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ABSTRACT
Causality has been discussed for centuries, and the theory of causal
inference over tabular data has been broadly studied and utilized in
multiple disciplines. However, only a few works attempt to infer the
causality while exploiting the meaning of the data represented in a
data structure like knowledge graph. These works offer a glance
at the possibilities of causal inference over knowledge graphs, but
do not yet consider the metadata, e.g., cardinalities, class subsump-
tion and overlap, and integrity constraints. We propose CareKG, a
new formalism to express causal relationships among concepts, i.e.,
classes and relations, and enable causal queries over knowledge
graphs using semantics of metadata. We empirically evaluate the ex-
pressiveness of CareKG in a synthetic knowledge graph concerning
cardinalities, class subsumption and overlap, integrity constraints.
Our initial results indicate that CareKG can represent and mea-
sure causal relations with some semantics which are uncovered by
state-of-the-art approaches.

CCS CONCEPTS
• Information systems → Query languages; Data analytics; •
Theory of computation → Semantics and reasoning.
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1 INTRODUCTION
Knowledge graphs (KGs) are flexible and expressive data structures
that represent the convergence of data and knowledge. They include
entities, attributes, and relations in a triple-based form and meta-
data based on an ontology, modeling the KG schema and integrity
constraints. By exploiting knowledge encoded in KGs, the accuracy
of multiple tasks, such as prediction, classification, and reasoning
have benefited greatly [2]. However, existing approaches discover
associated patterns which do not necessarily imply causality.
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Both Rubin’s Potential Outcome Framework [6] or Pearl’s Struc-
tural Causal Model [4] are widely used for causal inference but
assume (1) a pre-processed flat table where each row referred to
attributes of a unit, i.e., an object subjected to a treatment and re-
sponding to the treatment with an outcome, and (2) the Stable Unit
Treatment Value Assumption (SUTVA) [5] implying that one unit’s
attributes cannot impact attributes of others. However, constructing
a flat table from KGs is not an easy task. First, the treatment and
outcome may lie in different classes or relations, making it difficult
to recognize the units of interest. Second, each unit can be exposed
under multiple treatments or/and results in multiple outcomes due
to multi-valued attributes or complex relations among entities. In
addition, interference among units (violating the SUTVA) usually
happens in KGs, because entities interact with each other through
different relations. As a result, the outcome of one unit can be
impacted by the treatments of others.

To the best of our knowledge, [1, 7, 8] are the closest works to
this thesis. However, these approaches do not exploit rich semantics
encoded in KGs (e.g., cardinality constraint, class subsumption and
overlap, and integrity constraint) and ignore their impact on causal
inference. This thesis is targeted to provide a new formalism, named
causal relationship over knowledge graphs (CareKG), to represent
causal relations and enable causal queries over KGs with a focus
on semantics. We demonstrate the expressiveness of CareKG by
comparing with [7] in a synthetic KG.

2 MOTIVATION
Consider a scenario depicted in Figure 1, which represents an ontol-
ogy and a causal graph modeling the causal dependencies between
attributes of the ontology classes. They include: Movie (with at-
tribute Success), Company (with attribute Revenue), Director (with
attribute Experience), Actor (with attribute Fame), and Person which
is a super-class of Director and Actor ; the overlap (noted by "𝑜" in an
ellipse shape) is allowed between these two sub-classes ("⊂" denotes
"sub-class of"), which means that a director can also be an actor. In
addition, there are three binary relations: ActIn (between Actor and
Movie), Direct (between Director and Movie), and Invest (between
Company and Movie). Moreover, a 3-ary relation Recruit connects
three classes (Director, Actor, and Movie). Lastly, there are cardinal-
ity constraints, where each is formulated as𝐶𝑎𝑟𝑑 (𝐶, 𝑅, (𝑚𝑖𝑛,𝑚𝑎𝑥))
specifies that each entity of a class 𝐶 can participate in (𝑚𝑖𝑛,𝑚𝑎𝑥)
instances of the relation 𝑅; for example,𝐶𝑎𝑟𝑑 (𝐴𝑐𝑡𝑜𝑟, 𝐴𝑐𝑡𝐼𝑛, (1, 𝑁 ))
means each actor should act in at least one movie. The causal graph
is a directed acyclic graph where the nodes represent attributes, and
the directed edges model causal relations (the red edges in Figure
1) among attributes. In our example, the causal graph represents
that the Movie’s Success is affected by the Director’s Experience and
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Figure 1: Ontology and Causal Model. Rectangles represent
classes; ellipses represent attributes; green diamond shapes
represent relations; the orange ellipse with "O" inside repre-
sents the "overlap"; the ⊂ denotes "sub-class of".

Actor’s Fame, and the Revenue of Company is causally depended
on the Success of Movie.

Figure 2 depicts a KG using the ontology in Figure 1 as template;
it represents causal relations (the red edges) in an instance-level
conforming with the causal graph in Figure 1. In our example, the
KG comprises two companies: 𝑐𝑜𝑚𝑝1 and 𝑐𝑜𝑚𝑝2 with revenue 𝑟1,
and 𝑟2, respectively; two movies: 𝑚𝑜𝑣1 (invested by 𝑐𝑜𝑚𝑝1) and
𝑚𝑜𝑣2 (invested by 𝑐𝑜𝑚𝑝1 and 𝑐𝑜𝑚𝑝2) with success value, 𝑠1 and 𝑠2,
respectively. The revenue of 𝑐𝑜𝑚𝑝1 (𝑟1) is causally dependent on
the success of𝑚𝑜𝑣1 (𝑠1) and𝑚𝑜𝑣2 (𝑠2), and 𝑐𝑜𝑚𝑝2’s revenue 𝑟2 is
impact by the success of𝑚𝑜𝑣2 (𝑠2). Moreover, the KG contains three
people: 𝐸𝑣𝑎 who is an actor acting in𝑚𝑜𝑣1 with fame value 𝑓1, 𝐵𝑜𝑏
who is a director of𝑚𝑜𝑣2 with experience value 𝑒1, and 𝐽𝑎𝑠𝑜𝑛 who
is both actor and director of𝑚𝑜𝑣2 with fame 𝑓2 and experience 𝑒2.
𝑚𝑜𝑣1’s success (𝑠1) is influenced by 𝐵𝑜𝑏’s experience 𝑒1 and 𝐸𝑣𝑎’s
fame 𝑓1, while𝑚𝑜𝑣2’s success (𝑠2) is impacted by 𝐸𝑣𝑎’s fame 𝑓1, and
𝐽𝑎𝑠𝑜𝑛’s fame 𝑓2 and experience 𝑒2.
Preliminary Notations. In a KG, given a pair of cause-effect at-
tributes 𝑋 and 𝑌 , the class (or relation) of them 𝐼𝑋 and 𝐼𝑌 , respec-
tively. The relational path 𝑃 = [𝐼𝑋 , ..., 𝐼𝑌 ] between 𝐼𝑋 and 𝐼𝑌 is a
sequence of classes and relations beginning at 𝐼𝑋 and ending at
𝐼𝑌 . The treated units 𝑈𝑋 are the instances of 𝐼𝑋 , and the response
units𝑈𝑌 are the instances of 𝐼𝑌 . Heterogeneity between𝑈𝑋 and𝑈𝑌
happens when𝑈𝑋 and𝑈𝑌 are of different types. For example, con-
sidering the cause effect of Fame on Success, where𝑈𝑋 = 𝐴𝑐𝑡𝑜𝑟 and
𝑈𝑌 = 𝑀𝑜𝑣𝑖𝑒 , therefore,𝑈𝑋 and𝑈𝑌 are heterogeneous to each other.
However, the traditional causal inference frameworks [4, 6] assume
the homogeneous unit 𝑈𝑋𝑌 where𝑈𝑋𝑌 ≡ 𝑈𝑋 ≡ 𝑈𝑌 . To apply these
causal inference frameworks over KGs, we need a perspective P
to specify the way of constructing the unit (or object), so that the
treatments from 𝑢 ∈ 𝑈𝑋 and outcomes from 𝑢 ∈ 𝑈𝑌 can be recog-
nized as features of a homogeneous unit 𝑢 ∈ 𝑈𝑋𝑌 . For example, in
Figure 2, we would like to know the causal impact of 𝑋 = 𝐹𝑎𝑚𝑒

on 𝑌 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 . Given a relational path 𝑃 = [𝐴𝑐𝑡𝑜𝑟, 𝐴𝑐𝑡𝐼𝑛,𝑀𝑜𝑣𝑖𝑒]
where 𝐼𝑋 = 𝐴𝑐𝑡𝑜𝑟 and 𝐼𝑌 = 𝑀𝑜𝑣𝑖𝑒 , if the perspective P = 𝐴𝑐𝑡𝑜𝑟

(class), the 𝑈𝑋𝑌 = {𝐸𝑣𝑎, 𝐽𝑎𝑠𝑜𝑛} with two units.
Why traditional causal inference framework fails in our ex-
ample? The traditional causal inference frameworks [4, 6] cannot
be applied over this type of data described in Figure 2, because the
heterogeneity between 𝑈𝑋 and𝑈𝑌 . For example, considering the
causal impact of Experience on Success where the object of treat-
ment is the entity of Director, and the object of outcome is the entity
of Movie. In addition, the interference existed in KG violates the
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Figure 2: Knowledge Graph with causal relation over proper-
ties. Green dots represent relations among entities; red edges
model the causal relations between entities’ attributes.

SUTVA, e.g., 𝐽𝑎𝑠𝑜𝑛’s movie’s success (𝑠2) is caused by not only 𝑒2
(𝐽𝑎𝑠𝑜𝑛’s experience) but also Eva’s experience 𝑒1.
Why the state-of-the-art approaches cannot express our ex-
ample? Conquering the previous challenges, Salimi et al. [7] pro-
pose a Causal Relational Learning framework; it allows causal
inference over relational data by relaxing the unit homogeneity
assumption and the SUTVA assumption. They offer a formalism
called CaRL (Causal Relational Language), which defines a rela-
tional causal model to represent the causal dependencies among
attributes, and a relational causal graph to model the causal relation
at an instance level. In addition, CaRL supports various types of
causal queries over relational data.
A. Shortcomings in the relational causal model. The relational
causal model is made of a set of relational causal rules, where each
one represents a causal assumption using the form as 𝐴[Y] ⇐
𝐴1 [X1], ..., 𝐴𝑘 [X𝑘 ]𝑊𝐻𝐸𝑅𝐸 𝑄 (W), where 𝐴,𝐴𝑖 (𝑖 ∈ [1, 𝑘]) are at-
tribute functions for obtaining attributes of entities or relationships,
𝑄 is a conjunctive query over a relational schema, Y, X𝑖 (𝑖 ∈ [1, 𝑘]),
W are sets of variables and/or constants, and Y ∪⋃

𝑖 X𝑖 ⊆ W. The
𝐴[Y], 𝐴1 [A1], ..., 𝐴𝑘 [X𝑘 ], and 𝑄 (𝑊 ) are named, respectively, the
head, the body, and the condition of the rule. In our example of
Figure 1, CaRL can represent the following relational causal rules:

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [𝑀] ⇐ 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷]𝑊𝐻𝐸𝑅𝐸 𝐷𝑖𝑟𝑒𝑐𝑡 (𝐷,𝑀) (1)
𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [𝑀] ⇐ 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷]𝑊𝐻𝐸𝑅𝐸 𝑅𝑒𝑐𝑟𝑢𝑖𝑡 (𝑀,𝐷,𝐴) (2)

However, the condition 𝑄 (𝑊 ) cannot express the semantics of
metadata in KGs, which will impact the way of formulating causal
queries and the causal inference. Here, we summarize three types of
metadata that CaRL fails to express. (1) Class subsumption and over-
lap. For example, CaRL cannot represent the causal relation between
𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 and 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 on a special group of directors 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 −
𝐴𝑐𝑡𝑜𝑟 , or 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 ∩ 𝐴𝑐𝑡𝑜𝑟 . (2) Cardinality constraints. CaRL can-
not specify the cardinality constraints. For example, if there is a
𝐶𝑎𝑟𝑑 (𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟, 𝐷𝑖𝑟𝑒𝑐𝑡, (1, 1)) between𝐷𝑖𝑟𝑒𝑐𝑡 and𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 instead
of𝐶𝑎𝑟𝑑 (𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟, 𝐷𝑖𝑟𝑒𝑐𝑡, (1, 𝑁 )) in Figure 1. Therefore, there is no
interference between directors, and we cannot execute relational
or isolated effect queries. (3) Integrity constraints. For instance, if a
director is not allowed to recruit him/ herself as an actor. Therefore,
when estimating the cause effect of 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 on 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 via rela-
tional path [𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 , 𝑅𝑒𝑐𝑟𝑢𝑖𝑡 , 𝑀𝑜𝑣𝑖𝑒], the director 𝐽𝑎𝑠𝑜𝑛 should
not be included as a unit.
B. Shortcoming in causal query language. The CaRL causal
query language supports three types of causal queries, i.e., a) the
average treatment effect query; b) the aggregated response query;
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and c) the causal queries under interference. However, there are sev-
eral limitations considering its expressiveness when doing causal
queries on KGs. Firstly, CaRL is unable to specify the perspective
and the causal effect is always calculated under the perspective of
𝑈𝑋 . As a result, CaRL supports only the causal queries from the per-
spective of 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 (𝑈𝑋 ) rather than 𝑀𝑜𝑣𝑖𝑒 (𝑈𝑌 ) when we want
to know the causal impact of 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 ’s 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 on 𝑀𝑜𝑣𝑖𝑒’s
𝑆𝑢𝑐𝑐𝑒𝑠𝑠 . Without a perspective specification, CaRL cannot differen-
tiate the causal query 𝐴𝑉𝐺_𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [𝑀] ⇐ 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷]? from
the causal query 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [𝑀] ⇐ 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷]?, and it answers
both queries by doing causal inference over the same table (sim-
ilar situation in Table 1 of [7]). In addition, CaRL cannot specify
to which relational path the causal query refers. For example, the
causal query 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [𝑀] ⇐ 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷]? is formulated in CaRL
to request the causal effect of 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 on 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 . However, in
our case (Figure 1), there are two relational paths [𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 ,𝐷𝑖𝑟𝑒𝑐𝑡 ,
𝑀𝑜𝑣𝑖𝑒] and [𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 , 𝑅𝑒𝑐𝑟𝑢𝑖𝑡 , 𝑀𝑜𝑣𝑖𝑒]. Therefore, CaRL cannot
distinguish the cause effect led by different relational paths. Lastly,
CaRL cannot represent the cause effect considering class overlap or
disjoint. For example, considering the same cause-effect pair (e.i.,
𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 and 𝑆𝑢𝑐𝑐𝑒𝑠𝑠), CaRL cannot tell the difference between
the causal impact from those directors who are not actors in their
movies (denoted by𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 −𝐴𝑢𝑡ℎ𝑜𝑟 ) versus the cause effect from
those who act in their movies (denoted by 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 ∩𝐴𝑢𝑡ℎ𝑜𝑟 ).

3 RELATEDWORK
Causality over Relational Data. Maier et al. [3] introduce a
relational d-separation (extended from d-separation) deriving con-
ditional independence in relational data. They provide an abstract
ground graph for representing the causal dependencies among re-
lational variables (i.e., attributes connected by a relational path)
concerning a given perspective (i.e., an entity or relation type).
Relaxing two assumptions of traditional causal inferences, Salimi
et al. [7] propose the CaRL language to support different causal
queries on relational data. However, CaRL never mentions and
lacks of specification of the perspective in its query language. As a
result, the causal answering is limited to the perspective of the 𝑈𝑋 .
In addition, CaRL cannot express relational paths in their queries.
Therefore, it cannot consider the causal impact from different rela-
tional paths. Finally, CaRL is not yet take into account the meaning
of data, which is known as the semantics expressed by axioms in
KGs (e.g., subclasses and subproperties).
Causality over Knowledge Graphs. Jaimini and Sheth [1] present
CausalKG which represent causal concepts on KGs (i.e., natural
direct, nature indirect, total causal effect, and mediator). CausalKG
relies on a causal ontology and a causal Bayesian network (CBN)
to support causal reasoning. Moreover, RDF*, an extension of the
resource description framework (RDF), helps to represent causal
relations in KG. However, CausalKG cannot support counterfactual
reasoning which is over-promised by them, because a CBN can
reach maximum the second rung (i.e., intervention) of Pearl’s causal
hierarchy [4]. Simonne et al. [8] present a framework for mining
gradual or categorical differential causal rules, where strata describe
the context of a causal rule. By comparing pairs of units, they apply
a causal ratio to measure to what extent the causal relation exists.
As a result, they discover causal rules indicating that the difference

on treatments explains the difference on outcomes. However, this
framework is limited to the causality under perspective of the target
class, and cannot deal with the situation where one unit (i.e., the
instance of the target class) has multiple treatments or outcomes.

In this work, we aim to propose a new formalism, named CareKG,
which enables causal inference over KGs with special concern over
the rich semantics from KG. These features allow CareKG to ex-
press causal relations against KGs which is out of scope of CaRL
[7], because it is limited to relational data. In addition, this thesis is
different from [1] by considering richer causal concepts for causal
knowledge representation and introducing causal queries with at-
tention to semantics of KGs. Finally, this thesis aims at defining
causal knowledge representations and inference methods, but using
more expressive formalisms than the ones extracted by [8].

4 PROBLEM DEFINITION
Problem Statement. Given (1) an ontology O = {C,R,A}, where
C is the class set; R is the relation set, each 𝑅 ∈ R is a relation
which connects 𝑛 classes, 𝑅 can be a self-relation (𝑛 = 1), a binary
relation (𝑛 = 2), an n-ary relation (𝑛 > 2); A(𝐼 ) is the attribute
set of 𝐼 , where 𝐼 ∈ C ∪ R; (2) a knowledge graph 𝐾𝐺 = {𝑉 , 𝐸,𝑇 },
where 𝑉 is a set of constants, including entities and literals; 𝐸 is a
set of properties; and𝑇 is a set of triples with form of (𝑠, 𝑝, 𝑜) where
𝑝 ∈ 𝐸 and 𝑠, 𝑜 ∈ 𝑉 ; and (3) A set of axioms Z include logical rules
that express concepts’ definitions (e.g., subclass or subproperty)
and integrity constraints (e.g., cardinality).
Research Questions.
Q1: How to represent causal relations and knowledge in KGs?
Q2: How to formulate a query language to support various causal
queries over KGs with a special concern of semantics?
Q3: How to estimate the cause effect efficiently in a large-scale KG?
Solutions. We currently offer sub-solutions (i) and (ii) responding
to the research questions Q1 and Q2, respectively. Further investi-
gation is needed to answer Q3.
(i) We propose an ontological causal model (OCM) to encode causal
assumptions (i.e., causal relations among attributes) at a concept
level. It is composed of a set of ontological causal rules with a form
of 𝑌 [𝐼𝑌 ] ⇐ 𝑋 [𝐼𝑋 ]𝑊𝐻𝐸𝑅𝐸 𝑃 (𝐼𝑋 , 𝐼𝑌 ), 𝐶𝑇𝑋 (𝐼𝑋 , 𝐼𝑌 ), where 𝑋 and
𝑌 are the attributes regarded as treatment and outcome; 𝐼𝑋 and 𝐼𝑌
are, respectively, the class or relation of 𝑋 and 𝑌 . The expression
𝑃 (𝐼𝑋 , 𝐼𝑌 ) = [𝐼𝑋 , ..., 𝐼𝑌 ] specifies a relational path between 𝐼𝑋 and
𝐼𝑌 with length of 𝑚; 𝐶𝑇𝑋 (𝐼𝑋 , 𝐼𝑌 ) is an optional conjunction of
conditions over property paths rooted from 𝐼𝑋 and 𝐼𝑌 , offering the
context where the causal relation holds. Additionally, we propose a
grounded causal KG to represent causal knowledge at an instance
level, which includes all facts from KG, and the causal relations
between attributes of instances (entities or relations). All these
causal relations are encoded by a set of grounded causal rules, where
each is formulated using an ontological causal rule as a template
without the condition clause and replaces 𝐼𝑋 and 𝐼𝑌 with instances.
(ii) We provide a query language CareKG allowing different causal
queries considering the perspective and semantics of KGs. A query
is formalized as FUN(𝑌 [𝐼𝑌 ]) ⇐ FUN(𝑋 [𝐼𝑋 ])? FROM PATH 𝑃 ,
UNDER PERSPECTIVE P, SUBJECT TO ⟨𝑎𝑥𝑖𝑜𝑚⟩, WHEN ⟨𝑐𝑛𝑑⟩,
where 𝑃 is a relational path from 𝐼𝑋 to 𝐼𝑌 ; P ⊆𝑠 𝑃 (⊆𝑠 denotes "sub-
sequence of") specifying the way of unit constructing (each instance
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(value %) Path Perspective
Director Movie Direct / Recruit

CareKG 𝑃1 44.12 (± 5.47) 78.70 (± 4.77) 41.81 (± 4.22)
𝑃2 46.97 (± 5.55) 71.42 (± 5.82) 45.02 (± 0.68)

CaRL 𝑃1 44.07 (± 5.47) - -
𝑃2 47.25 (± 5.56) - -

Table 1: ACE of 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 on 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 lead by relational path
𝑃1 and 𝑃2 represented by "mean (± confidence interval)". "-"
means ACE of the relevant causal query cannot be answered.

of P is a unit), which allows a single perspective (when 𝑙𝑒𝑛(P) = 1)
and multi perspectives (when 𝑙𝑒𝑛(P) > 1); ⟨𝑎𝑥𝑖𝑜𝑚⟩ are optional
axioms specifying a KG’s semantics over the selected units using
logical rules. Multiple axioms are considered, such as cardinality
constraint, class disjoint, and integrity constraints. The optional
condition ⟨𝑐𝑛𝑑⟩ defines the peers of a unit and specifies a causal
query when interference happens, for example, peer, isolated causal
effect. FUN(.) is an optional function for processing attributes, e.g.,
aggregating multiple attribute values of a unit into one; redesigning
the attribute values (i.e., discretization or replacement).

5 RESULTS SO FAR
We demonstrate the expressiveness of CareKG compared with CaRL
on a synthetic KG, which includes 300 directors, 582 movies, 3,043
actors. Each director is allowed to direct randomly one to 20 movies,
and recruit at least one actor for a movie; one movie is directed
randomly by one to 5 directors, and has a random number of actors
(from 20 to 100); one actor can be recruited bymultiple directors of a
movie, and acts in one to 20movies. The 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 of amovie𝑀 is gen-
erated by a function 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [𝑀] = 0.5 ×𝑀𝑒𝑎𝑛(𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷]) +
0.5×𝑀𝑒𝑎𝑛(𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷 ′]) + 0.5×𝑀𝑒𝑎𝑛(𝐹𝑎𝑚𝑒 [𝐴]) where direc-
tor 𝐷 directs movie 𝑀 , director 𝐷 ′ directs movie 𝑀 also acts in
movie𝑀 as a actor, and actor 𝐴 acts in movie𝑀 .

We experience on average cause effect (ACE) between𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒
and 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 . There are two relational paths 𝑃1 = [𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 , 𝐷𝑖𝑟𝑒𝑐𝑡 ,
𝑀𝑜𝑣𝑖𝑒], 𝑃2 = [𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 , 𝑅𝑒𝑐𝑟𝑢𝑖𝑡 , 𝑀𝑜𝑣𝑖𝑒] between 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 and
𝐴𝑐𝑡𝑜𝑟 (𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 and 𝐴𝑐𝑡𝑜𝑟 share some entities due to overlap). We
show limitations of CaRL compared with CareKG in two experi-
ments. From experiment one, wewant to know the cause effect from
different relational paths and under different perspectives. From
experiment two, the relational path and the perspective is chosen
to be 𝑃1 and 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 , and we want to know the cause effect from
different groups of 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 . CaRL formulates the relational causal
rules, rule (1) and rule (2), and the relevant causal query 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [𝑀]
⇐ 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷]? for both experiments. In contrast, CareKG for-
mulates two ontological causal rules: 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [𝑀] ⇐ 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷]
𝑊𝐻𝐸𝑅𝐸 [𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 (𝐷), 𝐷𝑖𝑟𝑒𝑐𝑡 (𝐷,𝑀),𝑀𝑜𝑣𝑖𝑒 (𝑀)] and 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [𝑀]
⇐𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷]𝑊𝐻𝐸𝑅𝐸 [𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 (𝐷),𝑅𝑒𝑐𝑟𝑢𝑖𝑡 (𝐷,𝑀,𝐴),𝑀𝑜𝑣𝑖𝑒
(𝑀)]; and the causal query can be 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 [𝑀] ⇐ 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 [𝐷]?
𝐹𝑅𝑂𝑀 𝑃𝐴𝑇𝐻 𝑃 ,𝑈𝑁𝐷𝐸𝑅 𝑃𝐸𝑅𝑆𝑃𝐸𝐶𝑇𝐼𝑉𝐸 P, 𝑆𝑈𝐵𝐽𝐸𝐶𝑇 𝑇𝑂 ⟨𝑎𝑥𝑖𝑜𝑚⟩,
where 𝑃 can be 𝑃1 or 𝑃2; P can be 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 ,𝑀𝑜𝑣𝑖𝑒 , 𝐷𝑖𝑟𝑒𝑐𝑡 (for 𝑃1),
or 𝑅𝑒𝑐𝑟𝑢𝑖𝑡 (for 𝑃2); ⟨𝑎𝑥𝑖𝑜𝑚⟩ can be 𝐼𝑋 𝑖𝑠 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 (all directors),
𝐼𝑋 𝑖𝑠 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 𝐴𝑐𝑡𝑜𝑟 (directors who are also actor), or 𝐼𝑋 𝑖𝑠

𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 𝑛𝑜𝑡 𝐴𝑐𝑡𝑜𝑟 (i.e., directors who are not actor).
Table 1 reports the ACE (values represented under percentage,

"value %") results from relational paths 𝑃1 and 𝑃2 under perspective
of 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 ,𝑀𝑜𝑣𝑖𝑒 , 𝐷𝑖𝑟𝑒𝑐𝑡 (for 𝑃1), or 𝑅𝑒𝑐𝑟𝑢𝑖𝑡 (for 𝑃2). CareKG can

(value %) SUBJECT TO ⟨𝑎𝑥𝑖𝑜𝑚⟩: 𝐼𝑋 is
Director (default) Director ∩ Actor Director - Actor

CareKG 44.12 (± 5.47) 67.75 (± 10.15) 39.73 (± 6.11)
CaRL 44.07 (± 5.47) - -

Table 2: ACE of 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 on 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 in perspective of
𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 and lead by relational path 𝑃1. ACE from different
director groups𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 ,𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟∩𝐴𝑐𝑡𝑜𝑟 , and𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟−𝐴𝑐𝑡𝑜𝑟 .

differentiate causal queries considering different relational paths,
and different perspectives. However, CaRL supports only the de-
fault perspective 𝑈𝑋 (i.e., Director). Therefore, it cannot answer
causal queries from other perspectives (denoted by "-"). In addition,
CaRL is not able to specify the relational path in its causal query.
Thus, it needs extra effort to materialize in two different attributes
the values of 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 according to the relational paths 𝑃1 and 𝑃2.
Results of experiments two (Table 2) show that CareKG can support
semantics of class subsumption, disjoint, and overlap expressed in
⟨𝑎𝑥𝑖𝑜𝑚⟩ (demonstration of other axioms is left for further works).
Consequently, CareKG can distinguish causal impact from different
director groups. However, CaRL can only answer the causal query
regarding all directors.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this work, we propose a new formalism CareKG, enabling causal
relation learning and causal inference by exploiting the rich seman-
tics of KGs (e.g., integrity constraints, class overlap and disjoint, and
cardinality constraints). We demonstrate that the expressiveness
of CareKG is more powerful than the state of the art in a synthetic
KG. We consider extending CareKG to perform causal inference
over multiple types of attributes, and improving efficiency of causal
inference over large-scale KGs as future works.
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