

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

THESIS

QoE estimation for Adaptive Video Streaming over LTE
Networks

Achilleas - M - Moustakis

Supervisors: Lazaros Merakos, Professor

ATHENS

FEBRUARY 2017

THESIS

QoE estimation for Adaptive Video Streaming over LTE Networks

Achilleas M. Moustakis

Α.Μ.: 1115201000151

SUPERVISORS: Lazaros Merakos, Professor

ΠΕΡΙΛΗΨΗ

Η 4η γενιά (4G) κινητών επικοινωνιών, στην οποία ανήκει το σύστημα Long Term
Evolution (LTE), παρέχει ευρυζωνική πρόσβαση σε κινητές συσκευές με ποιότητα και
ταχύτητα που αγγίζουν τις ενσύρματες επικοινωνίες. Παρόλ’αυτά, η κινητικότητα εκ
φύσεως εισάγει αστοχίες/διακυμάνσεις στην ασύρματη διεπαφή, γενόντας έτσι την
ανάγκη για αντίστοιχη προσαρμογή της ροής μετάδοσης των δεδομένων. Η ανάγκη
αυτή είναι ακόμη πιο έκδηλη για τις ροές δεδομένων βίντεο, που έχουν και τη μερίδα του
λέοντος στην διαδικτυακή κίνηση. Καθώς, λοιπόν, η ροή βίντεο μέσω ΗΤΤΡ έχει γίνει ο
κανόνας στη διανομήπεριεχομένου, η εφαρμογή ενός πρωτοκόλλου προσαρμογής
βασισμένου στο HTTP είναι αναπόφευκτη. Το DASH (Dynamic Adaptive Streaming
over HTTP) επιτρέπει μια ομαλή, αδιάκοπη ροή video εφαρμόζοντας αλγόριθμους
προσαρμογής του bitrate στη μεριά του χρήστη αξιοποιώντας πλήρως την υπάρχουσα
υποδομή. Έχοντας ως στόχο να τελειοποιήσουν την ποιότητα την οποία προσφέρει
στους χρήστες το δίκτυο, οι ερευνητές συνεχώς αναπτύσσουν νέες φόρμουλες για την
εκτίμηση της ποιότητας εμπειρίας του τελικού χρήστη, γνωστής υπο τον όρο Quality of
Experience (QoE). Η παρούσα πτυχιακή αντιπροσωπεύει την προσπάθεια
συγκερασμού των τριών ακόλουθων πυλώνων: της υποκείμενης υποδομής, του
ελέγχου της ποιότητας υπηρεσίας με τη χρήση αλγορίθμων προσαρμογής και του
επαναπροσδιορισμού του συστήματος με ανάλυση της ποιότητας και ανατροφοδότηση.
Ανοίγει τη συζήτηση για τη χρήση προσαρμοζόμενης ροής μετάδοσης πάνω απο δίκτυα
LTE και στοχεύει όχι μόνο να προσφέρει μια βαθιά βιβλιογραφική προσέγγιση των
επιμέρους, αλλά και να περιγράψει πώς συνδέονται, πώς επικαλύπτονται, ή πώς
αλληλεπιδρούν. Περιγράφει τα σημαντικότερα σύγχρονα μοντέλα μέτρησης QoE και
πώς αυτά χρησιμεύουν στην αντικειμενική εκτίμηση της ποιότητας. Βασική συνεισφορά
της εργασίας, είναι η ανάπτυξη μιάς πλήρης εκτελέσιμης οντότητας (module) για τον
προσομοιωτή NS-3 συνδυάζοντας όλες τις έννοιες που αναφέρονται παραπάνω.Ο
αναγνώστης μπορεί να βρεί ενα τυπικό παράδειγμα εκτέλεσης της εν λόγω οντότητας,
με την συνοδεία μιας βήμα-βήμα εξήγησής του και και κάποιων διαγραμμάτων με
αποτελέσματα. Το NS3 module αναπτύχθηκε με την ελπίδα να φανεί χρήσιμο σε κάθε
ερευνητή τηλεπικοινωνιών που ασχολείται με θέματα παροχής ποιότητας εμπειρίας και
αναζητά ένα εργαλείο προσομειώσεων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: LTE Δίκτυα 4ης Γενιάς

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: LTE, Ποιότητα Εμπειρίας, Ποιότητα Υπηρεσίας, Προσαρμοζόμενη
Ροή Πολυμέσων

ABSTRACT

The ability to address an increasing need for mobility in work and entertainment has
rendered LTE networks critically essential to our everyday environments. The promising
4th Generation (4G) of Long Term Evolution (LTE) provides ubiquitous broadband
access to mobile devices matching land communications in speed and quality.
However, the nature of mobility introduces a need for adaptivity in multimedia
streaming, the largest part of mobile Internet traffic. As HTTP video streaming has
become the de facto dominating solution to distribute media content, the implementation
of an HTTP-based adaptive streaming protocol is inevitable. Dynamic Adaptive
Streaming over HTTP (DASH) allows for smooth, uninterrupted video streaming by
implementing bitrate adaptation algorithms on the client side, with complete utilization of
the existing network infrastructure. In order to perfect the current quality served by the
network, network researchers constantly develop new metrics to assess the end-user’s
Quality of Experience. This thesis represents an attempt to join these three pillars of
mobile video streaming: the underlying infrastructure, the over-the-top algorithmic
quality control, and the follow-up feedback measurement. It opens a discussion about
the use of adaptive streaming in LTE networks, and aims to offer not only a deep down
bibliographic approach of each individual concept, but also describe where they overlap,
how they connect and interact with each other. It depicts the most important
contemporary QoE models and metrics, explains their formulas, and outlines their uses
as key performance indicators in objective quality estimation. Furthermore, within this
work, we provide a complete, expandable NS-3 model combining all the concepts
discussed. An HTTP Server-Client model within the LTE network architecture, with
implemented adaptive streaming functionality. The tool was developed in the hope of
becoming useful to any telecommunications researcher, supporting their research and
introducing them to the NS-3 simulator. In the end, we present a typical execution of our
example with a step by step explanation, followed by the plotting of some of the results
using a C++ script we developed.

SUBJECT AREA: Adaptive Streaming in LTE Networks

KEYWORDS: LTE, DASH, QoE, QoS, HAS, Quality of Experience, Adaptive Streaming

To Michael and Melina, the dearest parents a man can have.

To my friends and family, for motivating and supporting me throughout my studies.

Human behavior flows from three main sources:

desire, emotion, and knowledge.

~ Plato

ACKNOWLEDGEMENTS

Upon completing this thesis, I would like to thank Professor Lazaros Merakos, for
offering me the chance to get involved in a research program of major importance and
introducing me to the most contemporary networking concepts. His networking wisdom,
his teaching diligence and his professionalism will continue to inspire me throughout my
engineering career.

I am more than grateful to Dr. Dimitris Tsolkas, for his invaluable guidance, his
outstanding patience, and his positive attitude without which this thesis could not be
completed. With tremendous respect to his academic potential, it was an honor to have
him as my supervisor.

Lastly, I would also like to thank Ms. Eirini Liotou, for her support to our project and for
devoting time to explain to me some of the most challenging QoE-related theories.

CONTENTS

PROLOGUE.. 11

1. ADAPTIVE VIDEO STREAMING ... 12

1.1 Non-adaptive Video Streaming ... 12

1.1.1 Introduction .. 12

1.1.2 Brief History ... 12

1.2 Adaptive Bitrate Streaming ... 14

1.2.1 Introduction .. 14

1.2.2 Adaptive Streaming: The Definition ... 14

1.2.3 On the Server side ... 16

1.2.4 On the Client side .. 17

1.3 The MPEG-DASH protocol .. 19

1.3.1 Introduction .. 19

1.3.2 Brief History ... 19

1.3.3 The basic scenario ... 20

1.3.4 MPEG-DASH major advantages ... 22

2. LONG TERM EVOLUTION NETWORKS .. 23

2.1 Brief History .. 23

2.2 Objectives of the LTE system ... 25

2.3 LTE Transmission Modes.. 27

2.3.1 Multiple Antennas .. 27

2.3.2 Orthogonal Frequency-Division Multiple Access ... 29

2.4 LTE Architecture .. 31

2.4.1 Overview .. 31

2.4.2 The Evolved Packet Core .. 34

2.4.3 The Non-Access Stratum (NAS) .. 36

2.4.4 The access network ... 37

2.4.5 Protocol Architecture.. 39

2.4.6 User plane .. 39

2.4.7 Control plane .. 41

2.5 Quality of Service in LTE ... 42

2.5.1 EPS Bearers .. 42

2.5.2 QoS Class Identifiers ... 43

2.5.3 OTT Content Providers .. 46

3. QUALITY OF EXPERIENCE .. 48

3.1 Introduction .. 48

3.2 Influence Factors.. 49

3.2.1 Initial Delay .. 49

3.2.2 Stalling ... 50

3.2.3 Adaptation .. 51

3.3 QoS Metrics .. 51

3.4 QoE Metrics .. 53

3.4.1 Mean Opinion Score (MOS) .. 53

3.4.2 Using the PSNR ... 55

3.4.3 Network average .. 56

3.5 Service Providers and Applications ... 58

4. THE NS-3 NETWORK SIMULATOR ... 61

4.1 NS-3 Basics ... 61

4.2 Building on top of LENA Project .. 61

4.2.1 Introduction .. 61

4.2.2 A Simple Example.. 62

4.2.3 The Server-Client Model .. 63

4.3 Implementing DASH ... 67

4.4 Presenting the Results .. 69

4.4.1 Plots ... 69

4.4.2 Throughput Calculation .. 70

4.4.3 SINR Computation ... 71

4.4.4 QoE Metrics ... 73

ABBREVIATIONS-ACRONYMS ... 76

APPENDIX .. 79

REFERENCES ... 98

FIGURES

Figure 1.1: Progressive download architecture ... 14

Figure 1.2: Streaming example w/ Media Server ... 13

Figure 1.3 Adaptive streaming Web Service overview .. 14

Figure 1.4: Adaptive streaming system end-to-end overview ... 15

Figure 1.5: Adaptive streaming server function flow .. 16

Figure 1.6: General view of client functions ... 18

Figure 1.7: The MPEG-DASH process timeline... 20

Figure 1.8: Example of the MPD file data model (by Dutch company TNO) 21

Figure 1.9: Main Adaptive-HTTP protocols .. 21

Figure 1.10: MPEG-DASH Server – Client Overview .. 22

Figure 2.1: History and evolution of cellular technologies ... 25

Figure 2.2: LTE Transmission modes tree (by 4G Americas) ... 27

Figure 2.3: MIMO release 8 scenarios ... 28

Figure 2.4: DL and UL in LTE ... 29

Figure 2.5: OFDMA and SC-FDMA in LTE .. 30

Figure 2.6: Cyclic Prefix Insertion in OFDM ... 30

Figure 2.7: LTE general architecture (by AIRCOM) .. 32

Figure 2.8: Elements forming the EPS ... 33

Figure 2.9: P-GW interaction with the network .. 34

Figure 2.10: S-GW interaction with the network .. 34

Figure 2.11: HSS in the center of the network ... 35

Figure 2.12: Access Stratum & Non-Access Stratum .. 36

Figure 2.13: E-UTRAN architecture ... 37

Figure 2.14: User Plane and Control Plane in the Protocol stack 39

Figure 2.15: RLC Sub Layer ... 40

Figure 2.16: EPS Bearers and Traffic Flows ... 43

Figure 2.17: Bearer Hierarchy .. 44

Figure 2.18: Standardized QCIs .. 45

Figure 2.19: OTT Content Flows .. 46

Figure 2.20: Default and Dedicated EPS bearers ... 47

Figure 3.1: HAS QOE key influence factors... 48

Figure 3.2: Error concealment example ... 52

Figure 3.3: Relation of MOS and Video Quality ... 53

Figure 3.4: Relation of PSNR and Video Quality ... 55

Figure 4.1: Lena Example Execution ... 63

Figure 4.2: Sender’s Dump File .. 66

Figure 4.3: Receiver’s Dump File ... 66

Figure 4.4: DlRlcStats.txt Sample .. 70

Figure 4.5: Throughput, Node 1 ... 71

Figure 4.6: DlRsprSinrStats.txt Sample ... 72

Figure 4.7: SINR, Node 1 ... 73

Figure 4.8: Reception Ratio ρ, Node 1 ... 74

Figure 4.9: MOS, Node 1 .. 75

PROLOGUE

The present thesis is part of and written under the undergraduate program of the
Department of Informatics and Telecommunications of the National and Kapodistrian
University of Athens, Greece. The text presented below is organized in the following
chapters:

In Chapter 1 we explain the concept of Adaptive Video Streaming and unveil its
advantages. More specifically, MPEG-DASH is mentioned as an indicative option of the
adaptive streaming functionality.

Chapter 2 is devoted to LTE networks as a whole, offering a deep analysis on their
architecture, and every detail that an outsider should be aware of. Focus is especially
place on the user-side equipment, and parts interacting with the application layer.

Our informative series concludes in Chapter 3 where the central topic is quality
measurement and, more particularly, Quality of Experience. In this chapter, several QoS
and QoE metrics are outlined and explained.

In Chapter 4, we analyze our NS-3 module along with two separate C++ scripts to be
used with it. We present the results from a typical execution and attach a part of the
code in the appendix.

Our code package was developed mainly in Eclipse running on OSX Yosemite 10.10.5
For our simulations, we used NS-3 version 3.24 on a Ubuntu 64-bit 14.04.3 Virtual
Machine.

As a Network Engineer’s quest to perfect the global networking structure is surely
never-ending, we hope to continue to improve the tools we created and openly invite
others to help us to do so.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 12

1. ADAPTIVE VIDEO STREAMING

1.1 Non-adaptive Video Streaming

1.1.1 Introduction

The process of delivering any multimedia content sent usually in a compressed form
over the Internet and displayed by the viewer in real time is called “streaming”. Initially,
any Internet peer who would choose to be delivered a media file would be required to
download the full size of that media file and store it to his terminal’s hard disk drive
before he could be able to display its multimedia content. The rapid increase in the
quality of media files, and therefore their size prompted the need for the viewer to have
the ability to access the content without waiting for the file to finish downloading. The
key that makes video streaming revolutionary is undoubtedly the fact that it gives
instead the client-user a sense of interactivity with the content by sending a continuous
stream of data which is played as it arrives. From the user being able to shift the
download index and display parts of the media file to online providers even serving or
broadcasting live content real-time to a number of users with nothing more than a small
delay, these are but a few of the countless possibilities provided by media streaming.

1.1.2 Brief History

Major streaming video and streaming media technologies included RealSystem G2 from
RealNetworks, Microsoft Windows Media Technologies, and VDO. Progressive
Networks (later renamed RealNetworks) is considered by many to have started the
streaming media industry and deserves a lot of the credit being the primary company
responsible for the wide adoption of audio and video streaming with content owners,
and consumers, from 1995 to 2002. They dominated the market until 1999, but
Microsoft was also working on video technology as early as 1993 [3]. Since then
Microsoft and RealNetworks have provided numerous streaming solutions over the
years with the addition of Apple in the years after 2005. Microsoft’s latest streaming
viewer is Silverlight but most streaming websites use Flash, a component originally
developed by Macromedia. Microsoft's approach uses the standard MPEG compression
algorithm for video. [6] The other approaches use proprietary algorithms.

Nowadays, video streaming tends to split into two categories, according to how the
incoming multimedia data flow is being handled on the client side: progressive
download (or pseudo-streaming) and real-streaming [4]. Progressive download or
pseudo-streaming is characterized by downloading an actual file or a part of it, even
temporarily, and playing that file as it is being downloaded. Real streaming, on the other
hand, is characterized by a data-buffering viewer (all data is kept in memory), with no
file being saved on disk.

http://searchcio-midmarket.techtarget.com/definition/MPEG

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 13

Figure 1.1: Progressive download architecture Figure 1.2: Streaming example w/ Media Server

From a server perspective, streaming video is usually sent from a collection of
prerecorded video files, but can be distributed as part of a live broadcast "feed." In a live
broadcast, the video signal is converted into a compressed digital signal and transmitted
from a special Web server that is able to do multicast, sending the same file to multiple
users at the same time.

The user needs a player, which is a special program, running on the client’s terminal
that decompresses and sends video and audio data to their respective output devices.
A player can be either an integral part of a browser or a part of an external software
package issued by the streaming source or by a third-party.

Overall, streaming technologies are rapidly gaining popularity as a way to deliver
dynamic media content over the Internet. As bandwidth increases consistently and
compression technologies mature, it becomes increasingly easier to deliver real-time,
dynamic media, such as video, audio, animation, Java applications and 3D and vector
graphic using streaming technologies. If used properly, streaming applications can add
impressive capability to any service site.

http://searchnetworking.techtarget.com/definition/multicast

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 14

1.2 Adaptive Bitrate StreamingIntroduction

Adaptive streaming technologies are a class of services able to optimize video viewing
experience using a predefined set of connection speeds on a wide range of devices.
Through the concept of adaptive streaming [5], web users are able to enjoy their favorite
content with minimized delays and highly improved quality, suited to their Internet
connection limits and their network conditions. This section describes the structure of
adaptive streaming, explains the concept’s architecture and identifies the main
technology contenders in the market. It also addresses the most important factors that
influence the adaptive streaming technology. As a consequence, adaptation has
become a standard for all web organizations and enterprises offering streaming
services.

1.2.2 Adaptive Streaming: The Definition

All Adaptive streaming technologies share a basic workflow executing a number of
common steps. [5] They all start by encoding the source media file to produce multiple
files to be distributed to viewers watching on different connection speeds, on different
devices.

Then, they distribute these files in an adaptive manner, changing the stream which is
being delivered according to effective changes in network values such as throughput
and latency, or even sometimes adapting to the player needs.

In the end, they all manage to maintain a level of transparency towards the user since
all stream switching is executed on the background, so that the viewer can avoid
clicking multiple buttons. Users may often notice an extremely slight difference in their
viewing quality during the switch (adaptation) of the streams, however no action needs
to be taken on their end.

Figure 1.3 Adaptive streaming Web Service overview

Despite some main approach differences, adaptive technologies also have similar
operating principles. [5] For instance, they all monitor important factors such as the
user’s effective throughput, the level of exhaustion of the player’s media buffer, the
delay and the dropped frames to assess the best suitable quality for the playback

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 15

terminal. This information is extracted in order to determine when it is preferable to
switch streams and which stream to switch to.

In case the control process notices that the media buffer is overflowing and CPU
utilization levels are low, the adaptive streaming process forces a switch to a stream of
a higher quality to improve the user’s quality of experience. In contrast, if CPU usage
surpasses a specific threshold, or if the buffer’s content drops below a predefined low,
the technology may choose to force the user’s player to make a switch to a lower quality
stream.

Figure 1.4: Adaptive streaming system end-to-end overview

The major difference between different adaptive technologies is in the implementation.
More specifically, it relies in the involvement of a streaming server (as shown in figures
1.1 and 1.2). Some technologies are able to fully operate without a streaming server.
The different quality streams are available at different URL addresses on a web server
or across a network of web servers. After the player analyses operating metrics and
utility factors to decide when a stream switch is preferable, it has the ability to execute a
stream switch and initiates the adaptation procedure by retrieving data from a different
stream than the one it was previously using.

On the other hand, there are adaptive technologies which definitely require a streaming
server having constant communication with the player. In this case, the server is in
charge of internally managing different streams and providing a data flow to the client. If
a stream switch is required, the server implements it by sending a different stream to
the viewer.

Either way, adaptive streaming implementations enable streaming services to deliver
the highest possible quality streams serving both low and high throughput applications.
For streaming web services, adaptive streaming is considered a must as without it most
producers would force users to download different files for different quality standards or
select a single quality for the duration of their viewing experience.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 16

1.2.3 On the Server side

On the server side of an adaptive bitrate streaming client-server model the detailed
perspective highly depends on the packaging approach of different technologies.
Hereby we present a generic description of the basic processes executed on the server
side.

Assuming that a high bitrate multimedia content already relies on the server’s database
as an input, in the beginning that content is passed through an encoder (as shown in
figures 1.3 and 1.4). An encoding machine or a software component undertakes the
task of producing two or more lower-bitrate versions of the input media content (figure
1.5). The multiple file versions are forwarded to the web server where depending on the
approach can be stored or immediately delivered.

Upon client request for a number of media slices, the web server normally generates
what is called a “media manifest file” often also referred to as Media Presentation File
(MPD). Based on the location of the client device the web server indicates (in the media
manifest file) one or more sources for each of the media slices and relevant information
associated with the respective sources, most notably a bitrate threshold necessary for
the client to maintain his playing rate of these media slices uninterrupted.

Figure 1.5: Adaptive streaming server function flow

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 17

At the start of communication between server and client the manifest described is sent
to the client which is the event that triggers the streaming process. As the client
requests a specific segment of the multimedia content from one of the available different
bitrate sources, resources are located usually by HTTP URLs [1] in or out of the web
server and the server transmits the correspondent multimedia segment through the
internet.

Based on the constantly changing conditions of the network and the client’s viewing
device, the web server needs to be prepared to immediately change transmitting from
one source to another with a lower or higher bitrate. That said, there is an ongoing
discussion about what would appear to be the most efficient of ways to preload or cache
parts of a media file on the delivery server [7].

The ability to switch to the stream that plays best at any time is ultimately what makes
the service adaptive to client throughput. Consequently, an adaptive bitrate streaming
web server guarantees the viewers will get the highest quality possible without buffering
interrupts. This process vastly improves the client’s Quality of Service which is
considered an important objective for all modern applications.

1.2.4 On the Client side

In state-of-the-art adaptive streaming solutions, the client module installed on the
viewer's side are highly intelligent. Here we demonstrate a general view of all the
processes which are performed on the client side.

First of all, the client initiates communication with the server side by connecting to the
server or making a request. If there is a media manifest file, the client requests and
receives the Manifest file to extract the temporal Information of the media file included in
it.

Once the client side is made aware of the different bitrates available by reading the
manifest file, the receiving process makes a request to the server to be sent a chunk of
data which represents the first segment of the media content, a video segment for
instance. This segment contains multimedia content of an average length of 2 to 10
seconds [8], depending on the end-to-end implementation adopted by the content
provider or the viewing tools.

After a segment is received, it is inserted in a fixed size buffer which guarantees that
there will be enough content saved on the client’s memory to avoid undesirable
interruptions of the playing session. This initial buffering in most cases does not last
long, with the segment passing through a decoder to be converted in a playable format
and then fed directly to the client’s player, usually frame by frame.

At the same time, another controlling process is monitoring network and video statistics
to calculate the future download strategy. It measures the current bandwidth of the
client’s network so that the client is alerted in case of a low bandwidth. The client’s
throughput is recorded during the transmission of the last segment received along with
an average throughput for a time period previously specified by the player software
provider. It also keeps track of the current buffer level ensuring that buffer levels are
kept to an average. Lastly, in many cases of modern players the controller is
responsible for withdrawing content from the buffer and feeding it to the player after
decoding.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 18

When the receiver is ready to request another segment, it asks the controller for the
average throughput and uses it as a threshold to decide, which is the highest quality-
level that the client can support. This way, the next segment is requested from the
respective stream of the decided quality level or a lower one in case the exact quality
level does not exist as an option in the available streams. By checking with the manifest
file it calculates the expected data chunk size, finds the source where the request must
be sent to and makes the request. Once the request is processed by the server and the
data chunk is being transmitted, the receiver process starts receiving and saving to the
client’s memory. All of the above processes can be seen at the diagram in figure 1.6 as
well as reference [7].

As it becomes obvious to the reader, modern adaptive streaming clients adopt high
independency principles in their implementation schema in order to fully adapt to the
changes in network and displaying environments [10]. They primarily aim to utilize all
resources available to the client, such as memory or bandwidth, at the maximum level
to offer the best quality of experience possible.

Figure 1.6: General view of client functions

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 19

1.3 The MPEG-DASH protocol

1.3.1 Introduction

The Moving Picture Expert Group (MPEG) is a working group of ISO/IEC with the
mission to develop standards for coded representation of digital audio and video and
related data, according to [9]. It has developed several widely used multimedia
standards addressing the need for content creators to reach multiple platforms and
devices in an efficient and cost-effective way. Protocols such as MPEG-2, MPEG-4,
MPEG-7, and MPEG-21 are well known and widely appreciated. MPEG-DASH
(Dynamic Adaptive Streaming over HTTP) is MPEG’s proposed solution to the complex
problems of HTTP adaptive streaming services that content delivery providers face in
different devices.

The first major trial of the MPEG-DASH protocol was the coverage of the 2012 London
Summer Olympics. From London, Belgian public broadcaster Vlaamse Radio- en
Televisieomroeporganisatie (VRT) offered its viewers the experience of broadcasting
the Olympic Games on their personal devices using the MPEG-DASH protocol
providing a display of the strengths of the adaptive streaming [11]. As a result, major
web media delivery contenders have adopted MPEG’s new standard or have shown
interest in adopting it in the near future.

1.3.2 Brief History

In recent years, adaptive streaming video is growing in popularity as the media content
delivery standard for several user devices and electronics [12]. Adaptive streaming is
comprised of a server and client software which interact with each other to measure a
client’s throughput capacity and adjusts the quality level of the projected video
accordingly.

Delivering a media file with no dynamic quality adjustment was not enough. It could not
support the midstream switching of a video stream to a number of available resolutions
depending on the client’s network conditions and connection speed. On top of that, the
interruptions and buffering delays during playtime are unavoidable when a client’s
internet connection could not support the quality of the selected video or when it
presents fluctuations.

MPEG responded to the clear need described above by issuing an official call for
proposing an HTTP adaptive streaming standard in April 2009 [13]. It developed the
MPEG-DASH specification after cooperating with several expert groups and accepting
collaboration from other standard organizations such as the Third Generation
Partnership Project (3GPP). MPEG’s project was coordinated with other industry
organizations such as the Digital Entertainment Content Ecosystem (DECE LLC), the
Open IPTV Forum (OIPF), and the World Wide Web Consortium (W3C). Also, a big
number of global multinational companies were involved, most notably Microsoft,
Netflix, and Adobe. All this resulted in the MPEG-DASH standard [15] being developed
as timelined in reference [13].

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 20

The fact that it uses the standard HTTP port, thus avoiding firewalls, proxies and cache,
has increased its popularity and efficiency. Since its establishment, the main protocols
implementing the HTTP adaptive delivery have been: Microsoft Smooth Streaming,
HTTP Dynamic Streaming and HTTP Live Streaming [5] [14]. They are all presented in
the table in figure 1.9. In order to be served media content from any server, user
devices must support all of the previous, since every one of these protocols utilizes
different formats varying in structure. Theoretically, the MPEG-DASH standard bridges
the operating differences of servers and clients created by different vendors, allowing
for a client that supports the standard to stream media content from any standard-based
server.

1.3.3 The basic scenario

Figure 1.7: The MPEG-DASH process timeline

Reference [13] quotes a simplistic but descriptive example of using MPEG-DASH. The
architecture described in the example is the following: An HTTP server undertakes to
deliver stored content through HTTP. The media content consists of a segmented file
and a media manifest file. The segments combined form media streams which deliver
parts of the requested file, while the MPD manifest file gives information on the
available content and its primary characteristics in order for the procedure to be
coordinated.

Obtaining that MPD file is the first action of an MPEG-DASH client. The transmission
method of the MPD file can either be an HTTP link or an email request, a broadcast or
other. The MPEG-DASH client receives the MPD file (well presented in [12]) to extract
indispensable information about the media content such as timing, availability, formats
or encoding alternatives. The MPD file can also notify the client for accessibility options,
different resolutions available or even digital rights.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 21

Figure 1.8: Example of the MPD file data model (by Dutch company TNO)

In the described example, the client has control over the choice of streams, and so
chooses one by requesting and fetching some of the available media segments. The
first segments that are received by the player do not directly feed the player since there
is a need for buffering and thus they are directed to feed the buffer.

After this need is satisfied, the client continues requesting the next segments of its
choice while analyzing network traffic to detect any connection instabilities. If a drop on
connection speed is detected, the client adapts to it by requesting a segment of a
smaller size, or lower resolution until the controller concludes that the player can
maintain a stable buffering level.

However, as we previously mentioned, the client’s level of control, the adaptation
decision-making and the player’s behavior over time are not strictly defined in the
MPEG-DASH specification [15]. It is only the above basic structure and the generic
purpose of the segments and MPD files that remain unchanged between different media
delivery applications. Values such as segment size or duration vary from application to
application depending on the implemented switching logic [16]. A basic overview of the
MPEG-DASH Client-Server model is shown in figure 1.10.

Figure 1.9: Main Adaptive-HTTP protocols

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 22

Figure 1.10: MPEG-DASH Server – Client Overview

1.3.4 MPEG-DASH major advantages

Adopting the MPEG’s new standard leads to numerous major advantages [13].
Essentially, it is widely supported by all platforms and technologies which was a primary
goal of its design process, thus eliminating incompatibilities. This allows for users to
switch devices without suffering viewing restrictions and therefore increases the
audience of every application using the MPEG-DASH model.

Secondly, being backed up by leading players of the media delivery market [12], MPEG-
DASH has minimized problems concerning delivery or different forms of compression.
Consequently, it allows for competitive delivery of media content to desktop and mobile
applications [17] ensuring that users have universal coverage regardless the viewing
means on their end. It is also guaranteed to receive regular support and evolvement,
giving the impression of a standard that is here to stay.

As per content delivery providers, they rest assured since they are not required to
create several file versions which would be the case for other, format-specific standards
[13]. That idea of allowing control to anyone interfering with it and at the same time
bringing platforms of different origin together constitutes the main philosophy of the
MPEG-DASH development group.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 23

2. LONG TERM EVOLUTION NETWORKS

2.1 Brief History

LTE is the latest step of a series of evolution in mobile network technology towards the
advancement of next generation telecommunication networks [19]. During this
evolution, mobile network design and modelling gradually stopped being a matter of
domestic dispute and passed into the hands of international standardization
organizations like ITU.

Stages in evolution of mobile technology can be divided in generations, starting from the
invention of cellular networking for land networks, in 1947 by AT&T. Although cellular
networks could make use of a different frequency per different cell, expensive
equipment and high power requirements initially limited their availability only to an in-
vehicle use.

Vast development in mobile telecommunication networks started during the 1980s,
while mobile communications began to attract International interest. This generation's
network, named “First Generation Network”, essentially consisted of a number of
independent networks with different characteristics and names around different areas:
AMPS in America [22], TACS in Western Europe [23], NMT in Scandinavia or J-TACS
in Japan and Hong Kong [24]. It was mainly analog and only able to carry voice or
related services. At the same time, it could not be considered undoubtedly reliable let
alone that the supporting devices remained enormous.

The advent of digital technology during the 1980s, however, created the need of
developing a digital system for mobile communications. The “2nd Generation Networks”
(2G) were the result of a cooperation between several international telecommunication
agencies. In Europe, under the supervision of the European Telecommunications
Standards Institute (ETSI), emerged the Global System for Mobile communications
(GSM) which rapidly became the global standard.

Digital technology produced devices with higher capacity batteries and smaller size,
improved network capacity and more reliable service. While at first the available service
was limited to voice, data transfer services such as the “Short Message Service” (SMS)
[25] were quickly added. The evolved forms of GSM that followed, GPRS (General
Packet Radio Service) and EDGE (Enhanced Data rates for GSM Evolution) [26]
introduced the concept of packet switching in mobile networks and were able to provide
more advanced services, paving the way for next generation’s (more complex) mobile
networks.

The development of “3rd Generation Networks” (3G) [21], which could utilize a bigger
bandwidth and made use of the radio interface known as “Universal Terrestrial Radio
Access” (UTRA) [20], highlighted the need for unified version of Internet and Mobile
services. The key objective was the ability to provide service “anywhere” and “anytime”
to a user, meaning that any mobile user would be able to start moving and still enjoy the
same services even if those were provided by other systems and not directly by 3rd
generation systems.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 24

Even though all development of 3G networks is currently managed by 3GPP, it had
started almost at the same time as that of 2nd generation networks, long before its
existence. The globalization of mobile standards played an important part in this
process. Already since late 1980s the International Telecommunication Union (ITU) had
been working on a 3rd generation network called “IMT-2000” [27]. Meanwhile in Europe
and Japan operations were carried out towards the development of a multiple access
prototype based on Wideband CDMA. Until the establishment of 3GPP in 1998, the
solutions proposed by Europe and Japan merged into a single prototype called
Universal Mobile Telecommunication Services (UMTS) [28], as a result of the
standardization process of ETSI started in 1996.

Responsible for coordinating the development of 3rd generation networks and their
evolution into 4th generation networks is the ITU Radio Communication Sector (ITU-R),
organized respectively under the name of IMT-2000 and IMT-Advanced. Their primary
goal is the classification of new technologies in “families of standards” while drafting
proposals for their advancement and development as well as coordinating all
standardization sectors responsible for implementing these proposals, with 3GPP
posing as the most significant one. Another important obligation of ITU-R is setting the
part of the bandwidth that may be utilized in a new technology and when that spectrum
will be used paired and not paired.

However, it all comes down to 3GPP being the most important body within the scope of
ITU. Under 3GPP’s responsibility fall the 2G technologies (GSM, GPRS, and EDGE)
which are based on Time-Division Multiple Access (TDMA) and Frequency-Division
Multiple Access (FDMA) [29] as well as the 3G technologies: UMTS which uses Code
Division Multiple Access (CDMA) and LTE which is built on Orthogonal Frequency-
Division Multiplexing (OFDM).

The advancement of the rest of 3GPP’s technologies continues in parallel with the
LTE’s. The transition of UMTS to HSDPA (High Speed Downlink Packet Access) and
HSUPA (High Speed Uplink Packet Access) was continued in Release 5 and 6
respectively, and is known as High Speed Packet Access (HSPA), as described in
reference [21].

HSPA’s expansion went on with the newer HSPA+ which added higher grades of
modulation and the use of Multiple Input Multiple Output (MIMO) antennas [30]. LTE is
benefiting from the improvements in 3G networks but also adds obligations to these
networks such as the requirement to work with Frequency-Division Duplex (FDD) and
Time Division-Duplex (TDD) methods or even Time-Division Synchronous Code
Division Multiple Access (TD-SCDMA) [31].

It is obvious from mobile networks’ vast development that they are heading towards
more flexible, packet-switched systems that will be able to offer multiple service
packages with a quality of service comparable to wired networks.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 25

Figure 2.1: History and evolution of cellular technologies

2.2 Objectives of the LTE system

Rapid growth of mobile devices over the past 20 years in conjunction with the number of
available services around the Internet have been the main reasons of transfer to 4th
generation networks. The need for Internet services in mobile devices and the evolution
of mobile technology systems featured as Mobile Broadband was aiming to provide
services on top of the IP protocol.

The start came with GPRS which provided data transferring capabilities through packet-
switched systems and continued with HSPA. LTE is designed from the beginning to only
use packet-switched networks but with a flatter architecture. The Long Term Evolution is
completed by the evolution of the core network under the name System Architecture
Evolution (SAE) which includes the Evolved Packet Core (EPC). LTE along with SAE
form the Evolved Packet System (EPS).

The main objectives that have been set for LTE development can be briefly listed as
such:

▪ On duplex mode: LTE must support both FDD and TDD duplexing modes.

▪ On Bandwidth: a tiered spectrum use with a bandwidth set of 1.4 MHz, 3 MHz, 5
MHz, 10 MHz, 15 MHz, and 20 MHz

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 26

▪ On Throughput: a 3-4 times better user throughput average per MHz in downlink
and uplink than HSDPA and HSUPA respectively.

▪ On peak transmission rate: it has a theoretical net bitrate capacity of up to 100
Mbit/s in the downlink and 50 Mbit/s in the uplink if a 20 MHz channel is used –
or even more if a Multiple-Input Multiple-Output (MIMO) antenna array, is used
instead.

▪ On peak spectral efficiency: 3 to 5 times more spectrally efficient than HSPA
assuming there is no MIMO in HSPA.

▪ On Mobility: supports user high speed movement allowing for terminals moving
at up to 350 km/h (220 mph) or 500 km/h (310 mph) although LTE is optimized
for low mobile speed from 0 to 15 km/h.

▪ On Latency: a user-level requirement of reducing round-trip latency from the user
to the base station down to 5-10ms while on system-level connection
establishment should be as short as possible to optimize battery consumption.
This time is defined as the elapsed time to shift between an idle state
(RRC_IDLE) to a connected status (RRC_CONNECTED) and is required to be
less than 100ms. User-level latency might possibly vary depending on the
volume of data being transmitted and the broadcasting conditions.

▪ Cost effectiveness and interoperability: LTE is required to have the ability to work
in cooperation with the existing UTRAN/GERAN systems as well as other non-
3GPP systems. It must be able to support a handover procedure to and from
these systems. LTE must also contain simple functions for user devices in order
to ensure power saving for the user.

▪ Quality of Service: an end-to-end support to maximize quality of service even for
users at the edge of a cell, even for demanding services like VoIP.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 27

2.3 LTE Transmission Modes

To achieve the above goals, LTE introduces a number of physical layer transmission
modes which reduce complexity in the system and user equipment and are categorized
as shown in figure 2.2. These techniques also allow for a flexible development of the
existing spectrum, especially in the case of LTE Advanced (LTE-A), and a good use of
and coordination with other 3GPP technologies.

Figure 2.2: LTE Transmission modes tree (by 4G Americas)

2.3.1 Multiple Antennas

The use of multiple antennas in LTE networks is prominent because it grants the ability
to exploit the spatial domain, along with the frequency domain, achieving a higher
spectral efficiency. The realized (by the use of multiple antennas) spectral efficiency is,
under normal circumstances [32], linearly dependent on the minimum number of
transmitting and receiving antennas.

The application of multiple antennas can be implemented through different ways and,
although most have some theoretical advantages against the others, not all of them can
be easily applied in practice. Usually, the aforementioned ways consist of the ones
described below [33]:

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 28

- Diversity Gain: Use of spatial diversity in signals for a more reliable transmission
by increasing the durability of the channel against multipath fading.

- Array Gain: High energy concentration from one or more directions to a specific
user or a number of different users close to each other is called beamforming, as
explained in reference [35]. Beamforming techniques improve noise tolerance
which results in significantly better coverage and a wider range.

- Spatial Multiplexing: The transmission of multiple data flows to one or more
receiving users in different space levels. Spatial Multiplexing, shown in figure 2.3
below, may improve LTE transmission rates or channel capacity if data flows are
directed to a single user or multiple users respectively.

Figure 2.3: MIMO release 8 scenarios

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 29

2.3.2 Orthogonal Frequency-Division Multiple Access

As in figure 2.4, LTE networks make use of Orthogonal Frequency-Division Multiple
Access (OFDMA) technology on the downlink and Single Carrier - Frequency Division
Multiple Access (SC-FDMA) on the uplink. OFDMA relies on OFDM (Orthogonal
Frequency-Division Multiplexing) to provide multiple access.

Figure 2.4: DL and UL in LTE

OFDM divides any given channel into many narrower subcarriers of 15 kHz, in an
orthogonal way that either one by one or in groups they form independent data
transmission streams (see figure 2.5 below). In OFDMA subcarriers may be shared
among users allowing for simultaneous data transfer to different users along with control
channels and pilot symbols with minimum interference. The advantages of the
technique described above are numerous. It offers:

i. The ability to utilize different parts of the spectrum without a need to change
system parameters or user equipment.

ii. Resource reservation from different parts of the spectrum to different users and
an independent form of scheduling for all parts which resembles that of a singular
spectrum approach.

iii. Extended flexibility in fractional frequency reuse as well as interference
suppression and management.

iv. Robustness in mitigating inter-cell interference and temporal dispersion of a
signal.

v. The construction of modern receivers with low complexity and high efficiency at a
minimized cost.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 30

Figure 2.5: OFDMA and SC-FDMA in LTE

The fact that OFDMA can exploit better the available channel bandwidth compared to
FDM is of great value. The principle of orthogonality in subcarriers contributes to a finer
exploitation of the spectrum and relieves the system administrators from using guard
bands for splitting the subcarriers.

To its disadvantage and despite its many benefits, OFDMA unfortunately requires high
power consumption. Transmitters, in contrast to the receivers, have a higher Peak-to-
Average Power Ratio (PAPR) in an OFDM signal and that heavily increases their cost.
Because of this, OFDMA is primarily used in downlink, since the development cost for
pricey transmitters in base stations is less important to network carriers than the mobile
equipment which is offered to their users.

In contrast, high PAPR in uplink processes may be covered by the needs of mobile
devices in emitting power and battery capacity. For this reason, uplink uses SC-FDMA
(as in figure 2.5) which offers the same flexibility in frequency management but with a
significantly lower demand for power consumption. [33][34]

Figure 2.6: Cyclic Prefix Insertion in OFDM

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 31

Every transmission to the radio interface is potentially subject to corruption and a
reason for that is the signal’s temporal dispersion. As a result, the appearance of
interference is evident not only in OFDM symbols but also between subcarriers. For
their validity against temporal dispersion, OFDM symbols are protected by the Cyclic-
Prefix Insertion (CPI) (figure 2.6) during transmission.

In this insertion technique, the last piece of every OFDM symbol is copied and
appended to its beginning increasing the size of the symbol and decreasing its spectral
efficiency. Validity against temporal dispersion is achieved if the duration of that
dispersion is less than or equal to the cyclic prefix duration. The cyclic prefix duration
can be defined as normal or extended, depending on current transmission
circumstances.

2.4 LTE Architecture

2.4.1 Overview

The LTE standard has been specifically designed to support only packet-switched
services unlike all circuit-switched models of previous cellular systems. It aims to
provide a reliable service including seamless IP connectivity between User Equipment
(UE) (specified in [36]) and the Packet Data Network (PDN), without any major
disruption to the end users’ applications during mobility.

LTE poses as the evolved version of the Universal Mobile Telecommunications System
(UMTS) radio access utilizing the Evolved UTRAN (E-UTRAN) [37]. It is followed by an
evolution of the non-radio aspects known as “System Architecture Evolution” (SAE) [38],
including the Evolved Packet Core (EPC) network [39]. Together SAE and LTE
comprise what is known as the Evolved Packet System (EPS).

EPS is built on the concept of EPS bearers that route all IP traffic from a gateway in the
PDN to the UE. An IP packet flow in the EPS with a predefined Quality of Service (QoS)
between the gateway and the User Equipment is called a bearer. The EPC along with
the E-UTRAN prepare, release and manage bearers as it is required by applications
being used.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 32

Figure 2.7: LTE general architecture (by AIRCOM)

The overall EPS network architecture which gives an overview of all the necessary
functions provided by E-UTRAN and the Core Network (CN) are comprehensively
described below. The bearer path as well as QoS aspects are outlined from end to end,
including the process of establishing an EPS bearer. The LTE protocol stack across the
different interfaces is detailed, giving an overview of functions offered by different layers
in the protocol stack. All network interfaces are presented in high detail focusing
especially on the E-UTRAN interfaces and the common processes used across them,
most notably all the procedures supporting user mobility.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 33

Figure 2.8: Elements forming the EPS

EPS (figure 2.8) ensures that a user is connected to a PDN over IP to run services like
Voice over IP (VoIP) or access the Internet, while EPS bearers are generally linked with
a pre-specified QoS guarantee. In order to provide several QoS streams or connectivity
for a number of PDNs more than one bearers are usually formed. In a typical case
where a random user is browsing the web, constantly downloading content while
participating in an IP based voice call at the same time, it would be up to the EPS
bearer established for the VoIP call to provide the guaranteed QoS for the voice call.
Meanwhile, most suitable for non-real-time services (i.e. FTP downloading, browsing)
would be a best-effort bearer. Moreover, a fact worth noting is that, as described in [40],
the EPS network is configured to protect the user offering privacy during his connection
time and securing the network against any kind of fraudulent and elusive behavior.

In overview, E-UTRAN as the access network and EPC as the core network together
comprise our whole networking concept. Although the core network includes numerous
logical nodes, the access network consists, in essence, of just a single node known as
the evolved NodeB (or eNodeB) [41], which in turn connects to the user equipment.
However, all these network elements share a careful interconnection through
standardized interfaces so that they are able to provide interoperability to multiple
vendors. This offers the opportunity for network administrators to piece together a
variety of network elements manufactured by different individual vendors. In practice,
depending on commercial factors network engineers may combine or split these logical
network parts to build their implementations on the physical layer. Both the EPC and E-
UTRAN network elements and their functional branching are explained in higher detail
in the parts below.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 34

2.4.2 The Evolved Packet Core

The Evolved Packet Core (EPC) network is the part of the network responsible for the
master control of the User Equipment as well as the establishment of the EPS bearers
[39]. The most notable nodes of the Evolved Packet Core are: The Packet Data
Network Gateway (P-GW), the Serving Gateway (S-GW) (figures 2.9, 2.10) and the
Mobility Management Entity (MME) [42].

Additionally, EPC includes other logical parts and functions, most notably the PCRF
(Policy Control and Charging Rules Function) and the HSS (Home Subscriber Server)
[43]. Control of VoIP or other media applications is handled by a system outside the
EPS called IMS (IP Multimedia Subsystem), specified in [44], mainly because of EPS’s
responsibility to provide strictly only a bearer path of a specific QoS level. The logical
core network nodes are discussed in every detail below:

Figure 2.9: P-GW interaction with the network

Figure 2.10: S-GW interaction with the network

• P-GW: The main responsibility of the P-GW is to allocate an IP address for the
user (UE) and enforce the QoS level required. It filters downlink user IP packets
into the different QoS-based bearers based on Traffic Flow Templates (TFTs).
The PDN Gateway enforces a QoS for Guaranteed Bitrate Bearers (GBR) and
serves as a mobility cushion when communicating with non-3GPP technologies.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 35

• S-GW: The Serving Gateway is the mobility “anchor” helping the bearers,
responsible for transferring all the IP packets of a user moving between
eNodeBs. It maintains all information on bearers while the User Equipment is in
an EPS Connection Management - IDLE state (ECM-IDLE), temporarily buffering
downlink data until the MME reestablishes the EPS bearers through paging. The
S-GW also collects information for data charging, lawful interception and other
network administrative tasks. What is more, it provides interconnection with other
3GPP technologies like GPRS and UMTS.

• MME: The Mobility Management Entity [45] is a control node that handles the
signaling between users (the UEs) and the Core Network (CN) using the Non
Access Stratum (NAS) protocols. The most important functions supported by
MMEs may be listed as:

- Functions related to connection management, including the establishment
of a secure connection between the UE and the network which is usually
managed by the mobility management of the NAS protocol layer.

- Functions related to bearer management, including the release and
maintenance of EPS bearers handled by the session management in the
NAS protocol.

Figure 2.11: HSS in the center of the network

• PCRF: The Policy Control and Charging Rules Function implements the Policy
Control Enforcement Function (PCEF) of the P-GW and makes all important
decisions concerning policy control using flow-based charging functionalities [43].
The PCRF is also in charge of the QoS authorization process consisting of the
current QoS class identifier (QCI) and the respective bitrates, which decides the
way a specific data flow will be handled by the PCEF making sure it does not
oppose to the user’s subscription.

• HSS: The Home Subscriber Server, shown in figure 2.11, holds information
about users’ subscription data, most notably their subscribed QoS profile, the
MME where they are currently connected and the PDNs to which they are
authorized to connect in forms of an Access Point Name (APN) or a PDN
address. [46] Additionally, the Home Subscriber Server possibly integrates the
AuC (Authentication Center), in charge of generating security and authentication
vectors.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 36

2.4.3 The Non-Access Stratum (NAS)

The Non-Access Stratum corresponding to the UMTS, differs in that it allows faster
establishment of the bearers acting as a form of cached information [47]. That is
because when a piece of User Equipment attaches to the LTE network, the MME builds
a UE context by downloading subscription information from the HSS and assigns an
SAE Temporary Mobile Subscriber Identity (S-TMSI) to it. Additionally, this UE context
holds a list of the established bearers and the capabilities of a terminal.

The MME keeps track of the UE’s location using a procedure known as tracking area
update, reducing processing in the UE and decreasing the overhead of the E-UTRAN.
Every UE informs the network of a new location when exiting its current TA (Tracking
Area) and while the UE is in the ECM-IDLE state, UE context information is retained by
the MME.

In case the MME needs to wake an idle UE, it contacts eNodeBs in the UE’s TA [45].
The eNodeBs in turn page the UE over the radio interface which performs a Service
Request switching to the ECM-CONNECTED state and the E-UTRAN (through the
MME) creates the information needed to reestablish the radio bearers.

During all the above signaling and data-sending procedures, security is managed
completely by the MME which triggers a mutual authentication between the UE and the
network and establishes security keys used for the encryption of the bearers [40].

In most cases the EPS intentionally allows Non-AS and AS procedures to run in
combination to accelerate this idle-to-active transition and bearer establishment by
executing necessary procedures in parallel, contrary to the UMTS.

Figure 2.12: Access Stratum & Non-Access Stratum

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 37

2.4.4 The access network

E-UTRAN is the access network of LTE with a particularly flat architecture (shown in
figure 2.13 below) consisting of a number of interconnected eNodeBs [20] [37].
Therefore, it can be said that under normal traffic circumstances the E-UTRAN has a
decentralized control system.

These eNodeBs form a network with each other using an interface called X2, described
in [48] and are externally connected to the EPC. ENodeBs connect to the S-GW through
the use of the S1-U interface and to the MME by means of the S1-MME interface. At the
same time, User Equipment connects to the eNodeBs by running the Access Stratum
(AS) protocols.

Figure 2.13: E-UTRAN architecture

The basic functionality operated in the E-UTRAN includes all radio-related tasks
described below:

▪ EPC connection, which consists of establishing the bearer path for
communicating with the S-GW and sending signals to the MME.

▪ Compression of IP packet headers to avoid the unnecessary overhead in small
multimedia packets and make certain that the network is used in the most
efficient manner.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 38

▪ The RRM (Radio Resource Management) which includes radio-bearers-related
functionality, most notably radio admission and radio bearer control, radio
mobility control and scheduling as well as the dynamic allocation of resources
for both downlink and uplink in the UEs.

▪ Data security is attained by ensuring all data that is sent over the radio
interface is encrypted.

Having a distributed control system means that each eNodeB manages and executes
tasks like the above for several cells, providing close coordination of protocol layers of
the RAN. With current eNodeB design [41], the need for an exclusively engaged
controller is rendered unnecessary making the system hard to fail with low latency and
further more cost-effective.

However, due to the fact that E-UTRAN does not support a soft handover, but rather
passes all user information from an eNodeB to another, additional functionality is
needed to avoid data loss. This functionality is one of the tasks carried out by the X2
interface.

As per the connection between eNodeBs and the EPC, a number of MME and S-GW
pairs form a pool that provides service to multiple eNodeBs located in a specific area.
This concept is part of the S1 interface and guarantees a fast service to the eNodeBs
while eliminating the existence of a single point of failure.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 39

2.4.5 Protocol Architecture

From the protocol stack perspective there is a certain number of different protocols
being used in the LTE, but the protocol architecture can be separated into the User
plane architecture and the Control plane architecture. Therefore, all protocols are being
described below according to their use in each of these two pillars of LTE’s protocol
architecture.

Figure 2.14: User Plane and Control Plane in the Protocol stack

2.4.6 User plane

The protocol that is used for tunneling over the Core Network interfaces S1 and S5/S8.1
is 3GPP-specific and is known as GTP (GPRS Tunneling Protocol) [50]. When an IP
packet is tunneled from the P-GW to the eNodeB, encapsulated in an EPC protocol,
and sent to the UE, different protocols are used by different interfaces.

The access network user plane protocol stack [49] (figure 2.14) includes the following
layers that are terminated in the eNodeB:

- Physical (PHY) layer:

Connecting the eNodeB with a UE, the physical layer in LTE networks
supports the HARQ (a hybrid combination of high-rate forward error-

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 40

correcting coding and ARQ error-control) ensuring uplink power control and
multi-stream transmission and reception.

- Media Access Control (MAC) layer:

The MAC sublayer [51] provides (de)multiplexing of different RLC layers,
priority management and error correction on UEs or across different logical
channels of a UE, and reports traffic volume.

- Radio Link Control (RLC) layer:

Apart from transferring upper-layer PDUs, the RLC reassembles or
concatenates the packets, detects possible duplicates, controls the traffic
flow and performs error-correction through HARQ. (see figure 2.15)

- Packet Data Convergence Protocol (PDCP) layer:

The PDCP layer is primarily responsible for header compression and
ciphering on the user plane [52]. Data handling such as protection and
buffering during a handover is also assigned to PDCP, while MAC and RLC
are both designed to start in a new cell after handover.

Figure 2.15: RLC Sub Layer

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 41

2.4.7 Control plane

The control plane protocol stack (figure 2.14) includes more or less the same protocols
which are used in the user plane [49]. Their objective here is to successfully
interconnect an MME to a UE.

The lower layers perform the same functionality as previously said for the user plane
with the exception of a header compression function for the control plane and the
addition of a NAS sublayer. The NAS sublayer works strictly between the MME and the
UEs providing authentication procedures, idle-mode paging origination, idle-mode
mobility handling, and overall security control.

The Radio Resource Control (RRC) protocol, known as layer-3 in the AS protocol stack,
works on the Control plane as the main controlling function in the AS [53]. The RRC is
responsible for configuring all the lower layers using RRC-specific signaling between
the UEs and the eNodeBs, as well as for establishing EPS radio bearers. It essentially
provides all broadcasting, paging and connection management, along with radio bearer
control and mobility functions.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 42

2.5 Quality of Service in LTE

2.5.1 EPS Bearers

An Evolved Packet System Bearer is defined as a transmission channel through an
EPS network with a strictly specified set of data transmission characteristics such as
QoS data rate and data flow control [54].

At any given time, a UE is probably handling several web applications with varying
Quality of Service requirements. For example, VoIP applications are highly more
demanding in their requirements for QoS in terms of avoiding delay and jittering. On the
other hand, non-real-time applications like simple web browsing or FTP downloading
value a much lower packet-loss rate without prioritizing a low delay. In order to support
this difference in QoS demands among different applications, the EPS establishes a
number of EPS bearers, each being associated with a different QoS level standard,
researched in reference [55].

Consequently, EPS bearers are divided into the following two basic categories given the
type of QoS they are intended to offer:

1) Guaranteed Bit Rate (GBR) bearers are the ones used for real-time demanding
applications such as VoIP. During establishment, these are assigned a minimum
GBR value by a control function according to the application’s needs. To match
this minimum GBR value, dedicated channel resources are allocated for and
used by the EPS bearer.

In case of a need for a higher bitrate than the GBR value, the bitrate needed can
be provided by the EPS bearer as long as the resources available allow it.
However, Guaranteed Bit Rate bearers also hold a Maximum Bit Rate (MBR)
value, which effectively defines a ceiling on the maximum bit rate that can be
supported by a GBR bearer.

2) Non-Guaranteed Bit Rate (non-GBR) bearers are the EPS bearers which do not
guarantee any specific bit rate. The resource allocation for non-GBR bearers has
a more flexible, more volatile nature allowing for variations at will and on the spot.
These can be used for downloading and browsing applications. For such
bearers, there is no obligation that bandwidth resources are necessarily allocated
permanently to the EPS bearer.

As per the ARP (Allocation/Retention Priority) value of an EPS bearer, it plays a key
role in call admission control when a bearer is requested and it should be decided if the
radio is too congested for that bearer to be established. Moreover, it determines the
prioritization of an establishment request for a new or an existing bearer. After the
establishment of an EPS bearer, its ARP can no longer affect characteristics such as
the rate control or scheduling of a bearer. Packet forwarding behavior will be entirely
specified by QoS parameters of bearers like the abovementioned MBR, GBR or the
QCI.

EPS bearers are paths which need to go through several different interfaces. A typical
bearer will use the LTE-U interface between the eNodeB and the UE. The S1 interface

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 43

will be the one connecting the eNodeB to the S-GW, and after that the S5/S8 interface
should come in between the P-GW and the S-GW.

Crossing these different interfaces, an EPS bearer is bound to a sublayer bearer with a
separate ID on each interface. Therefore, network nodes are obliged to oversee and
record the mapping to these different bearer IDs while the EPS bearer is on its path
between interfaces.

An S5/S8 interface bearer transfers the packets of an EPS bearer from an S-GW to a P-
GW and the opposite in the following way [54]:

First, the S-GW is storing a one-to-one mapping from that S5/S8 interface bearer to an
S1 interface bearer. Then, the original bearer can always be identified by the GTP
tunnel-ID across both the S1 and the S5/S8 interfaces. Between an eNodeB and an S-
GW the IP packets of an EPS bearer are transported by an S1 bearer when the eNodeB
stores an identical with the above one-to-one mapping between the two, as is the case
for the radio bearer connecting the UEs to an eNodeB.

Figure 2.16: EPS Bearers and Traffic Flows

2.5.2 QoS Class Identifiers

Specifically in the E-UTRAN, the eNodeBs are in charge of providing the necessary
QoS for an EPS bearer over the radio interface. Each bearer is associated with a
specific QoS Class Identifier (QCI) [55]. QCIs include a priority value, a packet delay
budget, a maximum acceptable packet loss rate and a QCI label providing the way it
should be handled by the eNodeB. Not many QCIs have been standardized, giving
possible vendors a sufficient understanding of the fundamentals of the service but
leaving them the flexibility of selecting a custom queue management, QoS level policy
and priority handling.

This way it is guaranteed to LTE network operators that regardless who is the vendor of
the E-UTRAN equipment, traffic handling is highly consistent all over the area of the
LTE network. Therefore, it is of little importance which of the standardized QCIs will the
PCRF select for an EPS flow since the QCIs follow the same logic and are different only
in the details.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 44

Figure 2.17: Bearer Hierarchy

The priority, the acceptable packet loss rate, and the packet delay budget described in
the QCI label define how the scheduling policy of the MAC protocol that handles IP
packets sent over the EPS bearer, its rate modification policy, its queue management
and most notably how the RLC mode is configured. For instance, the scheduler might
choose to send a packet with a higher priority first and leave a packet with lower priority
back at the queue. The EPS bearers which have a significantly lower acceptable packet
loss rate use what is called an Acknowledged Mode (AM) within the RLC protocol layer
to make sure that all packets are delivered with success across the network’s radio
interface.

According to which EPS bearer an IP packet is bound to, it will be given the same
treatment in terms of RLC, queue management and QoS configuration across all
interfaces which that EPS bearer is entitled to [55]. In other words, if a need for a
different QoS flow appears, the network must be inclined to provide and establish a
separate EPS bearer in order to serve the QoS level upgrade. Once it does so, all user
IP packets which required a more favorable treatment are channeled into the new EPS
bearer.

This packet filtering system which guides IP packets into different bearers and was
mentioned above is primarily built over on Traffic Flow Templates (TFTs). TFTs use IP
header information to distinguish and divide packets which belong to different QoS
categories, as for instance would be parts of a VoIP connection compared to parts of
FTP downloading.

Information such as source/destination IP address or TCP port are used so that each
packet can be guided in the respective bearer. In particular, a TFT associated with each

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 45

bearer in the P-GW which filters IP packets to EPS bearers in the downlink direction
would be called a Downlink TFT (DL TFT), while a TFT which is found on the User
Equipment with different bearers and filters packets to the uplink is an Uplink TFT (UL
TFT).

Figure 2.18: Standardized QCIs

When a UE first attaches to the LTE network, after the P-GW assigns it an IP address
the EPC establishes a non-GBR bearer for the UE called the “Default Bearer” (see
figure 2.17). The MME subsequently retrieves user subscription parameters such as
QoS default values from the HSS and assigns them to the default bearer [55]. These
values can later be changed through the cooperation of the PCEF and the PCRF. This
is the minimum establishment that can happen during the process of a UE attachment
to the network. The default bearer remains established through the whole lifecycle of a
PDN connection ensuring that IP connectivity between the UE and the PDN will under
no circumstances be interrupted.

All bearers additionally created after the default one are called “dedicated” bearers and
their establishment may happen during or after the completion of attaching the UE to
the network. Dedicated bearers can be both GBR and non-GBR bearers (though
obviously only one or the other) and through identification they become clearly
separated from the default as far as the E-UTRAN is concerned. Dedicated bearers in a
UE may have been provided by more than one P-GWs and are usually established by
the EPC network, either upon a UE bearer establishment request or following a trigger
from the IMS domain.

As previously pointed, each EPS bearer has an associated QoS level and,
consequently, each bearer should also be associated with the respective TFTs in case
there are more than one bearers running on a UE. The bearer QoS-level parameters for
every dedicated bearer are forwarded to the S-GW after being sent from the PCRF to
the P-GW [55]. The MME is responsible to receive those values from the S-GW and
pass them over to inform the E-UTRAN.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 46

2.5.3 OTT Content Providers

As mentioned previously, video is poised to become the predominant data type flowing
through networks, and this includes video tied to entertainment and video that is added
to many non-entertainment services that we use today. As a result, handling video QoS
is of imperative value to all Over-The-Top (OTT) content providers, and cannot always
be left to a best-effort IP delivery method. We described above how this process is
applied on Radio bearer, S1 bearer and S5/S8 bearer, collectively called as EPS
bearer.

According to the standardized QCIs in LTE (figure 2.18), TCP-based progressive video
streaming is assigned primarily to non-GBR type bearers. In the case of YouTube, for
example, which uses the (TCP-based) Adobe HTTP Adaptive Streaming protocol, the
IP flow would be channeled through a Default Bearer with QCI 6, 8, or 9. This non-GBR
bearer would indicate a 300ms packet delay tolerance and a 10-6 acceptable packet
loss error rate. The same would be the case for the on-demand service of the American
premium cable network HBO, HBO GO.

It is worth noting that, although non-GBR bearers do not provide guaranteed bitrates,
they still essentially manage QoS using parameters like A-AMBR and UE-AMBR. A-
AMBR indicates the maximum possible bitrate for all best-effort services on an APN,
while UE-AMBR is a value that limits the possible bitrate of best effort flows on a
particular client. These parameters prevent the client from taking over all the available
bandwidth of the interface and preserve control over traffic flows within the PDN.

On the other hand, Netflix, which offers a similar on-demand video streaming service,
but is using the Dynamic Adaptive Streaming over HTTP (DASH) protocol would
request to allocate a Dedicated bearer in order to guarantee a minimum bitrate to the
user. Therefore, the application’s IP flow would use a bearer with QCI 4 which allows for
a 300ms delay tolerance, but would hold a priority of 5 having still a packet loss rate of
10-6.

For services like VoLTE, we need to provide better user experience and this is where
Dedicated bearer would really come handy. VoIP pioneer Skype, for example, would
also use a Dedicated GBR bearer for calls made using the app, with a QCI of 1 which
reduces delay to 100ms and acceptable packet loss to 10-2. A bearer with QCI 1 has a
priority of 2, second only to QCI 5 which is used for IMS signaling.

However, Skype video calls would surely drop to a QCI 2 bearer, along with all other
video calling apps such as Facebook Messenger, Viber and Facetime to adopt a priority
of 4. The tolerance is slightly increased in QCI 2 bearers, having a packet delat
limitation of 150ms and a packet loss rate of 10-3.

Figure 2.19: OTT Content Flows

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 47

It is important to note that, as more than one Default bearers may exist, if the QCI
requested for an application is not satisfied by one of the existing bearers, then the UE
will establish a new Default bearer and if necessary a Dedicated bearer over the Default
one. What is more, the new bearer might potentially connect the UE to a different P-GW
and therefore the UE be given a different IP address within the network of the second
gateway.

Figure 2.20: Default and Dedicated EPS bearers

Concluding this chapter, we addressed the mechanisms by which the Evolved Packet
System provides user equipment with IP connectivity to the Packet Data Network in an
extensively detailed manner [54]. We analyzed the long term goals of the LTE standard
and explained the ways modern LTE networks work to achieve them. We outlined the
key LTE parts and their role in the LTE edifice.

As high-speed wireless communication has become the norm for information-transfer
transactions, it is considered useful for any individual to have an idea of the LTE
architecture. Therefore, with the above we provide a concise, full, and accurate
summary of the principles of LTE functionality for further academic study.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 48

Figure 3.1: HAS QOE key influence factors

3. QUALITY OF EXPERIENCE

3.1 Introduction

When an on-demand video is streamed over an IP network using TCP, the client
receives a theoretically intact copy of the media file. That is the case however according
to the network’s technical specifications. In any realistic scenario, the situation would be
quite the contrary. Established communications in any wired network are restricted in
quality to what the network infrastructure can offer. In most cases, they present
instabilities due to latency and throughput changes, which possibly challenge the buffer
of an active Internet application. Mobile or wireless networks also suffer from signal
issues such as cell interference, noise, and fading which are major causes of delays in
multimedia transmission. Having an unstable connection with fluctuating bandwidth is
confusing for the buffering process of any multimedia application, and inevitably causes
interruptions which can be catastrophic to the user’s streaming experience.

Consequently, the success of
telecommunication networks relies and is
assessed on their Quality of Service (QoS).
Quality of Service refers to the overall
performance of a network, based on objective
network metrics and parameters such as
packet loss rate, average jitter and delay,
availability, maximum bitrates, and others. A
set of guaranteed values for such network
parameters by a service provider constitute a
QoS standard offered to connected users.

However, offering a high QoS standard does
not always reflect proportionally on user
experience. Therefore, as the need to move
away from service-oriented quality assessment
and towards a user-centric system emerged, a
concept of subjectively perceived quality,
Quality of Experience (or QoE) was introduced.

Reference [56] accurately defines Quality of
Experience as “the degree of delight or
annoyance of the user of an application or
service. It results from the fulfillment of his or
her expectations with respect to the utility
and/or enjoyment of the application or service
in the light of the user’s personality and current
state.” meaning that QoE evaluates how
customers perceive the overall value of a
service. Thus, it becomes clear that QoE
estimation relies on subjective criteria which
also differ among different types of services.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 49

3.2 Influence Factors

An initial classification of QoE influence factors could be their division into perceptual
and technical factors, as it is shown on the tree in figure 3.1. Technical factors are not
perceived directly by the end user but heavily influence other, perceptual factors and
indirectly the QoE. On the other hand, a perceptual factor such as the overall waiting
time of a user may be the result of a number of technical factors.

For HTTP video streaming, initial delay and stalling [57] are the key influence factors of
QoE, with the addition of adaptation in the case of HTTP adaptive streaming systems
which introduce a new perceptual dimension. Hereby we present and analyze all
common QoE influence factors as suggested by related research sources.

3.2.1 Initial Delay

A few seconds of initial delay are inevitable before the playback of any multimedia
application. Delaying reasons begin with the establishment of connection between the
user and the media server, continue with the transmission of information data about the
media structure, and end with buffering and decoding. Transmission of the first two fully
depends on the available bandwidth and the encoding used rather than the media
application itself. Buffering, on the other hand, is a way to eliminate future playback
interruptions. By delaying the beginning of the playback, incoming multimedia data is
stored on a buffer to be used as a safety source of playtime in case the incoming data
rate drops lower than the player bitrate.

However, the size of this buffer and the length of the additional delay to fill it are not
fixed and vary from application to application. That being said, there is an evident
tradeoff to be handled by the application’s manufacturer. With a longer delay comes a
lower risk of buffer depletion, while a shorter delay is associated with a smaller buffer
and a higher risk for stalling during playtime because of buffer depletion.

Research confirms initial delay being a matter of different application-specific
approaches, even though it includes connection establishment and loading.
Furthermore, it suggests the existence of a logarithmic relationship between a Mean
Opinion Score (MOS) and initial delay length [57]. However, it needs to be noted that
users in their vast majority prefer a slightly longer initial delay than take the risk of
stalling playtime. And that is because the impact of an initial delay on perceived quality
is insignificant and its duration does not vary based on media clip duration. Initial delay
is more or less expected and the users know when it starts - having the same
experience in all their applications. On the other hand, stalling appears to the user as a
sudden interruption of the media streaming service. Therefore, stalling is commonly
perceived much worse by human sensing due to its unexpectedness. The same applies
on mobile applications where users consider parameters like stalling or the technical
video quality to be more crucial for their experience than the buffering delay. Ultimately,
a delay of 15 seconds or less does not severely affect the user’s perceived QoE and is
typically considered acceptable according to research results.

As media service users are familiar with a minimal delay before the start of the
playback, they normally tolerate it assuming they intend to watch the full length of the
video. However, recent QoE research indicates the appearance of a new user behavior

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 50

especially for user-generated contents. Lately, users tend to browse through videos
searching for some contents which they are interested in. Initial delays in such cases
should be lower to be accepted by the user. Although the QoE of users browsing videos
has not been deeply investigated yet, it is only subsequent that short delays might be
desirable for user-generated content since users often just want to just peek into the
video.

It follows for video service implementations in general, like for any service, that initial
delays should be kept as short as possible, but initial delays are definitely not a major
performance issue for the users’ QoE. As we previously noted, even longer delays up to
several seconds will be tolerated, especially if users intend to watch a video. Overall,
they remain a key factor but a factor being traded off nonetheless.

3.2.2 Stalling

When the current throughput of a video streaming application is lower than the video
player bitrate, the buffer occupancy will start to reduce. Eventually, data provided by the
buffer will be insufficient, forcing the video playback to stop. At that point, playback is
interrupted until the buffer loads again to contain a minimum amount of video data. This
stopping of video playback because of playout buffer underrun is known as “stalling”.
Once interrupted, the application decides to what extent it will wait for the reload of the
buffer, taking into account that a longer wait might ensure more buffered playtime and
eliminate the possibility of another interruption, but also means a longer duration of the
initial interruption. So, application developers are once again presented with the
challenge of a performance tradeoff.

Research around stalling and its influence on QoE has been prominent. Interesting
findings suggest that users are more patient during a single long stalling than a number
of short, frequent ones. At worst, if multiple interruptions cannot be avoided, being as
periodic as possible makes them more tolerable to clients. It is also believed that
moments of interruption have a varying impact to streaming client users depending on
their position in time and the importance of the –then- current part of the video to the
user.

Another interesting aspect of stalling is its relation to quantization and frame rate. [58]
Results prove that users by majority prefer an increased quantization in the encoding of
a video if they are to avoid a more extensive stalling period during playtime. As per
frame rate reduction, research suggests that it is also considered more tolerable than
stalling. Frame rate reduction still appears to cause a drop of the user’s QoE but
subjective studies show users’ opinion to be more positive towards it.

To summarize, stalling is probably the most key factor degrading user perceived QoE
and should be avoided by all media streaming services whenever possible since users
in most cases will not tolerate more than one interruption per video clip. Several models
have been proposed for mapping stalling patterns and duration to an indicative MOS. All
models agree on the existence of exponential relationship between them, meaning that
extended stalling results in high dissatisfaction. Precisely for this reason, adaptive
streaming techniques have gone a long way in adjusting play rate to the current
throughput, effectively minimizing stalling limitations and ultimately offering a more
attractive video service.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 51

3.2.3 Adaptation

As we previously discussed, modern multimedia streaming services implement a
method of adaptive streaming to make it possible for the video quality to adapt to the
current throughput of the application. The client needs to acquire the ability to control
the data rate depending on network fluctuations. The server side also has to be
changed accordingly to encode the video in different quality levels and then split the
media files into segments to deliver them upon request. Adaptation is designed
precisely to improve perceived quality and forestall adverse interruptions, and as such it
is considered another key factor influencing the user’s QoE.

Multiple studies have shown that, in comparison with classical streaming applications,
adaptive streaming concepts can effectively reduce stalling by large numbers when
bandwidth decreases in mobility models. In the same way, adaptive streaming is
capable of better utilizing the available bandwidth when the user moves and bandwidth
increases. In stable, non-mobile environments, adaptive streaming provides an efficient
way to guarantee a standard QoE and eliminate interruptions. Reference [59] proves
that if presented with such a dilemma, users would choose to enjoy a sense of control in
regards to their QoE. They appreciate knowing what to expect of the service they are
being offered, thus preferring to deduct on video quality than experience sudden
pauses. When objective results of stalling and resolution reduction are mapped to QoE,
it is found that uncontrolled interruptions have a more disturbing effect than this of a
deliberate quality change in resolution.

It becomes obvious to any researcher that adaptation introduces yet another aspect in
QoE measurement and study. Being relatively new and constantly evolving, adaptation
is in need of more intense and extensive research. This need constitutes in brief the aim
of our research within the present text as we focus in explaining the interaction between
streaming adaptation and quality of experience especially in mobile situations. Forms of
adaptivity on content delivery network structure or traffic management also exist but are
considered to be out of the scope of the present research since end users in such cases
have minimal participation and essentially no control.

3.3 QoS Metrics

According to Wikipedia, Quality of Service (QoS) is defined as “the overall performance
of a telephony or computer network, particularly the performance seen by the users of
the network. To quantitatively measure quality of service, several related aspects of the
network service are often considered, such as error rates, bit rate, throughput,
transmission delay, availability, jitter, etc.”. Or as [63] suggests, “QoS refers to a
network’s ability to achieve maximum bandwidth and deal with other network
performance elements like latency, error rate and uptime.” QoS also involves controlling
and managing network resources by setting priorities for specific types of data (video,
audio, files) on the network. Quality of Service is exclusively applied to network traffic
generated for video on demand, IPTV, VoIP, streaming media, videoconferencing and
online gaming.

To measure QoS, according to [60], a formula widely used is that of the mean-squared
error loss distortion. It describes the effect of lost frames to the Quality of Service

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 52

provided to the user during a wireless transmission. The mean-squared error distortion
can be computed as follows:

𝐷(𝑓, 𝑓) =
1

𝑁1𝑁2
∑

𝑁1−1
𝑛1=0 ∑

𝑁2−1
𝑛2=0 (𝑓(𝑛1, 𝑛2) − 𝑓(𝑛1, 𝑛2))2

,

Where 𝑓 is an estimated frame, created to replace a frame 𝑓 of dimensions 𝑁1×𝑁2

pixels and 𝑓(𝑛1, 𝑛2) (or 𝑓(𝑛1, 𝑛2)) indicate the pixel value at position (𝑛1, 𝑛2) of the frame

𝑓 (or 𝑓). In this case, to calculate the PSNR, one could use the following metric:

𝑃𝑆𝑁𝑅(𝑓, 𝑓) =
(2𝐵 − 1)2

𝐷(𝑓,𝑓)
, or in 𝑑𝐵 as proposed in [62] for 𝐵 = 8:

𝑃𝑆𝑁𝑅𝑑𝐵
(𝑓, 𝑓) = 10𝑙𝑜𝑔10

(255)2

𝐷(𝑓,𝑓)
= 20𝑙𝑜𝑔10(

255

√𝐷(𝑓,𝑓)
),

Where 𝐵 is the number of bits used in a pixel’s encoding. The researchers in [60]
accurately note that the closer a frame 𝑓 is to the beginning of a Group of Pictures

(GOP) the higher the distortion value will be, depending also on error concealment
(figure 3.2) and encoding. Notably, a PSNR value ranging from 30 to 40 characterizes a
medium to high quality video.

Figure 3.2: Error concealment example

Error concealment is usually performed using the “previous frame” concealment
approach. This approach indicates that if a P-frame is lost in a GOP, then the previous
frame is repeated until the end of that GOP or until the next I-frame is received. As
proposed, the total loss distortion in a GOP of 𝑁𝐺 total frames, one I-frame and 𝑁𝐺 − 1
P-frames where a frame 𝑓 is lost would be:

𝐷(𝑓) = ∑
𝑁𝐺
𝑦=𝑓 𝐷(𝑦, 𝑓 − 1),

Since frame 𝑓 and all following frames are replaced by frame 𝑓 − 1. In the case of an I-
frame, it is replaced by the last frame of the previous GOP.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 53

3.4 QoE Metrics

Quality of experience (QoE) is a complex concept, with conflicting aspects in confluent
domains. It tries to measure the QoS as it is perceived by the end user and one could
argue over its consistently growing interest as the best method to quantify the
multimedia experience of mobile users. Traditionally, QoE is obtained from subjective
tests, where human viewers evaluate the quality of tested videos under a laboratory
environment.

The relationship between QoE and QoS (such as coding parameters and network
statistics) is complicated because users' perceptual video quality is subjective and
diversified in different environments. In [62], researchers note that the two featured
approaches mapping QoS to QoE are the stimulus-centric and the perception-centric
approaches. The stimulus-centric one is based, as stated, on the “WQL hypothesis”
which defines that the relationship between waiting time 𝑡 and its QoE evaluation on a
linear ACR scale is logarithmic. What derives from this law is the fact that a change in
perceived quality can be seen as surpassing a hardly detectable margin. Thus, a lot of
studies have initiated a search to determine this tiniest noticeable difference between
two consecutive levels of QoE. On the other hand, the perception-centric approach is
reflected by the “IQX hypothesis” according to which the relationship between a QoS
parameter and QoE is negative exponential. Moreover, apart from providing an equation
between a QoS impairment and the perceived stimulus, it also indicates that a user’s
QoE sensitivity is highly dependent on his currently provided QoE level.

However, it is common secret among researchers that despite QoE’s significant
advancement as a scientific field over the past years, its analysis methodology has not
always kept pace due to the complexity of its multidimensional nature. In this section,
we devote a part to outline and explain the definitions of known and commonly used
metrics regarding QoE evaluation.

3.4.1 Mean Opinion Score (MOS)

As it is correctly stated in [62], the Mean Opinion Score (MOS) is arguably the most
important QoE indicator. MOS is usually a 5-point scale, originally used to measure the
subjective quality of real time multimedia data. Most are familiar with the post-service
evaluation tests used by several web applications. A mapping of MOS to video quality is
shown in figure 3.3 below.

Figure 3.3: Relation of MOS and Video Quality

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 54

For a specific subjective experiment, we can define a random variable 𝑈 to represent
the quality ratings (i.e. the 5-point scale). In order to simplify our calculations, we can
assume that conditions are the same throughout the experiment and that the identity of
a subject is irrelevant to the calculation. Given that U is discrete or continuous with a
probability mass function 𝑓𝑢 or a probability density function 𝑓(𝑢) in each case
respectively, the expected, or “mean” value of the random variable 𝑈 is given by the
formula:

𝐸[𝑈] = ∑ 𝑈+

𝑢=𝑈− 𝑢𝑓𝑢, when U is discrete and 𝐸[𝑈] = ∫
𝑈+

𝑢=𝑈− 𝑢𝑓(𝑢)𝑑𝑢,

when U is continuous.

Based on this, we can consider the Mean Opinion Score to be an estimate �̂� of 𝐸[𝑈]
and, for a number of quality classes 𝑁, to be given by [61]:

𝑀𝑂𝑆 = ∑

𝑁

𝑢=1

𝑢𝑓�̂�

Now, because for a given number of test subjects 𝑅 the estimated probability of opinion

score 𝑢 is 𝑓𝑢
̂ = 1

𝑅
∑ 𝑅

𝑖=1 𝛿𝑈𝑖,𝑢 with 𝛿𝑖,𝑗 = 1, if 𝑖 = 𝑗 or 0 otherwise, we have:

∑ 𝑁
𝑢=1 𝑢𝑓�̂� = ∑ 𝑁

𝑢=1 𝑢
1

𝑅
∑ 𝑅

𝑖=1 𝛿𝑈𝑖,𝑢 =
1

𝑅
∑ 𝑅

𝑖=1 ∑ 𝑁
𝑢=1 𝑢𝛿𝑈𝑖,𝑢 =

1

𝑅
∑ 𝑅

𝑖=1 𝑈𝑖, and so

𝑀𝑂𝑆 =
1

𝑅
∑ 𝑅

𝑖=1 𝑈𝑖 ,

which practically means 𝑀𝑂𝑆 =
𝑠𝑒𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑜𝑟 𝑅 𝑡𝑒𝑠𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
 and is, in essence,

taking us back to the definition of MOS.

To measure the uncertainty of MOS we can use its standard deviation 𝜎𝑈 or SOS

(Standard deviation of Opinion Score) which is an estimate of the standard deviation
and converges to 𝜎𝑈 for very large numbers. The SOS hypothesis formulates the
relationship between MOS and SOS as such:

𝑆𝑂𝑆 = √𝑎(−𝑀𝑂𝑆2 + (𝑈− + 𝑈+)𝑀𝑂𝑆 − 𝑈− ⋅ 𝑈+),

where the SOS parameter 𝑎 ∈ [0; 1] and depends on the application and the test

conditions, derived from subjective tests.

More on 𝑎 can be found in Section 𝛪𝛪 − 𝛣 of [61].

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 55

3.4.2 Using the PSNR

Figure 3.4 shows a relation between the PSNR and video quality. According to
reference [60], we can also calculate the overall QoE through the PSNR by using the
following exponential relation:

𝑄 =
1

1 + 𝑒𝑏1(𝑃𝑆𝑁𝑅−𝑏2),

Where b1 and b2 are parameters depending on video characteristics and PSNR is
expressed in dB. The authors note that 0 indicates the best quality while 1 indicates the
worst. It is useful to point out that the previous and the following derivations are
associated with QoE estimation in general and not specifically in mobile or wireless
networking.

Figure 3.4: Relation of PSNR and Video Quality

Another metric suggested by an alternate source following a subjective video quality
assessment is:

𝑄𝑚 = 𝑄𝑚𝑎𝑥(
1

1 + 𝑒𝑏1(𝑃𝑆𝑁𝑅−𝑏2)) ⋅
1 − 𝑒−𝑏3(𝑓/𝑓𝑚𝑎𝑥)

1 − 𝑒𝑏3 ,

Where 𝑄𝑚𝑎𝑥 is a constant representing maximum quality (usually 100 so that 𝑄𝑚 is on a
0-100 scale), 𝑓 and 𝑓𝑚𝑎𝑥 are the current and maximum frame rates respectively and b3

is another parameter of the video. However, the above equation is often written
simplified as:

𝑄𝑚 = 𝑄𝑚𝑎𝑥(
1

1 + 𝑒𝑏1(𝑃𝑆𝑁𝑅−𝑏2)),

Since error concealment can maintain a frame rate 𝑓 so that 𝑓 = 𝑓𝑚𝑎𝑥.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 56

The video characteristics used above can be calculated offline in the server where the
video is stored and then used in the QoE equation. In case of a live broadcast there are
alternative forms of the QoE estimation formula to approach dynamically changing
content. Similarly, the SSIM (Structural Similarity Index) metric is calculated on various
windows of an image. The measure between two image windows 𝑥 and 𝑦 of size 𝑁×𝑁
is given by [62]:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
,

Where 𝜇 is the average, 𝜎2 is the variance, 𝜎𝑥𝑦 is the covariance and 𝑐1, 𝑐2 are constant

values. SSIM along with PSNR have been important metrics used to derive many
complex equations for quality assessment, such as the VQM (Video Quality Metric) and
MPQM (Moving Pictures Quality Metric).

3.4.3 Network average

QoE estimation is indeed based on video characteristics as shown above. However,
recent studies focus on the relation between QoE and network attributes. Performance
in the Radio Resource Management apparently has an instant reflection on perceived
quality by all users in the network. Thus, we present some metrics which widely appear
in literature describing the aforementioned effect. Overall, the average QoE in the
network is given by:

𝑄𝑚
(𝑎𝑣𝑔)

=
1

𝐾
∑ 𝐾

𝑘=1 𝑄𝑚,𝑘 ,

Where 𝑄𝑚,𝑘 is the QoE of a specific, single user. This formula describes the average

QoE in an accurate way, but could still hide the existence of a number of users
experiencing a very low quality when there are others enjoying the opposite therefore
counterbalancing them. The solution proposed by researchers is to try to maximize the
minimum QoE in the network, calculated below:

𝑄𝑚
(𝑚𝑖𝑛)

= 𝑚𝑖𝑛𝑘 𝑄𝑚,𝑘

This formula allows network designers and internet providers to focus on improving the
lowest QoE encountered in the network. Since favoring low QoE users would upset the
connection of other subscribers and is unfair, an accurate settlement would be to use

the geometric mean (𝑄𝑚
(𝑔𝑚)

) QoE, whose formula is presented below:

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 57

𝑄𝑚
(𝑔𝑚)

= (∏

𝐾

𝑘=1

 𝑄𝑚,𝑘)1/𝐾

The above metric will attend users with high QoE potential who will increase the
product, but it will also look to avoid low QoE in other users since that would drop the
product asymptotically to 0.

Now, in order to optimize QoE in the network, the general equation given is:

𝑎

𝑘𝑙,𝑖,𝑙
(𝐷𝐿)

,𝑎
𝑘𝑙,𝑖,𝑙
(𝑈𝐿)

,𝑃
𝑙
(𝐷𝐿)

,𝑃
𝑘𝑙

(𝑈𝐿)

 𝑚𝑎𝑥 𝑄𝑚
(𝑛𝑒𝑡)

,

where 𝑄𝑚
(𝑛𝑒𝑡)

is any of the metrics described before and is subject to the following:

𝑃𝑘𝑙

(𝑈𝐿)
≤ 𝑃𝑘𝑙,𝑚𝑎𝑥

(𝑈𝐿)
; ∀𝑘𝑙 = 1, . . . , 𝐾𝑙; ∀𝑙 = 1, . . . , 𝑁𝐵𝑆,

𝑃𝑙
(𝐷𝐿)

≤ 𝑃𝑙 ,𝑚𝑎𝑥
(𝐷𝐿)

; ∀𝑙 = 1, . . . , 𝑁𝐵𝑆,

∑
𝐾𝑙
𝑘𝑙

𝑎𝑘𝑙,𝑖,𝑙
(𝑈𝐿) ≤ 1; ∀𝑖 = 1, . . . , 𝑁𝑠𝑢𝑏

(𝑈𝐿)
; ∀𝑙 = 1, . . . ,𝑁𝐵𝑆,

∑
𝐾𝑙
𝑘𝑙

𝑎𝑘𝑙,𝑖,𝑙
(𝐷𝐿) ≤ 1; ∀𝑖 = 1, . . . ,𝑁𝑠𝑢𝑏

(𝐷𝐿)
; ∀𝑙 = 1, . . . , 𝑁𝐵𝑆,

Where:

𝐾𝑙 is the number of users located in the range of cell 𝑙

𝑁𝐵𝑆 is the number of Base Stations

𝑃𝑘𝑙

(𝑈𝐿)
 is the UpLink transmit power of user 𝑘𝑙 in cell 𝑙 (with 𝑃𝑘𝑙,𝑚𝑎𝑥

(𝑈𝐿)
 its maximum)

𝑃𝑙
(𝐷𝐿)

 is the DownLink transmit power of BaseStation 𝑙 (with 𝑃𝑙,𝑚𝑎𝑥
(𝐷𝐿)

its maximum)

𝑁𝑠𝑢𝑏
(𝑈𝐿)

 is the UpLink number of OFDMA subcarriers

𝑁𝑠𝑢𝑏
(𝐷𝐿)

 is the DownLink number of OFDMA subcarriers

𝑎𝑘𝑙,𝑖,𝑙
(𝑈𝐿)

 is an indicator variable for the UpLink

𝑎𝑘𝑙,𝑖,𝑙
(𝐷𝐿)

 is an indicator variable for the DownLink

(indicators’ value: 1 if subcarrier 𝑖 is assigned to user 𝑘𝑙 and 0 otherwise)

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 58

The above constraints suggest that transmit power cannot exceed maximum as well as
that each subcarrier is allocated exclusively to a unique user in each cell for a specific
scheduling instant. Reference [60] points out that the same laws apply to QoS, and thus
the same formulas can be used for QoS if we replace the QoE parameters with the
respective QoS values.

Regarding multimedia quality, reference [69] analyzes a parametric multimedia quality
integration function using a video quality estimation function Vq and a speech quality
estimation function Sq. If Ts is the time delay in speech and Tv Is the time delay in video,
the multimedia quality can be calculated as:

𝑀𝑀𝑞 = 𝑚1 ∙ 𝑀𝑀𝑆𝑉 + 𝑚2 ∙ 𝑀𝑀𝑇 + 𝑚3 ∙ 𝑀𝑀𝑆𝑉 ∙ 𝑀𝑀𝑇 + 𝑚4

where:

𝑀𝑀𝑆𝑉 = 𝑚5 ∙ 𝑆𝑞 + 𝑚6 ∙ 𝑉𝑞 + 𝑚7 ∙ 𝑆𝑞 ∙ 𝑉𝑞 + 𝑚8

𝑀𝑀𝑇 = max {𝑚9 ∙ (𝑇𝑆 + 𝑇𝑉) + 𝑚10 + 𝑀𝑆, 1}

𝑀𝑆 = {
𝑚𝑖𝑛{𝑚11 ∙ (𝑇𝑆 − 𝑇𝑉) + 𝑚12, 0}, 𝑖𝑓 𝑇𝑆 > 𝑇𝑉

𝑚𝑖𝑛{𝑚13 ∙ (𝑇𝑉 − 𝑇𝑆) + 𝑚14, 0}, 𝑖𝑓 𝑇𝑉 > 𝑇𝑆

and mi, i = 1,2,…14 are coefficients.

All coefficient values are displayed in [69] for different video display cases, and Vq,Sq
functions involving speech and video quality are explained in a consise, granulated
format.

3.5 Service Providers and Applications

In order for service providers to plan, scale and operate their service packages there is
increased need for metrics that represent best the customer’s opinion. Thus, they tend
to resort to not just subjective experiments but also behavioral measurements. The 𝜃-
𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the probability that the opinion score will surpass a certain threshold 𝜃
and can be estimated by [61]:

𝛢𝜃 = ∫
𝑈+

𝑠=𝜃

𝑓�̂�𝑑𝑠 =
1

𝑅
|{𝑈𝑖 ≥ 𝜃: 𝑖 = 1, . . . , 𝑅}|

Providers also used subjective and behavioral percentages such as the “poor or worse”
(%PoW), the “good or better” (%GoB), or the “terminate early” (%TME) percentages to
measure the users’ opinion. A model that could theoretically map such percentages to
MOS is known as the E-model [61]. This relationship is depicted in figure 3.5. Through
an intermediary random variable called “the Transmission Rate” 𝑅 ∈ [0; 100] as the RV
𝑈 used above and assuming 𝑈 follows normal distribution 𝑁(0,1), the E-model defined
these measures as:

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 59

Figure 3.5: Relationship between MOS and %GoB-%PoW

𝐺𝑜𝐵(𝑢) = 𝐹𝑈(
𝑢 − 60

16
) = 𝑃𝑈(𝑈 ≥ 60)

𝑃𝑜𝑊(𝑢) = 𝐹𝑈(
45 − 𝑢

16
) = 𝑃𝑈(𝑈 ≤ 45)

𝑇𝐸𝑀(𝑢) = 𝐹𝑈(
36 − 𝑢

16
) = 𝑃𝑈(𝑈 ≤ 36)

and the transformation of 𝑈 to a continuous MOS scale as:

𝑀𝑂𝑆(𝑢) = 7𝑢(𝑢 − 60)(100 − 𝑢)×10−6 + 0.035𝑢 + 1, 𝑀𝑂𝑆 ∈ [1; 4.5]

It should be noted that the quantiles used for GoB, PoW, and TEM come from a number
of subjective tests, part of E-model’s development. These measures are estimated by
using 𝜃-𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 in the equations:

%𝐺𝑜𝐵 =̂ 𝐴𝜃𝑔𝑏

%𝑃𝑜𝑊 =̂ 1 − 𝐴𝜃𝑝𝑤

%𝑇𝐸𝑀 =̂ 1 − 𝐴𝜃𝑡𝑒

if 𝜃𝑔𝑏 = 60, 𝜃𝑝𝑤 = 45, 𝜃𝑡𝑒 = 36 for 𝑈 ∈ [0; 100] or

if 𝜃𝑔𝑏 = 3.1, 𝜃𝑝𝑤 = 2.3, 𝜃𝑡𝑒 = 1.9 for 𝑈 ∈ [1; 5]

We extensively analyzed several QoE metrics, with the most significant listed above.
However, it should be noted that many other metrics which are used are application-
specific. An example of that case is the following, known as reception ratio calculated
using YouTube [62]:

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 60

𝜌 = 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑜𝑟 𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑉𝑖𝑑𝑒𝑜 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

,

which is a good indicator considering that a video has good quality if 𝜌 > 1, as is the
“fraction of the video downloaded” which indicates the user’s behavior towards the video
being downloaded.

Video delivery quality on the other hand can be shown by the rate 𝜆 where:

𝜆 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
𝑡𝑜𝑡𝑎𝑙 𝑣𝑖𝑑𝑒𝑜 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒

.

In [69], researchers present a simple QoE model which is truly indicative and applies
not only to YouTube but to any HTTP based Adaptive Streaming service. It is based on
the valid assumption that the QoE provided by HAS applications is highly dependable
on the percentage of viewing not degraded from the highest available quality. If t is the
percentage of time that the player spends on the highest layer then MOS is given by:

𝑀𝑂𝑆𝐻𝐴𝑆 = 0.003 ∗ 𝑒0.064∗𝑡 + 2.498

A second metric presented, in regards to HAS and especially YouTube adaptation is the
activity factor a which shows whether the client is is able to fluently download each
video segment taking into account the available bandwidth. Per the researchers, if this
indicator is approaching 1 then the client will present difficulty in downloading the video
segments in question. The activity factor is defined as:

𝑎 =
𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑣𝑖𝑑𝑒𝑜 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑

For Skype video application, they mention a practical MOS formula proposed in
literature for different screen resolutions. If F is the Frame Rate, with a maximum of
35fps and I is the Image Quality ranging from 0 to a perfect 1, MOS for resolutions
160x120, 320x240, and 640x480 would be:

𝑀𝑂𝑆𝑠𝑘𝑦𝑝𝑒 = {

 1 𝑟𝑒𝑠 = 160𝑥120
 2 𝑟𝑒𝑠 = 320𝑥240

3 +
𝐹

35𝑓𝑝𝑠
+ (2𝐼 − 1) 𝑟𝑒𝑠 = 640𝑥480

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 61

4. THE NS-3 NETWORK SIMULATOR

4.1 NS-3 Basics

Our engagement in the functionality of LTE networks and, later, the measurement of
users’ QoE upon the addition of adaptive streaming on their media all join in one at this
point: a real-world scenario. Since communication networks have become too complex
for traditional analytical methods to provide an accurate understanding of system
behavior, communication researchers have turned to network simulation, a technique
where a program models the behavior of a network based on mathematical formulas
allowing the users to draw realistic conclusions. One of the most popular network
simulators available on the market is NS-3.

NS-3 is a discrete event network simulator, developed for network research and
education. Its modules are written in C++ with Python bindings allowing the user to
create C++ executable files making use of the existing modules. It uses the Waf build
system, a build automation tool which compiles and builds all necessary modules
included in the .waf file of the directory of the user-created files.

Individual modules, compatible with each other, provide almost every necessary
functionality so that the researcher can create a full scale realistic network model of
their choice. In most cases, helpers are also provided in order to avoid a complex
interaction with low-level programming modules.

4.2 Building on top of LENA Project

4.2.1 Introduction

NS-3 owes its LTE functionality to the LENA project, an LTE simulation module
developed by the Technologic Center of Telecommunications in Catalonia [64]. LENA
focuses mainly on modeling the E-UTRA part of the system, with a particular attention
on the aspects related to the channel, PHY and MAC layers following in detail the
architecture of the LTE networks.

By using LENA in NS-3, we were able to reproduce a basic, realistic, real-world
example, which we are proud to include in the file “lenaexample.cc” and describe below.
Our initial goal was to simulate a basic media server-client model, where a video is
being streamed from a remote host, a content-delivery server, to one or more mobile
devices of an LTE network (UEs). On top of that, our ambition was to implement an
adaptive streaming functionality on the video streaming process of the server. Following
is a brief explanation of the example program we have created.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 62

4.2.2 A Simple Example

Going through the code, we start by enabling some necessary log components in order
to track the behavior of both the server and the client at execution time. Then we
declare the variables which will be used by the simulator, among others giving the user
the ability to change the number of mobile nodes and the distance between them.
Before we can create our nodes, we need to create our helpers, and set a node as our
PDN gateway (P-GW).

It is time to create the nodes, starting from our remote host. We install the internet stack
in the remote host container and create a point to point link between the remote host
that will be our server and the P-GW. In our example, we use a 100Gbps link with 10ms
of latency, attributes that can be easily changed by the user. Then we can finally create
our mobile nodes and install LTE functionality in our eNodeB and our UEs. To provide
UE mobility, LENA offers various mobility models, the simplest being the Constant
Position model, with the initial positions of the nodes being set by a position allocator
vector. The distance step of the vector can be set at the beginning of our code. We can
also assign static IPs to our remote host and our UEs, and set their default gateway.
Lastly, we attach the UEs to the eNodeB.

The core of our simulation, however, are the server and client applications. We install a
Server application on our remote host, and a Client application on our UE nodes. The
server port and IP are pre-specified and passed to the client as a parameter. Every
application in LENA should have a start and stop time, ideally with the clients starting
after and finishing before the server, giving the impression of a continuous service, at
least from the client’s perspective.

A dump file is used here to indicate and record the activity of each of the clients, as well
as the server. LENA also offers the ability to generate trace statistics for PHY, MAC,
RLC and PDCP layers. The above is very helpful for the user to draw conclusions and
present the simulation findings. It is worth noting that even though the simulator starts
from the command line execution (see figure 4.1), it is advised that we set the
simulation to end after a user-specified time.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 63

Figure 4.1: Lena Example Execution

4.2.3 The Server-Client Model

Our quest has been to experiment on a simple scenario of a video streaming server,
similar to those of modern content delivery networks. An HTTP request for a video file
from the client to the server is followed by a stream of data segments sent directly to the
client by the server. However, on-demand content demands in turn for adapting quality
and for that reason, as explained in previous chapters, we were in need of an adaptive
streaming mechanism.

As a basis to build on, we worked with the excellent open source NS-3 Evalvid module,
a project initially created by GERCOM [65] and destined for video evaluation
simulations. On this foundation, we built our Client-Server module following the previous
structure as well as the NS-3 project guidelines (limit user access to low-level modules
through helpers, offer installation and attribute-setting functions). We redesigned the
model to support a TCP connection to the client instead of a UDP stream, developing a
socket allocation and binding process. Our server model, which is HTTP based, uses
information encapsulated into the HTTP header to identify client requests aiming to
better simulate the functionality of a video server offering a variety of videos for the
client to request in several different resolutions.

Taking a brief look at file “evalvid-server.cc”, we can see that our video streaming server
follows a typical TCP server process. After all attributes have been set using function
EvalvidServer::GetTypeId in during the EvalvidServerHelper construction, the server
creates and binds a TCP socket in function EvalvidServer::StartApplication listening

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 64

then on the socket for any incoming connections. In the same function, the video is
setup and the server is ready to start sending upon request.

Most NS-3 streaming evaluation simulations avoid transferring the actual file between
the server and the client. Instead, they use a video trace file which contains the frame
type, the frame size and the number of packets needed for each frame, as well as the
time when each frame should be played, relative to the play time of the first frame.
Having this info, the server can create and transfer the same amount of data that it
would if it was sending the actual file, but without having to load a real video on the
simulator’s memory, which would introduce the factor of individual device performance,
negatively affecting the credibility of the experiment.

After all, for the evaluation to be accurate, a researcher would only need the percentage
of lost information per video frame, but not the exact bytes lost. Once the replicated
data is sent over to the client, a new version of the video can be reproduced using the
packets that reached the destination as a mask on the original video, showing the effect
of the lost information on the video quality.

For the production of a video trace file extracted from an original .MP4 video file we
used the MP4 trace tool included in the file “mp4trace.c” of the EvalVid framework.
EvalVid, different than the previously mentioned Evalvid NS-3 module, is a video
transmission and quality evaluation framework written in C [66] by the
Telecommunications Networks Group of the Technische Universität Berlin. The MP4
trace tool from EvalVid is able to send a hinted mp4-file to a specified destination host
recording the packet flow which it separates from other traffic on the interface. Other
network monitoring tools such as tcpdump can be used to produce the above trace file,
but would require an application of manual filtering.

Once the trace file is loaded in the EvalvidServer::Setup function, the server preserves
a mapping of the frame ID to a struct that holds all that frame’s necessary information
and then waits for a client’s request. When the client initializes its connection to the
socket, it creates an HTTP request packet and sends it to the server, in function
EvalvidClient::Send. This HTTP request always contains the ID of the video requested
by the client, along with the ID of the video segment to be sent next and the resolution
chosen for it.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 65

After the server receives this client request, in function EvalvidServer::HandleRead it
extracts the video ID, the segment ID and the preferred resolution bitrate and starts
sending media to the client. Using the EvalvidServer::Send function, the server creates
HTTP response packets, addressing the client’s HTTP request with the same video ID,
segment ID, and segment resolution included in the HTTP header. This HTTP response
packet also contains a Sequence header which shows the ID of the packet allowing our
simulation to be modified to identify lost packets if needed.

However, encapsulated in the HTTP response is the most important component of our
server-client communication. That is the MPEG header containing the current frame ID,
the play time of each frame (relative to the first frame), the frame type, and the frame
size. Depending on the size of the frame and according to our preset Maximum
Transmission Unit, the server might need to send multiple packets in order to transfer
the frame as a whole. Thus, the server is responsible to calculate the number and the
size of packets, a process which is executed in every call of the function
EvalvidServer::Send. Based on that information, the client can effectively anticipate
packets until the frame is completely sent. After all the packets required for the frame
are sent, the EvalvidServer::Send recalls itself until the last frame of the segment is
sent.

It is important to note that, following the sending/receiving of packets by the two parties,
both the server and the client mark down all traffic transferred as detected from their
respective ends. The server writes a packet’s size, its ID and the time sent in the
sender’s trace file. On the other end, the client adds the same information to its receiver
dump file, in function EvalvidClient::MessageReceived (see figures 4.2 and 4.3 below).

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 66

Figure 4.2: Sender’s Dump File

Figure 4.3: Receiver’s Dump File

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 67

4.3 Implementing DASH

One of the main reasons for us to move away from the original Evalvid NS-3 module
implementation was the need to rebuild the module’s foundation to support HTTP
adaptive streaming using a TCP interconnection. For the same reason we chose to
follow the MPEG/DASH client-server module [67] and combine its methods with our
version of the Evalvid server-client application. Trying to follow the same path, we list
here the most important of our interventions, and present the code.

The idea of a thoroughly detailed simulation of an MPEG player’s infrastructure is
certainly very useful. Based on that, the researcher needs to add a fully functional
MPEG video player in order to simulate not only the physical transfer of media, but also
the playing process. The process of reproducing the media on the receiving end, which
the media file is destined for leads to a more accurate calculation of the client resolution
to be requested in the consecutive segment HTTP requests, therefore making the
simulation more realistic.

Going through the code, the client, upon receiving a frame, it sends it to the MPEG
player for playing, and then adds the frame size to the ongoing segment size and to the
total bytes sent. The MPEG player then adds the frame to the queue and in case the
player is found paused, it adds the time of the interruption of play to the total
interruption, and resumes playing in function MpegPlayer::ReceiveFrame, after clearing
the interruption counters.

As long as the queue is not empty, the MPEG player continuously plays the frames
available one by one in function MpegPlayer::PlayFrame, which calls itself every 20
milliseconds until it finds the queue empty. In that case, it switches the player to an idle
state, measuring the time since then as interruption, keeping a record of the moment
that the last interruption took place.

From the client’s perspective, we calculate the time when a frame that just arrived is
expected to be played, taking into account the start of play time (when the first frame
was played), the frame’s supposed play time relative to the first frame, as well as any
potential interruption time recorded by the player. The MPEG player then saves the
current bitrate as the minimum transmitted bitrate in case it is lower than the previously
recorded minimum.

On a segment level, the client is responsible for holding timing information, imperative to
calculating when a bitrate adaptation is necessary. When the time comes for a new
segment to be requested, the client takes note of the time it contacted the server, at the
moment when that initial HTTP request is sent. Therefore, when the last frame of the
segment is received, the client immediately calculates the elapsed time between the
request and the full receipt of the media segment.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 68

After that, and before requesting the next segment, the client calculates the average
bitrate during the transmission of the last segment by dividing that segment’s bits and
the fetch time from the previous computation. The resulting bitrate is added to the list of
recorded bitrates, mapped to the current time of that addition. Checking the list of
recorded bitrates, the client produces a bitrate estimate by averaging the last bitrates
that were recorded within our predefined time window.

Once the client refreshes its bitrate estimate in function EvalvidClient::AddBitRate, it
uses function EvalvidClient::CalcNextSegment to change the active bitrate variable that
will be injected in the client’s next segment request. In case the previous bitrate
requested does not match to the current bitrate variable, the client also keeps count of
the rate changes, so that we can provide a statistic to the researcher of how stable our
video connection has been.

What is more, the DASH application offers a function to schedule a delayed wakeup to
request the next segment, based on the buffer levels which the client can have
monitored at all times. In function EvalvidClient::SchduleBufferWakeup, the structure
sets a buffer delay which causes the client to hold the request until the MPEG player
allows for it to be initiated through function MpegPlayer::PlayFrame.

Among the most fundamental components of any NS3 application, is the function
responsible for reading from the socket created by the client. As our example aims to
simulate a server-client application that uses layer 7 intelligence such as HTTP
messaging, the above functionality is part of our HTTP parser. The HTTP parser is
therefore responsible for parsing data coming out of the client’s socket as HTTP
messages.

In function HttpParser::ReadSocket, which is called by EvalvidClient::HandleRead, the
HTTP parser receives the incoming bytes from the socket, limited by the preset
maximum size of the MPEG message, and copies them to its buffer. It counts all
received packets which allows the researcher to match the counter to the sequence tag
included in the sequence header of the packet.

Upon receiving a new batch of data through the socket, the HTTP parser is in charge of
creating a new packet for the client, as well as adding the proper headers to it. By
serially parsing the raw incoming data, it correctly populates the MPEG, HTTP, and
Sequence headers it previously created. This is done in accordance with the transport
layer, with different maximum transmission unit values applied specifically for TCP
applications like ours.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 69

This part of receiving data is of critical importance to the client, since any incoming data
may easily become unreadable in case the parsing function HttpParser::ReadSocket is
poorly implemented. Although most of low-level TCP communications are internally
handled by the native NS3 functionalities, the server needs to correctly send the data
that the client is expecting and the client always must verify that this information is
received. For that reason, the http parser is instructed to calculate the message size
with and without the above-mentioned headers.

Receiving the first bytes, the parser can determine the size of the MPEG message it is
waiting for. So, knowing that, it waits until the buffer content exceeds the expected
message size, and when that happens, it forwards the received message to the upper
level of the client application and to function EvalvidClient::MessageReceived. In the
end, it moves the buffer index to deallocate the memory that the message was
occupying.

4.4 Presenting the Results

4.4.1 Plots

As mentioned in our previous chapter, one of the greatest advantages of using the
LENA project for an LTE network simulation is the ability to generate output for further
study. This is achieved through a group of trace files following the end of the network
simulation. The generated trace files contribute to our network research providing useful
information regarding the PHY, MAC, RLC and PDCP layers.

Researchers agree that the best way to assess a simulation’s output information is
through plotted statistics. Plots can easily be evaluated and compared showing an
overall view of the nodes and their network behavior. In our case, the tool which we
used to plot our research statistics, in an Ubuntu terminal environment, is Gnuplot.

According to its documentation, Gnuplot is a command-driven interactive function
plotting program. It can be used to plot functions and data points in both two- and three-
dimensional plots in many different formats. It is designed primarily for the visual display
of scientific data such as network statistics. Although Gnuplot is copyrighted, it is freely
distributable.

Gnuplot needs to be installed in order to be used in a research program, and is usually
run externally through the command line when supplied with a .plt file containing the
points to be plotted in the correct format.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 70

4.4.2 Throughput Calculation

Since the scenario implemented in our LENA example included the use of bitrate
adaptation in the streaming server-client application, probably the most crucial stat
provided by the LENA trace files is the ability for a throughput measurement. The RLC
downlink stats included in output file “DlRlcStats.txt” contain the bytes received per
network node and the start and end time for each node’s client application, as in figure
4.4. This is all we need to calculate the throughput and create a throughput plot for
every node in our simulation.

Figure 4.4: DlRlcStats.txt Sample

In file “plotmaker.cc”, the CalculateThroughputperNode function creates an array of
Gnuplot 2D datasets, one for each node, and holds a pointer to the array. The function
then reads the respective stats file and parses every line as tokens. From the extracted
line tokens, it reads the bytes received and divides them by the elapsed time between
the start and the end time which will give the node’s throughput at the time of the
measurement. After it calculates the throughput in Kbps, it sends the measurement time
and then-current throughput as a pair of coordinates to the dataset of the respective
node. Following that process, the points are saved and ready to be plotted.

The pointer returned by the CalculateThroughputperNode function is forwarded to
function PlotStatistics, which in turn creates a separate plot file for every node named
“Throughput-<node number>” and passes the dataset to function Create2DPlotFile
which will populate the files by producing the necessary plots from the datasets.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 71

Figure 4.5: Throughput, Node 1

In Create2DPlotFile, we chose our output to be a .png image, with the range being
equal to the simulation time, and our axis named “Kbps” and “Seconds”. The dataset is
then instantiated, its title is set to the file’s name and the dataset points are plotted
along with connecting lines in order to show the continuous evolution and possible
fluctuation of the node’s throughput. Lastly, we execute the external gnuplot command,
to generate our final output.

4.4.3 SINR Computation

The role of multisource interference is thoroughly discussed in some of the previous
chapters of this thesis. The metric which introduces the effect of interference in
telecommunications engineering is the Signal-to-Interference-plus-Noise Ratio (SINR).
The SINR is generally used to measure the quality of wireless connections, the path
loss, and set an upper limit on the wireless channel’s capacity.

Due to its importance, the physical trace in all NS3 LENA applications outputs a file
named “DlRsprSinrStats.txt”. This file contains the following in columns:

- Simulation time in seconds at which the allocation is indicated by the scheduler

- Cell ID

- unique UE ID (IMSI)

- RSRP

- Linear average over all RBs of the downlink SINR in linear units

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 72

Figure 4.6: DlRsprSinrStats.txt Sample

It is a file which is widely used by NS3 researchers as it provides useful feedback on the
quality of a UE’s wireless capability and experience in the network. As our goal remains
to offer an expandable NS3 scenario and a decent feedback toolkit, we tried to build the
foundation for more complex LTE network simulations. The SINR computation is a vital
part of the later and that is why we chose to implement it.

Going through the code in file “plotmaker.cc” it becomes obvious that our NS3
application has all the means necessary to track and locate potential interference issues
by plotting the SINR statistics for every node. At the end of the simulation, the output file
“DlRsprSinrStats.txt” which is produced, is used by function CalculateSINRperNode of
file “plotmaker.cc”.

The above function creates an array of Gnuplot two-dimensional datasets, one for each
node, holding a pointer to the array. Then, exactly the same way we previously
described for the CalculateThroughputperNode function, it reads the statistics file line by
line tokenizing every line.

Since the SINR statistics file holds the measurement of the timestamp in column 1, the
unique UE ID in column 3 and the SINR value in column 6, our script only holds the
tokens located in the respective positions, in every line. Once this information is parsed
from the file, it is inserted in each node’s dataset in coordinates pairing the SINR value
and the timestamp of the measurement moment.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 73

Figure 4.7: SINR, Node 1

The datasets that are generated are forwarded to the PlotStatistics function, which in

turn calls function Create2DPlotFile. That function sets the axis names to Linear

SINR/Seconds and populates a .png image with the points included in the datasets. The

range is again equal to the duration of our simulation, stated in variable simTime. All the

points are connected with lines, showing the progressive improvement or deterioration

of the SINR value for each node.

4.4.4 QoE Metrics

Concluding our efforts to provide a complete executable instance of our module, we
have implemented some of the most used QoE metrics in our code. This allows us to
extract diagrams that give researchers an impression of the nodes’ QoE. Since the
throughput value heavily impacts a node’s quality of experience, as explained also in
Chapter 3, we are using the same file that we used to calculate throughput,
“DlRlcStats.txt” (figure 4.4).

Reading from file DlRlcStats.txt, we calculate the throughput and we divide it by the
video encoding rate, in our case the mean encoding rate which is 77 kbps. What we get
is a plot of the reception rate ρ presented in chapter 3.5. As mentioned there, a good

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 74

indication of the user’s QoE is whether the reception rate is equal to or higher than 1. To
show this comparison, we have also added a straight line where y=1 on the graph.

Figure 4.8: Reception Ratio ρ, Node 1

Function CalculateReceptionRatioperNode gets the encoding rate as argument from
PlotStatistics and uses the formula to calculate the points and enter them in the
reception ratio dataset. After that, it returns the dataset to PlotStatistics which creates
the plot file having time as x-axis and ρ as y-axis.

In addition to the reception ratio figure, we are using a formula to also export a MOS
graph, using the formula proposed in [68]. This formula is simply based on the
percentage of time playing the video in the highest quality level, in an HTTP adaptive
straming system.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 75

Figure 4.9: MOS, Node 1

Going through the code, we first use file “DlRlcStats.txt” to calculate the throughput in
function CalculateMOSperNode. For every time window where we find the node’s
throughput to be greater than or equal to the highest video bitrate available, we add this
time window to our counter and then divide this counter with the total simulation time up
to this point. Using the resulting value in the formula, we get an accurate estimation of
the user’s MOS, shown in figure 4.9.

Function CalculateMOSperNode populate the dataset by calculating the points
mentioned above, and then returns the dataset to calling function PlotStatistics. In
PlotStatistics, the plot file is created with y-axis representing the estimated MOS value
at time x.

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 76

ABBREVIATIONS-ACRONYMS

3GPP 3rd Generation Partnership Project

AAC Advanced Audio Coding

ACR Absolute Category Rating

AM Acknowledged Mode

AMPS Advanced Mobile Phone Service

APN Access Point Name

ARP Allocation/Retention Priority

AS Access Stratum

AuC Authentication Center

CDMA Code Division Multiple Access

CN Core Network

CPI Cyclic Prefix Insertion

DASH Dynamic Adaptive Streaming over HTTP

DECE LLC Digital Entertainment Content Ecosystem

EDGE Enhanced Data rates for GSM Evolution

eNodeB Evolved Node B

EPC Evolved Packet Core

EPS Evolved Packet System

ETSI European Telecommunications Standards Institute

F4V
Open container format for delivering synchronized audio/video
streams

FDMA Frequency Division Multiple Access

FTP File Transfer Protocol

GBR Guaranteed Bit Rate (Bearers)

GERAN GSM EDGE Radio Access Network

GoB Good or Better

GoP Group of Pictures

GPRS General Packet Radio Service

GSM Global System for Mobile communications

GTP GPRS Tunneling Protocol

HARQ Hybrid Automatic Repeat Request

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 77

HAS HTTP Adaptive Streaming

HSDPA High Speed Downlink Packet Access

HSPA High Speed Packet Access

HSS Home Subscriber Server

HSUPA High Speed Uplink Packet Access

HTTP HyperText Transfer Protocol

IMS IP Multimedia Subsystem

IMT International Mobile Telecommunications

IPTV IP Television

ITU International Telecommunication Union

J-TACS Japan-Total Access Communication System

LTE-A Long Term Evolution-Advanced

MAC Medium Access Control

MBR Maximum Bit Rate

MIMO Multiple Input Multiple Output

MME Mobility Management Entity

MPD Media Presentation Description

MPEG Moving Picture Expert Group

MPQM Moving Pictures Quality Metric

NMT Nordic Mobile Telephone

OFDM Orthogonal Frequency-Division Multiplexing

OFDMA OFDM Access

OIPF Open IPTV Forum

PAPR Peak-to-Average Power Ratio

PCEF Policy Control Enforcement Function

PCRF Policy Control and Charging Rules Function

PDCP Packet Data Convergence Protocol

PDN Packet Data Network

PDU Protocol Data Unit

P-GW PDN-Gateway

PoW Poor or Worse

PSNR Peak Signal-to-Noise Ratio

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 78

QCI QoS Class Identifier

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RLC Radio Link Control

RRC Radio Resource Control

RRM Radio Resource Management

RTP Real-time Transport Protocol

RV Random Variable

SAE System Architecture Evolution

SC-FDMA Single Carrier-Frequency-Division Multiple Access

S-GW Serving-Gateway

SOS Standard deviation of Opinion Score

SSIM Structural Similarity Index Metric

S-TMSI SAE-Temporary Mobile Subscriber Identity

SVC Scalable Video Coding

TA Tracking Area

TACS Total Access Communication System

TCP Transmission Control Protocol

TDD Time Division-Duplex

TDMA Time Division Multiple Access

TD-SCDMA Time-Division Synchronous Code Division Multiple Access

TFT Traffic Flow Templates

TME Terminate Early

UDP User Datagram Protocol

UE User Equipment

UMTS Universal Mobile Telecommunication

URL Uniform Resource Locator

UTRAN Universal Terrestrial Radio Access Network

VoIP Voice-over-IP

VQM Video Quality Metric

W3C World Wide Web Consortium

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 79

APPENDIX

/*

 * File: Lenaexample.cc

 * Author: Achilleas Moustakis

 * Copyright (c) 2016 National and Kapodistrian University of Athens, Greece

 */

#include "ns3/csma-helper.h"

#include "ns3/evalvid-client-server-helper.h"

#include "ns3/lte-helper.h"

#include "ns3/epc-helper.h"

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/ipv4-global-routing-helper.h"

#include "ns3/internet-module.h"

#include "ns3/mobility-module.h"

#include "ns3/lte-module.h"

#include "ns3/applications-module.h"

#include "ns3/point-to-point-helper.h"

#include "ns3/config-store.h"

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("Lena_Example");

int main (int argc, char *argv[])

{

/* Enable log components.*/

 LogComponentEnable ("EvalvidClient", LOG_LEVEL_INFO);

 LogComponentEnable ("EvalvidServer", LOG_LEVEL_ALL);

/* Declare variables.*/

 uint16_t numberOfNodes = 1;

 double distance = 60.0;

 uint16_t serverPort = 1124;

/* Create Helpers*/

 Ptr<LteHelper> lteHelper = CreateObject<LteHelper> ();

 Ptr<PointToPointEpcHelper> epcHelper = CreateObject<PointToPointEpcHelper>

();

 lteHelper->SetEpcHelper (epcHelper);

 Ptr<Node> pgw = epcHelper->GetPgwNode ();

/* Create our remote host. Install the Internet stack.*/

 NodeContainer remoteHostContainer;

 remoteHostContainer.Create (1);

 Ptr<Node> remoteHost = remoteHostContainer.Get (0);

 InternetStackHelper internet;

 internet.Install (remoteHostContainer);

/* Create a P2P connection between the P-GW and our remote host. Assign IP

addresses.*/

 PointToPointHelper p2ph;

 p2ph.SetDeviceAttribute ("DataRate", DataRateValue (DataRate ("100Gb/s")));

 p2ph.SetDeviceAttribute ("Mtu", UintegerValue (1500));

 p2ph.SetChannelAttribute ("Delay", TimeValue (Seconds (0.010)));

 NetDeviceContainer internetDevices = p2ph.Install (pgw, remoteHost);

 Ipv4AddressHelper ipv4h;

 ipv4h.SetBase ("1.0.0.0", "255.0.0.0");

 Ipv4InterfaceContainer internetIpIfaces = ipv4h.Assign (internetDevices);

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 80

/* Add a static network route for our remote host.*/

 Ipv4StaticRoutingHelper ipv4RoutingHelper;

 Ptr<Ipv4StaticRouting> remoteHostStaticRouting =

ipv4RoutingHelper.GetStaticRouting (remoteHost->GetObject<Ipv4> ());

 remoteHostStaticRouting->AddNetworkRouteTo(Ipv4Address ("7.0.0.0"), Ipv4Mask

("255.0.0.0"), 1);

/* Create our UE and eNodeB nodes. Install LTE functionality, Internet stack.*/

 NodeContainer ueNodes, enbNodes;

 enbNodes.Create(1);

 ueNodes.Create(numberOfNodes);

 NetDeviceContainer enbLteDevs = lteHelper->InstallEnbDevice (enbNodes);

 NetDeviceContainer ueLteDevs = lteHelper->InstallUeDevice (ueNodes);

 internet.Install (ueNodes);

/* Create a mobility model and install our nodes in it. (Initial position is

defined by ListPositionAllocator.)*/

 Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>

();

 for (uint16_t i = 0; i < numberOfNodes; i++)

 {

 positionAlloc->Add (Vector(distance * i, 0, 0));

 }

 MobilityHelper mobility;

 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");

 mobility.SetPositionAllocator(positionAlloc);

 mobility.Install(enbNodes);

 mobility.Install(ueNodes);

/* 1.Assign IP addresses to our UE nodes.

 * 2.Add a static network route for each one.

 * 3.Set P-GW as the Default Gateway.

 * 4.Attach to eNodeB.*/

 Ipv4InterfaceContainer ueIpIface;

 ueIpIface = epcHelper->AssignUeIpv4Address (NetDeviceContainer (ueLteDevs));

 for (uint32_t u = 0; u < ueNodes.GetN (); ++u)

 {

 Ptr<Node> ueNode = ueNodes.Get (u);

 Ptr<Ipv4StaticRouting> ueStaticRouting =

ipv4RoutingHelper.GetStaticRouting (ueNode->GetObject<Ipv4> ());

 ueStaticRouting->SetDefaultRoute (epcHelper->GetUeDefaultGatewayAddress

(), 1);

 }

 for (uint16_t i = 0; i < numberOfNodes; i++)

 {

 lteHelper->Attach (ueLteDevs.Get(i), enbLteDevs.Get(0));

 // side effect: the default EPS bearer will be activated

 }

 NS_LOG_INFO ("Create Applications.");

/* Create Server application. Install on our remote host.*/

 EvalvidServerHelper server(serverPort);

 server.SetAttribute ("SenderTraceFilename", StringValue("st_highway_cif.st"));

 server.SetAttribute ("SenderDumpFilename" , StringValue("sd_a01_lte"));

 ApplicationContainer apps = server.Install(remoteHostContainer.Get(0));

 apps.Start (Seconds (1.0));

 apps.Stop (Seconds (10.0));

/* Create Client applications. Install on our UE nodes.*/

 for (uint16_t i = 0; i < numberOfNodes; i++)

 {

 EvalvidClientHelper client (internetIpIfaces.GetAddress

(1),serverPort);//serverIP,serverPort

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 81

 std::ostringstream ReceiverDumpFilename;

 ReceiverDumpFilename <<"rd_a0" <<i <<"_lte";

 client.SetAttribute ("ReceiverDumpFilename",

StringValue(ReceiverDumpFilename.str()));

 client.SetAttribute ("VideoId", UintegerValue(1));

 apps = client.Install (ueNodes.Get(i));

 apps.Start (Seconds (1.1));

 apps.Stop (Seconds (9.9)); //Note: Clients start after and finish

before the Server.

 }

 lteHelper->EnableTraces (); //Enables trace sinks for PHY, MAC, RLC and PDCP.

 NS_LOG_INFO ("Run Simulation.");

 Simulator::Stop(Seconds(10));//Set Simulation stop time.

 Simulator::Run(); //Start Simulation.

 Simulator::Destroy();

 return 0;

}

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 82

/*

 * File: plotmaker.cc

 * Author: Achilleas Moustakis

 * Copyright (c) 2016 National and Kapodistrian University of Athens, Greece

 */

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/mobility-module.h"

#include "ns3/lte-module.h"

#include "ns3/config-store.h"

#include <ns3/buildings-module.h>

#include <ns3/netanim-module.h>

#include "ns3/gnuplot.h"

#include <iomanip>

#include <string>

#include <vector>

#include <fstream>

#include <iostream>

#include <sstream>

#include <cstdlib>

using namespace ns3;

using namespace std;

Gnuplot2dDataset** CalculateThroughputperNode(string statsFileName, uint32_t nUe)

{

/*The stats file we are using contains the start/end time in columns 1/2,

 * the IMSI in column 4 and Bytes Received in column 10. Therefore, we

 * extract the according tokens from every line of the file.*/

 uint32_t num;

 //Create an array of datasets (one for each node) and hold a pointer of the

array (DYNAMIC ALLOCATION)

 Gnuplot2dDataset** datasetArray = new Gnuplot2dDataset*[nUe];

 for (num = 0; num < nUe; num++)

 datasetArray[num] = new Gnuplot2dDataset();

 datasetArray[num]->Add(0,0);

 //Read stats file line by line and tokenize

 string line;

 ifstream myfile(statsFileName.c_str());

 if (myfile)

 {

 getline(myfile,line);

 vector<string> tokens;

 while (getline(myfile,line)) {

 string delimiter = " ";

 size_t pos = 0;

 string token;

 while ((pos = line.find(delimiter)) != string::npos) {

 token = line.substr(0, pos);

 tokens.push_back(token);

 line.erase(0, pos + delimiter.length());

 }

 datasetArray[atoi(tokens.at(3).c_str())-1]-

>Add(atof(tokens.at(1).c_str()),

atof(tokens.at(9).c_str())*8/1000/(atof(tokens.at(1).c_str())-

atof(tokens.at(0).c_str()))); //(End time, Kbps)

 tokens.clear();

 }

 myfile.close();

 }

 return datasetArray;

}

double highestBitrate;

double statsInterval;

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 83

Gnuplot2dDataset** CalculateMOSperNode(string statsFileName, uint32_t nUe, double

simTime)

{

/*The stats file we are using contains the start/end time in columns 1/2,

 * the IMSI in column 4 and Bytes Received in column 10. Therefore, we

 * extract the according tokens from every line of the file.*/

 uint32_t num;

 double throughput;

 //Create an array of datasets (one for each node) and hold a pointer of the

array (DYNAMIC ALLOCATION)

 Gnuplot2dDataset** datasetArray = new Gnuplot2dDataset*[nUe];

 double timeAtBestRate[nUe];

 for (num = 0; num < nUe; num++){

 datasetArray[num] = new Gnuplot2dDataset();

 datasetArray[num]->Add(0,0);

 timeAtBestRate[num]=0;

 }

 //Read stats file line by line and tokenize

 string line;

 ifstream myfile(statsFileName.c_str());

 if (myfile)

 {

 getline(myfile,line);

 vector<string> tokens;

 while (getline(myfile,line)) {

 string delimiter = " ";

 size_t pos = 0;

 string token;

 while ((pos = line.find(delimiter)) != string::npos) {

 token = line.substr(0, pos);

 tokens.push_back(token);

 line.erase(0, pos + delimiter.length());

 }

 throughput =

atof(tokens.at(9).c_str())*8/1000/(atof(tokens.at(1).c_str())-

atof(tokens.at(0).c_str()));

 /* If Throughput within this time window equals or exceeds

the highest Bitrate

 * then add this window to the aggregate time being on the

highest layer */

 if (throughput >= highestBitrate) {

 timeAtBestRate[atoi(tokens.at(3).c_str())-1] +=

statsInterval;

 }

 datasetArray[atoi(tokens.at(3).c_str())-1]-

>Add(atof(tokens.at(1).c_str()),

0.003*exp(0.064*100*timeAtBestRate[atoi(tokens.at(3).c_str())-1]/simTime)+2.498);

//(End time, MOS)

 tokens.clear();

 }

 myfile.close();

 }

 return datasetArray;

}

Gnuplot2dDataset** CalculateReceptionRatioperNode(string statsFileName, uint32_t nUe,

double encodingRate)

{

/*The stats file we are using contains the start/end time in columns 1/2,

 * the IMSI in column 4 and Bytes Received in column 10. Therefore, we

 * extract the according tokens from every line of the file.*/

 uint32_t num;

 //Create an array of datasets (one for each node) and hold a pointer of the

array (DYNAMIC ALLOCATION)

 Gnuplot2dDataset** datasetArray = new Gnuplot2dDataset*[nUe];

 for (num = 0; num < nUe; num++){

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 84

 datasetArray[num] = new Gnuplot2dDataset();

 datasetArray[num]->Add(0,0);

 }

 //Read stats file line by line and tokenize

 string line;

 ifstream myfile(statsFileName.c_str());

 if (myfile)

 {

 getline(myfile,line);

 vector<string> tokens;

 while (getline(myfile,line)) {

 string delimiter = " ";

 size_t pos = 0;

 string token;

 while ((pos = line.find(delimiter)) != string::npos) {

 token = line.substr(0, pos);

 tokens.push_back(token);

 line.erase(0, pos + delimiter.length());

 }

 datasetArray[atoi(tokens.at(3).c_str())-1]-

>Add(atof(tokens.at(1).c_str()),

atof(tokens.at(9).c_str())*8/1000/(atof(tokens.at(1).c_str())-

atof(tokens.at(0).c_str()))/encodingRate); //(End time, ρ)

 tokens.clear();

 }

 myfile.close();

 }

 return datasetArray;

}

Gnuplot2dDataset** CalculateSINRperNode(string statsFileName, uint32_t nUe)

{

/*The stats file we are using contains the measurement timestamp in column 1,

 * the IMSI in column 3 and the SINR in column 6. Therefore, we

 * extract the according tokens from every line of the file.*/

 uint32_t num;

 //Create an array of datasets (one for each node) and hold a pointer of the

array (DYNAMIC ALLOCATION)

 Gnuplot2dDataset** datasetArray = new Gnuplot2dDataset*[nUe];

 for (num = 0; num < nUe; num++)

 datasetArray[num] = new Gnuplot2dDataset();

 datasetArray[num]->Add(0,0);

 //Read stats file line by line and tokenize

 string line;

 ifstream myfile(statsFileName.c_str());

 if (myfile)

 {

 getline(myfile,line);

 vector<string> tokens;

 while (getline(myfile,line)) {

 string delimiter = " ";

 size_t pos = 0;

 string token;

 while ((pos = line.find(delimiter)) != string::npos) {

 token = line.substr(0, pos);

 tokens.push_back(token);

 line.erase(0, pos + delimiter.length());

 }

 tokens.push_back(line);

 line.clear();

 datasetArray[atoi(tokens.at(2).c_str())-1]-

>Add(atof(tokens.at(0).c_str()), atof(tokens.at(5).c_str())); //(timestamp, SINR)

 tokens.clear();

 }

 myfile.close();

 }

 return datasetArray;

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 85

}

void Create2DPlotFile (string fileName, double simTime, string axisXname, string

axisYname, Gnuplot2dDataset dataset)

{

 std::string fileNameWithNoExtension = fileName;

 std::string graphicsFileName = fileNameWithNoExtension + ".png";

 std::string plotFileName = fileNameWithNoExtension + ".plt";

 std::string plotTitle = fileName;

 std::string dataTitle = fileName;

 // Instantiate the plot and set its title.

 Gnuplot plot (graphicsFileName);

 plot.SetTitle (plotTitle);

 // Make the graphics file, which the plot file will create when it

 // is used with Gnuplot, be a PNG file.

 plot.SetTerminal ("png");

 // Set the labels for each axis.

 plot.SetLegend (axisXname, axisYname);

 // Set the range for the x axis

 std::stringstream sstm;

 sstm << simTime;

 plot.AppendExtra ("set xrange [0:" + sstm.str() + "]");

 // Instantiate the dataset, set its title, and make the points be

 // plotted along with connecting lines.

 dataset.SetTitle (dataTitle);

 dataset.SetStyle (Gnuplot2dDataset::LINES_POINTS);

 // Add the dataset to the plot.

 plot.AddDataset (dataset);

 // Open the plot file.

 std::ofstream plotFile (plotFileName.c_str());

 // Write the plot file.

 plot.GenerateOutput (plotFile);

 system(("gnuplot < " + plotFileName).c_str());

 // Close the plot file.

 plotFile.close ();

}

void PlotStatistics(uint32_t nUe, double simTime){

 //Create throughput datasets for every node and plot statistics

 Gnuplot2dDataset** datasets = CalculateThroughputperNode("DlRlcStats.txt",

nUe);

 string plotName;

 uint32_t num;

 for (num = 0; num < nUe; num++)

 {

 std::stringstream sstm;

 sstm << "Throughput-" << num+1;

 plotName = sstm.str();

 Create2DPlotFile(plotName, simTime, "Seconds", "Kbps",

*datasets[num]);

 plotName.clear();

 delete datasets[num];

 }

 delete datasets;

 //Create MOS datasets for every node and plot statistics

 datasets = CalculateMOSperNode("DlRlcStats.txt", nUe, simTime);

 for (num = 0; num < nUe; num++)

 {

 std::stringstream sstm;

 sstm << "MOS-" << num+1;

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 86

 plotName = sstm.str();

 Create2DPlotFile(plotName, simTime, "Seconds", "MOS",

*datasets[num]);

 plotName.clear();

 delete datasets[num];

 }

 delete datasets;

 //Create reception ratio for every node and plot statistics

 datasets = CalculateReceptionRatioperNode("DlRlcStats.txt", nUe,

encodingRate);

 for (num = 0; num < nUe; num++)

 {

 std::stringstream sstm;

 sstm << "Reception_Ratio-" << num+1;

 plotName = sstm.str();

 Create2DPlotFile(plotName, simTime, "Seconds", "ρ", *datasets[num]);

 plotName.clear();

 delete datasets[num];

 }

 delete datasets;

 //Create SINR datasets for every node and plot statistics

 datasets = CalculateSINRperNode("DlRsrpSinrStats.txt", nUe);

 for (num = 0; num < nUe; num++)

 {

 std::stringstream sstm;

 sstm << "SINR-" << num+1;

 plotName = sstm.str();

 Create2DPlotFile(plotName, simTime, "Seconds", "Linear SINR",

*datasets[num]);

 plotName.clear();

 delete datasets[num];

 }

delete datasets;

}

int main (int argc, char *argv[])

{

/*In order to run properly, please provide the number of User Equipments (nUe)

 * and the simulation time (simTime) before execution.*/

 uint32_t nUe = 1;

 const double simTime = 10.0;

 const double encodingRate = 77.09; //kbps

 highestBitrate = 80; //kbps

 statsInterval = 0.25; //secs

 PlotStatistics(nUe, simTime, encodingRate);}

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 87

/*

 * File: evalvid-client-server-helper.cc

 */

#include "../../evalvid/helper/evalvid-client-server-helper.h"

#include "ns3/evalvid-client.h"

#include "ns3/evalvid-server.h"

#include "ns3/uinteger.h"

#include "ns3/string.h"

namespace ns3 {

 EvalvidServerHelper::EvalvidServerHelper (){}

 EvalvidServerHelper::EvalvidServerHelper (uint16_t port)

 {

 m_factory.SetTypeId (EvalvidServer::GetTypeId ());

 SetAttribute ("Port", UintegerValue (port));

 }

 void

 EvalvidServerHelper::SetAttribute(std::string name,const AttributeValue&value)

 {

 m_factory.Set (name, value);

 }

 ApplicationContainer EvalvidServerHelper::Install (NodeContainer c)

 {

 ApplicationContainer apps;

 for (NodeContainer::Iterator i = c.Begin (); i != c.End (); ++i)

 {

 Ptr<Node> node = *i;

 m_server = m_factory.Create<EvalvidServer> ();

 node->AddApplication (m_server);

 apps.Add (m_server);

 }

 return apps;

 }

 Ptr<EvalvidServer> EvalvidServerHelper::GetServer (void)

 {

 return m_server;

 }

 EvalvidClientHelper::EvalvidClientHelper () {}

 EvalvidClientHelper::EvalvidClientHelper (Ipv4Address ip,uint16_t port)

 {

 m_factory.SetTypeId (EvalvidClient::GetTypeId ());

 SetAttribute ("RemoteAddress", Ipv4AddressValue (ip));

 SetAttribute ("RemotePort", UintegerValue (port));

 }

 void

 EvalvidClientHelper::SetAttribute(std::string name,const AttributeValue &value)

 {

 m_factory.Set (name, value);

 }

 ApplicationContainer EvalvidClientHelper::Install (NodeContainer c)

 {

 ApplicationContainer apps;

 for (NodeContainer::Iterator i = c.Begin (); i != c.End (); ++i)

 {

 Ptr<Node> node = *i;

 Ptr<EvalvidClient> client = m_factory.Create<EvalvidClient>();

 node->AddApplication (client);

 apps.Add (client);

 }

 return apps;

 }

}

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 88

/*

 * File: evalvid-server.cc

 */

#include "../../evalvid/model/evalvid-server.h"

#include "ns3/log.h"

#include "ns3/ipv4-address.h"

#include "ns3/nstime.h"

#include "ns3/inet-socket-address.h"

#include "ns3/socket.h"

#include "ns3/simulator.h"

#include "ns3/socket-factory.h"

#include "ns3/packet.h"

#include "ns3/uinteger.h"

#include "ns3/string.h"

#include <ns3/tcp-socket.h>

#include "mpeg-header.h"

#include "http-header.h"

using namespace std;

namespace ns3 {

NS_LOG_COMPONENT_DEFINE ("EvalvidServer");

NS_OBJECT_ENSURE_REGISTERED (EvalvidServer);

TypeId

EvalvidServer::GetTypeId (void)

{

 static TypeId tid = TypeId ("ns3::EvalvidServer")

 .SetParent<Application> ()

 .AddConstructor<EvalvidServer> ()

 .AddAttribute ("Port",

 "Port on which we listen for incoming packets.",

 UintegerValue (100),

 MakeUintegerAccessor (&EvalvidServer::m_port),

 MakeUintegerChecker<uint16_t> ())

 .AddAttribute ("SenderDumpFilename",

 "Sender Dump Filename",

 StringValue(""),

 MakeStringAccessor(&EvalvidServer::m_senderTraceFileName),

 MakeStringChecker())

 .AddAttribute ("SenderTraceFilename",

 "Sender trace Filename",

 StringValue(""),

 MakeStringAccessor(&EvalvidServer::m_videoTraceFileName),

 MakeStringChecker())

 .AddAttribute ("PacketPayload",

 "MTU",

/*In our case: MTU - (SEQ_HEADER + TCP_HEADER + IP_HEADER + HTTP HEADER + MPEG

HEADER) so: 1500 - (12 + 20 + 20 + 28 + 32) = 1388

But for now we use 460 to avoid TCP truncation.*

*/

 UintegerValue (460),

 MakeUintegerAccessor (&EvalvidServer::m_packetPayload),

 MakeUintegerChecker<uint16_t> ())

 ;

 return tid;

}

EvalvidServer::EvalvidServer ()

{

 m_socket = 0;

 m_port = 0;

 m_numOfFrames = 0;

 m_packetPayload = 0;

 m_packetId = 0;

 m_sendEvent = EventId ();

 packetcount = 0;

 m_totalRx = 0;

 videoId = -1;

}

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 89

EvalvidServer::~EvalvidServer ()

{

 NS_LOG_FUNCTION (this);

}

void

EvalvidServer::DoDispose (void)

{

 NS_LOG_FUNCTION (this);

 Application::DoDispose ();

}

void

EvalvidServer::StartApplication (void)

{

 NS_LOG_FUNCTION_NOARGS();

 Ptr<Socket> socket = 0;

 if (socket == 0)

 {

 TypeId tid = TypeId::LookupByName ("ns3::TcpSocketFactory");

 socket = Socket::CreateSocket (GetNode (), tid);

 InetSocketAddress local = InetSocketAddress (Ipv4Address::GetAny (),

m_port);

 socket->Bind (local);

 socket->Listen();

 socket->SetRecvCallback (MakeCallback (&EvalvidServer::HandleRead,

this));

 socket->SetAcceptCallback(

 MakeNullCallback<bool, Ptr<Socket>, const Address

&>(),

 MakeCallback(&EvalvidServer::HandleAccept, this));

 }

/* //For IPv6 only:

 Ptr<Socket> socket6 = 0;

 if (socket6 == 0)

 {

 TypeId tid = TypeId::LookupByName ("ns3::TcpSocketFactory");//A

 socket6 = Socket::CreateSocket (GetNode (), tid);

 Inet6SocketAddress local = Inet6SocketAddress (Ipv6Address::GetAny

(), m_port);

 socket6->Bind (local);

 socket6->Listen();

 socket6->SetRecvCallback (MakeCallback (&EvalvidServer::HandleRead,

this));

 }*/

 Setup(); //Setup the video(s) for distribution.

}

void

EvalvidServer::StopApplication ()

{

 NS_LOG_FUNCTION_NOARGS();

 //Simulator::Cancel (m_sendEvent);

}

void

EvalvidServer::Setup()

{

 NS_LOG_FUNCTION_NOARGS();

 m_videoInfoStruct_t *videoInfoStruct;

 uint32_t frameId;

 string frameType;

 uint32_t frameSize;

 uint16_t numOfTcpPackets;

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 90

 double sendTime;

 double lastSendTime = 0.0;

 ifstream videoTraceFile(m_videoTraceFileName.c_str(), ios::in);

 if (videoTraceFile.fail())

 {

 NS_FATAL_ERROR(">> EvalvidServer: Error while opening video trace

file: " << m_videoTraceFileName.c_str());

 return;

 }

 while (videoTraceFile >> frameId >> frameType >> frameSize >> numOfTcpPackets

>> sendTime)

 {

 videoInfoStruct = new m_videoInfoStruct_t;

 videoInfoStruct->frameType = frameType;

 videoInfoStruct->frameSize = frameSize;

 videoInfoStruct->numOfTcpPackets = frameSize/m_packetPayload;

 videoInfoStruct->packetInterval = Seconds(sendTime - lastSendTime);

 m_videoInfoMap.insert (pair<uint32_t, m_videoInfoStruct_t*>(frameId,

videoInfoStruct));

 //NS_LOG_LOGIC(">> EvalvidServer: " << frameId << "\t" << frameType

<< "\t" <<frameSize << "\t" << numOfTcpPackets << "\t" << sendTime);

 lastSendTime = sendTime;

 }

 m_numOfFrames = frameId;

 m_videoInfoMapIt = m_videoInfoMap.begin();

 m_senderTraceFile.open(m_senderTraceFileName.c_str(), ios::out);

 if (m_senderTraceFile.fail())

 {

 NS_FATAL_ERROR(">> EvalvidServer: Error while opening sender trace

file: " << m_senderTraceFileName.c_str());

 return;

 }

}

void

EvalvidServer::Send () /*Sends one frame at a time! Calls itself until the last frame

of the segment is sent.*/

{

 NS_LOG_FUNCTION(this << Simulator::Now().GetSeconds());

 if (m_videoInfoMapIt != m_videoInfoMap.end())

 {

 for(int i=0; i<m_videoInfoMapIt->second->numOfTcpPackets; i++)

 {

 Ptr<Packet> p = Create<Packet> (m_packetPayload);//originally 1460 bytes

 m_packetId++;

 m_senderTraceFile << std::fixed << std::setprecision(4) <<

Simulator::Now().ToDouble(Time::S)

 << std::setfill(' ') << std::setw(16) << "id " <<

m_packetId

 << std::setfill(' ') << std::setw(16) << "tcp " << p-

>GetSize()

 << std::endl;

 /* Add headers to the packet. */

 SeqTsHeader seqTs;

 seqTs.SetSeq (m_packetId);

 HTTPHeader http_header;

 http_header.SetMessageType(HTTP_RESPONSE);

 http_header.SetVideoId(videoId);

 http_header.SetResolution(clientResolution);

 http_header.SetSegmentId(segmentId);

 MPEGHeader mpeg_header;

 mpeg_header.SetFrameId(m_videoInfoMapIt->first);

 mpeg_header.SetPlaybackTime(

 MilliSeconds(

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 91

 (m_videoInfoMapIt->first - 1)

 * MPEG_TIME_BETWEEN_FRAMES)); //50 FPS

 mpeg_header.SetType(m_videoInfoMapIt->second->frameType);

 mpeg_header.SetSize(m_videoInfoMapIt->second->frameSize);

 p->AddHeader (seqTs);

 p->AddHeader(http_header);

 p->AddHeader(mpeg_header);

 packetcount++;

 std::cout <<"Server: bytes sent->"<<p->GetSize() <<" frame size->"

<<mpeg_header.GetSize() <<" packetcount:"<<packetcount <<std::endl;

 m_socket->SendTo(p, 0, m_peerAddress);

 }

 Ptr<Packet> p = Create<Packet> (m_videoInfoMapIt->second->frameSize %

m_packetPayload);

 m_packetId++;

 m_senderTraceFile << std::fixed << std::setprecision(4)

 << Simulator::Now().ToDouble(Time::S)

 << std::setfill(' ') << std::setw(16) << "id " << m_packetId

 << std::setfill(' ') << std::setw(16) << "tcp " << p>GetSize()

 << std::setfill(' ') << std::setw(16) << "frame id "

 << m_videoInfoMapIt->first << std::endl;

 /* Add headers to the packet. */

 SeqTsHeader seqTs;

 seqTs.SetSeq (m_packetId);

 HTTPHeader http_header;

 http_header.SetMessageType(HTTP_RESPONSE);

 http_header.SetVideoId(videoId);

 http_header.SetResolution(clientResolution);

 http_header.SetSegmentId(segmentId);

 MPEGHeader mpeg_header;

 mpeg_header.SetFrameId(m_videoInfoMapIt->first);

 mpeg_header.SetPlaybackTime(

 MilliSeconds((m_videoInfoMapIt->first + (segmentId *

MPEG_FRAMES_PER_SEGMENT))

 * MPEG_TIME_BETWEEN_FRAMES)); //50 fps

 mpeg_header.SetType(m_videoInfoMapIt->second->frameType);

 mpeg_header.SetSize(m_videoInfoMapIt->second->frameSize);

 p->AddHeader (seqTs);

 p->AddHeader(http_header);

 p->AddHeader(mpeg_header);

 packetcount++;

 std::cout <<"Server: bytes sent->"<<p->GetSize() <<" frame size->"

<<mpeg_header.GetSize() <<" packetcount:"<<packetcount <<std::endl;

 m_socket->SendTo(p, 0, m_peerAddress);

 m_videoInfoMapIt++;

 if (m_videoInfoMapIt == m_videoInfoMap.end())

 {

 NS_LOG_INFO(">> EvalvidServer: Video streaming successfully completed!");

 }

 else if ((m_videoInfoMapIt->first - 1) % MPEG_FRAMES_PER_SEGMENT == 0)

 {

 NS_LOG_INFO(">> EvalvidServer: Sending segment " <<segmentId <<"

complete!");

 }

 else

 {

 if (m_videoInfoMapIt->second->packetInterval.GetSeconds() == 0)

 {

 m_sendEvent = Simulator::ScheduleNow (&EvalvidServer::Send, this);

 }

 else

 {

 m_sendEvent = Simulator::Schedule (m_videoInfoMapIt->second->

 packetInterval, &EvalvidServer::Send, this);

 }

 }

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 92

 }

 else

 {

 NS_FATAL_ERROR(">> EvalvidServer: Frame does not exist!");

 }

}

void

EvalvidServer::HandleRead (Ptr<Socket> socket)

{

 //NS_LOG_FUNCTION_NOARGS();

 Ptr<Packet> packet;

 Address from;

 m_socket = socket;

 while ((packet = socket->RecvFrom (from)))

 {

 m_peerAddress = from;

 m_totalRx += packet->GetSize();

 /*Extract info from received client request packet. */

 HTTPHeader header;

 packet->RemoveHeader(header);

 videoId = header.GetVideoId();

 segmentId = header.GetSegmentId();

 clientResolution = header.GetResolution();

 if (InetSocketAddress::IsMatchingType (from))

 {

 NS_LOG_INFO (">> EvalvidServer: Client at " <<

InetSocketAddress::ConvertFrom (from).GetIpv4 ()

 << " is requesting a video streaming.");

 }

 /*//For IPv6 only:

 else if (Inet6SocketAddress::IsMatchingType (from))

 {

 NS_LOG_INFO (">> EvalvidServer: Client at " <<

Inet6SocketAddress::ConvertFrom (from).GetIpv6 ()

 << " is requesting a video streaming.");

 }*/

 if (m_videoInfoMapIt != m_videoInfoMap.end())

 {

 NS_LOG_INFO(">> EvalvidServer: Starting video streaming...");

 if (m_videoInfoMapIt->second->packetInterval.GetSeconds() == 0)

 {

 m_sendEvent = Simulator::ScheduleNow (&EvalvidServer::Send, this);

 }

 else

 {

 m_sendEvent = Simulator::Schedule(m_videoInfoMapIt->second->

 packetInterval, &EvalvidServer::Send, this);

 }

 }

 else

 {

 NS_FATAL_ERROR(">> EvalvidServer: Frame does not exist!");

 }

 //m_rxTrace(packet, from);

 }

}

void

 EvalvidServer::HandleAccept(Ptr<Socket> s, const Address& from)

 {

 NS_LOG_FUNCTION(this << s << from);

 s->SetRecvCallback(MakeCallback(&EvalvidServer::HandleRead, this));

 }

}

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 93

/*

 * File: evalvid-client.cc

 */

#include "../../evalvid/model/evalvid-client.h"

#include "ns3/log.h"

#include "ns3/ipv4-address.h"

#include "ns3/nstime.h"

#include "ns3/inet-socket-address.h"

#include "ns3/socket.h"

#include "ns3/simulator.h"

#include "ns3/socket-factory.h"

#include "ns3/packet.h"

#include "ns3/uinteger.h"

#include <stdlib.h>

#include <stdio.h>

#include "ns3/string.h"

#include "http-header.h"

namespace ns3 {

 NS_LOG_COMPONENT_DEFINE ("EvalvidClient");

 NS_OBJECT_ENSURE_REGISTERED (EvalvidClient);

 TypeId

 EvalvidClient::GetTypeId (void)

 {

 static TypeId tid = TypeId ("ns3::EvalvidClient")

 .SetParent<Application> ()

 .AddConstructor<EvalvidClient> ()

 .AddAttribute("VideoId", "The Id of the video that is played.",

 UintegerValue(0),

 MakeUintegerAccessor(&EvalvidClient::m_videoId),

 MakeUintegerChecker<uint32_t>(1))

 .AddAttribute ("RemoteAddress",

 "The destination Ipv4Address of the outbound packets",

 Ipv4AddressValue (),

 MakeIpv4AddressAccessor (&EvalvidClient::m_peerAddress),

 MakeIpv4AddressChecker ())

 .AddAttribute ("RemotePort", "The destination port of the outbound

packets",

 UintegerValue (100),

 MakeUintegerAccessor (&EvalvidClient::m_peerPort),

 MakeUintegerChecker<uint16_t> ())

 .AddAttribute ("ReceiverDumpFilename",

 "Receiver Dump Filename",

 StringValue(""),

 MakeStringAccessor(&EvalvidClient::receiverDumpFileName),

 MakeStringChecker())

 .AddAttribute ("PacketPayload",

 "Packet Payload, i.e. MTU - (SEQ_HEADER + UDP_HEADER +

IP_HEADER). "

 "This is the same value used to hint video with MP4Box.

Default: 1460.",

 /*In our case: MTU - (SEQ_HEADER + TCP_HEADER +

IP_HEADER + HTTP HEADER + MPEG HEADER)

 * so: 1500 - (12 +

 20 + 20 + 28 + 32) = 1388

 * But for now we use 460 to avoid TCP truncation.

 * */

 UintegerValue (460),

 MakeUintegerAccessor (&EvalvidClient::m_packetPayload),

 MakeUintegerChecker<uint16_t> ())

 ;

 return tid;

 }

 EvalvidClient::EvalvidClient () : m_bitRate(80000), // default bitrate in bps

 m_segmentId(0) // seems to start with 0

 {

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 94

 NS_LOG_FUNCTION_NOARGS ();

 m_sendEvent = EventId ();

 m_parser.SetApp(this); // So the parser knows where to send the received

messages

 }

 EvalvidClient::~EvalvidClient ()

 {

 NS_LOG_FUNCTION_NOARGS ();

 }

 void

 EvalvidClient::SetRemote (Ipv4Address ip, uint16_t port)

 {

 m_peerAddress = ip;

 m_peerPort = port;

 }

 MpegPlayer&

 EvalvidClient::GetPlayer(){

 return m_player;

 }

 void

 EvalvidClient::DoDispose (void)

 {

 NS_LOG_FUNCTION_NOARGS ();

 Application::DoDispose ();

 }

 double

 EvalvidClient::GetBitRateEstimate()

 {

 return m_bitrateEstimate;

 }

 void

 EvalvidClient::StartApplication (void)

 {

 NS_LOG_FUNCTION_NOARGS();

 if (m_socket == 0)

 {

 TypeId tid = TypeId::LookupByName ("ns3::TcpSocketFactory");

 m_socket = Socket::CreateSocket (GetNode (), tid);

 if (m_socket->GetSocketType() != Socket::NS3_SOCK_STREAM

 && m_socket->GetSocketType() != Socket::NS3_SOCK_SEQPACKET)

 NS_FATAL_ERROR ("Using HTTP with an incompatible socket type. "

 "HTTP requires SOCK_STREAM or SOCK_SEQPACKET. "

 "In other words, use TCP instead of UDP.");

 m_socket->Bind ();

 m_socket->Connect (InetSocketAddress (m_peerAddress, m_peerPort));

 }

 receiverDumpFile.open(receiverDumpFileName.c_str(), ios::out);

 if (receiverDumpFile.fail())

 {

 NS_FATAL_ERROR(">> EvalvidClient: Error while opening output file: " <<

receiverDumpFileName.c_str());

 return;

 }

 m_socket->SetRecvCallback (MakeCallback (&EvalvidClient::HandleRead, this));

 m_socket->SetConnectCallback(

 MakeCallback(&EvalvidClient::ConnectionSucceeded, this),

 MakeCallback(&EvalvidClient::ConnectionFailed, this));

 }

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 95

 void

 EvalvidClient::ConnectionSucceeded(Ptr<Socket> socket)

 {

 NS_LOG_FUNCTION(this << socket);

 NS_LOG_LOGIC("Connection succeeded!");

 //m_connected = true;

 Send(); //Request Segment

 }

 void

 EvalvidClient::ConnectionFailed(Ptr<Socket> socket)

 {

 NS_LOG_FUNCTION(this << socket);

 NS_LOG_LOGIC("Connection Failed");

 }

 void

 EvalvidClient::Send (void) /* Request segment. */

 {

 NS_LOG_FUNCTION_NOARGS ();

 Ptr<Packet> p = Create<Packet> (100);

 SeqTsHeader seqTs;

 seqTs.SetSeq (0);

 p->AddHeader (seqTs);

 HTTPHeader httpHeader;//Achilleas

 httpHeader.SetSeq(1);

 httpHeader.SetMessageType(HTTP_REQUEST);

 httpHeader.SetVideoId(m_videoId);

 httpHeader.SetResolution(m_bitRate);

 httpHeader.SetSegmentId(m_segmentId++);

 p->AddHeader(httpHeader);

 m_socket->Send (p);

 m_requestTime = Simulator::Now();

 m_segment_bytes = 0;

 NS_LOG_INFO (">> EvalvidClient: Sending request for video streaming to

EvalvidServer at "

 << m_peerAddress << ":" << m_peerPort);

 }

 void

 EvalvidClient::StopApplication ()

 {

 NS_LOG_FUNCTION_NOARGS ();

 receiverDumpFile.close();

 Simulator::Cancel (m_sendEvent);

 }

 void

 EvalvidClient::HandleRead (Ptr<Socket> socket)

 {

 NS_LOG_FUNCTION (this << socket);

 m_parser.ReadSocket(socket);

 }

 void

 EvalvidClient::MessageReceived(Packet message)

 {

 NS_LOG_FUNCTION(this << message);

 MPEGHeader mpegHeader;

 HTTPHeader httpHeader;

 SeqTsHeader seqTs;

 // Send the frame to the player

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 96

 m_player.ReceiveFrame(&message); //TODO: In case frame consists of more than 1

packets, play them all together.

 m_segment_bytes += message.GetSize();

 m_totBytes += message.GetSize();

 message.RemoveHeader(mpegHeader);

 message.RemoveHeader(httpHeader);

 message.RemoveHeader(seqTs);

 receiverDumpFile << std::fixed << std::setprecision(4) <<

Simulator::Now().ToDouble(ns3::Time::S)

 << std::setfill(' ') << std::setw(16) << "id "

<< seqTs.GetSeq()

 << std::setfill(' ') << std::setw(16) << "tcp

" << message.GetSize()

 << std::endl;

 // Calculate the buffering time

 switch (m_player.m_state)

 {

 case MPEG_PLAYER_PLAYING:

 m_sumDt += m_player.GetRealPlayTime(mpegHeader.GetPlaybackTime());

 break;

 case MPEG_PLAYER_PAUSED:

 break;

 case MPEG_PLAYER_DONE:

 return;

 default:

 NS_FATAL_ERROR("WRONG STATE");

 }

 // If we received the last frame of the segment

 if (mpegHeader.GetFrameId()!= 0 && mpegHeader.GetFrameId() %

MPEG_FRAMES_PER_SEGMENT == 0)

 {

 m_segmentFetchTime = Simulator::Now() - m_requestTime;

 NS_LOG_INFO(Simulator::Now().GetSeconds() << " bytes: " << m_segment_bytes

 <<" segmentTime: " << m_segmentFetchTime.GetSeconds()

 <<" segmentRate: " << 8 * m_segment_bytes /

m_segmentFetchTime.GetSeconds());

 // Feed the bitrate info to the player

 AddBitRate(Simulator::Now(),

 8 * m_segment_bytes / m_segmentFetchTime.GetSeconds());

 Time currDt = m_player.GetRealPlayTime(mpegHeader.GetPlaybackTime());

 // And tell the player to monitor the buffer level

 LogBufferLevel(currDt);

 Time bufferDelay;

 uint32_t prevBitrate = m_bitRate;

 uint32_t nextRate = 8 * m_segment_bytes / m_segmentFetchTime.GetSeconds();

 CalcNextSegment(nextRate, m_bitRate, bufferDelay);

 if (prevBitrate != m_bitRate)

 {

 m_rateChanges++;

 }

 if (bufferDelay == Seconds(0))

 {

 std::cout <<"Buffer delay!" <<std::endl;

 Send();

 }

 else

 {

 m_player.SchduleBufferWakeup(bufferDelay, this); //if we want to

schedule a segment request after delaying the buffer.

 }

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 97

 std::cout << Simulator::Now().GetSeconds() << " Node: " << m_id

 << " newBitRate: " << m_bitRate << " oldBitRate: " <<

prevBitrate

 << " estBitRate: " << GetBitRateEstimate() << " interTime: "

 << m_player.m_interruption_time.GetSeconds() << " T: "

 << currDt.GetSeconds() << " dT: "

 << (m_lastDt >= 0 ? (currDt - m_lastDt).GetSeconds() : 0)

 << " del: " << bufferDelay << std::endl;

 NS_LOG_INFO("==== Last frame received. Requesting segment " <<

m_segmentId);

 m_lastDt = currDt;

 }

 }

 void

 EvalvidClient::CalcNextSegment(uint32_t currRate, uint32_t & nextRate, Time &

delay)

 {

 nextRate = currRate;

 delay = Seconds(0);

 }

 void

 EvalvidClient::AddBitRate(Time time, double bitrate)

 {

 m_bitrates[time] = bitrate;

 double sum = 0;

 int count = 0;

 for (std::map<Time, double>::iterator it = m_bitrates.begin();

 it != m_bitrates.end(); ++it)

 {

 if (it->first < (Simulator::Now() - m_window))

 {

 m_bitrates.erase(it->first);

 }

 else

 {

 sum += it->second;

 count++;

 }

 }

 m_bitrateEstimate = sum / count;

 }

 void

 EvalvidClient::LogBufferLevel(Time t)

 {

 m_bufferState[Simulator::Now()] = t;

 for (std::map<Time, Time>::iterator it = m_bufferState.begin(); it !=

m_bufferState.end(); ++it)

 {

 if (it->first < (Simulator::Now() - m_window))

 {

 m_bufferState.erase(it->first);

 }

 }

 }

}

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 98

REFERENCES

[1] IETF RFC 2616: "Hypertext Transfer Protocol – HTTP/1.1", Fielding R. et al., June 1999.
[2] Stockhammer, T.: Dynamic Adaptive Streaming over HTTP { standards and design principles. In:

Proceedings of the 2nd Annual ACM Conference on Multimedia Systems, MMSys '11,
pp.133{144. ACM, New York, NY, USA (2011)

[3] https://www.theguardian.com/media-network/media-network-blog/2013/mar/01/history-streaming-
future-connected-tv

[4] http://www.onlinevideo.net/2011/05/streaming-vs-progressive-download-vs-adaptive-streaming/
[5] http://www.streamingmedia.com/Articles/Editorial/What-Is-.../What-is-Adaptive-Streaming-

75195.aspx
[6] https://tech.ebu.ch/docs/techreview/trev_2011-Q1_adaptive-streaming_laukens.pdf
[7] Stockhammer, T.: Dynamic Adaptive Streaming over HTTP { standards and design principles.In:

Proceedings of the 2nd Annual ACM Conference on Multimedia Systems, MMSys '11,
pp.133{144. ACM, New York, NY, USA (2011)

[8] J.-M. Jeong and J.-D. Kim. Effective bandwidth measurement for dynamic adaptive streaming
over http. In Information Networking (ICOIN), 2015International Conference on, pages 375{378.
IEEE,2015.

[9] http://mpeg.chiariglione.org/about
[10] Dmitri Jarnikov, and Tanır Özçelebi: Client intelligence for adaptive streaming solutions, Signal

Processing: Image Communication Volume 26, Issue 7, August 2011
[11] https://www.harmonicinc.com/news-events/press-releases/read/harmonic-powers-first-public-

mpeg-dash-trial-during-london-olympics/
[12] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the internet,” IEEE

Multimedia, vol. 18, no. 4, pp. 62–67, Oct. 2011.
[13] https://www.encoding.com/mpeg-dash/
[14] MPEG-DASH vs. Apple HLS vs. Microsoft Smooth Streaming vs. Adobe HDS".

https://bitmovin.com/mpeg-dash-vs-apple-hls-vs-microsoft-smooth-streaming-vs-adobe-hds/
2015-03-29.

[15] MPEG-DASH, Reference number ISO/IEC 23009-1:2014, ISO International Standard, 2nd edition
2014-05-15

[16] Sideris, Markakis, Zotos, Pallis, Skiaris: MPEG-DASH users' QoE: The segment duration effect,
DOI: 10.1109/QoMEX.2015.7148117

[17] Aloman, Iosif, Ciotirnae, Cano: Performance evaluation of video streaming using MPEG DASH,
RTSP, and RTMP in mobile networks, DOI: 10.1109/WMNC.2015.12, Conference: 8th IFIP
Wireless and Mobile Networking Conference (WMNC 2015)

[18] George, Kaiser, Pham and Krauss: Internet-Delivered Television using MPEG DASH:
Opportunities and Challenges

[19] D.Astely, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom,S.Parkvall, “LTE: the
 evolution of mobile broadband”,IEEE Communications Magazine, vol. 4, pp. 44–51,
 2009.[Online].Available:http://dx.doi.org/10.1109/MCOM.2009.4907406

[20] 3GPP, “Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN),” Tech. rep.
25.913, http://www.3gpp.org

[21] E. Dahlman, S. Parkvall, J. Sk•old, and P. Beming,3G Evolution { HSPA and LTE for Mobile
Broadband, 1st ed. Aca-demic Press, 2007

[22] AT&T Tech Channel (2011-06-13). "AT&T Archives : Testing the First Public Cell Phone
Network". Techchannel.att.com

[23] Barnes, David M (May 1985). The Introduction of Cellular Radio to the United Kingdom. Vehicular
Technology Conference, 1985. 35th. pp. 147–152

[24] Japanese Total Access Communication (JTAC), mobiledia.com
[25] GSM Doc 28/85 "Services and Facilities to be provided in the GSM System" rev2, June 1985
[26] ITU: 3G Definition, International Mobile Telecommunications (IMT) Cellular and Mobile

Broadband Access for the 21st Century
[27] https://www.itu.int/osg/spu/imt-2000/technology.html#Cellular Standards for the Third Generation
[28] E. Dahlman, B. Gudmundson, M. Nilsson,and A. Skold,“UMTS/IMT-2000 based on wideband

 CDMA,”IEEE Communications Magazine,vol.36, no. 9, pp. 70-80, September 1998
[29] Guowang Miao; Jens Zander; Ki Won Sung; Ben Slimane (2016). Fundamentals of Mobile Data

Networks. Cambridge University Press. ISBN 1107143217
[30] J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw Hill, 1995

https://www.theguardian.com/media-network/media-network-blog/2013/mar/01/history-streaming-future-connected-tv
https://www.theguardian.com/media-network/media-network-blog/2013/mar/01/history-streaming-future-connected-tv
http://www.onlinevideo.net/2011/05/streaming-vs-progressive-download-vs-adaptive-streaming/
https://tech.ebu.ch/docs/techreview/trev_2011-Q1_adaptive-streaming_laukens.pdf
http://mpeg.chiariglione.org/about
https://www.harmonicinc.com/news-events/press-releases/read/harmonic-powers-first-public-mpeg-dash-trial-during-london-olympics/
https://www.harmonicinc.com/news-events/press-releases/read/harmonic-powers-first-public-mpeg-dash-trial-during-london-olympics/
https://www.encoding.com/mpeg-dash/
http://www.3gpp.org/

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 99

[31] Siemens (2004-06-10). "TD-SCDMA Whitepaper: the Solution for TDD bands" (PDF). TD Forum.
pp. 6–9

[32] Junse Lee, Namyoon Lee, Francois Baccelli: Scaling Laws for Ergodic Spectral Efficiency in
MIMO Poisson Networks, Cornell University Library, Submitted to IEEE Transactions on
Information Theory, https://arxiv.org/abs/1608.06065v1

[33] S. Sesia, I. Toufik and M. Baker, Eds., LTE - The UMTS Long Term Evolution, 2nd ed., Wiley,
2011

[34] R. Kwan and C. Leung, "A Survey of Scheduling and Interference Mitigation in LTE," Journal of
Electrical and Computer Engineering - Special issue on LTE/LTE advanced cellular
communication networks, vol. 2010, no. 1, 2010

[35] Van Veen, B.D.; Buckley, K.M. (1988). "Beamforming: A versatile approach to spatial filtering"
(PDF). IEEE ASSP Magazine. 5 (2): 4. doi:10.1109/53.665.

[36] 3GPP: Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio
transmission and reception, Technical specification (TS) 36.101, Release 8

[37] 3GPP: UTRAN overall description (Release 11); Technical Specification Group Radio Access
Network, December 2012

[38] 3GPP: General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial
Radio Access Network (E-UTRAN) access, Technical specification (TS) 23.404, Release 8

[39] 3GPP: “The Evolved Packet Core”, Frédéric Firmin, 3GPP MCC,
http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core

[40] Koien, G.M., “Mutual entity authentication for LTE”, Wireless Communications and
 Mobile Computing Conference (IWCMC), 2011 7th International, 4-8 July 2011, pp.
689-694, Istanbul, Turkey.

[41] 3GPP:Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial
Radio Access Network (E-UTRAN); Overall description; Stage 2, Technical specification (TS)
36.300, Release 8

[42] https://www.tutorialspoint.com/lte/lte_network_architecture.htm
[43] 3GPP: Policy and charging control architecture, Technical specification (TS) 23.203, Release 7
[44] 3GPP: Technical Specification Group Services and System Aspects (2006), IP Multimedia

Subsystem (IMS), Stage 2, TS 23.228
[45] CISCO: Mobility Management Entity Overview, MME Administration Guide, StarOS Release 20
[46] https://sites.google.com/site/lteencyclopedia/lte-network-infrastructure-and-elements#TOC-3.2-

HSS-Home-Subscriber-Server-
[47] 3GPP: Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3,

Technical specification (TS) 24.301, Release 8
[48] 3GPP: Evolved Universal Terrestrial Radio Access Network (E-UTRAN); X2 Application Protocol

(X2AP), Technical specification (TS)36.423, Release 8
[49] http://www.masterltefaster.com/lte/userplane.php
[50] 3GPP: TS 29.060 V6.9.0 (2005-06), 3rd Generation Partnership Project, 650 Route des Lucioles

- Sophia Antipolis, Valbonne - FRANCE, 2005-06.
[51] 3GPP: Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC)

protocol specification, Technical specification (TS)36.321, Release 8
[52] 3GPP: Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Convergence

Protocol (PDCP) specification, Technical specification (TS)36.323, Release 8
[53] 3GPP: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC);

Protocol specification, Technical specification (TS)36.331, Release 8
[54] S. Palat and P. Godin, “Network Architecture,” in LTE –The UMTS Long Term Evolution :From

Theory to Practice, S. Sesia, I. Toufik, and M. Baker, Eds. West Sussex, UK: John Wiley and
Sons, 2009, pp. 23 –50.

[55] H. Ekstrom, “QoS control in the 3GPP evolved packet system,”IEEE Communications
Magazine,vol.47,no.2,pp.76–83,2009.

[56] “Qualinet White Paper on Definitions of Quality of Experience”, Dagstuhl Seminar, 2012.
[57] Seufert M, Egger S, Slanina M, Zinner T, Hoßfeld T, Tran-Gia P. A survey on quality of

experience of http adaptive streaming.Communications Surveys Tutorials, IEEE 2014;PP(99),
doi:10.1109/COMST.2014.2360940.

[58] K. D. Singh, Y. Hadjadj-Aoul, and G. Rubino, “Quality of experience estimation for adaptive
HTTP/TCP video streaming using H.264/AVC,” in Proc. IEEE CCNC, Las Vegas, NV, USA, 2012,
pp. 127–131.

[59] T. Zinner, T. Hoßfeld, T. N. Minhas, and M. Fiedler, “Controlled vs. uncontrolled degradations of
QoE—the provisioning-delivery hysteresis in case of video,” inProceedings of the EuroITV
Workshop: Quality of Experience for Multimedia Content Sharing,Tampere,Finland,June 2010

https://arxiv.org/abs/1608.06065v1
http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core
https://sites.google.com/site/lteencyclopedia/lte-network-infrastructure-and-elements#TOC-3.2-HSS-Home-Subscriber-Server-
https://sites.google.com/site/lteencyclopedia/lte-network-infrastructure-and-elements#TOC-3.2-HSS-Home-Subscriber-Server-
http://www.masterltefaster.com/lte/userplane.php

QoE estimation for Adaptive Video Streaming over LTE Networks

A.Moustakis 100

[60] E. Yaacoub and Z. Dawy, Fair Optimization of Video Streaming Quality of Experience in LTE
Networks using Distributed Antenna Systems and Radio Resource Management, Journal of
Applied Mathematics, Special Issue on Fair Optimization and Networks: Models, Algorithms, and
Applications.

[61] Hoßfeld T, Heegaard P, Varela M, Moller S. Formal Definition of QoE Metrics, Qual User Exp
(2016) 1: 2. doi:10.1007/s41233-016-0002-1

[62] E. Liotou, D. Tsolkas, N. Passas, “A roadmap on QoE metrics and models” IEEE ICT, 2016. DOI:
10.1109/ICT.2016.7500363

[63] https://www.techopedia.com/definition/9049/quality-of-service

[64] G. Piro, N. Baldo, and M. Miozzo, “An LTE module for the ns-3 network simulator,” in Proc. of the
4th Int. ICST Conf. on Simulation Tools and Techniques, 2011, pp. 415–422.

[65] NS3 Evalvid module by GERCOM - www.gercom.ufpa.br
[66] J. Klaue, B. Rathke, and A. Wolisz, "EvalVid - A Framework for Video Transmission and Quality

Evaluation", 13th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, pp. 255-272, Urbana, Illinois, USA, September 2003.

[67] Dimitrios J. Vergados, Angelos Michalas, Aggeliki Sgora, and Dimitrios D. Vergados. "A fuzzy
controller for rate adaptation in MPEG-DASH clients." In 2014 IEEE 25th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 2008-2012.
IEEE, 2014.

[68] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner, “Assessing effect sizes of influence factors
towards a QoE model for HTTP adaptive streaming,” in IEEE International Workshop on Quality
of Multimedia Experience (QoMEX), 2014, pp. 111–116.

[69] L. Merakos, E. Liotou, D. Tsolkas, N. Passas, “A Survey on Parametric QoE Estimation for
Popular Services” Journal of Network and Computer Applications · January 2017 . DOI:
10.1016/j.jnca.2016.10.016

https://www.techopedia.com/definition/9049/quality-of-service
http://www.gercom.ufpa.br/
mailto:jirka.klaue@eads.net
https://www.researchgate.net/publication/281967962_A_fuzzy_controller_for_rate_adaptation_in_MPEG-DASH_clients
https://www.researchgate.net/publication/281967962_A_fuzzy_controller_for_rate_adaptation_in_MPEG-DASH_clients

	PROLOGUE
	1. ADAPTIVE VIDEO STREAMING
	1.1 Non-adaptive Video Streaming
	1.1.1 Introduction
	1.1.2 Brief History

	1.2 Adaptive Bitrate Streaming
	1.2.1 Introduction
	1.2.2 Adaptive Streaming: The Definition
	1.2.3 On the Server side
	1.2.4 On the Client side

	1.3 The MPEG-DASH protocol
	1.3.1 Introduction
	1.3.2 Brief History
	1.3.3 The basic scenario
	1.3.4 MPEG-DASH major advantages

	2. LONG TERM EVOLUTION NETWORKS
	2.1 Brief History
	2.2 Objectives of the LTE system
	2.3 LTE Transmission Modes
	2.3.1 Multiple Antennas
	2.3.2 Orthogonal Frequency-Division Multiple Access

	2.4 LTE Architecture
	2.4.1 Overview
	2.4.2 The Evolved Packet Core
	2.4.3 The Non-Access Stratum (NAS)
	2.4.4 The access network
	2.4.5 Protocol Architecture
	2.4.6 User plane
	2.4.7 Control plane

	2.5 Quality of Service in LTE
	2.5.1 EPS Bearers
	2.5.2 QoS Class Identifiers
	2.5.3 OTT Content Providers

	3. QUALITY OF EXPERIENCE
	3.1 Introduction
	3.2 Influence Factors
	3.2.1 Initial Delay
	3.2.2 Stalling
	3.2.3 Adaptation

	3.3 QoS Metrics
	3.4 QoE Metrics
	3.4.1 Mean Opinion Score (MOS)
	3.4.2 Using the PSNR
	3.4.3 Network average

	3.5 Service Providers and Applications

	4. THE NS-3 NETWORK SIMULATOR
	4.1 NS-3 Basics
	4.2 Building on top of LENA Project
	4.2.1 Introduction
	4.2.2 A Simple Example
	4.2.3 The Server-Client Model

	4.3 Implementing DASH
	4.4 Presenting the Results
	4.4.1 Plots
	4.4.2 Throughput Calculation
	4.4.3 SINR Computation
	4.4.4 QoE Metrics

	ABBREVIATIONS-ACRONYMS
	APPENDIX
	REFERENCES

