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Abstract

A geometric graph is a set of points V' on the plane and a set of straight line segments E
with endpoints in V, potentially and instinctively associated with the abstract G(V, E).
When studying its thickness, i.e. partitioning its edges into crossing-free subsets (an
NP-hard optimization problem), the problem of triangulation ezxistence as a crossing-free
subset T of the edges naturally occurs, as a triangulation of V' is the largest such possible
set that may be defined on V. In this Thesis, we examine a family of triangulation
existence problems and classify them with respect to their complexity, both for their
deciston and their counting versions. The general case decision problem is the only one
appearing in bibliography (Lloyd, 1977, NP-hard), while we deal with the convez case
restriction and an “intermediate” polygon triangulation existence problem, fixing a new 2
by 2 table of results. In the final chapter, we modify our framework in order to build an
exact uniform sampling and optimal coding algorithm for convex triangulations, which
outperforms any known algorithm to date.

Keywords

geometric graph, triangulation existence, complexity, counting complexity, convex trian-
gulations sampling



Hepiingn

Fewypeteixd yedpnua xahettar €vo abvoho onueiwyv V' oto eninedo poll ye éva chvoho eudu-
YedupeY Tunudtwy (axpov) E tou éyouy to dxpa toug oto V', xou ebxoha cuoyetileton e Tov
«agpnenuévoy yedgpnua G(V, E). Mehetdvtog to méyog tou, Snhadt| T SLUEELoT TLV oY
ToL oe uoclvola eheliepa BlaoTawpwoewy (évo NP-8Uoxoho tedinua Beltiotonoinong),
TEOXUTTEL X0l TO TEOPBANUA TG Utapéng tpiywromoinong wg v EAOIEQO BICTAUPMCEWY U-
10c0OVOhO T' TV oy, xad®g pla Tprywvornoinon tou V amotehel To Y€yioTo uVATO TETOL0
olUvoho Tou ebvan Buvatdy va oplotel dedopévou tou V. H Aimhwpoting auvtr Epyaota agopd
OTY) UEAETT] LOIC OXOYEVELNS TEOBANUATWY UTapdng TELywvoTonong xou Tny Tavounon Toug
¢ TEOS TNV TOAUTAOXOTNTA amépaons, ohhd xon pétpnons. Amd autd, to yeriké mpépAnua
anépaong etvon 1o pévo yeretnuévo otn Pihoypagia (Lloyd, 1977, NP-80oxolo), eve eueic
MEAETAUE o’ EVOC TNV €Y TERITTWON TOV KUPTWOY VEQUETPIKDY Ypagnudtwy, o’ eTépou
EvaL <EVOLAPECOY TROBANUL UTapéns Tptywromoniévou ToAUY Yoy, SNuoupYmvTas Evay VEo
2 X 2 mhvoxa amOTEAECUATODY. 2T0 TEAEUTALO XEPIANLO, TPOTOTOLOUUE TO TAXGCLO TNG BOLAELAS
HOC ETOL WOTE VoL XATUOXEVACOUUE €vay ahyoptduo yio oudotouopgr deryuatolndio xon Bér-
TIOTN XWOXOTOMOY TV XVPTWV TELYWVOTOLCEWY, 0 OTO{0C UTEREYEL EVOVTL XAUE YVWOTOU
akyoptiuou €ng ofuepa.

AéZeic-xAed1d

YEWUETEXO YEdPNUa, UTOREN TELYWVOTOINoNS, TOAUTAOXOTNTO, TOAUTAOXOTNTO HETENONC,
detypotohnla XUPTOV TELY WVOTOLCEWY






Preface

I consider this work to be a first extension of my Diploma Thesis (NTUA, 2012, [3]). The
triangulation existence problems were formulated back then, as side problems to the main
objective I had in mind. The decision problems were solved quite quickly, however, there
has not been any attempt to publish these results, as I would have liked to solidify their
importance by showing more about their nature and relation to known problems.

The latest was achieved (in my opinion) with a little help by counting complexity.
This a go-to field for Corelab, due to Stahis Zachos’ and Aris Pagourtzis’ work; more
importantly, it proved to be a creative way both for better exploration of the triangulation
problems, plus for getting me involved in an area I initially thought it does not “speak”
to me. Chapters 8 and j are a concrete impression of the above, the results of which are
joint work with Eleni Mpakali, PhD student of Stathis Zachos.

A note on the writing style. There are definitions and proofs for which I omit any
reference, while I am certain, or even have seen they do appear in bibliography. My excuse
lies on at least one of the following: they are simple and easy to verify their correctness;
maintaining a slightly altered phrasing, notation or terminology works in favor of reading
seamlessly through the document.
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And then have to live with them

I hereby acknowledge the importance of people

Who try to be helpful whilst respecting their mate’s personal axioms

Lucky to know some of those

They are labeled: the close-ones

And I dedicate the present bit of achievement to them






CONTENTS

1 Introduction

1.1 Motivation . . . . . .. L e
1.2 Preliminaries . . . . . . . . .. e
1.2.1  Geometric graphs and (fixed) graphs’ drawings . . . . . . . . . ..
1.2.2 Intersection vs. crossing of segments . . . . . . .. ... ... ...
1.2.3 Convex geometric graphs . . . . . . . .. ... oL
1.2.4 Isomorphism in the context of convex geometric graphs . . . . . .
1.2.5 Planarity . . . . . . .. L

Triangulation existence problems on R?

2.1 Formulating TRI using our notation. . . . . . . . . ... ... ... ....
2.2 The convex point set case . . . . . . . . . . ... ...
2.3 Polygon triangulation existence (PoLY-TRI) . . . . . . . ... .. ... ..
2.4 Notes on triangulation existence . . . .. . .. ... ... ... ..

Counting triangulations of geometric graphs

3.1 Basics of Counting Complexity . . . . . . . ... .. ... ...
3.2 Counting complexity for the convex case . . . . . . . .. .. .. ... ...
3.3 Counting complexity of PoLY-TRI . . . . . . . . . . . .. ... . ... ...

An exact uniform sampling algorithm for convex triangulations
4.1 Related work . . . . . .. L
4.2 Preliminaries . . . . . . . ...

4.3 The reduction argument and recursive relation . . . . ... ... ... ..
4.4 Thealgorithm . . . . . . . . . . . ...

15

21
21
22
22
22
22
23
24

27
27
29
30
32

35
35
36
38






1.1
1.2

2.1
2.2

2.3

2.4
2.5

3.1
3.2

3.3

4.1
4.2
4.3
4.4

4.5

4.6

LisT OF FIGURES

G ~ H but Cy(G) # Cy(H), as intersections are not preserved. . . . . . . 24
Two different drawings of K4, the second not being a certificate of its
planarity. . . . . . .. oL 25
Triangulation existence given a geometric graph . . . . . . . . ... .. .. 28
Triangulation existence given a convex geometric graph. Due to the pro-

perties of convex graph drawings ([3]), we are allowed to show any convex

point set as on a single circle without loss of generality. . . . .. ... .. 29
Polygon triangulation existence. The “no” instances also demonstrate de-

generate (non-simple) polygons, which we do not search for. . . . . . . .. 31
The Golder-Harary graph, n = 11, m = 27, drawn with straight lines. . . 32
A d-regular geometric graph with no triangulation . . .. ... ... ... 33
Illustrating the proof of Proposition 3.7 . . . . . . . ... ... ... ... 37
Splitting G w.r.t. edge vyvg. G has 2 triangulations featuring v;vg: the set

of blue edges plus either the green or the magenta edge. The very same
stands for G\ vg. . . . . . .. 38
Core of the reduction by Wigderson [42], based on the “gadget” subgraph N 40

Reduction for the complete K,,, working on vo/eq . . . . . . . . . .. ... 46
Reduction for K, _;, working on the next vertex/span-2 edge . . . . . .. 47
Reduction for Ky, o o o v o v oo 48

Full reduction tree for the convex pentagon. Blue color indicates the wor-
king on node. Relabelings are not marked. Each of its 5 triangulations is

encoded in a different green leaf. . . . . .. ..o 49
The table of triangulations T;, _, for each K, _,. It has (n—3)(n—1)+1
entries. The arrows show the sequence in which the cells fill up. . . . . . . 51

The universal sampling algorithm scheme: branching with probability ana-
logous to the size of the subtree. The height of the tree is O(n). . . . .. 53

17






]_ INTRODUCTION

1.1 Motivation

The question whether a graph is planar is one of the most well-studied problems in Graph
Theory. Though it is not difficult to recognize a planar graph [21] and eventually draw
it without crossing edges, it opens up more difficult questions, regarding how non-planar
graphs can be drawn on R? as to better understand and work on them. So, Graph Drawing
is born naturally, with numerous goals, among which is to optimize graph visualization
and VLSI design. In [3] we give an additional motivation, that of air traffic separation
within congested airspace, and actually approach in a slightly different way: we are given
the drawing of some graph and raise questions on the geometric graph itself. Some sample
questions, given a geometric graph are the following:

e What is the optimal edge partitioning into plane subgraphs? The question points to
the notion of geometric graph thickness or drawing thickness (defined in [3]), which
differs from the classic thickness questions (graph thickness [39], book thickness
[5], geometrical thickness [14]) which concern an inherent to the abstract graph
attribute. In fact, this optimization problem is hard even on convex geometric
graphs [10].

e Worst case, how many layers suffice for making possible that any geometric graph
can be decomposed in that many plane subgraphs? This was the main concern of
[3], accompanied with a conjecture for the answer.

e What is the mazimum cardinality of a subset of the edges of the geometrical graph
such that it consists of pairwise non-crossing edges? Best case, a triangulation
appears as a subset of the edges.

The latest settled to be the main topic of this Thesis; apart from trying to reveal a
camouflaged tiling, it can be seen as a greedy criterion for plane decomposition, though
an approximation guarantee w.r.t. the optimal solution must be determined by further
exploration and work on the problem.
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1.2 Preliminaries

Throughout this Thesis, we focus on graphs drawn (embedded) with straight lines on R2.
In order to simplify the language and the problems’ formulation, we make extensive use
of the terms “geometric graph” and (less often) “graph drawing”.

1.2.1 Geometric graphs and (fixed) graphs’ drawings

Definition 1.1 (Geometric graph, ([6])). Given a set of points V in general position on
R? (i.e. no three are collinear) and a set E of straight line segments with endpoints in V/,
we call (V, E) a geometric graph. We may associate this straight-line drawing with the
underlying abstract graph G(V, E).

Since we have established a first association of a geometric object to an underlying
abstract graph, it is extremely useful to technically “move” in the opposite way, in the
sense of fixing a drawing of an abstract graph:

Definition 1.2 (Drawing of a graph G, ([3])). Given an (abstract) graph G(V, E), a (fized)
drawing D(G) on the plane consists essentially of a mapping function Dy : V' — R2. Then,
for every v;u; € E, the image D(v;v;) is the line segment Dy (v;) Dy (vj).

The above validate the use of the term “drawing of G” as an equivalent to “geometric
graph” as soon as it is context-clear: if V' and F were initially supposed to be points and
segments on the plane, we use the term “geometric graph (V, E)”; if they are vertices and
edges of an abstract graph, we make use of the term “drawing) D(G)”. This pair of defi-
nitions seems useful whenever one may work in between graph drawing and combinatorial

geometry.

1.2.2 Intersection vs. crossing of segments

As we are dealing with geometric graphs and especially their edges/segments, it is of im-
portance to clarify once and for all the terms “intersecting” and “crossing” when referring
to a pair of the above:

Definition 1.3 (Intersecting and crossing segments). Given two segments on R?, we will
say that they intersect if they have at least a point in common; if this point is unique and
not an endpoint of neither of the segments, then the two segments cross.

It will be mentioned, when necessary, that significant to our work graph classes are
equal and computationally equivalent when defining them with either term (see [3], Chap-
ter 5).

1.2.3 Convex geometric graphs

An important family of any geometric object is their confinement to be convex. The very
same stands for our object of interest:

20



Definition 1.4 (Convex geometric graphs). A geometric graph (V, E) is convez if all
points V' lay on the convex hull of V. Analogously to Definition 1.2, we define a graph’s
convex drawing C(G), with the appropriate additional constraint that the image of V'
through Cy should be a convex set.

However, taking advantage of the observations and proofs of [3], Chapter 3, we may
simplify the graph drawing definition:

Definition 1.5 (Convex graph drawing). A convex drawing C' of (the abstract) G(V, E)
on R? is sufficiently defined by a mapping function Cy : V — [0..n — 1].

This definition is equivalent to the o-cycle defined by Bernhart and Kainen [5], as a
relevant to their book thickness notion. It also appears in [10], where the problem of
determining the o-thickness of a graph is proved to be NP-hard. For us, it is useful to
provide a few more definitions, in order to maintain a more elegant phrasing later on.

Definition 1.6 (Proper vertex labeling). Given a convex geometrical graph, we will say
that its vertex labeling vy, ...,v,_1 is proper if its n vertices appear in order, clockwise
or counter-clockwise around its convex hull. Thus, we will assume that once we draw a
graph via the convex mapping function Cy/, we relabel to a proper labeling.

For our convenience, we will use modulo arithmetic for referring to the indexes of the
vertices of a convex geometric graph, i.e. we shall admit that all edges v;v;42, i € [0..n—1]
are properly defined, as v; = vy mod n, for any x,n. The following definitions may already
validate the reasoning behind this choice.

In Chapters 3 and 4, we will extensively refer to certain edges of our convex graphs,
called span-2 edges. Consequelnty, let us define the edge span:

Definition 1.7 (Edge (or diagonal) span for a convex polygon). Let V' be a convex point
set defining (among others) a convex n-gon on R2, and assume proper vertex labeling.
For every edge (diagonal) e = wyv; € E, we define its span, denoted by |e|, to be the
minimum distance of the vertices it touches around the convex hull. For any edge v;v; it

is |v;v;] = min{i — j mod n,j — ¢ mod n} . min{i — j,j — i}.

1.2.4 Isomorphism in the context of convex geometric graphs

For abstract graphs, isomorphism is none other than the existence of a permutation p of
the vertices between G and H such that vu is an edge of G if and only if p(u)p(v) is an
edge of H. We will need a stronger condition when working on convex geometric graphs;
as an illustration of why this is critical, see Figure 1.1: graphs G and H are isomorphic,
yet drawn via the same Cy their properties differ a lot.

As the key notion that can be properly defined in graph drawing, while the abstract graph
lacks it, is the notion of intersecting (and crossing) edges, isomorphism should be defined
with respect to this concept.

Definition 1.8 (Convex drawing isomorphism). Two convex geometric graphs are iso-
morphic if the vertex relabeling preserves all intersections.
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(a) Cv(G) (b) Cv(H)

Figure 1.1: G ~ H but Cy(G) # Cy(H), as intersections are not preserved.

Proposition 1.9. For a given convex geometric graph (properly labeled), define a vertex
r-rotation to be the permutation p, = [vy, Up41, ...y Un—1, V0, ..., Up—1] and a vertex mirroring
to be the permutation p,, = [vp—1,Vp—2, ..., v1, Ug]. Applying the synthesis of any number
of r-rotations or mirrorings, the image is a properly labeled graph, isomorphic to the
initial. In a few words, convex geometric graph isomorphism is closed under
rotation and mirroring.

1.2.5 Planarity
Central to graph theory is the notion of the planar graph.

Definition 1.10 (Planar graph). A graph is called planar if it can be drawn on the plane
without crossing edges. By Fary’s theorem [17], for any planar graph there is a straight
line drawing certificate.

Within the context of geometric graphs, planarity loses its strength, as we are not
concerned whether the underlying abstract graph is planar, we focus in the particular
drawing on the plane (see Figure 1.2). As an analog, we will give the following definition:

Definition 1.11 (Plane (sub)graph). Given a geometric graph (V| E), a (sub)graph
(V!,E") with V' CV, E' C (‘;) is characterized as plane if E’ is crossing-free.

As an example, the subgraph (V, {vgv1, v1ve, vgvs, vov2}) of the geometric graph of Figure
1.2b is one of its plane subgraphs.

Definition 1.12 (Outerplanar graph). An abstract graph G is called outerplanar if it
can be drawn on the plane without crossing edges and with all vertices on the outer region
of the drawing ([8]); equivalently, no vertex is totally surrounded by edges.

G is outerplanar if and only if it does not contain K3 and K4 as minors. Equivalently, if
and only if G+ K1 is planar. An outeplanar graph is maximal if no edge can be added to
the drawing without losing outerplanarity. A maximal outerplanar graph G(V, E), |V|=n
may be embedded as a polygon triangulation. That gives us |E| = 2n — 3, the sum of the
boundary edges, n, plus the number of diagonals in a triangulation, n — 3 ([20], [13]).
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Figure 1.2: Two different drawings of K, the second not being a certificate of its planarity.

Simple polygons defined within our context

The given definitions allow us to clarify another few useful notions for this Thesis.

Definition 1.13 (Simple polygon and diagonals). Given a geometric graph (V, E') with
|V| = n, a simple polygon is a plane C,, subgraph of (V, E). Given a simple polygon, a
diagonal is an edge lying entirely on its the inner region.
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TRIANGULATION EXISTENCE
PROBLEMS ON R?

A long existing result by Lloyd [26], dating back in 1977, states that: “given a set V' of
points on the plane and a subset E of segments with endpoints in V', it is NP-hard to
determine if a triangulation of V' exists”. Even without a strict definition of triangulation,
there should be only little confusion regarding what to search for in order to verify a “yes”
instance. Also, it is easily noticed that the input of this very combinatorial problem is a
geometric graph of ours, and having noted so, let us properly define what a triangulation
is and introduce our notation, beginning with Lloyd’s problem.

2.1 Formulating TRI using our notation

Definition 2.1 (Triangulation of a geometric graph). Given a set of points V' and seg-
ments F C (‘2/) on the plane, we will say that the set T C FE is a triangulation if no
segments of T pairwise cross and |T'| = 3n — h(V) — 3, where h(V) is the number of points
on the convex hull of V. Such a set of this size is the maximum possible (see Lemma 2.3).

Definition 2.2 (Triangulation existence (TRI)). Given a geometric graph, TRI is the
decision problem whether a triangulation 7' C E exists.

Lloyd [26] used a reduction from SAT to prove TRI is NP-hard. NP membership can be
easily established, as verifying whether a guessed set T, |T'| = 3n — h(V') — 3 does not
include crossing segments (edges) can be clearly done in O(|T'|?) time. In the following
sections we define and give the complexity of two similar problems which —in our opinion—
derive quite naturally as we move along the points’ generic-to-convex-position spectrum.

As a note: there is no doubt that the term “triangulation” is frequently used in a
number of different contexts; so, we chose the term “triangulation existence” to attach to
all three problems, a term which captures the output’s inherence to the given input. Also,
for sake of completeness, let us prove the simple lemma which links our triangulation to

the maximum set of pairwise non-crossing segments on n points on the plane.

Lemma 2.3. Let T be a maximum set of pairwise non-crossing segments that can be
defined on point set V' with |V| = n and convex hull H (V) with size |H(V)| = h(V).
Then |T| =3n — h(V) — 3.
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(a) A “no” instance of TRI (b) A “yes” instance of TRI

Figure 2.1: Triangulation existence given a geometric graph

Proof. 1t is easy to observe that whatever the set T', the subgraph (V,T') is a planar graph,
as the drawing itself is a certificate for planarity. We now compare (V,T') to a maximal
planar graph on n vertices, which has exactly 3n — 6 edges and all its faces, including the
outer face, bounded by 3 edges. In our embedding, which consists only of straight lines,
we may well triangulate all faces but the outer face, which is necessarily bounded by h(V)
edges, therefore h(V') — 3 edges are missing from what would be a maximal planar graph:
label the h(V) points, p1, ..., pp(v), (counter)clockwise around the convex hull and draw
the non-crossing arcs p1ps, pipa, ..., P1Pp(v)—1- As a consequence, a triangulation 7" has
size of exactly 3n — 6 — (h(V) —3) =3n — h(V) — 3.

O

As reminder for Karp reductions

The most useful tool in order to prove NP-hardness (or P membership) of a problem
is the polynomial-time Karp reduction. Maintaining the notation and approach of [4] we
define:

Definition 2.4 ((Polynomial-time) Karp reduction). We will say that a language L is
Karp-reducible to L’ if there is a polynomial time computable function f : {0,1}* —
{0, 1}*, such that for every x it holds € L < x € L. We denote by L <, L'.

In fact, let A be a problem defining language L? of accepting inputs. If for some problem
B it is shown that A <, B, then B cannot be easier than A to solve, because then we
would efficiently transform any instance z of A (string) via f and use the algorithm for
B to decide if € LA. The following are equivalent, given A <, B:

e If A is NP-hard then B is NP-hard.
o If B€ P then A € P.

In Chapter 3 we will extend the notion of Karp reductions, to ensure similar deductions
can be made w.r.t. counting the problems’ solutions. When referring to Karp reductions,
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we may omit to write it is polynomial time, as this prerequisite has become absolutely
clear over time.

2.2 The convex point set case

It is quite without question that if a problem is defined on an arbitrary point set on R2,
then its restriction to a convex point set will also be studied. No more to say, CoNv-TRI
is defined as follows:

Definition 2.5 (Conv-TRI). Given a convex set of points V' and segments E C (‘2/) on
the plane, Conv-TRI is the decision problem whether a triangulation T C F exists.

Here, having all points on the convex hull (A(V) = n) gives that the size of the triangu-
lation T is equal to the size of a convex point set triangulation 3n — h(V) — 3 = 2n — 3,
which, of course, equals the size of the polygon triangulation.

(a) A “no” instance of Conv-TRI (b) A “yes” instance of Conv-TRI

Figure 2.2: Triangulation existence given a convex geometric graph. Due to the properties of
convex graph drawings ([3]), we are allowed to show any convex point set as on a single circle
without loss of generality.

Conv-TRI is polynomially solvable

To easily prove the above, we need to focus on a specific graph class:

Definition 2.6 (CIRCLE graphs). A graph is a CIRCLE graph if it is the intersection
(or crossing) graph of chords in a circle.

The “crossing graph” is defined analogously to the intersection graph and both are essen-
tially the following scheme: a vertex is created for every edge (or, generally, our objects
that may conflict) and an edge is placed between two vertices if the respective objects
they represent, i.e. the edges of the initial graph, cross (or, generally, conflict). Such
a construction acts like a bridge between graph drawing and classic graph theory, as it
attempts to capture the structure of a geometric object within a resulting abstract graph.
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In [3], Chapter 5, we have shown that for CIRCLE graphs, altering the original defi-
nition to use the term “crossing graph” instead of “intersection graph” does not have an
impact on the class itself’.

Now we may present the theorem which relates our problem to the INDEPENDENT SET
on CIRCLE graphs. In a few words, taking advantage of the CIRCLE class membership,
CIRCLE INDEPENDENT SET (CIS) can be seen as seeking a set of k pairwise non-crossing
chords of a circle. The problem is known to be efficiently solvable (Gavril [19]) and most
recent algorithms have improved the running time to O(nmin(d, «))-time, d being the
density of the graph and « being its independence number (Nash and Gregg [29]). Note
that both algorithms maintain the independent set, which can then be instantly accessed

to work on.
Theorem 2.7. Conv-TRI can be reduced in polynomial time to CIS.

Proof. We need to show that any instance (V| E) of points and line segments on the
plane, V being convex, can be transformed to an instance V., = f(V), E. = f(E), where
all v € V_ lie on a circle and for any two ej,ea € E, e; crosses ey if and only if f(e;)
intersects f(e2).

All we need to do is to remind that placing the points of V' around an arbitrary circle
C in the same order of appearance as in V' (function f : V — C) is sufficient to guarantee
that precisely every crossing of E is preserved by f and no new crossings appear (see
[3], Chapter 3). This needs no more time than running a convex hull algorithm to find
the order of the points of V' (O(|V|logh(V)), [7]). To finalize the proof, we recall that
|Tc| = 2n — 3 (if such triangulation exists) and only need to run a CIS algorithm with
input V,, E. and k = 2n — 3. O

2.3 Polygon triangulation existence (Poly-TRI)

A variation of the two aforementioned problems, that might be considered as an in-
between problem, is to look for a triangulated simple n-gon,Tp, using the existent edges
of a geometric graph. In order to be more clear, by the term “simple” we mean that
the polygon does not cross itself, neither one may argue that it consists of more than n
segments (see Figures 2.3a, 2.3c).

Note that there is not necessarily a single such polygon defined on a point set V,
unless the point set is convex, in which case the problem coincides with Conv-TRI. Note
also that:

e a triangulated n-gon will comprise exactly 2n — 3 segments (|Tp| = 2n — 3);
e the abstract (V,Tp) will be a maximal outerplanar graph (see Definition 1.12);
e and, due to the above, (V,Tp) will have a Hamiltonian circuit.

Formally:

Definition 2.8 (PoLYy-TRI). Given a set of points V' and segments £ C (‘2/) on the plane,
PoLy-TRI is the decision problem whether a set of 2n — 3 pairwise non-crossing segments
Tp C F exists, such that the subgraph (V,Tp) is maximal outerplanar.

1Same stands for SEG graphs, the intersection graphs of a set of segments on the plane.
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Ak

(a) A “no” instance of PoLy-TRI: (b) A “no” instance of PoLY-TRI, (c) A  “yes” instance of
all Hamiltonian circuits are dege- with a marked degenerate n-gon  PoLy-TRI.
nerate polygons (one marked). (see the enlarged vertex).

Figure 2.3: Polygon triangulation existence. The “no” instances also demonstrate degenerate
(non-simple) polygons, which we do not search for.

Proving NP-complentess
Our definitions and observations lead to the following lemma:
Lemma 2.9. PoLy-TRI € NP.

Proof. Guessing a set Tp of size 2n — 3, we may do the following (even using the most
naive algorithms) in polynomial time:

1. check that no two edges cross (O(n?));

2. check that every pair of adjacent vertices (2n — 3 pairs) has at least one common
neighbor (O(n) checks), thus belong to a triangle, and that for every such triangle
there is no point of V' lying inside (another O(n) checks).

O]

Poly-TRI is NP-complete

A result of Wigderson (1982) states that given a maximal planar graph, it is NP-complete
to determine if it has a Hamiltonian circuit. We will consider this (Max PLANAR HC) as
our known NP-complete problem and establish a polynomial-time reduction to PoLy-TRI.
Eventually, we will need to efficiently draw any given instance G on the plane so that the
occuring geometric graph (V. E) has a polygon triangulation if and only if the abstract
G has a Hamiltonian circuit. Let us state:

Theorem 2.10. Max PLANAR HC can be reduced in polynomial time to PoLY-TRI. The
reduction is parsimonious.

Proof. Let G be our maximal planar graph. A straight-line drawing D(G) can be con-
structed in O(n)-time and onto a (2n —4) x (n — 2) grid ([11], [9]).

Suppose that G has no Hamiltonian circuit. Then D(G) cannot have a polygon trian-
gulation Tp because this being true would force a Hamiltonian circuit in G; contradiction.
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Now, suppose G has a Hamiltonian circuit C. Whatever the drawing D, D(C) is a
simple polygon on all n points/vertices and its interior region is triangulated because all
faces of a maximal planar graph are triangles.

Ii is easy to demonstrate that the reduction preserves the number of solutions. Assu-
ming two different Hamiltonian circuits, C; and Cy, of G and using the same argument
as above, each cycle leads to obtaining a different polygon triangulation since the diffe-
rent sequences of the vertices around each circuit define different polygonal lines on the
(drawn) graph. O

An illustrated example: we may consider the Golder-Harary graph, introduced in
1975 (Figure 2.4), the smallest of the class of maximal planar graphs which does not have
a Hamiltonian circuit.

Figure 2.4: The Golder-Harary graph, n = 11, m = 27, drawn with straight lines.

2.4 Notes on triangulation existence

This subsection shall be considered an appendix, and it is presented here for any future
reference.

Proposition 2.11 (Triangulation existence guarantee). Let e’ be the minimum cardi-
nality of E such that for any geometric graph (V, E), |V| = n there exists a triangulation
T C E. Then e} = (g)

Proof. Consider a complete geometric graph on point set V. If we remove just one of the
segments joining two consecutive convex hull points, then there is no possible triangulation
T. Thus, only a complete geometric graph guarantees a triangulation existence! Notice
that the very same stands for the convex case. O

Proposition 2.12 (Polygon triangulation existence guarantee). Let e} be the minimum
cardinality of F such that for any geometric graph (V, E), |V| = n there exists a polygon
triangulation Tp C E. Then e}, > % =(3) — (n—2).

30



Proof. Consider the complete graph on all points but vy € V' (thus, there is a K,_1 in
the drawing), plus an arbitrary edge incident to vg, say vovz, z € V' \ {vg}. The graph has
(”;1) +1= (;L) — (n — 2) edges and does not allow any Tp, because vy does not belong
in any triangle. O

The conclusion drawn from the above is a simple one: bounds are not a useful tool to
answering the questions we discussed.

Proposition 2.13. For every d there is a d-regular geometric graph G drawn on some
set V, with |V| = 2d% — 6d + 2 such that there exists no triangulation T C E.

Proof. The construction is as shown in Figure 2.5. Each of the nodes in the rectangles form
a complete bipartite graph K;_34-3. The shaded regions indicate a Kj 43 star, while
the red regions are empty of edges and the witnesses for the lack of a triangulation. [

Kq_34-3
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Figure 2.5: A d-regular geometric graph with no triangulation
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COUNTING TRIANGULATIONS
OF GEOMETRIC GRAPHS

As described in the abstract, we shall bring Counting Complexity into play, in order to
obtain new results and insights for our triangulation existence problems. First, we give a
few words on the basics of Counting Complexity and describe the reductions used to show
hardness results for #P. Then on, we deal with the counting versions of our problems.

3.1 Basics of Counting Complexity

The complexity class #P was introduced by Valiant [41], in an attempt to properly classify
the problem of computing a 0-1 matrix’s permanent.

Definition 3.1. #P is the class of functions that count the exact number of accepting
paths of a polynomial-time nondeterministic Turing machine (PNTM).

Compared to NP, which determines “only” if there is at least one accepting path in the
computation tree, one understands its power.

#P contains several interesting problems, which are actually the counting versions of
classical NP problems. The class does feature complete problems e.g. #SAT, #CLIQUES.
Note that for those two problems, their decision version is an NP-hard problem. However,
there are also problems with easy decision version (in P) that are shown to be #P-complete
under Cook reductions (#PERFECT MATCHINGS, #DNF-SAT).

Cook vs. Karp reductions. #P is not closed under Cook reductions (under reasonable
assumptions). So, changing the reductions to Karp may yield a better characterization
of counting problems with easy decision version (#PE). In this direction, the work of
Pagourtzis and Zachos [30], along with the definition of the very interesting TotP (in
[23]) and the results in [23] and [24], give a detailed overview of the structure and relations
among counting complexity classes. Let us define:

Definition 3.2 (FP). FP is the class of counting problems for which there exists a
polynomial time deterministic Turing machine (PDTM).

Definition 3.3 (TotP, Kiayias et al. (1998)). TotP is the class of functions that count
the total number of computational paths of a PNTM. In [30] it was shown that TotP is
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exactly the Karp closure of self-reducible functions of #PE. The problems corresponding
to those functions are counting problems for which there exists a PNTM with exactly as
many computation paths as the output value (plus 1).

Then, it is FP C TotP C #PE C #P. Inclusions are proper unless P=NP. At the same
time, TotP and #P are Cook-equivalent.

Reductions for counting problems

In Chapter 2 we have already made use of Karp reductions (defined in the conclusion in
Section 2.1) for showing Theorems 2.7 and 2.10. Working in counting the solutions, a
generic Karp reduction may not be sufficient to show that a difficulty in counting for A
will translate to difficulty in counting for B; whereas, the following special case will do so
(still following the main definition of [4]):

Definition 3.4 (Parsimonious Karp reduction). We will say that a Karp reduction of
A to B is parsimonious if the polynomially computable function f is a bijection of all
witnesses for A to all witnesses for B. We will denote by A g};l B.

Definition 3.5 (Weakly parsimonious reduction). We will say that a Karp reduction
of A to B is weakly parsimonious if for the mapping function f, there is a polynomially
computable function g such that A has # A witnesses if and only if B has g(#A) witnesses.
We will denote by A g};m B.

The term “weakly parsimonious” often appears in bibliography, though there are a
number of relevant terms, one-many, many-one, even the very special definition and case
of bit-shifting reductions [25]. We choose to use the particular term as it feels natural,
while we choose the notation commonly used to indicate the Karp one-many reductions,
as they bear strong resemblance to the reductions presented in this chapter.

Above all, let #A be the problem of counting the witnesses of A, and A g,l;m B.
Then, if #B was easier than # A, we would transform any instance of A via f, solve #B
as a subroutine and decide that #A4 = g~ (#B).

As a notation, we may well write #A Sll,‘m #B, as there is no confusion regarding the
meaning.

3.2 Counting complexity for the convex case

Lemma 3.6. #Conv-TRI € #PE, as an immediate consequence of Theorem 2.7

In order to build the non-deterministic poly-time algorithm which proves TotP members-
hip for #Conv-TRI, we need the following:

Proposition 3.7. Let T be a triangulation of a convex geometric graph. Then T has
at least one edge of span 2.

Proof. Suppose this is not true, thus there is some triangulation T/ C E that does
not include such an edge, in other words, the minimum edge span in T, is at least 3.
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Therefore, given an edge of minimum span, say v;v;1+3 (the proof is similar whatever the
minimum span considered), it is easy to see that the quadrilateral v;v;11v;12v; 13 has
none of its diagonals in T}, otherwise the latter would have an span-2 edge (Figure 3.1
— in general, if k is supposed to be the minimum span, we obtain a (k + 1)-gon with no
diagonals). Together with the fact that T/, includes by definition no pairwise crossing
edges, we reach a contradiction: T/, is not a triangulation, as it is not a maximal set of
pairwise non-crossing edges. O

Non-triangulated
region

Vi+2 Vi+1

Figure 3.1: Illustrating the proof of Proposition 3.7

Proposition 3.7 is all we need to prove our self-reduction argument of this Chapter.
However, there is a stronger one (Proposition 4.2), which we will present in Chapter 4.
Let us add that we selected to mention both Propositions as it may contribute in a slightly
better overall understanding.

Theorem 3.8. #Conv-TRI € TotP

We establish the membership of the problem in TotP by proving the correctness of
Algorithm 1, plus, of course, its polynomial running time. For the rest of this section,
we will make use of the traditional graph notation by a single letter (e.g. G), but always
assume this graph is fixed on a convex position on RZ.

The algorithm is based on some simple properties of our problem, which together add
up to the desired result:

1. a trivial note, that the number of triangulations of a graph equals the number of
triangulations which include a specific edge e plus the number of triangulations of
G\e.

2. Proposition 3.7, concerning the existence of span-2 edges in a triangulation,

3. and a self-reduction argument proved directly below.

Proposition 3.9 (Self-reduction argument for #Conv-TRI). Let G = (V, E) be a convex
geometric graph and #CoNv-TRI(G) the number of existing triangulations. Then, for any
span-2 edge e = v;_1v;4+1 we have that #Conv-TRI(G | e included) = #Conv-TRI(G \ v;).

In other words, splitting our convex geometric graph w.r.t. a span-2 edge e has the
property that the number of triangulations of GG including edge e is equal to the number
of triangulations of the induced convex graph on vertices vg, ..., V;—1, Vi+1, ---, Un—1-

Proof. Let v;—1v;11 be part of triangulations Té, ..,TE, k > 0 (notice that the proof
also stands for the set of triangulations being empty). As a triangulation comprises no
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crossing pair of segments, then none of the above triangulations includes an edge incident
to v;, except for the mandatory for any triangulation v;v;—1 and v;v;41 of the graph’s
perimeter. Therefore, any other edge of any Tév can be seen as an edge of the convex
graph induced from G by deleting vertex v;. This proves the self-reduction argument, as
for any triangulation obtained for G\ v;, we may obtain exactly one triangulation of G.

O

Figure 3.2: Splitting G w.r.t. edge v7vg. G has 2 triangulations featuring v;vg: the set of blue
edges plus either the green or the magenta edge. The very same stands for G \ vg.

Algorithm 1 runs in polynomial time. This is easily got by Lines 8 and 9, where
it is evident that any child computation is performed on a smaller graph. Worst case, by
Line 9, O(n?) child computations are invoked, each running in poly-time.

3.3 Counting complexity of Poly-TRI

To the best of our knowledge, the most comprehensive chain of reductions, starting by a
well-established NP-hard problem and leading to our PoLY-TRI, is the following:

3SAT <, 3-CONNECTED CUBIC PLANAR HAMILTONIAN CIRCUIT [18] - (3.1)
<, MAX PLANAR HAMILTONIAN CIRCUIT [42] - (3.2)
<, PoLY-TRI Theorem 2.10 — (3.3)

Counting reductions. The technique we will use to prove #P-hardness results, while
preserving the transitivity of the reductions, is to demonstrate that the above Karp re-
ductions are weakly parsimonious.

(3.1) For the first reduction of the chain, [33] claims to have proven what we need,;
however, [25] argues that the proof is erroneous, while at the same time tweaks the original
reduction by Garey et al. [18], in order to achieve one appropriate for demonstrating #P-
hardness. For those purposes, the known #P-complete problem becomes #3SAT (shown
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Algorithm 1 Non-deterministic algorithm for #Conv-TRI

Input: Convex geometric graph G = (V, E)
Output: #Conv-TRI, the computation tree has exactly #CoNv-TRI+1 leaves

1: if Conv-TRI(G) yields “NO” (equivalently #Conv-TRI(G)=0) then

2: Stop

3: else

4: Non-deterministically choose between {Stop, call GENTREE(G)} (*added dummy path*)

5: end if

6: procedure GENTREE(G)

7 Select any span-2 edge in the triangulation that forced us here, say e = v;_1v;41
(*it exists —Proposition 3.7— and can be found easily —properties of Conv-TRI/CIS algorithms*)

8: Go:=G \ v; (*self-reduction argument*)

: Gliz G \ e

10: if Conv-TRI(Gp)=“YES” and Conv-TRI(G;)=“YES” then

11: Non-deterministically choose between {call GENTREE(Gy), call GENTREE(G)}

12: else if Conv-TRI(Gp) = “YES” then

13: call GENTREE(G))

14: else if Conv-TRI(G1) = “YES” then

15: call GENTREE(G)

16: else

17: Stop

18: end if
19: end procedure

by Valiant [40]) and the hardness is proved for the bigger class of Cubic Planar graphs.
In all, we obtain that:

Theorem 3.10 (Liskiewicz et al. (2003)). The CuBIc PLANAR HAMILTONIAN CIRCUIT
problem is #P-complete.

Due to the technicality of the reduction, we omit sketching it, as it would occupy an
unnecessarily large part of the Thesis, without offering any new perspectives or a better
intuition. Let us note though, that while [18] talks about the 3-connectivity of the build
by the reduction Cubic Planar Graphs, this is not a necessary condition for the reduction
n [42] to hold true. In fact, Garey et al. probably spotted the property and wanted
to indicate the difficulty in solving the HC problem within an even smaller graph class.
Liskiewicz et al. [25] fail to mention the 3-connectivity as a property of the constructed
graphs, indeed.

(3.2) Focusing on the Karp reduction in [42] which proves 3-coNNECTED CUBIC PLANAR
HAMILTONIAN CIRCUIT <, MAX PLANAR HAMILTONIAN CIRCUIT (3.2), we observe the fol-

lowing:
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Corollary 3.11 (Observation on [42]). Let A be an instance of a Cubic Planar graph
with n vertices. In poly-time we can construct a Maximal Planar graph B with 55n verites
in such way that: A has k Hamiltonian circuits if and only if B has k- 64" Hamiltonian

circuits.

As a proof, we carefully go through the construction in [42]. Widgerson manages to
meticulously build a graph N (see Figure 3.3) with the following final properties and

resulting lemma:

e N is a planar graph on 55 vertices;

e all its faces but the outer (which is a hexagon) are triangles, in other words N has
355 —6—3 =156 edges;

e there are exactly 64 Hamiltonian paths between any two w-labeled vertices.

Lemma 3.12 (Wigderson [42]). Let G be a graph which has N as an induced subgraph
such that only its vertices of the outer face —labeled z or w— are adjacent to edges not in
N. Then:

(a) In any Hamiltonian circuit of G, all vertices of N appear consecutively between two
w-labeled vertices (marked as red, blue and green paths in Figure 3.3).

(b) Let e be an edge incident to a z-labeled vertex of N. If e ¢ N then it cannot
participate in any Hamiltonian circuit of G.

Figure 3.3: Core of the reduction by Wigderson [42], based on the “gadget” subgraph N

In a nutshell, the construction consists of replacing each vertex v of A (a 3-connected
cubic planar graph) with a copy of graph N (denoted by N,). Then, the resulting graph
can be quite easily completed into a maximal planar graph B, with the desired property
that A has a Hamiltonian circuit if and only if B has a Hamiltonian circuit. The idea is
partially illustrated in Figure 3.3: for every v € A, if a Hamiltonian circuit traverses it as
the green (or blue or red) arc suggests, then for graph B there is a Hamiltonian circuit
traversing subgraph N, using the green (or blue or red) w-labeled pair as entry and exit
vertices.

More importantly to us, Lemma 3.12(b) proves stronger than only guaranteeing the
if and only if or the reduction: it guarantees the 1:64 ratio of traversing each vertex in
A vs. each subgraph N in B as part of a Hamiltonian path. Essentially, the arguments
of [42] suffice to prove this claim, which we state as Corollary 3.11.
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Note. The 3-Connectivity of the initial graph is not a prerequisite for the validity of
the reduction in [42], as the construction is only based on the graph being Cubic.

(3.3) For the last reduction, we simply recall Theorem 2.10: it is parsimonious.

The overall result. Combining the above, we have indeed shown #P-hardness for
#PoLY-TRI, following the weakly parsimonious reductions 3.4 — 3.6.

3SAT <, CuBIC PLANAR HAMILTONIAN CIRCUIT [25] — (3.4)
<, MAX PLANAR HAMILTONIAN CIRCUIT Corollary 3.11 — (3.5)
<, PoLY-TRI Theorem 2.10 — (3.6)

Theorem 3.13. #PoLY-TRI is #P-complete.
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AN EXACT UNIFORM
SAMPLING ALGORITHM FOR
CONVEX TRIANGULATIONS

In this Chapter, we present an elegant algorithm for uniform sampling and coding of
convex triangulations. The algorithm runs in a total O(n?) time, outperforming any
algorithm to our knowledge. Moreover, we may reasonably consider the first of the two
distinct processes of the algorithm as the preprocessing step, running in O(n?) time, as
one may need to generate multiple triangulations of convex polygon(s) of the same size.
This leaves us with another O(n?) time random generation/coding step, which is again a
significant improvement over any known algorithm. Interestingly, our method of analyzing

convex triangulations yields a two-parameter recursion where Catalan numbers appear.

4.1 Related work

The consideration of different triangulations of a point set first appears in a well-studied
form in the middle of the 18" century by Leonhard Euler: he successfully conjectured
the closed formula for the number of triangulations of the convex n-gon, that was what
we denote now by C,_2, the (n —2)-th Catalan number. These numbers, named after the
Belgian mathematician Eugene Charles Catalan, satisfy the following basic relations:

Cni1 = CiCng, Co=1 (4.1)
k=0
1 2n
= , =1 4.2
¢ n+1 ( n ) Co (42)

They occur as the solution of a very large number of counting problems in combina-
torics. Stanley [38] gives more than 200 interpretations, more than 60 exercises, in all, a
spectacular volume of work centered around the Catalan numbers.

While for convex graphs it is the Catalan numbers that give the exact number of
triangulations, no such formula exists for the generic case. Also, enumerating the trian-
gulations is not an easy task: already C, = ©(n~3/24"), while the best known bounds
for the generic case are currently set a lower €2(2.43") (Sharir et al. [36]) and an upper
O(30™) (Sharir and Sheffer [34]). Naturally, there has been also work on counting the
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triangulations given a specific point set asymptotically faster than by enumerating all
triangulations ([1]), and approximately counting with favorable compromises ([2]).

Another modern view of the same core problems is to efficiently generate random tri-
angulations of point sets. There has been significant work on such problems, especially
since the 1990s. Epstein and Sack [16] propose an O(n?) algorithm for exact sampling
over the triangulations of any simple polygon, which include the convex ones. This result
appears to be improved by Ding et al. [15] to an O(n? + |E|'®) time, where E is the set
of diagonal edges (which lie inside the simple polygon). Moreover, the authors divide the
algorithm in a preprocessing step, requiring O(n?) time, and the main sampling proce-
dure, requiring the O(|E|*?) time. We note that for the convex n-gon, the maximum of
n(n — 3)/2 interior diagonal edges occurs, therefore the running time of the aforemen-
tioned algorithm is dominated by an O(n?) term. The works of Denny and Sohler [12]
and Poulalhon and Schaeffer [32] give efficient coding and sampling algorithms for plane
triangulations seen as maximal planar graphs. Sharir and Welzl [35] also deal with max-
imal planar graphs with n interior points, but focus on obtaining bounds on the vertices’
degree and use the result to get bounds on the total number of such graphs (see also
[36, 34]).

An alternate way to attack triangulations is by means of structures and procedures
which relate and move along the similar ones, most commonly triangulations that differ by
a single edge flip: The work of Hurtado and Noy [22] builds a tree of convex triangulations,
with a parent-child relationship fixed by an edge flip; Molloy et al. [28] and McShine and
Tetali [27] build random walks on relevant structures using the same principle and study
their mixing time — the latest obtaining an approximate sampling algorithm running
in O(n%) time. Parvez et al. [31] give an algorithm to generate all triangulations of a
simple polygon, essentially in the same manner as in [22], in their attempt to triangulate
a triconnected planar graph, introducing the measuring of time complexity per output
triangulation.

4.2 Preliminaries

When counting, sampling, coding or generating convex triangulations, it is established
that we assume a n-gon in convex position on R?, and all potential diagonals can be used
to obtain a triangulation. Note the difference to our triangulation ezistence problems,
where the diagonals can be selected only if they appear in the given edge set E. Thus, to
take advantage and easily translate our aforementioned notation, algorithms, propositions
and proofs in this context, we simulate our assumption by working within the subclass of
complete convex (geometric) graphs. Briefly:

Remark 4.1. All triangulations of a convex n-gon are exactly all the triangulation in-
stances T of the convex geometric K.

The convex K,. We will often use the term “conver K, ” as an alternate to the
complete convex graph, taking into account that all convex drawings of K, are isomorphic,
and therefore there is a single complete convex graph (convex K,,).
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Consecutive vertices and span-2 edges. As an analog to the notion of consecutive
vertices, given a proper labeling of the convex polygon, we define two consecutive span-2
edges to be a pair of edges of the form v;_1v;11, v;v;12. Moreover, we know that K3 has
no span-2 edges, K, has two and, for n > 5, K, has exactly n of such edges. For n > 5
and any vertex v;, we denote by e; the span-2 edge v;_1v;+1, in other words, the edge that
may form a triangle together with v;.

The K,,_,, graph. We will need to work on specific graphs, that allow for the desired
structure to be witnessed. We define K, _, to be the nearly complete convex K, which
misses only m consecutive span-2 edges. Therefore:

e K, o= K, and when properly defined, K,,_,, has (g) — m edges.
e Forn > 5 it is —n < —m < 0, as a graph may miss up to all n span-2 edges.

e The graphs K4 1, K4 _2 are properly defined.

For fixed n, m, all K, _,, are isomorphic to each other (under rotation, Proposition
1.9).

Finally, we will mark by 7}, _,, the number of triangulations of K, _,,. To practice
on the notation, remember we know T, g for all n, it is T}, o = Cj—2.

Proposition 4.2. Every triangulation of a convex geometric graph on 5 or more vertices
has at least two span-2 edges.

Proof. A triangulation T¢ on n points requires that all faces but the outer are triangles.
The number of faces f is equal to n — 1 (e.g. use Euler’s characteristic on plane graphs),
therefore there is a total of n — 2 inner faces/triangles. Since all n non-diagonal edges
of T¢ are sides of the n — 2 triangles, by the pigeonhole principle, there are at least 2
triangles which use 2 sides of the n-gon as their sides. Then, those triangles’ third edge
must be an span-2 one and, as soon as n > 5, those third edges do not coincide. 0

Proposition 4.3. A convex geometric graph with n > 5 and only two2 span-2 edges which
appear consecutive in the drawing has no triangulation. Equivalently, T, _(,_2) = 0.

Proof. Two consecutive span-2 edges intersect, therefore together they do not form any
triangulation, unless only one is needed (quadrilateral). So there must be a third span-2
edge which, together with one of the 2 consecutive ones, is the obligatory second span-2
edge in a triangulation 7" of the graph (see Proposition 4.2). Contradiction, as the graph
has no other such edge. O

4.3 The reduction argument and recursive relation

In Chapter 3, we presented a self-reduction argument based on partitioning the number
of existing convex triangulations 7T into those which include a specific span-2 edge e
and those which do not (Proposition 3.9). Of course, if our input (unnecessarily) is the
complete convex graph, the non-deterministic Algorithm 1 built around the self-reduction
will give us the number of triangulations of the convex n-gon, i.e. the known C,_».
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Our idea. A non-deterministic algorithm for counting in TotP can be transformed into
an (approximate) sampling algorithm, as long as each subtree of a node of the computation
tree is selected with probability (approximately) proportional to its size (see Sinclair and
Jerrum [37]). Using Proposition 3.9, a convex K, known to have C,_o triangulations
is reduced to a convex K, _1, known to have Cy,_s triangulations and a K, \ e, which
evidently has the remaining C,,_s — C),_3 triangulations (see Figure 4.1). However:

Remark 4.4. For the subclass of complete geometric graphs, Proposition 3.9 does not
prove a self-reduction argument.

In other words, we may know how to branch for a first time, but step 7 of Algorithm 1
will then prove insufficient. Eventually, we will work on the basis of the same technique
as in Chapter 3, this time with some added rules which reveal a hidden structure of the
reduction for this new problem.

Vo

Ve
Vo

v7

v1

Ve

v2

DL

U3

V4

Figure 4.1: Reduction for the complete K,,, working on vg/eg

First relation. We have actually described the first of the equations defining the sought-
for recursive relation (the proof is omitted), as for the complete K, is reduced easily (again,
see Figure 4.1):

Tho="Th-1,0+Th—1 (4.3)

The left subtree will feature all triangulations of a K7, which become all triangulations
of the initial Kg which include ey; while the right subtree features all triangulations of
the octagon which do not include eg. Note that we can easily store this information for
selecting each of the subtrees in a single bit of an adjacency matrix of the graph/polygon,
that is the one indicating the existence of ey. Of course, this will hold true for all branches
of the tree, as they are all created the same way.
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Second relation. Now, we must reduce any K, _,, in some orderly fashion. First,
observe Figure 4.2 for the case of m = 1, especially the marked blue vertex v;. If we
work on the selection or not of e; for the next branching of our tree, we obtain either
a K7 = Ky (left child), either a Kg_o. In general (Figure 4.3), a K,, _,, is reduced to
either a K1 _m+1 (left child) or a K, _,,—1 (right child).

Vo

Ve

vr

Vg v3

v
2 vy

Us
v3

Figure 4.2: Reduction for K, _1, working on the next vertex/span-2 edge

The key. It proves that the key to our reduction is the correct definition of the next
vertex (or span-2 edge) to work on. If, for instance, while on Kg 1 we select to work
on vs/es, the nice to our reduction K7 does not pop out. More importantly, we would
miss the recurring of isomorphic graphs, which give us the number of triangulations they
feature per class (K;, —n,), and not per specific instance.

Definition 4.5 (Next vertex/span-2 edge). Given a convex geometric graph, properly
labeled*, missing only m consecutive span-2 edges, €;, €41, ..., €i+m. Lhe next vertex/span-
2 edge is the pair vy, 41/€m41-

Now, let us formally prove our claim.

Theorem 4.6. For any K, _,, and —n+1 < —m, it is

Tn,fm = In—-1,—m+1 + Tn,fmfl (44)

Proof. Without loss of generality (see 1), we may relabel our initial graph —if necessary—
and have the edges e, ..., e;,—1 as the missing span-2 ones. The next vertex/span-2 edge
is the pair vy, /en. The right subtree is rooted to a K, _,,—1 graph, as it derives from
deleting e,,, having a consecutive m + 1 span-2 (but no other) edges missing.

For the left subtree, deleting v,, leaves us to examine the edges of a graph on n — 1
vertices. We have that edges v,_1v1, vove, ..., Vin—3Um—1 are all missing from the induced
subgraph, and together they add up to m — 1 consecutive span-2 edges. Edge v,,_ovm,
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missing from K, _,, is not a potential edge of the smaller graph. Edge vy,—1vm41 has
now become a side of the (n—1)-gon, and vy, — 20,1 and Uy, — 10,2 are now span-2 edges
of the new graph, as are all the (potentially) remaining vy, +1Vm+3, ..., 'n—2v9. Thus, we
have obtained a K1, _m+1 graph. ]

As a comment, since the argument holds as long as e, is present, and it can be
Um+1 = Vg, we get the —n + 1 < —m as a requirement; however, for our overall goal,
proving the argument for down to m = n — 3 would suffice, as we have shown that the
right child of a K,, _,+3 graph, that is a K, 42, has no triangulations.

The “properly labeled” part of Definition 4.5. The left child of a K, _,, in our
reduction is a graph on n — 1 vertices, in other words, w.r.t. our initial proper vertex
labeling, the labeling of the left child is not proper, as a vertex is missing. Therefore, we
must relabel this graph, and every left child graph of the tree. The following Rule gives
the final ingredient for building the desirable reduction tree.

Rule 1. Let K, _,, be the left child of a node of a tree rooted at K,. If m = 0, then
relabel the complete K, as desired. Else, place ry opposite to the first missing span-2
edge and complete with a proper relabeling. For each new graph, maintain a 1 x n table
to indicate the mapping of the current to the initial labeling; current missing vertices of
the parent graph can be marked (e.g. —1 entries).

U7 N

Figure 4.3: Reduction for K, _,,

Defining the base cases. We are left to define the base cases of the recursive relations
4.3 and 4.4.

e Proposition 4.3 gives us T}, _,42 = 0 for pentagons and up; but 7T o gives the
number of triangulations of a quadrilateral missing all 2 span-2 edges, therefore the
relation is satisfied for all n > 4.

e T30 =1, as K3 is a triangle.
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T5,_1 is not properly defined and not actually needed, but for sake of completeness,
we shall consider it equal to zero.

Properties of the reduction tree

In all, we have build a triangulation tree with the following properties:

o\
o) =

Every node has 2 children (left and right — binary tree).

Every node indicating K, _,, needs O(n) time to be created and coded: store in-
tegers r and m, the 1 X n mapping matrix for the vertex labeling, plus a 2 integer
indicator for backtracking to the parent node: if it is a left child, hold [v,,, —1], for
a right child hold [vy,—1,VUm+1] where vy, is the critical vertex of the parent node
w.r.t. which the node branched (store as labeled in the parent node).

For any node, the triangulations coded in the left subtree are disjoint to the ones of
the right subtree, as they differ at the edge w.r.t. which the node branched.

If a node is K3, then stop and mark one triangulation (green leaf). Due to the
above, all green leaves are left children and there is a total of exactly Cp_2 green
leafs in the tree.

If a node is of the form K, _,42, then stop and mark no triangulation (red leaf)

Considering all the above, from any green leaf, backtracking to the root is equivalent
to obtaining one specific triangulation; this is achieved in O(n) time.

= %

OO0
LODES

Figure 4.4: Full reduction tree for the convex pentagon. Blue color indicates the working on

node.

Relabelings are not marked. Each of its 5 triangulations is encoded in a different green leaf.
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Figure 4.4 shows the full reduction tree for the convex K5. To give a for instance,
consider the green leaf encoding triangulation T3. T3 includes the triangle vovzvy (end of
reduction); as a left child of its parent node, which branched w.r.t. ve /vgvs, it includes vovs
as an span-2 edge of the parent K4 subgraph, so triangle vgvavs is in Ty. The K4 parent
node is a left child of the K5 _1 node which branched w.r.t. v1, therefore the triangulation
does also include triangle vovivo; finally (though not necessary), the K5 _; node being a
right child of the K5 which branched w.r.t. vy suggests that v4v; is missing from the 7.

Note that this is a small example, and some leafs (T3, Ty, T5) already indicate unam-
biguously the encoded triangulation. Observe also that even if it is not directly visible
that T3 differs from Ty, our simple branching rule guarantees that 7T; includes v4v; as
an edge, while T does not, as they belong to a different subtree of the root node which
branched w.r.t. vg/vqv;.

4.4 The algorithm

By now, getting the final algorithm for exact sampling over convex triangulations, should
be almost straight-forward.

Exponential number of nodes, polynomial number of distinct isomorphisms.
The key to our efficient algorithm is the structure we revealed, a structure that allows
for the partitioning of an exponential number of nodes (only the green leaves give O(4")
nodes) into polynomial number of classes. In fact, there are exactly (n —3)(n — 1) + 1
classes, within each, all nodes/graphs are isomorphic to a specific K, _,, characterized by
a uniquely defined 7T}, _,.

Calculating all T},,_, in O(n?) time. At each node of the reduction (and computa-
tion) tree, a T}, _,, quantity is attached, indicating the number of triangulations “hanging”
from the subtree rooted at this very node. Due to the recursion we built (4.3, 4.4 and
base cases), we are definitely able to calculate all these quantities. However, it is a lot
easier to calculate all of them in advance, bottom-up, in O(n?) time, i.e. O(1) time per
single quantity. Figure 4.5 illustrates the table created by the pseudocode:

e Initialize T3 := 1 (green cell in Figure 4.5).
e For 3 <k < n initialize Tj ;12 := 0 (red cells in Figure 4.5).
e For i =4 up to n do:
1. For j =¢— 3 down to 1 do:
Ty =T 1, jr1+Ti—j1
2. Tio=Ti—10+Tj1
The filling of the table may well be considered as a pre-processing step for the algo-
rithm, as only n determines its entries, and one may need a lot of triangulations of the

same graph. Going even further, nothing deprives one of having a very large 7T}, _,, table
(its size in bits is O(n3)) and recall instantly whatever number they wish.
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Xio -1 -2 3 -4 5 -6 -7 -8
3 1 -

4 2 1 0

5 5 3 1 0

6 | 14—9 4 .l 0

7 (42 28 14 <51 0

8 1132 90 48 20 6 1 0

9 1429 297 165 75 27 7 1 0

C ot

Ch_2

Figure 4.5: The table of triangulations T}, _,, for each K,, _,,. It has (n — 3)(n — 1) 4+ 1 entries.
The arrows show the sequence in which the cells fill up.

Optimal coding and exact sampling

We know that T,, = C,,_2. The asymptotic behavior of Catalan numbers is the following:

4n 4n
and lim

< -1
Cn < n3/2\/x n—os Cynd/2\ /7
Therefore, it is evident that O(n) bits suffice to encode all triangulations of the convex n-
gon. Say we code all triangulations by exactly C),,_o consecutive integers [0..C),_o — 1], in
other words, optimally. Denote by T'[0] a first triangulation encoded as 0, by T[Cj,—2 — 1]
the corresponding last triangulation, encoded by integer Cp,_o — 1.

Decoding and sampling. The two procedures are actually the same, the only diffe-
rence lies in whether a coin is tossed to get a code . Regarding the coin toss for sampling,
calculate C),_2 and toss the minimum number of coins needed (of course this number is
linear to n) to form an integer z € [0,C—2 — 1]. It can be x > C,_2 and if so, then
toss again. The procedure ends in an expected < 2 rounds and gives a uniformly random
integer 0 < x < Cj,_o — 1. This is the code of the sampled triangulation, proceed to the
main Algorithm 2.

Coding. We are given a triangulation Ty of a convex n-gon triangulation, and proceed
almost identically as in Algorithm 2; only now the branching condition checks the edges
of the polygon (see Algorithm 3).

The branching rule. For both algorithms, it is easy to show they branch with proba-
bility analogous to the triangulations of each of the two subtrees rooted at the two children
(see Figure 4.6). Overall correctness is easy to prove, too.
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Algorithm 2 Sampling/decoding of convex triangulations

Input: Convex geometric Ky, the T}, _,, table, (int x)
Output: A (random) triangulation T = T'[z]

1: if we want to sample then

2: Generate random x

3: else

4: x is given and already indicates a triangulation (decoding mode)
5: end if

6: a:=0,b:=Cph_o—1

7. while a # b do

8: if v € [a,a+ T(left child) — 1] then
9: branch left
10: b:=a+ Tefs child) — 1
11: else
12: branch right
13: a := a+ T(ieft, child)
14: end if

15: end while
16: Backtrack to the root and built and output T

Algorithm 3 Coding of convex triangulations

Input: Convex geometric K, the T, _,, table, triangulation T
Output: A code z for which it is T = T[]

1: a:=0,b:=Cp_9—1
2: while a # b do
3: if Follow Rule 1 and Definition 4.5. If the next span-2 edge is in T¢ then

4: branch left
5: b= a + T{iett chila) — 1
6: else

7: branch right
8: a:= a~+ T(ieft child)
9: end if
10: end while
11: Output =

Tree height and time complexity

It only remains to show that all the tree traversing algorithms described above are efficient.
Actually, they are O(n?). This is due to two final properties we note hereby:

1. As every T), _p, can be recalled in O(1) time, any subroutine aiming to lead from a
node to either of its children needs O(n) time (see 4.3).
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Figure 4.6: The universal sampling algorithm scheme: branching with probability analogous to
the size of the subtree. The height of the tree is O(n).

2. The height of the tree is linear. A nice way to see that is with the help of the
recursive relation and Figure 4.5: beginning at 7T}, o, you may move 1 square to the
north (left child) or 1 to the east (right child). This holds for anytime you land on
the first column. Else, you may move either to the northwest square (left child) or
the east square (right child). Reaching T3 will need a maximum of 2(n—3) = O(n)
steps.

The above complete our analysis for the complexity and correctness of our algorithm. In
all, there is an O(n?) time exact sampling and optimal coding algorithm, as well as
a decoding algorithm for convex triangulations of a polygon on n vertices.
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