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Abstract: DNA damage is constantly produced by both endogenous and exogenous factors; DNA
lesions then trigger the so-called DNA damaged response (DDR). This is a highly synchronized
pathway that involves recognition, signaling and repair of the damage. Failure to eliminate DNA
lesions is associated with genome instability, a driving force in tumorigenesis. Proteins carry out
the vast majority of cellular functions and thus proteome quality control (PQC) is critical for the
maintenance of cellular functionality. PQC is assured by the proteostasis network (PN), which under
conditions of proteome instability address the triage decision of protein fold, hold, or degrade. Key
components of the PN are the protein synthesis modules, the molecular chaperones and the two main
degradation machineries, namely the autophagy-lysosome and the ubiquitin-proteasome pathways;
also, part of the PN are a number of stress-responsive cellular sensors including (among others) heat
shock factor 1 (Hsf1) and the nuclear factor erythroid 2-related factor 2 (Nrf2). Nevertheless, the
lifestyle- and/or ageing-associated gradual accumulation of stressors results in increasingly damaged
and unstable proteome due to accumulation of misfolded proteins and/or protein aggregates. This
outcome may then increase genomic instability due to reduced fidelity in processes like DNA
replication or repair leading to various age-related diseases including cancer. Herein, we review the
role of proteostatic machineries in nuclear genome integrity and stability, as well as on DDR responses.

Keywords: aggregates; autophagy; DNA damage response; genome instability; Nrf2; oxidative stress;
proteostasis; proteasome

1. Introduction

The genome is continuously exposed to genotoxic attacks, by both endogenous and exogenous
factors, which directly or indirectly cause DNA lesions. These lesions can induce several DNA
structural changes such as oxidations, depurinations, depyrimidations and single (SSBs) or double
(DSBs) strand breaks [1]. Since the nuclear genome harbors almost the entire genetic information of
the cell, several mechanisms that preserve genome integrity have been evolved; these mechanisms
aim to ensure faithful repair, duplication and inheritance of the genetic material. Cells contain a
number of highly coordinated and wired protein machineries that execute DNA replication and/or
relaxation-condensation and they also detect and repair the various types of DNA damage. The latter
mechanisms are known as the DNA damage response (DDR) pathways and are highly specialized
in the recognition of damaged DNA from physiological structural changes. As a result of extensive
research it is now understood that the repair pathways activated upon DNA damage largely depend
on the type of the lesion. The first step of DDR is the initial identification of DNA damage, followed
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by the recruitment of DNA repair factors and the effective repair of the lesion [1]. Failure of DDR is
often associated with chromosome rearrangements and chromosomal loss that finally lead to genomic
instability and predisposition to various types of cancer, developmental defects, infertility, immune
deficiency and neurodegenerative disorders [2].

Proteome stability is ensured by a multi-compartmental system that coordinates protein synthesis,
folding, trafficking, disaggregation, and degradation; this system is known as the proteostasis network
(PN) [3]. Chaperones curate the structure of proteins and assure proper protein folding, while damaged,
misfolded and/or aggregated proteins are degraded by the ubiquitin-proteasome (UPP) or the
autophagy-lysosome pathways (ALP) [4]. PN activity is also assisted by transcription factors (mostly
functioning as stress sensors), chromatin remodelers, structural components, signaling pathways and
other auxiliary modules [5]. The efficiency-functionality of the PN affects both genomic and metabolic
cellular stability and can be altered transiently or permanently by physiological alterations, exposure
to environmental stress and also during ageing. PN components are an integral part of DDR, since
they disassemble and remove chromatin associated DDR protein machineries [6]. Perturbation of
the PN activity affects the cell buffering capacity and leads to the accumulation of misfolded and/or
damaged proteins; thus, its dysfunction is associated with the emergence of chronic diseases caused
by protein aggregation, including neurodegeneration, cancer, type II diabetes and heart disease [7].
Herein, we focus on the crosstalk and functional interplay between proteome and genome stability.
Furthermore, we discuss how proteotoxic stress and disruption of PN modules functionality impacts
on genome stability and integrity.

2. DNA Damage Responses

Endogenous sources such as reactive oxygen species (ROS) or metabolic products, along with
exogenous factors, such as UV irradiation, chemical agents, lifestyle habits (e.g., smoking) and/or
medical treatments can provoke DNA damage; downstream to DNA damage cells activate specific
pathways to repair the lesions, known as DDR (Figure 1). Single or short-patch base lesions are
repaired by base-excision repair (BER) and DNA base mismatches are corrected by mismatch repair
(MMR). On the other hand, UV-induced DNA lesions are effectively repaired by the nucleotide
excision repair (NER) pathway, while DNA crosslinks are repaired by the Fanconi anemia (FA)
pathway [8]. The whole DDR process of chromatin remodeling and of the chemical reactions involved
in lesions removal is tightly controlled by post-translational modifications (PTMs) of the participating
polypeptides, including phosphorylation, ubiquitination, sumoylation, methylation and acetylation
of protein machineries structural components [9–11]. In BER, a base lesion is identified by a DNA
glycosylase that catalyzes the cleavage of an N-glycosidic bond, removing the damaged base and
creating an apurinic or apyrmidinic site, which recruits poly(ADP-ribose) polymerase 1 (PARP1)
and DNA apurinic/apyrimidinic (AP) endonuclease 1 (APE1). APE1 removes the deoxyribose
phosphate backbone at the site of lesion, generating nicked DNA, enhancing PARP1 ADP-ribosylation
activity to keep DNA in an open structure. Other components of BER are also recruited, e.g., protein
XRCC1 (X-ray repair cross-complementing protein 1), the DNA end-processing kinase/phosphatase
PNK (bifunctional polynucleotide phosphatase/kinase), the gap-filling polymerase DNA polymerase
β and DNA ligase III [12]. MMR is a highly conserved pathway that corrects DNA mismatches
generated during DNA replication involving heterodimeric complexes [13]. The heterodimer of the
MutS homolog (MSH), MSH2–MSH6 (MutSα) or MSH2–MSH3 (MutSβ) binds to mismatched DNA,
following the recruitment of a heterodimer of MutL homolog (MLH). Several heterodimers of MutL
homologues (MLH) have been identified including MutLα (complex of MLH1 and PMS2), MutLβ
(complex of MLH1 and PMS1) and MutLγ (complex of MLH1 and MLH3) [14–16]. The MutL protein
complex then recruits the necessary proteins for MMR repair [17]. NER recognizes helix-distorting
base lesions induced by factors such as UV-induced damage and bulky chemical adducts. There are
two distinct NER pathways: the global genome nucleotide excision repair (GG-NER), which detects
and eliminates bulky damages in the entire genome, and the transcription-coupled nucleotide excision
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repair (TC-NER), which operates when damage to a transcribed DNA strand limits transcription
activity. GG-NER is controlled by XPC; a specialized protein factor that reveals the damage, while
TC-NER is activated by the stopping of RNA polymerase II at the damaged sites of a transcribed
strand [18–20].
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Figure 1. Protein machines in genome maintenance and repair. Optimum functionality of the
proteostasis network impacts on all levels of genome stability as it affects both the physiological
processes of nucleotides production, DNA duplication and/or relaxation-condensation, as well as
DNA damage sensing and repair. Endogenous and exogenous factors can induce DNA damage in
multiple ways such as single strand breaks (SSBs), double strand breaks (DSBs), single or short-patch
base lesions and DNA base mismatches. SSBs repair is executed via the base excision repair (BER)
pathway (involving, among others, PARP1/2 and XRCC1), while DSBs repair mobilizes the homologous
recombination (HR; key players here are the ATM/ATR kinases, the Mre11-Rad50-Nbs1 (MRN)
complex, BRCA1/2 and RAD51) and the non-homologous end joining (NHEJ; includes Ku70/80,
DNA-PKcs and XRCC4-XLF) pathways. Once the cell has sensed DSBs, the DNA repair machinery is
recruited to the lesion in relation to the cell cycle stage; in G1 phase cells undergo repair predominantly
through the NHEJ repair pathway, whereas in G2/M the presence of replicated DNA allows the repair
through the HR pathway. The mismatch repair pathway (MMR) is executed (among others) via the
MSH2/6, MLH1, PMS2 and Exonuclease 1 proteins, while UV-induced DNA lesions are effectively
repaired by the nucleotide excision repair (NER). DDR triggers downstream actions (e.g., via CHEK1,
CHEK2 and p53 activation) that suppress transcription and cell cycle progression or trigger apoptosis
if the damage is not repairable. Likely DDR also induces a number of proteostatic and/or metabolic
adaptations, which remain not well understood. It is thus evident that DNA integrity and stability
depends heavily on the functionality of its curating protein machines.
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DSBs are considered as the most deleterious DNA lesions, since, if not properly repaired, can
lead to chromosomal rearrangement and cytotoxicity [21]. Notably, DSBs can also be generated
during physiological cellular processes such as DNA replication, recombination, meiosis or mitosis.
DSBs repair involves two types of responses, namely, the homologous recombination (HR) and the
non-homologous end joining (NHEJ) pathways. Mammalian cells repair of DSBs is mainly carried
out through the NHEJ pathway because of the highly condensed chromatin during G1 and G2 cell
cycle phases. NHEJ is mediated by the combined action of different proteins, such as DNA-PK
(composed of the catalytic subunit DNA-PKcs and the regulatory subunit Ku (a heterodimer of Ku70
and Ku80)), XRCC4 (X-ray repair complementing defective repair in Chinese hamster cells-4) and
DNA ligase IV (LIG4) [22,23]. Although NHEJ is error-prone, it can operate in all phases of the
cell cycle [24]. DNA lesions trigger the activation of various kinases, which constitute the primary
transducers of the DDR signaling cascade. Among those, the best studied are the highly conserved
ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3 related). The phosphatidylinositol
3-kinase-related kinases (PIKKs) and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs).
Upon DNA damage the Mre11-Rad50-Nbs1 (MRN) heterotrimeric complex binds to DSBs and induces
the auto-phosphorylation of ATM [25,26], while cofactor ATRIP (ATR interacting protein) and the
binding of the Rad9-Hus1-Rad1 (9-1-1) clamp complex (upon replication stress, collapsed DNA
replication forks and UV damage) activate ATR [27,28].

ATM or ATR activation leads to the phosphorylation of many (more than 700) downstream
substrates involved in DNA repair, inhibition of cell cycle progression and/or apoptosis. Many of
the ATM activated proteins are also targets of ATR and DNA-PK, suggesting a redundancy in this
pathway [29,30]. The formation of γ-H2AX foci is the initial signaling event in the activation of
DNA damage checkpoint pathways, and probably the best biomarker of DNA damage. H2AX is
phosphorylated at Ser-139 by ATM/ATR or DNA-PK in the chromatin flanking the damage site. The
ATM/ATR-dependent phosphorylation of H2AX is important for the recruitment and accumulation
in the DNA damage site of MDC1 (mediator of DNA damage checkpoint 1), which is the master
regulator of the microenvironment close to the lesion and enables the formation of breast cancer type
1 susceptibility protein (BRCA1) and p53-binding protein 1 (53BP1) foci [31,32]. In order to amplify
and further transmit the checkpoint signals, ATM phosphorylates checkpoint kinase-2 (CHEK2) at
Thr-68, whereas ATR phosphorylates checkpoint kinase-1 (CHEK1) at two residues, i.e., Ser-317 and
Ser-345 [33,34]. The activation of checkpoint kinases triggers a phosphorylation cascade that affects
(among many other factors) the tumor suppressor p53, which turns on the transcription of downstream
targets, leading to arrest of cell cycle, DNA repair and/or senescence [33,35]. The role of p53 in cell
survival and cell death is mediated by the positive and negative feedback loops of the ATM/ATR
phosphorylation of p53 Ser-15, as well as on phosphorylation of p53 Ser-20 by CHEK1/CHEK2. These
PTMs stabilize p53 by preventing its binding to MDM2 (mouse double minute 2 homolog). p53 is
also uncoupled from MDM2 after phosphorylation of Thr-18; then it translocates to the nucleus where
it mediates the activation of its transcriptional targets [36]. Interestingly, MDM2 seems also to be
inhibited by a direct ATM and ATR phosphorylation on Ser-395 and Ser-407, suggesting a multiple
control of these kinases on p53 function [37,38]. Worth mentioning is that p53 has low affinity for
the genes involved in apoptosis, and high affinity for genes that mediate cell cycle arrest. Thus, it is
suggested that p53 activity is mainly defined by the entity of DNA lesions, i.e., high levels of damage
continuously induce the p53 activity, while low damage levels only transiently activate p53 [39]. If the
DSB is repaired, either by NHEJ or HR, the checkpoint response is inactivated and this output then
signals the downregulation of the DNA damage checkpoint genes [40]. Unrepaired DNA damage,
dysfunction of DDR and/or altered expression of DDR genes, lead to extensive genome instability,
which is a well-known hallmark of cancer [41,42].
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3. The Proteostasis Network

Considering that most of the critical cellular functions are performed by sophisticated protein
machines [43] it is not surprising that proteostasis (proteome homeodynamics) is critical (despite
the fact that species with hugely different life spans express highly homologous proteins with very
similar half-lives) for cellular functionality and consequently for the overall healthspan and survival
of the organisms. Proteome integrity is maintained by the PN, a multi-compartmental highly wired
system that coordinates protein synthesis, folding, trafficking, disaggregation and degradation [3,44].
Key components of the PN are the protein synthesis and trafficking modules, the endoplasmic
reticulum unfolded protein response (UPRER), the molecular chaperones and the two main degradation
machineries, namely the ubiquitin-proteasome (UPP) and the autophagy-lysosome (ALP) pathways.
UPRER is a cellular stress response system, which is highly conserved among species and is triggered
by increased unfolded or misfolded polypeptides in the ER lumen. The main goal of UPRER is to
restore proteome stability by either attenuating de novo protein synthesis or by inducing expression of
chaperones in order to restore proper folding; if protein functionality cannot be repaired, UPRER leads
cells to apoptosis [45]. In mammalian cells, the three major pathways that are implicated in UPRER are
the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)/activating transcription factor
(ATF4); the inositol-requiring enzyme 1 (IRE1)/X box-binding protein 1 (XBP1) and the activating
transcription factor 6 (ATF6) [46]. Molecular chaperones, which are also known as heat shock proteins
(Hsps), are a diverse family of proteins that are responsible for proper protein folding, unfolding and
remodeling; consequently, chaperones curate proteome in order to maintain polypeptides function
and structure [47]. Chaperones are central for the PN function and can be broadly grouped into, the
Hsp70, Hsp90, DNAJ/Hsp40, chaperonin/Hsp60 and small Hsp (sHsp) families [48].

UPP is composed of the ubiquitin-conjugating enzymes and the 26S proteasome, and it
degrades short-lived polyubiquitinated normal proteins (e.g., nucleo-cytosolic regulatory proteins)
and non-functional or misfolded polypeptides [3]. Oxidized proteins are likely degraded by the
proteasome in an ubiquitin-independent manner [49,50]. The 26S proteasome consists of a catalytic
20S core particle bound to 19S regulatory particles [4,51]. Consequently, UPP ensures a number of
cellular processes, such as development, immune responses, metabolism, signal transduction, cell
cycle progression, as well as cell death [3]. Moreover, UPP is actively involved in the degradation of
mitochondrial fusion/fission proteins [52–54] and thus, apart from curating genome (see below)
and proteome stability, it is also actively involved in regulation of mitostasis. On the other
hand, ALP is mostly involved in the degradation of long-lived proteins, aggregated ubiquitinated
proteins, polypeptides modified by non-enzymatic post-translational modifications, macromolecules
and cytosolic portions; it also functionally involved in the recycling of damaged organelles via
lysosome [55–57]. In mammalian cells, the most studied forms of autophagy are macroautophagy,
microautophagy and chaperone-mediated autophagy [58–60]. ALP is subject to regulation by several
metabolic signaling pathways, including adenosine monophosphate-activated protein kinase (AMPK),
Sirtuin 1 (SIRT1) and TOR [55].

Parts of the PN are also several short-lived transcription factors that collectively function as stress
sensors and mobilize genomic cytoprotective responses upon increased amounts of stressors. These
(among others) include p53 that mostly mobilizes cellular responses upon genomic instability [61],
heat shock factor 1 (Hsf1) that regulates the levels of molecular chaperones [62], forkhead box O (FoxO)
that promotes antioxidant and metabolic genomic responses [63] and also nuclear factor erythroid
2-related factor 2 (Nrf2) that responds to oxidative, electrophilic and/or proteotoxic stress [3,64,65].

The expression level of the PN modules is highly variable, as in order to ensure efficient
protection against acute and/or chronic proteotoxic stress, may increase globally or in a specific cellular
compartment indicating thus that PN regulation is a highly dynamic process [44]. The PN plasticity
is provided by the aforementioned dedicated stress-responsive transcription factors with distinct
and complementary transcriptional targets. Therefore, proteome instability activates PN in order to
rescue, when attainable, or degrade unfolded, misfolded, damaged and/or non-native polypeptides, a
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process known as the triage decision of hold, fold, or degrade [66]. Nevertheless, accumulation of protein
aggregates, deregulation of protein synthesis and folding or loss of protein clearance mechanisms
trigger proteome instability, which is considered a major risk factor for a broad range of (mostly
age-associated) diseases including neurodegeneration, cancer, as well as immunological and metabolic
disorders [7,43,67].

4. Endoplasmic Reticulum Unfolded Protein Response (UPRER) in Genome Instability

Accumulation of unfolded and/or misfolded proteins disrupts ER homeostasis leading to ER
stress and activation of various intracellular signaling pathways, collectively known as unfolded
protein response (UPR) [68–70]. Activation of UPRER triggers (see also above) three main responses:
(1) the inhibition of protein synthesis, (2) the induction of genes such as the ER chaperones to increase
the protein-folding capacity of the organelle, and (3) the up-regulation of the so called ER-associated
protein degradation (ERAD) [71,72]. UPRER is mainly a cytoprotective response. However its excessive
or prolonged activation may result in cell death [72]. The UPRER pathways are activated in a variety of
tumor types and are essential for solid tumors cell survival in an unfavorable environment [70,73,74].
In addition, evidence suggests that the UPRER is an important mechanism required for cancer cells
to maintain malignancy [70,74], while other studies have shown that ER stress induces chromatin
changes [72,75–90].

Several studies have linked ER stress to DDR. Yamamori et al. [72] showed that ER stress induced
by tunicamycin treatment or glucose deprivation, results in decreased DSB repair and enhances
radiosensitivity of tumor cells through the downregulation of RAD51. The proteasomal degradation
of RAD51 triggered by ER stress is considered responsible of DSB repair suppression after ionizing
radiation (IR) [72]. On the other hand, downregulation of PERK enhances DNA damage repair in
irradiated cancer cells [75]. Interestingly, it has been reported that PERK regulates the stability of cyclin
D1 [76], which mediates the progression of cell cycle from G1 to S phase [77] and its overexpression
has been reported to promote resistance to IR by upregulating DDR [78]. Moreover, the transcriptional
activation of GRP78 has been used extensively as an indicator of UPRER activation. The induction
of GRP78 confers protection against ER stress due to its anti-apoptotic properties and represents the
survival arm of UPRER [79–82]. Baumeister et al. [83] found that ER stress increases H4 acetylation
and GRP78 expression by recruiting the histone acetyl-transferase p300 to the GRP78 promoter. The
recruitment of arginine histone methyltransferase, PRMT1, also increases the expression of GRP78 [83].
It is also suggested that PRMT1 mediates the arginine methylation of MRE11 and thus it modulates the
activity of the MRN complex [84]. Therefore, ER stress can promote DDR and repair though increased
transcription of GRP78. Hypoxia and heat shock also result in chromatin remodeling and ER stress that
consequently impact on DDR [85]. ER stress enables the expression of HIF-1 mediated response after
the deacetylation and methylation of histones in the proximity of the involved genes [86–88] triggering
thus the hypoxia adaptive response [89,90]. Reportedly, hypoxia can induce cellular transformation
through defective DNA repair and consequently genomic instability [90]. Although further studies are
needed in order to clarify the crosstalk of ER stress machineries with DDR, it is evident that UPRER is
implicated in chromatin remodeling affecting thus DNA stability and/or conformation.

5. Oxidative Stress in Genome Integrity

ROS are chemically reactive molecules that have essential functions in living organisms like
modifying the structure of proteins, activating transcription factors and modulating genes expression.
Moderate levels of ROS can promote cell proliferation and differentiation, whereas excessive amounts
induce a cellular condition known as oxidative stress [91,92]. In addition, increased oxidative load can
damage most (if not all) biomolecules including proteins, DNA (nuclear and mitochondrial) and lipids.
ROS, normally, function as intracellular messengers that orchestrate unique signaling events mediated
by kinases, ubiquitinases and acetyltransferases. Cellular redox state is maintained via the equilibrium
of ROS production and scavenging, which protects macromolecules from radical damage [93,94].
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Cells adapt to increased amounts of oxidants by activating redox-sensitive transcription factors,
such as Nrf2, nuclear factor-κB (NF-κB), c-Jun and hypoxia-inducible factor 1 (HIF-1), which increase the
expression of antioxidant molecules (e.g., superoxide dismutase (SOD), catalase and thioredoxin) [95].
Nrf2 activity is regulated by a negative feedback mechanism of Keap1 (Kelch ECH associating protein
1) [96]. Under physiological conditions, Nrf2 is a short-lived protein, because it is constantly targeted
by Keap1 for Ub-dependent degradation; parallel to Keap1, the b-TRCP/Gsk-3 axis can also mediate
degradation (and thus inhibition) of Nrf2 [97]. In response to increased amounts of oxidants, the three
cysteine residues Cys-151, Cys-273 and Cys-288 of Keap1, induce conformational changes in the molecule
leading to reduced Nrf2 ubiquitination. This event stabilizes Nrf2, which then translocates to the nucleus
to form a heterodimer with its partner Maf (v-Maf avian musculoaponeurotic fibrosarcoma oncogene
homolog) and regulate the transcription of its target genes [98–100]. Nrf2 binds to the antioxidant
response elements (AREs) or electrophile response elements (EpREs) on the DNA and regulates the
expression of numerous genes [98]. Notably, Nrf2 also promotes the expression of chaperones and
proteasome subunits [65,101,102] and thus it has multiple roles in also maintaining proteome stability.

Oxidative stress represents one of the major factors of DNA damage and downstream instability.
It is hypothesized that approximately 10,000 DNA alterations are generated per mammalian cell per
day due to oxidants [103,104]. More specifically, oxidative DNA damage includes base (purine and
pyrimidine) oxidation, formation of apurinic or apyrmidinic sites, SSBs, DSBs, DNA intra-strand
crosslinks, protein-DNA crosslinks and mismatched pairs with damaged bases [105]. Guanine is the
most affected base by ROS because of its low redox potential, and the main products of its oxidation are
8-hydroxyguanine and 8-hydroxydeoxyguanosine (8-OHG and 8-OHdG) [106]. Both these products
can match with cytosine and adenine, thus leading to GC-to-AT, and therefore are considered highly
mutagenic and carcinogenic; 8-OHG and 8-OHdG are commonly used as markers of DNA oxidative
lesions [106]. Increased ROS hyperactivate PARP1, which participates in SSB repair and BER. In addition,
activation of PARP1 upon ROS-induced DNA damage leads to NAD+ consumption and ATP depletion,
and therefore activates autophagy via AMPK pathway in order to provide energy for the DDR [107,108].

Several evidences show that cancer cells are characterized by elevated ROS levels, and that
enhanced oxidative stress is likely a hallmark of tumorigenesis [109,110]. It is not thus surprising that
(as shown by several studies) the Nrf2 signaling pathway is constitutively activated in various types of
cancer; one of the factors that drive Nrf2 activation in tumors is the accumulation of the p62/SQSTM1
(Sequestosome-1) protein that disrupts the association of the Keap1–Nrf2 complex [111]. p62/SQSTM1
contains a STGE-binding motif (similar to the Nrf2 ETGE motif) and therefore by binding to Keap1,
disrupts the Keap1–Nrf2 complex. In addition, a mouse liver-specific autophagy-deficient model
that develops adenoma shows increased levels of Nrf2; of Nrf2 transcriptional targets, and of protein
aggregates [112], indicating increased proteome instability. The cellular responses to stress involve
regulatory changes in many processes, including transcription, mRNA processing and translation.
Recently, it has been reported that loss of Nrf2 affects the translational machinery and stimulates
mRNA translation in pancreatic cells in a ROS-dependent way [113]. In addition to Nrf2, p53 has also
been shown to suppress ROS levels by regulating the expression of several antioxidant genes, including
sod2, gpx1 (glutathione peroxidases 1) and catalase, or through the indirect activation of TP53-inducible
glycolysis and apoptosis regulator (TIGAR) [114,115]. Nrf2 protects colonic epithelial cells from IR, in
part by enhancing signaling of the DNA damage response [116]. Loss of Nrf2 in mouse embryonic
fibroblasts (MEFs) promotes their immortalization (due to an early loss of p53 and p53-dependent genes
expression) and enhances genomic instability [117]. Studies have demonstrated that p53 regulates
negatively the transcription of Nrf2 target genes (e.g., NAD(P)H guinone dehydrogenase 1 (ngo1), and
glutathione S-transferase 1 (gst1)) [118]. On the other hand, p53 mutant forms (pan-p53mut) enhance
transcription of numerous proteasome subunit genes [119]. Notably, Nrf2 is positively regulated by
p21 (a downstream target of p53) as it associates with the DLG motif of Nrf2, disrupting the binding
of Keap1 [120]. Thus, both the p53 and Nrf2 regulatory axes likely converge on p21 to also modulate
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antioxidant responses. Interestingly, we recently reported that chronic p53-independent p21 expression
causes genomic instability by deregulating replication licensing [121].

Taken together these studies indicate that Nrf2 regulates antioxidant responses, proteostasis and
genome integrity; nevertheless, it is still unclear whether the effects on genome integrity are a starting
event or a consequence of Nrf2 activity.

6. Impact of Molecular Chaperones Function on Genome Stability

Molecular chaperones enable the folding and/or the assembly of other macromolecular structures
(e.g., protein machines). One of the principal functions of chaperones is to preserve the folding
of the newly synthesized polypeptides preventing thus their aggregation [122]. Small heat-shock
proteins (sHsp) [123,124], Hsp60, Hsp70 [125], Hsp110 [126], nucleosome assembly protein histone
chaperones [127] and peroxiredoxins [128] have all been associated to genome stability, suggesting that
chaperone function is not solely limited to protein folding [129]. In mice, the Hsp genes hsp70.1
and hsp70.3 are induced by both endogenous and exogenous stressors, such as heat and toxic
substances. The hsp70.1/3−/− mice displayed genomic instability that is enhanced by heat treatment;
also, cells from hsp70.1/3+/− mice showed a higher frequency of chromosome end-to-end associations.
Exposure of those cells to IR leads to more residual chromosome aberrations, radio resistant DNA
synthesis (a hallmark of genomic instability), increased cell death and enhanced IR-induced oncogenic
transformation [125]. Heat treatment prior to IR exposure enhances cell death and S-phase-specific
chromosome damage in hsp70.1/3−/− cells compared to hsp70.1/3+/+ cells. Also, both in vivo and
in vitro studies demonstrate that hsp70.1 and hsp70.3 expression alterations result in genome instability
under stress conditions [125].

p97/VCP (also named, Cdc48) is an evolutionarily conserved AAA-ATPase that is abundantly
expressed in cells and is involved in several functions in cells, including, protein degradation, and
disassembly, as well as chromatin remodeling. The role of p97/VC in extracting and degrading proteins
from chromatin following DNA repair is considered highly important in preserving genome stability.
Reduced p97/VCP activity leads to the accumulation of ubiquitinated substrates on chromatin and
activation of protein-induced chromatin stress (PICHROS), which leads to genome instability and
genotoxic stress. PICHROS affects several cellular processes such as DNA replication, transcription
rates and also DDR [130–135]. Moreover, studies in yeast and C. elegans have showed that p97/VCP is
an essential factor for cell cycle progression, since cdc48 mutations cause arrest or delay transition of
cell cycle phases and/or activation of replication checkpoints [136,137].

Another key component of the molecular chaperones family is Hsp90. Hsp90 inhibition prevents
BRCA2 (breast cancer type 2 susceptibility protein) from being accumulated at sites of damage, which
in turn signals RAD51 to participate effectively in homologous recombination [138,139]; moreover,
Hsp90 inhibition causes contraction of human CAG repeats in vivo [138]. Hsp90 also interacts directly
with DDR molecules, such as CHEK1. This kinase (see also above) is recruited to sites of DNA
damage and delays cell cycle progression, prevents origin firing, stabilizes stalled replication forks,
and activates FA complex for DNA repair [140]. Another role of the Hsp90 chaperone machinery
is to maintain chromosome transmission fidelity through its indirect participation in kinetochore
assembly. Also, Hsp90-mediated assembly of kinetochores implies a potential link between cell stress
and chromosome instability [141].

Overall, it is obvious that molecular chaperones functionality is paramount for not only the
maintenance of proteome stability, but also for genome integrity. Nevertheless, more work has to be
done in order to illuminate the molecular mechanisms and the functional involvement of chaperone
protein machines on age- and/or disease-associated-genome instability.

7. Ubiquitin-Proteasome Pathway (UPP) and Genome Integrity

The cellular genome is a very complex landscape, and based on the cell type and cell function,
genes expression profile can be remarkably different [142]. Supervised protein degradation allows
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rapid, and irreversible, turn-off of a protein’s function; this process is of critical importance for cellular
function since there is a plethora of genome curation and stability related proteins (e.g., transcription
factors and protein machines of replication complexes and cell division cycle) that need to be eliminated
by the cell through specific processes at the right moment in order to maintain genome integrity and
eventually cellular homeodynamics and survival.

These polypeptides are degraded by the 26 proteasome, through the ubiquitin-dependent
signaling. Ubiquitin (Ub) is a small highly conserved among the eukaryotes 76 amino acid protein,
which is attached to proteins as either a monomer or as a polyubiquitin chain by an enzymatic
reaction [143,144]. The conjugation of Ub to the polypeptide is mediated by a series of ligases
known as Ub-activating enzymes, namely E1, E2 and E3 ligases. The E1 and E2 enzymes activate
the ubiquitin in an ATP-dependent process, while the E3 ligase performs the final step ligating the
carboxyl group of the C-terminal of Ub to the target protein. Degradation of the targeted protein by
the proteasome requires (mainly) polyubiquitination at lysine 48 [143,144]. It is worth mentioning that
due to high numbers (~one million/cell) of existing cellular proteasomes that respond to degradation
demands [145], and despite the high rates of protein destruction, it is estimated that the proteasomes
are under-loaded during normal conditions, and that proteins accumulate in the cells only after
more than an half (~60%) of total cellular proteasomal activity is shut down [146,147]. As mentioned
proteostasis is achieved by the interaction and crosstalk of several processes like control of transcription,
processing and degradation of mRNAs, translation, protein localization, post-transcriptional and also
programmed degradation [148]; thus UPP-mediated degradation is crucial for cell survival and
adaptation. Specifically, cells respond to extracellular signals, as well to their metabolic and energetic
demands, by adapting their transcription levels, translation capacity and eventually their proteome
content. These changes in protein levels are not an immediate process, but there is a timing delay
between the transcriptional induction and the increase of protein levels [149]. Nevertheless, high
translation rates are made in a fidelity cost, which lead to amino acids incorporation errors that cause
conformational changes and, therefore, the formation of non-functional polypeptides that need to be
rapidly eliminated via high protein turnover [150].

Genome stability in mitotic cell lineages requires precise (once per cell cycle) DNA replication.
In order to avoid re-replication, cells need to suppress licensing of newly replicated DNA until late
mitosis. Proteasomal degradation of DNA replication machineries is one of the mechanisms that
prevent re-licensing [151,152]. Another important function of UPP is the maintenance of nuclear
homeostasis as several studies have shown that proteasome is responsible for degradation of ribosomal
proteins and oxidatively damaged histones [153,154]. Although it has been described that aggregates
in the nucleoplasm are degraded by the proteasome, it remains unclear whether this is an in situ
reaction or protein aggregates are transported for degradation to the cytosol [155]. Furthermore,
besides preserving the cellular microenvironment, UPP activity also defines the cell fate by preserving
the balance between pro-apoptotic and anti-apoptotic signaling pathways [156]. Cell cycle progression
is also an UPP regulated event as the levels of all key cell cycle progression players, e.g., cyclins or
cyclin-dependent kinases (CDKs) are regulated by UPP dependent degradation [157].

Considering all the above UPP functions along with the deterioration of its functionality during
ageing [3], the association of UPP with pathological disorders is to be expected. Specifically, it has
been hypothesized that tumor cells have chronically elevated levels of proteotoxic stress [158]. That is
because cancer cells acquire their proliferative capacity in the absence of growth signals by promoting
their translation potential. It has been estimated that over 90% of human solid tumors contain cells
with more than two copies of one or more chromosomes [159]; thus these cells have increased folds
of transcription rates. If the produced proteins are part of stoichiometric complexes, then the excess
of polypeptides not associated to the complexes (or protein machineries) must be removed by UPP
degradation. Furthermore, tumorigenesis is marked by oncogenes overexpression, which in general
enhances cellular translational capacity, by stimulating the production of ribosomal proteins, the
synthesis of ribosomal RNA and the activation of RNA polymerases [160,161]. On the other hand,
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cancer cells can also promote translation, by inducing the expression of translation initiation factors,
eIF3 (eukaryotic translation initiation factor 3) and eIF4F [162]. Therefore, apart from increased
oxidative load and metabolic deregulation that impact on proteome integrity and stability, cancer cells
are also characterized by enhanced activity of the protein synthesis PN module and the overproduction
of mutated polypeptides. Thus, cancer cells are highly dependent on UPP protein degradation in order
to adapt to high levels of proteotoxic stress.

8. The Ubiquitin-Proteasome liaison in DNA Damaged Responses (DDR)

8.1. Ubiquitination and Sumoylation

The importance of ubiquitination in cellular homeodynamics is emphasized by the number of
proteins that are modified by ubiquitin molecules and of the factors involved [163]. In addition
to ubiquitin, there are several other proteins that are structurally related to ubiquitin and are
collectively known as ubiquitin-like proteins (UBLs). UBLs are also attached to target proteins
via their C-terminal glycine residues by enzymatic reactions mediated by E1-, E2-, and E3-like
ligases. One of the best-characterized UBLs is SUMO (small ubiquitin-related modifier); a small
protein of 100 amino acids [164]. Ubiquitination and sumoylation play an essential role in coordinating
the function of proteins involved in DSB. Several internal lysine residues (Lys-6, -11, -27, -29, -33, -48
and -63) can be used for the targeting of a protein in a specific pathway and the type of ubiquitination
strongly affects the fate of proteins. For instance proteins modified with Lys-48-, Lys-29- and Lys-11-
polyubiquitin chains are targeted for degradation via the 26S proteasome, while Lys-63-linked
ubiquitin chains are mainly used as a transduction signal that modulates protein functions [165].
Several proteins (more than 250), including DDR involved proteins, are able to recognize ubiquitin
and SUMO signals through ubiquitin binding domains (UBDs). Either proteolytic or non-proteolytic
ubiquitination have an important regulatory role in DSB signaling and repair [166,167]. The RING
finger proteins RNF8/RNF168 are the two most extensively studied RING-type E3 ligases in the
DDR pathway [168,169]. Upon phosphorylation of H2AX, MDC1 is recruited to DSBs, which then
recruits RNF8. RNF8 in association with RNF168 and the E2 enzyme UBC1 (Ubiquitin conjugating
enzyme 1) catalyzes the formation of Lys-63-ubiquitin conjugates on H2A and H2AX. This modification
allows the recruitment of several DSB repair factors (including BRCA1 and 53BP1) to the break sites
and the suppression of transcriptional events close to the DSBs zone. BRCA1 is thought to promote
homologous recombination, while 53BP1 is an important mediator of NHEJ events; however, the
antagonistic mechanisms of these proteins are still unclear [170].

As mentioned, sumoylation is another PTM that promotes DSB-associated histone ubiquitination
and regulates DSB repair pathway functionality at several levels. There are three SUMOs (SUMO1-3) in
mammalian cells. SUMO-2 and SUMO-3 are highly identical except for three residues, while SUMO-1
shares only ~48% sequence identity with SUMO-2 [171]. SUMO isoforms physically accumulate at
DSB-modified chromatin and several components of the DDR machinery, such as MDC1, 53BP1,
BRCA1, RNF168, HERC2, RAP80 undergo sumoylation. These reactions are performed mainly by
SUMO E3, PIAS1 (protein inhibitor of activated STAT1) and PIAS4 (protein inhibitor of activated STAT4)
proteins. Depletion of PIAS4 results in loss of RNF168, Lys-63-ubiquitin, 53BP1 and BRCA1 recruitment
at DSB sites, while PIAS1 depletion only prevents RAP80 and BRCA1 accumulation [171]. Several
studies suggest an extensive crosstalk between sumoylation and ubiquitination. An example of this
interaction is the RNF4 factor, which contains SUMO-interacting motifs (SIMs) to facilitate its binding
to the sumoylated substrates and promote their turnover through Lys-48-linked ubiquitination [172].
The role of ubiquitination and sumoylation is extended also to the other types of DDR, such BER, NER
and normal DNA replication [168,173,174]. Overall, these PTMs are extremely important in facing
DNA damage and repair processes.
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8.2. Proteasomal Degradation of DDR Factors

Proteasome localizes in both the cytosol and in the nucleus where it mostly concentrates in
euchromatin, at the periphery of heterochromatin and nucleoli [175]. Proteolytic digestion of key DDR
proteins is highly regulated and can occur in a timely fashion [176]. Several proteasome subunits are
targets of ATM/ATR kinases mediated phosphorylation, emphasizing the role of proteasome activity
at DNA damage responses [29], however, the mechanistic details of how proteasomal degradation is
involved in chromatin metabolism and, even more, in DSBs remains to be clarified. DSBs induce rapid
polyubiquitination of DDR proteins and therefore topical accumulation of Lys-48-linked ubiquitin
chains and proteasome subunits. The proteins to be targeted for proteasomal degradation (e.g.,
via Lys-48-ubiquitination) are extracted from the chromatin by the ubiquitin-selective segregase
p97/VCP [133] (see also above). p97/VCP is recruited by the adaptor complex UFD1–NPL4 (ubiquitin
fusion degradation protein 1-nuclear protein localization protein 4) and on RNF8–RNF168 ubiquitin
chains [133]. Disruption of p97/VCP leads to accumulation of polyubiquitin chains and impaired
recruitment of repair factors [170]. Another target of proteasome degradation and a key component of
DDR is MDC1. RFN4 mediates the turnover of MDC1 after Lys-48-ubiquitination [172]. Inhibition
of MDC1 through proteasomal degradation suppresses the recruitment of BRCA1 at the sites of
DSBs [177], suggesting the importance of proteasomal degradation in the continuity of the DDR
cascade. Degradation of BRCA1 is also mediated by the proteasome after HERC2 (HECT-type E3
ligase) targeting; BRCA1, together with its partner BARD1 (BRCA1-associated RING domain 1), have
an important role in HR and loss of any of these proteins results in susceptibility to breast cancer [178].

Moreover, CtIP, a factor that enables DNA-end resection, is controlled by multiple protein-protein
interactions and PTMs; for instance, cullin3 E3 ligase substrate adaptor Kelch-like protein 15
(KLHL15) promotes CtIP protein turnover via the ubiquitin-proteasome pathway [179]. Another very
important factor in DDR responses (that is controlled by proteasomal degradation) is the p53 protein.
p53 is considered the “guardian of the genome” because of its broad range of genome protective
functions [180]. Over ten ubiquitin E3 ligases have been linked to p53 regulation, but the most studied
is the RING E3-type, MDM2/HDM2 ligase [181]. MDM2 binds to the N-terminal of p53, targeting
the protein for ubiquitination and subsequent proteasome dependent degradation. The MDM2-p53
feedback loop is highly conserved and enables the p53-mediated checkpoint surveillance, preventing
unnecessary cell cycle arrest or cell death [182]. The amazing coordinative role of p53 in stabilizing
and protecting the genome is emphasized by its inactivation in the majority of cancers [183]. Finally,
proteasome inhibition in human cells (e.g., by the MG132 inhibitor) suppresses the recruitment of DDR
factors and the HR pathway, but does not significantly affect the NHEJ pathway [184]. UPP is also
involved in the degradation of the MMR pathway components. Specifically, proteasome mediates
the degradation of the hMutSα complex [185]. Reduced levels of hMutSα in vitro limit the MMR
activity, emphasizing the proteolytic regulatory role of UPP in the MMR pathway [185]. In addition,
Exonuclease I is polyubiquitinated and degraded by the proteasome when DNA replication is inhibited
during the S phase [186]. The components of the BER pathway, also, require a quick turnover of the
proteins involved. Specifically, turnover of BER proteins is supported by two E3 ubiquitin ligases;
namely, the Mule/ARF-BP1, which adds an ubiquitin molecule to the BER proteins, and CHIP, which
extends the ubiquitin chain and labels proteins for proteasomal degradation [187]. The XRCC1 factor,
which directs the assembly of BER complexes at sites of DNA damage, is also a target for degradation by
the CHIP E3 ligase [188]. Phosphorylation of XRCC1 by casein kinase 2 (CK2) inhibits its ubiquitination,
enhancing XRCC1 stability and allowing thus an efficient BER process [189]. Moreover, the other key
component of BER, PARP1 is polyubiquitinated by SUMO-1 and SUMO-3 in both in vitro and in vivo
systems [190,191]; notably, proteasomal inhibition is necessary for the polyubiquitination of PARP1,
suggesting that it is a target of the UPP mediated degradation [190]. Taken together these findings
suggest that UPP is functionally involved in several steps of DDR and of genome repairing processes.
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9. Autophagy-Lysosome Pathway (ALP) in Genome Integrity

Autophagy is an evolutionarily conserved catabolic process of misfolded proteins, damaged
proteins and organelles. In addition, autophagy reduces ROS levels through the recycling of damaged
mitochondria, (via an autophagic process known as mitophagy), and the activation of antioxidant
mechanisms [192,193]. Constitutive, low level of basal autophagy in normal tissues provides an
important homeostatic housekeeping function [194]. Thus, autophagy (as DDR) is essential for cellular
and organismal homeostasis. Reportedly, autophagy is activated by DNA damage and is required for
several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death
and cytokine secretion [195].

Autophagy starts by the formation of the ULK1 complex, which is composed of ULK1 (unc-51-like
kinase 1 protein), ATG13, mTOR kinase and RB1CC1 (RB1-inducibile coiled-coil 1). Autophagy activating
stimuli inhibit mTOR that under physiological conditions phosphorylates and inhibits the ULK1 and
ATG13 proteins of the complex [196]. Phagophore nucleation requires the formation of a complex
consisting of the vacuolar protein sorting (VPS) 34, VPS15, Beclin1 and the activating autophagy/beclin-1
regulator 1 (AMBRA1); in this process, B-cell lymphoma 2 (Bcl-2) inhibits autophagy by binding Beclin1,
while BCL2-homology 3 (BH3-only) activates the VPS34 complex after displacement of the Bcl-2 protein.
The phagophore expands after conjugation of ATG12 to ATG5 that interacts with ATG16 forming the
ATG16L complex, which then conjugates phophatidyethanolamine (PE) to microtubule-associated
protein 1 light chain 3 (LC3) until the generation of the LC3 II receptor. The expansion of the
phagophore continues until the edges surround the cargo, fuse, and form the autophagosome; finally,
the autophagosome fuses with lysosomes and its content is being degraded [197].

Several studies have attributed to autophagy an important role in preserving genome integrity.
The first observation was reported on mammary epithelial autophagy deficient tumor cells, in which
allelic loss of beclin1 resulted in sensitization to metabolic stress and increased ROS levels [198].
These authors reported that autophagy defects also activate DDR in vitro and in mammary tumors
in vivo, promoting gene amplification and tumorigenesis [198]. Loss of autophagy in murine atg7−/−

keratinocytes results in severely increased DNA damage and senescence [199]. Furthermore, reduced
autophagy can lead to insufficient ATP production, damaged mitochondria and excessive ROS
levels [200], compromising the cell ability to adapt to metabolic stress [201]. Increased ROS generate a
vicious pro-oxidative cycle, since ROS by-products can affect the genome and proteome integrity and
uncouple the respiratory chain, leading to even more ROS production [202]. In addition, autophagy
likely cross talks with the Nrf2 antioxidant responses pathway since, as mentioned above, p62/SQSTM1
dependent degradation of Keap1 leads to Nrf2 release; its translocation into the nucleus, and to
activation of antioxidant mechanisms [186]. In support, during stress conditions, autophagy-defective
tumor cells accumulate p62/SQSTM1, which in association with ROS further increases cellular
damage [203]. Therefore, autophagy is a crucial factor in genome integrity and stability due to
suppression of high levels of genotoxic ROS.

Autophagy also plays a key role in nuclear homeodynamics. Several findings have revealed that
autophagy is implicated on the turnover of nuclear components, such as micronuclei and chromatin
fragments, which is a tightly controlled and selective process. In mammalian cells micronuclei
that are positive for the DNA damage marker γH2AX are targeted for autophagy dependent
degradation by the receptor protein p62/SQSTM1 [204]. Furthermore, chromatin fragments are
targeted to autophagic degradation following the induction of oncogene-induced senescence and
replicative senescence [205,206]. Dou et al. [207] found that autophagy facilitates oncogene-induced
senescence by degrading the nuclear lamina constituent, Lamin B1, and the associated heterochromatin
domains LADs (lamin-associated domains). This degradation event occurs preferentially in response
to oncogenic transformation, oxidative stress and DNA damage (but not starvation) as a result of
nuclear accumulation of lamin B1 regions and its direct interaction with LC3 [207].

Reportedly, autophagy also plays a crucial role during development. Autophagy deficient mice
(beclin1−/−) die early in embryogenesis [208] and atg5−/− mice are vulnerable to starvation and die



Int. J. Mol. Sci. 2017, 18, 2036 13 of 26

perinatally. Autophagy is also extremely important during development and starvation by recycling
cytoplasm and macromolecules [201] and thus preserving energy homeostasis [209]. Cells with
impaired autophagy (beclin1+/− and atg5−/−) are more susceptible to metabolic stress in vitro and
are also characterized by increased DNA damage responses [210]. In addition, neonate atg5−/−

mice display high energy depletion, reduced plasma amino acid levels and heart dysfunction [209].
Considering that ATP is necessary for all cellular processes (including DNA replication and DDR)
inhibition of autophagy could be likely associated to stalled replication forks [200].

Notably, autophagy seems to also have a more direct role in DNA damage repair processes.
Inhibition of histone deacetylases (HDACs) with valporic acid in yeast, results in increased autophagic
degradation of the DNA endonuclease Sae2 [211]. Also, cell treatment with rapamycin (an autophagy
activator), results in reduced levels of Sae2, suggesting that the acetylation and subsequent degradation
of Sae2 through autophagy is likely a new mechanism that connects DNA repair and autophagy.
Although according to Robert et al. [211] activation of autophagy can lead to impairment of DDR, several
other studies propose that autophagy inactivation reduce the DNA damage repair capacity [212–216];
e.g., Liu et al. [213] showed that atg7 knockdown leads to impaired DSB repair through the HR pathway.
Cells lacking atg7 are very dependent on NHEJ for DSB repair, and inhibition of NHEJ causes rapid cell
death. Furthermore, inhibition of autophagy by genetic knockout of the 200-kDa FAK-family-interacting
protein (FIP200; an ULK1-interacting protein that is essential for autophagosome formation) suppressed
DNA damage repair and decreased cell viability following IR and treatment with camptothecin; also,
knockdown of p62/SQSTM1 alleviated the induced defects in repair and increased cell survival [214].
Recent findings suggest that increased levels of p62/SQSTM1 due to autophagy inhibition could be
responsible for reduced DDR; these effects on DNA repair are likely promoted by p62/SQSTM1 that is
localized in the nucleus [215,216]. Also, Wang et al. [215] showed that increased levels of p62/SQSTM1
due to inhibition of autophagy reduce DNA damage-induced chromatin ubiquitination. Mechanistically
this phenotype is explained by the interaction of p62/SQSTM1 with RNF168. This interaction inhibits
RNF168, resulting in impaired chromatin ubiquitination and reduced recruitment of DNA repair
proteins, while NHEJ remains unaffected. In addition, Hewitt et al. [216] suggested an alternative
mechanism for p62/SQSTM1-depedent autophagy in modulation of DNA repair, as in this study it was
shown that p62/SQSTM1 inhibits HR-directed DSB repair through proteasomal degradation of filamin
A (FLNA) and RAD51 recombinase in the nucleus. Finally, it was suggested that inhibition of DNA
repair mediated by p62/SQSTM1 accelerates ageing. This process can be reversed by caloric restriction,
a potent activator of autophagy [216].

Nevertheless, and despite the fact that several studies have associated autophagy to DDR and
genome instability, the mechanistic details that underlie the cross talk of these processes remain largely
unclear. A systemic study on how these molecular processes are intertwined will provide new concepts
for the development of novel therapeutics against ageing and the various age-related pathologies
where these pathways are functionally involved.

10. Concluding Remarks

It is becoming clear that the role of PN is not solely limited to maintaining proteome stability,
but rather PN is coordinating cellular functionality and viability as a whole. Protein machineries
assemble and operate in all cellular compartments (e.g., ER, mitochondria, cytosol and nucleus) and
also in the inter-/extra-cellular space in order to orchestrate the interactions between cells and to
maintain homeodynamics of biological liquids; thus the PN modules face different environmental
challenges. Proteome stability and PN functionality declines during ageing [102] or due to constant
exposure to stressors [217], leading to accumulation of unfolded/misfolded proteins and of protein
aggregates. This end point causes proteome instability that is characterized by increased proteotoxic
stress and underlies many pathologies including cancer. As discussed herein, genome stability (e.g.,
processes like DNA replication and DDR) is continuously followed and coordinated by the curating
activity of PN. Considering that aged tissues have deteriorated PN functionality, but they still need to
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adapt to metabolic and environmental changes, we can hypothesize that increased levels of genome
instability in aged cells/tissues is largely a secondary effect of age-related upregulation of proteotoxic
stress and low efficiency of PN functionality (Figure 2). Nevertheless, as this is a relatively new
concept, further studies are needed in order to address if loss of proteostasis is the triggering event of
increased genome instability; or if the latter (apart from PN dysfunction) also associates with stochastic
accumulation of genetic mutations. As most of the performed studies analyze single components of the
PN we are currently focusing on a more global/systemic view of PN alterations during ageing and/or
cancer (an age-related disease characterized by immense genomic instability) in order to address the
aforementioned question. Finally, considering that specific inhibition of PN modules (e.g., proteasome)
have demonstrated clinical efficacy in the treatment of hematological cancers [218], the identification
of key PN modules in the preservation of genome integrity will likely provide novel strategies and
pharmacological targets for preventing and/or treating advanced tumors.
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Figure 2. Loss of proteome stability during ageing impacts on genome (and metabolome) integrity,
resulting in disease prone cells/organisms. Young biological systems are characterized by low levels
of damaged biomolecules due to highly active proteostatic pathways and stress responses (e.g., the
Nrf2 pathway). This period of life is characterized by genome stability as a result of precise duplication
and effective repair pathways (blue arrows in left panel denote balanced cross-talk among shown
pathways and regulatory modules). On the other hand, the age-related collapse of proteostatic modules
functionality and/or expression levels (red arrows; upper right panel), along with increased oxidative
stress and the accumulation of non-functional polypeptides and/or protein aggregates (black arrows;
upper right panel), compromises proteome integrity leading to significantly reduced chances of
survival/health due to metabolic alterations and/or genomic instability (caused by ineffective DNA
maintenance and/or repair). Eventually, a vicious circle (red arrows; lower right panel) may be
formed where a mildly unstable genome accelerates proteome instability (and consequently metabolic
alterations) due to synthesis of mutated polypeptides, which progressively increase the attrition of
protein machines. This vicious circle gradually results in an increasingly stressful cellular landscape
that favors the appearance of age-related diseases (e.g., cancer).
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Abbreviations

53BP1 p53-binding protein 1
ALP autophagy-lysosome pathway
AMPK adenosine monophosphate-activated protein kinase
AP apurinic/apyrimidinic sites
ATF activating transcription factor
ATM ataxia telangiectasia mutated
ATR ataxia telangiectasia mutated and Rad3 related
ATRIP ataxia telangiectasia mutated and Rad3 related interacting protein
BER base-excision repair
BRCA1 breast cancer type 1 susceptibility protein
CDK cyclin-dependent kinase
CHEK1 checkpoint kinase-1
CHEK2 checkpoint kinase-2
DDR DNA damage response
DNA-PKcs DNA-dependent protein kinase catalytic subunit
DSB double strand break
ER endoplasmic reticulum
ERAD endoplasmic reticulum-associated degradation
FA Fanconi anemia complex
FIP200 200-kDa FAK-family-interacting protein
FLNA filamin A
FoxO forkhead box O
GPX1 glutathione peroxidase 1
GSTD1 glutathione S-transferase 1
HDACs histone deacetylases
HR homologous recombination
HIF-1 hypoxia-inducible factor 1
Hsf1 heat shock factor 1
Hsp heat shock protein
IRE1 inositol-requiring enzyme 1
IR ionizing radiation
Keap1 kelch-like ECH-associated protein 1
KLHL15 kelch-like protein 15
LAD lamin-associated domain
maf v-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog
MDC1 mediator of DNA damage checkpoint 1
MDM2 mouse double minute 2 homolog
MMR mismatch repair
MRN MRE11/RAD50/NBS1 complex
NQO1 NA(D)PH quonine dehydrogenase 1
NER nucleotide excision repair
NHEJ non-homologous end joining
Nrf2 nuclear factor erythroid 2-related factor 2
PERK protein kinase R-like endoplasmic reticulum kinase
PIAS protein inhibitor of activated STAT
PICHROS protein-induced chromatin stress
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PIKK phosphatidylinositol 3-kinase-related kinase
PKR protein kinase R
PN proteostasis network
PTM post-translational modification
RB1CC1 RB1-inducible coiled-coil 1
RNF168 ring finger protein 168
ROS reactive oxygen species
SIRT1 sirtuin 1
sHSP small heat-shock protein
SOD superoxide dismutase
SSB single strand brake
TIGAR TP53-inducible glycolysis and apoptosis regulator
TOR target of rapamycin
UBD ubiquitin binding domain
UBL ubiquitin-like protein
ULK-1 unc-51 like autophagy activating kinase 1
UPP ubiquitin-proteasome pathway
UPR unfolded protein response
UPRER endoplasmic reticulum unfolded protein response
UV ultra violet
VCP valosin-containing protein
XBP1 X box-binding protein
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