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A B S T R A C T

Stroke has a large physical, psychological, and financial burden on patients, their families, and society. Based on
functional networks (FNs) constructed from resting state fMRI data, network connectivity after stroke is com-
monly conjectured to be more randomly reconfigured. We find that this hypothesis depends on the severity of
stroke. Head movement-corrected, resting-state fMRI data were acquired from 32 patients after stroke, and 37
healthy volunteers. We constructed anomaly FNs, which combine time series information of a patient with the
healthy control group. We propose data-driven techniques to automatically identify regions of interest that are
stroke relevant. Graph analysis based on anomaly FNs suggests consistently that strong connections in healthy
controls are broken down specifically and characteristically for brain areas that are related to sensorimotor
functions and frontoparietal control systems, but new links in stroke patients are rebuilt randomly from all
possible areas. Entropic measures of complexity are proposed for characterizing the functional connectivity
reorganization patterns, which are correlated with hand and wrist function assessments of stroke patients and
show high potential for clinical use.

1. Introduction

Stroke is the second largest cause of death worldwide, and it has a
high burden on patients, their families, and health-care systems (Valery
et al., 2014). Non-invasive techniques, such as functional MRI, play a
crucial role in measuring the abnormal activity of the brain, which
contains much information for prognostic evaluation and treatment
planning. Given fMRI data that are collected during resting state or
various cognitive tasks, complex network approaches have been able to
characterize inter-relationships between different brain areas (Sporns
et al., 2005). A human brain functional network (FN) can be obtained
from a thresholded correlation matrix, which is derived by computing
all pairwise correlations of time-resolved blood‑oxygen-level dependent
(BOLD) signals from fMRI. The resulting brain networks have specific
characteristics as revealed by graph analysis (Bullmore and Sporns,

2009). For instance, they consist of a number of highly connected hub
nodes, show high clustering in combination with short path length
yielding so-called small-worldliness, and have communities forming a
hierarchical modular organization. These ubiquitous network features
of healthy subjects have been observed widely in functional imaging
and suggest high efficiency of human brains in processing information
(van den Martijn et al., 2010; Zamora-Lopez et al., 2010; Danielle,
2017).

Deviations of FNs from optimal topology have been related to
cognitive and clinical symptoms in a wide range of psychiatric or
neurological disorders (Cornelis, 2014; Fornito et al., 2015; Liang et al.,
2010), which result in re-organization of functional connectivity among
brain regions (Aerts et al., 2016). For instance, it was shown that long-
range paths and modularity are significantly reduced in Alzheimer's
disease and schizophrenia (Betty et al., 2013; Aaron et al., 2010; Zac
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et al., 2015). Moreover, hub disruptions are conjectured to be funda-
mental in various brain pathologies, because hubs are vulnerable to
targeted attacks (Cornelis, 2014; Achard et al., 2012; Nicolas et al.,
2014). The hypothesis of hub vulnerability states that an acute severe
injury could cause a significant functional damage of hub regions, re-
sulting in rapid network fragmentation. It remains unknown, however,
to what degree this random re-organization might take place, or, how
this hypothesis could serve as a biomarker to collect information for
clinical use.

Methodologically, it is very difficult to perform group-wide analyses
across patient groups, since each patient may react differently to brain
disorders, for instance, concerning the site of lesions and severity of
damage. Hence, network properties based on small-worldliness and
modularity structures were not found to sufficiently differentiate be-
tween healthy and patient groups (Achard et al., 2012). Indeed, we find
that topological properties of brain FNs are largely conserved in our
patient group. How, then, can particular features of a patient be cap-
tured in comparison to the group of healthy controls? This is a chal-
lenging question of modern graph analysis, which requires the con-
sideration of large anatomical and functional variability among
subjects.

In stroke disorders, one potential approach is to study the variations
of connectivity patterns for a series of particular regions of interest
(ROIs). One popular choice for ROIs is based on the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). This is
a well-established approach, but, depends critically on one's prior
knowledge of the pathological information which guides the choice of
ROIs. The boundaries of ROIs can dramatically influence the conclu-
sions of such studies (Hayasaka and Laurienti, 2010; Matthew et al.,
2013). To date, no conclusive insights have been obtained on the re-
lationship between the random reorganization hypothesis and patho-
logical impairment.

There are three main objectives in this study. First, we propose a
framework for constructing spatial anomaly networks (SAN) in stroke
patients. This approach combines time series information of each in-
dividual patient with the healthy control population. Specifically, given
the BOLD signal of one voxel from both groups (one patient vs. the
healthy control ensemble) at the same position, we compute the asso-
ciated anomaly time series which characterizes the abnormal variability
(deviation) of the voxel in comparison to the group of healthy volun-
teers (see Materials and Methods). The underlying assumption is that
there is a representative brain network for the matched healthy control
group. Second, to overcome the subjective criteria required to choose
ROIs, we propose a data-driven algorithm to identify several funda-
mental ROIs that are most relevant to stroke pathology. Third, we assess
the re-organization mechanism, showing how strong functional con-
nections of ROIs of the healthy group are destroyed in stroke patients
and how strong links in patients are newly, and randomly, created.
Finally, we propose entropy as a complexity measure for characterizing
connectivity re-organization, which shows a high correlation to clinical
assessments of severe motor impairments.

2. Materials and methods

2.1. Experimental design and data acquisition

We collected data from 32 sub-cortical stroke patients (after head
motion correction) with left motor pathway damage and 37 age-,
gender-, and handedness-matched healthy controls. Both groups had
corrected head movement. The healthy volunteers were denoted by H
= [1, 37], while the patients were indexed by P = [38, 69]. Inclusion
criteria of patients were as follows: (1) first-onset stroke, (2) pure motor
deficits, (3) right-handedness, (4) sufficient cognitive abilities (Mini-
Mental State Examination, MMSE ≥27), (5) examination time more
than 3months from stroke onset. See Supplementary Materials (SM-I)
for a full description on data acquisition and inclusion/exclusion

criteria. The detailed clinical and demographic information of the pa-
tients, including the location of lesions and lesion volumes, is discussed
in the SM (see SM-I, Table S1, S2, Figs. S1, S2).

All 32 post-stroke patients were evaluated by the Fugl-Meyer
Assessment (FMA) (Gladstone et al., 2002). FMA is a well-designed,
pragmatic and efficient test that has been widely applied clinically and
in research to determine disease severity, describe motor recovery, and
plan and assess treatment. A smaller FMA value means that the patient
is more severely affected by stroke. In the clinic, many stroke patients
that appear to have similar locations and extent of lesions may actually
have extremely different outcomes in hand functions. Some have re-
gained certain level of practical abilities in hand function after the
stroke, whereas others have lost all functional capacity of their hand.
Therefore, following our previous studies (Yin et al., 2012; Yin et al.,
2014), we focus on FMA scores that test hand and wrist function.

The fMRI data acquisition steps are described in the SM (see SM-I).
The resting state fMRI from all subjects were acquired on a Siemens
Trio 3.0 Tesla MRI scanner (Siemens, Erlangen, Germany) at the
Shanghai Key Laboratory of Magnetic Resonance, East China Normal
University (ECNU). The protocol for this study was approved by the
Institutional Ethics Committee of ECNU (Shanghai, China), and all
participants or their guardians signed informed written consent. Resting
state fMRI data of the whole brain were acquired using an echo-planar
imaging sequence (EPI). Both T1 and T2 weighted images were also
collected (see SM-I for all parameter settings for EPI, T1 and T2 ac-
quisition). During resting-state fMRI data acquisition, the participants
were instructed to remain awake, relaxed with their eyes closed, and
motionless without thinking about anything in particular. Each scan
lasted for 8min and 6 s; however, the first 6 s was consumed by a
dummy scan. In total, we collected 240 image volumes for a subject.

2.2. Data preprocessing

Preprocessing of the resting-state fMRI data was performed using
Statistical Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/
spm). We discarded the first 10 volumes of the dataset for each parti-
cipant to allow for magnetization equilibrium, leaving 230 volumes for
further analysis (see SM-II).

In constructing brain FNs, one traditional way to acquire time series
data is based on parceling the functional images into cortical and sub-
cortical regions of interest (ROIs), for instance, in the so-called AAL
template of 90 ROIs (Tzourio-Mazoyer et al., 2002). Then, the re-
presentative time series of each ROI is extracted by averaging the BOLD
time series across all voxels within that region. This coarse graining
method has drawbacks, since each ROI defined by the AAL template
occupies in general a different brain area (Hayasaka and Laurienti,
2010). In order to account for both noise effects and the computational
power available to an ordinary PC, we subdivided each AAL region into
40 subregions and extracted one representative time series by averaging
over the particular subregion, which yielded 3600 subregions (subR)
for the entire brain (see SM-III). Our up-sampling procedure does not
cross the relevant anatomical boundaries specified by the original AAL
atlas, as often required (Hermundstad et al., 2013). Note that consistent
results were obtained if we performed similar analyses for the whole
brain at a voxel-wise level (see SM-VII).

2.3. Anomaly time series

Considering the healthy controls as a reference group, we obtained
anomaly time series for each subR of each subject by the following
steps: (1) Let us assume that the healthy controls behave in a similar
manner. Hence, we first quantified the averaged characteristics and
variance for the healthy group. Denoting the time series of i-th subR as
xH(i, t), i∈ [1,3600], t=[1,230], and H∈ [1,37] as the index for a
healthy subject. We computed 〈x〉H(i, t), where 〈⋅〉H was the ensemble
average over all 37 healthy subjects. Respectively, the variance over the
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healthy group was denoted by the standard deviation σH(i, t). (2) For the
time series of each subR of a patient xP(i, t), P∈ [38,69], we extracted
the anomaly time series yP(i, t) as

=
− 〈 〉

y i t
x i t x i t

σ i t
( , )

( , ) ( , )
( , )

,P
P

H

H (1)

which captures the deviations of the BOLD signal of the i-th subR from
the healthy group. Note that σH(i, t) characterizes the variance of the i-
th subR across the ensemble of the healthy subjects. Further improve-
ment could consider the variance across all brain regions as well.

2.4. Spatial abnormal networks

For each patient P, we constructed a network from the anomalies.
First, we obtained the correlation matrix ℛ by calculating the Pearson
correlation coefficient between any pair of subRs i and j. Then, we
defined that two subRs are functionally connected if their temporal
correlation exceeds a predetermined value (p-value< 0.05). More
specifically, from the correlation matrix ℛ, a threshold value was
chosen such that the resulted functional network had a specified density
of links ρ (see SM-IV A).

2.5. Identifying fundamental ROIs

There were four steps in the following data-driven procedure, which
was proposed to identify subRs that behave substantially different with
respect to the healthy ensemble. (1) Given time series of i-subR x(i, t)
and its associated anomaly y(i, t), the sensitivity of i-subR to the brain
disorder was characterized by the linear correlation coefficient. More
specifically, we computed R(y(i, t),〈x〉H(i, t)), i∈ [1,3600]. The smaller
the correlations, the larger the deviations of the subRs from the healthy
conditions. Our results do not change if we replace 〈x〉H(i, t) with x(i, t).
(2) We sorted R in an ascending order and chose the bottom 5% of most
different subRs as the representative for the patient, which yielded
3600×5%=180 subRs. (3) We repeated the above two steps for all
patient subjects. A subR was considered to be substantially affected by
stroke if it appeared consistently (frequently) in 2/3 of the patient
population. Only 15 (out of 3600) subRs were identified as meeting
these criteria, which are therefore considered to be most-relevant to
stroke. (4) We denoted 15 subRs as fundamental by ROI(i, t), i∈ [1,15].
These ROIs are preserved when using different thresholds, for instance,
3/4 or 1/2 of the patient population size (see SM-V for discussions on
the effects of different thresholds).

3. Results

3.1. Global network properties are not sufficient to characterize the
difference between patients and healthy subjects

It has been demonstrated that the degree distribution, P(k), of brain
FNs for healthy subjects often follows power-laws, (Eguíluz et al.,
2005), or exponentially truncated power-laws (Bullmore and Sporns,
2009). In patients, one might expect some sort of deviation from a
power-law distribution. Our numerical results, however, do not show
evidence in support of this hypothesis, since P(k) does not show a clear
qualitative difference between healthy and patient groups (see Fig. S3,
SM-IV B).

Further, we considered various network structural measures
(Bullmore and Sporns, 2009; Newman, 2003) as potential candidates
for discriminatory statistics: clustering coefficient C ; average shortest
path length ℒ; modularity Q ; transitivity T ; assortativity ℛ; and en-
tropy of degree randomnessS (Fig. S4, SM-IV C). By two-sample t-tests
based on global network measures, we concluded that no significant
differences were captured, although pronounced clinical differences
were observed between these two groups. Instead, all results suggested

consistently that both healthy and patient groups share some general
network properties, such as small-worldliness and modularity. Fur-
thermore, we establish the statistical significance on the network level
through the connection rewiring method (Newman, 2003) (see Fig. S4,
SM-IV D for statistical significance). Thus, these general network
measures do not indicate which brain areas play a decisive role in the
reorganization of functional connections. This finding calls for more
sensitive network markers of brain disorders, focusing on local prop-
erties.

3.2. A data-driven algorithm identifies disorder-relevant representative ROIs

One practical solution for understanding the reorganization me-
chanisms is to study the connectivity changes of particular ROIs, for
instance, the bilateral precentral gyrus and other movement-related
brain regions, since these regions are believed to be crucially involved
in the development of stroke disorders. One drawback of this approach
is that it relies heavily on prior knowledge. Here we propose a data-
driven approach for identifying critical ROIs.

Taking the healthy controls as a reference group, we propose to
compute anomaly time series from BOLD for each sampled subR (see
Materials and Methods). By anomaly we mean a departure from a re-
ference value which is provided by the control group. In this work, we
considered the ensemble average as the reference value, and examined
the variance of the reference group. A positive anomaly indicates that
the observed BOLD signal has higher amplitudes than the reference
value, while a negative anomaly indicates that the observed signal has
smaller amplitudes than the reference value. The computation of
anomalies for all subRs provides a global survey of the abnormalities of
a patient compared to the averaged reference group.

Every patient responds differently to a stroke. Consequently, strong
variations within the patient group prevented us from consistently se-
lecting subRs to reflect the stroke-relevant features. We considered a
subR to be affected by stroke if it behaves abnormally over 2/3 of the
patient population, as shown in Fig. 1. Discussions on the effects of
different thresholds such as 3/4 or 1/2 of the patient population are
included in the SM (see SM-V, Tables S4 and S5). Remarkably, only 15
(out of 3600) subRs were identified as meeting this criterion. These
affected subRs represent 11 ROIs in terms of the AAL template. All 15
subRs are visualized in Fig. 1 (see SM-V, Table S3). The following brain
regions were identified as crucial in stroke: bilateral precentral gyrus
(PreCG), paracentral lobule (PCL), supplementary motor area (SMA),
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Fig. 1. Identifying most-stroke-relevant fundamental subRs. The shaded area
corresponds to subRs, as highlighted by red stars in the upper panel, that be-
have abnormally over 2/3 of the patient population size. Surface illustrations
for these 15 affected subRs.
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precuneus (PCUN), the right postcentral gyrus (PoCG), the left dorso-
lateral superior frontal gyrus (SFGdor) and the right superior parietal
gyrus (SPG). Some notes on the roles of these brain regions in stroke
patients are included in the Discussion.

3.3. Strong connections are broken down specifically, but new links are built
randomly

Functional networks of the patient group largely preserve global
network properties, that is, the existence of hub nodes, small-worldli-
ness and modularity. Global network measures were not able to disclose
the hidden connectivity reorganization (see SM-IV, Fig. S4). Therefore,
we analyzed rewiring patterns of strong functional connectivity to each
subR (ROI) as identified above. We focused on quantifying strong
connections, since they are more likely to be linked to hubs in the re-
sulting network. In particular, there are two crucial questions that need
to be addressed: (i) How are strong connections in the healthy controls
broken down? That is, which particular strong connections disappear in
patients? (ii) Where do newly created strong connections arise in pa-
tients? We show subject-specific properties in comparison to the
healthy control group in Figs. 2 and 3.

Excluding self-correlation, for all Pearson correlation coefficients rj,
j∈ [1,3599] of the i-th subR, we compared each patient to the healthy
group, namely, rjP versus 〈rj〉H, where P∈ [38,69]. We illustrate the
approach with the connectivity patterns of the left precentral gyrus
(PreCG.L as represented by the first subR) of patient subject P=53 as
shown in Fig. 2A. From the scatter plot (Fig. 2A), we find that the re-
organization of hubs is captured by top correlation values, focusing on
the 100 largest values. Specifically, we performed the following parti-
tions of the correlation space to uncover the connectivity reorganiza-
tion patterns of the i-th subR:

1. A: set of the top 100 strongest correlation coefficients of the healthy
group,

2. B: set of the top 100 strongest correlation coefficients of a stroke
patient,

3. C=A ∩ B: common set of strong connections shared by both healthy
control and a patient,

4. D= A− B: difference set of strong connections that are in set A of
healthy controls, but are rewired in set B of a patient.

5. E= B−A: difference set of strong connections that are in set B of a
patient, but are not in set A of the healthy controls.

We find that the number of subRs in set C is substantially positive
across all patient subjects, indicating that the strongest links are not
destroyed. The set D quantifies how strong connections of healthy
subjects are broken down in a patient, in contrast, the set E char-
acterizes the newly built connections of a patient. For each correlation
partition set, we addressed the connectivity heterogeneity over 90 AAL
brain areas by computing the entropy (Eq. (2)).

Fig. 4 shows the reorganization behavior of the top 100 strong
connections to PreCG.L, which is averaged over the patient group: the
strong connections of the healthy group are destroyed in a specific
manner from a limited number of brain areas, however, the newly
created strong connections are more homogeneously distributed across
all brain areas. Consistent results are obtained for each subR (see SM-
VI, Fig. S9-S23). Furthermore, inter-hemispheric connections (PoCG.R
to the seed ROI of PreCG.L) appear to break down significantly, which
confirms recently reported results (Anne and Grefkes, 2013).

3.4. Reorganization of the connectivity of patients is captured by complexity

Figs. 2 and 3 show that strong connections are heterogeneously
concentrated on several specific brain areas, instead of uniformly
spreading across the entire brain (shown in Fig. 3). We use 90 AAL
brain areas as references for our discussion below. Note that the pair-
wise correlation has been computed for all 3599 subRs to the i-th subR.
The heterogeneity of the strong connectivity of i-th subR is conveniently
described by the complexity measure of Shannon entropy

� ∑= −
=

p plog ,
j

j j
1

90

2
(2)

where pj is the frequency of connections that belong to brain area j. We
used a histogram to estimate the frequency pj and hence 90 AAL brain
areas provide a natural choice of bins for the estimator. The advantage
of this choice of bins is that it does not cross the important anatomical
boundaries of the original AAL atlas, which helps to interpret the
connectivity reorganization patterns. We note that the entropy is a
traditional tool for characterizing the connectivity heterogeneity of
neural networks (Tononi et al., 1994). ℋ is small if connections are
concentrated on a small number of brain areas forming clusters of
connectivity in a resulting network. In contrast, ℋ is large if connec-
tions are more homogeneously distributed. Simply speaking, the en-
tropy of each partition of the correlation space is computed as ℋ(i,A),
ℋ(i,B), ℋ(i,C), ℋ(i,D), and ℋ(i,E).

Fig. 2. Comparison of strong connections of the left precentral gyrus (the first ROI, PreCG.L) between patient subject P=53 and averaged healthy controls. (A)
scatter plot of the correlation coefficients (rj vs. 〈rj〉H). The difference sets D, E are denoted by red or blue color respectively, while the common set C is highlighted by
green. The non-vanishing set C suggests that the strongest links (about 35% of top 100 links) are preserved. (B) Pie plot for the set A of the healthy controls. The
strong connections of the PreCG.L are the following: 17% of the connections are within the PreCG.L region (denoted as ‘AAL1’); 17% are inter-hemispheric con-
nections to PreCG.R region (‘AAL2’); 28% are to the left postcentral gyrus (PoCG.L) region (‘AAL57’); 22% are to the right postcentral gyrus (PoCG.R) region
(‘AAL58’); 16% spread over the other 6 brain regions (‘AALX=0.16/6’). Strong connections are concentrated on some particular brain areas for the healthy
volunteers, yielding a smaller entropy value ℋ〈H〉(1,A)= 2.65. (C) Pie plot for the set B of the patient: about 57% of the strong connections of PreCG.L are
distributed across 24 different brain areas. The inter-hemispheric connections to the right precentral gyrus area (PreCG.R) have been greatly reduced from 17% to
negligible (B, C). The more homogeneous connectivity distribution in the patient leads to a larger entropy value ℋ53(1,B)= 4.27. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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For strong connections of the i-th subR of a patient, we propose a
complexity-based distance function that characterizes the deviation of
the clustering of strong correlations of a patient from the averaged
group of healthy controls. More specifically, taking the set B of the

strong connections of the i-th subR as an example, we compute the
square distance of the complexity measure of a patient in comparison to
the averaged healthy group as

� �= − 〈 〉ε i B i B i B( , ) ( ( , ) ( , )) ,P H2 2 (3)

Fig. 3. Illustrations of the difference sets D and E. (A, B) the healthy control, and (C, D) the patient (P=53). (A, B) The intermediate strong connections of the
PreCG.L area are destroyed as follows: 15.4% are inside the PreCG.L region (denoted as ‘AAL1’); 20% are inter-hemispheric connections to the PreCG.R region
(‘AAL2’); 18.5% are to the left postcentral gyrus (PoCG.L) region (‘AAL57’); 24.6% are to the right postcentral gyrus (PoCG.R) region (‘AAL58’); the remaining 22%
are distributed across the other 6 brain regions (‘AALX=0.22/6’). One obtains a smaller entropy value ℋ53(1,D)= 2.81. (C, D) In a patient, about 65% of newly
created strong connections are homogeneously distributed across 22 brain regions, yielding a large entropy value ℋ53(1,E)= 4.40.
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where ℋP(i,B) is the entropy value of patient subject P, and respec-
tively, ℋ〈H〉(i,B) is for the healthy group. Analogously, one can com-
pute ε2(i,D) and ε2(i,E) to capture the reorganization patterns. We find
that the patient group has larger entropy values than the healthy con-
trols (see SM-VI, Fig. S5). In other words, the strongest connections of a
patient are spread across the entire brain more uniformly than in
healthy subjects.

3.5. Complexity distance functions are correlated to clinical variables

As discussed above, the reorganization of strong connections is
largely captured by the two sets D and E, which represent broken strong
links of the healthy controls and newly built connections of a patient,
respectively. Therefore, we propose the following characteristic dis-
tance function as an indicator of the connectivity reorganization pat-
terns of a patient.

∑= +
=

ε ε i D ε i E( ( , ) ( , )).
i

2

1

15subRs
2 2

(4)

The correlation of the characteristic complexity distance function
(Eq. (4)) with the clinical variable FMA is shown in Fig. 5. Connectivity
re-organization is much more significantly expressed if a patient is se-
verely affected by stroke (Fig. 5B). For instance, for patients with severe
motor impairments (i.e., FMA ≤10), the corresponding linear correla-
tion value −0.36 (with p1-value< 0.05) suggests that such patients
experience a greater amount of rewiring of the strong connections. Here
the term reorganization includes two aspects: (i) strong links that would
be expected for healthy controls, and (ii) strong links that have been
newly created in patients in comparison to the averaged healthy con-
trols. The correlation between Eq. (4) and FMA has been further con-
firmed by voxel-wise based regional homogeneity statistical analysis
(see SM-VII).

We further perform a two-sample t-test for lesion volume (ml) be-
tween the patients with FMA>10 and those with FMA ≤10, not
showing significant difference between these two subgroups
(Mean± Std: 7.85 ± 5.86 ml for FMA ≤10); 9.32 ± 5.38 ml for
FMA>10; p=0.44). We also performed a voxel-based lesion-

symptom mapping (VLSM) analysis (Bates et al., 2003; Liu et al., 2018).
The VLSM results suggested that stroke patients do not show significant
correlations (at a voxel-wise threshold of p < 0.001, uncorrected) be-
tween lesion location at chronic stage and both FMA scores and entropy
values. The details of the VLSM analysis are presented in SM-VIII. Ad-
ditionally, the lesion overlap of the two subgroups was respectively
shown for these two sub-groups (see SM-I, Fig. S2). From the visual
inspection, the lesion locations were qualitatively similar in both sub-
groups. Therefore, the complexity distance function captures the func-
tional connectivity reorganization patterns, providing insights for dis-
criminating patients that are severely affected by stroke.

4. Discussion

Practically, in brain functional network analysis, there exists no
unique criterion for choosing what should represent a network node.
This fact has resulted in a wide range of analyzed network sizes, ran-
ging from 90 to 14,000 nodes (Bullmore and Sporns, 2009; Hayasaka
and Laurienti, 2010; Matthew et al., 2013; Eguíluz et al., 2005). Our up-
sampling procedure based on the AAL atlas is a compromise between
noise and area averaging effects when obtaining time series. This
sampling technique does not cross the important anatomical boundaries
specified by the original AAL atlas, which is widely used (Hermundstad
et al., 2013). More importantly, unlike most existing studies, we pro-
pose to extract anomaly time series from BOLD signals. The resulting
anomaly networks focus on characterizing the deviation of each in-
dividual subject from the averaged behavior of the healthy control
group, reflecting the abnormal features that are crucial to stroke.

Small-worldliness and a pronounced modular architecture have
been observed as general properties of the human brain (Bullmore and
Sporns, 2009; Goñi et al., 2014), which are correlated with better
cognitive performance (van den Martijn et al., 2010). In the particular
case of stroke lesions, altered topological properties of brain networks
have been observed across different spatial scales, such as, reduced
inter-hemispheric functional connectivity between cortical motor areas,
which correlates with the severity of motor deficits (Anne and Grefkes,
2013; Fallani et al., 2013); and reduced network efficiency even in
patients with good clinical recovery (Anne and Grefkes, 2013; Bullmore

Fig. 5. Correlation of the characteristic complexity
distance function ε2 (Eq. (4)) to the clinical variable
of FMA. (A) bar charts of FMA, ε2 for each patient
subject, P∈ [38,69]. (B) scatter plot between FMA
and ε2. The dashed vertical line corresponds to the
empirical value of FMA =10. The linear fit
(ρ1= − 0.36) for patients of FMA ≤10 suggests that
ε2 is correlated to FMA (p1-value<0.05). By con-
trast, no significant correlations to FMA have been
found for patients of FMA>10 (p2-value> 0.1).
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and Sporns, 2012). Furthermore, hubs of brain networks have been
shown to be central in clinical disorders (Zac et al., 2015; Baronchelli
et al., 2013). All these results are in favor of the random reorganization
hypothesis. In contrast, we find that global properties (including small-
worldliness, modularity etc.) are conserved in the patient group, chal-
lenging the random re-organization hypothesis.

Our data-driven algorithm identifies 15 important subRs as ROIs.
With reference to the AAL template, these subRs mainly belong to four
crucial brain areas, left precentral gyrus (PreCG.L), right precentral
gyrus (PreCG.R), right postcentral gyrus (PoCG.R) and left postcentral
gyrus (PoCG.L). All these brain regions are related to sensorimotor
functions and frontoparietal control systems. The sensorimotor system
is prevalently activated during motor execution and somatosensory
information processing (Lacourse et al., 2005; Yang et al., 2007). In
contrast, the frontoparietal system plays a crucial role in high-order
motor-cognitive processing, such as motor imagery and control of goal-
directed movement (Yang et al., 2007; Hanakawa et al., 2008; Haaland
et al., 2000; Filimon, 2010). Both systems are engaged in cerebral re-
organization following stroke with abnormal task-evoked brain acti-
vation (Calautti and Baron, 2003; Ward et al., 2003), as well as dis-
rupted resting-state brain connectivity (Park et al., 2011). However,
task-based fMRI techniques cannot easily distinguish whether ab-
normality of brain activation is induced by a task or is intrinsically
disturbed even in resting state. In addition, the variations of global
network measures obtained by graph analysis from resting-state data
cannot identify to which brain region the abnormality should be at-
tributed, since the correlation coefficient is a symmetric measure.
Therefore, our proposed method rectifies the short comings of current
methods, and also provides new insights into functional reorganization
after stroke.

When a brain is affected by stroke, the connectivity reorganization
includes two aspects: a break-down and rewiring of the existing links,
and creation of new links. We show that the strongest links in the
healthy controls are conserved in patients, while links of intermediate
strength are destroyed in a non-random manner. In addition, the newly
built strong connections in patients result from random establishment
of links across all possible brain regions. These connectivity re-
organization mechanisms are quantified by the characteristic com-
plexity distance function ε2. Further work should focus on character-
izing spatial anomaly patterns in both functional and structural
connectivity (e.g. from diffusion tension image data), and in task-based
fMRI data (Hermundstad et al., 2013; Honey et al., 2009). In combi-
nation with perfusion techniques, we need to uncover specific neural
dynamic changes after stroke by investigating hemodynamic response
function models.

Various rehabilitation approaches have been suggested for patients
with stroke. Longitudinal studies may provide insights for brain net-
works at different stages during the recovery processes (Liang et al.,
2010). It is obvious that one has to construct dynamic temporal net-
works, as environmental contingencies vary in the re-organization
processes associated with treatments of stroke (Vértes and Bullmore,
2015). It would be expected that FN analysis can shed light on the
distinctive roles of various therapies for rehabilitation. It may also be
expected that complexity in connectivity re-organization will prove to
be a dynamically characteristic variable over longer time scales and
useful for lesion inference (Zavaglia et al., 2015). Additionally, it is
necessary to construct a database of healthy subjects as a reference and
then compare the patients to this reference. In this respect, computa-
tional models may provide insightful predictions for the specific profile
of neural or behavioral changes following stroke (Forkert et al., 2015).

It is known that distinct functional reorganizations are involved in
different activation patterns following cortical and subcortical strokes,
presenting highly heterogeneous lesion locations and sizes. In this
work, we focused on brain reorganization in subcortical patients only.
Therefore, further studies with our approach in patients with cortical
lesions are required in order to check whether the functional

connectivity reconfiguration mechanisms as presented in this work hold
for more general interpretations in other patient group. In addition, one
would need a larger sample size of stroke patients to increase the sta-
tistical power of the correlation between the complexity measures and
the clinical FMA scores. In particular we plan to check whether similar
signatures of connectivity reorganizations hold for moderate stroke
patients of mild FMA scores. For moderately impaired patients, the
statistical evaluation may even challenge the connectivity reorganiza-
tion mechanism since moderately impaired patients could benefit more
readily from re-adaption after stroke. Although the present study fo-
cused on patients in the chronic state, the method shows potential for
exploring the prediction of training and rehabilitation in acute state of
stroke patients.

In summary, we have proposed a unified framework for assessing
the hypothesis of random reorganization of FNs following stroke. Based
on individual anomaly brain functional networks, we identified regions
of interest which are most stroke relevant using a data-driven algo-
rithm. We suggest that entropy complexity measures can be used to
assess the random reorganization mechanisms, which are significantly
correlated with the clinical assessments.
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