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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Deep-UVRR needs to be standardized 
when developed for clinical diagnostics. 

• Wavenumber calibration is important 
for this attempt. 

• PEI, PET, PS and Teflon are suitable for 
wavenumber calibration in deep-UVRR. 

• PET and Teflon perform best in the 
classification of Gram-positive 
pathogens. 

• Discrimination of Enterobacteriaceae is 
challenging independent of the used 
polymer.  
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A B S T R A C T   

Deep-UV resonance Raman spectroscopy (UVRR) allows the classification of bacterial species with high accuracy 
and is a promising tool to be developed for clinical application. For this attempt, the optimization of the 
wavenumber calibration is required to correct the overtime changes of the Raman setup. In the present study, 
different polymers were investigated as potential calibration agents. The ones with many sharp bands within the 
spectral range 400–1900 cm− 1 were selected and used for wavenumber calibration of bacterial spectra. Classi-
fication models were built using a training cross-validation dataset that was then evaluated with an independent 
test dataset obtained after 4 months. Without calibration, the training cross-validation dataset provided an ac-
curacy for differentiation above 99 % that dropped to 51.2 % after test evaluation. Applying the test evaluation 
with PET and Teflon calibration allowed correct assignment of all spectra of Gram-positive isolates. Calibration 
with PS and PEI leads to misclassifications that could be overcome with majority voting. Concerning the very 
closely related and similar in genome and cell biochemistry Enterobacteriaceae species, all spectra of the training 
cross-validation dataset were correctly classified but were misclassified in test evaluation. These results show the 
importance of selecting the most suitable calibration agent in the classification of bacterial species and help in 
the optimization of the deep-UVRR technique.  
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1. Introduction 

Raman spectroscopy is a sensitive, rapid and label-free analytical 
technique that has found application in biological science over the past 
decades. In bacterial samples, unique spectra can be obtained by 
detecting vibrational modes of the chemical bonds in their macromol-
ecules, containing information on the biochemical composition of the 
bacterial cells [1–5]. The minimal required sample preparation, the high 
analysis speed and the low analysis cost due to the absence of expensive 
consumables make Raman spectroscopy a very promising analytical tool 
for clinical microbiology [6]. 

In deep-UV resonance Raman spectroscopy (UVRR) mostly mole-
cules with an aromatic ring in their chemical structure are in resonance. 
This results in a large increase of the signal from these molecules that 
dominate the spectrum. When applying this technique to bacterial 
samples the acquired spectrum consists mainly of Raman bands from 
nucleic acid and aromatic amino acids, allowing a selective spectro-
scopic analysis of these molecules [7,8]. This simplifies the analysis 
profile, allowing discrimination on genus, species, or even strain level 
[6]. This advantage of deep-UVRR has been previously shown to enable 
the classification of many bacterial species [9], including clinical iso-
lates [10] making it an attractive tool for clinical application. 

For the development of a robust and reliable clinical tool, the regu-
latory authorities require the validation of the technique [11,12]. In 
Raman spectroscopy, wavenumber calibration is an important factor in 
this attempt since the overtime shift of the Raman setup requires con-
stant correction during chemometric analysis. In addition, the spectral 
influence of the Raman setup needs to be removed to obtain comparable 
results. This is of higher importance in large datasets and databases 
obtained over an extensive time periode, especially when the identifi-
cation of unknown samples is aimed [13]. In deep-UVRR, the selection 
of a suitable wavenumber calibration agent is challenging due to the 
occurring photodegradation when exposed to such low wavelengths. 
Over the years many different substances have been used for wave-
number calibration in deep-UVRR including polymers [14–16], dia-
mond crystals [17], ethanol [18], or even the O2 and N2 stretching 
vibration bands of air [7]. However, many of these agents perform 
poorly since their spectra contain of only a few sharp bands covering just 
partly the required spectral range and are therefore not suitable for the 
optimization of deep-UVRR for clinical application. In addition, to our 
knowledge, no standard procedure exists as well as no systematic 
investigation on the most suitable calibration agents has been performed 
so far for deep-UVRR. 

Another mandatory factor for the application of Raman spectroscopy 
in clinical microbiology is the requirement for reliable differentiation of 
clinical isolates including the large group Enterobacteriaceae. This is a 
group of evolutionary closely related and very similar bacteria that in-
cludes common human pathogens such as Escherichia coli and Klebsiella 
spp. [19]. Deep-UVRR has been shown to be a promising tool in this 
attempt since it allowed the differentiation of Escherichia coli and Kleb-
siella spp. clinical isolates, as well as the differentiation of Klebsiella 
pneumoniae and Klebsiella oxytoca strains with high accuracy [20]. These 
results indicate the applicability of deep-UVRR in clinical microbiology 
and its potential to be developed into a routinely used, diagnostic tool 
for clinical diagnostics of infectious diseases. For this attempt, a stan-
dardization of the method is required that also includes appropriate 
wavenumber calibration. 

In the present study, it is aimed to investigate for the first time the 
suitability of different polymers as calibration agents for deep-UVRR and 
evaluate their performance in differentiating clinical isolated bacterial 
species, including Enterobacteriaceae. For this attempt, different poly-
mers were selected based on their chemical structure and tested. 

2. Materials and methods 

2.1. Polymers 

Nine different Polymers were chosen for this study based on their 
chemical structure: Polysulfone (PSU), Polyether ether ketone (PEEK), 
Polyphenylene sulfide (PPS) and Polyetherimide (PEI) were provided by 
Gebr. DOLLE GmbH (Bad Köstritz, Germany). Teflon was purchased 
from TECHNOPLAST v.TRESKOW GMBH, Germany. For the Poly-
ethylene terephthalate (PET) polymer a transparent packing made of 
PET was used, for the Polyurethane (PU) polymer a sponge was used 
purchased from a local supermarket, for the melamine resin a coated 
MDF plate was used and for the Polystyrene (PS) a petri dish (Sarstedt, 
Germany) was used. The chemical structures of the used polymers are 
shown in Fig. 1. The chemical structure of all polymers except Teflon 
and PU contain aromatic rings that can generate a resonance effect in 
deep UVRR. 

2.2. Deep-UVRR 

For the collection of the UV resonance Raman spectra, a Raman setup 
(HR800, Horiba/Jobin-Yvon) with a focal length of 800 mm coupled 
with an argon-ion laser (Coherent Innova 300, FReD) was used. The 
frequency of the 488 nm line was doubled to produce a wavelength of 
244 nm. The laser was directed and focused on the sample through an ×
20 antireflection-coated objective (LMU, NA: 0.5, UVB). Backscattered 
Raman light was collected through a 400 μm entrance slit into a 2400 
lines/mm grating and detected by a nitrogen-cooled CCD camera lead-
ing to a spectral resolution of 2 cm− 1. To avoid burning the samples, the 
sample stage was constantly rotated in a spiral manner during 
measurement. 

The polymers were placed under the Raman microscope and two 
consecutive spectra were collected using an integration time of 30 s 
each. The two spectra were then averaged. This was repeated five times 
for each polymer and replicate (batch). 

2.3. Bacteria sample preparation 

The bacteria were freshly cultured from frozen stock onto nutrient 
agar (NA) plates for every measurement day. To avoid intrasample 
variations related to the different growth stages of the bacteria on the 
plates, 2–3 loopful of biomass were transferred from the agar plate into 
20 ml Nutrient Broth (NB) (Carl Roth) and incubated for 1 h in a shaking 
incubator at 37 ◦C and 120 rpm to reach the exponential phase. 1.5 ml of 
the inoculum was transferred into two separate Eppendorf tubes and was 
heat inactivated at 99 ◦C, the Gram-negative bacteria for 5 min and the 
Gram-positive bacteria were inactivated for 10 min. Afterward, 3 
consecutive washings with 1 ml deionized water (DI) using centrifuga-
tion at 5000 g for 5 min (Rotina 380R, Hettich) [21,22] were performed 
and the bacterial pellets were then resuspended in 30 μl DI. Each 
replicate was placed onto a fused-silica slide (B&M Optik GmbH, Ger-
many) to air dry at room temperature for ~ 1 h. To verify the heat- 
inactivation, bacteria were plated onto NA plates, incubated for 24 h 
at 37 ◦C and no growth could be detected. Each Raman measurement 
consisted of 10 consecutive measurements of 15 s integration that were 
afterward averaged to reduce noise. A total of four biological replicates 
(batches) were measured for each strain on different days. Each batch 
for each bacterial species consisted of 20 measurements collected from 2 
fused silica slides to avoid remeasuring burned areas of the sample and a 
total of 200 spectra per isolate and batch were collected. 

2.4. FT-Raman 

Polymers were measured using a Multispec Fourier-transform 
Raman-Spectrometer (Bruker Corporation, Billerica, USA) coupled 
with a 1064 nm Nd: YAG laser (Klastech DeniCAFC-LC-3/40, Dortmund, 
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Germany). A laser power of 1000 mW was used. To achieve peak posi-
tions that were as precise as possible, a spectral resolution of 0.7 cm− 1 

was used. 256 accumulations were recorded and were afterward aver-
aged to improve the signal-to-noise ratio. 

2.5. Data analysis 

Preprocessing and data analysis were done using the RAMANME-
TRIX software (https://ramanmetrix.eu) [23]. Prior to analysis, several 
preprocessed steps were performed. 

The deep-UVRR and FT-Raman spectra from the different polymers 
were de-spiked with a manual threshold as previously described by 
Ryabchykov et al. [24], interpolated on the linear wavenumber axis with 
a step of 1 cm− 1, baseline corrected using a Sensitive Nonlinear Iterative 
Peak (SNIP) clipping algorithm with 40 iterations followed by vector 
normalization. Spectra were then truncated to the relevant range of 
500–1900 cm− 1. FT-Raman spectra were afterward plotted in Origin 
2018b software and the precise peak-positions were defined with a peak- 
fitting function using the Voigt profile. These band positions were then 
used as “reference standards” for the polymer spectra measured with the 
deep-UVRR. 

The pre-processing of the bacteria spectra included the same des-
piking procedure as described above. Afterward, spectra were wave-
number calibrated using the 4 polymers that were selected to be 
suitable. The shift in the polymer spectra was corrected using “reference 
standards” peak positions from the FT-Raman spectra. Calibration was 
performed using a spline peak fitting method. Because some substances 
had a low number of peaks, a linear calibration function was utilized. 
Spectra were afterward interpolated on the linear wavenumber axis, 
baseline corrected, and vector normalized as described above. 

To validate the data quality in training cross-validation and inde-
pendent test evaluation datasets, the signal-to-noise ratio (SNR) was 
calculated by dividing the mean of the median smoothed spectrum with 
a window size of 5 by the standard deviation of noise. The noise was 
estimated as the difference between the original and the smoothed 
spectrum. 

2.6. Classification models of bacteria calibrated with the different 
polymers 

Five different classification models were built, four using the wave-
number calibrated data with the selected polymers as calibration stan-
dard and one without calibration that was used as control. For the 
classification of the bacterial strains, PCA-LDA models with a leave-one- 
batch-out cross-validation (LOBOCV) were trained using the training 
cross-validation dataset that consisted of 3 batches representing 3 
measurement days. The optimal number of principal components (PC) 
was selected automatically based on the LOBOCV, limited to a maximum 
of 10 PCs. The independent test dataset, consisting of 1 batch, that was 
measured after 4 months, was then used for the final evaluation. Ma-
jority voting was applied to reduce intra-sample heterogeneity in the 
bacteria spectra. Finally, spectra were visualized using Origin (Pro), 
version 2018b (OriginLab Corporation, Northampton, USA). 

3. Results 

As a first step, 9 different polymers were tested on their suitability to 
be used as calibration agents in deep-UVRR. Spectra from all used 
polymers are shown in Fig. 2. It can be seen that the polymers in Fig. 2A 
do not display many sharp and clearly defined bands within the spectral 
range and were therefore excluded from further analysis as unsuitable 
calibration agents. The polymers in Fig. 2B however, show distinct sharp 
bands in most of the required spectral range and were considered suit-
able for wavenumber calibration since they should allow interpolation 
and extrapolation of the Raman band positions in the bacterial spectra. 
PEEK was excluded from further analysis due to the not well-resolved 
double peak around 1600 cm− 1 as well as the absence of sharp bands 
below 800 cm− 1. UV–vis absorption spectra of the polymers of Fig. 2B 
are shown in supplementary figure S1. 

To define the exact band positions of the selected polymers, FT- 
Raman spectra were obtained and used as “reference standards” for 
the polymer spectra measured with the deep-UVRR. In Fig. 3 the single 
FT-Raman spectra of the 4 chosen polymers are shown in comparison to 
the average deep-UVRR spectra of the training data. It can be seen that 
most bands present in the FT-Raman spectra are also present in the deep- 
UVRR spectra of the polymers. Since FT-Raman spectroscopy offers the 
advantage in the determination of the Raman-band position with high 

Fig. 1. Chemical structure of the used polymers.  
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precision, these band positions can be used as reference standards for the 
deep-UVRR spectra. 

Using the selected polymers as calibration agents, classification 
models were trained for the differentiation of clinical isolates of 4 bac-
terial species, including strains from the Enterobacteriaceae group. These 
models were then finally evaluated using an independent test dataset, 
measured 4 months later. To assess the performance of the different 
calibration agents, the results of the models were compared to a model 
built without wavenumber calibration of the spectra (“uncalibrated 
spectra”). In Fig. 4 uncalibrated bacteria spectra from the training cross- 
validation dataset are shown. In Table 1 the sensitivities of the classi-
fication results of the bacterial species for the training data cross- 
validation and the predictions of the independent test evaluation data-
set are shown. Detailed classification results can be seen in supple-
mentary tables S1-S5. For uncalibrated spectra, in the training cross- 
validation dataset the model performance yielded an accuracy above 
99 %, indicating a nearly perfect classification of the individual spectra 
of each bacterial species. Only one spectrum was misclassified between 
Escherichia coli and Klebsiella pneumoniae, two closely related, Gram- 
negative Enterobacteriaceae species with high similarities in their 
biochemical composition. It is interesting to observe that, despite the 
high similarities present in these two species, the model could 

Fig. 2. Deep-UVRR spectra of potential polymers for wavenumber calibration.  

Fig. 3. FT-Raman and deep-UVRR spectra of the training cross-validation dataset from the selected polymers. A. PEI, B. PET, C. PS and D. Teflon.  

Fig. 4. Uncalibrated Deep-UVRR bacteria spectra.  
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distinguish them with high performance. This, however, changes 
dramatically when test-evaluating with an independent dataset that was 
measured after 4 months. The accuracy of the model drops from 99.6 to 
51.2 %, with all spectra from 2 of the 4 species being classified incor-
rectly. It can be seen that in the test data the model is incapable to 
distinguish between the two Enterobacteriaceae species, classifying all 
Klebsiella pneumoniae spectra as Escherichia coli. In addition, the model is 
also not able to distinguish between the two Gram-positive species, 
classifying all spectra of Enterococcus faecalis as Staphylococcus aureus. 
This indicates that the overtime shift of the device significantly changes 
the spectra not allowing the model to correctly identify the fine differ-
ences between species leading to a decrease in its performance by 
differentiating only the Gram-positive from Gram-negative isolates. 
Mean spectra of the training cross-validation and test evaluation dataset 
for each bacterial species are shown in Supplementary Figures S2-S5. 
The most important Raman bands of the spectra are marked with lines 
and it can be seen that in the training dataset no wavenumber shifts 
occur after calibration with all polymers compared to the uncalibrated 
spectra. This happens due to the absence of overtime shift of the device 
within the 3 days in which this dataset was obtained. 

The differences between the original and calibrated wavenumber 
axis for each polymer of both the training and validation datasets are 
shown in Supplementary Figure S6. For all used calibration agents, the 
performance of the model using the training cross-validation dataset is 
above 97 % indicating nearly perfect differentiation of the spectra from 
each bacterial species, similar to when no calibration is performed. The 
few misclassifications, 7 when calibrating with PET and 1 in all other 
polymers, are again only between Escherichia coli and Klebsiella pneu-
moniae, with all spectra of the two Gram-positive isolates being classi-
fied correctly. After test evaluation, higher accuracies can be observed 
for all calibration agents compared to no-calibration and only small 
wavenumber shifts are present in the mean spectra of all bacteria species 
after calibration with the different polymers (Figures S2-S5), as it can be 
seen when following the dashed lines. However, none of the calibration 
agents could improve the model’s performance in differentiating the 
Enterobacteriaceae species, where again almost all Klebsiella pneumoniae 
spectra were misclassified as Escherichia coli. Concerning the Gram- 
positive isolates, the calibration with PET and Teflon could provide a 
correct classification of all spectra, whereas for PEI and PS 9 out of 20 
Enterococcus faecalis spectra were incorrectly classified as Staphylococcus 

aureus. Despite these misclassifications, the majority of the spectra were 
still correctly classified, allowing correct identification of the species 
when applying majority voting, as shown in Tables 2 and S6. 

It has to be mentioned that the test evaluation dataset had more low- 
quality spectra in terms of signal-to-noise ratio (SNR) than the training 
cross-validation dataset (Figure S7). This could be another factor that 
influences the classification since small bands are lost due to the noise 
and cannot be considered by the model. 

Due to the presence of a high number of bands in the PEI spectrum, 
the use of polynomial degrees higher than 1 for the wavenumber cali-
bration can be justified. Analysis was repeated using a polynomial de-
gree of 2 and 3, however, no improvement in accuracy could be detected 
(data not shown). 

4. Discussion 

The present study shows that in deep-UVRR not all polymers with an 
appropriate chemical structure are suitable to be used as calibration 
agents since their spectra do not show clearly defined, sharp bands 
within the entire spectral region. The overtime changes of the device 
significantly influence the band positions in the spectra and wave-
number calibration is required to ensure overtime comparable spectra 
and high data quality. Classification models after test evaluation with an 
independent dataset measured after 4 months performed best in classi-
fying bacterial species when PET and Teflon were used for calibration, 
yielding an accuracy for differentiation of 76.8 and 75.6 % respectively. 
With these two polymers, all spectra of the Gram-positive isolates were 
correctly classified. With PEI and PS, the majority of the spectra from 
Gram-positive isolates could be correctly classified allowing to over-
come misclassification by applying majority voting. None of the poly-
mers could ensure differentiation between Escherichia coli and Klebsiella 
pneumoniae in the test data, indicating that wavenumber calibration 
alone is not enough to standardize the model’s performance in differ-
entiating close related and highly similar Enterobacteriaceae species 
when the database was established during a longer time period. 

During wavenumber calibration, the wavenumber axis of the recor-
ded spectra is modified by fitting to the Lorentzian Raman peaks of the 
standard substance using a fifth-order polynomial [25]. This procedure 
in spectra pre-processing “corrects” the Raman setup-dependent shift in 
the wavenumber axis according to the standard substance. However, the 
setup-dependent shifts are also present in the spectra of the standard 
substances. Thus, before performing the calibration of the bacteria 
spectra, the spectra of the standard substances also need to be adjusted 
to a “reference peak position” of high precision. In the present study, this 
was performed by obtaining spectra of the polymers with FT-Raman 
using a spectral resolution below 1 cm− 1. This resulted in high preci-
sion in the band positions of the polymers and since most of the peaks 
are present in both techniques, deep-UVRR and FT-Raman, the FT- 
Raman spectra could be used as reference standards for the polymer 
spectra measured with deep-UVRR. 

It is interesting to observe that even when no calibration is per-
formed in the training cross-validation dataset an almost perfect 

Table 1 
Sensitivities of classification results for each bacterial species for the training cross-validation and the prediction of test data for the different calibration treatments.   

Uncalibrated PEI PET PS Teflon  

Cross-validation 
(%) 

Test 
(%) 

Cross-validation 
(%) 

Test 
(%) 

Cross-validation 
(%) 

Test 
(%) 

Cross-validation 
(%) 

Test 
(%) 

Cross-validation 
(%) 

Test 
(%) 

Enterococcus 
faecalis 

100 50 100 55 100 100 100 55 100 100 

Escherichia coli 100 50 100 100 89.8 100 100 100 100 100 
Klebsiella 

pneumoniae 
98.3 50 98.3 0 98.3 5 98.3 0 98.3 0 

Staphylococcus 
aureus 

100 50 100 100 100 100 100 100 100 100 

Accuracy 99.6 51.2 99.6 64.6 97.1 76.8 99.6 64.6 99.6 75.6  

Table 2 
Sensitivities of classification results for each bacterial species after test evalua-
tion and majority voting, when PEI and PS were used as calibration agents.   

PEI PS 

Predicted (%) Predicted (%) 

Enterococcus faecalis 100 100 
Escherichia coli 100 100 
Klebsiella pneumoniae 0 0 
Staphylococcus aureus 100 100 
Accuracy 75 75  
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differentiation of the isolates could be performed, even in the highly 
similar Enterobacteriaceae species. However, after evaluation with an 
independent dataset obtained after 4 months, the differentiation within 
both the Gram-positive and the Gram-negative groups was lost, and the 
model was only capable of discriminating the groups themselves. This 
shows that the overtime changes in the Raman setup were minor in the 
dataset obtained within a short time period but major after 4 months had 
passed, indicating the necessity of performing wavenumber calibration 
as a standard preprocessing step. 

After wavenumber calibration with the different polymers and test 
evaluation the performance of the different models in differentiating the 
Gram-positive species varied. None of the Staphylococcus aureus spectra 
was classified incorrectly when calibrating with all polymers. Also, all 
Enterococcus faecalis spectra were correctly classified when calibrating 
whit PET and Teflon. When PEI and PS were used as calibration agents, 
misclassifications occurred but, the majority of the Enterococcus faecalis 
spectra were classified correctly allowing correct classification of the 
species after the application of majority voting. This indicates the 
importance of selecting the most suitable agent for wavenumber cali-
bration since it can significantly influence the performance of the clas-
sification model, especially after test evaluation with an independent 
dataset after some time. 

Due to the high similarities in the genome and cell biochemistry 
[26–28], the Enterobacteriaceae species are difficult to differentiate, 
sometimes even with the conventional techniques that are currently 
used in microbiology laboratories [29]. Raman spectra are superposi-
tions of vibrations from many different cell components simultaneously 
and it is challenging to reveal such fine interspecies differences as pre-
sent in the Enterobacteriaceae group. In previous Raman studies using 
excitation wavelengths in the visible range, it has been concluded that 
Enterobacteriaceae are difficult to classify [30] or even classified the 
Enterobacteriaceae as one group, incapable to differentiate the individual 
species [31,32]. 

In deep-UVRR, the selective enhancement of the Raman signals of 
the aromatic compounds in the bacterial macromolecules allows to focus 
on the difference in genotype, gene expression and protein composition 
and thus, the areas with the major interspecies differences are selec-
tively analyzed. Simultaneously, the information deriving from inter-
species similarities are excluded, due to the suppression of the Raman 
bands deriving from lipids and carbohydrates, improving the perfor-
mance of the classification model. It has been previously shown that 
deep-UVRR could differentiate clinical Klebsiella spp. and Escherichia coli 
isolates with an accuracy of 92 % and Klebsiella pneumoniae from Kleb-
siella oxytoca with an accuracy of 90 % [20]. In the present study, it is 
shown that deep-UVRR can differentiate Escherichia coli from Klebsiella 
pneumoniae clinical isolates independent of the polymer used for 
wavenumber calibration. However, this ability is lost when test evalu-
ation is performed with an independent dataset that was obtained after 
4 months. The reasons for this phenomenon are most likely related to the 
overtime changes of the Raman setup that influenced the spectral 
quality more than the wavenumber calibration could correct. Another 
factor that could have influenced the classification results is the 
decreased SNR in the test evaluation dataset. Changes in the SNR can be 
related to the sample or the Raman setup. It can be influenced by factors 
such as the intensity of the laser or the laser light that reaches the 
objective and concerning the sample, by factors such as lower biomass or 
higher photodegradation. These parameters are highly affected by 
external factors as are changes in temperature and humidity and can be 
only controlled to a certain extent. 

The overtime changes in the Raman setups are highly dependent on 
the measurement conditions and are influenced by variable factors such 
as temperature or changes in the laser’s intensity and wavelength, that 
do not follow a systematic and predictable pattern. In this context, the 
influence on the spectra by the Raman setup itself also varies, affecting 
their reproducibility at an intrasample as well as the interlaboratory 
level that cannot be completely addressed and overcome so far. This is a 

major issue in the attempt to standardize Raman spectroscopy and 
develop this technique for clinical application and a large effort is 
required to understand this phenomenon and develop strategies to 
conquer it [33]. Wavenumber calibration is important for the model 
stability over time, but additional intensity calibration could help pre-
process stability. Although this is challenging since for intensity cali-
bration a continuous light source is required that produces a broad band 
in the UV region of interest and, to our knowledge, this does not exist so 
far for the deep-UV. However, in the present study it is shown that 
despite all the above-mentioned issues and just by adjusting the wave-
number calibration standard, the high sensitivity of deep-UVRR only 
fails in discriminating the very fine differences between the species of 
the Enterobacteriaceae group when test evaluated after 4 months. This 
shows that once the standardization of the method is achieved the 
application of Raman spectroscopy in clinical diagnostics can be a game 
changer since, the high sensitivity and speed combined with the low cost 
of this technique has all the requirements to improve patient care, health 
care finances as well as overall managing of infectious disease. 

5. Conclusion 

The present study highlights the necessity for performing wave-
number calibration as well as the importance of selecting the most 
suitable substance for wavenumber calibration in deep-UVRR to obtain 
the best possible classification of clinically relevant bacteria species. 
Calibration with PET and Teflon provided the best results since it 
allowed all spectra of the Gram-positive isolates to be correctly classified 
after test evaluation. PEI and PS performed less good however, the 
impact of misclassifications could still be limited by the application of 
majority voting. The highly accurate differentiation of the two Enter-
obacteriacae species in the training models, as provided by all used 
polymers, was lost after test evaluation. This strongly indicates that, 
despite wavenumber calibration, also other factors influence the spec-
tral quality that need to be understood and addressed. The present study 
is an important step for the standardization of deep-UVRR and its 
development for clinical application. 
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