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Abstract
Vertically stacked exchange coupled magnetic heterostructures of cylindrical geometry can host
complex noncolinear magnetization patterns. By tuning the interlayer exchange coupling
between a layer accommodating magnetic vortex state and an out-of-plane magnetized layer,
one can efficiently realize new topological chiral textures such as cone state vortices and
circular stripe domains. We study how the number of circular stripes can be controlled by both
the interlayer exchange coupling and the sample geometrical parameters. By varying
geometrical parameters, a continuous phase transition between the homogeneous state, cone
state vortex, circular stripe domains, and the imprinted vortex takes place, which is analysed by
full scale micromagnetic simulations. The analytical description provides an intuitive pictures of
the magnetization textures in each of these phases. The possibility to realize switching between
different states allows for engineering magnetic textures with possible applications in spintronic
devices.

Keywords: stripe domains, magnetic heterostructure, topological magnetization texture,
cone state vortex
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1. Introduction

Out-of-plane magnetized thin films can host different topo-
logically protected magnetic textures, which are actively
discussed for applications in information storage, magnetic
random access memory, sensors, and neuromorphic comput-
ing [1–3]. These magnetic textures include topological mag-
netic solitons such as domain walls, skyrmions, bimerons,
skyrmion-bubbles, skyrmionium [4]. There are different ways
to realize these objects. In particular, while chiral skyrmions
can result from the Dzyaloshinskii–Moriya interaction [5, 6],
skyrmion-bubbles are stabilized by a nonlocal magnetostatic
interaction [7]. Alternatively, non-collinear magnetic textures
can be imprinted relying on the indirect coupling between
nanodisks hosting vortex state and out-of-plane magnetiza-
tion [8, 9]. By tuning the interlayer exchange coupling in the
layer stack, e.g. by modifying the thickness of nonmagnetic
spacer, topological textures in the out-of-plane magnetized
layer can be efficiently manipulated. Still, the description of
non-collinear magnetic textures in coupled heterostructures is
missing.

Here, we develop a theoretical approach (analytics and sim-
ulations) for the description of different magnetization states
in a coupled heterostructure consisting of an in-plane ferro-
magnet in a vortex state/nonmagnetic spacer/out-of-plane fer-
romagnet with various material and geometrical parameters.
A phase diagram of equilibrium magnetization states in a disk
is assembled in a wide range of the interlayer exchange coup-
ling parameters for different thicknesses of the layer with out-
of-plane easy axis of magnetization. We analyse the trans-
ition between different states in the out-of-plane magnetized
layer when the coupling strength increases: (a) homogeneous
state is realized when the coupling is absent (e.g. the case
of a very thick spacer), (b) cone state vortex and circular
stripe domain patterns are observed for intermediate coupling
strength, and (c) imprinted vortex state for the case of strong
coupling. In particular, for the case of intermediate coupling
strength, the modulation instability of the cone state vortex
triggered by the nonlocal magnetostatic interaction results in
the realization of a stable equilibrium magnetization texture
in the form of circular stripes domains. The underlying phys-
ics is found to be similar to the formation of straight stripe
domains in thin out-of-plane magnetized films exposed to an
in-plane magnetic field [10]. The density of stripe domains
is controlled by the coupling strength and the thickness of
the out-of-plane magnetized layer. The variety of magnet-
ization textures with well-defined phases corresponds to the
experimentally observed vortex and donut states reported by
Streubel et al [8, 9].

2. Micromagnetic simulations of the phase diagram
of equilibrium states

We consider a vertically stacked magnetic heterostructure
with two magnetic layers separated by a nonmagnetic spacer,

Figure 1. A vertically stacked heterostructure: schematics and
notations. The heterostructure consists of three layers and is shaped
as a disk of radius R. In the heterostructure, two magnetic layers are
separated by a nonmagnetic spacer of thickness d. The layer with
the out-of-plane easy axis of magnetization possesses thickness L.
The magnetic state of this layer is affected by the magnetic texture
in the bottom layer, which is fixed to be in the vortex state. Arrows
show the local direction of magnetization in the top and bottom
layers. Colour code of the top surface indicates variation of the
out-of-plane component of magnetization.

see figure 1. The heterostructure is shaped as a disk of
radius R. The layer with in-plane magnetization is chosen
to be appropriately thick to support the magnetic vortex
state. The out-of-plane magnetized layer is of thickness L
with the perpendicular magnetized ground state. The thick-
ness d of the nonmagnetic spacer is adjusted to tune the
interlayer exchange coupling between the two magnetic lay-
ers from strong (smaller d) to weak (larger d). Our model
includes the following contributions to the energy of the out-
of-plane magnetized layer: E= Ex+EA+EC+EMS. Here,
Ex =−A

´ (
m ·∇2 m

)
dV describes the exchange contribu-

tion with A being the exchange constant, m=M/MS is the
normalized magnetization, MS is the saturation magnetiza-
tion, and V is the volume of the layer. The energy EA =
−K
´
(m · ẑ)2 dV with K > 0 corresponds to the uniaxial aniso-

tropy with the easy axis directed along ẑ direction. The
energy of the interlayer exchange coupling is expressed as
EC =−2σ

´
(m ·mfix)dS with σ being a biquadratic coup-

ling coefficient, mfix is the magnetization of the in-plane
magnetized layer with fixed vortex state, and S being the
interface area [10]. This coupling, which typically oscil-
lates in sign as function of the thickness of the spacer
layer, is closely related to the Ruderman–Kittel–Kasuya–
Yosida interaction between magnetic impurities, for a review
see [11]. The last energy term is the magnetostatic energy
EMS = 1

2M
2
S

˜
dVdV ′ (m(r) ·∇)

(
m(r ′) ·∇ ′) |r− r ′|−1.

The ground state of the in-plane magnetized layer forms
the magnetic vortex texture. Such a configuration is character-
ized by the absence of volume and edge surface magnetostatic
charges. The only stray field comes from face surface charges,
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Figure 2. Equilibrium magnetization states. (a) Phase diagram of equilibrium magnetization states for a disk with radius R= 500 nm.
Symbols correspond to OOMMF simulations with parameters summarized in appendix D: homogeneous state is indicated with squares,
light vortices in a cone state (triangles), circular stripes (rings), vortex state (filled circles). Panels (b)–(d) show the equilibrium
magnetization texture for specified parameters. The dashed line describes the boundary of linear instability of the cone state vortex.

which are localized within the vortex core. Far from the vortex
core, the magnetization can be described as

mfix = Cfix (−x̂sinχ+ ŷcosχ) (1)

with Cfix =±1 being the vortex circulation, which defines
counter-clockwise or clockwise direction of the magnetiza-
tion, tanχ= y/x; x, y are the coordinates in the disk plane.
We assume that the magnetization state in the in-plane mag-
netized layer is not affected by the texture of the out-of-plane
magnetized layer.

We study equilibrium magnetization states in the out-
of-plane magnetized layer of the heterostructure. For this
purpose, we perform a series of micromagnetic simulations
in a wide range of the thickness of the out-of-plane mag-
netized layer L ∈ [2,12] nm and coupling constant σ ∈
[0,1.2] mJm−2. For simulations, we use object oriented
micromagnetic framework OOMMF [12, 13]. The simulated
heterostructure shaped as a disk of R= 500nm included:
(a) in-plane magnetized layer with parameters of permal-
loy (Py, Ni80Fe20; exchange constant A= 13 pJm−1; satura-
tion magnetization MS = 860kAm−1), (b) out-of-plane mag-
netized layer with parameters typical for Co/Pt multilayers
(A= 10 pJm−1, MS = 500kAm−1, K= 200kJm−3), which
are separated by (c) a nonmagnetic spacer of varying thick-
ness d. Thermal effects are neglected in simulations. Mesh
cells have size of 5× 5× 2 nm3. To decrease the simulation
time, we pinned the magnetic texture of the in-plane magnet-
ized layer in a vortex configuration with Cfix =+1, using thin
Py layer of only 10 nm thick.

Equilibrium states are determined using numerical energy
minimization starting from two different configurations: satur-
ated state along the anisotropy axis (̂z) and multidomain stripe
state. By comparing energies of different states, we determine
the energetically preferable states for different parameters:
thickness of the out-of-plane layer L and coupling parameter
σ. Simulations data are shown in figure 2. When coupling is
absent (σ= 0), the free layer is homogeneously magnetized
along the anisotropy axis withmz =±1. This phase is referred
to as the homogeneous phase. The ground state for the case
of strong coupling is the imprinted vortex state with the mag-
netization texture in the out-of-plane magnetized layer cor-
responding to the texture of the in-plane magnetized layer,
m≈mfix, see figure 2(b). If the coupling is not sufficiently
strong to imprint the vortex, the radial symmetry of the texture
remains but the perpendicular magnetization decreases with
|mz|= const< 1. The magnetization in the ground state is dir-
ected along one of the direction of the cone withmz = const or
the cone with mz =−const. That is why we refer to this phase
as a cone state vortex, see figure 2(c). Such a state appears
due to the competition between the easy-axis anisotropy and
the interlayer exchange coupling of the out-of-plane magnet-
ized layer to the layer hosting a vortex state, see section 3.
Furthermore, another multidomain state appears for a moder-
ate coupling strength between the imprinted vortex state and
the cone state vortex. The magnetization texture resembles
a set of homocentric rings with opposed perpendicular mag-
netization components, see figure 2(d). We will see below in
section 4 that this multidomain state is in many respects sim-
ilar to straight stripe domains in perpendicular magnetized
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multilayers [14, 15]. Therefore, this phase is referred to as a
circular stripe domain.

3. Cone state vortex

We put forth a model to gain insight to the mechanism of the
formation of different states in a coupled heterostructure. We
assume that the out-of-plane magnetized layer is sufficiently
thin that the magnetization does not vary with thickness. With
this, we limit the thickness L not to exceed the effective mag-
netic length ℓ=

√
A/Kef with Kef = K− 2πM2

S. For typical
parameters of Co/Pt multilayers, ℓ≈ 15nm. We also limit our
consideration by the class of radially symmetric solutions:

m(r) = ẑcosθ(r)+C sinθ(r)(−x̂sinχ+ ŷcosχ) , (2)

where the perpendicular magnetization component mz =
cosθ(r) depends only on the polar radius r=

√
x2 + y2, the

parameter C =±1 is the circulation of the magnetization tex-
ture. The symmetry of the magnetization texture (equation (2))
is supported by the radial symmetry of the vortex magnetiza-
tion mfix of the in-plane magnetized layer. Besides, it corres-
ponds to the absence of the volume magnetostatic charges in
the out-of-plane magnetized layer. Both assumptions are well
confirmed by micromagnetic simulations.

3.1. Model of a thin sample

We start our discussion with the model of a very thin out-
of-plane magnetized layer, where the nonlocal magnetostatic
energy of surface charges is replaced by the local aniso-
tropy. This results in an effective easy axis anisotropy with
the coefficient Kef > 0. While this model does not support
stripe domains, it is important for the understanding of the
structure of other states. The total energy of the model reads
E= E0

´ 1
0 E ρdρ with the energy density

E = λ2

(
θ ′

2
+

sin2 θ
ρ2

)
+(sinθ− h)2 . (3)

Here, E0 = 2πLR2Kef determines the energy of a uniformly
magnetized sample, the parameter λ=

√
A/(R2 Kef) determ-

ines the reduced length scale, and the prime denotes the deriv-
ative with respect to the reduced radial distance ρ= r/R. The
last term in the energy functional (3) describes the interaction
with an effective in-planemagnetic field. The amplitude of this
effective field h originates from the interlayer exchange coup-
ling, namely h= σCfix ×C /(LKef). To simplify the descrip-
tion, we suppose that the magnetization of the in-plane mag-
netized layer is characterized by the planar vortex structure
(equation (1)). The interlayer exchange coupling results in
the coupling between circulations of both magnetization tex-
tures, Cfix ×C = sgn σ: for the case under consideration with
σ > 0, the circulation of the equilibrium magnetization tex-
ture C coincides with the circulation of the vortex Cfix in the
in-plane magnetized disk. Hence, we get the effective field
h= σ/(LKef).

Without the effective magnetic field induced by the inter-
layer exchange coupling (σ= 0, h= 0), the equilibrium mag-
netization texture is homogeneous, mz =±1. In the opposite
case of a strong coupling, the layer with out-of-plane magnet-
ization acquires the imprinted vortex state with mz = 0. Inter-
mediate cases can be analysed far from the vortex core for
ρ≫ λ:

mz =

{
±
√
1− h2, h< 1

0 h⩾ 1.
(4)

The magnetization texture (equation (4)) supplemented by the
radially symmetric distribution (equation (2)) corresponds to
the magnetic vortex in the cone phase [16, 17]. The mag-
netization direction in the centre of the vortex core being up
or down, mz(0) = p± 1, determines the vortex polarity. In
the following discussion, we consider vortices with p=+1,
which is the same as the polarity of the vortex in the in-plane
magnetized disk. Depending on the perpendicular magnetiz-
ation component far from the vortex core, two types of vor-
tices can be realized: a light vortex with mz =

√
1−µ2 and a

heavy vortex with mz =−
√
1−µ2. We are interested in light

vortices, which are energetically preferable, see discussion in
appendix A. To describe the vortex structure affected by an
effective magnetic field, we use a two-parameter ansatz

sinθ(ρ) = µ
[
1− f

( ρ
∆

)]
, (5)

where the amplitude µ characterizes the absolute value of the
equilibrium in-plane magnetization and the width ∆ determ-
ines a typical width of the vortex core. To describe the vor-
tex core profile, we use the exponentially localized function
f(ξ) = e−ξ, which is analogous to the Feldkeller ansatz [18].
The ground state of the model can be found by the minimiz-
ation of energy with respect to variational parameters, which
results in∆≈ λ

√
2 and µ≈ h, see appendix A for details. The

magnetization angle θ out of the vortex core is determined by
sinθ0 = µ≈ h. We note that the core size of the cone state vor-
tex is almost independent of the amplitude of the effective field
[19]. This behaviour is distinct to the cone phase in easy-plane
magnets, where the core of a light vortex spreads with a per-
pendicular field [16, 17].

3.2. Magnetization textures within the nonlocal model

In the framework of the local model valid for ultrathin
samples, we identified three equilibrium magnetization states:
homogeneous state, cone state vortex and imprinted vortex
state. The existence of these states is confirmed by micromag-
netic simulations, see figure 2. However, this model does not
describe circular stripe domains. Moreover, the thickness of
the out-of-plane magnetized layer L does not enter the model
(3). To overcome these limitations, we extend our model to
include the effects stemming from the nonlocal magnetostatic
interaction and analyse their influence on the formation of
magnetization textures in a coupled heterostructure. The radial
symmetry (equation (2)) of the magnetization texture allows to
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Figure 3. The magnetization texture of the cone state vortex. (a) 3D representation of a light vortex texture from micromagnetic simulations
of a heterostructure with a 5 nm thick out-of-plane magnetized layer and a coupling strength σ = 0.18mJm−2. Other parameters are the
same as in appendix D. (b) The profile of the perpendicular magnetization component along the radius of the disk. The data are shown for
different coupling constants: σ= 0.1mJm−2 (h= 0.47) and σ= 0.18mJm−2 (h= 0.84). Red solid lines correspond to full scale
micromagnetic simulations. Blue solid lines are micromagnetic simulations, where magnetostatic interaction is replaced with an effective
anisotropy constant. Black dotted lines correspond to calculations within the theoretical two-parameter ansatz (equation (5)) with
parameters (equation (A.4)) (local model). Green dash-dotted lines correspond to calculations within the theoretical ansatz (equation (5))
with parameters (equation (A.12)) (nonlocal model).

avoid volumemagnetostatic charges. Hence, surface magneto-
static charges remain the only source of the demagnetization
fields.

We start from the cone state vortex using the vari-
ational approach described above together with the ansatz
(equation (5)). Taking into account the energy of surface mag-
netostatic charges, the equilibrium values of the width of the
vortex core ∆ and the amplitude µ read

∆≈ λ
√
2√

1+ 8g(ε)
Q−1

, µ≈ h

1+ g(ε)
Q−1

, (6)

where ε= L/(2R) is the sample aspect ratio,Q= K/
(
2πM2

S

)
is the quality factor, and g(ε) is defined in equation (A.9b), see
equation (A.12) for more details. The function g(ε) vanishes
for thin samples, which corresponds to the local model dis-
cussed above. In the opposite case of thick sample, g(ε) tends
to 1 resulting in a modification of the equilibrium parameters.

A typical magnetization texture of a light vortex is shown
in figure 3 featuring a pronounced vortex core and the flux-
free vortex configuration far from the core. The perpendicu-
lar magnetization component cosθ is shown for two different
values of an effective magnetic field h. We note that the ansatz
(equation (5)) with the equilibrium parameters (equation (6)),
which take into account nonlocal magnetostatics, describes the
simulations data well. However, it does not capture an increase
of the magnetization at the edge of the disk observed in sim-
ulations. To understand the origin of this edge effect, we per-
formed micromagnetic simulations, where the nonlocal mag-
netostatics was replaced by an effective anisotropy. In this

case, far from the vortex core the magnetization tends to the
equilibrium value. Thus, the edge effect originates from the
nonlocal influence of the surface magnetostatic charges.

We note that in our system cone state vortices are realized
in magnets with perpendicular easy-axis anisotropy exposed
to an effective in-plane magnetic field. It is instructive to men-
tion an important difference with easy-plane magnets, where
heavy and light vortices are separated by a large energy barrier
(infinite barrier within the continuum model). The switching
between these two states involves the appearance of a Bloch
point [20, 21]. In contrast, light and heavy vortices in an easy-
axis magnet possess comparable energies and can be trans-
formed in one another by stray fields induced by surface mag-
netostatic charges. This effect leads to the formation of circular
stripe domains.

4. Circular stripe domains

Our further analysis is based on the theory of straight stripe
domains, which are realized in films with sufficiently strong
out-of-plane easy-axis anisotropy, see appendix B. By apply-
ing an in-plane magnetic field H, the magnetization can be
tilted resulting in the appearance of a bistable state with

mz ∝±
√
H2

0 −H2 with H0 = 2Kef/MS, see equation (B.2)
for details. In a specific range of parameters (film thickness
L, amplitude of the magnetic field H), this state can experi-
ence a modulation instability, which results in the formation
of straight stripe domains [10]. When H< H0 the density of
straight stripe domains is proportional to (HL)2 for thin films
and (HL)2/3 for thick films, see appendix B for details.
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Figure 4. Number of circular stripe domains depending on the thickness of the out-of-plane magnetized layer L and the coupling parameter
σ. Results of simulations (symbols) of stripe domains in disks of different thickness: (a) 5 nm thick and (d) 10 nm thick disks. Other
parameters are the same as in appendix D. Red dashed lines correspond to theoretical dependencies (equation (B.14)) for straight stripe
domains in infinite samples. Solid blue lines are derived for finite circular stripe domains, see equation (8). The equilibrium magnetization
textures are shown for specified parameters: (b) two-domain state for L= 5nm and σ= 0.14mJm−2, (c) three-domain state for L= 5nm
and σ= 0.2mJm−2, (e) five-domain state for L= 10nm and σ= 0.5mJm−2, (f) six-domain state for L= 10nm and σ= 0.58mJm−2.

We exploit the analogy between the formation of straight
stripe domains in a film exposed to an in-plane magnetic field
H and stabilization of circular stripe domains in coupled het-
erostructures driven by an effective in-plane field h stemming
from the interlayer exchange coupling. We note that a uniform
magnetization texture in out-of-plane magnetized thin films
becomes unstable in an in-plane field. Typically, the phase dia-
gram consists of three states: (a) homogeneous titled state is
realized in relatively weak fields; (b) uniform in-plane state
appears for strong fields, and (c) straight stripe domains are
realized when the strength of the in-plane field is moderate.
Similarly, three states are realized in coupled heterostructures.
The comparison of phase diagrams for disk-shaped coupled
heterostructures and thin films is discussed in appendix C. A
clear similarity of the phase diagrams suggests the applicabil-
ity of the theory of straight stripe domains for the description
of circular stripe domains.

We estimate the number of circular stripe domains using
the criterion of a modulation instability of a higher symmetry
state with respect to the excitation of linear modes. Limiting
our consideration by radially symmetric modes with the wave
number k, we use the boundary conditions kR= j0,η. Here,
j0,η defines the continuous generalization of the zeros of the
Bessel function enumerated by a positive real number η, see
appendix C for details. The critical wave number is provided
by the relation

R
L
F(ζ) = j0,η (7)

with the function F(ζ) given in equation (B.12) and parameter
ζ = h2L2/[2ℓ2(Q− 1)] for h< 1 and ζ = L2/[2ℓ2(Q− 1)] oth-
erwise. Then the number of domains N reads

N(ζ) = ⌊η(ζ)⌉ , (8)

where ⌊η(ζ)⌉ defines the integer closest to ζ [22]. A compar-
ison with the simulation data is presented in figure 4 reveal-
ing a quantitative agreement for small L (figure 4(a)) and
a qualitative agreement for thicker samples, where the edge
effect is more significant (figure 4(d)). The number of stripes
N depends on the geometrical and material parameters and
increases with the coupling parameter σ, see figure 4.

Circular stripe domains are topologically protected tex-
tures. Similar to the vortex state [10], circular stripes are
characterized by the unit π1 topological charge, the vorticity.
Besides, these states are also characterized by the circulation
(clockwise or counter-clockwise). The magnetic texture of cir-
cular stripe domains is in many respects similar to another
topological texture, skyrmionium [23, 24] or target skyrmi-
ons [25–27]. Both textures consist of concentric rings with dif-
ferent values of the out-of-plane magnetization mz, while the
in-plane magnetization have specified circulation. The main
difference is that the mz component of skyrmionium changes
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from mz =−1 to mz =+1, resulting in specific topological
properties. Namely, when the number of rings is odd, the
π2 topological charge (‘skyrmion number’) is unit, Nsk = 1,
while for even number of rings Nsk = 0. Instead, π2 topolo-
gical properties of the circular stripe domains are the same as
for the cone state vortex, namely Nsk = q(p−

√
1−µ2)/2.

5. Conclusion

In conclusion, we studied magnetic states in coupled hetero-
structures consisting of in-plane and out-of-plane magnetized
layers separated by a nonmagnetic spacer. If the in-plane mag-
netized layer hosts magnetic vortex, this texture can modify
the magnetic state of the out-of-plane layer leading to the
stabilization of topologically protected domain patterns. We
demonstrate that by tuning the interlayer exchange coupling,
the out-of-plane magnetized layer can accommodate four dif-
ferent states: homogeneous state, cone state vortex, imprinted
vortex state, and circular stripe domains. These states were
observed experimentally in a heterostructure Py/Pd/[Co/Pd]
[8, 9].With our work, we provide the fundamental understand-
ing of relevant magnetic interactions, which are responsible
for the formation of these non-collinear magnetic states. In
particular, we demonstrate that nonlocal magnetostatics can-
not be neglected in the model as this is the driving force
behind the experimentally visualized circular stripe domains.
This state is not stable if only local interactions are taken into
account. We discuss similarities and differences of the cir-
cular stripe domains with the skyrmionium state. The pos-
sibility to realize tunable topologically protected states in
coupled heterostructures is potentially relevant for prospect-
ive spintronic and spinorbitronic devices relying on chiral non-
collinear magnetic textures.
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Appendix A. Variational model of a cone state
vortex

Light and heavy vortices are known in easy-plane magnets
exposed to out-of-plane magnetic fields [17]. They can be
excited also in nanodisks [21, 29]. In a heterostructure with
an out-of-plane magnetized layer, vortices can be induced by
specificmagnetic field of vortex structure. Themain difference
between the cone state vortices inmagnets with in-plane aniso-
tropy and vortices in materials with an out-of-plane easy axis
can be demonstrated for magnetic rings: (a) a pure planar vor-
tex forms a ground state of a ring with easy-plane anisotropy
without magnetic field.When exposed to an out-of-planemag-
netic field, the ground state becomes tilted in the direction of
the field forming a light vortex in the cone state. The oppositely
directed heavy vortex is unstable in a ring geometry. (b) Two
uniform states with mz =±1 form the ground state of a ring-
shaped material with the easy-axis anisotropy. When exposed
to an in-plane vortex-type magnetic field, the uniform state is
not favourable and two cone states with mz =±

√
1− h2 are

realized. As there is no vortex core, both states are energetic-
ally equivalent. For the case of a disk of easy-plane magnet,
both types of vortices can be realized. But the vortex with the
core magnetization oriented along the field direction becomes
energetically preferable (mainly due to the magnetization far
from the vortex core). The energetically preferred vortex is
referred to as the light vortex. In the case of a disk of easy-
axis magnet, both types of vortices can coexist in the hetero-
structure. Nevertheless, one of the vortices has lower energy
(mainly due to the vortex core). Similar to the case of an easy-
plane magnet, we refer to this vortex as a light vortex. The
vortex state with higher energy is referred to as the heavy
vortex.

In the following, we present an analytical model for the
description of the cone state vortex. We start from a local
model with the energy density (3)

Eloc = λ2

(
θ ′

2
+

sin2 θ
ρ2

)
+(sinθ− h)2 . (A.1)

The structure of the solutions can be found by numerical integ-
ration of the boundary value problem:

θ ′ ′ +
θ ′

ρ
− sinθ cosθ

(
1
λ2

+
1
ρ2

)
+
h
λ
cosθ = 0,

θ(0) = 0, θ(1) = arcsinh, (A.2)

see figure (5). Micromagnetic simulations confirm the exist-
ence of light and heavy vortices as equilibrium states. The ana-
lysis shows that the light vortex is the global minimizer.

The analytical description of the light vortex is based on the
variational approach using the magnetization profile described
by the two-parameter ansatz (equation (5)). The normalized
total energy of the local model reads
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Figure 5. Light and heavy vortices: solid lines correspond to
micromagnetic simulations for the sample with a 5 nm thick
out-of-plane magnetized layer for h= 0.47. Other parameters are
the same as in appendix D. Dashed lines describe numerical
solutions of the equation (A.2).

Eloc =
ˆ 1

0
Elocρdρ≈

(µ− h)2

2
+ 2µh∆2 − 7

4
µ2∆2

+µ2λ2
[
c0 − ln∆− c1 ln

(
1−µ2

)]
. (A.3)

Here, c0 = 1/4+ γ− ln2≈ 0.134 with γ≈ 0.577 being
Euler’s constant [22], c1 ≈ 0.09. The equilibrium values of
∆ and µ can be found by the minimization of the energy
(equation (A.3)) with respect to these parameters, which
results in

µloc = h
1−λ2α(h)

1− 2λ2 [β(h)+ lnλ]
,

∆loc =
λ
√
2√

8h
µloc

− 7
. (A.4)

The functions α(h) and β(h) read:

α(h) = 36−
4c1h2

(
2− h2

)
(1− h2)2

,

β(h) = c2 + c1

[
ln
(
1− h2

)
−
h2
(
5− 3h2

)
(1− h2)2

]
(A.5)

with c2 = (39+ ln2)/2− c0 ≈ 19.71. Using typical paramet-
ers λ≪ 1, we can limit our consideration to the first terms in
a series expansion with respect to λ, which results in

∆loc ≈ λ
√
2, µloc ≈ h. (A.6)

Now we take into account the magnetostatic energy of face
surface charges,

EMS =
M2

S

2

¨
mz(r)mz(r ′)dSdS ′

|r− r ′|
. (A.7)

Then the normalized magnetostatic energy reads

EMS(ε) =
1

2 ε(Q− 1)

ˆ ∞

0

(
1− e−2εξ

)
I2(ξ)dξ. (A.8)

Here, I(ξ) =
1́

0
mz(ρ)J0(ξρ)ρdρ, the parameter ε= L/(2R) is

the sample aspect ratio, Q= K/
(
2πM2

S

)
is the quality factor,

and Jn(ξ) is the Bessel function of the order n [22]. By neglect-
ing a small extra contribution of the exponentially localized
vortex core, we limit our consideration by the surface charges
of the pure cone state with mz =

√
1−µ2, which results in

I(ξ) =
√
1−µ2J1(ξ)/ξ. Direct calculations lead to the follow-

ing expression for the magnetostatic energy:

EMS(ε) =

(
1−µ2

)
[1− g(ε)]

2(Q− 1)
, (A.9a)

g(ε) =
4
3π

[(
1+ ε2

)
K

(
i
ε

)
+
(
1− ε2

)
E

(
i
ε

)
− 1
ε

]
, (A.9b)

where K(ξ) and E(ξ) are complete elliptic integrals of the
first and second kinds, respectively [22]. Here, g(ξ) is a well
localized monotonous function with the limit values g(0) = 0
and g(∞) = 1. The nonlocal contribution to the magnetostatic
energy

EMS
nloc(ε) = EMS(ε)− lim

ε→0
EMS(ε) =

µ2 − 1
2(Q− 1)

g(ε). (A.10)

Finally, the total energy of the light vortex E = Eloc reads

E =
(µ− h)2

2
+ 2µh∆2 +µ2

{
g(ε)

2(Q− 1)
− 7

4
∆

+λ2
[
c0 − ln∆− c1 ln

(
1−µ2

)]}
, (A.11)

where we omitted a constant term.Minimization of this energy
with respect to ∆ and µ results in the equilibrium values:

∆=
λ
√
2√

8h
µ − 7

, (A.12a)

µ= h
1−λ2α(h)

1+ g(ε)
Q−1 − 2λ2 [β(h)+ lnλ]

. (A.12b)

The explicit form of α(h) and β(h) is defined
in equation (A.5). The function g(ε) is defined in
equation (A.9b). In the relevant case of λ≪ 1, we can leave
only the first terms in a series expansion with respect to λ,
which results in equation (6). The amplitude µ determines
the absolute value of the equilibrium in-plane magnetization.
According to this expression, far from the vortex core sinθ
linearly depends on the effective field h. Besides, this value
varies with the aspect ratio L/(2R) due to the contribution
from magnetostatics. This analytical prediction is confirmed
by micromagnetic simulations, see figure 6.
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Figure 6. Vortex shape asymptotic as function of the effective field
for two thicknesses of the layer with out-of-plane easy axis, L.
Symbols correspond to the results of micromagnetic simulations
with parameters as in appendix D. Lines are calculated accordingly
to equations (5) and (A.12).

Figure 7. Transition to the imprinted vortex: phase diagram. The
boundary between the imprinted vortex and circular stripes is shown
with solid line (corresponds to the analytical result
(equation (A.13))) and symbols (corresponds to simulations).
Simulation parameters are the same as in appendix D.

The cone state vortex can exist in a specific range of para-
meters. If the effective field is grater than hi, the imprinted vor-
tex withmz = 0 is realized. According to equation (A.12b), the
critical field reads

hi = h(ε̃), ε̃= g(ε),

h−1(h) = (Q− 1)
{
h− 1+λ2

[
2β(h)

− hα(h)+ 2lnλ
]}
. (A.13)

We will see below that the same critical picture is valid,
when the circular stripe domains are taken into account: the
critical field hi is determined by the conditionµ= 1. This state-
ment is in a good agreement with simulations for the case of
small enough thicknesses, see figure 7.

Appendix B. Straight stripe domains

Here, we consider infinitely thin out-of-plane magnetized film
of thickness L exposed to an external in-plane magnetic field
H= Hx̂, see figure 8. We assume that the magnetization
depends only on two in-film coordinates (x, y) and suppose that
the uniaxial anisotropy K> 2πM2

S.
We start with a local model of a thin film described by

the energy E= KefLE with E =
´

E dS. The energy density E
reads

Eloc = ℓ2
[
(∇θ)2 + sin2 θ(∇ϕ)2

]
− cos2 θ

− 2h̃sinθ cosϕ, (B.1)

cf equation (3). Here, Kef is the effective anisotropy, which
takes into account the local part of the magnetostatic inter-
action (see section 3). The reduced magnetic field h̃= H/H0

with H0 = 2Kef/MS. The equilibrium homogeneous state
m0 = (sinθ0 cosϕ0,sinθ0 sinϕ0,cosθ0 ) is determined similar
to equation (4):

sinθ0 =

 h̃, h̃< 1
ϕ= 0.

1, h̃⩾ 1
(B.2)

To describe stripe domains, the nonlocal magnetostatic
interaction is essential [10]. It is convenient to rewrite the nor-
malized magnetostatic energy as EMS =−

´
m ·hMSdV. The

stray field hMS =−∇ΦMS is caused by the magnetostatic
potential of surface and volume charges:

ΦMS(r) =
1

4πL(Q− 1)

[ˆ
m(r ′) · n̂ ′

|r− r ′|
dS ′

−
ˆ ∇ ′ ·m(r ′)

|r− r ′|
dV ′
]
. (B.3)

Here, we propose a new approach to analyse the forma-
tion of stripe domains in ferromagnetic films with easy-normal
anisotropy. The periodic domain structure arises as a result of
the modulation instability of the equilibrium state m0: similar
approach was used previously for the description of vortex
crystals in [30, 31]. For this purpose, it is useful to convert
the vector Landau–Lifshitz equation ṁ=m× δE/δm into a
scalar form of the Schrödinger equation [30, 31]:

− iψ̇ =
δE
δψ∗ , (B.4)

where the overdot indicates the derivative with respect to res-
caled time τ = ω0t with ω0 = γ0 Kef/MS and γ0 is the gyro-
magnetic ratio.

9



J. Phys. D: Appl. Phys. 55 (2022) 445003 O Zaiets et al

Figure 8. Straight stripe domains. An extended layer of thickness L
with out-of-plane easy axis of magnetization possesses thickness
hosts stripe domains whose direction is determined by external
uniform magnetic field H. Yellow arrows show the local direction of
magnetization. Colour code indicates variation of the out-of-plane
component of magnetization.

Such a transformation can be done using the Holstein–
Primakoff–Tyablikov representation [32, 33] of the arbitrary
magnetization vector

m=m0
1− |ψ|2

2
+Aψ

√
2− |ψ|2 + c.c.,

A= (Ax,Ay,Az) ,

Ax =
1
2
(cosθ0 cosϕ0 + isinϕ0 ) ,

Ay =
1
2
(cosθ0 sinϕ0 − icosϕ0) ,

Az =−1
2
sinθ0. (B.5)

Since equation (B.4) describes the deviation from a station-
ary solution, it has a very convenient form for the analysis
of stability of the given stationary state. For this purpose, we
limit our consideration to the harmonic approximation in the
energy, taking into account also the magnetostatic energy. In
addition, we proceed to the wave-vector space by using the
two-dimensional Fourier transform

ψ̂k =
1
2π

ˆ
R2

ψ(ρ)e−iρkdρ, ψ(ρ) =
1
2π

ˆ
R2

ψ̂ke
iρkdk (B.6)

with the orthogonality condition
ˆ
R2

eiρ(k−k ′)dρ= (2π)2δ(k− k ′) (B.7)

where ρ= xx̂+ yŷ and k= kxx̂+ kyŷ. The normalized energy
E can be presented as E =

´
R2

Ê dk, with Ê being the spectral

energy density. Cumbersome but direct calculations result in a
spectral energy density in the harmonic approximation:

Ê = A (k)|ψ̂k|2 +
1
2

[
B(k)ψ̂kψ̂−k+ c.c.

]
,

A (k) = 2ℓ2k2 + 2h̃sinθ0 + 3cos2 θ0 − 1

+G(kL)

[
1− sin2 θ0

(
1+

k2x
k2

)]
,

B(k) = G(kL)

[
(kx cosθ0 − iky)2

k2
− sin2 θ0

]
− sin2 θ0, (B.8)

where the function G(ξ) is defined as

G(ξ) =
ξ− 1+ e−ξ

(Q− 1)ξ
, (B.9)

where a constant term is omitted. By neglecting all nonlin-
ear terms in equation (B.4), we rewrite equations for complex
amplitudes ψ̂k and ψ̂∗

−k as a set of two linear equations

− i ˙̂ψk =
δE
δψ̂∗

k

, i ˙̂ψ∗
−k =

δE
δψ̂−k

. (B.10)

Equation (B.10) have the solution ψ̂k = Ψ+eZ+(k)τ and ψ̂∗
−k =

Ψ−eZ−(k)τ , where Ψ±(k) are time-independent amplitudes
andZ± =±

√
|B|2 −A 2. The last expression determines the

stability conditions for the homogeneous equilibrium statem0.
For |B|<A , there is a homogeneous equilibrium state. In
the opposite case |B|>A , the equilibrium statem0 becomes
linearly unstable with respect to modes ψ̂k. In particular, for
the case kx = 0, which corresponds to stripe domains ori-
ented along the field, the uniform state becomes unstable when
F(q)< 0, where q= kL is the dimensionless wave-vector and

F(q) =

{
1− h̃2 + q2ℓ2

L2 − h̃2G(q), h̃< 1,

h̃− 1+ q2ℓ2

L2 −G(q), h̃> 1.
(B.11)

It is instructive to discuss how to separate numerically the
stripe domain phase and the in-plane phase. The ẑ-component
of magnetization vanishes in both phases near the boundary,
that is why we need to identify a quantity which behaves qual-
itatively different in these two phases. We use the reduced
magnetic differential susceptibility χ=−(1/E0)∂

2EF/∂h̃2 as
such quantity with E0 being the energy in the absence of the
field and EF being the energy of the interaction with the mag-
netic field in the case of straight stripes and effective field in
the case of circular stripe domains in coupled heterostructures.
In the saturated in-plane state χ= 0. The stripe state is charac-
terized by a finite value of χ. We define the critical field value
h̃c as a minimum of the reduced susceptibility, see blue line in
figure 9. Similar approach we used to separate circular stripe
domains and the vortex state in a coupled heterostructure, see
red line in figure 9.

We performed micromagnetic simulations for samples of
different radii, see figure 10. A general trend is as follows: the
coupling strength, which is needed to realize circular stripe
domains, decreases with the sample radius. At the same time,
the boundary of the linear instability of the cone state vortex
is almost independent of the sample radius. The number of
circular stripe domains increases with the system radius in a
qualitative agreement with equation (8).
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Figure 9. Reduced magnetic susceptibility: blue lines correspond to the results of micromagnetic simulations of a square-shaped sample
with a lateral size of 1× 1 µm2 and periodic boundary conditions. The thickness of the out-of-plane magnetized layer L= 5 nm. Red lines
correspond to the results of micromagnetic simulations of a disk-shaped heterostructure with L= 5 nm. Differential susceptibilities for
h< hc and h̃< h̃c (h> hc and h̃> h̃c) are shown by solid (dashed) lines, respectively. Other parameters are the same as in appendix D.

Figure 10. Phase diagram for heterostructures shaped as disks of
different radii: micromagnetic simulations for a disk-shaped
heterostructure containing a 5 nm thick out-of-plane magnetized
layer. Parameters are the same as in appendix D. Dashed line
describes the boundary of linear instability of the cone state vortex.

When studying straight stripe domains, we determined that
the uniform state becomes linearly unstable when F(q)< 0,
see equation (B.11). In the following, we analyse con-
sequences of this instability. The dependence F(q) is a
nonmonotonic one. Hence, we can determine the critical
parameters, when the instability starts to develop, from the
condition F ′(qc) = 0. The critical wave-vector qc = F(ζ),

where ζ = sin2 θ0L
2

2ℓ2(Q−1) with θ0 determined by equation (B.2), and

the inverse function ζ = F−1(qc) is determined as

F−1(q) =
q3

1− e−q(1+ q)
. (B.12)

The function F(ζ) has the asymptotic F(ζ)≈ ζ/2 when ζ ≪ 1
and F(ζ)≈ 3

√
ζ when ζ ≫ 1.

The wave-vector q= kL determines the linear density of
domains. Using the periodic boundary conditions

kLy = πN (B.13)

with Ly being the linear film size in ŷ-direction, we can define
the reduced density of domains ν = NL/Ly as

ν =
q
π
=

1
π
F

(
sin2 θ0L2

2ℓ2(Q− 1)

)
. (B.14)

The density of domains has the following asymptotic depend-
ence on the film thickness:

ν ≈


sin2 θ0L

2

4πℓ2(Q−1) , when L≪ ℓ
√
Q−1

sinθ0
3

√
sin2 θ0L2

2π3ℓ2(Q−1) , when L≫ ℓ
√
Q−1

sinθ0
.

(B.15)

To verify these analytical predictions, we performed full
scale micromagnetic simulations of a square-shaped sample
with a lateral size of 1× 1 µm2, see figure 11. The corres-
ponding theoretical curves are shown by dashed green lines.
The observed discrepancies between the theoretical results and
simulations data are caused by the fact that the theory was con-
structed for an infinitely extended film. To model infinite sys-
tem, we performed simulations with the same square sample
under the periodic boundary conditions in x̂ and ŷ, see dash-
dotted blue lines. In this case, we obtain a very accurate cor-
respondence with the theoretical predictions.
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Figure 11. Straight stripe domains: phase diagram. Lines describe
boundaries between different phases: (i) solid red lines correspond
to the results of micromagnetic simulations of a square-shaped film
with lateral dimensions of 1× 1µm2. (ii) Dash-dotted blue lines
correspond to the results of micromagnetic simulations of the same
square sample with periodic boundary conditions. This case mimics
an infinite system, which is analysed analytically. (iii) Dashed green
lines correspond to the theoretically obtained boundary accordingly
to equation (B.11).

Appendix C. Number of domains: straight vs
circular stripes

In the following, we apply the above analysis for the straight
stripe domains in infinite films to describe the circular stripe
domain pattern in disk-shaped coupled heterostructures. For
this purpose, we compare results of full scale micromagnetic
simulations for the heterostructure (solid red lines in figure 12)
with the theoretical analysis of instabilities for the case of
straight stripe domains (dashed blue lines in figure 12). The
results of simulations and theory agree for relatively thin
samples. The discrepancy for thicker samples has several reas-
ons: the influence of the confinement, edge effects, and the
interfacial nature of the interlayer exchange coupling. These
effects should be studied separately and are not addressed in
this work.

To address the number of circular domains, we use
an approach, which is similar to procedure described in
appendix B. Presence of magnetostatics complicates the
boundary conditions. This can be taken into account by the
effective boundary pinning of magnetization [34]. For a static
problem in cylindrical geometry, it is convenient to find the
radially symmetric solution as a linear combination of Bessel
and Neumann functions which should be zero at the sample’s
boundary. Then, the wave number k can be found from the
condition kR= j0,η, where η is a positive real number and j0,η
is a solution of

J0( j0,η)cos(π{η}) =−Y0( j0,η)sin(π{η}) , (C.1)

Figure 12. Straight vs circular stripe domains: solid red lines
correspond to the results of micromagnetic simulations of
boundaries between different phases in a disk-shaped
heterostructure containing an out-of-plane magnetized layer.
Parameters are the same as in appendix D. Dashed blue lines are
critical instability curves calculated accordingly to equation (B.11)
within the theory of straight stripe domains in an infinite film.

Figure 13. Transition to circular stripe domains: phase diagram.
The boundary between the cone state vortex and circular stripe
domains is shown with solid line (corresponds to numerical
calculations of equation (C.3)) and symbols (corresponds to
simulations). Simulation parameters are the same as in appendix D.

c.f. equation (B.13). Here, expressions ⌊η⌉ and {η} denote the
integer closest to η and the fractional part of η, respectively,
and Y0(•) is the Neumann function [22]. Then, the reduced
wave number reads

q=
L
R
j0,η = F(ζ) (C.2)
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with F(ζ) being implicitly defined by equation (B.12).
Finally, this results in the number of circular stripe domains
(equation (8)).

We apply the above theoretical analysis to describe the
boundary between the cone state vortex and circular stripe
domains. Using the condition

R
L
F(ζ) = j0,η⋆ , ζ =


h2L2

2ℓ2(Q− 1)
, h< 1

L2

2ℓ2(Q− 1)
, h⩾ 1,

(C.3)

with η⋆ = 1.5 [35], we identify the critical curve h(L), see
figure 13, which corresponds to the full scale micromagnetic
simulations for thin samples.

Appendix D. Parameters used for OOMMF
simulations

In-plane magnetized disk of radius R= 500nm with magnetic
parameters of permalloy (Py, Ni80Fe20; exchange constant
A= 13 pJm−1; saturation magnetization MS = 860 kAm−1).
Out-of-plane magnetized disk of radius R= 500 nm and
thickness L with parameters typical for Co/Pt multilay-
ers (A= 10 pJm−1, MS = 500 kAm−1, K= 200kJm−3) [9].
These two magnetic layers are separated by a nonmagnetic
spacer of thickness d. Thermal effects are neglected in sim-
ulations. Mesh cells have size of 5× 5× 2 nm3.
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Duò L, Kirilyuk A, Rasing T and Ezawa M 2013 Phys. Rev.
Lett. 110 177205

[24] Komineas S and Papanicolaou N 2015 Phys. Rev. B
92 064412

[25] Leonov A O, Rößler U K and Mostovoy M 2014 EPJ Web of
Conferences vol 75 p 05002

[26] Zheng F et al 2017 Phys. Rev. Lett. 119 197205
[27] Kent N et al 2019 Appl. Phys. Lett. 115 112404
[28] High–performance computing cluster of Taras Shevchenko

National University of Kyiv (available at: http://cluster.univ.
kiev.ua/eng/)

[29] Okuno T, Shigeto K, Ono T, Mibu K and Shinjo T 2002 J.
Magn. Magn. Mater. 240 1–6

[30] Gaididei Y, Volkov O M, Kravchuk V P and Sheka D D 2012
Phys. Rev. B 86 144401

[31] Kravchuk V P, Volkov O M, Sheka D D and Gaididei Y 2013
Phys. Rev. B 87 224402

[32] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098–113
[33] Tyablikov S V 1975 Methods in the Quantum Theory of

Magnetism 2nd edn (Moscow: Nauka) [transl. of 1st Russ.
edn (New York: Plenum Press) 1967]

[34] Guslienko K Y, Demokritov S O, Hillebrands B and
Slavin A N 2002 Phys. Rev. B 66 132402

[35] The value η⋆ = 1.5 is the smallest value when ⌊η⌉= 2 and
stripe domains become energetically preferable

13

https://orcid.org/0000-0003-3060-3112
https://orcid.org/0000-0003-3060-3112
https://orcid.org/0000-0003-4567-9929
https://orcid.org/0000-0003-4567-9929
https://orcid.org/0000-0003-4567-9929
https://orcid.org/0000-0002-5947-9760
https://orcid.org/0000-0002-5947-9760
https://orcid.org/0000-0002-5947-9760
https://orcid.org/0000-0002-7177-4308
https://orcid.org/0000-0002-7177-4308
https://orcid.org/0000-0001-7311-0639
https://orcid.org/0000-0001-7311-0639
https://doi.org/10.1038/nnano.2015.41
https://doi.org/10.1038/nnano.2015.41
https://doi.org/10.1007/978-3-319-97334-0
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1016/j.physrep.2020.10.001
https://doi.org/10.1016/j.physrep.2020.10.001
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1126/science.aaa1442
https://doi.org/10.1126/science.aaa1442
https://doi.org/10.1038/srep08787
https://doi.org/10.1038/srep08787
https://doi.org/10.1063/1.4931101
https://doi.org/10.1063/1.4931101
https://doi.org/10.1016/S0304-8853(99)00334-0
https://doi.org/10.1016/S0304-8853(99)00334-0
http://math.nist.gov/oommf/
http://math.nist.gov/oommf/
http://math.nist.gov/%20MDonahue/pubs/abstracts.html#Donahue199909
http://math.nist.gov/%20MDonahue/pubs/abstracts.html#Donahue199909
https://doi.org/10.1063/1.336684
https://doi.org/10.1063/1.336684
https://doi.org/10.1103/PhysRevB.95.174423
https://doi.org/10.1103/PhysRevB.95.174423
https://doi.org/10.1007/bf02423256
https://doi.org/10.1007/bf02423256
https://doi.org/10.1103/PhysRevB.67.094410
https://doi.org/10.1103/PhysRevB.67.094410
https://doi.org/10.1134/S1063783407100186
https://doi.org/10.1134/S1063783407100186
https://doi.org/10.1103/PhysRevLett.110.177205
https://doi.org/10.1103/PhysRevLett.110.177205
https://doi.org/10.1103/PhysRevB.92.064412
https://doi.org/10.1103/PhysRevB.92.064412
https://doi.org/10.1051/epjconf/20147505002
https://doi.org/10.1103/PhysRevLett.119.197205
https://doi.org/10.1103/PhysRevLett.119.197205
https://doi.org/10.1063/1.5099991
https://doi.org/10.1063/1.5099991
http://cluster.univ.kiev.ua/eng/
http://cluster.univ.kiev.ua/eng/
https://doi.org/10.1016/S0304-8853(01)00708-9
https://doi.org/10.1016/S0304-8853(01)00708-9
https://doi.org/10.1103/PhysRevB.86.144401
https://doi.org/10.1103/PhysRevB.86.144401
https://doi.org/10.1103/PhysRevB.87.224402
https://doi.org/10.1103/PhysRevB.87.224402
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRevB.66.132402
https://doi.org/10.1103/PhysRevB.66.132402

	Circular stripe domains and cone state vortices in disk-shaped exchange coupled magnetic heterostructures 
	1. Introduction
	2. Micromagnetic simulations of the phase diagram of equilibrium states
	3. Cone state vortex
	3.1. Model of a thin sample
	3.2. Magnetization textures within the nonlocal model

	4. Circular stripe domains
	5. Conclusion
	Acknowledgments
	Appendix A. Variational model of a cone state vortex
	Appendix B. Straight stripe domains
	Appendix C. Number of domains: straight vs circular stripes
	Appendix D. Parameters used for OOMMF simulations
	References


