
National and Kapodistrian University of Athens
Department of Methematics

Graduate Program in Logic, Algorithms

and Computation

Triangulation Problems

on Geometric Graphs {

Sampling over Convex Triangulations

M.Sc. Thesis

of

Alexandros Angelopoulos

Supervisor: Aris Pagourtzis

Associate Professor N.T.U.A.

Thesis Committee Stathis Zachos

complemented by: Professor Emeritus N.T.U.A.

Dimitris Fotakis

Assistant Professor N.T.U.A.

Athens, November 2017

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Τμήμα Μαθηματικών

Μεταπτυχιακό Πρόγραμμα Λογικής, Θεωρίας Αλγορίθμων

και Υπολογισμού

Προβλήματα Τριγωνοποιήσης
σε Γεωμετρικά Γραφήματα –

Δειγματοληψία Κυρτών Τριγωνοποιήσεων

Διπλωματική Εργασία

του

Αλέξανδρου Αγγελόπουλου

Επιβλέπων: Αριστείδης Παγουρτζής

Αναπληρωτής Καθηγητής Ε.Μ.Π.

Την Εξεταστική Επιτροπή Ευστάθιος Ζάχος

συμπληρώνουν οι: Ομότιμος Καθηγητής Ε.Μ.Π.

Δημήτρης Φωτάκης

Επίκουρος Καθηγητής Ε.Μ.Π.

Αθήνα, Νοέμβριος 2017

Η παρούσα Διπλωματική Εργασία

εκπονήθηκε στο πλαίσιο των σπουδών

για την απόκτηση του

Μεταπτυχιακού Διπλώματος Ειδίκευσης

στη

Λογική και Θεωρία Αλγορίθμων και Υπολογισμού

που απονέμει το

Τμήμα Μαθηματικών

του

Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών

Εγκρίθηκε την 10/11/2017 από την Εξεταστική Επιτροπή αποτελούμενη από τους:

Ονοματεπώνυμο Βαθμίδα Υπογραφή

Ευστάθιος Ζάχος Ομότιμος Καθηγητής Ε.Μ.Π

Αριστείδης Παγουρτζής Αναπληρωτής Καθηγητής Ε.Μ.Π.

Δημήτρης Φωτάκης Επίκουρος Καθηγητής Ε.Μ.Π.

Copyright c© Αλέξανδρος Αγγελόπουλος, 2017.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή

για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν

τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγ-

γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού

και Καποδιστριακού Πανεπιστημίου Αθηνών.

Abstract

A geometric graph is a set of points V on the plane and a set of straight line segments E

with endpoints in V , potentially and instinctively associated with the abstract G(V,E).

When studying its thickness, i.e. partitioning its edges into crossing-free subsets (an

NP-hard optimization problem), the problem of triangulation existence as a crossing-free

subset T of the edges naturally occurs, as a triangulation of V is the largest such possible

set that may be defined on V . In this Thesis, we examine a family of triangulation

existence problems and classify them with respect to their complexity, both for their

decision and their counting versions. The general case decision problem is the only one

appearing in bibliography (Lloyd, 1977, NP-hard), while we deal with the convex case

restriction and an “intermediate” polygon triangulation existence problem, fixing a new 2

by 2 table of results. In the final chapter, we modify our framework in order to build an

exact uniform sampling and optimal coding algorithm for convex triangulations, which

outperforms any known algorithm to date.

Keywords

geometric graph, triangulation existence, complexity, counting complexity, convex trian-

gulations sampling

Περίληψη

Γεωμετρικό γράφημα καλείται ένα σύνολο σημείων V στο επίπεδο μαζί με ένα σύνολο ευθυ-

γράμμων τμημάτων (ακμών) E που έχουν τα άκρα τους στο V , και εύκολα συσχετίζεται με τον

«αφηρημένο» γράφημα G(V,E). Μελετώντας το πάχος του, δηλαδή τη διαμέριση των ακμών

του σε υποσύνολα ελεύθερα διασταυρώσεων (ένα NP-δύσκολο πρόβλημα βελτιστοποίησης),

προκύπτει και το πρόβλημα της ύπαρξης τριγωνοποίησης ως ένα ελεύθερο διασταυρώσεων υ-

ποσύνολο T των ακμών, καθώς μια τριγωνοποίηση του V αποτελεί το μέγιστο δυνατό τέτοιο

σύνολο που είναι δυνατόν να οριστεί δεδομένου του V . Η Διπλωματική αυτή Εργασία αφορά

στη μελέτη μιας οικογένειας προβλημάτων ύπαρξης τριγωνοποίησης και την ταξινόμησή τους

ως προς την πολυπλοκότητα απόφασης, αλλά και μέτρησης. Από αυτά, το γενικό πρόβλημα

απόφασης είναι το μόνο μελετημένο στη βιβλιογραφία (Lloyd, 1977, NP-δύσκολο), ενώ εμείς

μελετάμε αφ΄ ενός την ειδική περίπτωση των κυρτών γεωμετρικών γραφημάτων, αφ΄ ετέρου

ένα «ενδιάμεσο» πρόβλημα ύπαρξης τριγωνοποιημένου πολυγώνου, δημιουργώντας έναν νέο

2×2 πίνακα αποτελεσμάτων. Στο τελευταίο κεφάλαιο, τροποποιούμε το πλαίσιο της δουλειάς

μας έτσι ώστε να κατασκευάσουμε έναν αλγόριθμο για ομοιόμορφη δειγματοληψία και βέλ-

τιστη κωδικοποίηση των κυρτών τριγωνοποιήσεων, ο οποίος υπερέχει έναντι κάθε γνωστού

αλγορίθμου έως σήμερα.

Λέξεις-κλειδιά

γεωμετρικό γράφημα, ύπαρξη τριγωνοποίησης, πολυπλοκότητα, πολυπλοκότητα μέτρησης,

δειγματοληψία κυρτών τριγωνοποιήσεων

Preface

I consider this work to be a first extension of my Diploma Thesis (NTUA, 2012, [3]). The

triangulation existence problems were formulated back then, as side problems to the main

objective I had in mind. The decision problems were solved quite quickly, however, there

has not been any attempt to publish these results, as I would have liked to solidify their

importance by showing more about their nature and relation to known problems.

The latest was achieved (in my opinion) with a little help by counting complexity.

This a go-to field for Corelab, due to Stahis Zachos’ and Aris Pagourtzis’ work; more

importantly, it proved to be a creative way both for better exploration of the triangulation

problems, plus for getting me involved in an area I initially thought it does not “speak”

to me. Chapters 3 and 4 are a concrete impression of the above, the results of which are

joint work with Eleni Mpakali, PhD student of Stathis Zachos.

A note on the writing style. There are definitions and proofs for which I omit any

reference, while I am certain, or even have seen they do appear in bibliography. My excuse

lies on at least one of the following: they are simple and easy to verify their correctness;

maintaining a slightly altered phrasing, notation or terminology works in favor of reading

seamlessly through the document.

During adulthood, one must master a significant number of various decisions

And then have to live with them

I hereby acknowledge the importance of people

Who try to be helpful whilst respecting their mate’s personal axioms

Lucky to know some of those

They are labeled: the close-ones

And I dedicate the present bit of achievement to them

Contents

1 Introduction 21

1.1 Motivation . 21

1.2 Preliminaries . 22

1.2.1 Geometric graphs and (fixed) graphs’ drawings 22

1.2.2 Intersection vs. crossing of segments 22

1.2.3 Convex geometric graphs . 22

1.2.4 Isomorphism in the context of convex geometric graphs 23

1.2.5 Planarity . 24

2 Triangulation existence problems on R2 27

2.1 Formulating TRI using our notation . 27

2.2 The convex point set case . 29

2.3 Polygon triangulation existence (Poly-TRI) 30

2.4 Notes on triangulation existence . 32

3 Counting triangulations of geometric graphs 35

3.1 Basics of Counting Complexity . 35

3.2 Counting complexity for the convex case 36

3.3 Counting complexity of Poly-TRI . 38

4 An exact uniform sampling algorithm for convex triangulations 43

4.1 Related work . 43

4.2 Preliminaries . 44

4.3 The reduction argument and recursive relation 45

4.4 The algorithm . 50

15

List of Figures

1.1 G ' H but CV (G) 6' CV (H), as intersections are not preserved. 24

1.2 Two different drawings of K4, the second not being a certificate of its

planarity. 25

2.1 Triangulation existence given a geometric graph 28

2.2 Triangulation existence given a convex geometric graph. Due to the pro-

perties of convex graph drawings ([3]), we are allowed to show any convex

point set as on a single circle without loss of generality. 29

2.3 Polygon triangulation existence. The “no” instances also demonstrate de-

generate (non-simple) polygons, which we do not search for. 31

2.4 The Golder-Harary graph, n = 11, m = 27, drawn with straight lines. . . 32

2.5 A d-regular geometric graph with no triangulation 33

3.1 Illustrating the proof of Proposition 3.7 37

3.2 Splitting G w.r.t. edge v7v9. G has 2 triangulations featuring v7v9: the set

of blue edges plus either the green or the magenta edge. The very same

stands for G \ v8. 38

3.3 Core of the reduction by Wigderson [42], based on the “gadget” subgraph N 40

4.1 Reduction for the complete Kn, working on v0/e0 46

4.2 Reduction for Kn,−1, working on the next vertex/span-2 edge 47

4.3 Reduction for Kn,−m . 48

4.4 Full reduction tree for the convex pentagon. Blue color indicates the wor-

king on node. Relabelings are not marked. Each of its 5 triangulations is

encoded in a different green leaf. 49

4.5 The table of triangulations Tn,−m for each Kn,−m. It has (n−3)(n−1) + 1

entries. The arrows show the sequence in which the cells fill up. 51

4.6 The universal sampling algorithm scheme: branching with probability ana-

logous to the size of the subtree. The height of the tree is O(n). 53

17

Introduction1
1.1 Motivation

The question whether a graph is planar is one of the most well-studied problems in Graph

Theory. Though it is not difficult to recognize a planar graph [21] and eventually draw

it without crossing edges, it opens up more difficult questions, regarding how non-planar

graphs can be drawn on R2 as to better understand and work on them. So, Graph Drawing

is born naturally, with numerous goals, among which is to optimize graph visualization

and VLSI design. In [3] we give an additional motivation, that of air traffic separation

within congested airspace, and actually approach in a slightly different way: we are given

the drawing of some graph and raise questions on the geometric graph itself. Some sample

questions, given a geometric graph are the following:

• What is the optimal edge partitioning into plane subgraphs? The question points to

the notion of geometric graph thickness or drawing thickness (defined in [3]), which

differs from the classic thickness questions (graph thickness [39], book thickness

[5], geometrical thickness [14]) which concern an inherent to the abstract graph

attribute. In fact, this optimization problem is hard even on convex geometric

graphs [10].

• Worst case, how many layers suffice for making possible that any geometric graph

can be decomposed in that many plane subgraphs? This was the main concern of

[3], accompanied with a conjecture for the answer.

• What is the maximum cardinality of a subset of the edges of the geometrical graph

such that it consists of pairwise non-crossing edges? Best case, a triangulation

appears as a subset of the edges.

The latest settled to be the main topic of this Thesis; apart from trying to reveal a

camouflaged tiling, it can be seen as a greedy criterion for plane decomposition, though

an approximation guarantee w.r.t. the optimal solution must be determined by further

exploration and work on the problem.

19

1.2 Preliminaries

Throughout this Thesis, we focus on graphs drawn (embedded) with straight lines on R2.

In order to simplify the language and the problems’ formulation, we make extensive use

of the terms “geometric graph” and (less often) “graph drawing”.

1.2.1 Geometric graphs and (fixed) graphs’ drawings

Definition 1.1 (Geometric graph, ([6])). Given a set of points V in general position on

R2 (i.e. no three are collinear) and a set E of straight line segments with endpoints in V ,

we call (V,E) a geometric graph. We may associate this straight-line drawing with the

underlying abstract graph G(V,E).

Since we have established a first association of a geometric object to an underlying

abstract graph, it is extremely useful to technically “move” in the opposite way, in the

sense of fixing a drawing of an abstract graph:

Definition 1.2 (Drawing of a graphG, ([3])). Given an (abstract) graphG(V,E), a (fixed)

drawing D(G) on the plane consists essentially of a mapping functionDV : V → R2. Then,

for every vivj ∈ E, the image D(vivj) is the line segment DV (vi)DV (vj).

The above validate the use of the term “drawing of G” as an equivalent to “geometric

graph” as soon as it is context-clear: if V and E were initially supposed to be points and

segments on the plane, we use the term “geometric graph (V,E)”; if they are vertices and

edges of an abstract graph, we make use of the term “drawing) D(G)”. This pair of defi-

nitions seems useful whenever one may work in between graph drawing and combinatorial

geometry.

1.2.2 Intersection vs. crossing of segments

As we are dealing with geometric graphs and especially their edges/segments, it is of im-

portance to clarify once and for all the terms “intersecting” and “crossing” when referring

to a pair of the above:

Definition 1.3 (Intersecting and crossing segments). Given two segments on R2, we will

say that they intersect if they have at least a point in common; if this point is unique and

not an endpoint of neither of the segments, then the two segments cross.

It will be mentioned, when necessary, that significant to our work graph classes are

equal and computationally equivalent when defining them with either term (see [3], Chap-

ter 5).

1.2.3 Convex geometric graphs

An important family of any geometric object is their confinement to be convex. The very

same stands for our object of interest:

20

Definition 1.4 (Convex geometric graphs). A geometric graph (V,E) is convex if all

points V lay on the convex hull of V . Analogously to Definition 1.2, we define a graph’s

convex drawing C(G), with the appropriate additional constraint that the image of V

through CV should be a convex set.

However, taking advantage of the observations and proofs of [3], Chapter 3, we may

simplify the graph drawing definition:

Definition 1.5 (Convex graph drawing). A convex drawing C of (the abstract) G(V,E)

on R2 is sufficiently defined by a mapping function CV : V → [0..n− 1].

This definition is equivalent to the σ-cycle defined by Bernhart and Kainen [5], as a

relevant to their book thickness notion. It also appears in [10], where the problem of

determining the σ-thickness of a graph is proved to be NP-hard. For us, it is useful to

provide a few more definitions, in order to maintain a more elegant phrasing later on.

Definition 1.6 (Proper vertex labeling). Given a convex geometrical graph, we will say

that its vertex labeling v0, ..., vn−1 is proper if its n vertices appear in order, clockwise

or counter-clockwise around its convex hull. Thus, we will assume that once we draw a

graph via the convex mapping function CV , we relabel to a proper labeling.

For our convenience, we will use modulo arithmetic for referring to the indexes of the

vertices of a convex geometric graph, i.e. we shall admit that all edges vivi+2, i ∈ [0..n−1]

are properly defined, as vx ≡ vx mod n, for any x, n. The following definitions may already

validate the reasoning behind this choice.

In Chapters 3 and 4, we will extensively refer to certain edges of our convex graphs,

called span-2 edges. Consequelnty, let us define the edge span:

Definition 1.7 (Edge (or diagonal) span for a convex polygon). Let V be a convex point

set defining (among others) a convex n-gon on R2, and assume proper vertex labeling.

For every edge (diagonal) e = vivj ∈ E, we define its span, denoted by |e|, to be the

minimum distance of the vertices it touches around the convex hull. For any edge vivj it

is |vivj | = min{i− j mod n, j − i mod n} Def. 1.6≡ min{i− j, j − i}.

1.2.4 Isomorphism in the context of convex geometric graphs

For abstract graphs, isomorphism is none other than the existence of a permutation p of

the vertices between G and H such that vu is an edge of G if and only if p(u)p(v) is an

edge of H. We will need a stronger condition when working on convex geometric graphs;

as an illustration of why this is critical, see Figure 1.1: graphs G and H are isomorphic,

yet drawn via the same CV their properties differ a lot.

As the key notion that can be properly defined in graph drawing, while the abstract graph

lacks it, is the notion of intersecting (and crossing) edges, isomorphism should be defined

with respect to this concept.

Definition 1.8 (Convex drawing isomorphism). Two convex geometric graphs are iso-

morphic if the vertex relabeling preserves all intersections.

21

v0

v1

v2

v3

v4

v5

v6

v7

(a) CV (G)

v0

v1

v2

v3

v4

v5

v6

v7

(b) CV (H)

Figure 1.1: G ' H but CV (G) 6' CV (H), as intersections are not preserved.

Proposition 1.9. For a given convex geometric graph (properly labeled), define a vertex

r-rotation to be the permutation pr = [vr, vr+1, ..., vn−1, v0, ..., vr−1] and a vertex mirroring

to be the permutation pm = [vn−1, vn−2, ..., v1, v0]. Applying the synthesis of any number

of r-rotations or mirrorings, the image is a properly labeled graph, isomorphic to the

initial. In a few words, convex geometric graph isomorphism is closed under

rotation and mirroring.

1.2.5 Planarity

Central to graph theory is the notion of the planar graph.

Definition 1.10 (Planar graph). A graph is called planar if it can be drawn on the plane

without crossing edges. By Fáry’s theorem [17], for any planar graph there is a straight

line drawing certificate.

Within the context of geometric graphs, planarity loses its strength, as we are not

concerned whether the underlying abstract graph is planar, we focus in the particular

drawing on the plane (see Figure 1.2). As an analog, we will give the following definition:

Definition 1.11 (Plane (sub)graph). Given a geometric graph (V,E), a (sub)graph

(V ′, E′) with V ′ ⊆ V,E′ ⊆
(
V ′

2

)
is characterized as plane if E′ is crossing-free.

As an example, the subgraph (V, {v0v1, v1v2, v0v3, v0v2}) of the geometric graph of Figure

1.2b is one of its plane subgraphs.

Definition 1.12 (Outerplanar graph). An abstract graph G is called outerplanar if it

can be drawn on the plane without crossing edges and with all vertices on the outer region

of the drawing ([8]); equivalently, no vertex is totally surrounded by edges.

G is outerplanar if and only if it does not contain K2,3 and K4 as minors. Equivalently, if

and only if G+K1 is planar. An outeplanar graph is maximal if no edge can be added to

the drawing without losing outerplanarity. A maximal outerplanar graph G(V,E), |V | = n

may be embedded as a polygon triangulation. That gives us |E| = 2n− 3, the sum of the

boundary edges, n, plus the number of diagonals in a triangulation, n− 3 ([20], [13]).

22

v2 v1

v2

v0

(a)

v3 v2

v0 v1

(b)

Figure 1.2: Two different drawings of K4, the second not being a certificate of its planarity.

Simple polygons defined within our context

The given definitions allow us to clarify another few useful notions for this Thesis.

Definition 1.13 (Simple polygon and diagonals). Given a geometric graph (V,E) with

|V | = n, a simple polygon is a plane Cn subgraph of (V,E). Given a simple polygon, a

diagonal is an edge lying entirely on its the inner region.

23

Triangulation existence

problems on R22
A long existing result by Lloyd [26], dating back in 1977, states that: “given a set V of

points on the plane and a subset E of segments with endpoints in V , it is NP-hard to

determine if a triangulation of V exists”. Even without a strict definition of triangulation,

there should be only little confusion regarding what to search for in order to verify a “yes”

instance. Also, it is easily noticed that the input of this very combinatorial problem is a

geometric graph of ours, and having noted so, let us properly define what a triangulation

is and introduce our notation, beginning with Lloyd’s problem.

2.1 Formulating TRI using our notation

Definition 2.1 (Triangulation of a geometric graph). Given a set of points V and seg-

ments E ⊆
(
V
2

)
on the plane, we will say that the set T ⊆ E is a triangulation if no

segments of T pairwise cross and |T | = 3n−h(V)−3, where h(V) is the number of points

on the convex hull of V . Such a set of this size is the maximum possible (see Lemma 2.3).

Definition 2.2 (Triangulation existence (TRI)). Given a geometric graph, TRI is the

decision problem whether a triangulation T ⊆ E exists.

Lloyd [26] used a reduction from SAT to prove TRI is NP-hard. NP membership can be

easily established, as verifying whether a guessed set T , |T | = 3n − h(V) − 3 does not

include crossing segments (edges) can be clearly done in O(|T |2) time. In the following

sections we define and give the complexity of two similar problems which –in our opinion–

derive quite naturally as we move along the points’ generic-to-convex-position spectrum.

As a note: there is no doubt that the term “triangulation” is frequently used in a

number of different contexts; so, we chose the term “triangulation existence” to attach to

all three problems, a term which captures the output’s inherence to the given input. Also,

for sake of completeness, let us prove the simple lemma which links our triangulation to

the maximum set of pairwise non-crossing segments on n points on the plane.

Lemma 2.3. Let T be a maximum set of pairwise non-crossing segments that can be

defined on point set V with |V | = n and convex hull H(V) with size |H(V)| = h(V).

Then |T | = 3n− h(V)− 3.

25

(a) A “no” instance of TRI (b) A “yes” instance of TRI

Figure 2.1: Triangulation existence given a geometric graph

Proof. It is easy to observe that whatever the set T , the subgraph (V, T) is a planar graph,

as the drawing itself is a certificate for planarity. We now compare (V, T) to a maximal

planar graph on n vertices, which has exactly 3n− 6 edges and all its faces, including the

outer face, bounded by 3 edges. In our embedding, which consists only of straight lines,

we may well triangulate all faces but the outer face, which is necessarily bounded by h(V)

edges, therefore h(V)− 3 edges are missing from what would be a maximal planar graph:

label the h(V) points, p1, ..., ph(V), (counter)clockwise around the convex hull and draw

the non-crossing arcs p1p3, p1p4, ..., p1ph(V)−1. As a consequence, a triangulation T has

size of exactly 3n− 6− (h(V)− 3) = 3n− h(V)− 3.

As reminder for Karp reductions

The most useful tool in order to prove NP-hardness (or P membership) of a problem

is the polynomial-time Karp reduction. Maintaining the notation and approach of [4] we

define:

Definition 2.4 ((Polynomial-time) Karp reduction). We will say that a language L is

Karp-reducible to L′ if there is a polynomial time computable function f : {0, 1}∗ →
{0, 1}∗, such that for every x it holds x ∈ L⇔ x ∈ L′. We denote by L ≤p L

′.

In fact, let A be a problem defining language LA of accepting inputs. If for some problem

B it is shown that A ≤p B, then B cannot be easier than A to solve, because then we

would efficiently transform any instance x of A (string) via f and use the algorithm for

B to decide if x ∈ LA. The following are equivalent, given A ≤p B:

• If A is NP-hard then B is NP-hard.

• If B ∈ P then A ∈ P.

In Chapter 3 we will extend the notion of Karp reductions, to ensure similar deductions

can be made w.r.t. counting the problems’ solutions. When referring to Karp reductions,

26

we may omit to write it is polynomial time, as this prerequisite has become absolutely

clear over time.

2.2 The convex point set case

It is quite without question that if a problem is defined on an arbitrary point set on R2,

then its restriction to a convex point set will also be studied. No more to say, Conv-TRI

is defined as follows:

Definition 2.5 (Conv-TRI). Given a convex set of points V and segments E ⊆
(
V
2

)
on

the plane, Conv-TRI is the decision problem whether a triangulation TC ⊆ E exists.

Here, having all points on the convex hull (h(V) = n) gives that the size of the triangu-

lation TC is equal to the size of a convex point set triangulation 3n− h(V)− 3 = 2n− 3,

which, of course, equals the size of the polygon triangulation.

(a) A “no” instance of Conv-TRI (b) A “yes” instance of Conv-TRI

Figure 2.2: Triangulation existence given a convex geometric graph. Due to the properties of

convex graph drawings ([3]), we are allowed to show any convex point set as on a single circle

without loss of generality.

Conv-TRI is polynomially solvable

To easily prove the above, we need to focus on a specific graph class:

Definition 2.6 (CIRCLE graphs). A graph is a CIRCLE graph if it is the intersection

(or crossing) graph of chords in a circle.

The “crossing graph” is defined analogously to the intersection graph and both are essen-

tially the following scheme: a vertex is created for every edge (or, generally, our objects

that may conflict) and an edge is placed between two vertices if the respective objects

they represent, i.e. the edges of the initial graph, cross (or, generally, conflict). Such

a construction acts like a bridge between graph drawing and classic graph theory, as it

attempts to capture the structure of a geometric object within a resulting abstract graph.

27

In [3], Chapter 5, we have shown that for CIRCLE graphs, altering the original defi-

nition to use the term “crossing graph” instead of “intersection graph” does not have an

impact on the class itself1.

Now we may present the theorem which relates our problem to the Independent Set

on CIRCLE graphs. In a few words, taking advantage of the CIRCLE class membership,

Circle Independent Set (CIS) can be seen as seeking a set of k pairwise non-crossing

chords of a circle. The problem is known to be efficiently solvable (Gavril [19]) and most

recent algorithms have improved the running time to O(nmin(d, α))-time, d being the

density of the graph and α being its independence number (Nash and Gregg [29]). Note

that both algorithms maintain the independent set, which can then be instantly accessed

to work on.

Theorem 2.7. Conv-TRI can be reduced in polynomial time to CIS.

Proof. We need to show that any instance (V,E) of points and line segments on the

plane, V being convex, can be transformed to an instance Vc = f(V), Ec = f(E), where

all v ∈ Vc lie on a circle and for any two e1, e2 ∈ E, e1 crosses e2 if and only if f(e1)

intersects f(e2).

All we need to do is to remind that placing the points of V around an arbitrary circle

C in the same order of appearance as in V (function f : V → C) is sufficient to guarantee

that precisely every crossing of E is preserved by f and no new crossings appear (see

[3], Chapter 3). This needs no more time than running a convex hull algorithm to find

the order of the points of V (O(|V | log h(V)), [7]). To finalize the proof, we recall that

|TC | = 2n − 3 (if such triangulation exists) and only need to run a CIS algorithm with

input Vc, Ec and k = 2n− 3.

2.3 Polygon triangulation existence (Poly-TRI)

A variation of the two aforementioned problems, that might be considered as an in-

between problem, is to look for a triangulated simple n-gon,TP , using the existent edges

of a geometric graph. In order to be more clear, by the term “simple” we mean that

the polygon does not cross itself, neither one may argue that it consists of more than n

segments (see Figures 2.3a, 2.3c).

Note that there is not necessarily a single such polygon defined on a point set V ,

unless the point set is convex, in which case the problem coincides with Conv-TRI. Note

also that:

• a triangulated n-gon will comprise exactly 2n− 3 segments (|TP | = 2n− 3);

• the abstract (V, TP) will be a maximal outerplanar graph (see Definition 1.12);

• and, due to the above, (V, TP) will have a Hamiltonian circuit.

Formally:

Definition 2.8 (Poly-TRI). Given a set of points V and segments E ⊆
(
V
2

)
on the plane,

Poly-TRI is the decision problem whether a set of 2n− 3 pairwise non-crossing segments

TP ⊆ E exists, such that the subgraph (V, TP) is maximal outerplanar.

1Same stands for SEG graphs, the intersection graphs of a set of segments on the plane.

28

(a) A “no” instance of Poly-TRI:

all Hamiltonian circuits are dege-

nerate polygons (one marked).

(b) A “no” instance of Poly-TRI,

with a marked degenerate n-gon

(see the enlarged vertex).

(c) A “yes” instance of

Poly-TRI.

Figure 2.3: Polygon triangulation existence. The “no” instances also demonstrate degenerate

(non-simple) polygons, which we do not search for.

Proving NP-complentess

Our definitions and observations lead to the following lemma:

Lemma 2.9. Poly-TRI ∈ NP.

Proof. Guessing a set TP of size 2n − 3, we may do the following (even using the most

naive algorithms) in polynomial time:

1. check that no two edges cross (O(n2));

2. check that every pair of adjacent vertices (2n − 3 pairs) has at least one common

neighbor (O(n) checks), thus belong to a triangle, and that for every such triangle

there is no point of V lying inside (another O(n) checks).

Poly-TRI is NP-complete

A result of Wigderson (1982) states that given a maximal planar graph, it is NP-complete

to determine if it has a Hamiltonian circuit. We will consider this (Max Planar HC) as

our known NP-complete problem and establish a polynomial-time reduction to Poly-TRI.

Eventually, we will need to efficiently draw any given instance G on the plane so that the

occuring geometric graph (V,E) has a polygon triangulation if and only if the abstract

G has a Hamiltonian circuit. Let us state:

Theorem 2.10. Max Planar HC can be reduced in polynomial time to Poly-TRI. The

reduction is parsimonious.

Proof. Let G be our maximal planar graph. A straight-line drawing D(G) can be con-

structed in O(n)-time and onto a (2n− 4)× (n− 2) grid ([11], [9]).

Suppose that G has no Hamiltonian circuit. Then D(G) cannot have a polygon trian-

gulation TP because this being true would force a Hamiltonian circuit in G; contradiction.

29

Now, suppose G has a Hamiltonian circuit C. Whatever the drawing D, D(C) is a

simple polygon on all n points/vertices and its interior region is triangulated because all

faces of a maximal planar graph are triangles.

Ii is easy to demonstrate that the reduction preserves the number of solutions. Assu-

ming two different Hamiltonian circuits, C1 and C2, of G and using the same argument

as above, each cycle leads to obtaining a different polygon triangulation since the diffe-

rent sequences of the vertices around each circuit define different polygonal lines on the

(drawn) graph.

An illustrated example: we may consider the Golder-Harary graph, introduced in

1975 (Figure 2.4), the smallest of the class of maximal planar graphs which does not have

a Hamiltonian circuit.

Figure 2.4: The Golder-Harary graph, n = 11, m = 27, drawn with straight lines.

2.4 Notes on triangulation existence

This subsection shall be considered an appendix, and it is presented here for any future

reference.

Proposition 2.11 (Triangulation existence guarantee). Let e∗T be the minimum cardi-

nality of E such that for any geometric graph (V,E), |V | = n there exists a triangulation

T ⊆ E. Then e∗T =
(
n
2

)
.

Proof. Consider a complete geometric graph on point set V . If we remove just one of the

segments joining two consecutive convex hull points, then there is no possible triangulation

T . Thus, only a complete geometric graph guarantees a triangulation existence! Notice

that the very same stands for the convex case.

Proposition 2.12 (Polygon triangulation existence guarantee). Let e∗P be the minimum

cardinality of E such that for any geometric graph (V,E), |V | = n there exists a polygon

triangulation TP ⊆ E. Then e∗P ≥
n2−3n+4

2 =
(
n
2

)
− (n− 2).

30

Proof. Consider the complete graph on all points but v0 ∈ V (thus, there is a Kn−1 in

the drawing), plus an arbitrary edge incident to v0, say v0vx, x ∈ V \{v0}. The graph has(
n−1
2

)
+ 1 =

(
n
2

)
− (n − 2) edges and does not allow any TP , because v0 does not belong

in any triangle.

The conclusion drawn from the above is a simple one: bounds are not a useful tool to

answering the questions we discussed.

Proposition 2.13. For every d there is a d-regular geometric graph G drawn on some

set V , with |V | = 2d2 − 6d+ 2 such that there exists no triangulation T ⊆ E.

Proof. The construction is as shown in Figure 2.5. Each of the nodes in the rectangles form

a complete bipartite graph Kd−3,d−3. The shaded regions indicate a K1,d−3 star, while

the red regions are empty of edges and the witnesses for the lack of a triangulation.

...

d nodes

... Kd−3,d−3

... Kd−3,d−3

...

... Kd−3,d−3

... Kd−3,d−3

...

d nodes

...

...

...

...

Figure 2.5: A d-regular geometric graph with no triangulation

31

Counting triangulations

of geometric graphs3
As described in the abstract, we shall bring Counting Complexity into play, in order to

obtain new results and insights for our triangulation existence problems. First, we give a

few words on the basics of Counting Complexity and describe the reductions used to show

hardness results for #P. Then on, we deal with the counting versions of our problems.

3.1 Basics of Counting Complexity

The complexity class #P was introduced by Valiant [41], in an attempt to properly classify

the problem of computing a 0-1 matrix’s permanent.

Definition 3.1. #P is the class of functions that count the exact number of accepting

paths of a polynomial-time nondeterministic Turing machine (PNTM).

Compared to NP, which determines “only” if there is at least one accepting path in the

computation tree, one understands its power.

#P contains several interesting problems, which are actually the counting versions of

classical NP problems. The class does feature complete problems e.g. #Sat, #Cliques.

Note that for those two problems, their decision version is an NP-hard problem. However,

there are also problems with easy decision version (in P) that are shown to be #P-complete

under Cook reductions (#Perfect Matchings, #DNF-Sat).

Cook vs. Karp reductions. #P is not closed under Cook reductions (under reasonable

assumptions). So, changing the reductions to Karp may yield a better characterization

of counting problems with easy decision version (#PE). In this direction, the work of

Pagourtzis and Zachos [30], along with the definition of the very interesting TotP (in

[23]) and the results in [23] and [24], give a detailed overview of the structure and relations

among counting complexity classes. Let us define:

Definition 3.2 (FP). FP is the class of counting problems for which there exists a

polynomial time deterministic Turing machine (PDTM).

Definition 3.3 (TotP, Kiayias et al. (1998)). TotP is the class of functions that count

the total number of computational paths of a PNTM. In [30] it was shown that TotP is

33

exactly the Karp closure of self-reducible functions of #PE. The problems corresponding

to those functions are counting problems for which there exists a PNTM with exactly as

many computation paths as the output value (plus 1).

Then, it is FP ⊆ TotP ⊆ #PE ⊆ #P. Inclusions are proper unless P=NP. At the same

time, TotP and #P are Cook-equivalent.

Reductions for counting problems

In Chapter 2 we have already made use of Karp reductions (defined in the conclusion in

Section 2.1) for showing Theorems 2.7 and 2.10. Working in counting the solutions, a

generic Karp reduction may not be sufficient to show that a difficulty in counting for A

will translate to difficulty in counting for B; whereas, the following special case will do so

(still following the main definition of [4]):

Definition 3.4 (Parsimonious Karp reduction). We will say that a Karp reduction of

A to B is parsimonious if the polynomially computable function f is a bijection of all

witnesses for A to all witnesses for B. We will denote by A ≤1-1
p B.

Definition 3.5 (Weakly parsimonious reduction). We will say that a Karp reduction

of A to B is weakly parsimonious if for the mapping function f , there is a polynomially

computable function g such that A has #A witnesses if and only if B has g(#A) witnesses.

We will denote by A ≤1-m
p B.

The term “weakly parsimonious” often appears in bibliography, though there are a

number of relevant terms, one-many, many-one, even the very special definition and case

of bit-shifting reductions [25]. We choose to use the particular term as it feels natural,

while we choose the notation commonly used to indicate the Karp one-many reductions,

as they bear strong resemblance to the reductions presented in this chapter.

Above all, let #A be the problem of counting the witnesses of A, and A ≤1-m
p B.

Then, if #B was easier than #A, we would transform any instance of A via f , solve #B

as a subroutine and decide that #A = g−1(#B).

As a notation, we may well write #A ≤1-m
p #B, as there is no confusion regarding the

meaning.

3.2 Counting complexity for the convex case

Lemma 3.6. #Conv-TRI ∈ #PE, as an immediate consequence of Theorem 2.7

In order to build the non-deterministic poly-time algorithm which proves TotP members-

hip for #Conv-TRI, we need the following:

Proposition 3.7. Let TC be a triangulation of a convex geometric graph. Then TC has

at least one edge of span 2.

Proof. Suppose this is not true, thus there is some triangulation T ′C ⊆ E that does

not include such an edge, in other words, the minimum edge span in T ′C is at least 3.

34

Therefore, given an edge of minimum span, say vivi+3 (the proof is similar whatever the

minimum span considered), it is easy to see that the quadrilateral vivi+1vi+2vi+3 has

none of its diagonals in T ′C , otherwise the latter would have an span-2 edge (Figure 3.1

– in general, if k is supposed to be the minimum span, we obtain a (k + 1)-gon with no

diagonals). Together with the fact that T ′C includes by definition no pairwise crossing

edges, we reach a contradiction: T ′C is not a triangulation, as it is not a maximal set of

pairwise non-crossing edges.

vi

vi+1vi+2

vi+3

Non-triangulated

region
|vivi+3| = 3

Figure 3.1: Illustrating the proof of Proposition 3.7

Proposition 3.7 is all we need to prove our self-reduction argument of this Chapter.

However, there is a stronger one (Proposition 4.2), which we will present in Chapter 4.

Let us add that we selected to mention both Propositions as it may contribute in a slightly

better overall understanding.

Theorem 3.8. #Conv-TRI ∈ TotP

We establish the membership of the problem in TotP by proving the correctness of

Algorithm 1, plus, of course, its polynomial running time. For the rest of this section,

we will make use of the traditional graph notation by a single letter (e.g. G), but always

assume this graph is fixed on a convex position on R2.

The algorithm is based on some simple properties of our problem, which together add

up to the desired result:

1. a trivial note, that the number of triangulations of a graph equals the number of

triangulations which include a specific edge e plus the number of triangulations of

G \ e.

2. Proposition 3.7, concerning the existence of span-2 edges in a triangulation,

3. and a self-reduction argument proved directly below.

Proposition 3.9 (Self-reduction argument for #Conv-TRI). Let G = (V,E) be a convex

geometric graph and #Conv-TRI(G) the number of existing triangulations. Then, for any

span-2 edge e = vi−1vi+1 we have that #Conv-TRI(G | e included) = #Conv-TRI(G \ vi).
In other words, splitting our convex geometric graph w.r.t. a span-2 edge e has the

property that the number of triangulations of G including edge e is equal to the number

of triangulations of the induced convex graph on vertices v0, ..., vi−1, vi+1, ..., vn−1.

Proof. Let vi−1vi+1 be part of triangulations T 1
C , ..., T

k
C , k ≥ 0 (notice that the proof

also stands for the set of triangulations being empty). As a triangulation comprises no

35

crossing pair of segments, then none of the above triangulations includes an edge incident

to vi, except for the mandatory for any triangulation vivi−1 and vivi+1 of the graph’s

perimeter. Therefore, any other edge of any T i
C can be seen as an edge of the convex

graph induced from G by deleting vertex vi. This proves the self-reduction argument, as

for any triangulation obtained for G \ vi, we may obtain exactly one triangulation of G.

v0

v7

v8
v9

→

G v0

v8

G \ v8

Figure 3.2: Splitting G w.r.t. edge v7v9. G has 2 triangulations featuring v7v9: the set of blue

edges plus either the green or the magenta edge. The very same stands for G \ v8.

Algorithm 1 runs in polynomial time. This is easily got by Lines 8 and 9, where

it is evident that any child computation is performed on a smaller graph. Worst case, by

Line 9, O(n2) child computations are invoked, each running in poly-time.

3.3 Counting complexity of Poly-TRI

To the best of our knowledge, the most comprehensive chain of reductions, starting by a

well-established NP-hard problem and leading to our Poly-TRI, is the following:

3SAT ≤p 3-connected Cubic Planar Hamiltonian Circuit [18] – (3.1)

≤p Max Planar Hamiltonian Circuit [42] – (3.2)

≤p Poly-TRI Theorem 2.10 – (3.3)

Counting reductions. The technique we will use to prove #P-hardness results, while

preserving the transitivity of the reductions, is to demonstrate that the above Karp re-

ductions are weakly parsimonious.

(3.1) For the first reduction of the chain, [33] claims to have proven what we need;

however, [25] argues that the proof is erroneous, while at the same time tweaks the original

reduction by Garey et al. [18], in order to achieve one appropriate for demonstrating #P-

hardness. For those purposes, the known #P-complete problem becomes #3̂SAT (shown

36

Algorithm 1 Non-deterministic algorithm for #Conv-TRI

Input: Convex geometric graph G = (V,E)

Output: #Conv-TRI, the computation tree has exactly #Conv-TRI+1 leaves

1: if Conv-TRI(G) yields “NO” (equivalently #Conv-TRI(G)=0) then

2: Stop

3: else

4: Non-deterministically choose between {Stop, call GenTree(G)} (*added dummy path*)

5: end if

6: procedure GenTree(G)

7: Select any span-2 edge in the triangulation that forced us here, say e = vi−1vi+1

(*it exists –Proposition 3.7– and can be found easily –properties of Conv-TRI/CIS algorithms*)

8: G0:= G \ vi (*self-reduction argument*)

9: G1:= G \ e
10: if Conv-TRI(G0)=“YES” and Conv-TRI(G1)=“YES” then

11: Non-deterministically choose between {call GenTree(G0), call GenTree(G1)}
12: else if Conv-TRI(G0) = “YES” then

13: call GenTree(G0)

14: else if Conv-TRI(G1) = “YES” then

15: call GenTree(G1)

16: else

17: Stop

18: end if

19: end procedure

by Valiant [40]) and the hardness is proved for the bigger class of Cubic Planar graphs.

In all, we obtain that:

Theorem 3.10 (Lískiewicz et al. (2003)). The Cubic Planar Hamiltonian Circuit

problem is #P-complete.

Due to the technicality of the reduction, we omit sketching it, as it would occupy an

unnecessarily large part of the Thesis, without offering any new perspectives or a better

intuition. Let us note though, that while [18] talks about the 3-connectivity of the build

by the reduction Cubic Planar Graphs, this is not a necessary condition for the reduction

in [42] to hold true. In fact, Garey et al. probably spotted the property and wanted

to indicate the difficulty in solving the HC problem within an even smaller graph class.

Lískiewicz et al. [25] fail to mention the 3-connectivity as a property of the constructed

graphs, indeed.

(3.2) Focusing on the Karp reduction in [42] which proves 3-connected Cubic Planar

Hamiltonian Circuit ≤p Max Planar Hamiltonian Circuit (3.2), we observe the fol-

lowing:

37

Corollary 3.11 (Observation on [42]). Let A be an instance of a Cubic Planar graph

with n vertices. In poly-time we can construct a Maximal Planar graph B with 55n verites

in such way that: A has k Hamiltonian circuits if and only if B has k · 64n Hamiltonian

circuits.

As a proof, we carefully go through the construction in [42]. Widgerson manages to

meticulously build a graph N (see Figure 3.3) with the following final properties and

resulting lemma:

• N is a planar graph on 55 vertices;

• all its faces but the outer (which is a hexagon) are triangles, in other words N has

3 · 55− 6− 3 = 156 edges;

• there are exactly 64 Hamiltonian paths between any two w-labeled vertices.

Lemma 3.12 (Wigderson [42]). Let G be a graph which has N as an induced subgraph

such that only its vertices of the outer face –labeled z or w– are adjacent to edges not in

N . Then:

(a) In any Hamiltonian circuit of G, all vertices of N appear consecutively between two

w-labeled vertices (marked as red, blue and green paths in Figure 3.3).

(b) Let e be an edge incident to a z-labeled vertex of N . If e /∈ N then it cannot

participate in any Hamiltonian circuit of G.

v
A:

z

w

z
w

z

w

⇔ B:
N (Nv)

Figure 3.3: Core of the reduction by Wigderson [42], based on the “gadget” subgraph N

In a nutshell, the construction consists of replacing each vertex v of A (a 3-connected

cubic planar graph) with a copy of graph N (denoted by Nv). Then, the resulting graph

can be quite easily completed into a maximal planar graph B, with the desired property

that A has a Hamiltonian circuit if and only if B has a Hamiltonian circuit. The idea is

partially illustrated in Figure 3.3: for every v ∈ A, if a Hamiltonian circuit traverses it as

the green (or blue or red) arc suggests, then for graph B there is a Hamiltonian circuit

traversing subgraph Nv using the green (or blue or red) w-labeled pair as entry and exit

vertices.

More importantly to us, Lemma 3.12(b) proves stronger than only guaranteeing the

if and only if or the reduction: it guarantees the 1:64 ratio of traversing each vertex in

A vs. each subgraph N in B as part of a Hamiltonian path. Essentially, the arguments

of [42] suffice to prove this claim, which we state as Corollary 3.11.

38

Note. The 3-Connectivity of the initial graph is not a prerequisite for the validity of

the reduction in [42], as the construction is only based on the graph being Cubic.

(3.3) For the last reduction, we simply recall Theorem 2.10: it is parsimonious.

The overall result. Combining the above, we have indeed shown #P-hardness for

#Poly-TRI, following the weakly parsimonious reductions 3.4 – 3.6.

3̂SAT ≤p Cubic Planar Hamiltonian Circuit [25] – (3.4)

≤p Max Planar Hamiltonian Circuit Corollary 3.11 – (3.5)

≤p Poly-TRI Theorem 2.10 – (3.6)

Theorem 3.13. #Poly-TRI is #P-complete.

39

An exact uniform

sampling algorithm for

convex triangulations4
In this Chapter, we present an elegant algorithm for uniform sampling and coding of

convex triangulations. The algorithm runs in a total O(n2) time, outperforming any

algorithm to our knowledge. Moreover, we may reasonably consider the first of the two

distinct processes of the algorithm as the preprocessing step, running in O(n2) time, as

one may need to generate multiple triangulations of convex polygon(s) of the same size.

This leaves us with another O(n2) time random generation/coding step, which is again a

significant improvement over any known algorithm. Interestingly, our method of analyzing

convex triangulations yields a two-parameter recursion where Catalan numbers appear.

4.1 Related work

The consideration of different triangulations of a point set first appears in a well-studied

form in the middle of the 18th century by Leonhard Euler: he successfully conjectured

the closed formula for the number of triangulations of the convex n-gon, that was what

we denote now by Cn−2, the (n− 2)-th Catalan number. These numbers, named after the

Belgian mathematician Eugène Charles Catalan, satisfy the following basic relations:

Cn+1 =
n∑

k=0

CkCn−k, C0 = 1 (4.1)

Cn =
1

n+ 1

(
2n

n

)
, C0 = 1 (4.2)

They occur as the solution of a very large number of counting problems in combina-

torics. Stanley [38] gives more than 200 interpretations, more than 60 exercises, in all, a

spectacular volume of work centered around the Catalan numbers.

While for convex graphs it is the Catalan numbers that give the exact number of

triangulations, no such formula exists for the generic case. Also, enumerating the trian-

gulations is not an easy task: already Cn = Θ(n−3/24n), while the best known bounds

for the generic case are currently set a lower Ω(2.43n) (Sharir et al. [36]) and an upper

O(30n) (Sharir and Sheffer [34]). Naturally, there has been also work on counting the

41

triangulations given a specific point set asymptotically faster than by enumerating all

triangulations ([1]), and approximately counting with favorable compromises ([2]).

Another modern view of the same core problems is to efficiently generate random tri-

angulations of point sets. There has been significant work on such problems, especially

since the 1990s. Epstein and Sack [16] propose an O(n4) algorithm for exact sampling

over the triangulations of any simple polygon, which include the convex ones. This result

appears to be improved by Ding et al. [15] to an O(n2 + |E|1.5) time, where E is the set

of diagonal edges (which lie inside the simple polygon). Moreover, the authors divide the

algorithm in a preprocessing step, requiring O(n2) time, and the main sampling proce-

dure, requiring the O(|E|1.5) time. We note that for the convex n-gon, the maximum of

n(n − 3)/2 interior diagonal edges occurs, therefore the running time of the aforemen-

tioned algorithm is dominated by an O(n3) term. The works of Denny and Sohler [12]

and Poulalhon and Schaeffer [32] give efficient coding and sampling algorithms for plane

triangulations seen as maximal planar graphs. Sharir and Welzl [35] also deal with max-

imal planar graphs with n interior points, but focus on obtaining bounds on the vertices’

degree and use the result to get bounds on the total number of such graphs (see also

[36, 34]).

An alternate way to attack triangulations is by means of structures and procedures

which relate and move along the similar ones, most commonly triangulations that differ by

a single edge flip: The work of Hurtado and Noy [22] builds a tree of convex triangulations,

with a parent-child relationship fixed by an edge flip; Molloy et al. [28] and McShine and

Tetali [27] build random walks on relevant structures using the same principle and study

their mixing time – the latest obtaining an approximate sampling algorithm running

in O(n5) time. Parvez et al. [31] give an algorithm to generate all triangulations of a

simple polygon, essentially in the same manner as in [22], in their attempt to triangulate

a triconnected planar graph, introducing the measuring of time complexity per output

triangulation.

4.2 Preliminaries

When counting, sampling, coding or generating convex triangulations, it is established

that we assume a n-gon in convex position on R2, and all potential diagonals can be used

to obtain a triangulation. Note the difference to our triangulation existence problems,

where the diagonals can be selected only if they appear in the given edge set E. Thus, to

take advantage and easily translate our aforementioned notation, algorithms, propositions

and proofs in this context, we simulate our assumption by working within the subclass of

complete convex (geometric) graphs. Briefly:

Remark 4.1. All triangulations of a convex n-gon are exactly all the triangulation in-

stances TC of the convex geometric Kn.

The convex Kn. We will often use the term “convex Kn” as an alternate to the

complete convex graph, taking into account that all convex drawings of Kn are isomorphic,

and therefore there is a single complete convex graph (convex Kn).

42

Consecutive vertices and span-2 edges. As an analog to the notion of consecutive

vertices, given a proper labeling of the convex polygon, we define two consecutive span-2

edges to be a pair of edges of the form vi−1vi+1, vivi+2. Moreover, we know that K3 has

no span-2 edges, K4 has two and, for n ≥ 5, Kn has exactly n of such edges. For n ≥ 5

and any vertex vi, we denote by ei the span-2 edge vi−1vi+1, in other words, the edge that

may form a triangle together with vi.

The Kn,−m graph. We will need to work on specific graphs, that allow for the desired

structure to be witnessed. We define Kn,−m to be the nearly complete convex Kn which

misses only m consecutive span-2 edges. Therefore:

• Kn,0 ≡ Kn and when properly defined, Kn−m has
(
n
2

)
−m edges.

• For n ≥ 5, it is −n ≤ −m ≤ 0, as a graph may miss up to all n span-2 edges.

• The graphs K4,−1, K4,−2 are properly defined.

• For fixed n,m, all Kn,−m are isomorphic to each other (under rotation, Proposition

1.9).

• Finally, we will mark by Tn,−m the number of triangulations of Kn,−m. To practice

on the notation, remember we know Tn,0 for all n, it is Tn,0 = Cn−2.

Proposition 4.2. Every triangulation of a convex geometric graph on 5 or more vertices

has at least two span-2 edges.

Proof. A triangulation TC on n points requires that all faces but the outer are triangles.

The number of faces f is equal to n− 1 (e.g. use Euler’s characteristic on plane graphs),

therefore there is a total of n − 2 inner faces/triangles. Since all n non-diagonal edges

of TC are sides of the n − 2 triangles, by the pigeonhole principle, there are at least 2

triangles which use 2 sides of the n-gon as their sides. Then, those triangles’ third edge

must be an span-2 one and, as soon as n ≥ 5, those third edges do not coincide.

Proposition 4.3. A convex geometric graph with n ≥ 5 and only two2 span-2 edges which

appear consecutive in the drawing has no triangulation. Equivalently, Tn,−(n−2) = 0.

Proof. Two consecutive span-2 edges intersect, therefore together they do not form any

triangulation, unless only one is needed (quadrilateral). So there must be a third span-2

edge which, together with one of the 2 consecutive ones, is the obligatory second span-2

edge in a triangulation T of the graph (see Proposition 4.2). Contradiction, as the graph

has no other such edge.

4.3 The reduction argument and recursive relation

In Chapter 3, we presented a self-reduction argument based on partitioning the number

of existing convex triangulations TC into those which include a specific span-2 edge e

and those which do not (Proposition 3.9). Of course, if our input (unnecessarily) is the

complete convex graph, the non-deterministic Algorithm 1 built around the self-reduction

will give us the number of triangulations of the convex n-gon, i.e. the known Cn−2.

43

Our idea. A non-deterministic algorithm for counting in TotP can be transformed into

an (approximate) sampling algorithm, as long as each subtree of a node of the computation

tree is selected with probability (approximately) proportional to its size (see Sinclair and

Jerrum [37]). Using Proposition 3.9, a convex Kn, known to have Cn−2 triangulations

is reduced to a convex Kn−1, known to have Cn−3 triangulations and a Kn \ e, which

evidently has the remaining Cn−2 − Cn−3 triangulations (see Figure 4.1). However:

Remark 4.4. For the subclass of complete geometric graphs, Proposition 3.9 does not

prove a self-reduction argument.

In other words, we may know how to branch for a first time, but step 7 of Algorithm 1

will then prove insufficient. Eventually, we will work on the basis of the same technique

as in Chapter 3, this time with some added rules which reveal a hidden structure of the

reduction for this new problem.

e0

e1

e2

e3

e4

e5

e6

e7

v0

v1

v2

v3

v4

v5

v6

v7

K8v0

v1

v2

v3

v4

v5

v6

v7

K7

v0

v1

v2

v3

v4

v5

v6

v7

K8,−1

Figure 4.1: Reduction for the complete Kn, working on v0/e0

First relation. We have actually described the first of the equations defining the sought-

for recursive relation (the proof is omitted), as for the completeKn is reduced easily (again,

see Figure 4.1):

Tn,0 = Tn−1,0 + Tn,−1 (4.3)

The left subtree will feature all triangulations of a K7, which become all triangulations

of the initial K8 which include e0; while the right subtree features all triangulations of

the octagon which do not include e0. Note that we can easily store this information for

selecting each of the subtrees in a single bit of an adjacency matrix of the graph/polygon,

that is the one indicating the existence of e0. Of course, this will hold true for all branches

of the tree, as they are all created the same way.

44

Second relation. Now, we must reduce any Kn,−m in some orderly fashion. First,

observe Figure 4.2 for the case of m = 1, especially the marked blue vertex v1. If we

work on the selection or not of e1 for the next branching of our tree, we obtain either

a K7 ≡ K7,0 (left child), either a K8,−2. In general (Figure 4.3), a Kn,−m is reduced to

either a Kn−1,−m+1 (left child) or a Kn,−m−1 (right child).

v0

v1

v2

v3

v4

v5

v6

v7

K8,−1v0

v1

v2

v3

v4

v5

v6

v7

K7

v0

v1

v2

v3

v4

v5

v6

v7

K8,−2

Figure 4.2: Reduction for Kn,−1, working on the next vertex/span-2 edge

The key. It proves that the key to our reduction is the correct definition of the next

vertex (or span-2 edge) to work on. If, for instance, while on K8,−1 we select to work

on v5/e5, the nice to our reduction K7 does not pop out. More importantly, we would

miss the recurring of isomorphic graphs, which give us the number of triangulations they

feature per class (Kn,−m), and not per specific instance.

Definition 4.5 (Next vertex/span-2 edge). Given a convex geometric graph, properly

labeled*, missing onlym consecutive span-2 edges, ei, ei+1, ..., ei+m. The next vertex/span-

2 edge is the pair vm+1/em+1.

Now, let us formally prove our claim.

Theorem 4.6. For any Kn,−m and −n+ 1 ≤ −m, it is

Tn,−m = Tn−1,−m+1 + Tn,−m−1 (4.4)

Proof. Without loss of generality (see 1), we may relabel our initial graph –if necessary–

and have the edges e0, ..., em−1 as the missing span-2 ones. The next vertex/span-2 edge

is the pair vm/em. The right subtree is rooted to a Kn,−m−1 graph, as it derives from

deleting em, having a consecutive m+ 1 span-2 (but no other) edges missing.

For the left subtree, deleting vm leaves us to examine the edges of a graph on n − 1

vertices. We have that edges vn−1v1, v0v2, ..., vm−3vm−1 are all missing from the induced

subgraph, and together they add up to m − 1 consecutive span-2 edges. Edge vm−2vm,

45

missing from Kn,−m is not a potential edge of the smaller graph. Edge vm−1vm+1 has

now become a side of the (n−1)-gon, and vm−2vm+1 and vm−1vm+2 are now span-2 edges

of the new graph, as are all the (potentially) remaining vm+1vm+3, ..., vn−2v0. Thus, we

have obtained a Kn−1,−m+1 graph.

As a comment, since the argument holds as long as em is present, and it can be

vm+1 ≡ v0, we get the −n + 1 ≤ −m as a requirement; however, for our overall goal,

proving the argument for down to m = n − 3 would suffice, as we have shown that the

right child of a Kn,−n+3 graph, that is a Kn,−n+2, has no triangulations.

The “properly labeled” part of Definition 4.5. The left child of a Kn,−m in our

reduction is a graph on n − 1 vertices, in other words, w.r.t. our initial proper vertex

labeling, the labeling of the left child is not proper, as a vertex is missing. Therefore, we

must relabel this graph, and every left child graph of the tree. The following Rule gives

the final ingredient for building the desirable reduction tree.

Rule 1. Let Kr,−m be the left child of a node of a tree rooted at Kn. If m = 0, then

relabel the complete Kr as desired. Else, place r0 opposite to the first missing span-2

edge and complete with a proper relabeling. For each new graph, maintain a 1× n table

to indicate the mapping of the current to the initial labeling; current missing vertices of

the parent graph can be marked (e.g. −1 entries).

v0

v1

v2

v3

v4

v5

v6

v7

K8,−3v0 ≡ r0

v1 ≡ r1

v2 ≡ r2

v3

v4 ≡ r3

v5 ≡ r4

v6 ≡ r5

v7 ≡ r6

K7,−2

v0

v1

v2

v3

v4

v5

v6

v7

K8,−4

Figure 4.3: Reduction for Kn,−m

Defining the base cases. We are left to define the base cases of the recursive relations

4.3 and 4.4.

• Proposition 4.3 gives us Tn,−n+2 = 0 for pentagons and up; but T4,−2 gives the

number of triangulations of a quadrilateral missing all 2 span-2 edges, therefore the

relation is satisfied for all n ≥ 4.

• T3,0 = 1, as K3 is a triangle.

46

• T3,−1 is not properly defined and not actually needed, but for sake of completeness,

we shall consider it equal to zero.

Properties of the reduction tree

In all, we have build a triangulation tree with the following properties:

• Every node has 2 children (left and right – binary tree).

• Every node indicating Kr,−m needs O(n) time to be created and coded: store in-

tegers r and m, the 1 × n mapping matrix for the vertex labeling, plus a 2 integer

indicator for backtracking to the parent node: if it is a left child, hold [vm,−1], for

a right child hold [vm−1, vm+1] where vm is the critical vertex of the parent node

w.r.t. which the node branched (store as labeled in the parent node).

• For any node, the triangulations coded in the left subtree are disjoint to the ones of

the right subtree, as they differ at the edge w.r.t. which the node branched.

• If a node is K3, then stop and mark one triangulation (green leaf). Due to the

above, all green leaves are left children and there is a total of exactly Cn−2 green

leafs in the tree.

• If a node is of the form Kr,−r+2, then stop and mark no triangulation (red leaf)

• Considering all the above, from any green leaf, backtracking to the root is equivalent

to obtaining one specific triangulation; this is achieved in O(n) time.

0

1

23

4

0

1

23

4

0

1

23

4

0

1

23

4

T1

0

1

23

4

0

1

23

4

T2

0

1

23

4

0

1

23

4

0

1

23

4

T3

0

1

23

4

0

1

23

4

T4

0

1

23

4

0

1

23

4

0

1

23

4

0

1

23

4

0

1

23

4

T5

0

1

23

4

\v \e

Figure 4.4: Full reduction tree for the convex pentagon. Blue color indicates the working on

node. Relabelings are not marked. Each of its 5 triangulations is encoded in a different green leaf.

47

Figure 4.4 shows the full reduction tree for the convex K5. To give a for instance,

consider the green leaf encoding triangulation T3. T3 includes the triangle v0v3v4 (end of

reduction); as a left child of its parent node, which branched w.r.t. v2/v0v3, it includes v0v3
as an span-2 edge of the parent K4 subgraph, so triangle v0v2v3 is in T4. The K4 parent

node is a left child of the K5,−1 node which branched w.r.t. v1, therefore the triangulation

does also include triangle v0v1v2; finally (though not necessary), the K5,−1 node being a

right child of the K5 which branched w.r.t. v0 suggests that v4v1 is missing from the T4.

Note that this is a small example, and some leafs (T2, T4, T5) already indicate unam-

biguously the encoded triangulation. Observe also that even if it is not directly visible

that T1 differs from T4, our simple branching rule guarantees that T1 includes v4v1 as

an edge, while T4 does not, as they belong to a different subtree of the root node which

branched w.r.t. v0/v4v1.

4.4 The algorithm

By now, getting the final algorithm for exact sampling over convex triangulations, should

be almost straight-forward.

Exponential number of nodes, polynomial number of distinct isomorphisms.

The key to our efficient algorithm is the structure we revealed, a structure that allows

for the partitioning of an exponential number of nodes (only the green leaves give O(4n)

nodes) into polynomial number of classes. In fact, there are exactly (n − 3)(n − 1) + 1

classes, within each, all nodes/graphs are isomorphic to a specific Kn,−m characterized by

a uniquely defined Tn,−m.

Calculating all Tn,−m in O(n2) time. At each node of the reduction (and computa-

tion) tree, a Tn,−m quantity is attached, indicating the number of triangulations “hanging”

from the subtree rooted at this very node. Due to the recursion we built (4.3, 4.4 and

base cases), we are definitely able to calculate all these quantities. However, it is a lot

easier to calculate all of them in advance, bottom-up, in O(n2) time, i.e. O(1) time per

single quantity. Figure 4.5 illustrates the table created by the pseudocode:

• Initialize T3,0 := 1 (green cell in Figure 4.5).

• For 3 ≤ k ≤ n initialize Ti,−i+2 := 0 (red cells in Figure 4.5).

• For i = 4 up to n do:

1. For j = i− 3 down to 1 do:

Ti,−j := Ti−1,−j+1 + Ti,−j−1

2. Ti,0 = Ti−1,0 + Ti,−1

The filling of the table may well be considered as a pre-processing step for the algo-

rithm, as only n determines its entries, and one may need a lot of triangulations of the

same graph. Going even further, nothing deprives one of having a very large Tn,−m table

(its size in bits is O(n3)) and recall instantly whatever number they wish.

48

n
m 0 -1 -2 -3 -4 -5 -6 -7 -8 · · ·

3 1 -

4 2 1 0

5 5 3 1 0

6 14 9 4 1 0

7 42 28 14 5 1 0

8 132 90 48 20 6 1 0

9 429 297 165 75 27 7 1 0
... ↑ . . .

Cn−2

Figure 4.5: The table of triangulations Tn,−m for each Kn,−m. It has (n− 3)(n− 1) + 1 entries.

The arrows show the sequence in which the cells fill up.

Optimal coding and exact sampling

We know that Tn = Cn−2. The asymptotic behavior of Catalan numbers is the following:

Cn ≤
4n

n3/2
√
π

and lim
n→∞

4n

Cnn3/2
√
π

= 1

Therefore, it is evident that O(n) bits suffice to encode all triangulations of the convex n-

gon. Say we code all triangulations by exactly Cn−2 consecutive integers [0..Cn−2− 1], in

other words, optimally. Denote by T [0] a first triangulation encoded as 0, by T [Cn−2− 1]

the corresponding last triangulation, encoded by integer Cn−2 − 1.

Decoding and sampling. The two procedures are actually the same, the only diffe-

rence lies in whether a coin is tossed to get a code x. Regarding the coin toss for sampling,

calculate Cn−2 and toss the minimum number of coins needed (of course this number is

linear to n) to form an integer x ∈ [0, Cn−2 − 1]. It can be x ≥ Cn−2 and if so, then

toss again. The procedure ends in an expected ≤ 2 rounds and gives a uniformly random

integer 0 ≤ x ≤ Cn−2 − 1. This is the code of the sampled triangulation, proceed to the

main Algorithm 2.

Coding. We are given a triangulation TC of a convex n-gon triangulation, and proceed

almost identically as in Algorithm 2; only now the branching condition checks the edges

of the polygon (see Algorithm 3).

The branching rule. For both algorithms, it is easy to show they branch with proba-

bility analogous to the triangulations of each of the two subtrees rooted at the two children

(see Figure 4.6). Overall correctness is easy to prove, too.

49

Algorithm 2 Sampling/decoding of convex triangulations

Input: Convex geometric Kn, the Tn,−m table, (int x)

Output: A (random) triangulation TC = T [x]

1: if we want to sample then

2: Generate random x

3: else

4: x is given and already indicates a triangulation (decoding mode)

5: end if

6: a := 0, b := Cn−2 − 1

7: while a 6= b do

8: if x ∈ [a, a+ T(left child) − 1] then

9: branch left

10: b := a+ T(left child) − 1

11: else

12: branch right

13: a := a+ T(left child)

14: end if

15: end while

16: Backtrack to the root and built and output TC

Algorithm 3 Coding of convex triangulations

Input: Convex geometric Kn, the Tn,−m table, triangulation TC
Output: A code x for which it is TC = T [x]

1: a := 0, b := Cn−2 − 1

2: while a 6= b do

3: if Follow Rule 1 and Definition 4.5. If the next span-2 edge is in TC then

4: branch left

5: b := a+ T(left child) − 1

6: else

7: branch right

8: a := a+ T(left child)

9: end if

10: end while

11: Output x

Tree height and time complexity

It only remains to show that all the tree traversing algorithms described above are efficient.

Actually, they are O(n2). This is due to two final properties we note hereby:

1. As every Tn,−m can be recalled in O(1) time, any subroutine aiming to lead from a

node to either of its children needs O(n) time (see 4.3).

50

T5

T4 T5,−1

T3 T4,−1

T3 T4,−2

T4

T3 T4,−1

T3 T4,−2

T5,−2

T5,−3T4,−1

T3 T4,−2

pr = T4
T5

pr =
T5,−1

T5

pr =
T5,−2

T5,−1
pr = T4

T5,−1pr =
T4,−1

T4
pr = T4

T3

Figure 4.6: The universal sampling algorithm scheme: branching with probability analogous to

the size of the subtree. The height of the tree is O(n).

2. The height of the tree is linear. A nice way to see that is with the help of the

recursive relation and Figure 4.5: beginning at Tn,0, you may move 1 square to the

north (left child) or 1 to the east (right child). This holds for anytime you land on

the first column. Else, you may move either to the northwest square (left child) or

the east square (right child). Reaching T3,0 will need a maximum of 2(n−3) = O(n)

steps.

The above complete our analysis for the complexity and correctness of our algorithm. In

all, there is an O(n2) time exact sampling and optimal coding algorithm, as well as

a decoding algorithm for convex triangulations of a polygon on n vertices.

51

Bibliography

[1] V. Alvarez and R. Seidel. A simple aggregative algorithm for counting triangulations

of planar point sets and related problems. In Symposuim on Computational Geometry

2013, SoCG ’13, Rio de Janeiro, Brazil, June 17-20, 2013, pages 1–8, 2013.

[2] V. Alvarez, K. Bringmann, S. Ray, and R. Seidel. Counting triangulations and other

crossing-free structures approximately. Comput. Geom., 48(5):386–397.

[3] A. Angelopoulos. On the Variants of Thickness of a Graph, the Drawing Thickness of

a Graph Drawing and Complexity. Diploma thesis, Dep. of CS, School of Electrical

and Computer Engineering, National Technical University of Athens, 2012.

[4] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, New York, NY, USA, 1st edition, 2009. ISBN 0521424267,

9780521424264.

[5] F. Bernhart and P. C. Kainen. The book thickness of a graph. Journal of Combina-

torial Theory, Series B, 27(3):320–331, 1979.

[6] P. Bose, F. Hurtado, E. Rivera-Campo, and D. R. Wood. Partitions of complete

geometric graphs into plane trees. Comput. Geom., 34(2):116–125, 2006.

[7] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three

dimensions. Discrete & Computational Geometry, 16(4):361–368, 1996.

[8] G. Chartrand and F. Harary. Planar permutation graphs. Annales de l’institut Henri

Poincaré (B) Probabilités et Statistiques, 3(4):433–438, 1967.

[9] M. Chrobak and T. H. Payne. A linear-time algorithm for drawing a planar graph

on a grid. Inf. Process. Lett., 54(4):241–246, 1995.

[10] F. R. K. Chung, F. Thomson, Leighton, and A. L. Rosenberg. Embedding graphs

in books: a layout problem with applications to VLSI design. SIAM J. Algebraic

Discrete Methods, 8:33–58, 1987.

[11] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.

Combinatorica, 10(1):41–51, 1990.

[12] M. Denny and C. Sohler. Encoding a triangulation as a permutation of its point

set. In Proceedings of the 9th Canadian Conference on Computational Geometry,

Kingston, Ontario, Canada, August 11-14, 1997, 1997.

[13] S. L. Devadoss and J. O’Rourke. Discrete and Computational Geometry. Princeton

University Press, 2011.

53

http://www.corelab.ntua.gr/~angelop/Thesis/Alexandros_Angelopoulos_Thesis.pdf
http://www.corelab.ntua.gr/~angelop/Thesis/Alexandros_Angelopoulos_Thesis.pdf

[14] M. B. Dillencourt, D. Eppstein, and D. S. Hirschberg. Geometric thickness of com-

plete graphs. J. Graph Algorithms Appl., 4(3):5–17, 2000.

[15] Q. Ding, J. Qian, W. Tsang, and C. Wang. Randomly generating triangulations

of a simple polygon. In Computing and Combinatorics, 11th Annual International

Conference, COCOON 2005, Kunming, China, August 16-29, 2005, Proceedings,

pages 471–480, 2005.

[16] P. Epstein and J. Sack. Generating triangulations at random. ACM Trans. Model.

Comput. Simul., 4(3):267–278, 1994.

[17] I. Fáry. On straight line representation of planar graphs. Acta Univ. Szeged. Sect.

Sci. Math., 11:229–233, 1948.

[18] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar hamiltonian circuit

problem is np-complete. SIAM J. Comput., 5(4):704–714, 1976.

[19] F. Gavril. Algorithms for a maximum clique and a maximum independent set of a

circle graph. Networks, 3:261–273, 1973.

[20] F. Harary. Graph theory. Addison-Wesley, 1969.

[21] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,

1974.

[22] F. Hurtado and M. Noy. Graph of triangulations of a convex polygon and tree of

triangulations. Comput. Geom., 13(3):179–188, 1999.

[23] A. Kiayias, A. Pagourtzis, K. Sharma, and S. Zachos. The complexity of determining

the order of solutions. In Proceedings of the First Southern Symposium on Computing,

1998.

[24] A. Kiayias, A. Pagourtzis, and S. Zachos. Cook reductions blur structural differences

between functional complexity classes. In 2nd Panhellenic Logic Symposium, pages

132–137, 1999.

[25] M. Lískiewicz, M. Ogihara, and S. Toda. The complexity of counting self-avoiding

walks in subgraphs of two-dimensional grids and hypercubes. Theoretical Computer

Science, 304(1):129–156, 2003.

[26] E. L. Lloyd. On triangulations of a set of points in the plane. In FOCS, pages

228–240, 1977.

[27] L. McShine and P. Tetali. On the mixing time of the triangulation walk and other

catalan structures. In Randomization Methods in Algorithm Design, Proceedings of

a DIMACS Workshop, Princeton, New Jersey, USA, December 12-14, 1997, pages

147–160, 1997.

54

[28] M. S. O. Molloy, B. A. Reed, and W. Steiger. On the mixing rate of the triangulation

walk. In Randomization Methods in Algorithm Design, Proceedings of a DIMACS

Workshop, Princeton, New Jersey, USA, December 12-14, 1997, pages 179–190, 1997.

[29] N. Nash and D. Gregg. An output sensitive algorithm for computing a maximum

independent set of a circle graph. Inf. Process. Lett., 110(16):630–634, 2010.

[30] A. Pagourtzis and S. Zachos. The complexity of counting functions with easy decision

version. In Mathematical Foundations of Computer Science 2006, 31st Internatio-

nal Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006,

Proceedings, pages 741–752, 2006.

[31] M. T. Parvez, M. S. Rahman, and S. Nakano. Generating all triangulations of plane

graphs. J. Graph Algorithms Appl., 15(3):457–482, 2011.

[32] D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangulations.

Algorithmica, 46(3-4):505–527, 2006.

[33] J. S. Provan. The complexity of reliability computations in planar and acyclic graphs.

SIAM J. Comput., 15(3):694–702, 1986.

[34] M. Sharir and A. Sheffer. Counting triangulations of planar point sets. Electr. J.

Comb., 18(1), 2011.

[35] M. Sharir and E. Welzl. Random triangulations of planar point sets. In Proceedings

of the 22nd ACM Symposium on Computational Geometry, Sedona, Arizona, USA,

June 5-7, 2006, pages 273–281, 2006.

[36] M. Sharir, A. Sheffer, and E. Welzl. On degrees in random triangulations of point

sets. J. Comb. Theory, Ser. A, 118(7):1979–1999, 2011.

[37] A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly

mixing markov chains. Inf. Comput., 82(1):93–133, 1989.

[38] R. P. Stanley. Catalan Numbers. Cambridge University Press, 2015. doi: 10.1017/

CBO9781139871495.

[39] W. T. Tutte. The thickness of a graph. Indagationes Mathematicae, 25:567–577,

1963.

[40] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J.

Comput., 8(3):410–421, 1979.

[41] L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,

8:189–201, 1979.

[42] A. Wigderson. The complexity of the hamiltonian circuit problem for maximal planar

graphs. Technical Report 298, Department of EECS, Princeton University, 1982.

55

	Introduction
	Motivation
	Preliminaries
	Geometric graphs and (fixed) graphs' drawings
	Intersection vs. crossing of segments
	Convex geometric graphs
	Isomorphism in the context of convex geometric graphs
	Planarity

	Triangulation existence problems on R2
	Formulating TRI using our notation
	The convex point set case
	Polygon triangulation existence (Poly-TRI)
	Notes on triangulation existence

	Counting triangulations of geometric graphs
	Basics of Counting Complexity
	Counting complexity for the convex case
	Counting complexity of Poly-TRI

	An exact uniform sampling algorithm for convex triangulations
	Related work
	Preliminaries
	The reduction argument and recursive relation
	The algorithm

