
2 4.
8

2.
1

1.
7

1.
8 2.
9

2.
6

2.
1

2.
4

14
.5

47
.0

16
.6

13
.0

16
.3 28

.1

15
.6 25

.8

23
.1

22
.2

22
.2

0
10
20
30
40
50
60
70
80
90

100
Speedup for 32 entries of IQ

Speedup from ACE-like Final speedup (Method)

3.
0

2.
0

2.
3 7.

0

2.
5

2.
0

2.
0 3.
6

2.
7

2.
3

3.
0

18
.6

62
.5

19
.5

16
.6 20
.9

36
.2

18
.9 27

.3

28
.5

26
.0

27
.5

0
10
20
30
40
50
60
70
80
90

100
Speedup for 60 entries of IQ

Speedup from ACE-like Final speedup (Method)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 110

Concerning the accuracy, similar to the data-related structures we firstly evaluate the
homogeneity of the group creation algorithm that was described in equation (10) for the
six fine-grained classes of fault effects of Table 4. Figure 63 presents the homogeneity
of the created groups when MeRLiN targets the Issue Queue with 32 and 60 entries
respectively. We can observe that on average the homogeneity is very high for the two
configurations of the IQ (0.92 and 0.93 for 32 and 60 entries respectively) even when
we use six fault effect categories. This indicates the high accuracy of MeRLiN’s group
creation algorithm when MeRLiN is applied on the Issue Queue. The average
percentage of groups with perfect homogeneity (equal to 1.0) for the Issue Queue when
we use six classes of fault effects is 80.5% and 82.5% for 32 and 60 entries
respectively; a very good indication of the accuracy of the grouping algorithm.

Figure 63: Homogeneity of Issue Queue.

The estimation accuracy of MeRLiN for the Issue Queue against the injection using the
remaining fault list after the ACE-like step is shown in Figure 64. The graph shows the
average fault effect classification across the 10 MiBench benchmarks used in our study
for the two configurations of the Issue Queue. The first bar (blue) in each class
corresponds to the results of the fault injection in the remaining fault list after the ACE-
like analysis, while the second bar (red) illustrates the results on the same fault list after
applying MeRLiN’s grouping algorithm and injecting only the selected faults. The values
on top of each bar represent the measurement per fault effect category. Similar
behavior is observed across all benchmarks. For the Issue Queue and the two
configurations, MeRLiN reports negligible differences compared to the injection using all
the faults that hit only vulnerable intervals.
Figure 65 shows the bigger picture of MeRLiN’s accuracy for the Issue Queue, in which
the final fault effect classification of the comprehensive baseline fault injection of 60,000
faults (blue bar) is compared to the final classification of MeRLiN (red bar). Each bar
represents the average values across the 10 MiBench benchmarks. Similar behavior is
observed across all benchmarks. MeRLiN for all cases is extremely accurate and
delivers virtually the same reports with the comprehensive injection.

0.
92

0.
90 0.
91 0.

98

0.
90 0.
92

0.
93 0.
94

0.
91

0.
91 0.
92

0.
93

0.
93

0.
93 0.

97

0.
91 0.
93 0.
95

0.
94

0.
92

0.
92 0.
93

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

Homogeneity of IQ

32 entries 60 entries

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 111

Figure 64: Fault effect classification of MeRLiN against injection with the remaining faults after

ACE-like step for the Issue Queue; average for 10 MiBench benchmarks.

Figure 65: Final fault effect classification of MeRLiN against comprehensive baseline fault

injection with 60,000 faults for the Issue Queue; average for 10 MiBench benchmarks.

Finally, Figure 66 demonstrates the final reliability estimation in Failures-in-Time (FIT)
rates for the comprehensive baseline campaign (60,000 faults), the MeRLiN method
and the ACE-like method running the 10 MiBench benchmarks to the end targeting the
Issue Queue. The reported FIT rates are the products of AVF, raw FIT rate and number
of structure's bits. The AVF of the injection-based methods is the ratio of the non-
masked injections over the total injections, while the AVF of the ACE-like is measured
as in [50]. We used 0.01 FIT per bit, but any raw FIT rate can be used. MeRLiN reports
negligible differences compared to the comprehensive baseline injection for the IQ,
while the ACE-like delivers a pessimistic lower bound of structures' reliability.

85
.6

7%

0.
02

%

0.
00

% 14
.2

2%

0.
07

%

0.
02

%

85
.3

5%

0.
01

%

0.
00

% 13
.0

8%

0.
06

%

1.
50

%

85
.7

5%

0.
01

%

0.
00

% 14
.1

5%

0.
08

%

0.
01

%

85
.3

3%

0.
01

%

0.
00

% 13
.0

9%

0.
15

%

1.
42

%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

32 entries 60 entries

Fault Effect Classification after ACE-like of IQ
(average for 10 benchamarks)

Fault Injection in complete fault list remaining after ACE-like Method

93
.5

6%

0.
01

%

0.
00

%

6.
39

%

0.
03

%

0.
01

%

94
.2

5%

0.
00

%

0.
00

%

5.
15

%

0.
02

%

0.
58

%

93
.6

2%

0.
00

%

0.
00

%

6.
33

%

0.
04

%

0.
01

%

94
.2

4%
0.

00
%

0.
00

%

5.
17

%

0.
06

%

0.
53

%
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

M
as

ke
d

S
D

C

D
U

E

Ti
m

eo
ut

C
ra

sh

A
ss

er
t

32 entries 60 entries

Final Fault Effect Classification of IQ
(average for 10 benchmarks)

Exhaustive Baseline Fault Injection (60,000 masks) Method

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 112

Figure 66: Final reliability assessment (FIT) for the Issue Queue (average for 10 MiBench).

3.3 Comparison of MeRLiN with architecture level fault injection approaches
In this section, we present a quantitative and qualitative comparison between MeRLiN
that is an approach that targets the reliability evaluation at the microarchitecture level
and Relyzer [87] a state-of-the-art approach to estimate reliability at the software level.
Firstly, the two approaches have fundamental differences concerning the nature of the
initial fault list population. An exhaustive fault list at the microarchitecture level consists
of all flips for every bit of a hardware structure and for every program execution cycle. At
the software, the same list consists of bit flips in the operands of the assembly
instructions; these faults are not correlated to the execution time of the program and the
actual bits of the hardware.
Table 22 presents a high-level quantitative comparison of Relyzer [87] and MeRLiN
using as starting point the exhaustive fault list of the corresponding level of abstraction
(first column). The second column shows the faults of the exhaustive list that remain for
injection after the application of each method, and the third column presents the gains
(speedup) in terms of fault list reduction achieved by each method over the
corresponding exhaustive list. The last two columns show the time needed to inject the
exhaustive list and the remaining faults in both methods, respectively. Assume that we
run one benchmark of 1 billion cycles and we inject faults in the L1D (32KB), the SQ (16
entries) and the RF (64 registers). The throughput of Gem5 for full-system cycle-
accurate simulation is 105 cycles/sec while for software emulation it is 106 cycles/sec
[15]. MeRLiN delivers 5 orders of magnitude higher gains than Relyzer having as
starting point the exhaustive list, while it reports the reliability of the exhaustive list 10
orders of magnitude faster. Thus, statistical fault sampling is unavoidable due to the
huge number of faults in the exhaustive fault list for both hardware and software level
methods.

Table 22: MeRLiN vs. Relyzer using exhaustive fault list.

 Exhaustive
fault list

Remaining
faults Gain

Evaluation time
using exhaustive

fault list

Evaluation time
using remaining

faults

MeRLiN 1013 103 1010 ~3×109 years 4 months

Relyzer 1011 106 105 ~3×106 years 32 years

1.318 1.306

9.097

2.209 2.214

14.983

0

2

4

6

8

10

12

14

16

Baseline Method ACE-like Baseline Method ACE-like

32 entries 60 entries

FI
T

Final Reliability Estimation of IQ

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 113

Both MeRLiN and Relyzer prune faults of the initial fault list being injected at different
levels of the system stack. Thus, in the next bullets we analyze the applicability of
Relyzer heuristics at the microarchitecture level injection:

• Bounding addresses: It prunes faults in the address field of store and load
instructions if the valid address space is violated. This heuristic requires an
unaffordable amount of memory to track the addresses in data related structures
(e.g. caches). Also, MeRLiN provides finer grained effect classification for non-
masking categories (Table 4) and is not limited to symptom-based techniques.

• Def-use: It prunes faults in the destination architectural register of an instruction
followed by another instruction that consumes this value, as these faults will have
the same effect.

• Store-equivalence is similar to the def-use for store and load instructions. These
two heuristics cannot be applied at the microarchitecture level of our work. The
destination register of an instruction and the source register of a subsequent
correspond to the same physical entity [88].

• Control-equivalence: Software analysis using basic blocks tracks the control
flow paths of all the dynamic instances of all the static instructions to separate
Masked from SDC faults [89]. For each path Relyzer randomly chooses only one
pilot. To evaluate this heuristic, we ran the 10 MiBench to the end with 128
registers, 16 SQ entries and 32KB L1D. Exhaustive fault injection is infeasible;
thus, we used the remaining faults (from 60,000 initial faults) after the pruning by
our ACE-like step. We used a control flow path depth of 5, exactly as Relyzer
does [87].
In terms of speedup, MeRLiN slightly prevails on average in the RF (62.1X
compared to 60.5X) and the L1D (60.1X compared to 59.1X), while for the SQ,
MeRLiN provides 146.9X speedup compared to 150.6X of Relyzer's heuristic.
Figure 67 illustrates the results of the comparison in terms of inaccuracy in
percentile units compared to the injection using the same fault list.
A source of Relyzer’s inaccuracy is the static instructions with large population of
faults that are represented by only one randomly selected pilot. In [87], 52% on
average of all static instructions have only 1 pilot. We measured that Relyzer
leaves 9% of the groups correlated to a static instruction with large population of
faults (more than 100 faults) with only 1 pilot, while MeRLiN leaves less than 2%.
The heuristic of Relyzer if applied to our statistical concept selects only one pilot
for code loops with large number of iterations. Assume a for-loop with 1000
iterations that consists of only one static instruction with only two control flow
paths with 995 and 5 instances, respectively. Due to statistical sampling, all faults
may come only from the first path. In this case, Relyzer chooses only one pilot for
this loop. On the contrary, MeRLiN, due to the homogenous distribution of faults,
chooses more than one from different bytes and dynamic instances. These large
loops exist in most program execution phases, including initialization and output
phase that are not examined by [87]. Despite of Relyzer’s indisputable merit in
software resilience, this heuristic of Relyzer is not so efficient to be employed in
our concept.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 114

Figure 67: Inaccuracy of MeRLiN and Relyzer vs. injection with the remaining faults after ACE-like;

average for 10 MiBench.

3.4 Theoretical analysis of MeRLiN
In this section, we analyze the statistical behavior of MeRLiN comparing the mean and
the variance of the AVF measurements it reports to the corresponding mean and
variance of the comprehensive fault injection campaign. We assume that soft errors
affecting the microprocessor bits follow a normal distribution [62]. A fault injection
campaign can be described as a binomial experiment of F individual injections, each of
which has a probability of success (program is affected) or failure (program is not
affected; fault is masked). Thus, the AVF measurement k (0 ≤ k ≤ 1) in our case means
that k·F faults are Not-Masked.
MeRLiN’s first phase prunes a fraction m (0 ≤ m ≤ 1) of the F faults that are guaranteed
masked: m·F. The remaining (1–m)·F faults (which now contain all k·F Not-Masked
faults of the initial list of F faults) are forwarded to the second phase of MeRLiN
(grouping). This second phase produces n groups of faults with sizes si (i=1, 2, … , n).
The sum of the group sizes is equal to the number of faults passed to the second
phase:

When the comprehensive injection campaign (without MeRLiN) is applied, all F faults
are injected and the outcome r of each run is observed (Not-Masked=1 or Masked=0).
In this case, the AVF (k) is3:

We assume that the probability of Non-Masking within a group i is pi. Within a group i,
all faults have the same probability pi because of MeRLiN’s grouping criterion: faults in a

3 We could consider as group 0 with size s0= m·F the group of faults from MeRLiN’s pre-processing step
but since all faults of this group are masked, i.e. r=0, this group is not needed in the calculations.

1
.5

3

1
.7

5

0
.0

7 0
.3

8

4
.0

1

0
.2

8

3
.2

3

1
.7

6

3
.3

5

1
.6

5

2
.4

2

2
.4

1

2
.9

3

4
.1

2

0
.4

4

0
.1

6

0
.2

6 0
.6

5

0
.0

7

0
.6

9

0
.1

2

0
.1

5

0
.9

2

0
.0

2

0
.8

3 1
.1

0

0
.0

2

0
.0

1

0
.2

8

0
.0

1

0
.8

6

1
.0

6

0
.0

6

0
.0

8

0
.0

8

0
.0

1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

RF SQ L1D

In
a

c
c
u

ra
c
y
 i

n
 p

e
rc

e
n

ti
le

 u
n

it
s

Relyzer MeRLiN

s1 + s2 + … + sn = 1–m() ⋅F (11)

k =
ri
j

j=1

si

∑
i=1

n

∑
F

 (12)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 115

group hit the same byte of the entries during a vulnerable interval that ends with the
same instruction that reads the entry. The results of Figure 47 show the validity of this
assumption; they indicate that the vast majority of groups have homogeneity close to
1.0 (considering only the masked and non-masked categories) and that the percentage
of groups with perfect homogeneity is very large in all cases. Across groups,
probabilities pi are different since the groups correspond to faults eventually read by
different instructions. The mean (expected value; E) of the AVF measurement k in the
comprehensive campaign is4:

When MeRLiN is employed it delivers a new AVF measurement kMeRLiN. For each run r
of the selected fault from a group i all faults are assumed to have the same result
(1=Not-Masked, 0=Masked). So, the true measurement in this case is si ri for each
group i and the new AVF kMeRLiN is:

which has a mean

therefore, MeRLiN reports AVF with the same mean value as the original
comprehensive set of F fault injections. Τhe variance of the AVF measurements k and
kMeRLiN is shown in the following equations5:

4 We use the linearity property of the means of independent variables which holds for binomial
distribution. The mean of a binomially distributed variable is E(X) = n·p with n experiments and p success
probability.
5 We use the relation σ2(a·X+b·Y) = a2·σ2(X)+ b2·σ2(Y) for the variances of independent variables. Group
0 has zero variance.

E(k) = E
ri
j

j=1

si

∑
i=1

n

∑
F

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
E(ri

j)
j=1

si

∑
i=1

n

∑
F

=
pi

j=1

si

∑
i=1

n

∑
F

=
si ⋅pi

i=1

n

∑
F

 (13)

kMeRLiN =
si ⋅ ri

i=1

n

∑
F

 (14)

E(kMeRLiN) = E
si ⋅ ri

i=1

n

∑
F

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
E(si ⋅ ri)

i=1

n

∑
F

=
siE(ri)

i=1

n

∑
F

=
si ⋅pi

i=1

n

∑
F

= E(k) (15)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 116

The values of both σ2(k) and σ2(kMeRLiN) are very small (several orders of magnitude
smaller than the means of k and kMeRLiN, respectively) for two reasons:

• the groups generated by MeRLiN are very homogeneous; thus, either pi or (1–pi)
is zero or is very small as shown in Section 3.1 and Section 3.2

• the sizes of the groups (si values) are very small compared to F
In our experiments, the average size of a MeRLiN group is always less than 100 and
typically ranges between 5 and 40. Thus, with simple calculations on the above
equations the variance of the initial AVF value when F consists of 60K faults is about 8
to 10 orders of magnitude smaller than the mean. Therefore, the multiplication with the
si values in the variance of MeRLiN’s AVF measurements σ2(kMeRLiN) keeps this
variance from 6 to 8 orders of magnitude smaller than the mean (assuming si values up
to 100): still a very small variance, only slightly increased compared to the initial one.
Overall our analysis shows that the AVF measurement of MeRLiN has the same mean
as the comprehensive experiment of F injections, while both have a very small variance.
These two statistical properties make them almost statistically equivalent although
MeRLiN reports AVF in 1 to 3 orders of magnitude shorter time.

3.5 Related work
There are several studies that focus on reliability assessments. Next, we present and
categorize these studies according to their correlation with the contributions of this
thesis:

• Approaches for reliability estimation of hardware components: In Section
2.1.4, we described in detail the four more popular techniques that are used to
estimate the reliability of hardware structures: (i) RTL injection [45] [46] [47] [95],
(ii) microarchitecture level injection [29] [30] [31] [48] [49], (iii) ACE
(Architecturally Correct Execution) analysis [50] [51] [52] [53] and (iv)
probabilistic models [54] [55] [56] [57].

• Fault injection tools for reliability assessments: A microarchitecture-level
injection tool built on M5 simulator [96] for Alpha ISA only is briefly described in
[48]. The injector was built on a simple in-order microarchitecture and reliability
studies of complex out-of-order x86 or ARM microprocessors are not supported.
An injection tool based on Gem5 and the Alpha ISA is described in [97]; the tool
only injects transient faults in architectural registers. Also, [57] [58] use PTLsim
for fault injections on very few hardware structures.

σ 2(k) = σ 2

ri
j

j=1

si

∑
i=1

n

∑
F

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
σ 2(ri

j

j=1

si

∑
i=1

n

∑)

F 2 =
pi ⋅(1− pi)

j=1

si

∑
i=1

n

∑
F 2 =

si ⋅pi ⋅(1− pi)
i=1

n

∑
F 2 (16)

σ 2(kMeRLiN) = σ 2
si ⋅ ri

i=1

n

∑
F

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
si

2 ⋅σ 2(ri
j)

i=1

n

∑
F 2 =

si
2 ⋅pi ⋅(1− pi)

i=1

n

∑
F 2 (17)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 117

Other approaches combine performance simulators with lower-level simulators to
improve reliability assessments accuracy. The approach in [78] presents a
combination of GEMS and Simics simulators with Cadence NC-Verilog gate-level
simulator. For logic components, it delivers a more accurate estimation at the
expense of long simulation times. In [46], a fault injection method at the RTL and
gate-level is described for the control blocks of an Alpha microprocessor.
Microarchitectural simulators have been also used for injections only at
architectural visible points (the architectural registers) to measure the
effectiveness of error protection techniques. In [98], the ASIM functional
simulator is used and faults are only injected at the registers.
Other tools target even lower levels and work at the RTL, on FPGA realizations
of a microarchitecture or on hardware emulators. The experimental study of [99]
injects faults in a DLX processor FPGA realization and an ASIC realization of an
Alpha processor. The framework described in [100] uses an FPGA-based system
for the reliability characterization of a full system stack. In [101], an FPGA-based
reliability analysis framework is described. In [47] and [102] an RTL model of an
Alpha processor is developed and used for fault injection experiments. In [103],
faults are injected in an RTL model of picoJava-II processor. In [104], a hardware
emulation platform is used for injections at the latches of a microarchitecture. An
interesting study [45] quantitatively evaluates the impact of flip-flop soft errors
using several injection approaches at different levels of abstraction and
discussed the sources of inaccuracies when higher levels of abstraction are
employed in fault injection setups. This study does not evaluate the accuracy of
the reliability estimations at the microarchitecture level that is the goal of this
thesis.

• Lifetime analysis studies: Lifetime analysis [40] is a common analysis that is
used in many reliability-reliability studies. This analysis is based on the
separation of a hardware entry lifetime into vulnerable (in which a fault can
potentially affect the program execution) and non-vulnerable intervals (in which a
fault cannot affect the program execution) according to the access patterns on
the same entry. Lifetime analysis has been previously used in several reliability-
related studies. The method of [86] uses execution intervals sampling for
reliability evaluation of caches. In [42] and [43] the authors separate the
Hardware Vulnerability Factor (HVF) from the Program Vulnerability Factor
(PVF), while [105] focuses on on-line vulnerability estimation and [60] aims to
develop stressmarks to measure the maximum vulnerability of hardware
structures to soft errors. The methods in [106], [107], [108] and [109] use lifetime
analysis to support decision-making for error protection. However, none of these
studies uses the lifetime analysis to accelerate the fault injection campaigns at
the microarchitecture level (as MeRLiN does).

• Cross-layer approaches to evaluate system reliability: Performing cross-layer
system reliability analysis, requires a deep understanding of the layers where
faults appear in the system, how faults generate errors, and how errors
propagate across layers, eventually impacting the final mission of the system.
Performing system reliability analysis means calculating the different vulnerability
factors associated with the components of a system, and then understanding
how all masking effects work together and how they influence the behavior of the
system. The key concept is to analyze the three system layers (technology,
hardware and software layers) separately computing different vulnerability factors
for the different blocks. Vulnerability factors are then statistically combined in

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 118

order to infer reliability measures at the system level. Analyzing the layers in
isolation has the main advantage to reduce the complexity of the analysis
focusing on the peculiar masking effects each layer can provide. Each layer
defines an interface with the upper layer, which in turn sets how faults can be
propagated from one layer to the next one. In [90], [91] and [92], MaFIN was
used to propose a scheme for cross-layer system reliability analysis, while GeFIN
[29] [30] was used in [93].

3.6 Findings Summary
In Chapter 2 and Chapter 3, we presented several techniques to analyze the reliability
of modern microprocessors against different types faults in the early pre-silicon design
phase. Here, we summarize the most important highlights that were presented:

• We developed a fault injection framework (called MaFIN [27] [29]) to support
injection of transient, intermittent, permanent faults and multiple faults in x86-64
modern microprocessors. Moreover, we enhanced the microarchitectural
simulator with the data arrays in all cache levels to ensure accurate reliability
estimations on these structures. MaFIN tool supports fault injection in the most
important array-based structures of the microprocessor (see Table 5) that occupy
the majority of chip’s area. Finally, MaFIN can parse the results of the fault
injection campaigns in six different fault effect categories (Masked, SDC, DUE,
Timeout, Crash, Assert) according to Table 4. MaFIN tool can be used to support
several reliability estimation studies, such as: (i) reliability-performance tradeoffs
assessment studies [28], (ii) differential studies on reliability assessments [29],
and (iii) studies that focus to accelerate the reliability assessments [31].

• In [28], we presented a complete fault injection analysis of transient faults which
jointly considers the reliability and the performance impact of several important
design parameters on a modern out-of-order x86-64 architecture. To achieve
this, we also proposed a simple and flexible fitness function that measures the
aggregate effect of such design changes on the reliability and the performance of
the studied workload.

• In [29], we investigated the limits of microarchitecture level fault injection for x86
and ARM ISAs conducting a differential analysis on two comprehensive fault
injector tools (MaFIN [27] [29] and GeFIN [30]) supporting the same fault models
and running the same workloads. This differential analysis brought insights
concerning the sensitivity of the vulnerability of hardware structures and
workloads to the underlying microarchitecture as well as the ISA of the
microprocessor. It also identified common trends and diverging reliability reports
in the two tools which can lead to informed design decisions for error protection.
We explained the common trends and the sources of difference when diverging
reliability reports are provided by the tools using benchmarks runtime statistics.

• In [31], we extended the baseline mode of MaFIN fault injection framework with
two extra modes of operation in order to speed up the statistical fault injection
campaigns at the microarchitecture level. The common characteristic of the two
proposed techniques of [31] is that they are implemented after the actual
injection of the fault in the hardware structure during its lifetime. In the first mode,
an injection experiment is forced to completion when the fault is overwritten
before it is read and thus we classify it early and accurately as masked. In the
second mode, an injection experiment is forced to completion when the fault is
overwritten before it is read or when an x86 instruction reads the fault from the
faulty entry and reaches the commit stage. The second method provides a

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 119

tradeoff between speedup and accuracy in order to deliver a fast but not so
accurate solution in the early reliability estimation problem. From our
experimental results, we observed for the first mode a speedup up to 2.92X with
no loss of accuracy in the vulnerability measurements for all structures, while in
the second mode an even higher speedup of up to 4.06X has been obtained with
small loss in the accuracy of the vulnerability measurements.

• In [32], we presented MeRLiN methodology a state-of-the-art method to
accelerate statistical fault injection campaigns at the microarchitecture level by
pruning the faults of the initial fault list before their actual injection. This method is
different than the techniques proposed in [31] that target to accelerate the fault
injection campaigns during faults lifetime. MeRLiN accelerates statistical
microarchitecture level fault injection from 1 to 3 orders of magnitude. Our
experiments with full runs of 10 MiBench benchmarks [74] show 93X, 225X, 68X
and 28X speedup on average for different sizes of the register file, the store
queue, the first level data cache and the issue queue, respectively. When applied
to 10 SPEC CPU2006 benchmarks, MeRLiN reveals larger average speedups of
1644X, 2018X and 171X for the register file, the store queue and the first level
data cache, respectively. Moreover, MeRLiN reports virtually the same reliability
estimations as conventional microarchitectural fault injection with extremely high
statistical significance. Finally, MeRLiN delivers fine-grained insights of the fault
effects (Silent Data Corruptions-SDC, Detected Unrecoverable Errors-DUE,
crashes, locks) unlike ACE analysis which only reports a gross AVF estimate.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 120

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 121

4. POST-SILICON RELIABILITY ANALYSIS

This chapter aims to describe two techniques that are implemented during Post-Silicon
Reliability Analysis phase (see Figure 8), when the massive production of chips begins
or the chips are already released to the market. Section 4.1 presents a technique for
accelerated online detection of permanent faults in many-core architectures using the
48-core Intel’s SCC architecture as experimental vehicle, while Section 4.2 presents a
statistical analysis methodology that was proposed to boost the energy efficiency of the
eight ARMv8-based cores of the X-Gene 2 chip by predicting the safe voltage operation
margins of each individual core.

4.1 Online permanent fault detection in many-core architectures
Massive parallelism in many-core architectures holds an important place in modern
computing. The microprocessors industry is moving rapidly to the many-core era and
such architectures are expected to dominate in the near future in various computing
domains, including general purpose microprocessors [110], graphics processing units
(GPUs) [111] or other hardware accelerators, as well as specialized Systems-on-chip
(SoCs) [112] such as network processing units (NPUs) [113], [114] and [115]. The
extreme complexity of many-core processor architectures and the pressure for reduced
time-to-market (TTM) renders even the most comprehensive verification and testing
campaign before and during mass production incomplete. A significant population of
manufacturing faults escape in-field and may jeopardize correct operation of the chip.
Furthermore, the environmental impact and wear-out effects that lead to intermittent or
permanent faults increase the failure probability of modern designs. Thus, developing
techniques capable of detecting errors online is a necessity [11].
Several online error detection schemes have been proposed in the literature to enhance
microprocessor’s reliability. Online schemes are divided into concurrent testing, which
takes place during normal system operation and non-concurrent testing, which is
performed during idle periods or while system normal operation is interrupted.
Concurrent testing schemes [116] typically built with hardware assertion checkers
impose many constraints (e.g. area) on the microprocessor design process. On the
other hand, there are non-concurrent online error detection approaches, such as the
software-based online testing, that do not intrude the processor design but may impact
system throughput as they need themselves some execution time for error detection.
Functional or software-based testing techniques have gained increasing acceptance for
microprocessor error detection during the last years and currently forms an integral part
of the processor manufacturing test flow [117]. Functional online error detection
approaches for many-core architectures are based on the application of the test
programs during normal system operation and should adhere to the following
requirements:

• Reduced test program execution time: reduction of the test execution time allows
a better trade-off between reliability (executing more tests or the same tests more
frequently), performance overhead (interrupting user workload for a shorter
period) and availability (the smaller the test execution time, the shorter the
service downtime period).

• Small memory footprint: A single copy of the test program (test code and data) is
stored in the shared memory (system’s main memory) instead of using separate
copies in each core; this reduces storage requirements and avoids the scaling of
test program memory footprint with the number of cores.  

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 122

• Test program replication: All processor cores have to execute the same test
program to detect faults and guarantee high fault coverage levels.  

There are two approaches that are described with the example of Figure 68 for the
online execution of a test program in many-core architectures:

• Non-intrusive approach: Each core runs the test programs individually during its
idle periods.  

• Intrusive approach: Groups of cores or all cores together are periodically isolated
and set out-of-service (do not run normal workload) to run simultaneously the test
programs.

Figure 68: Intrusive (upper) and non-intrusive (lower) online functional detection approach.

An online error detection methodology has to address a major challenge: reduce the
duration of the test program execution exploiting the massively execution parallelism
and also limiting the contention of cores for the shared resources. Otherwise, the overall
test execution time will excessively scale with the number of cores. This phenomenon is
exacerbated in many-core designs, where multiple processing elements compete to
take control of shared resources. For the case of the non-intrusive approach, the time
reduction makes feasible the execution of test programs in shorter idle periods
increasing the likelihood of an idle time slot to execute the test program even in high-
utilized processor cores. On the contrary, shorter execution time for the intrusive
approach means either less throughput overhead or more frequent runs, thus shorter
error detection latency.

radically differs from conventional parallel programming
problems. In classic parallel programming a serial program is
broken in parts that are executed in the different processors. In
online error detection the entire test program must be applied
individually in every core. Therefore, parallelizing the test
programs seems to be effortless: all processor cores must run
the test program in parallel and there is no need for
communication. The important question is thus: is an online
test program embarrassingly parallel1as it seems to be? The
experimental results we performed on a popular many-core
processor chip (Intel’s SCC) show that the straightforward
parallel application of some memory-intensive test programs
achieves very low speedup (i.e. up to 10.4X in a 48-core
architecture), which is far below the theoretical maximum.
This is mainly due to fact that the memory-intensive test
programs running in parallel in all processor cores push the
memory system and the interconnection network to their limits
exceeding the maximum memory bandwidth. On the contrary,
the naïve parallel application of CPU-intensive test programs
achieves high speedup, close to the theoretical maximum.
Thus, the CPU-intensive test programs are embarrassingly
parallel while the memory-intensive test programs are not.

Based on a detailed analysis of memory performance of a
many-core architecture, we propose an effective parallelization
method which aims to accelerate the test preparation phase of
the test programs. Note that the test preparation phase can be
performed once for the entire chip and it is not necessary to be
applied separately in every core. From this point of view, test
preparation is the only part of the test program that can be
parallelized. The key idea of the proposed method is that every
processor core produces a portion of the test set and then
distributes it to the others through the high-bandwidth on-chip
interconnection network (such on-chip networks seem to be the
only scalable interconnection architecture for increasing
numbers of cores). The parallelization method significantly
speeds up the memory-intensive test programs, i.e. those that
employ ATPG-generated (or generated in other ways) test
patterns that are applied by load-apply-accumulate tests. Based
on this, we propose a simple scheduling method that runs in
parallel the memory-intensive and CPU-intensive (e.g.
pseudorandom patterns based) programs to further reduce on-
chip traffic congestion. The proposed methods are
demonstrated on a many-core architecture, Single-chip Cloud
Computer (SCC) [15], which is the predecessor of the Intel’s
many-core accelerator Xeon Phi™ [16]. The experimental
results show that when the proposed methodology is employed,
a 38X speedup for a typical memory-intensive test program is
achieved and the corresponding speedup for a combined
memory/CPU-intensive test program is 47.6X compared to
serial execution of the test programs.

II. FUNCTIONAL ONLINE ERROR DETECTION IN
MANY-CORE ARCHITECTURES

In this section we discuss the concept of functional online
error detection in many-core microprocessor chips and describe

1 In parallel computing, an embarrassingly parallel problem, is one for which
little or no effort is required to separate the problem into a number of parallel
tasks. This is often the case where there exists no dependency (or
communication) between those parallel tasks.

Intel’s SCC, a state-of-the-art many-core architecture which is
used as a demonstration vehicle in our work.

A. Online Error Detection Approach
Functional online error detection approaches for many-core

architectures are based on the application of the test programs
during normal system operation and should adhere to the
following requirements:
• Reduced test program execution time: reduction of the test

execution time allows a better trade-off between reliability
(executing more tests or the same tests more frequently),
performance overhead (interrupting user workload for a
shorter period) and availability (the smaller the test
execution time, the shorter the service downtime period).

• Small memory footprint: A single copy of the test program
(test code and data) is stored in the shared memory
(system’s main memory) instead of using separate copies
in each core; this reduces storage requirements and avoids
the scaling of test program memory footprint with the
number of cores.

• Test program replication: All processor cores have to
execute the same test program to detect faults and
guarantee high fault coverage levels.

There are two approaches as shown in Fig. 1 for the online
execution of a test program in many-core architectures:
• Non-intrusive approach: Each core runs the test programs

individually during its idle periods.
• Intrusive approach: Groups of cores or all cores together

are periodically isolated and set out-of-service (do not run
normal workload) to run simultaneously the test programs.

Tile
(0,3)

Tile
(0,0)

Tile
(5,3)

Tile
(5,0)

N
or

m
al

 W
or

kl
oa

d

Tile
(0,3)

Tile
(0,0)

Tile
(5,3)

Tile
(5,0)

Idle Normal Workload

Test Program
 executed

on idle core
Te

st
 P

ro
gr

am
 e

xe
cu

te
d,

no
rm

al
 w

or
kl

oa
d

in
te

rr
up

te
d

Test Program executed, on idle core

Fig. 1. Intrusive (upper) and non-intrusive (lower) online functional
detection approach.

!

!

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 123

Note also that online error detection in parallel architectures radically differs from
conventional parallel programing problems. In classic programming a serial program is
broken in parts that are executed in the different processors, while in online error
detection the entire test program must be applied individually in every core.
In [33], we propose an intrusive online error detection methodology to detect permanent
faults, which guarantees the periodicity of the test program execution bounding the
maximum detection latency and has a minimal impact on system’s performance. In
Section 4.1.1, we describe all the details of the proposed method to accelerate the
detection of permanent faults in many-core architectures. In Section 4.1.2, we present
the results of the evaluation of the proposed technique and finally Section 4.1.3
summarizes the related work in the field.

4.1.1 Proposed method to accelerate permanent fault online detection in many-
core architectures

In [33], we used as experimental vehicle the Intel’s Single-chip Cloud Computer (SCC),
a many-core chip created by Intel Labs that contains 48 in-order Pentium cores [34] and
is assumed to be one of the predecessors of Intel’s today many-core accelerator, Xeon
PhiTM [118]. The SCC architecture shown in Figure 69 consists of 24 tiles (two cores per
tile) and 4 integrated DDR3 memory controllers supporting up to 64GB DRAM. Each
processor SCC core has a 16KB L1 instruction cache, a 16KB L1 data cache and a
256KB L2 cache. The off-chip DRAM can be divided into private and shared memory.
Private memory regions are cacheable while shared memory regions can be configured
either as cacheable or non-cacheable. Moreover, each tile has a 16KB message
passing buffer (MPB). When a core sends a message to another core, the data move
from the L1 cache of the sending core to its MPB and then to the L1 cache of the
receiving core, while L2 cache is bypassed. Messages employ XY routing (first along
the horizontal direction and then along the vertical direction). A C-based library (called
RCCE) is used for message passing programs and parallel programming.
There are many challenges in setting up and evaluating an online test method for a real
many-core chip such as SCC, as opposed to using an architecture simulator as
experimental vehicle. One important issue when building an intrusive online error
detection approach in a many-core architecture is that all cores must start to execute
the test program simultaneously. This means that all cores must first pause or complete
execution of their normal workload and synchronize before they start executing the test
program. They must be also synchronized again before they restart their normal
workload. In the SCC architecture, core synchronization is achieved using the barrier
function; we use this mechanism in our experiments.
For the experiments on the SCC chip, we developed two test programs with different
characteristics which represent typical test program formats used in functional online
testing:

• Load-Apply-Accumulate (LAA) test program. It applies  ATPG-generated test
patterns (or pre-computed by other means) stored in the off-chip DRAM. An LAA
test program first reads two test vectors from the DRAM (assuming two-operand
operations are being tested); it applies the target instruction (i.e. an arithmetic or
logic instruction) and finally accumulates the results. We experiment with a loop-
based LAA test program which applies a certain amount of test patterns (192KB
or 384KB). LAA test program is memory-intensive and stresses the memory
system of the SCC processor.

• Linear-Feedback-Shift-Register (LFSR) test program. This CPU-intensive test
program applies pseudorandom patterns generated by a 32-bit LFSR. Similarly

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 124

to LAA program, it first generates two pseudorandom test patterns, applies the
target instruction and accumulates the results. LFSR test program generates
either the same number of test data with LAA or 10 times more (e.g. for 384KB
LAA, LFSR generates 3840KB test data).  

Figure 69: Intel’s many-core SCC Architecture.

Firstly, we explain why an online test program is not a conventional program from the
parallel computing perspective. Next, we describe a naïve parallelization method of the
two typical test programs and explain why it achieves very low speedup against an
obvious (but senseless) “serial” method. After that, we explain why a more advanced
parallelization method should consider the memory system parameters of a many-core
processor architecture that primarily affect the performance of parallel test programs.
Finally, we propose an effective parallelization method that exploits the high-speed on-
chip message passing buffers infrastructure to accelerate the generation of test
patterns. It should be noted that the proposed parallelization method is coupled to the
particular network topology and memory organization, but with some modifications and
extensions can be applicable in similar many-core architectures.
Among the three basic phases of functional test programs, i.e. test preparation, test
application and test response compaction, the last two cannot be parallelized because
each test pattern must be applied to every core and the core’s response must be
compacted separately. Only the test preparation phase (production of all patterns that
must be eventually applied to each core) can be performed only once for the entire chip.
The test preparation task can be divided and parallelized in a many-core processor
architecture balancing the test preparation workload between the cores to achieve the
maximum speedup.

Tile
(0,3)

Tile
(0,0)

Tile
(5,3)

Tile
(5,0)

D
R

A
M

MC

D
R

A
M

MC

D
R

A
M

MC

D
R

A
M

MC

Frequency
domain

Voltage domain
Memory domain

P54C L2
$

P54C L2
$

TG

MPB

Mesh

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 125

Naïve Parallelization Method:
In a potential naïve parallelization method, all processor cores execute in parallel the
same test program starting execution simultaneously. According to the naïve parallel
intrusive approach shown in Figure 70, after the normal workload has been paused in
all processor cores, the cores are synchronized to execute the test program in parallel.
Although all cores run an identical test program they do not finish at the same time due
to the non-uniformity of the memory accesses of the SCC architecture. The worst case
execution time determines the online test cycle duration. Upon completion of the online
test phase, normal workload is resumed in all cores.

Figure 70: (a) Serial test program, (b) Naïve parallel test program.

Table 23 compares the total test execution time of the naïve parallel method and the
“serial” method for the two sample test programs for different test data sizes. In the
serial method shown in Figure 70, the processor cores execute the test program one
after the other, while the remaining cores remain idle. As mentioned above, the serial
method is senseless (when test time reduction is the objective) since the test programs
running on the different cores have no dependencies, and thus they can simply run in
parallel. We simply mention here the serial method as a baseline method to indicate
that the speedup achieved in some cases by the naïve parallel method is far below the
theoretical maximum speedup, i.e. 48X in the case of the 48-core SCC chip. In both
serial and naïve parallel methods, test data are stored in the shared memory of the SCC
in order to be directly accessible by all cores. Intel supports the configuration of shared
memory either as cacheable or non-cacheable memory. The default configuration of
shared memory is non-cacheable which releases the programmers from handling the
data coherency problem. When shared memory is configured as cacheable the
programmer is responsible to maintain data coherency flushing the caches when
needed. In, [33] we consider both cases for the sake of completeness. The
experimental results show that in the case of the memory-intensive LAA test program
the speedup is less than 7X and 11X for non-cacheable and cacheable shared memory
respectively, while in the case of the CPU-intensive LFSR test program the speedup is

z

(a)

(b)

time

Normal Workload Test Program Idle

Core0

Core1

…

Core47

time

Core0

Core1

Core47

…
…

…

Interrupt normal workload,
synchronize the cores and start
test program execution

Restart normal workload

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 126

close to the theoretical maximum. Thus, in the rest of this study, we focus on the
effective parallelization of the LAA test program since the LFSR test program is
embarrassingly parallel.

Table 23: Naïve parallel method vs. serial method
(Times in 106 cycles. Numbers in parentheses denote speedup against serial execution).

Test Program
Serial
Non-

cacheable
Serial

Cacheable

Naïve
Parallel

Non-
cacheable

Naïve Parallel
Cacheable

LAA - 192KB 317.8 73.8 47.3 (6.7X) 7.4 (10X)
LAA - 384KB 634.7 145.8 95.1 (6.7X) 14.0 (10.4X)

LFSR – 384KB 105.3 2.5 (42.1X)
LFSR – 3840KB 1047.8 23.1 (45.4X)

The main reason of the low speedup of the naïve parallel method for the LAA test
program is the excessive traffic it produces in the interconnection network and the
DRAM controllers especially during its test preparation phase, which is its most
memory-intensive phase. Previous works have measured the performance degradation
of the system when multiple cores run in parallel increasing the traffic congestion in the
mesh. In study [119], the authors assessed the memory performance of the SCC when
multiple cores access the same memory controller in parallel. The performance
degradation when all 12 cores of a memory domain simultaneously issue memory
requests reaches up to 14.2% compared to the single-core performance. In study [120],
the authors showed a performance drop up to 27% when all 12 cores of a memory
domain run in parallel the same memory intensive test programs. Note that the
experimental results in [119] proved that running the benchmark in all 12 cores of a
single memory domain produces the same memory performance results compared to
running it in all 48 cores due to the completely different memory domains. However, in
our case running the test program in all 48 cores in parallel increases significantly the
total execution time compared to 12 cores running in parallel. This is due to the higher
DRAM memory latencies in the case of 48 cores. Although test vectors of the LAA test
program are equally distributed to the memory regions of the four DRAM controllers, the
memory requests of the cores must travel a longer distance to reach the remote
controllers, thus increasing the average memory latency of most cores.

Memory Performance Issues:
The development of an efficient parallelization method for online test programs requires
first a thorough analysis of the main memory performance issues of the SCC
architecture, its bottlenecks and the throughput of the different communication paths.
Table 24 summarizes some approximate memory latencies for a core reading a 32-byte
cache line [34], [119]. Memory latency of a core is defined as the total delay between
sending a memory request and receiving the requested data from memory. The L2
cache hit time is 18 core cycles, the local MPB access time bypassing the L2 cache is
15 core cycles, the delay of a router forwarding request is 4 mesh clock cycles, and the
DRAM access time is 46 memory clock cycles. In Table 24, n denotes the number of
hops in the route between the core and the MPB or its memory controller. A brief

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 127

analysis of the memory latencies shows that the message passing buffer provides a
significantly faster means to transfer data between two cores than using the shared off-
chip DRAM. Thus, parallelization should focus on the maximum utilization of these fast
on-chip communication paths through MPBs.

Table 24: Memory latencies in SCC.
Memory type Approximate latency (cycles)

L2 18×Tcore
Local MPB (bypass L2 cache) 15×Tcore

Remote MPB 45×Tcore + 4×n×2×Tmesh
Off-chip DRAM 40×Tcore + 4×n×2×Tmesh+ 46×Tram

We also carried out a set of experiments to identify the most efficient way to load test
vectors from the off-chip DRAM. We measure the execution time of a simple program
loading 8KB data (test patterns) from the shared (non-cacheable) memory or the private
memory or transferring 8KB data between cores through the MPB. Figure 71 shows the
execution time when 1 core (or 2 cores in the case of MPB), 12 cores in the same
memory domain or all 48 cores run in parallel the simple program.

Figure 71: Execution times (in core clock cycles) of loading 8KB test data. Clock frequency

settings: tile/mesh/DDR-533MHz/800MHz/800MHz.

Based on the experimental results and the theoretical analysis of the memory
performance we concluded that a parallelization method should handle the test
preparation phase of the LAA program applying the following guidelines:

• Use the private instead of the non-cacheable shared memory region to store test
patterns. Both the serial and the naïve parallel programs store the test patterns in
the shared memory and not in the cores’ private memories. This allows us to
store a single copy of test data in the off-chip DRAM accessible by all cores (a
major requirement for online testing); otherwise each core must store its own
copy of test data in its private memory. On the other hand, the private memory
access is much faster than the non-cacheable shared memory access. Thus, a

0

500

1000

1500

2000

2500

3000

1 12 48

K
cy
cl
es

shared

private

MPB

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 128

more efficient parallel test program should partition the test patterns and store
them in the private memory regions and assign to each core the task of loading
and distributing to the others its test data portion.

• Use message passing instead of off-chip DRAM to share test data between
cores: When a core wants to share its test patterns stored in its local caches with
other cores located in the same or different memory domain, the most efficient
way as shown by the experimental results is to use the message passing buffer.
To achieve the highest bandwidth of the internal mesh, the route of test data
between the cores must conform to the XY routing rule in order to reduce the
number of hops and consequently the total memory latency. Also, the test data
exchange must be done in chunk sizes that exploit the available space of the
MPBs in order to reduce the communication overhead and avoid misses in the
local caches.

Proposed Parallelization Method:
Based on the previous memory performance analysis, we propose an effective method
for the parallelization of the LAA test program. The proposed method shown in Figure
72 focuses on the efficient parallel execution of the test preparation phase. The test
patterns are divided into 48 segments each one assigned to the private memory region
of a core. The LAA test program is divided into two phases. First, all cores load in
parallel the test patterns from their private memories, apply the tests and accumulate
the responses. Subsequently, each core copies the corresponding test patterns from
the local MPBs of the other 47 cores and applies/accumulates the tests. It is essential
that in each cycle of the second phase each MPB serves the memory requests of only
one core in order to limit the traffic congestion in the mesh and the routers. The
rationale of the proposed method is that having every core to read test patterns from its
private memory and distribute them to the other cores is the most efficient way to
parallelize the test preparation phase of the LAA program.
Regarding the LFSR test program, its test preparation phase cannot be parallelized in a
more efficient way since the time each core requires to run the LFSR code to generate
a certain number of test patterns is shorter than the time to copy these test patterns
from the local MPB of an adjacent core. Thus, a second improvement in the
parallelization of the entire online test program could be the parallel execution of
memory-intensive test programs (e.g. LAA test) and CPU-intensive test programs (i.e.
LFSR test). As shown in Figure 73, the LAA-LFSR test program is divided into steps.
First, all cores load in parallel the test patterns from their private memories and run the
tests similar to the first phase of the parallel LAA program. Subsequently, one core of
the tile runs the test application and response accumulation phases of the LAA program
while the other core runs the LFSR program. Finally, the two cores of the tile change
roles executing the opposite test programs. In the case that one core of the tile
completes earlier the execution of its test during the second phase it can proceed to the
third phase. The rationale of the proposed method is to balance the memory-intensive
and the CPU-intensive test programs to avoid high traffic congestion in the mesh and
the routers.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 129

Figure 72: The proposed parallelization method of LAA test program (ldi: core i loads test patterns

from its private memory, aai: core applies and accumulates the test pattern segment i, cpi: core
copies patterns from the MPB of core i).

Figure 73: The proposed parallelization method of LAA-LFSR test program (ldi: core i loads test
patterns from its private memory, cp/app/acc: core copies, applies & accumulates test patterns).

4.1.2 Experimental Results
The experimental results demonstrate the efficiency of the proposed parallelization
method. Table 25 presents the execution time of 12 cores (all in the same quadrant)
and 48 cores running the LAA test program for 192KB test data (16KB per core) and
384 KB test data (8KB per core), respectively. The test program has been parallelized
according to the proposed method. Different chunk sizes are evaluated for the transfer
of test data through the MPBs. The speedup of the proposed method against the “fast”
cacheable serial method is up to 5.9X and 38.2X for 12 and 48 cores running the LAA
test program, while the optimum chunk size in both cases is 2KB. The case of 12 cores
running the test program is interesting because it emulates a semi non-intrusive
approach, where only one quadrant is set out-of-service and its cores run the test
program. The extremely high speed up of the proposed method against the “slow” serial
method is due to the use of cacheable memories (i.e. both private DRAM and MPBs are
cacheable memories) instead of non-cacheable shared memory.

Core0

Core1
…

time

ld0

Corei

Corei+1

Core46

Core47

…
aa0 cp47 aa47 … cp1 aa1

ldi aai cpi-1 aai-1 … cpi+1 aai+1

ld46 aa46cp45 aa45 … cp47 aa47

Load 1/48 of
test patterns
and apply

Copy tests patterns from
cores i-1 to i+1 and apply

ld1 aa1 cp0 aa0 … cp2 aa2

ldi+1 aai+1 cpi aai … cpi+2 aai+2

ld47 aa47cp46 aa46 … cp0 aa0

Core0

Core1

…

time

ld0

Core46

Core47

aa0 LAA: cp/app/acc

ld46 aa46

ld1 aa1

ld47 aa47

LFSR: gen/app/acc

LFSR: gen/app/acc

LAA: cp/app/acc

LAA: cp/app/acc

LFSR: gen/app/acc

LFSR: gen/app/acc

LAA: cp/app/acc

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 130

Table 25: Execution time of the proposed parallel method of LAA.

Cores/
Test data

Chunk
size

Proposed
method

(106 cycles)

Speedup
(Non-cacheable
Serial/Proposed)

Speedup
(Cacheable

Serial/Proposed)

12 cores/
192KB

1KB 3.6 22.3X 5.3X
2KB 3.2 24.6X 5.9X
4KB 3.4 23.0X 5.5X
8KB 3.6 21.8X 5.2X

48 cores/
384KB

1KB 4.3 149.3X 34.3X
2KB 3.8 166.2X 38.2X
4KB 4.0 160.6X 36.9X
8KB 4.0 156.7X 36.0X

Table 26 presents the execution time of 12 cores (all in the same quadrant) and 48
cores running the combined LAA/LFSR test program. LAA test program applies 192KB
(12 cores) and 384KB (48 cores) test data, while LFSR program applies 10 times more
pseudorandom test data: 1920KB in 12 cores and 3840KB in 48. The transfer of data
through the MPBs is done using 8KB chunk. In column 2, cores run first the proposed
parallel version of LAA test program and after that the naïve parallel version of the
LFSR test program, while in column 3, the two test programs are executed in parallel as
shown in Figure 73. The proposed parallel LAA/LFSR method achieves up to 7%
improvement over the proposed parallel LAA+naïve LFSR and up to 47.6X speedup
over the serial approach.

Table 26: Execution time of the parallel execution of LAA and LFSR test programs.

Cores
Proposed LAA+

Naïve LFSR
(106 cycles)

Parallel LAA/LFSR
(106 cycles)

Improve-
ment

Speedup
(Cacheable

Serial/Parallel)

12 14.6 13.9 4% 10.8X

48 26.9 25.1 7% 47.6X

4.1.3 Related work
Software-based testing techniques have gained increasing acceptance for
microprocessor error detection during the last. Previous approaches [121] have studied
the feasibility of software-based testing for on-line periodic error detection and
investigated the best trade-off between fault detection latency and system performance
degradation. Recent approaches [122], [123], [124] have studied the acceleration of
software-based testing in multiprocessor chips. In [122], the authors consider the
application of software-based testing on symmetric shared-memory multiprocessors
(SMP) with a small number of processor cores and propose a methodology that reduces
bus contentions and data cache invalidations in order to reduce test execution time. The
methodology has been applied to various SMP benchmarks with up to 8 cores. The
authors in [123] exploit both core-level and thread-level execution parallelism and

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 131

schedule the test threads into the processor hardware threads to reduce the test
execution time and increase the fault coverage. They have demonstrated the
methodology in a multithread processor architecture consisting of 8 cores and 32
threads. All the above approaches have studied the scheduling and acceleration of
online test programs for various multicore architectures, which however present
significant differences compared with the state-of-the-art many-core architectures,
especially in the memory subsystem. Finally, the authors in [124] propose test
application time reduction through selective software-based testing which monitors
system activity of the functional modules of the cores and tests only the strained
modules, while under-utilized modules are only sporadically tested. The methodology
has been demonstrated in a 16-core CMP architecture using a full-system, simulation
framework. The selective testing approach reduces significantly the system
performance overhead, however, memory performance issues arisen due to the parallel
execution of test programs in multiple cores that have not been considered. None of the
previous approaches have addressed the problem of test program parallelization that is
the goal of study [33]. In [120], a preliminary discussion of the online test programs
scheduling problem in a many-core architecture is presented.

4.2 Statistical analysis to predict the safe voltage margins in multicore CPUs for
energy efficiency

During chip fabrication, process variations can affect transistor dimensions (length,
width, oxide thickness etc. [125]) which have direct impact on the threshold voltage of a
MOS device [126]. As technology scales, the percentage of these variations compared
to the overall transistor size increases and raises major concerns for designers, who
aim to improve energy efficiency. This variation is classified as static variation and
remains constant after fabrication. On top of that, transistor aging and dynamic variation
in supply voltage and temperature, caused by different workload interactions, is also of
primary importance. Both static and dynamic variations lead microprocessor architects
to apply conservative guardbands (operating voltage and frequency settings) to avoid
timing failures and guarantee correct operation, even in the worst-case conditions
excited by unknown workloads [127] [128].
However, these guardbands impede the low power consumption and the high
performance, which can be derived by reducing the supply voltage and increasing the
operation frequency, respectively. To bridge the gap between energy efficiency and
performance improvements, several hardware and software techniques have been
proposed, such as Dynamic Voltage and Frequency Scaling (DVFS) [129]. The premise
of DVFS is that the microprocessor’s workloads as well as the cores’ activity vary.
Voltage and frequency-scaling during epochs where peak performance is not required
enables a DVFS-capable system to achieve average energy-efficiency gains without
affecting peak-performance adversely. At a specific frequency of operation, energy-
efficiency gains are limited by guardbands that guarantee correct operation in the
presence of dynamic margins.
Several techniques have been proposed [130] [131] that eliminate a subset of these
guardbands for efficiency gains over and above what is dictated by design guardbands.
However, all of these techniques are associated with significant area, design, test and
measurement overheads that limit its application in the general case. For instance, in
the Razor technique [130], support for timing-error detection and correction has to be
explicitly designed into the processor micro-architecture which has significant
verification overheads. Similarly, in adaptive-clocking approaches [131], extensive test
and measurement effort is required for system sign-off. Ensuring the eventual success

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 132

of these techniques requires a deep understanding of dynamic margins and their
manifestation during normal code execution.
Recently, to avoid the extra area and verification overheads, several system-level
approaches have been proposed to predict the safe operation limits of the processors
[132], [133], [134], [135]. In particular, the authors in [133] and [134] propose a
prediction approach that identifies the critical parts of benchmarks in which large voltage
noise droops are likely to occur leading to system malfunctions. In the same concept,
[12] and [135] propose a firmware implemented approach to predict the lowest safe
voltage operation value based on the observation of the errors manifested on caches of
an Intel Itanium processor during the execution of benchmarks in off-nominal voltage
conditions.
The main idea of these studies is to gain energy without compromising performance
based on the great variations of the Vmin that are observed when: (a) the same
benchmark is executed on different cores of the same chip (core-to-core variation), (b)
different benchmarks run on the same core of the same chip (workload-to-workload
variation), (c) the same benchmark is executed on different chips (chip-to-chip
variation). For instance, in Figure 74 we illustrate the core-to-core and the workload-to-
workload variations of the Vmin that were observed when we ran 10 benchmarks from
the SPEC CPU2006 suite [75] on the most robust and the most sensitive cores (those
with the lowest and the highest Vmin on average) of the X-Gene 2 chip [36]. In general,
we can observe that the most robust core has always lower Vmin than the sensitive core
for all the benchmarks, with a difference that ranges between 10mV and 35mV.
Moreover, the variation of the Vmin when we execute different benchmarks on the same
core is remarkable for both cores (885mV-915mV for the sensitive and 865mV-885mV
for the robust core respectively). Finally, the highest observed Vmin is 915mV and the
lowest is 865mV that is translated into 12.83% and 22.10% power savings compared to
the case of using the pessimistic nominal value of 980mV as a safe operation limit.
Thus, the identification using early prediction of the safe voltage margin per benchmark
and per core without sacrificing area and verification time is a major concern for the
designers.
Towards this direction, in [35] and [167] we proposed several prediction models based
on linear regression to predict the Vmin and the Severity (a metric that reflects the
behavior of the cores below their safe Vmin and before the occurrence of any
catastrophic error) of the ARMv8 cores of the X-Gene 2 chip. Our models use as inputs
the microprocessor’s performance counters values of benchmarks that were collected in
nominal voltage conditions execution and the results of the characterization phase when
the chip operates in scaled voltage conditions.
In this thesis, we present the results of [35] and [167] concerning the prediction. The
linear models we deliver can predict with low inaccuracy (only 0.51%) the Vmin and the
Severity of any workload at scaled voltage levels operation using only the performance
counters values at the nominal voltage operation mode. These findings can be used as
inputs by a software implemented mitigation mechanism leading to power gains from
11.87% up to 20.28% depending on the aggressiveness of the prediction mechanism.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 133

Figure 74: Variation of Vmin between the most sensitive and most robust cores running 10 SPEC

CPU2006 benchmarks on X-Gene 2.

4.2.1 Characterization of the ARM-v8 CPUs
The APM X-Gene 2 micro-server [36] consists of eight 64-bit ARMv8-compliant cores.
The X-Gene 2 architecture offers high-end processing performance and capabilities. For
example, the X-Gene 2 subsystem features a Power Management processor (PMpro)
and a Scalable Lightweight Intelligent Management processor (SLIMpro) to enable
breakthrough flexibility in power management, resiliency and end-to-end security for a
wide range of applications. The dedicated PMpro processor provides advanced power
management capabilities, such as multiple power planes and clock gating, thermal
protection circuits, Advanced Configuration Power Interface (ACPI) power management
states and external power throttling support. The dedicated SLIMpro processor monitors
system sensors, configures system attributes (e.g. regulate supply voltage, change
DRAM refresh rate etc.) and accesses all error reporting infrastructure, using an
integrated I2C controller as the instrumentation interface between the X-Gene 2 cores
and this dedicated processor. SLIMpro can be accessed by the system’s running Linux
Kernel.
In Figure 75 we present the three independently regulated power domains of X-Gene 2:

• PMD (Processor Module): Each PMD contains two ARMv8 cores. Each of the
two cores has separate instruction and data L1 caches, while they share a
unified L2 cache. The operating voltage of all four PMDs together can change
with a granularity of 5mV beginning from 980mV. While PMDs operate at the
same voltage, each PMD can operate in a different frequency. The frequency
can range from 300 MHz up to 2.4 GHz at 300 MHz steps.

• PCP (Processor Complex)/SoC: It contains the L3 cache, the DRAM
controllers, the central switch and the I/O bridge. The PMDs do not belong to the
PCP/SoC power domain. The voltage of the PCP/SoC domain can be
independently scaled downwards with a granularity of 5mV beginning from
950mV.

• Standby Power Domain: This includes the SLIMpro and PMpro microcontrollers
and the interfaces for the I2C buses.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 134

Figure 75: X-Gene 2 block diagram.

Table 27 summarizes the most important architectural and microarchitectural
parameters of the APM X-Gene 2 micro-server.

Table 27: Microarchitectural parameters of APM X-Gene 2.
Parameter Configuration

ISA ARMv8 (AArch64, AArch32, Thumb)
Pipeline 64-bit OoO (4-issue)

CPU 8 cores
Core clock 2.4 GHz

L1 Instruction cache 32KB per core (Parity Protected)
L1 Data cache 32KB per core (Parity Protected)

L2 cache 256KB per PMD (ECC Protected)
L3 cache 8MB (ECC Protected)

Technology node 28nm
Max TDP 35W

To identify the safe voltage operation margins of all cores of the chip we used a fully
automated framework [35] [136] (see Figure 76) to run all the benchmarks from the
SPEC CPU2006 suite with different input datasets (40 different programs in total). The

L3

PCP/SoC

0 1

L1I

L1D L1D

L2

PMD 0
L1I

2 3

L1I

L1D L1D

L2

PMD 1
L1I

4 5

L1I

L1D L1D

L2

PMD 2
L1I

6 7

L1I

L1D L1D

L2

PMD 3
L1I

PMpro SLIMpro

MCU MCU MCU MCU

DDR3 SDRAM

PMD

Standby
Power Domain

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 135

primary goals of this framework are: (1) to identify the target system’s limits when it
operates at scaled voltage and frequency conditions, (2) to record/log the effects of a
program’s execution under these conditions, and (3) to ensure the integrity of the
experimental results in off-nominal operation conditions. The framework provides the
following features:

• compares the outcome of the program with the correct output of the program
when the system operates in nominal conditions to record Silent Data
Corruptions (SDCs),  

• monitors the exposed corrected and uncorrected errors from the hardware
platform’s error reporting mechanisms,  

• recognizes when the system is unresponsive and restores it automatically using
a Raspberry Pi board,  

• monitors system failures (crash reports, kernel hangs, etc.),  
• determines the safe, unsafe and non-operating voltage regions for each

application for all frequencies, and  
• performs massive repeated executions of the same  configuration. 	

Figure 76: Characterization framework used in [35] and [167].

The framework of Figure 76 consists of three phases: initialization, execution, and
parsing. During the initialization phase, the user sets the benchmark, the input dataset,
the characterization setup (voltage and frequency values) and the cores on which the
experiment will be run. The execution phase consists of multiple runs of the same
benchmark according to the pre-defined characterization setup. Finally, in the parsing
phase, all log files that are stored during the execution phase are parsed in order to
provide a fine-grained classification of the effects observed for each characterization
run. The categories that are used for our classification are summarized in Table 28.

MICRO-50, October 14-18, 2017, Cambridge, MA, USA G. Papadimitriou et al.

Figure 2: Characterization framework layout.

As shown in Figure 2, the characterization framework
consists of three phases: initialization, execution, and parsing.
During the initialization phase, a user can declare a benchmark
list with corresponding input datasets to run in any desirable
characterization setup. The characterization setup includes the
voltage and frequency (V/F) values on which the experiment will
take place and the cores where the benchmark will be run. The
characterization setup depends on the power domains supported
by the chip, but our framework is easily extensible to support the
power domain features of different CPU chips. The execution
phase consists of multiple runs of the same benchmark, each one
representing the execution of the benchmark in a pre-defined
characterization setup. The set of all the characterization runs
running the same benchmark with different characterization
setups represents a campaign.

In the parsing phase of our framework, all log files that are
stored during the execution phase are parsed in order to provide a
fine-grained classification of the effects observed for each
characterization run. Note that, each run is correlated to a specific
benchmark and characterization setup. The categories that are
used for our classification are summarized in Table 3, but the
parser can be easily extended according to the user’s needs. For
instance, the parser can also report the exact location that the
correctable errors occurred (e.g. the cache level, the memory, etc.)
using the logging information provided by the execution phase.
At the end of the parsing step, all the collected results concerning
the characterization (according to Table 3) and the severity
function of each run are reported in CSV files.

2.2.1 Characterization Challenges. In this section, we discuss
the most important challenges that were taken into consideration
for the solid development of the characterization framework to
ensure correct and accurate results.

Safe Data Collection. Given that a system operating
beyond nominal conditions often has unexpected behaviors (e.g.
file system driver failures), there is need to correctly identify and
store all the essential information in log files (to be subsequently
parsed and analyzed). The automated framework was developed
to collect and store safely all the necessary information about the

experiments. Therefore, after each run of the benchmark beyond
nominal voltage conditions, the framework restores the
microprocessor in nominal voltage conditions to store the log
files and then it continues to the next experiment.

Table 3: Effects classification.
Effect Description

ΝΟ (Normal
Operation)

The benchmark was successfully completed
without any indications of failure.

SDC (Silent
Data

Corruption)

The benchmark was successfully completed,
but a mismatch between the program output

and the correct output was observed.

CE (Corrected
Error)

Errors were detected and corrected by the
hardware (provided by Linux EDAC driver).

UE
(Uncorrected

Error)

Errors were detected, but not corrected by
the hardware (provided by Linux EDAC

driver [12]).

AC (Application
Crash)

The application process was not terminated
normally (the exit value of the process was

different than zero).

SC (System
Crash)

The system was unresponsive; meaning that
the X-Gene 2 is not responding or the

timeout limit was reached.

Failure Recognition. Another challenge is to recognize and

distinguish the system and program crashes or hangs. This is a
very important feature for the parsing phase to easily identify and
classify the final results, with the most possible distinct
information concerning the characterization.

Reliable Cores Setup. Another major challenge we also
faced is that the characterization of a system is performed
primarily by using properly chosen programs in order to provide
diverse behaviors and expose all the potential deviations from
nominal conditions. It is thus important to run the selected
benchmarks in a reliable cores setup. This means that the cores, on
which the benchmark runs, must be isolated and unaffected from
the other active processes of the kernel in order to capture only
the effects of undervolting on the studied benchmark. Further, to
avoid any abnormal behavior sourcing from other cores of the
microprocessor (not the one under characterization) and due to
the fact that all the PMDs are in the same power domain, the
framework sets the lowest frequency to all cores (300 MHz) but
keeps the frequency high to the cores under characterization.

Massive Iterative Execution. The non-deterministic
behavior of the characterization results due to several
microarchitectural features makes it necessary to repeat the
experiments multiple times with the same configuration to
capture the divergences that may occur during different runs of
the same configuration.

3 SYSTEM CHARACTERIZATION
We study the behavior of 3 different X-Gene 2 chips by using
representative benchmarks from the SPEC CPU2006 suite to

Initialization

Execution

Benchmark

Results

Voltage
Reduction

Configuration

Reset Switch

Power Switch

Watchdog
monitor

Execution Loop

Result
Parsing Final CSV

Results

Raw data

Cloud

Initialization
Phase

Execution
Phase

Parsing
Phase

Serial

Network

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 136

Table 28: Effects classification used in [35] and [167].
Effects Description

ΝΟ
(Normal Operation)

The benchmark was successfully completed without any
indications of failure.

SDC
(Silent Data Corruption)

The benchmark was successfully completed, but a
mismatch between the program output and the correct

output was observed.
CE

(Corrected Error)
Errors were detected and corrected by the hardware

(provided by Linux EDAC driver [137]).

UE
(Uncorrected Error)

Errors were detected, but not corrected by the hardware
(provided by Linux EDAC driver [137]). 

AC
(Application Crash)

The application process was not terminated normally (the
exit value of the process was different than zero). 

SC
(System Crash)

The system was unresponsive; meaning that the X-Gene 2
is not responding or the timeout limit was reached.

For each characterization experiment of our analysis, we ran an entire benchmark on a
core with a different voltage value, starting from the nominal value (980mV) and
reducing the supply voltage by a step of 5mV. Each characterization experiment was
repeated 10 times considering the non-deterministic nature of the results and to
maintain the statistical importance of our measurements. The execution time of all these
experiments was about 6 months.
The first important general finding from the characterization phase is that three different
regions of operation were observed for all the benchmarks of our study. These regions
are illustrated in Figure 77 that demonstrates some indicative results for the most robust
and sensitive cores of the chip for 10 selected benchmarks from the SPEC CPU2006
suite. The three regions of operation are summarized below: 	

• Safe region (green): The experiments run to the end having a normal operation
without any SDC, error or crash. The last point of this region defines the Vmin. 	

• Unsafe region (grey): The experiments generated an abnormal behavior (SDC,
corrected/uncorrected errors, application crash) but not a system crash. 	

• Crash region (red): The experiments lead to system crashes at least in some
executions.

In Figure 77, we can observe important divergences of these regions between the two
cores highlighting the need of employing accurate prediction schemes to identify these
divergences and simultaneously, to increase the total power gains on the chip. In
general, the limit of the Crash region for the sensitive core ranges from 890mV to
870mV, while for the robust core ranges between 860mV and 855mV. Also, the width of
the Unsafe region is remarkable for both the cores (40mV-85mV for the sensitive and
65mV-105mV for the robust core, respectively).

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 137

Figure 77: Regions of operation for 10 benchmarks from SPEC CPU2006 suite running on the

most robust and most sensitive core of the X-Gene 2.

Another important observation from the characterization phase is that for the case of the
X-Gene 2 chip the silent data corruptions can appear at higher voltage levels than
corrected errors alone for many benchmarks. This is not the case for previous studies
on Intel Itanium CPUs in which it was observed that by reducing the voltage, the
number of corrected errors increases gradually for many voltage steps of voltage
reduction before the system exposes SDCs, uncorrected errors, or crashes [12] [135].
The reason of this difference between the two chips is that the Itanium chips present
more robust behavior to timing failures due to the existence of the continuous clock-path
de-skewing mechanism during their normal operation [138], a mechanism that is not
implemented in the case of the X-Gene 2 chips. Consequently, due to the occurrence of
SDCs first, it is not possible to guide the voltage speculation for prediction based only
on the manifested errors.
To overcome this issue concerning the prediction, we define the Severity function (Sv)
that is presented in the following equation (where v is the voltage value):

In equation (18), N is the total number of experiments for a particular voltage level, while
parameters SDC, CE, UE, AC and SC can take values from 0 to N and represent the
times that an effect appears to these experiments. Parameters WSDC, WCE, WUE, WAC
and WSC correspond to “weights” that can be arbitrarily set to characterize the severity
of each effect of Table 28, practically meaning that the higher the weight, the more
critical is considered the effect by our function. In [35] and [167], we use the values of
Table 29 as weights, but different weight values could be used according to the

850

860

870

880

890

900

910

920

930

bw
av

es

ca
ct

us
AD

M

de
al

II

gr
om

ac
s

le
sl

ie
3d m
cf

m
ilc

na
m

d

so
pl

ex

ze
us

m
p

bw
av

es

ca
ct

us
AD

M

de
al

II

gr
om

ac
s

le
sl

ie
3d m
cf

m
ilc

na
m

d

so
pl

ex

ze
us

m
p

Sensitive Core Robust Core

m
V

Crash Unsafe Safe

Sv =WSDC ⋅
SDC
N

+WCE ⋅
CE
N

+WUE ⋅
UE
N

+WAC ⋅
AC
N

+WSC ⋅
SC
N

 (18)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 138

importance of the effects. In Figure 78, we indicatively illustrate the results for the
Severity function when running the bwaves benchmark in each core of the chip.

Table 29: Weights of Severity function used in [35] and [167].
Weight Value

WSC 16
WAC 8
WSDC 4
WUE 2
WCE 1
WNO 0

Figure 78: Severity for bwaves benchmark on all cores.

To summarize, the Severity function is able to:

(i) illustrate the scaling of abnormal behaviors due to voltage reduction,
(ii) aggregate the results that are produced from multiple runs of the same

characterization experiment (10 runs in our case),
(iii) quantify the microprocessor’s ability to operate beyond nominal conditions

and especially beyond the Vmin, giving the flexibility to the predictor to be
more aggressive due to the knowledge of the Unsafe region.
There are many applications and systems that can tolerate SDCs and can
benefit from the existence of such an aggressive predictor that targets
Severity. These applications can be approximate computing algorithms, video

16.0
13.3 16.0 16.0 16.0
7.0 14.7 11.7 13.3
5.0 4.3 9.7 12.0

16.0 4.0 4.0 6.0 4.7
16.0 16.0 16.0 13.3 4.0 4.0 4.0 4.0
12.3 9.7 13.3 12.3 4.0 4.0
5.3 4.0 8.3 4.3 1.3
4.0 4.0 8.0 4.0
4.0 2.7 4.0 2.7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7
850

860

870

880

890

900

910

920

930

940

950

960

970

980

m
V

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 139

streaming and image processing algorithms, security oriented applications
such as jammer attacks detectors, etc. Moreover, if a rollback mechanism to
previous checkpoint is implemented in the system, then the detected but
uncorrected errors (UE) could also be handled, boosting the need of the
existence of a more aggressive predictor beyond the safe Vmin. For instance,
assuming a system that can tolerate the SDCs, CEs and UEs (practically
meaning that the Severity could be equal or less than 7 units according to
Table 29), then the power savings that come from the use of a more
aggressive prediction scheme that targets Severity or the use of a more
conservative prediction scheme that targets Vmin when we run the bwaves
benchmark are presented in Figure 79. According to Figure 79, a more
aggressive prediction scheme that targets the Severity can lead from 1.10 up
to 4.47 percentile units more power savings compared to a prediction that
targets the Vmin.

Figure 79: Power savings targeting the Vmin or using Severity function.

4.2.2 Proposed techniques to predict safe voltage operation margins of ARM-v8
CPUs

Predicting safe voltage regions of the microprocessor using as input the performance
counters provided by the system has recently gained the interest of the computer
architecture community [12] [133] [135]. In this section, we present the feasibility of
predicting the safe Vmin (for a conservative prediction by taking into account only the
Vmin values for each core and workload), as well as the Severity (a more aggressive
prediction below Vmin) using the microarchitectural events measured for the entire
benchmarks execution provided by the X-Gene 2 hardware.
Specifically, we implemented our linear regression models with three different feature
selection algorithms aiming to predict both the Vmin and the Severity in the cores of the
X-Gene 2 running all the benchmarks from the SPEC CPU2006 suite with all their
inputs (40 programs in total). In this thesis, we present only the most representative
cases of our analysis on the most robust (Core 4) and the most sensitive cores (Core 0)
of the chip, respectively.

14.72 14.72 14.72 14.72

18.45 18.45
16.59

17.52

18.01 18.01
15.82

18.01

22.92
21.81 21.01 20.87

0

5

10

15

20

25

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Po
w

er
 S

av
in

gs
 (%

)

Power Savings targeting the Vmin Power Savings targeting the Severity

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 140

We used linear regression models, which are able to provide high prediction accuracy
with a relatively small population of microarchitectural counters. Moreover, linear
regression functions of a small number of performance counters can be easily
calculated on hardware, while non-linear models are more complex and more time
consuming. Therefore, linear models are more suitable for online prediction purposes
[139].
In general, regression techniques give the ability to calculate a function to predict a
value of the dependent variable from a set of independent variables. Assuming a set of
x1, x2, x3, ..., xN independent variables and y the dependent variable, the classical linear
regression model for y that we use in [35] and [167], is based on the Ordinary Least
Squares (OLS) model [140]. Specifically, it yields a set of weights β, one for each
predictor variable x, and an error term e:

In this formula, yi is the ith response value (in our case the Vmin or the Severity value), xji
is the jth microarchitectural counter (e.g. the L1 Cache Accesses) evaluated at the ith
observation, and ei is the ith statistical error. The goal of the regression analysis is to find
the optimal values of the coefficients β1, β2, β3, ..., βk so as to minimize the sum of the
squares of the differences between the observed responses (values of the predicted
variable) in the given dataset and those predicted by a linear function of a set of
explanatory variables.
This analysis also provides a “coefficient of determination” (R2) that indicates the
proportion of the variance in the dependent variable that is predictable from the
independent variables. The larger the values of R2, the better fit the model provides,
while the best fit exists when R2 is equal to 1. The R2 can be 0 when the model predicts
the expected value disregarding the input features or even negative (because the model
can be arbitrary worse). R2 is an important indicator for linear regression analysis in
order to quantify the accuracy of each model. However, to evaluate the accuracy of our
prediction model for different test cases, we also use the Root Mean Square Error
(RMSE) that represents the deviation between the predicted values and the observed
values. The smaller the RMSE the more efficient the prediction model is.
Our analysis is based on four steps as presented in Figure 80: (i) offline characterization
that reveals the safe voltage operation margins, (ii) collection of all the performance
counters provided by the X-Gene 2 system during nominal conditions, (iii) feature
selection of the most important counters that mostly affect the prediction according to
the test case (targeting either the Vmin or the severity), and (iv) training and evaluation of
the different test cases on which we implemented linear regression analysis. For the
feature selection and the linear regression model of our analysis we used the sklearn
python libraries provided by [140]. As Figure 80 presents, in phase 1 we perform an
extensive characterization, which exposes the regions of operation (Safe, Unsafe,
Crash), the Vmin and the severity values. In phase 2, we perform application profiling for
all available performance counters. In phase 3, we train the predictor using the outputs
from step 1 and 2, and in phase 4, we make the actual prediction evaluating the
estimations using the test dataset. We further analyze the three steps (except for
characterization) illustrating also the results of our statistical analysis for the different
test cases (targeting both the Vmin and the severity).

yi = β0 + β1x1i + β2x2i + ...+ βk xki + ei (19)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 141

Figure 80: Overview of the prediction flow used in studies [35] and [167].

Collection of all the performance counters:
The X-Gene 2 chip provides 101 performance counters in total (see ANNEX Ι) which
report microarchitectural events of the entire system for individual cores, for the memory
hierarchy (accesses and misses of all caches, TLB and page walks levels, unaligned
accesses, prefetches, etc.), the pipeline (flushes, mispredictions, etc.), and the system
(bus accesses, etc.). The selection of the most appropriate performance counters in
order to ensure the accuracy of the final estimations that each model delivers is of major
importance for our statistical analysis. We collect the performance counters using the
Linux Perf tool [141].

Selecting counters for each test case:
To reduce the population of performance counters used by our prediction models
targeting either the Vmin or the Severity, we implemented three different feature
selection techniques:

• F_regression: This approach is based on F-distribution and computes the
correlation of each independent feature X[:, i] with the dependent variable y,
according to the following formula:

Then, for each feature, the F-value is computed according to equation (21),
where n is the population of y value. Finally, using the F-value, the associated p-
value of each feature is determined [142]. Note, that the p-values are predefined
according to the F-values of the F-distribution. The lower the p-value and the
higher the F-value, the more efficient the model becomes when we include this
feature in the model.

The F-values and the p-values after being calculated for all the features, they are
sorted and finally, the best k features with the best scores are selected and used
as input from the linear regression model.

Harnessing Voltage Margins for Energy Efficiency in Multicore CPUs MICRO-50, October 14-18, 2017, Cambridge, MA, USA

statistical analysis for the different test cases (targeting both the
Vmin and the severity).

4.1 Collection of all the Performance Counters
The X-Gene 2 provides 101 performance counters in total which
report microarchitectural events of the entire system for
individual cores, for the memory hierarchy (accesses and misses
of all cache, TLB and page walks levels, unaligned accesses,
prefetches, etc.), the pipeline (flushes, mispredictions, etc.), and
the system (bus accesses, etc.). In our analysis, we used 26 SPEC
CPU2006 benchmarks collecting the performance counters of the
entire benchmarks using perf [20].

4.2 Selecting Counters for each Test Case
To reduce the population of performance counters used by our
prediction model we implemented a feature selection technique
called Recursive Feature Elimination (RFE) [19] for our statistical
analysis concerning both the Vmin and the severity values. Given
an external estimator that assigns weights to features (e.g., a
linear regression model) the goal of RFE is to select features by
recursively considering smaller and smaller sets of features. First,
the estimator is trained on the initial set of features, and weights
are assigned to each one of them. Then, features whose absolute
weights are the smallest are pruned from the current set of
features. This procedure is recursively repeated on the pruned set
until the desired number of features to select is eventually
reached. In our test cases, we eventually selected the 5 most
efficient and representative events to predict the Vmin and the
severity values. The 5 most important features that were selected
by RFE in our test cases are: (i) dispatched stalled cycles, (ii)
exceptions taken, (iii) read data memory accesses, (iv) branch-
target-buffer (BTB) mispredictions, and (v) conditional and
indirect branches. Our model reports the impact of any
architectural event that contributes to prediction, classified by its
importance. We experimentally observe that the 5
aforementioned events provide the same accuracy as when we
used more than 5 events, therefore no more are necessary.

4.3 Training and Evaluating the Test Cases
We analyze the results of our analysis for the three cases
targeting both the Vmin and the severity values for the most

robust (Core 4) and the most sensitive core (Core 0) of the TTT
chip. We present the three representative test cases of our study
on the TTT chip, which are:

§ 1st case: Predict Vmin of the most sensitive core
§ 2nd case: Predict severity of the most sensitive core
§ 3rd case: Predict severity of the most robust core

In our analysis, we call samples all the information vectors that
were used in our analysis and consist of the values of the
dependent and independent variables used in our regression
model. For all our experiments, we used the 80% of the population
of the samples as the training set and the rest 20% as the test set
for our prediction model. Finally, to evaluate the efficiency of our
prediction model (apart from the R2 and the RMSE) we used as
baseline model the naïve prediction, which is the average of the
target values (Vmin or severity) of the samples of the training set.

4.3.1 1st case: Predict Vmin of the most sensitive core: In our
first case study, we evaluate the correlation of the performance
counters with the Vmin of the individual cores of the three chips.
We discuss the results of our analysis in Core 0 that is the most
sensitive core of the TTT chip. For our analysis, we used 40
samples for each core, which come from the full execution of 26
benchmarks from the SPEC CPU2006 suite with all of their input
datasets (3 of them could not run correctly). Each sample consists
of all the performance counters of each benchmark, while the
target value of the model is the Vmin. In general, the prediction
model of the Vmin for the individual cores gives us a good RMSE
result (error equals 5mV or 0.51% of the nominal voltage), but the
R2 for that case is close to 0 which indicates that a small
proportion of the variance in the dependent variable is
predictable from the independent variables. Moreover, we
observed that due to the narrow unsafe area observed (in Core 0
it is between 910mV and 885mV), the naïve prediction (using the
average values of the training test) is equally efficient to predict
the Vmin.

4.3.2 2nd case: Predict severity of the most sensitive core: In the
next two cases, we evaluate the efficiency of a linear regression
model targeting the severity of an individual core as was defined
in subsection 3.4.1. Firstly, we illustrate the results of our analysis
for the most sensitive core of the TTT chip (Core 0). For our
analysis, we used 100 samples from the unsafe region that were
observed during the characterization phase. Each sample

Severity

Framework
Vmin

1 Characterization Vdd
Guardband

Vmin

Benchmarks

Perf counters

3 Model training

Model

Predicted
results

Counters Core

Offline Training Online

4 Prediction

Test set

Training set
Vmin

2 Profiling

Figure 6: Overview of the prediction flow.

ρi =
(X [:,i]−mean(X [:,i]))∗(y −mean(y))

std(X [:,i])∗std(y)
 (20)

Fi =
ρi

2

1− ρi
2 ∗(n −1) (21)

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 142

• Recursive Feature Elimination (RFE): Given an external estimator that assigns
initial weights to all features (e.g., a linear regression model), the goal of RFE is
to select features by recursively considering smaller and smaller sets of features
[140]. First, the estimator is trained on the initial set of features, and weights are
assigned to each one of them according to their correlation coefficient. Then,
features whose absolute weights are the smallest are pruned from the current set
of features. This procedure is recursively repeated on the pruned set until the
desired number of features to select is eventually reached.  

• Polynomial Feature Transformation (Polynomial): In order to evaluate the
correlation between two or more features, we implemented polynomial feature
transformation that generates a new feature matrix consisting of all polynomial
combinations of the features with degree less than or equal to a specified
degree. For example, if an input sample of features is two dimensional and
consists of two features [x1, x2], the new polynomial features matrix of degree-2
will be [1, x1, x2, x1

2, x1x2, x2
2] [140]. We implemented the polynomial feature

transformation for all the cases targeting either the Vmin or the Severity with a
degree of correlation equal to 2. Our experiments revealed that a degree of
correlation greater than 2 cannot provide better efficiency to our prediction
models. After the polynomial feature transformation, we use either f_regression
or RFE feature selection to select the best new features for our linear regression
models.

Training and evaluating the test cases:
We analyze the results of our analysis for the three cases targeting both the Vmin and
the severity values for the most robust (Core 4) and the most sensitive core (Core 0) of
the chip. In Section 4.2.3, we present the four most representative test cases of our
study on chip, which are:

• 1st case: Predict Vmin of the most sensitive core

• 2nd case: Predict Vmin of the most robust core 

• 3rd case: Predict severity of the most sensitive core
• 4th case: Predict severity of the most robust core

To evaluate the efficiency of our prediction model (apart from the R2 and the RMSE) we
used as baseline model the naïve prediction, which is the average of the target values
(Vmin or Severity) of the samples of the training set.
In our statistical analysis and depending on targeting either the Vmin or the Severity, we
use different samples that correspond to the information vectors of the values of the de-
pendent and the independent variables that were used to train and test our models.
Specifically, all the independent variables of the samples of this study that were used to
predict the Vmin consist of the microarchitectural counters from the entire execution of
the benchmarks normalized per kilo committed architectural instructions, while the
independent variables of the samples that were used to predict Severity consist of the
same microarchitectural counters and also of the voltage values of each voltage
reduction step that come from the characterization phase. Furthermore, to avoid biasing
the prediction results, all the values of the microarchitectural counters of all our samples
were scaled according to their minimum and maximum observed values, getting a final
value with range [0, 1].

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 143

For all the experiments, we split the samples into 80% training and 20% test datasets (a
very typical choice in the evaluation of statistical methods), while to evaluate the
accuracy of our models and to avoid over-fitting, we cross-validated our results with
different sets of train and test datasets (using 8000K combinations of train and test
samples for all the datasets of our experiments). Finally, the total population of samples
that were used to predict the Vmin and the Severity is 320 and 800 respectively.

4.2.3 Experimental Results
In this section, we present the results for the four test cases presented in the previous
section, of implementing our linear regression models with the three different feature
selection algorithms targeting both the Vmin and the Severity in the most robust (Core 4)
and the most sensitive (Core 0) cores of the X-Gene 2 when we run all the benchmarks
from the SPEC CPU2006 suite with all their inputs (40 programs in total). For all our
experiments, we evaluate the accuracy of each prediction model when we use from one
up to ten most important features selected for the three different feature selection
techniques in order to feed our model. Finally, for the best population of features that
provide the highest accuracy (the lowest RMSE), we present the final prediction model
according to equation (19).

1st case: Predict Vmin of the most sensitive core
In Figure 81, we illustrate the accuracy results (in terms of RMSE that is measured in
mV) of all our models when we target the Vmin of the most sensitive core. The black
dotted line presents the accuracy of the baseline (naïve) model which is the average
values of the training dataset for prediction, while each set of bars represents the
accuracy of the different models by using different population of features for the
prediction.
We can observe that by using more than 4 features, all the methods are less accurate
than the baseline model. Moreover, the linear regression model using only RFE is less
accurate compared to the baseline model for all the cases. In general, the linear
regression that is accompanied by polynomial transformation with up to 4 selected
features using f_regression gives better accuracy than the other methods for all the
cases. The best accuracy (with RMSE equal to 5.0108mV) was observed when we use
the polynomial transformation with f_regression selection and only 4 selected
polynomial features. This model is illustrated in Table 30 and represents the final
prediction model according to equation (19). Moreover, the R2 that was measured for
this prediction model is relatively high (close to 0.75) indicating a good fit of the data to
the model.
Our model finally delivers very high accuracy compared to the real values of our
experiments (with only 5mV inaccuracy that corresponds to a single voltage step
reduction that is supported by the machine). The potential power savings of using this
scenario of prediction and adding a very small guardband of only 5mV that is equal to
our predicted inaccuracy is 11.87% compared to the case of using a very pessimistic
guardband equal to the nominal voltage value.
In general, the most important features that are finally used by all the models of this
study (described in in this section) can lead to large voltage droops (BTB
mispredictions, decode stalls, exceptions, branches), while some others (integer and FP
operations) to timing errors in the pipeline of the X-Gene 2 that does not implement a
de-skewing mechanism.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 144

Figure 81: Accuracy of predicting the Vmin of the most sensitive core.

Table 30: Vmin prediction model of the most sensitive core of X-Gene 2.

Symbol definition of microarchitectural
counters used by the model

Prediction Model
(with 4 polynomial

features)
L2 data prefetch request (L2_pref)

897.90 + (23.01* L2_pref)
+ (54.20 * BTB_miss * FP)
 – (7.15 * INT * L2_pref)
– (58.84 * FP * Indirect_br)

BTB mispredictions (BTB_miss)
Floating point operation (FP)
Integer data processing (INT)
Indirect braches (Indirect_br)

2nd case: Predict Vmin of the most robust core
The results of the accuracy of the different prediction models that target the Vmin of the
most robust core are illustrated in Figure 82. All the models with more than 4 features or
less than 3 features are less accurate than the baseline model. The best accuracy is
observed for linear regression after applying polynomial transformation with
f_regression and using only 3 polynomial features with RMSE equal to 5.0922mV (this
model is presented in Table 31). The R2 is again relatively high (0.70) for this model.
Finally, the potential power savings of this model is 17.52% compared to the case of
using the nominal voltage value.

5.
83

8

5.
40

3

5.
27

03 6.
33

05

6.
76

33

6.
11

44 7.
17

28

7.
66

91

7.
47

25

8.
02

03

6.
56

01

6.
99

45

6.
91

7

7.
16

37

7.
38

63

7.
86

29

7.
02 7.
26

69 8.
09

18

8.
17

94

5.
43

29

5.
27

77

5.
65

17

5.
02

42

5.
81

01

6.
27

24

10
.0

00
6

13
.3

33
1

14
.0

24
5

11
.6

08
4

5.
01

15

5.
04

50

5.
35

08

5.
01

08

8.
47

62

8.
83

20

11
.0

51
6 12

.7
91

8

18
.7

76
0

19
.7

16
9

4

6

8

10

12

14

16

18

20

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

SE
 (m

V)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 145

Figure 82: Accuracy of predicting the Vmin of the most robust core.

Table 31: Vmin prediction model of the most robust core of X-Gene 2.

Symbol definition of microarchitectural
counters used by the model

Prediction Model
(with 3 polynomial

features)
L2 data prefetch request (L2_pref)

898.24 + (27.36 * L2_pref)
+ (61.24 * BTB_miss * FP)
 – (8.96 * INT * L2_pref)

BTB mispredictions (BTB_miss)
Floating point operation (FP)
Integer data processing (INT)

3rd case: Predict severity of the most sensitive core
Figure 83 presents the results of the accuracy (in terms of RMSE that is measured in
Severity units as was defined in equation 18) when we target the Severity of the most
sensitive core of the chip.
We observe that both the linear regression with a simple f_regression feature selection
mechanism or the model in which we firstly apply a polynomial transformation and then
we select the best features with f_regression outperform the baseline model for all the
cases of different populations of selected features. On the other hand, the simple RFE
feature selection and the model with the polynomial transformation and RFE feature
selection are less accurate than the baseline model for all our experiments.
The best accuracy (with RMSE equal to 2.7223 Severity units) is observed for the
model that uses f_regression feature selection with 3 features (this model is presented
in Table 32). The R2 for this model is very high (equal to 0.92) that indicates that our
linear model with the selected features is able to predict a large proportion of the
variance in the dependent variable.

6.
49

13

6.
10

01

5.
93

92

6.
37

71
1

6.
43

14

8.
83

82

9.
39

95

9.
36

7

9.
44

31

11
.2

22
3

6.
77

44

6.
20

65

6.
48

2

6.
99

94

6.
33

96 7.
33

92

8.
93

39

9.
03

04 9.
99

46 11
.1

23

7.
89

3

5.
99

4

5.
53

3

5.
24

93 6.
52

95 7.
88

33 9.
06

53 9.
97

33

10
.1

03

13
.3

3

6.
32

12

6.
11

20

5.
09

22

5.
12

11 6.
12

27

6.
77

31

9.
54

42

9.
83

91

10
.1

44
9

13
.1

44
4

4

6

8

10

12

14

16

18

20

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

SE
 (m

V)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 146

The potential power savings of using this aggressive prediction mechanism that targets
the Severity including the measured error are 16.59% compared to the case of using
the pessimistic nominal voltage value for protection. These savings correspond to
39.76% more power savings compared to the gains of using the less aggressive
prediction that targets the Vmin value of the same core, indicating the need to move
forward to more aggressive prediction schemes in order to save more energy.
Finally, Figure 84 illustrates intuitively the efficiency of our proposed model that targets
the Severity of the most sensitive core of X-Gene 2 chip. The blue line in this figure
represents the ideal efficiency where the real and the predicted values of the test
dataset are equal. The closer the black dots are to the blue line, the more efficient the
prediction model is.

Figure 83: Accuracy of predicting the Severity of the most sensitive core.

Table 32: Severity prediction model of the most sensitive core of X-Gene 2.

Symbol definition of microarchitectural
counters used by the model

Prediction Model
(with 3 features)

Voltage (Volt) 20.35 + (3.66 * Volt) 
– (2.34 * L1D_tlb_write)
– (22.53 * dec_stalls)

L1 data TLB write (L1D_tlb_write)
Decode stalls (dec_stalls)

3.
08

05

2.
81

3

2.
72

23

2.
74

73

2.
77

25

2.
80

45

2.
83

66

2.
84

84

2.
87

79

2.
87

6

7.
96

25

8.
06

17

8.
15

36

8.
17

31

8.
25

2

8.
36

15

8.
43

71

8.
54

24

8.
63

19

8.
63

35

7.
89

9

7.
96

84

8.
04

05

8.
14

02

8.
22

92

8.
32

73

8.
42

6

8.
52

83

8.
63

19

8.
63

2

3.
08

06

3.
05

70

3.
03

87

3.
03

75

3.
05

25

3.
05

53

3.
09

57

3.
13

54

3.
12

18

2.
99

59

0

1

2

3

4

5

6

7

8

9

10

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

SE
 (S

ev
er

ity
 u

ni
ts

)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 147

Figure 84: Intuitively representation of the efficiency of the proposed model that targets the

Severity of the most sensitive core of X-Gene 2.

4th case: Predict severity of the most robust core
Finally, Figure 85 illustrates the results of the accuracy of the models that predict the
Severity values of the most robust core of the chip. All the models apart from the case
of polynomial transformation with RFE feature selection outperform again the baseline
prediction (the difference is about 5.2 Severity units). The best accuracy in terms of
RMSE is equal to 2.5 Severity units and it is observed for the linear regression model
with RFE feature selection using 6 features (this model is presented in Table 33). The
R2 for this model is again very high (equal to 0.91) indicating the high efficiency of the
prediction model. Including the error of this model, the potential power savings using the
aggressive prediction that targets the Severity of this core are 20.28% instead of using
the nominal voltage value, while these gains correspond to 15.75% more power savings
compared to the case of using a more conservative scheme that predicts the Vmin.
Finally, Figure 86 illustrates intuitively the efficiency of our proposed model that targets
the Severity of the most robust core of X-Gene 2 chip. The blue line in this figure
represents the ideal efficiency where the real and the predicted values of the test
dataset are equal. The closer the black dots are to the blue line, the more efficient the
prediction model is.

Table 33: Severity prediction model of the most robust core of X-Gene 2.

Symbol definition of microarchitectural
counters used by the model

Prediction Model
(with 6 features)

Voltage (Volt)
18.94 + (47.80 * Volt) 
– (20.56 * excpt_taken)
+ (7.09 * L1I_miss) 
– (3.92 * cond_br) 
– (29.50 * L1D_tlb_write)
– (22.11 * dec_stalls)

Exceptions taken (excpt_taken)
L1 instruction cache miss (L1I_miss)

Conditional branches (cond_br)
L1 data TLB write (L1D_tlb_write)

Decode stalls (dec_stalls)

MICRO-50, October 14-18, 2017, Cambridge, MA, USA G. Papadimitriou et al.

corresponds to each reduction step of 5mV that was used during
the characterization phase and consists of the microarchitectural
counters running the benchmark in the nominal conditions and
the voltage value of the characterization step. The target of our
prediction model is the severity of Core 0 for a particular voltage
value. Figure 7 presents the results of the prediction (blue line)
and the test samples (black dots in the graph). The RMSE of the
linear regression after the selection of the 5 most effective
features with the RFE is 2.8 Severity units, while the RMSE of the
naïve approach of using the average of the test dataset is 6.4
severity units indicating that our model is more efficient than
both the baseline naïve approach for severity values and for the
1st case concerning the Vmin point. Moreover, the R2 for this case
is very high 0.92 (very close to 1) that indicates that the linear
model with the selected features is able to predict a large
proportion of the variance in the dependent variable.

Figure 7: Severity prediction for most sensitive core (core
0).

Figure 8: Severity prediction for most robust core (core 4).

4.3.3 3rd case: Predict severity of the most robust core: Finally,
we present the results of our analysis for the most robust core of
the TTT chip (Core 4). For our analysis, we used 90 samples as

were presented in subsection 4.3.2, but now the target of our
prediction model is the severity of Core 4 for a particular voltage
value. Figure 8 presents the results of the prediction (blue line)
and the test samples (black dots in the graph). The RMSE of the
linear regression after the selection of the 5 most effective
features with the RFE is 2.65 severity units, while the RMSE of the
naïve approach of using the average of the test dataset is 6.9
severity units indicating that our model is more efficient than the
baseline naïve approach. Moreover, the R2 for this case is again
very high 0.91 (very close to 1, which means the best fit) that
indicates the efficiency of the linear model.

4.4 Undervolting Effects Mitigation
By combining our findings from the three test cases, it is clear
that the prediction model using the severity values instead of a
static Vmin point is more efficient in predicting the safe Vmin for
each workload, as well as giving a flexibility to the predictor to be
more aggressive due to the knowledge of the unsafe region. A
static Vmin point does not contain any information about the
severity of operating at voltages below the safe Vmin, but severity
does so. Therefore, having knowledge about the severity below
the safe Vmin for each workload, the predictor can decide if it is
possible to be more aggressive to set the voltage below the safe
Vmin, and thus, to save more power. We can also notice that the
prediction based on the severity, not only is more efficient than
the Vmin point alone, but it also shows that it can fit effectively for
each core, taking into account the process variation. The two
different cases 2 and 3 (one for a sensitive core and one for a
robust core) demonstrate that the linear regression model for
severity values can be effective regardless the core-to-core
variation (and consequently the chip-to-chip variation).

Depending on the actual characterization findings (Vmin and
severity) or the corresponding predicted values for a CPU core
during undervolting, certain hardware-based or software-based
mitigation approaches can be employed to maximize the energy
savings while preserving the correctness of program execution. 1
The primary aspect that determines the most suitable approach is
the first observed (or predicted) effect as undervolting goes down
the voltage levels. We select the following behaviors using the
severity function described in subsection 3.4.1 and used as the
target function in the prediction. For each case we describe the
behavior, discuss the severity function values and corresponding
mitigation approaches.

Nothing abnormal (severity=0). The voltage range is
predicted to be safe (above the Vmin of a core); no mitigation
action is required. System operation in this range is the most
conservative option and no mitigation provision is needed.
Energy-savings are the minimum.

1 Note that our severity metric and prediction mechanism can be used
above existing circuit-based techniques such as adaptive clocking. For
instance, in the mechanism proposed in [38] adaptive-clocking can reduce
the voltage at which SDCs occur. The frequency with which adaptation is
deployed can be an input to our framework, thereby limiting the potential
for performance degradation due to excessive deployment of adaptive-
clocking induced frequency slowdown.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 148

Figure 85: Accuracy of predicting the Severity of the most robust core.

Figure 86: Intuitively representation of the efficiency of the proposed model that targets the

Severity of the most robust core of X-Gene 2.

4.2.4 Related work
The goal for improving microprocessors’ energy efficiency by reducing their supply
voltage is a main concern of many recent scientific studies. For example, [143], [144]
and [145] propose methods to maximize voltage droops in single core and multicore
chips in order to investigate their worst-case behavior due to the generated voltage
noise effects. Studies [133] and [134] focus on the prediction of critical parts of
benchmarks, in which large voltage noise glitches are likely to occur, leading to system
malfunctions. In the same context, several studies either in the hardware or in the
software level were presented to mitigate the effects of voltage noise ([128], [146],

2.
55

18

2.
54

4

2.
55

23

2.
58

05

2.
57

62

2.
60

98

2.
60

65

2.
55

27

2.
58

52

2.
60

36

2.
55

18

2.
54

4

2.
55

22

2.
58

05

2.
57

01

2.
5

2.
52

25

2.
54

74

2.
57

15

2.
60

34

7.
75

7

7.
87

12

7.
93

03

8.
01

42

8.
10

21

8.
21

6

8.
32

25

8.
42

68

8.
52

64

8.
52

63

2.
55

18

2.
59

17

2.
61

82

2.
65

89

2.
67

63

2.
66

23

2.
67

07

2.
64

00

2.
64

26

2.
63

95

0

1

2

3

4

5

6

7

8

9

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

SE
 (S

ev
er

ity
 u

ni
ts

)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

MICRO-50, October 14-18, 2017, Cambridge, MA, USA G. Papadimitriou et al.

corresponds to each reduction step of 5mV that was used during
the characterization phase and consists of the microarchitectural
counters running the benchmark in the nominal conditions and
the voltage value of the characterization step. The target of our
prediction model is the severity of Core 0 for a particular voltage
value. Figure 7 presents the results of the prediction (blue line)
and the test samples (black dots in the graph). The RMSE of the
linear regression after the selection of the 5 most effective
features with the RFE is 2.8 Severity units, while the RMSE of the
naïve approach of using the average of the test dataset is 6.4
severity units indicating that our model is more efficient than
both the baseline naïve approach for severity values and for the
1st case concerning the Vmin point. Moreover, the R2 for this case
is very high 0.92 (very close to 1) that indicates that the linear
model with the selected features is able to predict a large
proportion of the variance in the dependent variable.

Figure 7: Severity prediction for most sensitive core (core
0).

Figure 8: Severity prediction for most robust core (core 4).

4.3.3 3rd case: Predict severity of the most robust core: Finally,
we present the results of our analysis for the most robust core of
the TTT chip (Core 4). For our analysis, we used 90 samples as

were presented in subsection 4.3.2, but now the target of our
prediction model is the severity of Core 4 for a particular voltage
value. Figure 8 presents the results of the prediction (blue line)
and the test samples (black dots in the graph). The RMSE of the
linear regression after the selection of the 5 most effective
features with the RFE is 2.65 severity units, while the RMSE of the
naïve approach of using the average of the test dataset is 6.9
severity units indicating that our model is more efficient than the
baseline naïve approach. Moreover, the R2 for this case is again
very high 0.91 (very close to 1, which means the best fit) that
indicates the efficiency of the linear model.

4.4 Undervolting Effects Mitigation
By combining our findings from the three test cases, it is clear
that the prediction model using the severity values instead of a
static Vmin point is more efficient in predicting the safe Vmin for
each workload, as well as giving a flexibility to the predictor to be
more aggressive due to the knowledge of the unsafe region. A
static Vmin point does not contain any information about the
severity of operating at voltages below the safe Vmin, but severity
does so. Therefore, having knowledge about the severity below
the safe Vmin for each workload, the predictor can decide if it is
possible to be more aggressive to set the voltage below the safe
Vmin, and thus, to save more power. We can also notice that the
prediction based on the severity, not only is more efficient than
the Vmin point alone, but it also shows that it can fit effectively for
each core, taking into account the process variation. The two
different cases 2 and 3 (one for a sensitive core and one for a
robust core) demonstrate that the linear regression model for
severity values can be effective regardless the core-to-core
variation (and consequently the chip-to-chip variation).

Depending on the actual characterization findings (Vmin and
severity) or the corresponding predicted values for a CPU core
during undervolting, certain hardware-based or software-based
mitigation approaches can be employed to maximize the energy
savings while preserving the correctness of program execution. 1
The primary aspect that determines the most suitable approach is
the first observed (or predicted) effect as undervolting goes down
the voltage levels. We select the following behaviors using the
severity function described in subsection 3.4.1 and used as the
target function in the prediction. For each case we describe the
behavior, discuss the severity function values and corresponding
mitigation approaches.

Nothing abnormal (severity=0). The voltage range is
predicted to be safe (above the Vmin of a core); no mitigation
action is required. System operation in this range is the most
conservative option and no mitigation provision is needed.
Energy-savings are the minimum.

1 Note that our severity metric and prediction mechanism can be used
above existing circuit-based techniques such as adaptive clocking. For
instance, in the mechanism proposed in [38] adaptive-clocking can reduce
the voltage at which SDCs occur. The frequency with which adaptation is
deployed can be an input to our framework, thereby limiting the potential
for performance degradation due to excessive deployment of adaptive-
clocking induced frequency slowdown.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 149

[147], [148] and [149]) or to recover from them after their occurrence [150]. The authors
in [151] presented a core that was designed for voltage scalability that can work in high-
performance mode at nominal Vdd and in a very energy-efficient mode at low Vdd.
Apart from these studies that are mainly concentrated on the core and the voltage
droops, [12] and [135] focus on the observation of the errors manifested on caches of a
commercial Intel Itanium processor during the execution of benchmarks off-nominal
voltage values. In [152], we presented an experimental study that aims to identify the
voltage margins in two different commercial x86-64 microprocessors; an ultra-low power
and a high-end microprocessor. In the same work, we presented the guardbands of
these microprocessors, and combined them to the power and temperature savings,
when they operate beyond nominal voltage conditions. Moreover, the authors of [20],
[153] and [154] propose several microarchitectural approaches to ensure the correct
operation of caches in ultra-low voltage conditions. Finally, in [166] we developed some
micro-viruses programs that target the caches and the pipeline for fast characterization
of the operation voltage margins of the X-Gene 2 chip.
The characterization studies of commercial chips in off-nominal voltage conditions are
limited ([12], [135], [155], [156], [157] and [158]) strengthening the need of the existence
of our work in [35] and [167] that targets the APM X-Gene 2 micro-server. Similar
characterization effort for emerging ARM-based enterprise server systems is sparse.
Authors in [159], [160], [161] and [162] from ARM Research developed an electrical
simulation framework for power-delivery analysis and used an on-chip voltage
monitoring circuit to characterize supply voltage droops in a dual-core ARM Cortex-A57
cluster operating at 1.2 GHz.
Regression analysis has been used in many performance and power studies ([163],
[164] and [165]), as well as in reliability estimation concerning soft errors ([105] and
[139]), but in [35] and [167] was the first time that was used to predict the safe voltage
operation margins of the individual cores of an ARM-v8 multicore CPU.

4.3 Findings Summary
In this chapter, we presented two techniques to boost post-silicon reliability analysis
(see Figure 8). Here, we summarize these two techniques that were presented in detail
in Section 4.1 and Section 4.2:

• In [33], we have proposed effective parallelization to accelerate online error
detection of permanent faults for many-core architectures. We carried out a set of
experiments that demonstrate the efficiency of the proposed methodology on the
48-core Intel’s SCC architecture. Our methodology exploits the high-speed
message passing on-chip network commonly used in such many-core
architectures to accelerate the parallel execution of the test preparation phase of
memory-intensive test programs. Also, the parallel execution of memory-
intensive and CPU-intensive test programs is proposed that further reduces the
overall test execution time showing an up to 47.6X speedup compared to a serial
test program execution approach.

• In [35] and [167], we presented a comprehensive statistical analysis using linear
regression with different feature selection methods to predict the safe voltage
operation margins as well as the behavior (in terms of severity) of the cores of
the enterprise X-Gene 2 micro-server running all the benchmarks from SPEC
CPU2006 suite with different input datasets. Our analysis revealed that the
potential power savings targeting the Vmin can be up to 17.52% compared to the
case of using the nominal voltage value or up to 20.28% in the case of using a
more aggressive regression scheme that targets the Severity instead of the Vmin.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 150

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 151

5. CONCLUSION AND FUTURE WORK

The evolution in semiconductors manufacturing technology gives designers the
opportunity to integrate more transistors in the same chip. This leads to increase of
performance of the modern microprocessors as more aggressive architectures are
implemented. However, this scaling in performance is also accompanied by increase in
the vulnerability of microprocessors due to: (a) the strict deadlines that are required to
diminish the Time-to-Market (TTM), (b) the modern device integration techniques, and
(c) the increased design complexity. Specifically, the microprocessors face serious
reliability issues during their entire life-cycle due to: (i) the errors that come from
transient faults that are caused by cosmic rays, alpha particles and electromagnetic
interference, (ii) aging that leads to operational errors that appear at regular time
intervals (intermittent errors) or exist indefinitely (permanent errors), and (iii)
manufacturing defects that can either be manifested as permanent errors or lead to
timing errors when the chips operate in off-nominal voltage and frequency conditions.
In this thesis, we proposed several techniques to boost reliability of modern
microprocessors. The proposed techniques can be implemented either on the early
design phases (Pre-Silicon Reliability Analysis phase; see Figure 8) or during
manufacturing or even after the chips release to the market (Post-Silicon Reliability
Analysis phase; see Figure 8). Here, we summarize the contributions that were
described in detail in this thesis:

• Pre-Silicon Reliability Analysis: Statistical fault injection on microarchitectural
structures modeled in performance simulators is a state-of-the-art method to
accurately measure the reliability, but suffers from low simulation throughput. In
this thesis, we firstly presented a novel fully-automated versatile architecture-level
fault injection framework (called MaFIN) for accurate characterization of a wide
range of hardware components of an x86-64 microarchitecture with respect to
various fault models (transient, intermittent, permanent faults). Next, using the
same tool and focusing on transient faults, we presented several reliability and
performance related studies that can help design decision in the early design
phases.
Finally, in this thesis we proposed two methodologies to accelerate the statistical
fault injection campaigns. In the first one, we accelerate the fault injection
campaigns after the actual injection of the faults in the hardware structures. In the
second, we further accelerate the microarchitecture level fault injection
campaigns by proposing MeRLiN that is based on the pruning of the initial fault
list by grouping the faults in equivalent classes according to the instruction that
finally accesses the faulty entry.

• Post-Silicon Reliability Analysis: The contributions of this thesis in this phase of
the life-cycle cover two important research fields. Firstly, using the 48-core Intel’s
SCC architecture, we proposed a technique to accelerate online error detection of
permanent faults for many-core architectures by exploiting their high-speed
message passing on-chip network. Secondly, we proposed a detailed statistical
analysis methodology to accurately predict in the system level the safe voltage
operation margins of the ARMv8 cores of the X-Gene 2 chip when it operates in
scaled voltage conditions.

We hope that the techniques presented in this thesis will advance the research in the
field of dependable and energy efficient computing. In Table 34, we indicatively present
some future directions of our research in the two phases of processors’ reliability life-
cycle, on which we mainly focused in this thesis.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 152

Table 34: Future work.
Phase of reliability

life-cycle Future work

Pre-Silicon Reliability
Analysis

• Extension of MaFIN tool with protection mechanisms
in different hardware structures

• Implementation of MeRLiN methodology in GPUs and
other multi-core architectures

• Use of MeRLiN’s methodology outcomes to analyze
software reliability

Post-Silicon Reliability
Analysis

• Implementation of the proposed methodology of [33]
on different many-core architectures with different
network topologies (for instance in Xeon Phi)

• Implementation of the linear regression analysis of
[35] and [167] on different multicore architectures (for
instance the X-Gene 3 [36]) and on different ISAs.

• Statistical analysis to predict temperature and power
of the X-Gene 2.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 153

ACRONYMS

TTM Time-to-Market

IoT Internet of Things

ILP Instruction-Level Parallelism

TLP Thread-Level Parallelism

DLP Data-Level Parallelism

ISA Instruction Set Architecture

HDL Hardware Description Language

VHDL VHSIC Hardware Description Language

RTL Register Transfer Level

SBST Software-based Self-testing

ECC Error Correction Code

SEU Single Event Upset

SCC Intel’s Single-chip Cloud Computer

SER Soft Error Rate

SOI Silicon on Insulator

TTF Time to Failure

MTTF Mean Time to Failure

FIT Failure in Time

AVF Architectural Vulnerability Factor

HVF Hardware Vulnerability Factor

PVF Program Vulnerability Factor

SDC Silent Data Corruption

DUE Detected Unrecoverable Error

FP Floating Point

OoO Out-of-order

RAS Return Address Stack

LSQ Load Store Queue

ALU Arithmetic Logic Unit

AGU Address Generation Unit

IPC Instructions per Cycle

WB Write Back

WT Write Through

SIMD Single Instruction, Multiple Data

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 154

BTB Branch Target Buffer

ROB Reorder Buffer

uop micro-operation

RIP instruction pointer

uPC micro Program Counter

TDD Transitively Dynamically Dead

RF Physical Register File

SQ Store Queue

IQ Issue Queue

FPGA Field Programmable Gate Array

ASIC Application-Specific Integrated Circuit

GPU Graphics Processing Unit

SoC Systems-on-Chip

NPU Network Processing Unit

ATPG Automatic Test Pattern Generation

LFSR Linear-Feedback Shift Register

DRAM Dynamic Random Access Memory

MPB Message Passing Buffer

SMP Symmetric shared-memory Multiprocessors

CMP Chip-Multiprocessors

DVFS Dynamic Voltage and Frequency Scaling

PMpro Power Management processor

SLIMpro Scalable Lightweight Intelligent Management processor

ACPI Advanced Configuration Power Interface

PMD Processor Module

PCP Processor Complex

TDP Thermal Design Power

RMSE Root Mean Square Error

OLS Ordinary Least Squares

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 155

ANNEX Ι

 Event-id Description

 0x000 Instruction architecturally executed, condition code check
 pass, software increment
 0x001 L1 Instruction cache refill
 0x002 L1 instruction TLB refill
 0x003 L1 data cache refill
 0x004 L1 data cache access
 0x005 L1 data TLB refill
 0x008 Instruction architecturally executed
 0x009 Exception taken
 0x00A Instruction architecturally executed (condition check pass)
 -Exception return
 0x00B Instruction architecturally executed (condition check pass) -
 Write to CONTEXTIDR
 0x010 Mispredicted or not predicted branch speculatively executed
 0x011 Cycle
 0x012 Predictable branch speculatively executed
 0x013 Data memory access
 0x014 L1 instruction cache access
 0x016 L2 data cache access
 0x017 L2 data cache refill
 0x018 L2 data cache write-back
 0x019 Bus access
 0x01A Local Memory Error
 0x01B Operation speculatively executed
 0x01C Instruction architecturally executed (condition check pass) - Write to
 translation table base
 0x01E Counter chain
 0x040 L1 data cache access - Read
 0x041 L1 data cache access - Write
 0x042 L1 data cache refill - Read
 0x048 L1 data cache invalidate
 0x04C L1 data TLB refill - Read
 0x04D L1 data TLB refill - Write
 0x050 L2 data cache access - Read
 0x051 L2 data cache access - Write
 0x052 L2 data cache refill - Read
 0x053 L2 data cache refill - Write
 0x056 L2 data cache write-back - victim
 0x057 L2 data cache write-back - Cleaning and coherency
 0x058 L2 data cache invalidate
 0x060 Bus access - Read
 0x061 Bus access - Write
 0x062 Bus access - Normal, cacheable, sharable
 0x063 Bus access - Not normal, cacheable, sharable
 0x064 Bus access - Normal
 0x065 Bus access - Peripheral
 0x066 Data memory access - Read

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 156

 0x067 Data memory access - write
 0x068 Unaligned access - Read
 0x069 Unaligned access - Write
 0x06A Unaligned access
 0x06C Exclusive operation speculatively executed - Load exclusive
 0x06D Exclusive operation speculative executed - Store exclusive pass
 0x06E Exclusive operation speculative executed - Store exclusive fail
 0x06F Exclusive operation speculatively executed - Store exclusive
 0x070 Operation speculatively executed - Load
 0x071 Operation speculatively executed - Store
 0x072 Operation speculatively executed - Load or store
 0x073 Operation speculatively executed - Integer data processing
 0x074 Operation speculatively executed - Advanced SIMD
 0x075 Operation speculatively executed - FP
 0x076 Operation speculatively executed - Software change of PC
 0x078 Branch speculative executed - Immediate branch
 0x079 Branch speculative executed - Procedure return
 0x07A Branch speculative executed - Indirect branch
 0x07C Barrier speculatively executed - ISB
 0x07D Barrier speculatively executed - DSB
 0x07E Barrier speculatively executed - DMB
 0x081 Exception taken, other synchronous
 0x082 Exception taken, Supervisor Call
 0x083 Exception taken, Instruction Abort
 0x084 Exception taken, Data Abort or SError
 0x086 Exception taken, IRQ
 0x087 Exception taken, FIQ
 0x08A Exception taken, Hypervisor Call
 0x08B Exception taken, Instruction Abort not taken locally
 0x08C Exception taken, Data Abort or SError not taken locally
 0x08D Exception taken, other traps not taken locally
 0x08E Exception taken, IRQ not taken locally
 0x08F Exception taken, FIQ not taken locally
 0x090 Release consistency instruction speculatively executed -
 Load Acquire
 0x091 Release consistency instruction speculatively executed -
 Store Release
 0x100 Operation speculatively executed - NOP
 0x101 FSU clocking gated off cycle
 0x102 BTB misprediction
 0x103 ITB miss
 0x104 DTB miss
 0x105 L1 data cache late miss
 0x106 L1 data cache prefetch request
 0x107 L2 data prefetch request
 0x108 Decode starved for instruction cycle
 0x109 Op dispatch stalled cycle
 0x10A IXA Op non-issue
 0x10B IXB Op non-issue
 0x10C BX Op non-issue
 0x10D LX Op non-issue
 0x10E SX Op non-issue

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 157

 0x10F FX Op non-issue
 0x110 Wait state cycle
 0x111 L1 stage-2 TLB refill
 0x112 Page Walk Cache level-0 stage-1 hit
 0x113 Page Walk Cache level-1 stage-1 hit
 0x114 Page Walk Cache level-2 stage-1 hit
 0x115 Page Walk Cache level-1 stage-2 hit
 0x116 Page Walk Cache level-2 stage-2 hit

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 158

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 159

REFERENCES
[1] G.Moore, “Cramming more components onto integrated circuits”, In Electronics, April, 1965.
[2] R.H.Dennard, F.H.Gaenssien, H-N.Yu, V.L.Rideout, E.Bassous, A.LeBlanc, “Design of ion-implanted

MOSFET‟s with very small physical dimensions”, In IEEE Journal of Solid State Circuit, October,
1974.

[3] Datasheet Intel 4004; http://datasheets.chipdb.org/Intel/MCS-4/datashts/intel-4004.pdf [Accessed
07/11/2017].

[4] AMD Enterprise CPU Roadmap 2015-2019 Leaked – Features 14nm Naples With 32 Cores and 7nm
Starship with 48 Cores; https://wccftech.com/amd-cpu-roadmap-leak-7-nm-starship-14nm-naples-
snowy-owl-zen-core/ [Accessed 07/11/2017].

[5] Intel presents technology and manufacturing day; https://newsroom.intel.com/news/intel-presents-
technology-manufacturing-day-live-video-updates/ [Accessed 07/11/2017].

[6] J.Hennessy, D.Patterson, Computer Architecture: A Quantitative Approach (5 Edition), Elsevier,
2012.

[7] E.Normand, “Single Event Upset at Ground Level,” IEEE Trans. on Nuclear Science, Vol. 43, No. 6,
Dec 1996.

[8] R.C.Baumann, “Sun Microsystems found cosmic ray strikes on L2 cache with defective error
protection caused Sun’s flagship servers to suddenly and mysteriously crash”, IRPS Tutorial on SER,
2000.

[9] J.F.Zielger, H.Puchner, “SER-History, Trends, and Challenges”, Cypress, 2004.
[10] D.Lorenz, G.Georgakos, U.Schlichtmann, “Aging Analysis of Circuit Timing Considering NBTI and

HCI”, IEEE International On-Line Testing Symposium (IOLTS), 2009.
[11] D.Gizopoulos, et al., “Architectures for online error detection and recovery in multicore processors”,

ACM/IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011.
[12] A.Bacha, R.Teodorescu, “Dynamic reduction of voltage margins by leveraging on-chip ECC in

Itanium II Processors”, ACM/IEEE International Symposium on Computer Architecture (ISCA), 2013.
[13] M.T.Yourst, “PTLsim: A cycle accurate full system x86-64 microarchitectural simulator”, IEEE

International Symposium on Performance Analysis of Systems & Software (ISPASS), 2007.
[14] A.Patel, F.Afram, S.Chen, K.Ghose, “MARSSx86: A Full System Simulator for x86 CPUs”,

ACM/IEEE Design Automation Conference (DAC), 2011.
[15] N.Binkert, et al., “The Gem5 simulator”, ACM SIGARCH Computer Architecture News, vol. 39, no. 2,

May 2011.
[16] A.Avizienis, J.-C.Laprie, B.Randell, C.Landwehr, “Basic Concepts and Taxonomy of Dependable and

Secure Computing”, IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1,
January-March 2004.

[17] D.Gizopoulos, S.Mukherjee, “Guest Editors’ Introduction: Special Section on Dependable Computer
Architecture”, IEEE Transactions on Computers (TC), vol. 60, no. 1, January 2011.

[18] Y.Luo, et al., “Characterizing application memory error vulnerability to optimize datacenter cost via
heterogeneous-reliability memory”, IEEE/IFIP International Conference on Dependable systems and
Networks (DSN), 2014.

[19] L.T.Wang, C.Stroud, N.Touba, “System-on-Chip test architectures: Nanometer design for testability”,
Elsevier, 2007.

[20] Z.Chishti, A.R.Alameldeen, C.Wilkerson, W.Wu, S.-L.Lu, “Improving cache lifetime reliability at ultra-
low voltages”, ACM/IEEE International Symposium on Microarchitecture (MICRO), 2009.

[21] S.Raasch, A.Biswas, J.Stephan, P.Racunas, J.Emer, “A fast and accurate analytical technique to
compute the AVF of sequential bits in a processor”, ACM/IEEE International Symposium on
Microarchitecture (MICRO), 2015.

[22] B.Bentley, “Validating the Intel® Pentium® 4 Microprocessor”, ACM/IEEE Design Automation
Conference (DAC), 2011.

[23] K.Constantinides, O.Mutlu, T.Austin, “Online Design Bug Detection: RTL Analysis, Flexible
Mechanisms, and Evaluation”, ACM/IEEE International Symposium on Microarchitecture (MICRO),
2008.

[24] Y.C.Hsu, F.Tsai, W.Jong, “Visibility enhancement for silicon debug”, ACM/IEEE Design Automation
Conference (DAC), 2006.

[25] J.M.Rabaey, “Digital integrated circuits: a design perspective”, Prentice-Hall, Inc., 1996.
[26] D.Gizopoulos, “Advanced electronic testing: challenges and methodologies”, Springer, 2006.
[27] N.Foutris, M.Kaliorakis, S.Tselonis, D.Gizopoulos, “Versatile architecture-level fault injection

framework for reliability evaluation: a first report”, IEEE International On-Line Testing Symposium
(IOLTS), 2014.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 160

[28] S.Tselonis, M.Kaliorakis, N.Foutris, G.Papadimitriou, D.Gizopoulos, “Microprocessor reliability-
performance tradeoffs assessment at the microarchitecture level”, IEEE VLSI Test Symposium (VTS),
2016.

[29] M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, N.Foutris, D.Gizopoulos, “Differential fault injection on
microarchitectural simulators”, IEEE International Symposium on Workload Characterization (IISWC),
2015.

[30] A.Chatzidimitriou, D.Gizopoulos, “Anatomy of microarchitecture-level reliability assessment:
throughput and accuracy”, IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2016.

[31] M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, D.Gizopoulos, “Accelerated microarchitectural fault
injection-based reliability assessment”, IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems (DFTS), 2015.

[32] M.Kaliorakis, D.Gizopoulos, R.Canal, A.Gonzalez, “MeRLiN: Exploiting dynamic instruction behavior
for fast and accurate microarchitecture level reliability assessment”, ACM/IEEE International
Symposium on Computer Architecture (ISCA), 2017.

[33] M.Kaliorakis, M.Psarakis, N.Foutris, D.Gizopoulos, “Accelerated online error detection in many-core
microprocessor architectures”, IEEE VLSI Test Symposium (VTS), 2014.

[34] SCC Programmer's Guide, rev.1.0, Jan., 2012. [Accessed 13/11/2017]. 
[35] G.Papadimitriou, M.Kaliorakis, A.Chatzidimitriou, D.Gizopoulos, P.Lawthers, S.Das, “Harnessing

voltage margins for energy efficiency in multicore CPUs”, IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2017.

[36] X-GeneTM Word’s First ARMv8 64-bit Server on Chip® Solution; https://www.apm.com/products/data-
center/x-gene-family/x-gene/ [Accessed 13/11/2017].

[37] R.C.Baumann, “Soft errors in advanced computer systems”, IEEE Design & Test of Comp., vol. 22,
no. 3, pp. 258-266, May/June 2005.  

[38] C.Constantinescu, “Trends and challenges in VLSI circuit reliability”, IEEE Micro, vol. 23, pp. 14-19,
July 2003.  

[39] L.Huang, Q.Xu, “AgeSim: A simulation framework for   evaluating the lifetime reliability of processor-
based SoCs”, ACM/IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE),
2010.

[40] S.Mukherjee, “Architecture design for soft errors”, Morgan Kaufmann Publishers Inc. San Francisco,
CA, USA, 2008.

[41] M.Riera, R.Canal, J.Abella, A.Gonzalez, “A detailed methodology to compute Soft Error Rates in
advanced technologies”, ACM/IEEE Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016. 

[42] V.Sridharan, D.R.Kaeli, “Eliminating microarchitectural dependency from architectural vulnerability”,
IEEE International Symposium on High Performance Computer Architecture (HPCA), 2009.

[43] V.Sridharan, D.R.Kaeli, “Using hardware vulnerability factors to enhance AVF analysis”, IEEE/ACM
International Symposium on Computer Architecture (ISCA), 2010.

[44] J.Goodenough, R.Aitken, “Post-silicon is too late avoiding the $50 million paperweight starts with
validated designs”, ACM/IEEE Design Automation Conference (DAC), 2010.

[45] H.Cho, S.Mirkhani, C.-Y.Cher, J.A.Abraham, S.Mitra, “Quantitative evaluation of soft error injection
techniques for robust system design”, ACM/IEEE Design Automation Conference (DAC), 2013.

[46] M.Maniatakos, N.Karimi, C.Tirumurti, A.Jas, Y.Makris, “Instruction-level impact analysis of low-level
faults in a modern microprocessor controller”, IEEE Transactions on Computers, vol. 60, no. 9,
pp.1260-1273, September 2011.

[47] N.J.Wang, A.Mahersi, S.J.Patel, “Examining ACE analysis reliability estimates using fault-injection”,
IEEE/ACM International Symposium on Computer Architecture (ISCA), 2007.

[48] G.Yalcin, O.S.Unsal, A.Cristal, M.Valero, “FIMSIM: A fault injection infrastructure for
microarchitectural simulators”, IEEE International Conference on Computer Design (ICCD), 2011.

[49] N.Foutris, D.Gizopoulos, J.Kalamatianos, V.Sridharan, “Assessing the impact of hard faults in
performance components of modern microprocessors” IEEE International Conference on Computer
Design (ICCD), 2013.

[50] S.S.Mukherjee, C.Weaver, J.Emer, S.K.Reinhardt, T.Austin, “A systematic methodology to compute
the architectural vulnerability factors for a high-performance microprocessors”, IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2004.

[51] A.Nair, S.Eyerman, L.Eeckhout, L.K.John, “A first-order mechanistic model for architectural
vulnerability factor”, IEEE/ACM International Symposium on Computer Architecture (ISCA), 2012.

[52] A.Biswas, P.Racunas, R.Cheveresan, J.Emer, S.S.Mukherjee, R.Rangan, “Computing
architectural vulnerability factors for address-based structures”, IEEE/ACM International Symposium
on Computer Architecture (ISCA), 2005.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 161

[53] H.Asadi, V.Sridharan, M.Tahoori, D.Kaeli, “Balancing performance and reliability in the memory
hierarchy”, IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2005.

[54] X.Li, S.V.Adve, P.Bose, J.A.Rivers, “SoftArch: An architecture-level tool for modeling and
analyzing soft errors”, IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2005.

[55] J.Suh, M.Annavaram, M.Dubois, “MACAU: A markov model for reliability evaluations of caches under
single-bit and multi-bit upsets”, IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2012.

[56] J.Suh, M.Manoochehri, M.Annavaram, M.Dubois, “Soft error benchmarking of L2 caches
with PARMA”, ACM SIGMETRICS, 2011.

[57] S.Feng, S.Gupta, A.Ansari, S.Mahlke, “Shoestring: probabilistic soft error reliability on the cheap”,
IEEE/ACM International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2010.

[58] N.J.George, C.R.Elks, B.W.Johnson, J.Lach, “Transient fault models and AVF estimation revisited”,
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2010.

[59] X.Li, S.V.Adve, P.Bose, J.A.Rivers, “Architecture-level soft error analysis: Examining the limits of
common assumptions”, IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2007.

[60] A.A.Nair, L.K.John, L.Eeckhout, “AVF Stressmark: Towards an automated methodology for bounding
the worst-case vulnerability to soft errors”, IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2010.

[61] A.Biswas, P.Racunas, J.Emer, S.S.Mukherjee, “Computing accurate AVFs using ACE analysis on
performance models: a rebuttal”, IEEE Computer Architecture Letters, vol.7, no. 1, January-June
2008.

[62] R.Leveugle, A.Calvez, P.Maistri, P.Vanhauwaert, “Statistical fault injection: Quantified error and
confidence”, ACM/IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), 2009.

[63] M-T.Chang, P.Rosenfeld, S-L.Lu, B.Jacob, “Technology comparison for large last-level caches
(L3Cs): Low-leakage SRAM, low write-energy STT-RAM, and refresh-optimized eDRAM”, IEEE
International Symposium on High Performance Computer Architecture (HPCA), 2013.

[64] A.Mayberry, M.Laquidara, C.Weeds, “Characterizing the microarchitectural side effects of operating
system calls”, IEEE International Symposium on Performance Analysis of Systems & Software
(ISPASS), 2013.

[65] J.Stevens, P.Tschirhart, M-T.Chang, I.Bhati, P.Enns, J.Greensky, Z.Cristi, S-L.Lu, B.Jacob, “An
integrated simulation infrastructure for the entire memory hierarchy: cache, dram, nonvolatile
memory, and disk”, Intel Technology Journal, vol.17, no 1, 2013.

[66] N.Foutris, D.Gizopoulos, A.Chatzidimitriou, J.Kalamatianos, V.Sridharan, “Performance Assessment
of Data Prefetchers in High Error Rate Technologies”, Workshop on Silicon Errors in Logic – System
Effects (SELSE), 2014.

[67] N.Foutris, D.Gizopoulos, X.Vera, A.Gonzalez, “Deconfigurable microprocessor architectures for
silicon debug acceleration”, IEEE/ACM International Symposium on Computer Architecture (ISCA),
2013.

[68] F.Bellard, “QEMU, a Fast and Portable Dynamic Translator”, USENIX Annual Technical Conference,
2005.

[69] A.Gutierrez et al., “Sources of error in full-system  simulation”, IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS), 2014.

[70] T.F.Wenisch et al., “SimFlex: Statistical sampling of computer system simulation”, IEEE Micro, vol.
26, no. 4, pp. 18-31, 2006.  

[71] M.K.Martin et al., “Multifacet's general execution-driven multiprocessor simulator (GEMS) toolset”,
ACM SIGARCH Computer Arch. News, vol. 33, no. 4, Nov. 2005.  

[72] Imperas. OVPsim, http://ovpworld.org . [Accessed 13/11/2017].   
[73] P.S.Magnusson et al., “Simics: a full system simulation platform”, IEEE Computer, vol. 35, no. 2, pp.

50-58, Feb. 2002.  
[74] M.R.Guthaus et al., “MiBench: A free, commercially representative embedded benchmark suite”,

International Workshop on Workload Characterization (IWWC), 2001.  
[75] Standard Performance Evaluation Corporation, https://www.spec.org [Accessed 13/11/2017].
[76] Z.Zhao, D.Lee, A.Gerstlauer, L.K.John, “Host-compiled reliability modeling for fast estimation of

architectural vulnerabilities”, Workshop on Silicon Errors in Logic – System Effects (SELSE), 2015. 
[77] D.S.Khudia, S.Mahlke, “Harnessing soft computations for low budget fault tolerance”, IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2014.  
[78] M.-L.Li, P.Ramachandran, U.R.Karpuzcu, S.K.S.Hari,   S.V.Adve, “Accurate microarchitecture-level

fault modeling   for studying hardware faults”, IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2009.  

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 162

[79] X.Li, S.V.Adve, P.Bose, J.A.Rivers, “Architecture-level soft error analysis: Examining the limits of
common   assumptions”, IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2007.  

[80] A.Phansalkar, A.Joshi, L.K.John, “Analysis of redundancy and application balance in the SPEC
CPU2006 benchmark suite”, IEEE/ACM International Symposium on Computer Architecture (ISCA),
2007.

[81] A.Sodani, G.S.Sohi, “Dynamic instruction reuse”, IEEE/ACM International Symposium on Computer
Architecture (ISCA), 1997.

[82] A.Sodani, G.S.Sohi, “An empirical analysis of instruction repetition”, IEEE/ACM International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 1998.

[83] S.Balakrishnan, G.S.Sohi, “Exploiting value locality in physical register files”, IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2003.

[84] M.-L.Li, P.Ramachandran, S.K.Sahoo, S.V.Adve, V.S.Adve, Yuanyuan Zhou, “Understanding the
propagation of hard errors to software and implications for resilient system design”, IEEE/ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2008.

[85] T.Sherwood, E.Perelman, G.Hamerly, B.Calder, “Automatically characterizing large scale program
behavior”, IEEE/ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2002.

[86] J.Suh, M.Annavaram, M.Dubois, “PHYS: Profiled-HYbrid Sampling for soft error reliability
benchmarking”, IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
2013.

[87] S.K.S.Hari, S.V.Adve, H.Naemi, P.Ramachandran, “Relyzer: Exploiting application-level fault
equivalence to analyze application resiliency to transient faults”, IEEE/ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2012.

[88] H.Schirmeier, C.Borchert, O.Spinczyk, “Avoiding pitfalls in fault-injection based comparison of
program susceptibility to soft errors”, IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2015.

[89] G.Li, Q.Lu, K.Pattabiraman, “Fine-grained characterization of faults causing long latency
crashes in programs”, IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2015.

[90] A.Vallero, S.Tselonis, N.Foutris, M.Kaliorakis, M.Kooli, A.Savino, G.Politano, A.Bosio, G.Di Natale,
D.Gizopoulos, S.Di Carlo, “Cross-layer reliability evaluation, moving from the hardware architecture to
the system level: a CLERECO EU Project overview”, Journal of Microprocessors and Microsystems,
June 2015.

[91] A.Vallero, A.Savino, S.Tselonis, N.Fourtis, M.Kaliorakis, G.Politano, D.Gizopoulos, S.Di Carlo, “A
bayesian model for system level reliability estimation”, IEEE European Test Symposium (ETS), 2015.

[92] A.Vallero, A.Savino, S.Tselonis, N.Fourtis, M.Kaliorakis, G.Politano, D.Gizopoulos, S.Di Carlo,
“Bayesian network early reliability evaluation analysis for both permanent and transient faults”, IEEE
International On-Line Testing Symposium (IOLTS), 2015.

[93] A.Vallero, A.Savino, G.Politano, S.Di Carlo, A.Chatzidimitriou, S.Tselonis, M.Kaliorakis,
D.Gizopoulos, M.R.Villanueva, R.Canal, A.Gonzalez, M.Kooli, A.Bosio, G.Di Natale, “Cross-Layer
system reliability assessment framework for hardware faults”, IEEE International Test Conference
(ITC), 2016.

[94] A.Chatzidimitriou, M.Kaliorakis, S.Tselonis, D.Gizopoulos, “Performance-aware reliability
assessment of heterogeneous chips”, IEEE VLSI Test Symposium (VTS), 2017.

[95] A.Chatzidimitriou, M.Kaliorakis, D.Gizopoulos, M.Pipponzi, R.Mariani, S.Di Carlo, “RT Level vs.
microarchitecture level reliability assessment: case study on ARM Cortex-A9 CPU”, IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), 2017. (industrial track paper)

[96] N.L.Binkert et al., “The M5 simulator: modeling networked systems, IEEE Micro, vol. 26, no. 4, pp.
52-60, July/August 2006.  

[97] K.Parasyris, G.Tziantzoulis, C.Antonopoulos, N.Bellas, “GemFI: A fault injection tool for studying the
behavior of applications on unreliable substrates”, IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2014.

[98] P.Racunas, K.Constantinides, S.Manne, S.S.Mukherjee, “Perturbation-based fault screening”, IEEE
International Symposium on High Performance Computer Architecture (HPCA), 2007.  

[99] G.Saggese, N.J.Wang, Z.Kalbarczyk, S.J.Patel, R.Iyer, "An experimental study of soft errors in
microprocessors" IEEE Micro, vol. 25, no. 6, pp. 30-39, Nov-Dec 2005.  

[100] R.Balasubramanian, K.Sankaralingam, “Understanding the impact of gate-level physical reliability
effects on whole program execution”, IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2014.  

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 163

[101] A.Pellegrini, K.Constantinides, D.Zhang, S.Sudhakar, V.Bertacco, T.Austin, “CrashTest: A fast
high-fidelity FPGA-based resiliency analysis framework”, IEEE International Conference on Computer
Design (ICCD), 2008.  

[102] N.J.Wang, J.Quek, T.M.Rafacz, S.J.Patel, “Characterizing the effects of transient faults on a high-
performance processor pipeline”, IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2004.  

[103] S.Kim, K.Somani, “Soft error sensitivity characterization for   microprocessor dependability
enhancement strategy”, IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2002.

[104] P.Ramachandrant, P.Kudvatt, J.Kellingtont, J.Schumannt, P.Sanda, “Statistical fault injection”,
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2008.

[105] A.Biswas, N.Soundararajan, S.S.Mukherjee, S.Gurumurthi, “Quantized AVF: a means of capturing
vulnerability variations over small windows of time”, International Workshop on Silicon Errors in Logic-
System Effects (SELSE), 2009.

[106] P.Montesinos, W.Liu, J.Torrellas, “Using register lifetime predictions to protect register files
against soft errors”, IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2007.

[107] X.Xu, M.-L.Li, “Understanding soft error propagation using efficient vulnerability-driven fault
injection”, IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2012.

[108] V.Reddy, E.Rotenberg, “Inherent Time Redundancy (ITR): Using program repetition for low-
overhead fault tolerance”, IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2007.

[109] M.A.Gomaa, T.N.Vijaykumar, “Opportunistic transient-fault detection”, IEEE/ACM International
Symposium on Computer Architecture (ISCA), 2005.

[110] J.Howard, et al., "A 48-Core IA-32 message-passing processor with DVFS in 45nm CMOS", IEEE
International Solid-State Circuits Conference (ISSCC), 2010.  

[111] J.Nickolls, W.J.Dally, "The GPU computing era", IEEE Micro, Volume 30, Issue 2, pp. 56-69
,March-April 2010. 

[112] T.Chen, R.Raghavan, J.Dale, E.Iwata, "Cell broadband engine architecture and its first
implementation- A performance view," IBM Journal of Research and Development , vol.51, no.5,
pp.559,572, Sept. 2007.  

[113] “The Cisco QuantumFlow Processor: Cisco's next generation network processor”, Cisco Systems
Inc., 2008. 

[114] “OCTEON Plus CN58XX 4 to 16-Core MIPS64-Based SoCs”, Cavium Networks, Mountain View,
CA, 2008.  

[115] M.Adiletta, M.Rosenbluth, D.Bernstein, "The next generation of intel ixp network processors", Intel
Technology Journal, 06(03), Aug. 2002.  

[116] S.Mitra, E.J.McCluskey, "Which concurrent error detection scheme to choose?", IEEE International
Test Conference (ITC), 2000.  

[117] M.Psarakis, D.Gizopoulos, E.Sanchez, M.S.Reorda, "Microprocessor software-based self-testing",
IEEE Design & Test of Computers, vol.27, no.3, pp.4,19, May-June 2010.  

[118] https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
[Accessed 01/12/2017].

[119] P.Gschwandtner, T.Fahringer, R.Prodan, "Performance analysis and  benchmarking of the Intel
SCC", IEEE International Conference on Cluster Computing (CLUSTER), 2011.  

[120] M.Kaliorakis, N.Foutris, D.Gizopoulos, M.Psarakis, "Online error detection in multiprocessor chips:
A test scheduling study", IEEE International On-Line Testing Symposium (IOLTS), 2013.  

[121] A.Paschalis, D.Gizopoulos, “Effective software-based self-test strategies for on-line periodic testing
of embedded processors”, IEEE Transactions on Computer-Aided Design, vol. 24, no. 1, pp. 88–99,
2005.

[122] A.Apostolakis, D.Gizopoulos, M.Psarakis, A.Paschalis, "Software-based self-testing of symmetric
shared-memory multiprocessors", IEEE Transactions on Computers, vol. 58, no. 12, pp. 1682-1694,
2009.

[123] N.Foutris, M.Psarakis, D.Gizopoulos, A.Apostolakis, X.Vera, A.Gonzalez, "Mt-sbst: self-test
optimization in multithreaded multicore architectures", IEEE International Test Conference (ITC),
2010.

[124] M.A.Skitsas, C.A.Nicopoulos, M.K.Michael, "DaemonGuard: O/S- assisted selective software-
based self-testing for multi-core systems," IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFTS), 2013.  

[125] F.Salehuddin, I.Ahmad, F.A.Hamid, A.Zaharim, A.Maheran, A.Hamid, P.S.Menon, H.A.Elgomati,
B.Y.Majlis, “Optimization of process parameter variation in 45nm p-channel MOSFET using L18
Orthogonal Array”, IEEE International Conference on Semiconductor Electronic (ICSE), 2012.

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

E.Kaliorakis 164

[126] W.Schemmert, G. Zimmer, “Threshold-voltage sensitivity of ion-implanted MOS transistors due to
process variations”, Electronics Letters, vol. 10, no. 9, pp. 151–152, May 1974.

[127] N.James, P.Restle, J.Friedrich, B.Huott, B.McCredie, “Comparison of split-versus connected-core
supplies in the POWER6 microprocessor”, IEEE International Solid-State Circuits Conference
(ISSCC), 2007.

[128] V.J.Reddi, S.Kanev, W.Kim, S.Campanoni, M.D.Smith, G.-Y.Wei, D.Brooks, “Voltage smoothing:
Characterizing and mitigating voltage noise in production processors via software-guided thread
scheduling”, IEEE/ACM International Symposium on Microarchitecture (MICRO), 2010. 

[129] E.L.Sueur, G.Heiser, “Dynamic voltage and frequency scaling: the laws of diminishing returns”,
international conference on Power aware computing and systems (HotPower), 2010.  

[130] D.Ernst, N.S.Kim, S.Das, S.Pant, R.Rao, T.Pham, C.Ziesler, D.Blaauw, T.Austin, K.Flautner,
T.Mudge, “Razor: A low-power pipeline based on circuit-level timing speculation”, IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2003.  

[131] Y.Zu, C.R.Lefurgy, J.Leng, M.Halpern, M.S.Floyd, V.J.Reddi, “Adaptive guardband scheduling to
improve system-level efficiency of the POWER7+”, IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015. 

[132] G.Karakonstantis, et al., “An energy-efficient and error-resilient server ecosystem exceeding
conservative scaling limits”, IEEE/ACM Design, Automation & Test in Europe Conference (DATE),
2018.

[133] V.J.Reddi, M.S.Gupta, G.H.Holloway, G.-Y.Wei, M.D.Smith, D.M.Brooks, “Voltage emergency
prediction: Using signatures to reduce operating margins”, IEEE International Conference on High-
Performance Computer Architecture (HPCA), 2009.

[134] M.S.Gupta, V.J.Reddi, G.Holloway, G.-Y.Wai, D.M.Brooks, “An event-guided approach to reducing
voltage noise in processors,” IEEE/ACM Design, Automation & Test in Europe Conference (DATE),
2009.

[135] A.Bacha, R.Teodorescu, “Using ECC feedback to guide voltage speculation in low-voltage
processors,” IEEE/ACM International Symposium on Microarchitecture (MICRO), 2014.

[136] G.Papadimitriou, M.Kaliorakis, A.Chatzidimitriou, D.Gizopoulos, G.Favor, K.Sankaran, S.Das, “A
system-level voltage/frequency scaling characterization framework for multicore CPUs”, IEEE
Workshop on Silicon Errors in Logic – System Effects (SELSE), 2017.

[137] The Linux Kernel Documentation (Parent Directory), https://www.kernel.org/doc/Documentation
[Accessed 04/12/2017].

[138] R. J. Riedlinger, et all., “A 32nm 3.1 billion transistor 12-wide-issue Itanium® Processor for
mission-critical servers,” IEEE International Solid-State Circuits Conference (ISSCC), 2011.

[139] K.R.Walcott, G.Humphreys, S.Gurumurthi, “Dynamic prediction of architectural vulnerability from
microarchitectural state”, IEEE/ACM International Symposium on Computer Architecture (ISCA),
2007.

[140] F.Pedregosa, et al., “Scikit-learn: Machine learning in Python”, Machine Learning Research, vol.
12, pp. 2825-2830, October 2011.

[141] “Perf: Linux profiling with performance counters”, https://perf.wiki.kernel.org/index.php/Main_Page
[Accessed 05/12/2017]

[142] J.R.Lackritz, “Exact p Values for F and t Tests”, The American Statistician, Vol. 38, No. 4, Nov.
1984, pp. 312-314.

[143] M.Ketkar, E.Chiprout, “A microarchitecture-based framework for pre- and post-silicon power
delivery analysis”, IEEE/ACM International Symposium on Microarchitecture (MICRO). 2009.

[144] Y.Kim, L.K.John, “Automated di/dt stressmark generation for microprocessor power delivery
networks”, IEEE/ACM International Symposium on Low-Power Electronics and Design (ISLPED).
2011.

[145] Y.Kim, L.K.John, S.Pant, S.Manne, M.Schulte, W.L.Bircher, M.S.S.Govindan, “AUDIT: Stress
Testing the Automatic Way”, IEEE/ACM International Symposium on Microarchitecture (MICRO),
2012.

[146] M.S.Gupta, K.K.Rangan, M.D.Smith, G.-Y.Wei, D.Brooks, “Towards a software approach to
mitigate voltage emergencies”, ACM/IEEE International Symposium on Low Power Electronics and
Design (ISPLED), 2007.

[147] R.Joseph, D.Brooks, M.Martonosi, “Control techniques to eliminate voltage emergencies in high
performance processors”, IEEE International Conference on High-Performance Computer
Architecture (HPCA), 2003.

[148] T.N.Miller, R.Thomas, X.Pan, R.Teodorescu, “VRSync: characterizing and eliminating
synchronization-induced voltage emergencies in many-core processors”, IEEE/ACM International
Symposium on Computer Architecture (ISCA), 2012.

[149] M.D.Powell, T.N.Vijaykumar, “Pipeline muffling and a priori current ramping: architectural
techniques to reduce high-frequency inductive noise”, ACM/IEEE International Symposium on Low
Power Electronics and Design (ISPLED), 2003. 

Methodologies for Accelerated Analysis of the Reliability and the Energy Efficiency Levels of Modern Microprocessor Architectures

 E.Kaliorakis 165

[150] M.S.Gupta, K.K.Rangan, M.D.Smith, G.-Y.Wei, D.Brooks, “DeCoR: A delayed commit and rollback
mechanism for handling inductive noise in processors”, IEEE International Conference on High-
Performance Computer Architecture (HPCA), 2008.  

[151] B.Gopireddy, C.Song, J.Torrellas, N.S.Kim, A.Agrawal, A.Mishra, “ScalCore: Designing a core for
voltage scalability”, IEEE International Conference on High-Performance Computer Architecture
(HPCA), 2016.  

[152] G.Papadimitriou, M.Kaliorakis, A.Chatzidimitriou, C.Magdalinos, D.Gizopoulos, “Voltage margins
identification on commercial x86-64 multicore microprocessors”, IEEE International On-Line Testing
Symposium (IOLTS), 2017.  

[153] C.Wilkerson, H.Gao, A.R.Alameldeen, Z.Chishti, M.Khellah, S.-L.Lu, “Trading off cache capacity for
reliability to enable low voltage operation”, IEEE/ACM International Symposium on Computer
Architecture (ISCA), 2008.

[154] H.Duwe, X.Jian, D.Petrisko, R.Kumar, “Rescuing uncorrectable fault patterns in on-chip memories
through error pattern transformation”, IEEE/ACM International Symposium on Computer Architecture
(ISCA), 2016.

[155] J.Leng, A.Buyuktosunoglu, R.Bertran, P.Bose, V.J.Reddi, “Safe limits on voltage reduction
efficiency in GPUs: a direct measurement approach”, IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015.

[156] C.R.Lefurgy, A.J.Drake, M.S.Floyd, M.S.Allenware, B.Brock, J.A.Tierno, J.B.Carter, “Active
management of timing guardband to save energy in POWER7”, IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2011.  

[157] A.Bacha, R.Teodorescu, “Authenticache: harnessing cache ECC for system authentication”,
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2015.

[158] S.Sundaram, et al., “Adaptive voltage frequency scaling using critical path accumulator
implemented in 28nm CPU”, IEEE International Conference on VLSI Design and International
Conference on Embedded Systems (VLSID), 2016.

[159] P.N.Whatmough, S.Das, Z.Hadjilambrou, D.M.Bull, “An all-digital power-delivery monitor for
analysis of a 28nm dual-core ARM Cortex-A57 cluster”, IEEE International Solid-State Circuits
Conference (ISSCC), 2015.

[160] P.N.Whatmough, S.Das, D.M.Bull, “Analysis of adaptive clocking technique for resonant supply
voltage noise mitigation”, IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), 2015.

[161] S.Das, P.Whatmough, D.M.Bull, “Modelling and characterization of the system-level power-delivery
network for a dual-core ARM A57 cluster in 28nm CMOS”, IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), 2015.

[162] P.Whatmough, S.Das, D.M.Bull, “Power Integrity Analysis of a 28 nm Dual-Core ARM Cortex-A57
Cluster Using an All-Digital Power Delivery Monitor”, Journal of Solid-State Circuits (JSSC). vol. 52,
no. 6, pp. 1643 – 1654, March 2017.

[163] W.Jia, K.A.Shaw, M.Martonosi, “Stargazer: Automated regression-based GPU design space
exploration”, IEEE International Symposium on Performance Analysis of Systems & Software
(ISPASS), 2012.

[164] P.J.Joseph, K.Vaswani, M.J.Thazhuthaveetil, “Construction and use of linear regression models for
processor performance analysis”, IEEE International Conference on High-Performance Computer
Architecture (HPCA), 2006.

[165] B.C.Lee, D.M.Brooks, “Accurate and efficient regression modeling for microarchitectural
performance and power prediction”, IEEE/ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2006.

[166] G.Papadimitriou, A.Chatzidimitriou, M.Kaliorakis, Y.Vastakis, D.Gizopoulos, “Micro-Viruses for fast
system-level voltage margins characterization in multicore CPUs”, IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2018.

[167] M.Kaliorakis, A.Chatzidimitriou, G.Papadimitriou, D.Gizopoulos, “Statistical analysis of multicore
CPUs operation in scaled voltage conditions”, IEEE Computer Architecture Letters (CAL), Jan. 2018.

