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ΠΕΡΙΛΗΨΗ 

 

Η 4η γενιά (4G) κινητών επικοινωνιών, στην οποία ανήκει το σύστημα Long Term 
Evolution (LTE), παρέχει ευρυζωνική πρόσβαση σε κινητές συσκευές με ποιότητα και 
ταχύτητα που αγγίζουν τις ενσύρματες επικοινωνίες. Παρόλ’αυτά, η κινητικότητα εκ 
φύσεως εισάγει αστοχίες/διακυμάνσεις στην ασύρματη διεπαφή, γενόντας έτσι την 
ανάγκη για αντίστοιχη προσαρμογή της ροής μετάδοσης των δεδομένων. Η ανάγκη 
αυτή είναι ακόμη πιο έκδηλη για τις ροές δεδομένων βίντεο, που έχουν και τη μερίδα του 
λέοντος στην διαδικτυακή κίνηση. Καθώς, λοιπόν, η ροή βίντεο μέσω ΗΤΤΡ έχει γίνει ο 
κανόνας στη διανομήπεριεχομένου, η εφαρμογή ενός πρωτοκόλλου προσαρμογής 
βασισμένου στο HTTP είναι αναπόφευκτη. Το DASH (Dynamic Adaptive Streaming 
over HTTP) επιτρέπει μια ομαλή, αδιάκοπη ροή video εφαρμόζοντας αλγόριθμους 
προσαρμογής του bitrate στη μεριά του χρήστη αξιοποιώντας πλήρως την υπάρχουσα 
υποδομή. Έχοντας ως στόχο να τελειοποιήσουν την ποιότητα την οποία προσφέρει 
στους χρήστες το δίκτυο, οι ερευνητές συνεχώς αναπτύσσουν νέες φόρμουλες για την 
εκτίμηση της ποιότητας εμπειρίας του τελικού χρήστη, γνωστής υπο τον όρο Quality of 
Experience (QoE). Η παρούσα πτυχιακή αντιπροσωπεύει την προσπάθεια 
συγκερασμού των τριών ακόλουθων πυλώνων: της υποκείμενης υποδομής, του 
ελέγχου της ποιότητας υπηρεσίας με τη χρήση αλγορίθμων προσαρμογής και του 
επαναπροσδιορισμού του συστήματος με ανάλυση της ποιότητας και ανατροφοδότηση. 
Ανοίγει τη συζήτηση για τη χρήση προσαρμοζόμενης ροής μετάδοσης πάνω απο δίκτυα 
LTE και στοχεύει όχι μόνο να προσφέρει μια βαθιά βιβλιογραφική προσέγγιση των 
επιμέρους, αλλά και να περιγράψει πώς συνδέονται, πώς επικαλύπτονται, ή πώς 
αλληλεπιδρούν. Περιγράφει τα σημαντικότερα σύγχρονα μοντέλα μέτρησης QoE και 
πώς αυτά χρησιμεύουν στην αντικειμενική εκτίμηση της ποιότητας. Βασική συνεισφορά 
της εργασίας, είναι η ανάπτυξη μιάς πλήρης εκτελέσιμης οντότητας (module)  για τον 
προσομοιωτή NS-3 συνδυάζοντας όλες τις έννοιες που αναφέρονται παραπάνω.Ο 
αναγνώστης μπορεί να βρεί ενα τυπικό παράδειγμα εκτέλεσης της εν λόγω οντότητας, 
με την συνοδεία μιας βήμα-βήμα εξήγησής του και και κάποιων διαγραμμάτων με 
αποτελέσματα. Το NS3 module αναπτύχθηκε με την ελπίδα να φανεί χρήσιμο σε κάθε 
ερευνητή τηλεπικοινωνιών που ασχολείται με θέματα παροχής ποιότητας εμπειρίας και 
αναζητά ένα εργαλείο προσομειώσεων. 
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ABSTRACT 

 

The ability to address an increasing need for mobility in work and entertainment has 
rendered LTE networks critically essential to our everyday environments. The promising 
4th Generation (4G) of Long Term Evolution (LTE) provides ubiquitous broadband 
access to mobile devices matching land communications in speed and quality. 
However, the nature of mobility introduces a need for adaptivity in multimedia 
streaming, the largest part of mobile Internet traffic. As HTTP video streaming has 
become the de facto dominating solution to distribute media content, the implementation 
of an HTTP-based adaptive streaming protocol is inevitable. Dynamic Adaptive 
Streaming over HTTP (DASH) allows for smooth, uninterrupted video streaming by 
implementing bitrate adaptation algorithms on the client side, with complete utilization of 
the existing network infrastructure. In order to perfect the current quality served by the 
network, network researchers constantly develop new metrics to assess the end-user’s 
Quality of Experience. This thesis represents an attempt to join these three pillars of 
mobile video streaming: the underlying infrastructure, the over-the-top algorithmic 
quality control, and the follow-up feedback measurement. It opens a discussion about 
the use of adaptive streaming in LTE networks, and aims to offer not only a deep down 
bibliographic approach of each individual concept, but also describe where they overlap, 
how they connect and interact with each other. It depicts the most important 
contemporary QoE models and metrics, explains their formulas, and outlines their uses 
as key performance indicators in objective quality estimation. Furthermore, within this 
work, we provide a complete, expandable NS-3 model combining all the concepts 
discussed. An HTTP Server-Client model within the LTE network architecture, with 
implemented adaptive streaming functionality. The tool was developed in the hope of 
becoming useful to any telecommunications researcher, supporting their research and 
introducing them to the NS-3 simulator. In the end, we present a typical execution of our 
example with a step by step explanation, followed by the plotting of some of the results 
using a C++ script we developed.  
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Human behavior flows from three main sources:  

desire, emotion, and knowledge.  

~ Plato  
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PROLOGUE 

 

The present thesis is part of and written under the undergraduate program of the 
Department of Informatics and Telecommunications of the National and Kapodistrian 
University of Athens, Greece. The text presented below is organized in the following 
chapters: 

In Chapter 1 we explain the concept of Adaptive Video Streaming and unveil its 
advantages. More specifically, MPEG-DASH is mentioned as an indicative option of the 
adaptive streaming functionality. 

Chapter 2 is devoted to LTE networks as a whole, offering a deep analysis on their 
architecture, and every detail that an outsider should be aware of. Focus is especially 
place on the user-side equipment, and parts interacting with the application layer. 

Our informative series concludes in Chapter 3 where the central topic is quality 
measurement and, more particularly, Quality of Experience. In this chapter, several QoS 
and QoE metrics are outlined and explained. 

In Chapter 4, we analyze our NS-3 module along with two separate C++ scripts to be 
used with it. We present the results from a typical execution and attach a part of the 
code in the appendix.  

Our code package was developed mainly in Eclipse running on OSX Yosemite 10.10.5 
For our simulations, we used NS-3 version 3.24 on a Ubuntu 64-bit 14.04.3 Virtual 
Machine.  

As a Network Engineer’s quest to perfect the global networking structure is surely 
never-ending, we hope to continue to improve the tools we created and openly invite 
others to help us to do so. 
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1. ADAPTIVE VIDEO STREAMING 

 

 

1.1 Non-adaptive Video Streaming 

 

1.1.1 Introduction 

 

The process of delivering any multimedia content sent usually in a compressed form 
over the Internet and displayed by the viewer in real time is called “streaming”. Initially, 
any Internet peer who would choose to be delivered a media file would be required to 
download the full size of that media file and store it to his terminal’s hard disk drive 
before he could be able to display its multimedia content. The rapid increase in the 
quality of media files, and therefore their size prompted the need for the viewer to have 
the ability to access the content without waiting for the file to finish downloading. The 
key that makes video streaming revolutionary is undoubtedly the fact that it gives 
instead the client-user a sense of interactivity with the content by sending a continuous 
stream of data which is played as it arrives. From the user being able to shift the 
download index and display parts of the media file to online providers even serving or 
broadcasting live content real-time to a number of users with nothing more than a small 
delay, these are but a few of the countless possibilities provided by media streaming. 

 

1.1.2 Brief History 

 

Major streaming video and streaming media technologies included RealSystem G2 from 
RealNetworks, Microsoft Windows Media Technologies, and VDO. Progressive 
Networks (later renamed RealNetworks) is considered by many to have started the 
streaming media industry and deserves a lot of the credit being the primary company 
responsible for the wide adoption of audio and video streaming with content owners, 
and consumers, from 1995 to 2002. They dominated the market until 1999, but 
Microsoft was also working on video technology as early as 1993 [3]. Since then 
Microsoft and RealNetworks have provided numerous streaming solutions over the 
years with the addition of Apple in the years after 2005. Microsoft’s latest streaming 
viewer is Silverlight but most streaming websites use Flash, a component originally 
developed by Macromedia. Microsoft's approach uses the standard MPEG compression 
algorithm for video. [6] The other approaches use proprietary algorithms. 

Nowadays, video streaming tends to split into two categories, according to how the 
incoming multimedia data flow is being handled on the client side: progressive 
download (or pseudo-streaming) and real-streaming [4]. Progressive download or 
pseudo-streaming is characterized by downloading an actual file or a part of it, even 
temporarily, and playing that file as it is being downloaded. Real streaming, on the other 
hand, is characterized by a data-buffering viewer (all data is kept in memory), with no 
file being saved on disk.  

  

http://searchcio-midmarket.techtarget.com/definition/MPEG
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Figure 1.1: Progressive download architecture Figure 1.2: Streaming example w/ Media Server 

 

 

From a server perspective, streaming video is usually sent from a collection of 
prerecorded video files, but can be distributed as part of a live broadcast "feed." In a live 
broadcast, the video signal is converted into a compressed digital signal and transmitted 
from a special Web server that is able to do multicast, sending the same file to multiple 
users at the same time. 

The user needs a player, which is a special program, running on the client’s terminal 
that decompresses and sends video and audio data to their respective output devices. 
A player can be either an integral part of a browser or a part of an external software 
package issued by the streaming source or by a third-party. 

Overall, streaming technologies are rapidly gaining popularity as a way to deliver 
dynamic media content over the Internet. As bandwidth increases consistently and 
compression technologies mature, it becomes increasingly easier to deliver real-time, 
dynamic media, such as video, audio, animation, Java applications and 3D and vector 
graphic using streaming technologies. If used properly, streaming applications can add 
impressive capability to any service site.  

http://searchnetworking.techtarget.com/definition/multicast
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1.2 Adaptive Bitrate StreamingIntroduction 

 

Adaptive streaming technologies are a class of services able to optimize video viewing 
experience using a predefined set of connection speeds on a wide range of devices. 
Through the concept of adaptive streaming [5], web users are able to enjoy their favorite 
content with minimized delays and highly improved quality, suited to their Internet 
connection limits and their network conditions. This section describes the structure of 
adaptive streaming, explains the concept’s architecture and identifies the main 
technology contenders in the market. It also addresses the most important factors that 
influence the adaptive streaming technology. As a consequence, adaptation has 
become a standard for all web organizations and enterprises offering streaming 
services. 

 

1.2.2 Adaptive Streaming: The Definition 

 

All Adaptive streaming technologies share a basic workflow executing a number of 
common steps. [5] They all start by encoding the source media file to produce multiple 
files to be distributed to viewers watching on different connection speeds, on different 
devices.  

Then, they distribute these files in an adaptive manner, changing the stream which is 
being delivered according to effective changes in network values such as throughput 
and latency, or even sometimes adapting to the player needs. 

In the end, they all manage to maintain a level of transparency towards the user since 
all stream switching is executed on the background, so that the viewer can avoid 
clicking multiple buttons. Users may often notice an extremely slight difference in their 
viewing quality during the switch (adaptation) of the streams, however no action needs 
to be taken on their end. 

 

 

Figure 1.3 Adaptive streaming Web Service overview 

 

Despite some main approach differences, adaptive technologies also have similar 
operating principles. [5] For instance, they all monitor important factors such as the 
user’s effective throughput, the level of exhaustion of the player’s media buffer, the 
delay and the dropped frames to assess the best suitable quality for the playback 



QoE estimation for Adaptive Video Streaming over LTE Networks 

A.Moustakis   15 

terminal. This information is extracted in order to determine when it is preferable to 
switch streams and which stream to switch to. 

In case the control process notices that the media buffer is overflowing and CPU 
utilization levels are low, the adaptive streaming process forces a switch to a stream of 
a higher quality to improve the user’s quality of experience. In contrast, if CPU usage 
surpasses a specific threshold, or if the buffer’s content drops below a predefined low, 
the technology may choose to force the user’s player to make a switch to a lower quality 
stream. 

Figure 1.4: Adaptive streaming system end-to-end overview 

The major difference between different adaptive technologies is in the implementation. 
More specifically, it relies in the involvement of a streaming server (as shown in figures 
1.1 and 1.2). Some technologies are able to fully operate without a streaming server. 
The different quality streams are available at different URL addresses on a web server 
or across a network of web servers. After the player analyses operating metrics and 
utility factors to decide when a stream switch is preferable, it has the ability to execute a 
stream switch and initiates the adaptation procedure by retrieving data from a different 
stream than the one it was previously using.  

On the other hand, there are adaptive technologies which definitely require a streaming 
server having constant communication with the player. In this case, the server is in 
charge of internally managing different streams and providing a data flow to the client. If 
a stream switch is required, the server implements it by sending a different stream to 
the viewer. 

Either way, adaptive streaming implementations enable streaming services to deliver 
the highest possible quality streams serving both low and high throughput applications. 
For streaming web services, adaptive streaming is considered a must as without it most 
producers would force users to download different files for different quality standards or 
select a single quality for the duration of their viewing experience. 
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1.2.3 On the Server side 

 

On the server side of an adaptive bitrate streaming client-server model the detailed 
perspective highly depends on the packaging approach of different technologies. 
Hereby we present a generic description of the basic processes executed on the server 
side. 

Assuming that a high bitrate multimedia content already relies on the server’s database 
as an input, in the beginning that content is passed through an encoder (as shown in 
figures 1.3 and 1.4). An encoding machine or a software component undertakes the 
task of producing two or more lower-bitrate versions of the input media content (figure 
1.5). The multiple file versions are forwarded to the web server where depending on the 
approach can be stored or immediately delivered. 

Upon client request for a number of media slices, the web server normally generates 
what is called a “media manifest file” often also referred to as Media Presentation File 
(MPD). Based on the location of the client device the web server indicates (in the media 
manifest file) one or more sources for each of the media slices and relevant information 
associated with the respective sources, most notably a bitrate threshold necessary for 
the client to maintain his playing rate of these media slices uninterrupted. 

 

Figure 1.5: Adaptive streaming server function flow 
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At the start of communication between server and client the manifest described is sent 
to the client which is the event that triggers the streaming process. As the client 
requests a specific segment of the multimedia content from one of the available different 
bitrate sources, resources are located usually by HTTP URLs [1] in or out of the web 
server and the server transmits the correspondent multimedia segment through the 
internet. 

Based on the constantly changing conditions of the network and the client’s viewing 
device, the web server needs to be prepared to immediately change transmitting from 
one source to another with a lower or higher bitrate. That said, there is an ongoing 
discussion about what would appear to be the most efficient of ways to preload or cache 
parts of a media file on the delivery server [7]. 

The ability to switch to the stream that plays best at any time is ultimately what makes 
the service adaptive to client throughput. Consequently, an adaptive bitrate streaming 
web server guarantees the viewers will get the highest quality possible without buffering 
interrupts. This process vastly improves the client’s Quality of Service which is 
considered an important objective for all modern applications. 

 

 

1.2.4 On the Client side 

 

In state-of-the-art adaptive streaming solutions, the client module installed on the 
viewer's side are highly intelligent. Here we demonstrate a general view of all the 
processes which are performed on the client side.  

First of all, the client initiates communication with the server side by connecting to the 
server or making a request. If there is a media manifest file, the client requests and 
receives the Manifest file to extract the temporal Information of the media file included in 
it.  

Once the client side is made aware of the different bitrates available by reading the 
manifest file, the receiving process makes a request to the server to be sent a chunk of 
data which represents the first segment of the media content, a video segment for 
instance. This segment contains multimedia content of an average length of 2 to 10 
seconds [8], depending on the end-to-end implementation adopted by the content 
provider or the viewing tools. 

After a segment is received, it is inserted in a fixed size buffer which guarantees that 
there will be enough content saved on the client’s memory to avoid undesirable 
interruptions of the playing session. This initial buffering in most cases does not last 
long, with the segment passing through a decoder to be converted in a playable format 
and then fed directly to the client’s player, usually frame by frame.  

At the same time, another controlling process is monitoring network and video statistics 
to calculate the future download strategy. It measures the current bandwidth of the 
client’s network so that the client is alerted in case of a low bandwidth. The client’s 
throughput is recorded during the transmission of the last segment received along with 
an average throughput for a time period previously specified by the player software 
provider. It also keeps track of the current buffer level ensuring that buffer levels are 
kept to an average. Lastly, in many cases of modern players the controller is 
responsible for withdrawing content from the buffer and feeding it to the player after 
decoding. 
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When the receiver is ready to request another segment, it asks the controller for the 
average throughput and uses it as a threshold to decide, which is the highest quality-
level that the client can support. This way, the next segment is requested from the 
respective stream of the decided quality level or a lower one in case the exact quality 
level does not exist as an option in the available streams. By checking with the manifest 
file it calculates the expected data chunk size, finds the source where the request must 
be sent to and makes the request. Once the request is processed by the server and the 
data chunk is being transmitted, the receiver process starts receiving and saving to the 
client’s memory. All of the above processes can be seen at the diagram in figure 1.6 as 
well as reference [7]. 

As it becomes obvious to the reader, modern adaptive streaming clients adopt high 
independency principles in their implementation schema in order to fully adapt to the 
changes in network and displaying environments [10]. They primarily aim to utilize all 
resources available to the client, such as memory or bandwidth, at the maximum level 
to offer the best quality of experience possible. 

 

 

Figure 1.6: General view of client functions 
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1.3 The MPEG-DASH protocol 

 

1.3.1 Introduction 

 

The Moving Picture Expert Group (MPEG) is a working group of ISO/IEC with the 
mission to develop standards for coded representation of digital audio and video and 
related data, according to [9]. It has developed several widely used multimedia 
standards addressing the need for content creators to reach multiple platforms and 
devices in an efficient and cost-effective way. Protocols such as MPEG-2, MPEG-4, 
MPEG-7, and MPEG-21 are well known and widely appreciated. MPEG-DASH 
(Dynamic Adaptive Streaming over HTTP) is MPEG’s proposed solution to the complex 
problems of HTTP adaptive streaming services that content delivery providers face in 
different devices. 

The first major trial of the MPEG-DASH protocol was the coverage of the 2012 London 
Summer Olympics. From London, Belgian public broadcaster Vlaamse Radio- en 
Televisieomroeporganisatie (VRT) offered its viewers the experience of broadcasting 
the Olympic Games on their personal devices using the MPEG-DASH protocol 
providing a display of the strengths of the adaptive streaming [11]. As a result, major 
web media delivery contenders have adopted MPEG’s new standard or have shown 
interest in adopting it in the near future.  

 

1.3.2 Brief History 

 

In recent years, adaptive streaming video is growing in popularity as the media content 
delivery standard for several user devices and electronics [12]. Adaptive streaming is 
comprised of a server and client software which interact with each other to measure a 
client’s throughput capacity and adjusts the quality level of the projected video 
accordingly.  

Delivering a media file with no dynamic quality adjustment was not enough. It could not 
support the midstream switching of a video stream to a number of available resolutions 
depending on the client’s network conditions and connection speed. On top of that, the 
interruptions and buffering delays during playtime are unavoidable when a client’s 
internet connection could not support the quality of the selected video or when it 
presents fluctuations.  

MPEG responded to the clear need described above by issuing an official call for 
proposing an HTTP adaptive streaming standard in April 2009 [13]. It developed the 
MPEG-DASH specification after cooperating with several expert groups and accepting 
collaboration from other standard organizations such as the Third Generation 
Partnership Project (3GPP). MPEG’s project was coordinated with other industry 
organizations such as the Digital Entertainment Content Ecosystem (DECE LLC), the 
Open IPTV Forum (OIPF), and the World Wide Web Consortium (W3C). Also, a big 
number of global multinational companies were involved, most notably Microsoft, 
Netflix, and Adobe. All this resulted in the MPEG-DASH standard [15] being developed 
as timelined in reference [13]. 
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The fact that it uses the standard HTTP port, thus avoiding firewalls, proxies and cache, 
has increased its popularity and efficiency. Since its establishment, the main protocols 
implementing the HTTP adaptive delivery have been: Microsoft Smooth Streaming, 
HTTP Dynamic Streaming and HTTP Live Streaming [5] [14]. They are all presented in 
the table in figure 1.9. In order to be served media content from any server, user 
devices must support all of the previous, since every one of these protocols utilizes 
different formats varying in structure. Theoretically, the MPEG-DASH standard bridges 
the operating differences of servers and clients created by different vendors, allowing 
for a client that supports the standard to stream media content from any standard-based 
server.  

 

1.3.3 The basic scenario 

 

 

Figure 1.7: The MPEG-DASH process timeline 

 

Reference [13] quotes a simplistic but descriptive example of using MPEG-DASH. The 
architecture described in the example is the following: An HTTP server undertakes to 
deliver stored content through HTTP. The media content consists of a segmented file 
and a media manifest file. The segments combined form media streams which deliver 
parts of the requested file, while the MPD manifest file gives information on the 
available content and its primary characteristics in order for the procedure to be 
coordinated.  

Obtaining that MPD file is the first action of an MPEG-DASH client. The transmission 
method of the MPD file can either be an HTTP link or an email request, a broadcast or 
other. The MPEG-DASH client receives the MPD file (well presented in [12]) to extract 
indispensable information about the media content such as timing, availability, formats 
or encoding alternatives. The MPD file can also notify the client for accessibility options, 
different resolutions available or even digital rights.  
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Figure 1.8: Example of the MPD file data model (by Dutch company TNO) 

In the described example, the client has control over the choice of streams, and so 
chooses one by requesting and fetching some of the available media segments. The 
first segments that are received by the player do not directly feed the player since there 
is a need for buffering and thus they are directed to feed the buffer.  

After this need is satisfied, the client continues requesting the next segments of its 
choice while analyzing network traffic to detect any connection instabilities. If a drop on 
connection speed is detected, the client adapts to it by requesting a segment of a 
smaller size, or lower resolution until the controller concludes that the player can 
maintain a stable buffering level. 

However, as we previously mentioned, the client’s level of control, the adaptation 
decision-making and the player’s behavior over time are not strictly defined in the 
MPEG-DASH specification [15]. It is only the above basic structure and the generic 
purpose of the segments and MPD files that remain unchanged between different media 
delivery applications. Values such as segment size or duration vary from application to 
application depending on the implemented switching logic [16]. A basic overview of the 
MPEG-DASH Client-Server model is shown in figure 1.10. 

 

Figure 1.9: Main Adaptive-HTTP protocols 
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Figure 1.10: MPEG-DASH Server – Client Overview 

 

 

1.3.4 MPEG-DASH major advantages 

 

Adopting the MPEG’s new standard leads to numerous major advantages [13]. 
Essentially, it is widely supported by all platforms and technologies which was a primary 
goal of its design process, thus eliminating incompatibilities. This allows for users to 
switch devices without suffering viewing restrictions and therefore increases the 
audience of every application using the MPEG-DASH model.  

Secondly, being backed up by leading players of the media delivery market [12], MPEG-
DASH has minimized problems concerning delivery or different forms of compression. 
Consequently, it allows for competitive delivery of media content to desktop and mobile 
applications [17] ensuring that users have universal coverage regardless the viewing 
means on their end. It is also guaranteed to receive regular support and evolvement, 
giving the impression of a standard that is here to stay. 

As per content delivery providers, they rest assured since they are not required to 
create several file versions which would be the case for other, format-specific standards 
[13]. That idea of allowing control to anyone interfering with it and at the same time 
bringing platforms of different origin together constitutes the main philosophy of the 
MPEG-DASH development group. 
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2. LONG TERM EVOLUTION NETWORKS 

 

 

2.1 Brief History 

 

LTE is the latest step of a series of evolution in mobile network technology towards the 
advancement of next generation telecommunication networks [19]. During this 
evolution, mobile network design and modelling gradually stopped being a matter of 
domestic dispute and passed into the hands of international standardization 
organizations like ITU. 

Stages in evolution of mobile technology can be divided in generations, starting from the 
invention of cellular networking for land networks, in 1947 by AT&T. Although cellular 
networks could make use of a different frequency per different cell, expensive 
equipment and high power requirements initially limited their availability only to an in-
vehicle use. 

Vast development in mobile telecommunication networks started during the 1980s, 
while mobile communications began to attract International interest. This generation's 
network, named “First Generation Network”, essentially consisted of a number of 
independent networks with different characteristics and names around different areas: 
AMPS in America [22], TACS in Western Europe [23], NMT in Scandinavia or J-TACS 
in Japan and Hong Kong [24]. It was mainly analog and only able to carry voice or 
related services. At the same time, it could not be considered undoubtedly reliable let 
alone that the supporting devices remained enormous. 

The advent of digital technology during the 1980s, however, created the need of 
developing a digital system for mobile communications. The “2nd Generation Networks” 
(2G) were the result of a cooperation between several international telecommunication 
agencies. In Europe, under the supervision of the European Telecommunications 
Standards Institute (ETSI), emerged the Global System for Mobile communications 
(GSM) which rapidly became the global standard.  

Digital technology produced devices with higher capacity batteries and smaller size, 
improved network capacity and more reliable service. While at first the available service 
was limited to voice, data transfer services such as the “Short Message Service” (SMS) 
[25] were quickly added. The evolved forms of GSM that followed, GPRS (General 
Packet Radio Service) and EDGE (Enhanced Data rates for GSM Evolution) [26] 
introduced the concept of packet switching in mobile networks and were able to provide 
more advanced services, paving the way for next generation’s (more complex) mobile 
networks. 

The development of “3rd Generation Networks” (3G) [21], which could utilize a bigger 
bandwidth and made use of the radio interface known as “Universal Terrestrial Radio 
Access” (UTRA) [20], highlighted the need for unified version of Internet and Mobile 
services. The key objective was the ability to provide service “anywhere” and “anytime” 
to a user, meaning that any mobile user would be able to start moving and still enjoy the 
same services even if those were provided by other systems and not directly by 3rd 
generation systems. 
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Even though all development of 3G networks is currently managed by 3GPP, it had 
started almost at the same time as that of 2nd generation networks, long before its 
existence. The globalization of mobile standards played an important part in this 
process. Already since late 1980s the International Telecommunication Union (ITU) had 
been working on a 3rd generation network called “IMT-2000” [27]. Meanwhile in Europe 
and Japan operations were carried out towards the development of a multiple access 
prototype based on Wideband CDMA. Until the establishment of 3GPP in 1998, the 
solutions proposed by Europe and Japan merged into a single prototype called 
Universal Mobile Telecommunication Services (UMTS) [28], as a result of the 
standardization process of ETSI started in 1996. 

Responsible for coordinating the development of 3rd generation networks and their 
evolution into 4th generation networks is the ITU Radio Communication Sector (ITU-R), 
organized respectively under the name of IMT-2000 and IMT-Advanced. Their primary 
goal is the classification of new technologies in “families of standards” while drafting 
proposals for their advancement and development as well as coordinating all 
standardization sectors responsible for implementing these proposals, with 3GPP 
posing as the most significant one. Another important obligation of ITU-R is setting the 
part of the bandwidth that may be utilized in a new technology and when that spectrum 
will be used paired and not paired. 

However, it all comes down to 3GPP being the most important body within the scope of 
ITU. Under 3GPP’s responsibility fall the 2G technologies (GSM, GPRS, and EDGE) 
which are based on Time-Division Multiple Access (TDMA) and Frequency-Division 
Multiple Access (FDMA) [29] as well as the 3G technologies: UMTS which uses Code 
Division Multiple Access (CDMA) and LTE which is built on Orthogonal Frequency-
Division Multiplexing (OFDM).  

The advancement of the rest of 3GPP’s technologies continues in parallel with the 
LTE’s. The transition of UMTS to HSDPA (High Speed Downlink Packet Access) and 
HSUPA (High Speed Uplink Packet Access) was continued in Release 5 and 6 
respectively, and is known as High Speed Packet Access (HSPA), as described in 
reference [21].  

HSPA’s expansion went on with the newer HSPA+ which added higher grades of 
modulation and the use of Multiple Input Multiple Output (MIMO) antennas [30]. LTE is 
benefiting from the improvements in 3G networks but also adds obligations to these 
networks such as the requirement to work with Frequency-Division Duplex (FDD) and 
Time Division-Duplex (TDD) methods or even Time-Division Synchronous Code 
Division Multiple Access (TD-SCDMA) [31]. 

It is obvious from mobile networks’ vast development that they are heading towards 
more flexible, packet-switched systems that will be able to offer multiple service 
packages with a quality of service comparable to wired networks. 
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Figure 2.1: History and evolution of cellular technologies 

 

 

2.2 Objectives of the LTE system 

 

Rapid growth of mobile devices over the past 20 years in conjunction with the number of 
available services around the Internet have been the main reasons of transfer to 4th 
generation networks. The need for Internet services in mobile devices and the evolution 
of mobile technology systems featured as Mobile Broadband was aiming to provide 
services on top of the IP protocol. 

The start came with GPRS which provided data transferring capabilities through packet-
switched systems and continued with HSPA. LTE is designed from the beginning to only 
use packet-switched networks but with a flatter architecture. The Long Term Evolution is 
completed by the evolution of the core network under the name System Architecture 
Evolution (SAE) which includes the Evolved Packet Core (EPC). LTE along with SAE 
form the Evolved Packet System (EPS). 

 

The main objectives that have been set for LTE development can be briefly listed as 
such: 

 

▪ On duplex mode: LTE must support both FDD and TDD duplexing modes. 

▪ On Bandwidth: a tiered spectrum use with a bandwidth set of 1.4 MHz, 3 MHz, 5 
MHz, 10 MHz, 15 MHz, and 20 MHz 
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▪ On Throughput: a 3-4 times better user throughput average per MHz in downlink 
and uplink than HSDPA and HSUPA respectively. 

▪ On peak transmission rate: it has a theoretical net bitrate capacity of up to 100 
Mbit/s in the downlink and 50 Mbit/s in the uplink if a 20 MHz channel is used – 
or even more if a Multiple-Input Multiple-Output (MIMO) antenna array, is used 
instead. 

▪ On peak spectral efficiency: 3 to 5 times more spectrally efficient than HSPA 
assuming there is no MIMO in HSPA. 

▪ On Mobility: supports user high speed movement allowing for terminals moving 
at up to 350 km/h (220 mph) or 500 km/h (310 mph) although LTE is optimized 
for low mobile speed from 0 to 15 km/h. 

▪ On Latency: a user-level requirement of reducing round-trip latency from the user 
to the base station down to 5-10ms while on system-level connection 
establishment should be as short as possible to optimize battery consumption. 
This time is defined as the elapsed time to shift between an idle state 
(RRC_IDLE) to a connected status (RRC_CONNECTED) and is required to be 
less than 100ms. User-level latency might possibly vary depending on the 
volume of data being transmitted and the broadcasting conditions. 

▪ Cost effectiveness and interoperability: LTE is required to have the ability to work 
in cooperation with the existing UTRAN/GERAN systems as well as other non-
3GPP systems. It must be able to support a handover procedure to and from 
these systems. LTE must also contain simple functions for user devices in order 
to ensure power saving for the user. 

▪ Quality of Service: an end-to-end support to maximize quality of service even for 
users at the edge of a cell, even for demanding services like VoIP. 
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2.3 LTE Transmission Modes 

 

To achieve the above goals, LTE introduces a number of physical layer transmission 
modes which reduce complexity in the system and user equipment and are categorized 
as shown in figure 2.2. These techniques also allow for a flexible development of the 
existing spectrum, especially in the case of LTE Advanced (LTE-A), and a good use of 
and coordination with other 3GPP technologies. 

 

 

Figure 2.2: LTE Transmission modes tree (by 4G Americas) 

 

2.3.1 Multiple Antennas 

 

The use of multiple antennas in LTE networks is prominent because it grants the ability 
to exploit the spatial domain, along with the frequency domain, achieving a higher 
spectral efficiency. The realized (by the use of multiple antennas) spectral efficiency is, 
under normal circumstances [32], linearly dependent on the minimum number of 
transmitting and receiving antennas. 

The application of multiple antennas can be implemented through different ways and, 
although most have some theoretical advantages against the others, not all of them can 
be easily applied in practice. Usually, the aforementioned ways consist of the ones 
described below [33]: 
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- Diversity Gain: Use of spatial diversity in signals for a more reliable transmission 
by increasing the durability of the channel against multipath fading. 

- Array Gain: High energy concentration from one or more directions to a specific 
user or a number of different users close to each other is called beamforming, as 
explained in reference [35]. Beamforming techniques improve noise tolerance 
which results in significantly better coverage and a wider range. 

- Spatial Multiplexing: The transmission of multiple data flows to one or more 
receiving users in different space levels. Spatial Multiplexing, shown in figure 2.3 
below, may improve LTE transmission rates or channel capacity if data flows are 
directed to a single user or multiple users respectively. 

 

 

 

Figure 2.3: MIMO release 8 scenarios 
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2.3.2 Orthogonal Frequency-Division Multiple Access 

 

As in figure 2.4, LTE networks make use of Orthogonal Frequency-Division Multiple 
Access (OFDMA) technology on the downlink and Single Carrier - Frequency Division 
Multiple Access (SC-FDMA) on the uplink. OFDMA relies on OFDM (Orthogonal 
Frequency-Division Multiplexing) to provide multiple access.  

 

 

Figure 2.4: DL and UL in LTE 

 

OFDM divides any given channel into many narrower subcarriers of 15 kHz, in an 
orthogonal way that either one by one or in groups they form independent data 
transmission streams (see figure 2.5 below). In OFDMA subcarriers may be shared 
among users allowing for simultaneous data transfer to different users along with control 
channels and pilot symbols with minimum interference. The advantages of the 
technique described above are numerous. It offers: 

 

i. The ability to utilize different parts of the spectrum without a need to change 
system parameters or user equipment. 

ii. Resource reservation from different parts of the spectrum to different users and 
an independent form of scheduling for all parts which resembles that of a singular 
spectrum approach. 

iii. Extended flexibility in fractional frequency reuse as well as interference 
suppression and management. 

iv. Robustness in mitigating inter-cell interference and temporal dispersion of a 
signal. 

v. The construction of modern receivers with low complexity and high efficiency at a 
minimized cost. 
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Figure 2.5: OFDMA and SC-FDMA in LTE 

 

The fact that OFDMA can exploit better the available channel bandwidth compared to 
FDM is of great value. The principle of orthogonality in subcarriers contributes to a finer 
exploitation of the spectrum and relieves the system administrators from using guard 
bands for splitting the subcarriers. 

To its disadvantage and despite its many benefits, OFDMA unfortunately requires high 
power consumption. Transmitters, in contrast to the receivers, have a higher Peak-to-
Average Power Ratio (PAPR) in an OFDM signal and that heavily increases their cost. 
Because of this, OFDMA is primarily used in downlink, since the development cost for 
pricey transmitters in base stations is less important to network carriers than the mobile 
equipment which is offered to their users. 

In contrast, high PAPR in uplink processes may be covered by the needs of mobile 
devices in emitting power and battery capacity. For this reason, uplink uses SC-FDMA 
(as in figure 2.5) which offers the same flexibility in frequency management but with a 
significantly lower demand for power consumption. [33][34] 

 

 

Figure 2.6: Cyclic Prefix Insertion in OFDM 
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Every transmission to the radio interface is potentially subject to corruption and a 
reason for that is the signal’s temporal dispersion. As a result, the appearance of 
interference is evident not only in OFDM symbols but also between subcarriers. For 
their validity against temporal dispersion, OFDM symbols are protected by the Cyclic-
Prefix Insertion (CPI) (figure 2.6) during transmission. 

In this insertion technique, the last piece of every OFDM symbol is copied and 
appended to its beginning increasing the size of the symbol and decreasing its spectral 
efficiency. Validity against temporal dispersion is achieved if the duration of that 
dispersion is less than or equal to the cyclic prefix duration. The cyclic prefix duration 
can be defined as normal or extended, depending on current transmission 
circumstances. 

 

 

2.4 LTE Architecture 

 

2.4.1 Overview 

 

The LTE standard has been specifically designed to support only packet-switched 
services unlike all circuit-switched models of previous cellular systems. It aims to 
provide a reliable service including seamless IP connectivity between User Equipment 
(UE) (specified in [36]) and the Packet Data Network (PDN), without any major 
disruption to the end users’ applications during mobility. 

LTE poses as the evolved version of the Universal Mobile Telecommunications System 
(UMTS) radio access utilizing the Evolved UTRAN (E-UTRAN) [37]. It is followed by an 
evolution of the non-radio aspects known as “System Architecture Evolution” (SAE) [38], 
including the Evolved Packet Core (EPC) network [39]. Together SAE and LTE 
comprise what is known as the Evolved Packet System (EPS). 

EPS is built on the concept of EPS bearers that route all IP traffic from a gateway in the 
PDN to the UE. An IP packet flow in the EPS with a predefined Quality of Service (QoS) 
between the gateway and the User Equipment is called a bearer. The EPC along with 
the E-UTRAN prepare, release and manage bearers as it is required by applications 
being used.  
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Figure 2.7: LTE general architecture (by AIRCOM) 

 

The overall EPS network architecture which gives an overview of all the necessary 
functions provided by E-UTRAN and the Core Network (CN) are comprehensively 
described below. The bearer path as well as QoS aspects are outlined from end to end, 
including the process of establishing an EPS bearer. The LTE protocol stack across the 
different interfaces is detailed, giving an overview of functions offered by different layers 
in the protocol stack. All network interfaces are presented in high detail focusing 
especially on the E-UTRAN interfaces and the common processes used across them, 
most notably all the procedures supporting user mobility. 
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Figure 2.8: Elements forming the EPS 

 

EPS (figure 2.8) ensures that a user is connected to a PDN over IP to run services like 
Voice over IP (VoIP) or access the Internet, while EPS bearers are generally linked with 
a pre-specified QoS guarantee. In order to provide several QoS streams or connectivity 
for a number of PDNs more than one bearers are usually formed. In a typical case 
where a random user is browsing the web, constantly downloading content while 
participating in an IP based voice call at the same time, it would be up to the EPS 
bearer established for the VoIP call to provide the guaranteed QoS for the voice call. 
Meanwhile, most suitable for non-real-time services (i.e. FTP downloading, browsing) 
would be a best-effort bearer. Moreover, a fact worth noting is that, as described in [40], 
the EPS network is configured to protect the user offering privacy during his connection 
time and securing the network against any kind of fraudulent and elusive behavior. 

In overview, E-UTRAN as the access network and EPC as the core network together 
comprise our whole networking concept. Although the core network includes numerous 
logical nodes, the access network consists, in essence, of just a single node known as 
the evolved NodeB (or eNodeB) [41], which in turn connects to the user equipment. 
However, all these network elements share a careful interconnection through 
standardized interfaces so that they are able to provide interoperability to multiple 
vendors. This offers the opportunity for network administrators to piece together a 
variety of network elements manufactured by different individual vendors. In practice, 
depending on commercial factors network engineers may combine or split these logical 
network parts to build their implementations on the physical layer. Both the EPC and E-
UTRAN network elements and their functional branching are explained in higher detail 
in the parts below.  
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2.4.2 The Evolved Packet Core 

 

The Evolved Packet Core (EPC) network is the part of the network responsible for the 
master control of the User Equipment as well as the establishment of the EPS bearers 
[39]. The most notable nodes of the Evolved Packet Core are: The Packet Data 
Network Gateway (P-GW), the Serving Gateway (S-GW) (figures 2.9, 2.10) and the 
Mobility Management Entity (MME) [42]. 

Additionally, EPC includes other logical parts and functions, most notably the PCRF 
(Policy Control and Charging Rules Function) and the HSS (Home Subscriber Server) 
[43]. Control of VoIP or other media applications is handled by a system outside the 
EPS called IMS (IP Multimedia Subsystem), specified in [44], mainly because of EPS’s 
responsibility to provide strictly only a bearer path of a specific QoS level. The logical 
core network nodes are discussed in every detail below:  

 

 

Figure 2.9: P-GW interaction with the network 

 

Figure 2.10: S-GW interaction with the network 

 

• P-GW: The main responsibility of the P-GW is to allocate an IP address for the 
user (UE) and enforce the QoS level required. It filters downlink user IP packets 
into the different QoS-based bearers based on Traffic Flow Templates (TFTs). 
The PDN Gateway enforces a QoS for Guaranteed Bitrate Bearers (GBR) and 
serves as a mobility cushion when communicating with non-3GPP technologies. 
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• S-GW: The Serving Gateway is the mobility “anchor” helping the bearers, 
responsible for transferring all the IP packets of a user moving between 
eNodeBs. It maintains all information on bearers while the User Equipment is in 
an EPS Connection Management - IDLE state (ECM-IDLE), temporarily buffering 
downlink data until the MME reestablishes the EPS bearers through paging. The 
S-GW also collects information for data charging, lawful interception and other 
network administrative tasks. What is more, it provides interconnection with other 
3GPP technologies like GPRS and UMTS. 

• MME: The Mobility Management Entity [45] is a control node that handles the 
signaling between users (the UEs) and the Core Network (CN) using the Non 
Access Stratum (NAS) protocols. The most important functions supported by 
MMEs may be listed as:  

- Functions related to connection management, including the establishment 
of a secure connection between the UE and the network which is usually 
managed by the mobility management of the NAS protocol layer.  

- Functions related to bearer management, including the release and 
maintenance of EPS bearers handled by the session management in the 
NAS protocol.  

 

 

Figure 2.11: HSS in the center of the network 

• PCRF: The Policy Control and Charging Rules Function implements the Policy 
Control Enforcement Function (PCEF) of the P-GW and makes all important 
decisions concerning policy control using flow-based charging functionalities [43]. 
The PCRF is also in charge of the QoS authorization process consisting of the 
current QoS class identifier (QCI) and the respective bitrates, which decides the 
way a specific data flow will be handled by the PCEF making sure it does not 
oppose to the user’s subscription. 

• HSS: The Home Subscriber Server, shown in figure 2.11, holds information 
about users’ subscription data, most notably their subscribed QoS profile, the 
MME where they are currently connected and the PDNs to which they are 
authorized to connect in forms of an Access Point Name (APN) or a PDN 
address. [46] Additionally, the Home Subscriber Server possibly integrates the 
AuC (Authentication Center), in charge of generating security and authentication 
vectors. 
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2.4.3 The Non-Access Stratum (NAS) 

 

The Non-Access Stratum corresponding to the UMTS, differs in that it allows faster 
establishment of the bearers acting as a form of cached information [47]. That is 
because when a piece of User Equipment attaches to the LTE network, the MME builds 
a UE context by downloading subscription information from the HSS and assigns an 
SAE Temporary Mobile Subscriber Identity (S-TMSI) to it. Additionally, this UE context 
holds a list of the established bearers and the capabilities of a terminal. 

The MME keeps track of the UE’s location using a procedure known as tracking area 
update, reducing processing in the UE and decreasing the overhead of the E-UTRAN. 
Every UE informs the network of a new location when exiting its current TA (Tracking 
Area) and while the UE is in the ECM-IDLE state, UE context information is retained by 
the MME. 

In case the MME needs to wake an idle UE, it contacts eNodeBs in the UE’s TA [45]. 
The eNodeBs in turn page the UE over the radio interface which performs a Service 
Request switching to the ECM-CONNECTED state and the E-UTRAN (through the 
MME) creates the information needed to reestablish the radio bearers.  

During all the above signaling and data-sending procedures, security is managed 
completely by the MME which triggers a mutual authentication between the UE and the 
network and establishes security keys used for the encryption of the bearers [40].  

In most cases the EPS intentionally allows Non-AS and AS procedures to run in 
combination to accelerate this idle-to-active transition and bearer establishment by 
executing necessary procedures in parallel, contrary to the UMTS.  

 

 

Figure 2.12: Access Stratum & Non-Access Stratum 
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2.4.4 The access network 

 

E-UTRAN is the access network of LTE with a particularly flat architecture (shown in 
figure 2.13 below) consisting of a number of interconnected eNodeBs [20] [37]. 
Therefore, it can be said that under normal traffic circumstances the E-UTRAN has a 
decentralized control system. 

These eNodeBs form a network with each other using an interface called X2, described 
in [48] and are externally connected to the EPC. ENodeBs connect to the S-GW through 
the use of the S1-U interface and to the MME by means of the S1-MME interface. At the 
same time, User Equipment connects to the eNodeBs by running the Access Stratum 
(AS) protocols.  

 

 

 

Figure 2.13: E-UTRAN architecture 

 

 

The basic functionality operated in the E-UTRAN includes all radio-related tasks 
described below:  

 

▪ EPC connection, which consists of establishing the bearer path for 
communicating with the S-GW and sending signals to the MME.  

▪ Compression of IP packet headers to avoid the unnecessary overhead in small 
multimedia packets and make certain that the network is used in the most 
efficient manner. 
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▪ The RRM (Radio Resource Management) which includes radio-bearers-related 
functionality, most notably radio admission and radio bearer control, radio 
mobility control and scheduling as well as the dynamic allocation of resources 
for both downlink and uplink in the UEs.  

▪ Data security is attained by ensuring all data that is sent over the radio 
interface is encrypted.  

 

Having a distributed control system means that each eNodeB manages and executes 
tasks like the above for several cells, providing close coordination of protocol layers of 
the RAN. With current eNodeB design [41], the need for an exclusively engaged 
controller is rendered unnecessary making the system hard to fail with low latency and 
further more cost-effective. 

However, due to the fact that E-UTRAN does not support a soft handover, but rather 
passes all user information from an eNodeB to another, additional functionality is 
needed to avoid data loss. This functionality is one of the tasks carried out by the X2 
interface.  

As per the connection between eNodeBs and the EPC, a number of MME and S-GW 
pairs form a pool that provides service to multiple eNodeBs located in a specific area. 
This concept is part of the S1 interface and guarantees a fast service to the eNodeBs 
while eliminating the existence of a single point of failure. 
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2.4.5 Protocol Architecture 

 

From the protocol stack perspective there is a certain number of different protocols 
being used in the LTE, but the protocol architecture can be separated into the User 
plane architecture and the Control plane architecture. Therefore, all protocols are being 
described below according to their use in each of these two pillars of LTE’s protocol 
architecture. 

 

Figure 2.14: User Plane and Control Plane in the Protocol stack 

 

2.4.6 User plane 

 

The protocol that is used for tunneling over the Core Network interfaces S1 and S5/S8.1 
is 3GPP-specific and is known as GTP (GPRS Tunneling Protocol) [50]. When an IP 
packet is tunneled from the P-GW to the eNodeB, encapsulated in an EPC protocol, 
and sent to the UE, different protocols are used by different interfaces.  

The access network user plane protocol stack [49] (figure 2.14) includes the following 
layers that are terminated in the eNodeB: 

 

- Physical (PHY) layer: 

Connecting the eNodeB with a UE, the physical layer in LTE networks 
supports the HARQ (a hybrid combination of high-rate forward error-
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correcting coding and ARQ error-control) ensuring uplink power control and 
multi-stream transmission and reception. 

 

- Media Access Control (MAC) layer: 

The MAC sublayer [51] provides (de)multiplexing of different RLC layers, 
priority management and error correction on UEs or across different logical 
channels of a UE, and reports traffic volume. 

 

- Radio Link Control (RLC) layer: 

Apart from transferring upper-layer PDUs, the RLC reassembles or 
concatenates the packets, detects possible duplicates, controls the traffic 
flow and performs error-correction through HARQ. (see figure 2.15) 

 

- Packet Data Convergence Protocol (PDCP) layer: 

The PDCP layer is primarily responsible for header compression and 
ciphering on the user plane [52]. Data handling such as protection and 
buffering during a handover is also assigned to PDCP, while MAC and RLC 
are both designed to start in a new cell after handover. 

 

Figure 2.15: RLC Sub Layer 
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2.4.7 Control plane 

 

The control plane protocol stack (figure 2.14) includes more or less the same protocols 
which are used in the user plane [49]. Their objective here is to successfully 
interconnect an MME to a UE.  

The lower layers perform the same functionality as previously said for the user plane 
with the exception of a header compression function for the control plane and the 
addition of a NAS sublayer. The NAS sublayer works strictly between the MME and the 
UEs providing authentication procedures, idle-mode paging origination, idle-mode 
mobility handling, and overall security control. 

The Radio Resource Control (RRC) protocol, known as layer-3 in the AS protocol stack, 
works on the Control plane as the main controlling function in the AS [53]. The RRC is 
responsible for configuring all the lower layers using RRC-specific signaling between 
the UEs and the eNodeBs, as well as for establishing EPS radio bearers. It essentially 
provides all broadcasting, paging and connection management, along with radio bearer 
control and mobility functions. 
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2.5 Quality of Service in LTE 

 

2.5.1 EPS Bearers 

 

An Evolved Packet System Bearer is defined as a transmission channel through an 
EPS network with a strictly specified set of data transmission characteristics such as 
QoS data rate and data flow control [54]. 

At any given time, a UE is probably handling several web applications with varying 
Quality of Service requirements. For example, VoIP applications are highly more 
demanding in their requirements for QoS in terms of avoiding delay and jittering. On the 
other hand, non-real-time applications like simple web browsing or FTP downloading 
value a much lower packet-loss rate without prioritizing a low delay. In order to support 
this difference in QoS demands among different applications, the EPS establishes a 
number of EPS bearers, each being associated with a different QoS level standard, 
researched in reference [55].  

Consequently, EPS bearers are divided into the following two basic categories given the 
type of QoS they are intended to offer:  

 

1) Guaranteed Bit Rate (GBR) bearers are the ones used for real-time demanding 
applications such as VoIP. During establishment, these are assigned a minimum 
GBR value by a control function according to the application’s needs. To match 
this minimum GBR value, dedicated channel resources are allocated for and 
used by the EPS bearer.  

In case of a need for a higher bitrate than the GBR value, the bitrate needed can 
be provided by the EPS bearer as long as the resources available allow it. 
However, Guaranteed Bit Rate bearers also hold a Maximum Bit Rate (MBR) 
value, which effectively defines a ceiling on the maximum bit rate that can be 
supported by a GBR bearer.  

2) Non-Guaranteed Bit Rate (non-GBR) bearers are the EPS bearers which do not 
guarantee any specific bit rate. The resource allocation for non-GBR bearers has 
a more flexible, more volatile nature allowing for variations at will and on the spot. 
These can be used for downloading and browsing applications. For such 
bearers, there is no obligation that bandwidth resources are necessarily allocated 
permanently to the EPS bearer. 

 

As per the ARP (Allocation/Retention Priority) value of an EPS bearer, it plays a key 
role in call admission control when a bearer is requested and it should be decided if the 
radio is too congested for that bearer to be established. Moreover, it determines the 
prioritization of an establishment request for a new or an existing bearer. After the 
establishment of an EPS bearer, its ARP can no longer affect characteristics such as 
the rate control or scheduling of a bearer. Packet forwarding behavior will be entirely 
specified by QoS parameters of bearers like the abovementioned MBR, GBR or the 
QCI. 

EPS bearers are paths which need to go through several different interfaces. A typical 
bearer will use the LTE-U interface between the eNodeB and the UE. The S1 interface 
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will be the one connecting the eNodeB to the S-GW, and after that the S5/S8 interface 
should come in between the P-GW and the S-GW.  

Crossing these different interfaces, an EPS bearer is bound to a sublayer bearer with a 
separate ID on each interface. Therefore, network nodes are obliged to oversee and 
record the mapping to these different bearer IDs while the EPS bearer is on its path 
between interfaces.  

An S5/S8 interface bearer transfers the packets of an EPS bearer from an S-GW to a P-
GW and the opposite in the following way [54]:  

First, the S-GW is storing a one-to-one mapping from that S5/S8 interface bearer to an 
S1 interface bearer. Then, the original bearer can always be identified by the GTP 
tunnel-ID across both the S1 and the S5/S8 interfaces. Between an eNodeB and an S-
GW the IP packets of an EPS bearer are transported by an S1 bearer when the eNodeB 
stores an identical with the above one-to-one mapping between the two, as is the case 
for the radio bearer connecting the UEs to an eNodeB.  

 

 

Figure 2.16: EPS Bearers and Traffic Flows 

 

2.5.2 QoS Class Identifiers 

 

Specifically in the E-UTRAN, the eNodeBs are in charge of providing the necessary 
QoS for an EPS bearer over the radio interface. Each bearer is associated with a 
specific QoS Class Identifier (QCI) [55]. QCIs include a priority value, a packet delay 
budget, a maximum acceptable packet loss rate and a QCI label providing the way it 
should be handled by the eNodeB. Not many QCIs have been standardized, giving 
possible vendors a sufficient understanding of the fundamentals of the service but 
leaving them the flexibility of selecting a custom queue management, QoS level policy 
and priority handling.  

This way it is guaranteed to LTE network operators that regardless who is the vendor of 
the E-UTRAN equipment, traffic handling is highly consistent all over the area of the 
LTE network. Therefore, it is of little importance which of the standardized QCIs will the 
PCRF select for an EPS flow since the QCIs follow the same logic and are different only 
in the details.  
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Figure 2.17: Bearer Hierarchy 

 

The priority, the acceptable packet loss rate, and the packet delay budget described in 
the QCI label define how the scheduling policy of the MAC protocol that handles IP 
packets sent over the EPS bearer, its rate modification policy, its queue management 
and most notably how the RLC mode is configured. For instance, the scheduler might 
choose to send a packet with a higher priority first and leave a packet with lower priority 
back at the queue. The EPS bearers which have a significantly lower acceptable packet 
loss rate use what is called an Acknowledged Mode (AM) within the RLC protocol layer 
to make sure that all packets are delivered with success across the network’s radio 
interface.  

According to which EPS bearer an IP packet is bound to, it will be given the same 
treatment in terms of RLC, queue management and QoS configuration across all 
interfaces which that EPS bearer is entitled to [55]. In other words, if a need for a 
different QoS flow appears, the network must be inclined to provide and establish a 
separate EPS bearer in order to serve the QoS level upgrade. Once it does so, all user 
IP packets which required a more favorable treatment are channeled into the new EPS 
bearer.  

This packet filtering system which guides IP packets into different bearers and was 
mentioned above is primarily built over on Traffic Flow Templates (TFTs). TFTs use IP 
header information to distinguish and divide packets which belong to different QoS 
categories, as for instance would be parts of a VoIP connection compared to parts of 
FTP downloading.  

Information such as source/destination IP address or TCP port are used so that each 
packet can be guided in the respective bearer. In particular, a TFT associated with each 
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bearer in the P-GW which filters IP packets to EPS bearers in the downlink direction 
would be called a Downlink TFT (DL TFT), while a TFT which is found on the User 
Equipment with different bearers and filters packets to the uplink is an Uplink TFT (UL 
TFT).  

 

 

Figure 2.18:  Standardized QCIs 

 

When a UE first attaches to the LTE network, after the P-GW assigns it an IP address 
the EPC establishes a non-GBR bearer for the UE called the “Default Bearer” (see 
figure 2.17). The MME subsequently retrieves user subscription parameters such as 
QoS default values from the HSS and assigns them to the default bearer [55]. These 
values can later be changed through the cooperation of the PCEF and the PCRF. This 
is the minimum establishment that can happen during the process of a UE attachment 
to the network. The default bearer remains established through the whole lifecycle of a 
PDN connection ensuring that IP connectivity between the UE and the PDN will under 
no circumstances be interrupted.  

All bearers additionally created after the default one are called “dedicated” bearers and 
their establishment may happen during or after the completion of attaching the UE to 
the network. Dedicated bearers can be both GBR and non-GBR bearers (though 
obviously only one or the other) and through identification they become clearly 
separated from the default as far as the E-UTRAN is concerned. Dedicated bearers in a 
UE may have been provided by more than one P-GWs and are usually established by 
the EPC network, either upon a UE bearer establishment request or following a trigger 
from the IMS domain.  

As previously pointed, each EPS bearer has an associated QoS level and, 
consequently, each bearer should also be associated with the respective TFTs in case 
there are more than one bearers running on a UE. The bearer QoS-level parameters for 
every dedicated bearer are forwarded to the S-GW after being sent from the PCRF to 
the P-GW [55]. The MME is responsible to receive those values from the S-GW and 
pass them over to inform the E-UTRAN. 
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2.5.3 OTT Content Providers 

 

As mentioned previously, video is poised to become the predominant data type flowing 
through networks, and this includes video tied to entertainment and video that is added 
to many non-entertainment services that we use today. As a result, handling video QoS 
is of imperative value to all Over-The-Top (OTT) content providers, and cannot always 
be left to a best-effort IP delivery method. We described above how this process is 
applied on Radio bearer, S1 bearer and S5/S8 bearer, collectively called as EPS 
bearer. 

According to the standardized QCIs in LTE (figure 2.18), TCP-based progressive video 
streaming is assigned primarily to non-GBR type bearers. In the case of YouTube, for 
example, which uses the (TCP-based) Adobe HTTP Adaptive Streaming protocol, the 
IP flow would be channeled through a Default Bearer with QCI 6, 8, or 9. This non-GBR 
bearer would indicate a 300ms packet delay tolerance and a 10-6 acceptable packet 
loss error rate. The same would be the case for the on-demand service of the American 
premium cable network HBO, HBO GO. 

It is worth noting that, although non-GBR bearers do not provide guaranteed bitrates, 
they still essentially manage QoS using parameters like A-AMBR and UE-AMBR. A-
AMBR indicates the maximum possible bitrate for all best-effort services on an APN, 
while UE-AMBR is a value that limits the possible bitrate of best effort flows on a 
particular client. These parameters prevent the client from taking over all the available 
bandwidth of the interface and preserve control over traffic flows within the PDN. 

On the other hand, Netflix, which offers a similar on-demand video streaming service, 
but is using the Dynamic Adaptive Streaming over HTTP (DASH) protocol would 
request to allocate a Dedicated bearer in order to guarantee a minimum bitrate to the 
user. Therefore, the application’s IP flow would use a bearer with QCI 4 which allows for 
a 300ms delay tolerance, but would hold a priority of 5 having still a packet loss rate of 
10-6. 

For services like VoLTE, we need to provide better user experience and this is where 
Dedicated bearer would really come handy. VoIP pioneer Skype, for example, would 
also use a Dedicated GBR bearer for calls made using the app, with a QCI of 1 which 
reduces delay to 100ms and acceptable packet loss to 10-2. A bearer with QCI 1 has a 
priority of 2, second only to QCI 5 which is used for IMS signaling.  

However, Skype video calls would surely drop to a QCI 2 bearer, along with all other 
video calling apps such as Facebook Messenger, Viber and Facetime to adopt a priority 
of 4. The tolerance is slightly increased in QCI 2 bearers, having a packet delat 
limitation of 150ms and a packet loss rate of 10-3. 

 

Figure 2.19: OTT Content Flows 
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It is important to note that, as more than one Default bearers may exist, if the QCI 
requested for an application is not satisfied by one of the existing bearers, then the UE 
will establish a new Default bearer and if necessary a Dedicated bearer over the Default 
one. What is more, the new bearer might potentially connect the UE to a different P-GW 
and therefore the UE be given a different IP address within the network of the second 
gateway. 

 

 

Figure 2.20: Default and Dedicated EPS bearers 

Concluding this chapter, we addressed the mechanisms by which the Evolved Packet 
System provides user equipment with IP connectivity to the Packet Data Network in an 
extensively detailed manner [54]. We analyzed the long term goals of the LTE standard 
and explained the ways modern LTE networks work to achieve them. We outlined the 
key LTE parts and their role in the LTE edifice.  

As high-speed wireless communication has become the norm for information-transfer 
transactions, it is considered useful for any individual to have an idea of the LTE 
architecture. Therefore, with the above we provide a concise, full, and accurate 
summary of the principles of LTE functionality for further academic study. 
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Figure 3.1: HAS QOE key influence factors 

3. QUALITY OF EXPERIENCE 

 

 

3.1 Introduction 

 

When an on-demand video is streamed over an IP network using TCP, the client 
receives a theoretically intact copy of the media file. That is the case however according 
to the network’s technical specifications. In any realistic scenario, the situation would be 
quite the contrary. Established communications in any wired network are restricted in 
quality to what the network infrastructure can offer. In most cases, they present 
instabilities due to latency and throughput changes, which possibly challenge the buffer 
of an active Internet application. Mobile or wireless networks also suffer from signal 
issues such as cell interference, noise, and fading which are major causes of delays in 
multimedia transmission. Having an unstable connection with fluctuating bandwidth is 
confusing for the buffering process of any multimedia application, and inevitably causes 
interruptions which can be catastrophic to the user’s streaming experience. 

Consequently, the success of 
telecommunication networks relies and is 
assessed on their Quality of Service (QoS). 
Quality of Service refers to the overall 
performance of a network, based on objective 
network metrics and parameters such as 
packet loss rate, average jitter and delay, 
availability, maximum bitrates, and others. A 
set of guaranteed values for such network 
parameters by a service provider constitute a 
QoS standard offered to connected users.  

However, offering a high QoS standard does 
not always reflect proportionally on user 
experience. Therefore, as the need to move 
away from service-oriented quality assessment 
and towards a user-centric system emerged, a 
concept of subjectively perceived quality, 
Quality of Experience (or QoE) was introduced. 

Reference [56] accurately defines Quality of 
Experience as “the degree of delight or 
annoyance of the user of an application or 
service. It results from the fulfillment of his or 
her expectations with respect to the utility 
and/or enjoyment of the application or service 
in the light of the user’s personality and current 
state.” meaning that QoE evaluates how 
customers perceive the overall value of a 
service. Thus, it becomes clear that QoE 
estimation relies on subjective criteria which 
also differ among different types of services. 
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3.2 Influence Factors 

 

An initial classification of QoE influence factors could be their division into perceptual 
and technical factors, as it is shown on the tree in figure 3.1. Technical factors are not 
perceived directly by the end user but heavily influence other, perceptual factors and 
indirectly the QoE. On the other hand, a perceptual factor such as the overall waiting 
time of a user may be the result of a number of technical factors.  

For HTTP video streaming, initial delay and stalling [57] are the key influence factors of 
QoE, with the addition of adaptation in the case of HTTP adaptive streaming systems 
which introduce a new perceptual dimension. Hereby we present and analyze all 
common QoE influence factors as suggested by related research sources. 

 
3.2.1 Initial Delay 

 

A few seconds of initial delay are inevitable before the playback of any multimedia 
application. Delaying reasons begin with the establishment of connection between the 
user and the media server, continue with the transmission of information data about the 
media structure, and end with buffering and decoding. Transmission of the first two fully 
depends on the available bandwidth and the encoding used rather than the media 
application itself. Buffering, on the other hand, is a way to eliminate future playback 
interruptions. By delaying the beginning of the playback, incoming multimedia data is 
stored on a buffer to be used as a safety source of playtime in case the incoming data 
rate drops lower than the player bitrate.  

However, the size of this buffer and the length of the additional delay to fill it are not 
fixed and vary from application to application. That being said, there is an evident 
tradeoff to be handled by the application’s manufacturer. With a longer delay comes a 
lower risk of buffer depletion, while a shorter delay is associated with a smaller buffer 
and a higher risk for stalling during playtime because of buffer depletion. 

Research confirms initial delay being a matter of different application-specific 
approaches, even though it includes connection establishment and loading. 
Furthermore, it suggests the existence of a logarithmic relationship between a Mean 
Opinion Score (MOS) and initial delay length [57]. However, it needs to be noted that 
users in their vast majority prefer a slightly longer initial delay than take the risk of 
stalling playtime. And that is because the impact of an initial delay on perceived quality 
is insignificant and its duration does not vary based on media clip duration. Initial delay 
is more or less expected and the users know when it starts - having the same 
experience in all their applications. On the other hand, stalling appears to the user as a 
sudden interruption of the media streaming service. Therefore, stalling is commonly 
perceived much worse by human sensing due to its unexpectedness. The same applies 
on mobile applications where users consider parameters like stalling or the technical 
video quality to be more crucial for their experience than the buffering delay. Ultimately, 
a delay of 15 seconds or less does not severely affect the user’s perceived QoE and is 
typically considered acceptable according to research results. 

As media service users are familiar with a minimal delay before the start of the 
playback, they normally tolerate it assuming they intend to watch the full length of the 
video. However, recent QoE research indicates the appearance of a new user behavior 
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especially for user-generated contents. Lately, users tend to browse through videos 
searching for some contents which they are interested in. Initial delays in such cases 
should be lower to be accepted by the user. Although the QoE of users browsing videos 
has not been deeply investigated yet, it is only subsequent that short delays might be 
desirable for user-generated content since users often just want to just peek into the 
video.  

It follows for video service implementations in general, like for any service, that initial 
delays should be kept as short as possible, but initial delays are definitely not a major 
performance issue for the users’ QoE. As we previously noted, even longer delays up to 
several seconds will be tolerated, especially if users intend to watch a video. Overall, 
they remain a key factor but a factor being traded off nonetheless.  

 

3.2.2 Stalling 

 

When the current throughput of a video streaming application is lower than the video 
player bitrate, the buffer occupancy will start to reduce. Eventually, data provided by the 
buffer will be insufficient, forcing the video playback to stop. At that point, playback is 
interrupted until the buffer loads again to contain a minimum amount of video data. This 
stopping of video playback because of playout buffer underrun is known as “stalling”. 
Once interrupted, the application decides to what extent it will wait for the reload of the 
buffer, taking into account that a longer wait might ensure more buffered playtime and 
eliminate the possibility of another interruption, but also means a longer duration of the 
initial interruption. So, application developers are once again presented with the 
challenge of a performance tradeoff. 

Research around stalling and its influence on QoE has been prominent. Interesting 
findings suggest that users are more patient during a single long stalling than a number 
of short, frequent ones. At worst, if multiple interruptions cannot be avoided, being as 
periodic as possible makes them more tolerable to clients. It is also believed that 
moments of interruption have a varying impact to streaming client users depending on 
their position in time and the importance of the –then- current part of the video to the 
user.  

Another interesting aspect of stalling is its relation to quantization and frame rate. [58] 
Results prove that users by majority prefer an increased quantization in the encoding of 
a video if they are to avoid a more extensive stalling period during playtime. As per 
frame rate reduction, research suggests that it is also considered more tolerable than 
stalling. Frame rate reduction still appears to cause a drop of the user’s QoE but 
subjective studies show users’ opinion to be more positive towards it.  

To summarize, stalling is probably the most key factor degrading user perceived QoE 
and should be avoided by all media streaming services whenever possible since users 
in most cases will not tolerate more than one interruption per video clip. Several models 
have been proposed for mapping stalling patterns and duration to an indicative MOS. All 
models agree on the existence of exponential relationship between them, meaning that 
extended stalling results in high dissatisfaction. Precisely for this reason, adaptive 
streaming techniques have gone a long way in adjusting play rate to the current 
throughput, effectively minimizing stalling limitations and ultimately offering a more 
attractive video service.  
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3.2.3 Adaptation 

 

As we previously discussed, modern multimedia streaming services implement a 
method of adaptive streaming to make it possible for the video quality to adapt to the 
current throughput of the application. The client needs to acquire the ability to control 
the data rate depending on network fluctuations. The server side also has to be 
changed accordingly to encode the video in different quality levels and then split the 
media files into segments to deliver them upon request. Adaptation is designed 
precisely to improve perceived quality and forestall adverse interruptions, and as such it 
is considered another key factor influencing the user’s QoE. 

Multiple studies have shown that, in comparison with classical streaming applications, 
adaptive streaming concepts can effectively reduce stalling by large numbers when 
bandwidth decreases in mobility models. In the same way, adaptive streaming is 
capable of better utilizing the available bandwidth when the user moves and bandwidth 
increases. In stable, non-mobile environments, adaptive streaming provides an efficient 
way to guarantee a standard QoE and eliminate interruptions. Reference [59] proves 
that if presented with such a dilemma, users would choose to enjoy a sense of control in 
regards to their QoE. They appreciate knowing what to expect of the service they are 
being offered, thus preferring to deduct on video quality than experience sudden 
pauses. When objective results of stalling and resolution reduction are mapped to QoE, 
it is found that uncontrolled interruptions have a more disturbing effect than this of a 
deliberate quality change in resolution. 

It becomes obvious to any researcher that adaptation introduces yet another aspect in 
QoE measurement and study. Being relatively new and constantly evolving, adaptation 
is in need of more intense and extensive research. This need constitutes in brief the aim 
of our research within the present text as we focus in explaining the interaction between 
streaming adaptation and quality of experience especially in mobile situations. Forms of 
adaptivity on content delivery network structure or traffic management also exist but are 
considered to be out of the scope of the present research since end users in such cases 
have minimal participation and essentially no control.  

 

3.3 QoS Metrics 

 

According to Wikipedia, Quality of Service (QoS) is defined as “the overall performance 
of a telephony or computer network, particularly the performance seen by the users of 
the network. To quantitatively measure quality of service, several related aspects of the 
network service are often considered, such as error rates, bit rate, throughput, 
transmission delay, availability, jitter, etc.”. Or as [63] suggests, “QoS refers to a 
network’s ability to achieve maximum bandwidth and deal with other network 
performance elements like latency, error rate and uptime.” QoS also involves controlling 
and managing network resources by setting priorities for specific types of data (video, 
audio, files) on the network. Quality of Service is exclusively applied to network traffic 
generated for video on demand, IPTV, VoIP, streaming media, videoconferencing and 
online gaming. 

To measure QoS, according to [60], a formula widely used is that of the mean-squared 
error loss distortion. It describes the effect of lost frames to the Quality of Service 
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provided to the user during a wireless transmission. The mean-squared error distortion 
can be computed as follows: 

𝐷(𝑓, 𝑓) =
1

𝑁1𝑁2
∑  

𝑁1−1
𝑛1=0 ∑  

𝑁2−1
𝑛2=0 (𝑓(𝑛1, 𝑛2) − 𝑓(𝑛1, 𝑛2))2

, 

 

Where 𝑓 is an estimated frame, created to replace a frame 𝑓 of dimensions 𝑁1×𝑁2 

pixels and 𝑓(𝑛1, 𝑛2) (or 𝑓(𝑛1, 𝑛2)) indicate the pixel value at position (𝑛1, 𝑛2) of the frame 

𝑓 (or 𝑓). In this case, to calculate the PSNR, one could use the following metric: 

 

𝑃𝑆𝑁𝑅(𝑓, 𝑓) =
(2𝐵 − 1)2

𝐷(𝑓,𝑓)
, or in 𝑑𝐵 as proposed in [62] for 𝐵 = 8: 

𝑃𝑆𝑁𝑅𝑑𝐵
(𝑓, 𝑓) = 10𝑙𝑜𝑔10

(255)2

𝐷(𝑓,𝑓)
= 20𝑙𝑜𝑔10(

255

√𝐷(𝑓,𝑓)
), 

 

Where 𝐵 is the number of bits used in a pixel’s encoding. The researchers in [60] 
accurately note that the closer a frame 𝑓 is to the beginning of a Group of Pictures 

(GOP) the higher the distortion value will be, depending also on error concealment 
(figure 3.2) and encoding. Notably, a PSNR value ranging from 30 to 40 characterizes a 
medium to high quality video. 

 

Figure 3.2: Error concealment example 

Error concealment is usually performed using the “previous frame” concealment 
approach. This approach indicates that if a P-frame is lost in a GOP, then the previous 
frame is repeated until the end of that GOP or until the next I-frame is received. As 
proposed, the total loss distortion in a GOP of 𝑁𝐺 total frames, one I-frame and 𝑁𝐺 − 1 
P-frames where a frame 𝑓 is lost would be: 

 

𝐷(𝑓) = ∑  
𝑁𝐺
𝑦=𝑓 𝐷(𝑦, 𝑓 − 1), 

 

Since frame 𝑓 and all following frames are replaced by frame 𝑓 − 1. In the case of an I-
frame, it is replaced by the last frame of the previous GOP. 
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3.4 QoE Metrics 

 

Quality of experience (QoE) is a complex concept, with conflicting aspects in confluent 
domains. It tries to measure the QoS as it is perceived by the end user and one could 
argue over its consistently growing interest as the best method to quantify the 
multimedia experience of mobile users. Traditionally, QoE is obtained from subjective 
tests, where human viewers evaluate the quality of tested videos under a laboratory 
environment. 

The relationship between QoE and QoS (such as coding parameters and network 
statistics) is complicated because users' perceptual video quality is subjective and 
diversified in different environments. In [62], researchers note that the two featured 
approaches mapping QoS to QoE are the stimulus-centric and the perception-centric 
approaches. The stimulus-centric one is based, as stated, on the “WQL hypothesis” 
which defines that the relationship between waiting time 𝑡 and its QoE evaluation on a 
linear ACR scale is logarithmic. What derives from this law is the fact that a change in 
perceived quality can be seen as surpassing a hardly detectable margin. Thus, a lot of 
studies have initiated a search to determine this tiniest noticeable difference between 
two consecutive levels of QoE. On the other hand, the perception-centric approach is 
reflected by the “IQX hypothesis” according to which the relationship between a QoS 
parameter and QoE is negative exponential. Moreover, apart from providing an equation 
between a QoS impairment and the perceived stimulus, it also indicates that a user’s 
QoE sensitivity is highly dependent on his currently provided QoE level. 

However, it is common secret among researchers that despite QoE’s significant 
advancement as a scientific field over the past years, its analysis methodology has not 
always kept pace due to the complexity of its multidimensional nature. In this section, 
we devote a part to outline and explain the definitions of known and commonly used 
metrics regarding QoE evaluation. 

 

3.4.1 Mean Opinion Score (MOS) 

 

As it is correctly stated in [62], the Mean Opinion Score (MOS) is arguably the most 
important QoE indicator. MOS is usually a 5-point scale, originally used to measure the 
subjective quality of real time multimedia data. Most are familiar with the post-service 
evaluation tests used by several web applications. A mapping of MOS to video quality is 
shown in figure 3.3 below.  

 

Figure 3.3: Relation of MOS and Video Quality 
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For a specific subjective experiment, we can define a random variable 𝑈 to represent 
the quality ratings (i.e. the 5-point scale). In order to simplify our calculations, we can 
assume that conditions are the same throughout the experiment and that the identity of 
a subject is irrelevant to the calculation. Given that U is discrete or continuous with a 
probability mass function 𝑓𝑢 or a probability density function 𝑓(𝑢) in each case 
respectively, the expected, or “mean” value of the random variable 𝑈 is given by the 
formula: 

𝐸[𝑈] = ∑  𝑈+

𝑢=𝑈− 𝑢𝑓𝑢, when U is discrete and 𝐸[𝑈] = ∫  
𝑈+

𝑢=𝑈− 𝑢𝑓(𝑢)𝑑𝑢, 

when U is continuous. 

Based on this, we can consider the Mean Opinion Score to be an estimate �̂� of 𝐸[𝑈] 
and, for a number of quality classes 𝑁, to be given by [61]: 

𝑀𝑂𝑆 = ∑  

𝑁

𝑢=1

𝑢𝑓�̂� 

 

Now, because for a given number of test subjects 𝑅 the estimated probability of opinion 

score 𝑢 is 𝑓𝑢
̂ = 1

𝑅
∑  𝑅

𝑖=1 𝛿𝑈𝑖,𝑢 with 𝛿𝑖,𝑗 = 1, if 𝑖 = 𝑗 or 0 otherwise, we have: 

 

∑  𝑁
𝑢=1 𝑢𝑓�̂� = ∑  𝑁

𝑢=1 𝑢 
1

𝑅
∑  𝑅

𝑖=1 𝛿𝑈𝑖,𝑢 =
1

𝑅
∑  𝑅

𝑖=1 ∑  𝑁
𝑢=1 𝑢𝛿𝑈𝑖,𝑢 =

1

𝑅
∑  𝑅

𝑖=1 𝑈𝑖, and so 

 

𝑀𝑂𝑆 =
1

𝑅
∑  𝑅

𝑖=1 𝑈𝑖 ,  

 

which practically means 𝑀𝑂𝑆 =
𝑠𝑒𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  𝑓𝑜𝑟  𝑅 𝑡𝑒𝑠𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
 and is, in essence,  

taking us back to the definition of MOS. 

 

To measure the uncertainty of MOS we can use its standard deviation 𝜎𝑈 or SOS 

(Standard deviation of Opinion Score) which is an estimate of the standard deviation 
and converges to 𝜎𝑈 for very large numbers. The SOS hypothesis formulates the 
relationship between MOS and SOS as such: 

 

𝑆𝑂𝑆 = √𝑎(−𝑀𝑂𝑆2 + (𝑈− + 𝑈+)𝑀𝑂𝑆 − 𝑈− ⋅ 𝑈+), 

 

where the SOS parameter 𝑎 ∈ [0; 1] and depends on the application and the test 

conditions, derived from subjective tests.  

More on 𝑎 can be found in Section 𝛪𝛪 − 𝛣 of [61]. 
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3.4.2 Using the PSNR 

 

Figure 3.4 shows a relation between the PSNR and video quality. According to 
reference [60], we can also calculate the overall QoE through the PSNR by using the 
following exponential relation: 

 

𝑄 =
1

1 + 𝑒𝑏1(𝑃𝑆𝑁𝑅−𝑏2), 

 

Where b1 and b2 are parameters depending on video characteristics and PSNR is 
expressed in dB. The authors note that 0 indicates the best quality while 1 indicates the 
worst. It is useful to point out that the previous and the following derivations are 
associated with QoE estimation in general and not specifically in mobile or wireless 
networking. 

 

Figure 3.4: Relation of PSNR and Video Quality 

Another metric suggested by an alternate source following a subjective video quality 
assessment is: 

 

𝑄𝑚 = 𝑄𝑚𝑎𝑥(
1

1 + 𝑒𝑏1(𝑃𝑆𝑁𝑅−𝑏2)) ⋅
1 − 𝑒−𝑏3(𝑓/𝑓𝑚𝑎𝑥)

1 − 𝑒𝑏3 , 

 

Where 𝑄𝑚𝑎𝑥 is a constant representing maximum quality (usually 100 so that 𝑄𝑚 is on a 
0-100 scale), 𝑓 and 𝑓𝑚𝑎𝑥 are the current and maximum frame rates respectively and b3 

is another parameter of the video. However, the above equation is often written 
simplified as: 

 

𝑄𝑚 = 𝑄𝑚𝑎𝑥(
1

1 + 𝑒𝑏1(𝑃𝑆𝑁𝑅−𝑏2)), 

 

Since error concealment can maintain a frame rate 𝑓 so that 𝑓 = 𝑓𝑚𝑎𝑥. 
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The video characteristics used above can be calculated offline in the server where the 
video is stored and then used in the QoE equation. In case of a live broadcast there are 
alternative forms of the QoE estimation formula to approach dynamically changing 
content. Similarly, the SSIM (Structural Similarity Index) metric is calculated on various 
windows of an image. The measure between two image windows 𝑥 and 𝑦 of size 𝑁×𝑁 
is given by [62]: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
, 

 

Where 𝜇 is the average, 𝜎2 is the variance, 𝜎𝑥𝑦 is the covariance and 𝑐1, 𝑐2 are constant 

values. SSIM along with PSNR have been important metrics used to derive many 
complex equations for quality assessment, such as the VQM (Video Quality Metric) and 
MPQM (Moving Pictures Quality Metric). 

 

3.4.3 Network average 

 

QoE estimation is indeed based on video characteristics as shown above. However, 
recent studies focus on the relation between QoE and network attributes. Performance 
in the Radio Resource Management apparently has an instant reflection on perceived 
quality by all users in the network. Thus, we present some metrics which widely appear 
in literature describing the aforementioned effect. Overall, the average QoE in the 
network is given by: 

 

𝑄𝑚
(𝑎𝑣𝑔)

=
1

𝐾
∑  𝐾

𝑘=1 𝑄𝑚,𝑘 , 

 

Where 𝑄𝑚,𝑘 is the QoE of a specific, single user. This formula describes the average 

QoE in an accurate way, but could still hide the existence of a number of users 
experiencing a very low quality when there are others enjoying the opposite therefore 
counterbalancing them. The solution proposed by researchers is to try to maximize the 
minimum QoE in the network, calculated below: 

 

𝑄𝑚
(𝑚𝑖𝑛)

= 𝑚𝑖𝑛𝑘  𝑄𝑚,𝑘  

 

This formula allows network designers and internet providers to focus on improving the 
lowest QoE encountered in the network. Since favoring low QoE users would upset the 
connection of other subscribers and is unfair, an accurate settlement would be to use 

the geometric mean (𝑄𝑚
(𝑔𝑚)

) QoE, whose formula is presented below: 
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𝑄𝑚
(𝑔𝑚)

= (∏  

𝐾

𝑘=1

 𝑄𝑚,𝑘)1/𝐾
 

 

The above metric will attend users with high QoE potential who will increase the 
product, but it will also look to avoid low QoE in other users since that would drop the 
product asymptotically to 0. 

Now, in order to optimize QoE in the network, the general equation given is: 

 

  
𝑎

𝑘𝑙,𝑖,𝑙
(𝐷𝐿)

,𝑎
𝑘𝑙,𝑖,𝑙
(𝑈𝐿)

,𝑃
𝑙
(𝐷𝐿)

,𝑃
𝑘𝑙

(𝑈𝐿)

 

              𝑚𝑎𝑥 𝑄𝑚
(𝑛𝑒𝑡)

,  

where 𝑄𝑚
(𝑛𝑒𝑡)

is any of the metrics described before and is subject to the following: 

 

𝑃𝑘𝑙

(𝑈𝐿)
≤ 𝑃𝑘𝑙,𝑚𝑎𝑥

(𝑈𝐿)
;  ∀𝑘𝑙 = 1, . . . , 𝐾𝑙;  ∀𝑙 = 1, . . . , 𝑁𝐵𝑆,  

𝑃𝑙
(𝐷𝐿)

≤ 𝑃𝑙 ,𝑚𝑎𝑥
(𝐷𝐿)

;  ∀𝑙 = 1, . . . , 𝑁𝐵𝑆,  

∑  
𝐾𝑙
𝑘𝑙

𝑎𝑘𝑙,𝑖,𝑙
(𝑈𝐿) ≤ 1; ∀𝑖 = 1, . . . , 𝑁𝑠𝑢𝑏

(𝑈𝐿)
; ∀𝑙 = 1, . . . ,𝑁𝐵𝑆,  

∑  
𝐾𝑙
𝑘𝑙

𝑎𝑘𝑙,𝑖,𝑙
(𝐷𝐿) ≤ 1; ∀𝑖 = 1, . . . ,𝑁𝑠𝑢𝑏

(𝐷𝐿)
; ∀𝑙 = 1, . . . , 𝑁𝐵𝑆,  

 

Where: 

𝐾𝑙  is the number of users located in the range of cell 𝑙 

𝑁𝐵𝑆  is the number of Base Stations 

𝑃𝑘𝑙

(𝑈𝐿)
  is the UpLink transmit power of user 𝑘𝑙 in cell 𝑙 (with 𝑃𝑘𝑙,𝑚𝑎𝑥

(𝑈𝐿)
 its maximum) 

𝑃𝑙
(𝐷𝐿)

  is the DownLink transmit power of BaseStation 𝑙 (with 𝑃𝑙,𝑚𝑎𝑥
(𝐷𝐿)

its maximum) 

𝑁𝑠𝑢𝑏
(𝑈𝐿)

  is the UpLink number of OFDMA subcarriers 

𝑁𝑠𝑢𝑏
(𝐷𝐿)

  is the DownLink number of OFDMA subcarriers 

𝑎𝑘𝑙,𝑖,𝑙
(𝑈𝐿)

  is an indicator variable for the UpLink  

𝑎𝑘𝑙,𝑖,𝑙
(𝐷𝐿)

  is an indicator variable for the DownLink 

(indicators’ value: 1 if subcarrier 𝑖 is assigned to user 𝑘𝑙 and 0 otherwise) 
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The above constraints suggest that transmit power cannot exceed maximum as well as 
that each subcarrier is allocated exclusively to a unique user in each cell for a specific 
scheduling instant. Reference [60] points out that the same laws apply to QoS, and thus 
the same formulas can be used for QoS if we replace the QoE parameters with the 
respective QoS values. 

Regarding multimedia quality, reference [69] analyzes a parametric multimedia quality 
integration function using a video quality estimation function Vq and a speech quality 
estimation function Sq. If Ts is the time delay in speech and Tv Is the time delay in video, 
the multimedia quality can be calculated as: 

𝑀𝑀𝑞 = 𝑚1 ∙ 𝑀𝑀𝑆𝑉 + 𝑚2 ∙ 𝑀𝑀𝑇 + 𝑚3 ∙ 𝑀𝑀𝑆𝑉 ∙ 𝑀𝑀𝑇 + 𝑚4 

where: 

𝑀𝑀𝑆𝑉 = 𝑚5 ∙ 𝑆𝑞 + 𝑚6 ∙ 𝑉𝑞 + 𝑚7 ∙ 𝑆𝑞 ∙ 𝑉𝑞 + 𝑚8 

𝑀𝑀𝑇 = max {𝑚9 ∙ (𝑇𝑆 + 𝑇𝑉) + 𝑚10 + 𝑀𝑆, 1} 

𝑀𝑆 = {
𝑚𝑖𝑛{𝑚11 ∙ (𝑇𝑆 − 𝑇𝑉) + 𝑚12, 0}, 𝑖𝑓 𝑇𝑆 > 𝑇𝑉

𝑚𝑖𝑛{𝑚13 ∙ (𝑇𝑉 − 𝑇𝑆) + 𝑚14, 0}, 𝑖𝑓 𝑇𝑉 > 𝑇𝑆
 

 

and mi, i = 1,2,…14 are coefficients. 

All coefficient values are displayed in [69] for different video display cases, and Vq,Sq 
functions involving speech and video quality are explained in a consise, granulated 
format. 

 

3.5 Service Providers and Applications 

 

In order for service providers to plan, scale and operate their service packages there is 
increased need for metrics that represent best the customer’s opinion. Thus, they tend 
to resort to not just subjective experiments but also behavioral measurements. The 𝜃-
𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the probability that the opinion score will surpass a certain threshold 𝜃 
and can be estimated by [61]: 

 

𝛢𝜃 = ∫  
𝑈+

𝑠=𝜃

𝑓�̂�𝑑𝑠 =
1

𝑅
|{𝑈𝑖 ≥ 𝜃: 𝑖 = 1, . . . , 𝑅}| 

 

Providers also used subjective and behavioral percentages such as the “poor or worse” 
(%PoW), the “good or better” (%GoB), or the “terminate early” (%TME) percentages to 
measure the users’ opinion. A model that could theoretically map such percentages to 
MOS is known as the E-model [61]. This relationship is depicted in figure 3.5. Through 
an intermediary random variable called “the Transmission Rate” 𝑅 ∈ [0; 100] as the RV 
𝑈 used above and assuming 𝑈 follows normal distribution 𝑁(0,1), the E-model defined 
these measures as: 
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Figure 3.5: Relationship between MOS and %GoB-%PoW 

𝐺𝑜𝐵(𝑢) = 𝐹𝑈(
𝑢 − 60

16
) = 𝑃𝑈(𝑈 ≥ 60) 

𝑃𝑜𝑊(𝑢) = 𝐹𝑈(
45 − 𝑢

16
) = 𝑃𝑈(𝑈 ≤ 45) 

𝑇𝐸𝑀(𝑢) = 𝐹𝑈(
36 − 𝑢

16
) = 𝑃𝑈(𝑈 ≤ 36) 

 

and the transformation of 𝑈 to a continuous MOS scale as: 

 

𝑀𝑂𝑆(𝑢) = 7𝑢(𝑢 − 60)(100 − 𝑢)×10−6 + 0.035𝑢 + 1, 𝑀𝑂𝑆 ∈ [1; 4.5] 

 

It should be noted that the quantiles used for GoB, PoW, and TEM come from a number 
of subjective tests, part of E-model’s development. These measures are estimated by 
using 𝜃-𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 in the equations: 

 

 

 

 

 

%𝐺𝑜𝐵 =̂  𝐴𝜃𝑔𝑏
  

 

%𝑃𝑜𝑊 =̂  1 − 𝐴𝜃𝑝𝑤
  

 

%𝑇𝐸𝑀 =̂  1 − 𝐴𝜃𝑡𝑒
  

 

 

 

 

if 𝜃𝑔𝑏 = 60,  𝜃𝑝𝑤 = 45, 𝜃𝑡𝑒 = 36  for 𝑈 ∈ [0; 100] or  

if 𝜃𝑔𝑏 = 3.1, 𝜃𝑝𝑤 = 2.3, 𝜃𝑡𝑒 = 1.9 for 𝑈 ∈ [1; 5] 

 

We extensively analyzed several QoE metrics, with the most significant listed above. 
However, it should be noted that many other metrics which are used are application-
specific. An example of that case is the following, known as reception ratio calculated 
using YouTube [62]: 
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𝜌 = 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑜𝑟 𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑉𝑖𝑑𝑒𝑜 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

, 

 

which is a good indicator considering that a video has good quality if 𝜌 > 1, as is the 
“fraction of the video downloaded” which indicates the user’s behavior towards the video 
being downloaded. 

Video delivery quality on the other hand can be shown by the rate 𝜆 where: 

 

𝜆 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
𝑡𝑜𝑡𝑎𝑙 𝑣𝑖𝑑𝑒𝑜 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒

. 

 

In [69], researchers present a simple QoE model which is truly indicative and applies 
not only to YouTube but to any HTTP based Adaptive Streaming service. It is based on 
the valid assumption that the QoE provided by HAS applications is highly dependable 
on the percentage of viewing not degraded from the highest available quality. If t is the 
percentage of time that the player spends on the highest layer then MOS is given by: 

 

𝑀𝑂𝑆𝐻𝐴𝑆 = 0.003 ∗ 𝑒0.064∗𝑡 + 2.498 

 

A second metric presented, in regards to HAS and especially YouTube adaptation is the 
activity factor a which shows whether the client is is able to fluently download each 
video segment taking into account the available bandwidth. Per the researchers, if this 
indicator is approaching 1 then the client will present difficulty in downloading the video 
segments in question. The activity factor is defined as: 

 

𝑎 =
𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑣𝑖𝑑𝑒𝑜 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑
 

 

For Skype video application, they mention a practical MOS formula proposed in 
literature for different screen resolutions. If F is the Frame Rate, with a maximum of 
35fps and I is the Image Quality ranging from 0 to a perfect 1, MOS for resolutions 
160x120, 320x240, and 640x480 would be: 

 

𝑀𝑂𝑆𝑠𝑘𝑦𝑝𝑒 = {

             1                                  𝑟𝑒𝑠 = 160𝑥120
             2                                  𝑟𝑒𝑠 = 320𝑥240

3 +
𝐹

35𝑓𝑝𝑠
+ (2𝐼 − 1)        𝑟𝑒𝑠 = 640𝑥480
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4. THE NS-3 NETWORK SIMULATOR 

 

 

4.1 NS-3 Basics 

 

Our engagement in the functionality of LTE networks and, later, the measurement of 
users’ QoE upon the addition of adaptive streaming on their media all join in one at this 
point: a real-world scenario. Since communication networks have become too complex 
for traditional analytical methods to provide an accurate understanding of system 
behavior, communication researchers have turned to network simulation, a technique 
where a program models the behavior of a network based on mathematical formulas 
allowing the users to draw realistic conclusions. One of the most popular network 
simulators available on the market is NS-3. 

NS-3 is a discrete event network simulator, developed for network research and 
education. Its modules are written in C++ with Python bindings allowing the user to 
create C++ executable files making use of the existing modules. It uses the Waf build 
system, a build automation tool which compiles and builds all necessary modules 
included in the .waf file of the directory of the user-created files. 

Individual modules, compatible with each other, provide almost every necessary 
functionality so that the researcher can create a full scale realistic network model of 
their choice. In most cases, helpers are also provided in order to avoid a complex 
interaction with low-level programming modules.  

 

4.2 Building on top of LENA Project 

 

4.2.1 Introduction 

 

NS-3 owes its LTE functionality to the LENA project, an LTE simulation module 
developed by the Technologic Center of Telecommunications in Catalonia [64]. LENA 
focuses mainly on modeling the E-UTRA part of the system, with a particular attention 
on the aspects related to the channel, PHY and MAC layers following in detail the 
architecture of the LTE networks. 

By using LENA in NS-3, we were able to reproduce a basic, realistic, real-world 
example, which we are proud to include in the file “lenaexample.cc” and describe below. 
Our initial goal was to simulate a basic media server-client model, where a video is 
being streamed from a remote host, a content-delivery server, to one or more mobile 
devices of an LTE network (UEs). On top of that, our ambition was to implement an 
adaptive streaming functionality on the video streaming process of the server. Following 
is a brief explanation of the example program we have created.  
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4.2.2 A Simple Example 

 

Going through the code, we start by enabling some necessary log components in order 
to track the behavior of both the server and the client at execution time. Then we 
declare the variables which will be used by the simulator, among others giving the user 
the ability to change the number of mobile nodes and the distance between them. 
Before we can create our nodes, we need to create our helpers, and set a node as our 
PDN gateway (P-GW). 

 

It is time to create the nodes, starting from our remote host. We install the internet stack 
in the remote host container and create a point to point link between the remote host 
that will be our server and the P-GW. In our example, we use a 100Gbps link with 10ms 
of latency, attributes that can be easily changed by the user. Then we can finally create 
our mobile nodes and install LTE functionality in our eNodeB and our UEs. To provide 
UE mobility, LENA offers various mobility models, the simplest being the Constant 
Position model, with the initial positions of the nodes being set by a position allocator 
vector. The distance step of the vector can be set at the beginning of our code. We can 
also assign static IPs to our remote host and our UEs, and set their default gateway. 
Lastly, we attach the UEs to the eNodeB. 

 

The core of our simulation, however, are the server and client applications. We install a 
Server application on our remote host, and a Client application on our UE nodes. The 
server port and IP are pre-specified and passed to the client as a parameter. Every 
application in LENA should have a start and stop time, ideally with the clients starting 
after and finishing before the server, giving the impression of a continuous service, at 
least from the client’s perspective.  

 

A dump file is used here to indicate and record the activity of each of the clients, as well 
as the server. LENA also offers the ability to generate trace statistics for PHY, MAC, 
RLC and PDCP layers. The above is very helpful for the user to draw conclusions and 
present the simulation findings. It is worth noting that even though the simulator starts 
from the command line execution (see figure 4.1), it is advised that we set the 
simulation to end after a user-specified time. 
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Figure 4.1: Lena Example Execution 

 

4.2.3 The Server-Client Model 

 

Our quest has been to experiment on a simple scenario of a video streaming server, 
similar to those of modern content delivery networks. An HTTP request for a video file 
from the client to the server is followed by a stream of data segments sent directly to the 
client by the server. However, on-demand content demands in turn for adapting quality 
and for that reason, as explained in previous chapters, we were in need of an adaptive 
streaming mechanism. 

As a basis to build on, we worked with the excellent open source NS-3 Evalvid module, 
a project initially created by GERCOM [65] and destined for video evaluation 
simulations. On this foundation, we built our Client-Server module following the previous 
structure as well as the NS-3 project guidelines (limit user access to low-level modules 
through helpers, offer installation and attribute-setting functions). We redesigned the 
model to support a TCP connection to the client instead of a UDP stream, developing a 
socket allocation and binding process. Our server model, which is HTTP based, uses 
information encapsulated into the HTTP header to identify client requests aiming to 
better simulate the functionality of a video server offering a variety of videos for the 
client to request in several different resolutions. 

Taking a brief look at file “evalvid-server.cc”, we can see that our video streaming server 
follows a typical TCP server process. After all attributes have been set using function 
EvalvidServer::GetTypeId in during the EvalvidServerHelper construction, the server 
creates and binds a TCP socket in function EvalvidServer::StartApplication listening 
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then on the socket for any incoming connections. In the same function, the video is 
setup and the server is ready to start sending upon request. 

 

Most NS-3 streaming evaluation simulations avoid transferring the actual file between 
the server and the client. Instead, they use a video trace file which contains the frame 
type, the frame size and the number of packets needed for each frame, as well as the 
time when each frame should be played, relative to the play time of the first frame. 
Having this info, the server can create and transfer the same amount of data that it 
would if it was sending the actual file, but without having to load a real video on the 
simulator’s memory, which would introduce the factor of individual device performance, 
negatively affecting the credibility of the experiment.  

 

After all, for the evaluation to be accurate, a researcher would only need the percentage 
of lost information per video frame, but not the exact bytes lost. Once the replicated 
data is sent over to the client, a new version of the video can be reproduced using the 
packets that reached the destination as a mask on the original video, showing the effect 
of the lost information on the video quality. 

For the production of a video trace file extracted from an original .MP4 video file we 
used the MP4 trace tool included in the file “mp4trace.c” of the EvalVid framework. 
EvalVid, different than the previously mentioned Evalvid NS-3 module, is a video 
transmission and quality evaluation framework written in C [66] by the 
Telecommunications Networks Group of the Technische Universität Berlin. The MP4 
trace tool from EvalVid is able to send a hinted mp4-file to a specified destination host 
recording the packet flow which it separates from other traffic on the interface. Other 
network monitoring tools such as tcpdump can be used to produce the above trace file, 
but would require an application of manual filtering. 

 

Once the trace file is loaded in the EvalvidServer::Setup function, the server preserves 
a mapping of the frame ID to a struct that holds all that frame’s necessary information 
and then waits for a client’s request. When the client initializes its connection to the 
socket, it creates an HTTP request packet and sends it to the server, in function 
EvalvidClient::Send. This HTTP request always contains the ID of the video requested 
by the client, along with the ID of the video segment to be sent next and the resolution 
chosen for it.   
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After the server receives this client request, in function EvalvidServer::HandleRead it 
extracts the video ID, the segment ID and the preferred resolution bitrate and starts 
sending media to the client. Using the EvalvidServer::Send function, the server creates 
HTTP response packets, addressing the client’s HTTP request with the same video ID, 
segment ID, and segment resolution included in the HTTP header. This HTTP response 
packet also contains a Sequence header which shows the ID of the packet allowing our 
simulation to be modified to identify lost packets if needed. 

 

 

However, encapsulated in the HTTP response is the most important component of our 
server-client communication. That is the MPEG header containing the current frame ID, 
the play time of each frame (relative to the first frame), the frame type, and the frame 
size. Depending on the size of the frame and according to our preset Maximum 
Transmission Unit, the server might need to send multiple packets in order to transfer 
the frame as a whole. Thus, the server is responsible to calculate the number and the 
size of packets, a process which is executed in every call of the function 
EvalvidServer::Send. Based on that information, the client can effectively anticipate 
packets until the frame is completely sent. After all the packets required for the frame 
are sent, the EvalvidServer::Send recalls itself until the last frame of the segment is 
sent.  

 

It is important to note that, following the sending/receiving of packets by the two parties, 
both the server and the client mark down all traffic transferred as detected from their 
respective ends. The server writes a packet’s size, its ID and the time sent in the 
sender’s trace file. On the other end, the client adds the same information to its receiver 
dump file, in function EvalvidClient::MessageReceived (see figures 4.2 and 4.3 below). 
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Figure 4.2: Sender’s Dump File 

 

 

Figure 4.3: Receiver’s Dump File 
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4.3 Implementing DASH 

 

One of the main reasons for us to move away from the original Evalvid NS-3 module 
implementation was the need to rebuild the module’s foundation to support HTTP 
adaptive streaming using a TCP interconnection. For the same reason we chose to 
follow the MPEG/DASH client-server module [67] and combine its methods with our 
version of the Evalvid server-client application. Trying to follow the same path, we list 
here the most important of our interventions, and present the code. 

The idea of a thoroughly detailed simulation of an MPEG player’s infrastructure is 
certainly very useful. Based on that, the researcher needs to add a fully functional 
MPEG video player in order to simulate not only the physical transfer of media, but also 
the playing process. The process of reproducing the media on the receiving end, which 
the media file is destined for leads to a more accurate calculation of the client resolution 
to be requested in the consecutive segment HTTP requests, therefore making the 
simulation more realistic. 

Going through the code, the client, upon receiving a frame, it sends it to the MPEG 
player for playing, and then adds the frame size to the ongoing segment size and to the 
total bytes sent. The MPEG player then adds the frame to the queue and in case the 
player is found paused, it adds the time of the interruption of play to the total 
interruption, and resumes playing in function MpegPlayer::ReceiveFrame, after clearing 
the interruption counters. 

 

As long as the queue is not empty, the MPEG player continuously plays the frames 
available one by one in function MpegPlayer::PlayFrame, which calls itself every 20 
milliseconds until it finds the queue empty. In that case, it switches the player to an idle 
state, measuring the time since then as interruption, keeping a record of the moment 
that the last interruption took place.  

 

From the client’s perspective, we calculate the time when a frame that just arrived is 
expected to be played, taking into account the start of play time (when the first frame 
was played), the frame’s supposed play time relative to the first frame, as well as any 
potential interruption time recorded by the player. The MPEG player then saves the 
current bitrate as the minimum transmitted bitrate in case it is lower than the previously 
recorded minimum. 

On a segment level, the client is responsible for holding timing information, imperative to 
calculating when a bitrate adaptation is necessary. When the time comes for a new 
segment to be requested, the client takes note of the time it contacted the server, at the 
moment when that initial HTTP request is sent. Therefore, when the last frame of the 
segment is received, the client immediately calculates the elapsed time between the 
request and the full receipt of the media segment.  
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After that, and before requesting the next segment, the client calculates the average 
bitrate during the transmission of the last segment by dividing that segment’s bits and 
the fetch time from the previous computation. The resulting bitrate is added to the list of 
recorded bitrates, mapped to the current time of that addition. Checking the list of 
recorded bitrates, the client produces a bitrate estimate by averaging the last bitrates 
that were recorded within our predefined time window.  

 

Once the client refreshes its bitrate estimate in function EvalvidClient::AddBitRate, it 
uses function EvalvidClient::CalcNextSegment to change the active bitrate variable that 
will be injected in the client’s next segment request. In case the previous bitrate 
requested does not match to the current bitrate variable, the client also keeps count of 
the rate changes, so that we can provide a statistic to the researcher of how stable our 
video connection has been. 

 

What is more, the DASH application offers a function to schedule a delayed wakeup to 
request the next segment, based on the buffer levels which the client can have 
monitored at all times. In function EvalvidClient::SchduleBufferWakeup, the structure 
sets a buffer delay which causes the client to hold the request until the MPEG player 
allows for it to be initiated through function MpegPlayer::PlayFrame. 

 

Among the most fundamental components of any NS3 application, is the function 
responsible for reading from the socket created by the client. As our example aims to 
simulate a server-client application that uses layer 7 intelligence such as HTTP 
messaging, the above functionality is part of our HTTP parser. The HTTP parser is 
therefore responsible for parsing data coming out of the client’s socket as HTTP 
messages. 

In function HttpParser::ReadSocket, which is called by EvalvidClient::HandleRead, the 
HTTP parser receives the incoming bytes from the socket, limited by the preset 
maximum size of the MPEG message, and copies them to its buffer. It counts all 
received packets which allows the researcher to match the counter to the sequence tag 
included in the sequence header of the packet.  

 

Upon receiving a new batch of data through the socket, the HTTP parser is in charge of 
creating a new packet for the client, as well as adding the proper headers to it. By 
serially parsing the raw incoming data, it correctly populates the MPEG, HTTP, and 
Sequence headers it previously created. This is done in accordance with the transport 
layer, with different maximum transmission unit values applied specifically for TCP 
applications like ours.  
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This part of receiving data is of critical importance to the client, since any incoming data 
may easily become unreadable in case the parsing function HttpParser::ReadSocket is 
poorly implemented. Although most of low-level TCP communications are internally 
handled by the native NS3 functionalities, the server needs to correctly send the data 
that the client is expecting and the client always must verify that this information is 
received. For that reason, the http parser is instructed to calculate the message size 
with and without the above-mentioned headers. 

 

Receiving the first bytes, the parser can determine the size of the MPEG message it is 
waiting for. So, knowing that, it waits until the buffer content exceeds the expected 
message size, and when that happens, it forwards the received message to the upper 
level of the client application and to function EvalvidClient::MessageReceived. In the 
end, it moves the buffer index to deallocate the memory that the message was 
occupying. 

 

4.4 Presenting the Results 

 

4.4.1 Plots 

 

As mentioned in our previous chapter, one of the greatest advantages of using the 
LENA project for an LTE network simulation is the ability to generate output for further 
study. This is achieved through a group of trace files following the end of the network 
simulation. The generated trace files contribute to our network research providing useful 
information regarding the PHY, MAC, RLC and PDCP layers.  

Researchers agree that the best way to assess a simulation’s output information is 
through plotted statistics. Plots can easily be evaluated and compared showing an 
overall view of the nodes and their network behavior. In our case, the tool which we 
used to plot our research statistics, in an Ubuntu terminal environment, is Gnuplot. 

According to its documentation, Gnuplot is a command-driven interactive function 
plotting program. It can be used to plot functions and data points in both two- and three-
dimensional plots in many different formats. It is designed primarily for the visual display 
of scientific data such as network statistics. Although Gnuplot is copyrighted, it is freely 
distributable. 

Gnuplot needs to be installed in order to be used in a research program, and is usually 
run externally through the command line when supplied with a .plt file containing the 
points to be plotted in the correct format.  
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4.4.2 Throughput Calculation 

 

Since the scenario implemented in our LENA example included the use of bitrate 
adaptation in the streaming server-client application, probably the most crucial stat 
provided by the LENA trace files is the ability for a throughput measurement. The RLC 
downlink stats included in output file “DlRlcStats.txt” contain the bytes received per 
network node and the start and end time for each node’s client application, as in figure 
4.4. This is all we need to calculate the throughput and create a throughput plot for 
every node in our simulation. 

 

 

Figure 4.4: DlRlcStats.txt Sample 

 

In file “plotmaker.cc”, the CalculateThroughputperNode function creates an array of 
Gnuplot 2D datasets, one for each node, and holds a pointer to the array. The function 
then reads the respective stats file and parses every line as tokens. From the extracted 
line tokens, it reads the bytes received and divides them by the elapsed time between 
the start and the end time which will give the node’s throughput at the time of the 
measurement. After it calculates the throughput in Kbps, it sends the measurement time 
and then-current throughput as a pair of coordinates to the dataset of the respective 
node. Following that process, the points are saved and ready to be plotted. 

 

 

The pointer returned by the CalculateThroughputperNode function is forwarded to 
function PlotStatistics, which in turn creates a separate plot file for every node named 
“Throughput-<node number>” and passes the dataset to function Create2DPlotFile 
which will populate the files by producing the necessary plots from the datasets.  
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Figure 4.5: Throughput, Node 1 

In Create2DPlotFile, we chose our output to be a .png image, with the range being 
equal to the simulation time, and our axis named “Kbps” and “Seconds”. The dataset is 
then instantiated, its title is set to the file’s name and the dataset points are plotted 
along with connecting lines in order to show the continuous evolution and possible 
fluctuation of the node’s throughput. Lastly, we execute the external gnuplot command, 
to generate our final output. 

 

4.4.3 SINR Computation 

 

The role of multisource interference is thoroughly discussed in some of the previous 
chapters of this thesis. The metric which introduces the effect of interference in 
telecommunications engineering is the Signal-to-Interference-plus-Noise Ratio (SINR). 
The SINR is generally used to measure the quality of wireless connections, the path 
loss, and set an upper limit on the wireless channel’s capacity.  

Due to its importance, the physical trace in all NS3 LENA applications outputs a file 
named “DlRsprSinrStats.txt”. This file contains the following in columns:  

- Simulation time in seconds at which the allocation is indicated by the scheduler 

- Cell ID 

- unique UE ID (IMSI) 

- RSRP 

- Linear average over all RBs of the downlink SINR in linear units 
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Figure 4.6: DlRsprSinrStats.txt Sample 

 

It is a file which is widely used by NS3 researchers as it provides useful feedback on the 
quality of a UE’s wireless capability and experience in the network. As our goal remains 
to offer an expandable NS3 scenario and a decent feedback toolkit, we tried to build the 
foundation for more complex LTE network simulations. The SINR computation is a vital 
part of the later and that is why we chose to implement it.  

Going through the code in file “plotmaker.cc” it becomes obvious that our NS3 
application has all the means necessary to track and locate potential interference issues 
by plotting the SINR statistics for every node. At the end of the simulation, the output file 
“DlRsprSinrStats.txt” which is produced, is used by function CalculateSINRperNode of 
file “plotmaker.cc”.  

 

The above function creates an array of Gnuplot two-dimensional datasets, one for each 
node, holding a pointer to the array. Then, exactly the same way we previously 
described for the CalculateThroughputperNode function, it reads the statistics file line by 
line tokenizing every line.  

 

Since the SINR statistics file holds the measurement of the timestamp in column 1, the 
unique UE ID in column 3 and the SINR value in column 6, our script only holds the 
tokens located in the respective positions, in every line. Once this information is parsed 
from the file, it is inserted in each node’s dataset in coordinates pairing the SINR value 
and the timestamp of the measurement moment.  
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Figure 4.7: SINR, Node 1 

 

The datasets that are generated are forwarded to the PlotStatistics function, which in 

turn calls function Create2DPlotFile. That function sets the axis names to Linear 

SINR/Seconds and populates a .png image with the points included in the datasets. The 

range is again equal to the duration of our simulation, stated in variable simTime. All the 

points are connected with lines, showing the progressive improvement or deterioration 

of the SINR value for each node. 

 

 
4.4.4 QoE Metrics 

 
Concluding our efforts to provide a complete executable instance of our module, we 
have implemented some of the most used QoE metrics in our code. This allows us to 
extract diagrams that give researchers an impression of the nodes’ QoE. Since the 
throughput value heavily impacts a node’s quality of experience, as explained also in 
Chapter 3, we are using the same file that we used to calculate throughput, 
“DlRlcStats.txt” (figure 4.4). 

Reading from file DlRlcStats.txt, we calculate the throughput and we divide it by the 
video encoding rate, in our case the mean encoding rate which is 77 kbps. What we get 
is a plot of the reception rate ρ presented in chapter 3.5. As mentioned there, a good 
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indication of the user’s QoE is whether the reception rate is equal to or higher than 1. To 
show this comparison, we have also added a straight line where y=1 on the graph.  

 

 

Figure 4.8: Reception Ratio ρ, Node 1 

 

Function CalculateReceptionRatioperNode gets the encoding rate as argument from 
PlotStatistics and uses the formula to calculate the points and enter them in the 
reception ratio dataset. After that, it returns the dataset to PlotStatistics which creates 
the plot file having time as x-axis and ρ as y-axis.  

 

 

In addition to the reception ratio figure, we are using a formula to also export a MOS 
graph, using the formula proposed in [68]. This formula is simply based on the 
percentage of time playing the video in the highest quality level, in an HTTP adaptive 
straming system.  
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Figure 4.9: MOS, Node 1 

 

 

Going through the code, we first use file “DlRlcStats.txt” to calculate the throughput in 
function CalculateMOSperNode. For every time window where we find the node’s 
throughput to be greater than or equal to the highest video bitrate available, we add this 
time window to our counter and then divide this counter with the total simulation time up 
to this point. Using the resulting value in the formula, we get an accurate estimation of 
the user’s MOS, shown in figure 4.9. 

 

Function CalculateMOSperNode populate the dataset by calculating the points 
mentioned above, and then returns the dataset to calling function PlotStatistics. In 
PlotStatistics, the plot file is created with y-axis representing the estimated MOS value 
at time x. 
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ABBREVIATIONS-ACRONYMS 

 

3GPP  3rd Generation Partnership Project 

AAC  Advanced Audio Coding 

ACR Absolute Category Rating 

AM Acknowledged Mode 

AMPS Advanced Mobile Phone Service 

APN Access Point Name 

ARP Allocation/Retention Priority 

AS  Access Stratum 

AuC Authentication Center 

CDMA Code Division Multiple Access 

CN  Core Network 

CPI Cyclic Prefix Insertion 

DASH Dynamic Adaptive Streaming over HTTP 

DECE LLC Digital Entertainment Content Ecosystem 

EDGE  Enhanced Data rates for GSM Evolution 

eNodeB Evolved Node B 

EPC Evolved Packet Core 

EPS Evolved Packet System 

ETSI European Telecommunications Standards Institute 

F4V  
Open container format for delivering synchronized audio/video 
streams 

FDMA Frequency Division Multiple Access 

FTP File Transfer Protocol 

GBR Guaranteed Bit Rate (Bearers) 

GERAN GSM EDGE Radio Access Network 

GoB Good or Better 

GoP  Group of Pictures 

GPRS  General Packet Radio Service 

GSM  Global System for Mobile communications 

GTP GPRS Tunneling Protocol 

HARQ Hybrid Automatic Repeat Request 
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HAS HTTP Adaptive Streaming 

HSDPA High Speed Downlink Packet Access 

HSPA High Speed Packet Access 

HSS Home Subscriber Server 

HSUPA High Speed Uplink Packet Access 

HTTP  HyperText Transfer Protocol 

IMS IP Multimedia Subsystem 

IMT International Mobile Telecommunications 

IPTV  IP Television 

ITU International Telecommunication Union 

J-TACS Japan-Total Access Communication System 

LTE-A Long Term Evolution-Advanced 

MAC Medium Access Control 

MBR Maximum Bit Rate 

MIMO Multiple Input Multiple Output 

MME Mobility Management Entity 

MPD Media Presentation Description 

MPEG Moving Picture Expert Group 

MPQM Moving Pictures Quality Metric 

NMT Nordic Mobile Telephone 

OFDM Orthogonal Frequency-Division Multiplexing 

OFDMA OFDM Access 

OIPF  Open IPTV Forum 

PAPR Peak-to-Average Power Ratio 

PCEF Policy Control Enforcement Function 

PCRF Policy Control and Charging Rules Function 

PDCP Packet Data Convergence Protocol 

PDN Packet Data Network 

PDU Protocol Data Unit 

P-GW PDN-Gateway 

PoW Poor or Worse 

PSNR Peak Signal-to-Noise Ratio 
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QCI QoS Class Identifier 

QoE Quality of Experience 

QoS Quality of Service 

RAN Radio Access Network 

RLC Radio Link Control 

RRC Radio Resource Control 

RRM Radio Resource Management 

RTP  Real-time Transport Protocol 

RV  Random Variable 

SAE System Architecture Evolution 

SC-FDMA Single Carrier-Frequency-Division Multiple Access 

S-GW Serving-Gateway 

SOS Standard deviation of Opinion Score 

SSIM Structural Similarity Index Metric 

S-TMSI SAE-Temporary Mobile Subscriber Identity 

SVC Scalable Video Coding 

TA Tracking Area 

TACS Total Access Communication System 

TCP  Transmission Control Protocol 

TDD Time Division-Duplex 

TDMA Time Division Multiple Access 

TD-SCDMA Time-Division Synchronous Code Division Multiple Access 

TFT Traffic Flow Templates 

TME Terminate Early 

UDP  User Datagram Protocol 

UE User Equipment 

UMTS  Universal Mobile Telecommunication 

URL  Uniform Resource Locator 

UTRAN Universal Terrestrial Radio Access Network 

VoIP  Voice-over-IP 

VQM Video Quality Metric 

W3C World Wide Web Consortium 
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APPENDIX 

/* 

 * File: Lenaexample.cc 

 * Author: Achilleas Moustakis 

 * Copyright (c) 2016 National and Kapodistrian University of Athens, Greece 

 */ 

 

#include "ns3/csma-helper.h" 

#include "ns3/evalvid-client-server-helper.h" 

#include "ns3/lte-helper.h" 

#include "ns3/epc-helper.h" 

#include "ns3/core-module.h" 

#include "ns3/network-module.h" 

#include "ns3/ipv4-global-routing-helper.h" 

#include "ns3/internet-module.h" 

#include "ns3/mobility-module.h" 

#include "ns3/lte-module.h" 

#include "ns3/applications-module.h" 

#include "ns3/point-to-point-helper.h" 

#include "ns3/config-store.h" 

 

 

using namespace ns3; 

NS_LOG_COMPONENT_DEFINE ("Lena_Example"); 

 

int main (int argc, char *argv[]) 

{ 

 

 

/* Enable log components.*/ 

 

 LogComponentEnable ("EvalvidClient", LOG_LEVEL_INFO); 

 LogComponentEnable ("EvalvidServer", LOG_LEVEL_ALL); 

 

/* Declare variables.*/ 

 

 uint16_t numberOfNodes = 1; 

 double distance = 60.0; 

 uint16_t serverPort = 1124; 

 

/* Create Helpers*/ 

 

 Ptr<LteHelper> lteHelper = CreateObject<LteHelper> (); 

 Ptr<PointToPointEpcHelper>  epcHelper = CreateObject<PointToPointEpcHelper> 

(); 

 lteHelper->SetEpcHelper (epcHelper); 

 Ptr<Node> pgw = epcHelper->GetPgwNode (); 

 

/* Create our remote host. Install the Internet stack.*/ 

 

 NodeContainer remoteHostContainer; 

 remoteHostContainer.Create (1); 

 Ptr<Node> remoteHost = remoteHostContainer.Get (0); 

 InternetStackHelper internet; 

 internet.Install (remoteHostContainer); 

 

/* Create a P2P connection between the P-GW and our remote host. Assign IP 

addresses.*/ 

 

 PointToPointHelper p2ph; 

 p2ph.SetDeviceAttribute ("DataRate", DataRateValue (DataRate ("100Gb/s"))); 

 p2ph.SetDeviceAttribute ("Mtu", UintegerValue (1500)); 

 p2ph.SetChannelAttribute ("Delay", TimeValue (Seconds (0.010))); 

 NetDeviceContainer internetDevices = p2ph.Install (pgw, remoteHost); 

 Ipv4AddressHelper ipv4h; 

 ipv4h.SetBase ("1.0.0.0", "255.0.0.0"); 

 Ipv4InterfaceContainer internetIpIfaces = ipv4h.Assign (internetDevices); 
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/* Add a static network route for our remote host.*/ 

 

 Ipv4StaticRoutingHelper ipv4RoutingHelper; 

 Ptr<Ipv4StaticRouting> remoteHostStaticRouting = 

ipv4RoutingHelper.GetStaticRouting (remoteHost->GetObject<Ipv4> ()); 

 remoteHostStaticRouting->AddNetworkRouteTo(Ipv4Address ("7.0.0.0"), Ipv4Mask 

("255.0.0.0"), 1); 

 

/* Create our UE and eNodeB nodes. Install LTE functionality, Internet stack.*/ 

 

 NodeContainer ueNodes, enbNodes; 

 enbNodes.Create(1); 

 ueNodes.Create(numberOfNodes); 

 NetDeviceContainer enbLteDevs = lteHelper->InstallEnbDevice (enbNodes); 

 NetDeviceContainer ueLteDevs = lteHelper->InstallUeDevice (ueNodes); 

 internet.Install (ueNodes); 

 

/* Create a mobility model and install our nodes in it. (Initial position is 

defined by ListPositionAllocator.)*/ 

 

 Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> 

(); 

 for (uint16_t i = 0; i < numberOfNodes; i++) 

 { 

  positionAlloc->Add (Vector(distance * i, 0, 0)); 

 } 

 MobilityHelper mobility; 

 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel"); 

 mobility.SetPositionAllocator(positionAlloc); 

 mobility.Install(enbNodes); 

 mobility.Install(ueNodes); 

 

/* 1.Assign IP addresses to our UE nodes. 

 *  2.Add a static network route for each one. 

 *  3.Set P-GW as the Default Gateway. 

 *  4.Attach to eNodeB.*/ 

 

 Ipv4InterfaceContainer ueIpIface; 

 ueIpIface = epcHelper->AssignUeIpv4Address (NetDeviceContainer (ueLteDevs)); 

 for (uint32_t u = 0; u < ueNodes.GetN (); ++u) 

 { 

       Ptr<Node> ueNode = ueNodes.Get (u); 

       Ptr<Ipv4StaticRouting> ueStaticRouting = 

ipv4RoutingHelper.GetStaticRouting (ueNode->GetObject<Ipv4> ()); 

       ueStaticRouting->SetDefaultRoute (epcHelper->GetUeDefaultGatewayAddress 

(), 1); 

 } 

 for (uint16_t i = 0; i < numberOfNodes; i++) 

 { 

         lteHelper->Attach (ueLteDevs.Get(i), enbLteDevs.Get(0)); 

         // side effect: the default EPS bearer will be activated 

 } 

 

 

 NS_LOG_INFO ("Create Applications."); 

 

/* Create Server application. Install on our remote host.*/ 

 

 EvalvidServerHelper server(serverPort); 

 server.SetAttribute ("SenderTraceFilename", StringValue("st_highway_cif.st")); 

 server.SetAttribute ("SenderDumpFilename" , StringValue("sd_a01_lte")); 

 ApplicationContainer apps = server.Install(remoteHostContainer.Get(0)); 

 apps.Start (Seconds (1.0)); 

 apps.Stop (Seconds (10.0)); 

 

/* Create Client applications. Install on our UE nodes.*/ 

 for (uint16_t i = 0; i < numberOfNodes; i++) 

 { 

  EvalvidClientHelper client (internetIpIfaces.GetAddress 

(1),serverPort);//serverIP,serverPort 
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  std::ostringstream ReceiverDumpFilename; 

  ReceiverDumpFilename <<"rd_a0" <<i <<"_lte"; 

  client.SetAttribute ("ReceiverDumpFilename", 

StringValue(ReceiverDumpFilename.str())); 

  client.SetAttribute ("VideoId", UintegerValue(1)); 

  apps = client.Install (ueNodes.Get(i)); 

  apps.Start (Seconds (1.1)); 

  apps.Stop (Seconds (9.9)); //Note: Clients start after and finish 

before the Server. 

 } 

 

 lteHelper->EnableTraces (); //Enables trace sinks for PHY, MAC, RLC and PDCP. 

 

 

 NS_LOG_INFO ("Run Simulation."); 

 

 Simulator::Stop(Seconds(10));//Set Simulation stop time. 

 Simulator::Run();    //Start Simulation. 

 Simulator::Destroy(); 

 return 0; 

} 
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/* 

 * File: plotmaker.cc 

 * Author: Achilleas Moustakis 

 * Copyright (c) 2016 National and Kapodistrian University of Athens, Greece 

 */ 

 

#include "ns3/core-module.h" 

#include "ns3/network-module.h" 

#include "ns3/mobility-module.h" 

#include "ns3/lte-module.h" 

#include "ns3/config-store.h" 

#include <ns3/buildings-module.h> 

#include <ns3/netanim-module.h> 

#include "ns3/gnuplot.h" 

#include <iomanip> 

#include <string> 

#include <vector> 

#include <fstream> 

#include <iostream> 

#include <sstream> 

#include <cstdlib> 

 

using namespace ns3; 

using namespace std; 

 

Gnuplot2dDataset** CalculateThroughputperNode(string statsFileName, uint32_t nUe) 

{ 

/*The stats file we are using contains the start/end time in columns 1/2, 

 * the IMSI in column 4 and Bytes Received in column 10. Therefore, we 

 * extract the according tokens from every line of the file.*/ 

 uint32_t num; 

 //Create an array of datasets (one for each node) and hold a pointer of the 

array (DYNAMIC ALLOCATION) 

 Gnuplot2dDataset** datasetArray = new Gnuplot2dDataset*[nUe]; 

 for (num = 0; num < nUe; num++) 

  datasetArray[num] = new Gnuplot2dDataset(); 

  datasetArray[num]->Add(0,0); 

 

 //Read stats file line by line and tokenize 

 string line; 

 ifstream myfile(statsFileName.c_str()); 

 if (myfile) 

 { 

  getline(myfile,line); 

  vector<string> tokens; 

  while (getline(myfile,line)) { 

   string delimiter = " "; 

   size_t pos = 0; 

   string token; 

   while ((pos = line.find(delimiter)) != string::npos) { 

    token = line.substr(0, pos); 

    tokens.push_back(token); 

    line.erase(0, pos + delimiter.length()); 

   } 

   datasetArray[atoi(tokens.at(3).c_str())-1]-

>Add(atof(tokens.at(1).c_str()), 

     

atof(tokens.at(9).c_str())*8/1000/(atof(tokens.at(1).c_str())-

atof(tokens.at(0).c_str()))); //(End time, Kbps) 

   tokens.clear(); 

  } 

  myfile.close(); 

 } 

 return datasetArray; 

} 

 

double highestBitrate; 

double statsInterval; 
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Gnuplot2dDataset** CalculateMOSperNode(string statsFileName, uint32_t nUe, double 

simTime) 

{ 

/*The stats file we are using contains the start/end time in columns 1/2, 

 * the IMSI in column 4 and Bytes Received in column 10. Therefore, we 

 * extract the according tokens from every line of the file.*/ 

 

 uint32_t num; 

 double throughput; 

 

 //Create an array of datasets (one for each node) and hold a pointer of the 

array (DYNAMIC ALLOCATION) 

 Gnuplot2dDataset** datasetArray = new Gnuplot2dDataset*[nUe]; 

 double timeAtBestRate[nUe]; 

 for (num = 0; num < nUe; num++){ 

  datasetArray[num] = new Gnuplot2dDataset(); 

  datasetArray[num]->Add(0,0); 

  timeAtBestRate[num]=0; 

 } 

 //Read stats file line by line and tokenize 

 string line; 

 ifstream myfile(statsFileName.c_str()); 

 if (myfile) 

 { 

  getline(myfile,line); 

  vector<string> tokens; 

  while (getline(myfile,line)) { 

   string delimiter = " "; 

   size_t pos = 0; 

   string token; 

   while ((pos = line.find(delimiter)) != string::npos) { 

    token = line.substr(0, pos); 

    tokens.push_back(token); 

    line.erase(0, pos + delimiter.length()); 

   } 

   throughput = 

atof(tokens.at(9).c_str())*8/1000/(atof(tokens.at(1).c_str())-

atof(tokens.at(0).c_str())); 

   /* If Throughput within this time window equals or exceeds 

the highest Bitrate 

    * then add this window to the aggregate time being on the 

highest layer */ 

   if (throughput >= highestBitrate) { 

    timeAtBestRate[atoi(tokens.at(3).c_str())-1] += 

statsInterval; 

   } 

   datasetArray[atoi(tokens.at(3).c_str())-1]-

>Add(atof(tokens.at(1).c_str()), 

0.003*exp(0.064*100*timeAtBestRate[atoi(tokens.at(3).c_str())-1]/simTime)+2.498); 

//(End time, MOS) 

   tokens.clear(); 

  } 

  myfile.close(); 

 } 

 return datasetArray; 

} 

 

Gnuplot2dDataset** CalculateReceptionRatioperNode(string statsFileName, uint32_t nUe, 

double encodingRate) 

{ 

/*The stats file we are using contains the start/end time in columns 1/2, 

 * the IMSI in column 4 and Bytes Received in column 10. Therefore, we 

 * extract the according tokens from every line of the file.*/ 

 

 uint32_t num; 

 

 //Create an array of datasets (one for each node) and hold a pointer of the 

array (DYNAMIC ALLOCATION) 

 Gnuplot2dDataset** datasetArray = new Gnuplot2dDataset*[nUe]; 

 for (num = 0; num < nUe; num++){ 
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  datasetArray[num] = new Gnuplot2dDataset(); 

  datasetArray[num]->Add(0,0); 

 } 

 

 //Read stats file line by line and tokenize 

 string line; 

 ifstream myfile(statsFileName.c_str()); 

 if (myfile) 

 { 

  getline(myfile,line); 

  vector<string> tokens; 

  while (getline(myfile,line)) { 

   string delimiter = " "; 

   size_t pos = 0; 

   string token; 

   while ((pos = line.find(delimiter)) != string::npos) { 

    token = line.substr(0, pos); 

    tokens.push_back(token); 

    line.erase(0, pos + delimiter.length()); 

   } 

   datasetArray[atoi(tokens.at(3).c_str())-1]-

>Add(atof(tokens.at(1).c_str()), 

atof(tokens.at(9).c_str())*8/1000/(atof(tokens.at(1).c_str())-

atof(tokens.at(0).c_str()))/encodingRate); //(End time, ρ) 

   tokens.clear(); 

  } 

  myfile.close(); 

 } 

 return datasetArray; 

} 

 

 

Gnuplot2dDataset** CalculateSINRperNode(string statsFileName, uint32_t nUe) 

{ 

/*The stats file we are using contains the measurement timestamp in column 1, 

 * the IMSI in column 3 and the SINR in column 6. Therefore, we 

 * extract the according tokens from every line of the file.*/ 

 uint32_t num; 

 //Create an array of datasets (one for each node) and hold a pointer of the 

array (DYNAMIC ALLOCATION) 

 Gnuplot2dDataset** datasetArray = new Gnuplot2dDataset*[nUe]; 

 for (num = 0; num < nUe; num++) 

  datasetArray[num] = new Gnuplot2dDataset(); 

  datasetArray[num]->Add(0,0); 

 

 //Read stats file line by line and tokenize 

 string line; 

 ifstream myfile(statsFileName.c_str()); 

 if (myfile) 

 { 

  getline(myfile,line); 

  vector<string> tokens; 

  while (getline(myfile,line)) { 

   string delimiter = " "; 

   size_t pos = 0; 

   string token; 

   while ((pos = line.find(delimiter)) != string::npos) { 

    token = line.substr(0, pos); 

    tokens.push_back(token); 

    line.erase(0, pos + delimiter.length()); 

   } 

   tokens.push_back(line); 

   line.clear(); 

   datasetArray[atoi(tokens.at(2).c_str())-1]-

>Add(atof(tokens.at(0).c_str()), atof(tokens.at(5).c_str())); //(timestamp, SINR) 

   tokens.clear(); 

  } 

  myfile.close(); 

 } 

 return datasetArray; 
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} 

 

void Create2DPlotFile (string fileName, double simTime, string axisXname, string 

axisYname, Gnuplot2dDataset dataset) 

{ 

  std::string fileNameWithNoExtension = fileName; 

  std::string graphicsFileName        = fileNameWithNoExtension + ".png"; 

  std::string plotFileName            = fileNameWithNoExtension + ".plt"; 

  std::string plotTitle               = fileName; 

  std::string dataTitle               = fileName; 

 

  // Instantiate the plot and set its title. 

  Gnuplot plot (graphicsFileName); 

  plot.SetTitle (plotTitle); 

 

  // Make the graphics file, which the plot file will create when it 

  // is used with Gnuplot, be a PNG file. 

  plot.SetTerminal ("png"); 

 

  // Set the labels for each axis. 

  plot.SetLegend (axisXname, axisYname); 

 

  // Set the range for the x axis 

  std::stringstream sstm; 

  sstm << simTime; 

  plot.AppendExtra ("set xrange [0:" + sstm.str() + "]"); 

 

  // Instantiate the dataset, set its title, and make the points be 

  // plotted along with connecting lines. 

  dataset.SetTitle (dataTitle); 

  dataset.SetStyle (Gnuplot2dDataset::LINES_POINTS); 

 

  // Add the dataset to the plot. 

  plot.AddDataset (dataset); 

 

  // Open the plot file. 

  std::ofstream plotFile (plotFileName.c_str()); 

 

  // Write the plot file. 

  plot.GenerateOutput (plotFile); 

  system(("gnuplot < " + plotFileName).c_str()); 

 

  // Close the plot file. 

  plotFile.close (); 

} 

 

void PlotStatistics(uint32_t nUe, double simTime){ 

 //Create throughput datasets for every node and plot statistics 

 Gnuplot2dDataset** datasets = CalculateThroughputperNode("DlRlcStats.txt", 

nUe); 

 string plotName; 

 uint32_t num; 

 for (num = 0; num < nUe; num++) 

 { 

  std::stringstream sstm; 

  sstm << "Throughput-" << num+1; 

  plotName = sstm.str(); 

  Create2DPlotFile(plotName, simTime, "Seconds", "Kbps", 

*datasets[num]); 

  plotName.clear(); 

  delete datasets[num]; 

 } 

 delete datasets; 

 

 //Create MOS datasets for every node and plot statistics 

 datasets = CalculateMOSperNode("DlRlcStats.txt", nUe, simTime); 

 for (num = 0; num < nUe; num++) 

 { 

  std::stringstream sstm; 

  sstm << "MOS-" << num+1; 
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  plotName = sstm.str(); 

  Create2DPlotFile(plotName, simTime, "Seconds", "MOS", 

*datasets[num]); 

  plotName.clear(); 

  delete datasets[num]; 

 } 

 delete datasets; 

 

 //Create reception ratio for every node and plot statistics 

 datasets = CalculateReceptionRatioperNode("DlRlcStats.txt", nUe, 

encodingRate); 

 for (num = 0; num < nUe; num++) 

 { 

  std::stringstream sstm; 

  sstm << "Reception_Ratio-" << num+1; 

  plotName = sstm.str(); 

  Create2DPlotFile(plotName, simTime, "Seconds", "ρ", *datasets[num]); 

  plotName.clear(); 

  delete datasets[num]; 

 } 

 delete datasets; 

 

 //Create SINR datasets for every node and plot statistics 

 datasets = CalculateSINRperNode("DlRsrpSinrStats.txt", nUe); 

 for (num = 0; num < nUe; num++) 

 { 

  std::stringstream sstm; 

  sstm << "SINR-" << num+1; 

  plotName = sstm.str(); 

  Create2DPlotFile(plotName, simTime, "Seconds", "Linear SINR", 

*datasets[num]); 

  plotName.clear(); 

  delete datasets[num]; 

 } 

delete datasets; 

} 

int main (int argc, char *argv[]) 

{ 

/*In order to run properly, please provide the number of User Equipments (nUe) 

 * and the simulation time (simTime) before execution.*/ 

 

 uint32_t nUe = 1; 

 const double simTime = 10.0; 

 const double encodingRate = 77.09; //kbps 

 highestBitrate = 80; //kbps 

 statsInterval = 0.25; //secs 

 PlotStatistics(nUe, simTime, encodingRate);} 

 

  



QoE estimation for Adaptive Video Streaming over LTE Networks 

A.Moustakis   87 

/* 

 * File: evalvid-client-server-helper.cc 

 */ 

 

#include "../../evalvid/helper/evalvid-client-server-helper.h" 

#include "ns3/evalvid-client.h" 

#include "ns3/evalvid-server.h" 

#include "ns3/uinteger.h" 

#include "ns3/string.h" 

namespace ns3 { 

 

 EvalvidServerHelper::EvalvidServerHelper (){} 

 

 EvalvidServerHelper::EvalvidServerHelper (uint16_t port) 

 { 

  m_factory.SetTypeId (EvalvidServer::GetTypeId ()); 

  SetAttribute ("Port", UintegerValue (port)); 

 } 

 

        void  

        EvalvidServerHelper::SetAttribute(std::string name,const AttributeValue&value) 

 { 

  m_factory.Set (name, value); 

 } 

 

 ApplicationContainer EvalvidServerHelper::Install (NodeContainer c) 

 { 

  ApplicationContainer apps; 

  for (NodeContainer::Iterator i = c.Begin (); i != c.End (); ++i) 

  { 

   Ptr<Node> node = *i; 

   m_server = m_factory.Create<EvalvidServer> (); 

   node->AddApplication (m_server); 

   apps.Add (m_server); 

  } 

  return apps; 

 } 

 

 Ptr<EvalvidServer> EvalvidServerHelper::GetServer (void) 

 { 

  return m_server; 

 } 

 

 EvalvidClientHelper::EvalvidClientHelper () {} 

 EvalvidClientHelper::EvalvidClientHelper (Ipv4Address ip,uint16_t port) 

 { 

  m_factory.SetTypeId (EvalvidClient::GetTypeId ()); 

  SetAttribute ("RemoteAddress", Ipv4AddressValue (ip)); 

  SetAttribute ("RemotePort", UintegerValue (port)); 

 } 

 

       void  

       EvalvidClientHelper::SetAttribute(std::string name,const AttributeValue &value) 

 { 

  m_factory.Set (name, value); 

 } 

 

 ApplicationContainer EvalvidClientHelper::Install (NodeContainer c) 

 { 

  ApplicationContainer apps; 

  for (NodeContainer::Iterator i = c.Begin (); i != c.End (); ++i) 

  { 

       Ptr<Node> node = *i; 

       Ptr<EvalvidClient> client = m_factory.Create<EvalvidClient>(); 

       node->AddApplication (client); 

       apps.Add (client); 

  } 

  return apps; 

 } 

}  
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/* 

 * File: evalvid-server.cc 

 */ 

 

#include "../../evalvid/model/evalvid-server.h" 

#include "ns3/log.h" 

#include "ns3/ipv4-address.h" 

#include "ns3/nstime.h" 

#include "ns3/inet-socket-address.h" 

#include "ns3/socket.h" 

#include "ns3/simulator.h" 

#include "ns3/socket-factory.h" 

#include "ns3/packet.h" 

#include "ns3/uinteger.h" 

#include "ns3/string.h" 

#include <ns3/tcp-socket.h> 

#include "mpeg-header.h" 

#include "http-header.h" 

using namespace std; 

 

namespace ns3 { 

NS_LOG_COMPONENT_DEFINE ("EvalvidServer"); 

NS_OBJECT_ENSURE_REGISTERED (EvalvidServer); 

TypeId 

EvalvidServer::GetTypeId (void) 

{ 

 static TypeId tid = TypeId ("ns3::EvalvidServer") 

  .SetParent<Application> () 

  .AddConstructor<EvalvidServer> () 

  .AddAttribute ("Port", 

    "Port on which we listen for incoming packets.", 

   UintegerValue (100), 

   MakeUintegerAccessor (&EvalvidServer::m_port), 

   MakeUintegerChecker<uint16_t> ()) 

  .AddAttribute ("SenderDumpFilename", 

   "Sender Dump Filename", 

   StringValue(""), 

   MakeStringAccessor(&EvalvidServer::m_senderTraceFileName), 

   MakeStringChecker()) 

  .AddAttribute ("SenderTraceFilename", 

   "Sender trace Filename", 

   StringValue(""), 

   MakeStringAccessor(&EvalvidServer::m_videoTraceFileName), 

   MakeStringChecker()) 

  .AddAttribute ("PacketPayload", 

   "MTU", 

/*In our case: MTU  - (SEQ_HEADER + TCP_HEADER + IP_HEADER + HTTP HEADER + MPEG 

HEADER) so: 1500 - (12 + 20 + 20 + 28 + 32) = 1388 

But for now we use 460 to avoid TCP truncation.* 

*/ 

   UintegerValue (460), 

   MakeUintegerAccessor (&EvalvidServer::m_packetPayload), 

   MakeUintegerChecker<uint16_t> ()) 

  ; 

 return tid; 

} 

 

EvalvidServer::EvalvidServer () 

{ 

 m_socket = 0; 

 m_port = 0; 

 m_numOfFrames = 0; 

 m_packetPayload = 0; 

 m_packetId = 0; 

 m_sendEvent = EventId (); 

 packetcount = 0; 

 m_totalRx = 0; 

 videoId = -1; 

} 
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EvalvidServer::~EvalvidServer () 

{ 

 NS_LOG_FUNCTION (this); 

} 

 

void 

EvalvidServer::DoDispose (void) 

{ 

 NS_LOG_FUNCTION (this); 

 Application::DoDispose (); 

} 

 

void 

EvalvidServer::StartApplication (void) 

{ 

 NS_LOG_FUNCTION_NOARGS(); 

 

 Ptr<Socket> socket = 0; 

 if (socket == 0) 

 { 

  TypeId tid = TypeId::LookupByName ("ns3::TcpSocketFactory"); 

  socket = Socket::CreateSocket (GetNode (), tid); 

  InetSocketAddress local = InetSocketAddress (Ipv4Address::GetAny (), 

m_port); 

  socket->Bind (local); 

  socket->Listen(); 

  socket->SetRecvCallback (MakeCallback (&EvalvidServer::HandleRead, 

this)); 

  socket->SetAcceptCallback( 

    MakeNullCallback<bool, Ptr<Socket>, const Address 

&>(), 

    MakeCallback(&EvalvidServer::HandleAccept, this)); 

 } 

 

 

/* //For IPv6 only: 

 

 Ptr<Socket> socket6 = 0; 

 if (socket6 == 0) 

 { 

  TypeId tid = TypeId::LookupByName ("ns3::TcpSocketFactory");//A 

  socket6 = Socket::CreateSocket (GetNode (), tid); 

  Inet6SocketAddress local = Inet6SocketAddress (Ipv6Address::GetAny 

(), m_port); 

  socket6->Bind (local); 

  socket6->Listen(); 

  socket6->SetRecvCallback (MakeCallback (&EvalvidServer::HandleRead, 

this)); 

 }*/ 

 

 Setup(); //Setup the video(s) for distribution. 

} 

 

void 

EvalvidServer::StopApplication () 

{ 

 NS_LOG_FUNCTION_NOARGS(); 

 //Simulator::Cancel (m_sendEvent); 

} 

 

void 

EvalvidServer::Setup() 

{ 

 NS_LOG_FUNCTION_NOARGS(); 

 

 m_videoInfoStruct_t *videoInfoStruct; 

 uint32_t frameId; 

 string frameType; 

 uint32_t frameSize; 

 uint16_t numOfTcpPackets; 
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 double sendTime; 

 double lastSendTime = 0.0; 

 

 ifstream videoTraceFile(m_videoTraceFileName.c_str(), ios::in); 

 if (videoTraceFile.fail()) 

 { 

  NS_FATAL_ERROR(">> EvalvidServer: Error while opening video trace 

file: " << m_videoTraceFileName.c_str()); 

  return; 

 } 

 

 while (videoTraceFile >> frameId >> frameType >> frameSize >> numOfTcpPackets 

>> sendTime) 

 { 

  videoInfoStruct = new m_videoInfoStruct_t; 

  videoInfoStruct->frameType = frameType; 

  videoInfoStruct->frameSize = frameSize; 

  videoInfoStruct->numOfTcpPackets = frameSize/m_packetPayload; 

  videoInfoStruct->packetInterval = Seconds(sendTime - lastSendTime); 

  m_videoInfoMap.insert (pair<uint32_t, m_videoInfoStruct_t*>(frameId, 

videoInfoStruct)); 

  //NS_LOG_LOGIC(">> EvalvidServer: " << frameId << "\t" << frameType 

<< "\t" <<frameSize << "\t" << numOfTcpPackets << "\t" << sendTime); 

  lastSendTime = sendTime; 

 } 

 

 m_numOfFrames = frameId; 

 m_videoInfoMapIt = m_videoInfoMap.begin(); 

 

 m_senderTraceFile.open(m_senderTraceFileName.c_str(), ios::out); 

 if (m_senderTraceFile.fail()) 

 { 

  NS_FATAL_ERROR(">> EvalvidServer: Error while opening sender trace 

file: " << m_senderTraceFileName.c_str()); 

  return; 

 } 

} 

 

void 

EvalvidServer::Send () /*Sends one frame at a time! Calls itself until the last frame 

of the segment is sent.*/ 

{ 

  NS_LOG_FUNCTION( this << Simulator::Now().GetSeconds()); 

 

  if (m_videoInfoMapIt != m_videoInfoMap.end()) 

    { 

      for(int i=0; i<m_videoInfoMapIt->second->numOfTcpPackets; i++) 

        { 

          Ptr<Packet> p = Create<Packet> (m_packetPayload);//originally 1460 bytes 

          m_packetId++; 

          m_senderTraceFile << std::fixed << std::setprecision(4) << 

Simulator::Now().ToDouble(Time::S) 

                            << std::setfill(' ') << std::setw(16) <<  "id " << 

m_packetId 

                            << std::setfill(' ') <<  std::setw(16) <<  "tcp " << p-

>GetSize() 

                            << std::endl; 

 

          /* Add headers to the packet. */ 

          SeqTsHeader seqTs; 

          seqTs.SetSeq (m_packetId); 

          HTTPHeader http_header; 

          http_header.SetMessageType(HTTP_RESPONSE); 

          http_header.SetVideoId(videoId); 

          http_header.SetResolution(clientResolution); 

          http_header.SetSegmentId(segmentId); 

          MPEGHeader mpeg_header; 

          mpeg_header.SetFrameId(m_videoInfoMapIt->first); 

          mpeg_header.SetPlaybackTime( 

            MilliSeconds( 
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              (m_videoInfoMapIt->first - 1) 

              * MPEG_TIME_BETWEEN_FRAMES)); //50 FPS 

          mpeg_header.SetType(m_videoInfoMapIt->second->frameType); 

          mpeg_header.SetSize(m_videoInfoMapIt->second->frameSize); 

 

          p->AddHeader (seqTs); 

          p->AddHeader(http_header); 

          p->AddHeader(mpeg_header); 

          packetcount++; 

          std::cout <<"Server: bytes sent->"<<p->GetSize() <<" frame size->" 

<<mpeg_header.GetSize() <<" packetcount:"<<packetcount <<std::endl; 

          m_socket->SendTo(p, 0, m_peerAddress); 

        } 

      Ptr<Packet> p = Create<Packet> (m_videoInfoMapIt->second->frameSize % 

m_packetPayload); 

      m_packetId++; 

      m_senderTraceFile  << std::fixed << std::setprecision(4)  

  << Simulator::Now().ToDouble(Time::S) 

            << std::setfill(' ') << std::setw(16) <<  "id " << m_packetId 

                 << std::setfill(' ') <<  std::setw(16) <<  "tcp " << p>GetSize() 

  << std::setfill(' ') << std::setw(16) <<  "frame id "  

  << m_videoInfoMapIt->first << std::endl; 

 

      /* Add headers to the packet. */ 

      SeqTsHeader seqTs; 

      seqTs.SetSeq (m_packetId); 

 

      HTTPHeader http_header; 

      http_header.SetMessageType(HTTP_RESPONSE); 

      http_header.SetVideoId(videoId); 

      http_header.SetResolution(clientResolution); 

      http_header.SetSegmentId(segmentId); 

 

      MPEGHeader mpeg_header; 

      mpeg_header.SetFrameId(m_videoInfoMapIt->first); 

      mpeg_header.SetPlaybackTime( 

        MilliSeconds((m_videoInfoMapIt->first + (segmentId * 

MPEG_FRAMES_PER_SEGMENT)) 

          * MPEG_TIME_BETWEEN_FRAMES)); //50 fps 

      mpeg_header.SetType(m_videoInfoMapIt->second->frameType); 

      mpeg_header.SetSize(m_videoInfoMapIt->second->frameSize); 

      p->AddHeader (seqTs); 

      p->AddHeader(http_header); 

      p->AddHeader(mpeg_header); 

      packetcount++; 

      std::cout <<"Server: bytes sent->"<<p->GetSize() <<" frame size->" 

<<mpeg_header.GetSize() <<" packetcount:"<<packetcount <<std::endl; 

      m_socket->SendTo(p, 0, m_peerAddress); 

      m_videoInfoMapIt++; 

      if (m_videoInfoMapIt == m_videoInfoMap.end()) 

        { 

          NS_LOG_INFO(">> EvalvidServer: Video streaming successfully completed!"); 

        } 

      else if ((m_videoInfoMapIt->first - 1) % MPEG_FRAMES_PER_SEGMENT == 0) 

      { 

       NS_LOG_INFO(">> EvalvidServer: Sending segment " <<segmentId <<" 

complete!"); 

      } 

      else 

        { 

          if (m_videoInfoMapIt->second->packetInterval.GetSeconds() == 0) 

            { 

              m_sendEvent = Simulator::ScheduleNow (&EvalvidServer::Send, this); 

            } 

          else 

            { 

              m_sendEvent = Simulator::Schedule (m_videoInfoMapIt->second-> 

  packetInterval, &EvalvidServer::Send, this); 

            } 

        } 



QoE estimation for Adaptive Video Streaming over LTE Networks 

A.Moustakis   92 

    } 

  else 

    { 

      NS_FATAL_ERROR(">> EvalvidServer: Frame does not exist!"); 

    } 

} 

 

void 

EvalvidServer::HandleRead (Ptr<Socket> socket) 

{ 

  //NS_LOG_FUNCTION_NOARGS(); 

  Ptr<Packet> packet; 

  Address from; 

  m_socket = socket; 

 

  while ((packet = socket->RecvFrom (from))) 

    { 

      m_peerAddress = from; 

      m_totalRx += packet->GetSize(); 

 

      /*Extract info from received client request packet. */ 

      HTTPHeader header; 

      packet->RemoveHeader(header); 

 

      videoId = header.GetVideoId(); 

      segmentId = header.GetSegmentId(); 

      clientResolution = header.GetResolution(); 

 

      if (InetSocketAddress::IsMatchingType (from)) 

        { 

          NS_LOG_INFO (">> EvalvidServer: Client at " << 

InetSocketAddress::ConvertFrom (from).GetIpv4 () 

                        << " is requesting a video streaming."); 

        } 

      /*//For IPv6 only: 

 

      else if (Inet6SocketAddress::IsMatchingType (from)) 

        { 

             NS_LOG_INFO (">> EvalvidServer: Client at " << 

Inet6SocketAddress::ConvertFrom (from).GetIpv6 () 

                           << " is requesting a video streaming."); 

        }*/ 

      if (m_videoInfoMapIt != m_videoInfoMap.end()) 

        { 

          NS_LOG_INFO(">> EvalvidServer: Starting video streaming..."); 

          if (m_videoInfoMapIt->second->packetInterval.GetSeconds() == 0) 

            { 

              m_sendEvent = Simulator::ScheduleNow (&EvalvidServer::Send, this); 

            } 

          else 

            { 

           m_sendEvent = Simulator::Schedule(m_videoInfoMapIt->second-> 

  packetInterval, &EvalvidServer::Send, this); 

            } 

        } 

      else 

        { 

          NS_FATAL_ERROR(">> EvalvidServer: Frame does not exist!"); 

        } 

      //m_rxTrace(packet, from); 

    } 

} 

 

void 

  EvalvidServer::HandleAccept(Ptr<Socket> s, const Address& from) 

  { 

    NS_LOG_FUNCTION(this << s << from); 

    s->SetRecvCallback(MakeCallback(&EvalvidServer::HandleRead, this)); 

  } 

}  
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/* 

 * File: evalvid-client.cc 

 */ 

 

#include "../../evalvid/model/evalvid-client.h" 

#include "ns3/log.h" 

#include "ns3/ipv4-address.h" 

#include "ns3/nstime.h" 

#include "ns3/inet-socket-address.h" 

#include "ns3/socket.h" 

#include "ns3/simulator.h" 

#include "ns3/socket-factory.h" 

#include "ns3/packet.h" 

#include "ns3/uinteger.h" 

#include <stdlib.h> 

#include <stdio.h> 

#include "ns3/string.h" 

#include "http-header.h" 

 

namespace ns3 { 

 

    NS_LOG_COMPONENT_DEFINE ("EvalvidClient"); 

    NS_OBJECT_ENSURE_REGISTERED (EvalvidClient); 

 

    TypeId 

    EvalvidClient::GetTypeId (void) 

    { 

        static TypeId tid = TypeId ("ns3::EvalvidClient") 

            .SetParent<Application> () 

            .AddConstructor<EvalvidClient> () 

            .AddAttribute("VideoId", "The Id of the video that is played.", 

                          UintegerValue(0), 

                          MakeUintegerAccessor(&EvalvidClient::m_videoId), 

                          MakeUintegerChecker<uint32_t>(1)) 

            .AddAttribute ("RemoteAddress", 

                           "The destination Ipv4Address of the outbound packets", 

                           Ipv4AddressValue (), 

                           MakeIpv4AddressAccessor (&EvalvidClient::m_peerAddress), 

                           MakeIpv4AddressChecker ()) 

            .AddAttribute ("RemotePort", "The destination port of the outbound 

packets", 

                           UintegerValue (100), 

                           MakeUintegerAccessor (&EvalvidClient::m_peerPort), 

                           MakeUintegerChecker<uint16_t> ()) 

            .AddAttribute ("ReceiverDumpFilename", 

                           "Receiver Dump Filename", 

                           StringValue(""), 

                           MakeStringAccessor(&EvalvidClient::receiverDumpFileName), 

                           MakeStringChecker()) 

            .AddAttribute ("PacketPayload", 

                           "Packet Payload, i.e. MTU - (SEQ_HEADER + UDP_HEADER + 

IP_HEADER). " 

                           "This is the same value used to hint video with MP4Box. 

Default: 1460.", 

                          /*In our case: MTU  - (SEQ_HEADER + TCP_HEADER + 

IP_HEADER + HTTP HEADER + MPEG HEADER) 

                           *   so:  1500 - (12 +

 20 + 20 + 28 + 32) = 1388 

                           * But for now we use 460 to avoid TCP truncation. 

                           * */ 

                           UintegerValue (460), 

                           MakeUintegerAccessor (&EvalvidClient::m_packetPayload), 

                           MakeUintegerChecker<uint16_t> ()) 

            ; 

        return tid; 

    } 

 

    EvalvidClient::EvalvidClient () : m_bitRate(80000), // default bitrate in bps 

                                      m_segmentId(0) // seems to start with 0 

    { 
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        NS_LOG_FUNCTION_NOARGS (); 

        m_sendEvent = EventId (); 

        m_parser.SetApp(this); // So the parser knows where to send the received 

messages 

    } 

 

    EvalvidClient::~EvalvidClient () 

    { 

        NS_LOG_FUNCTION_NOARGS (); 

    } 

 

    void 

    EvalvidClient::SetRemote (Ipv4Address ip, uint16_t port) 

    { 

        m_peerAddress = ip; 

        m_peerPort = port; 

    } 

 

    MpegPlayer& 

    EvalvidClient::GetPlayer(){ 

        return m_player; 

    } 

 

    void 

    EvalvidClient::DoDispose (void) 

    { 

        NS_LOG_FUNCTION_NOARGS (); 

        Application::DoDispose (); 

    } 

 

    double 

    EvalvidClient::GetBitRateEstimate() 

    { 

        return m_bitrateEstimate; 

    } 

 

    void 

    EvalvidClient::StartApplication (void) 

    { 

        NS_LOG_FUNCTION_NOARGS(); 

        if (m_socket == 0) 

        { 

            TypeId tid = TypeId::LookupByName ("ns3::TcpSocketFactory"); 

            m_socket = Socket::CreateSocket (GetNode (), tid); 

             

            if (m_socket->GetSocketType() != Socket::NS3_SOCK_STREAM 

                      && m_socket->GetSocketType() != Socket::NS3_SOCK_SEQPACKET) 

            NS_FATAL_ERROR ("Using HTTP with an incompatible socket type. " 

                            "HTTP requires SOCK_STREAM or SOCK_SEQPACKET. " 

                            "In other words, use TCP instead of UDP."); 

            m_socket->Bind (); 

            m_socket->Connect (InetSocketAddress (m_peerAddress, m_peerPort)); 

 

        } 

 

 

        receiverDumpFile.open(receiverDumpFileName.c_str(), ios::out); 

        if (receiverDumpFile.fail()) 

        { 

            NS_FATAL_ERROR(">> EvalvidClient: Error while opening output file: " << 

receiverDumpFileName.c_str()); 

            return; 

        } 

 

        m_socket->SetRecvCallback (MakeCallback (&EvalvidClient::HandleRead, this)); 

        m_socket->SetConnectCallback( 

                  MakeCallback(&EvalvidClient::ConnectionSucceeded, this), 

                  MakeCallback(&EvalvidClient::ConnectionFailed, this)); 

 

    } 
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    void 

    EvalvidClient::ConnectionSucceeded(Ptr<Socket> socket) 

    { 

        NS_LOG_FUNCTION(this << socket); 

        NS_LOG_LOGIC("Connection succeeded!"); 

        //m_connected = true; 

        Send(); //Request Segment 

    } 

 

    void 

    EvalvidClient::ConnectionFailed(Ptr<Socket> socket) 

    { 

        NS_LOG_FUNCTION(this << socket); 

        NS_LOG_LOGIC("Connection Failed"); 

    } 

 

    void 

    EvalvidClient::Send (void) /* Request segment. */ 

    { 

        NS_LOG_FUNCTION_NOARGS (); 

 

        Ptr<Packet> p = Create<Packet> (100); 

 

        SeqTsHeader seqTs; 

        seqTs.SetSeq (0); 

        p->AddHeader (seqTs); 

 

        HTTPHeader httpHeader;//Achilleas 

        httpHeader.SetSeq(1); 

        httpHeader.SetMessageType(HTTP_REQUEST); 

        httpHeader.SetVideoId(m_videoId); 

        httpHeader.SetResolution(m_bitRate); 

        httpHeader.SetSegmentId(m_segmentId++); 

        p->AddHeader(httpHeader); 

        m_socket->Send (p); 

        m_requestTime = Simulator::Now(); 

        m_segment_bytes = 0; 

        NS_LOG_INFO (">> EvalvidClient: Sending request for video streaming to 

EvalvidServer at " 

                    << m_peerAddress << ":" << m_peerPort); 

    } 

 

 

    void 

    EvalvidClient::StopApplication () 

    { 

        NS_LOG_FUNCTION_NOARGS (); 

        receiverDumpFile.close(); 

        Simulator::Cancel (m_sendEvent); 

    } 

 

    void 

    EvalvidClient::HandleRead (Ptr<Socket> socket) 

    { 

        NS_LOG_FUNCTION (this << socket); 

        m_parser.ReadSocket(socket); 

    } 

 

    void 

    EvalvidClient::MessageReceived(Packet message) 

    { 

        NS_LOG_FUNCTION(this << message); 

 

        MPEGHeader mpegHeader; 

        HTTPHeader httpHeader; 

        SeqTsHeader seqTs; 

 

        // Send the frame to the player 
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        m_player.ReceiveFrame(&message); //TODO: In case frame consists of more than 1 

packets, play them all together. 

        m_segment_bytes += message.GetSize(); 

        m_totBytes += message.GetSize(); 

 

        message.RemoveHeader(mpegHeader); 

        message.RemoveHeader(httpHeader); 

        message.RemoveHeader(seqTs); 

 

        receiverDumpFile << std::fixed << std::setprecision(4) << 

Simulator::Now().ToDouble(ns3::Time::S) 

                                       << std::setfill(' ') << std::setw(16) <<  "id " 

<< seqTs.GetSeq() 

                                       << std::setfill(' ') <<  std::setw(16) <<  "tcp 

" << message.GetSize() 

                                       << std::endl; 

 

        // Calculate the buffering time 

        switch (m_player.m_state) 

          { 

        case MPEG_PLAYER_PLAYING: 

          m_sumDt += m_player.GetRealPlayTime(mpegHeader.GetPlaybackTime()); 

          break; 

        case MPEG_PLAYER_PAUSED: 

          break; 

        case MPEG_PLAYER_DONE: 

          return; 

        default: 

          NS_FATAL_ERROR("WRONG STATE"); 

          } 

 

        // If we received the last frame of the segment 

        if (mpegHeader.GetFrameId()!= 0 && mpegHeader.GetFrameId() % 

MPEG_FRAMES_PER_SEGMENT == 0) 

        { 

            m_segmentFetchTime = Simulator::Now() - m_requestTime; 

 

            NS_LOG_INFO(Simulator::Now().GetSeconds() << " bytes: " << m_segment_bytes 

                        <<" segmentTime: " << m_segmentFetchTime.GetSeconds() 

                        <<" segmentRate: " << 8 * m_segment_bytes / 

m_segmentFetchTime.GetSeconds()); 

 

            // Feed the bitrate info to the player 

            AddBitRate(Simulator::Now(), 

                8 * m_segment_bytes / m_segmentFetchTime.GetSeconds()); 

 

            Time currDt = m_player.GetRealPlayTime(mpegHeader.GetPlaybackTime()); 

            // And tell the player to monitor the buffer level 

            LogBufferLevel(currDt); 

            Time bufferDelay; 

             

            uint32_t prevBitrate = m_bitRate; 

            uint32_t nextRate = 8 * m_segment_bytes / m_segmentFetchTime.GetSeconds(); 

            CalcNextSegment(nextRate, m_bitRate, bufferDelay); 

 

            if (prevBitrate != m_bitRate) 

            { 

                m_rateChanges++; 

            } 

 

            if (bufferDelay == Seconds(0)) 

            { 

                std::cout <<"Buffer delay!" <<std::endl; 

                Send(); 

            } 

            else 

            { 

                m_player.SchduleBufferWakeup(bufferDelay, this); //if we want to 

schedule a segment request after delaying the buffer. 

            } 
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            std::cout   << Simulator::Now().GetSeconds() << " Node: " << m_id 

                        << " newBitRate: " << m_bitRate << " oldBitRate: " << 

prevBitrate 

                        << " estBitRate: " << GetBitRateEstimate() << " interTime: " 

                        << m_player.m_interruption_time.GetSeconds() << " T: " 

                        << currDt.GetSeconds() << " dT: " 

                        << (m_lastDt >= 0 ? (currDt - m_lastDt).GetSeconds() : 0) 

                        << " del: " << bufferDelay << std::endl; 

 

            NS_LOG_INFO("==== Last frame received. Requesting segment " << 

m_segmentId); 

            m_lastDt = currDt; 

        } 

    } 

 

    void 

    EvalvidClient::CalcNextSegment(uint32_t currRate, uint32_t & nextRate, Time & 

delay) 

    { 

        nextRate = currRate; 

        delay = Seconds(0); 

    } 

 

    void 

    EvalvidClient::AddBitRate(Time time, double bitrate) 

    { 

        m_bitrates[time] = bitrate; 

        double sum = 0; 

        int count = 0; 

        for (std::map<Time, double>::iterator it = m_bitrates.begin(); 

        it != m_bitrates.end(); ++it) 

        { 

            if (it->first < (Simulator::Now() - m_window)) 

            { 

                m_bitrates.erase(it->first); 

            } 

            else 

            { 

                sum += it->second; 

                count++; 

            } 

        } 

        m_bitrateEstimate = sum / count; 

    } 

 

    void 

    EvalvidClient::LogBufferLevel(Time t) 

    { 

        m_bufferState[Simulator::Now()] = t; 

        for (std::map<Time, Time>::iterator it = m_bufferState.begin(); it != 

m_bufferState.end(); ++it) 

        { 

            if (it->first < (Simulator::Now() - m_window)) 

            { 

                m_bufferState.erase(it->first); 

            } 

        } 

    } 

 

} 
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