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Abstract

Solar oscillation frequencies change with the level of magnetic activity. Localizing subsurface magnetic field
concentrations in the Sun with helioseismology will help us to understand the solar dynamo. Because the magnetic
fields are not considered in standard solar models, adding them to the basic equations of stellar structure changes
the eigenfunctions and eigenfrequencies. We use quasi-degenerate perturbation theory to calculate the effect of
toroidal magnetic fields on solar oscillation mean multiplet frequencies for six field configurations. In our
calculations, we consider both the direct effect of the magnetic field, which describes the coupling of modes, and
the indirect effect, which accounts for changes in stellar structure due to the magnetic field. We limit our
calculations to self-coupling of modes. We find that the magnetic field affects the multiplet frequencies in a way
that depends on the location and the geometry of the field inside the Sun. Comparing our theoretical results with
observed shifts, we find that strong tachocline fields cannot be responsible for the observed frequency shifts of
p modes over the solar cycle. We also find that part of the surface effect in helioseismic oscillation frequencies
might be attributed to magnetic fields in the outer layers of the Sun. The theory presented here is also applicable to
models of solar-like stars and their oscillation frequencies.

Key words: asteroseismology – dynamo – methods: analytical – methods: numerical – Sun: helioseismology – Sun:
magnetic fields

1. Introduction

The mapping of subsurface magnetic field concentrations
and with it the pinpointing of the region in the Sun, where its
dynamo operates can surely be regarded as one of the
outstanding open issues of solar physics. In this article, we
develop the theory for the forward calculation of the effect of a
superposition of zonal toroidal magnetic fields on solar
oscillation frequencies in the framework of quasi-degenerate
perturbation theory. The toroidal component of the global solar
magnetic field is assumed to be responsible for the bulk of
phenomena associated with magnetic activity (see Fan 2009;
Charbonneau 2010; Hathaway 2015, and references therein). In
simulations of flux-transport solar dynamos, the energy that is
stored in the toroidal component of the large-scale magnetic
field is orders of magnitude larger than the energy in the
poloidal field (e.g., Miesch & Teweldebirhan 2016). Hence, the
restriction to purely toroidal magnetic field configurations in
the present work is adequate.

From observations, it is well known that solar p-mode
frequencies vary in phase with the solar activity cycle.
Woodard & Noyes (1985) measured these changes in
frequencies for oscillation of low harmonic degree. Later, the
frequency shifts over the solar cycle were confirmed and
thoroughly investigated by, e.g., Libbrecht & Woodard (1990),
Jimenez-Reyes et al. (1998), and Broomhall (2017). In the Sun,
these shifts are larger for modes of higher frequency (Jimenez-
Reyes et al. 1998). As, e.g., Basu et al. (2012) showed, modes
of higher frequency have their maximum sensitivity to
structural changes in the solar interior in shallower layers than
modes of low frequency. This can be used to study the change

of subsurface solar activity as a function of time and depth
(Basu et al. 2012).
It has been shown that the frequencies of acoustic

oscillations of solar-like stars undergo changes similar to those
observed on the Sun. The first time that such changes were
reported for a star other than the Sun was done by García et al.
(2010). They also showed that these changes are correlated
with stellar magnetic activity. Since then this behavior has been
observed for several more stars by Salabert et al. (2016) and
Kiefer et al. (2017a). Gaining insight about the underlying
magnetic field causing these changes in stars would supplement
the simulation of solar and stellar dynamos greatly.
Until now, the attempts to determine the magnetic field in the

Sun with helioseismology have been rather sparse. Gough &
Thompson (1990) calculated multiplet shifts for low degree
modes for an axisymmetric buried magnetic field in a
perturbational approach. Building on their framework, Antia
et al. (2000) analyzed splitting coefficients to probe the solar
acoustic asphericity and magnetic fields in the convection zone.
They were able to limit the magnetic field strength at the base
of the convection zone to 300 kG. Baldner et al. (2009)
extended this work and matched simulated splitting coefficients
to their observed counterparts. They found that a superposition
of two very shallow toroidal magnetic fields in the upper 1% of
the convection zone and a poloidal component could explain
the observed even splitting coefficients best. Dziembowski &
Goode (2005) analyzed the behavior of centroid multiplet
frequencies between the minimum and maximum of cycle 23.
They found that the frequency increase can be explained by a
less than 2% decrease in the radial component of the turbulent
velocity in the convection zone. They explain the p-mode
frequency increase with rising levels of activity by the
inhibiting effect of the magnetic field on convection. Recently,
Hanasoge (2017) developed a formalism to calculate sensitivity
kernels of mode coupling to Lorentz stresses in the Sun.
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In this article, we describe our forward calculations of the
effect of subsurface toroidal magnetic fields on solar oscillation
multiplet frequencies. For this, we use an ansatz from quasi-
degenerate perturbation theory to calculate the strength of the
coupling between solar oscillation modes (Lavely & Ritzwoller
1992). The coupling of initially independent modes leads to
changes in mode frequencies and eigenfunctions. The distor-
tions of the solar mode eigenfunctions by flows have
previously been exploited by Schad et al. (2013) to infer a
double cell profile of the meridional circulation. In the ansatz,
we use here, the total perturbation by the magnetic field can be
separated in a direct and an indirect contribution. The direct
contribution couples the modes and thus changes their
frequencies and eigenfunctions. An analytical derivation of
the general matrix element of this direct contribution caused by
a superposition of zonal toroidal magnetic field was recently
presented by Kiefer et al. (2017b). The indirect contribution is
due to the perturbation to the equilibrium stellar structural
quantities, which is caused by the magnetic field. The effect of
a magnetic field on stellar structure was studied by, e.g., Mestel
& Moss (1977), Mathis & Zahn (2005), and Duez et al.
(2008, 2010).

We start by introducing the necessary theoretical background
of quasi-degenerate perturbation theory in Section 2. The
general matrix element for the indirect effect of toroidal
magnetic fields is then derived in Section 3. We present the six
magnetic field configurations we tested and the resulting
multiplet shifts in Section 4. These results are discussed
in Section 5 and we end the paper with our conclusions in
Section 6. We include mathematical supplements in
Appendix A, a detailed derivation of the projection of the
Lorentz force onto spherical harmonics in Appendix B, the
sensitivity kernels in Appendix C, derivations of the perturba-
tions in stellar structural quantities in Appendix D, and
additional figures for the modeled magnetic fields and the
resulting frequency shifts in Appendix E.

2. Perturbation Theory

The equations that describe the equilibrium state of a star—
without flows, rotation, or magnetic field—can be solved to
give a system of eigenfunctions (Christensen-Dalsgaard 2008).
These eigenfunctions, with their respective eigenfrequencies,
are perturbed when flows (Lavely & Ritzwoller 1992), rotation,
or a magnetic field (e.g., Gough & Thompson 1990) are added
to the star. If the perturbation is small enough, the perturbed
eigenfunctions and eigenfrequencies can be obtained from the
unperturbed eigenfunctions and eigenfrequencies with techni-
ques from standard perturbation theory. As the spectrum of the
eigenfrequencies of a solar-like star is dense, the techniques
from quasi-degenerate perturbation theory can be adopted. The
solutions to the eigenvalue problem

ZC C, 1L= ( )

define the perturbed eigenvectors and eigenfrequencies of the
system. Here, Z is called the supermatrix with entries

Z H k k Kfor , ,
0 otherwise,

2k k
k k k k kref

2 2w w d= - - ¢ Î
¢

¢ ¢
⎧⎨⎩

( ) ( )

where Hk k¢ is the general matrix element, which is discussed in
detail below, and the indices k n l m, ,= ( ), k n l m, ,¢ = ¢ ¢ ¢( )
define the considered eigenmodes with radial orders n n, ¢,

harmonic degrees l l, ¢, and azimuthal orders m m, ¢. The
coupling set K is made up of those modes, which satisfy
the following two conditions: First, their frequencies obey the
quasi-degeneracy condition

, 3kref
2 2 2w w w- < D∣ ∣ ( )

where the reference frequency refw is typically chosen equal or
close to the central frequency of a multiplet k, kw is the
frequency of the considered mode, and 2wD is the width of this
range. Second, the geometry of the modes, determined by their
harmonic degree and azimuthal order, complies with angular
momentum selection rules imposed by the configuration of the
perturbation. These selection rules are given in Section5.1 of
Kiefer et al. (2017b) for the magnetic field configurations
considered in this work.
The eigenvector C holds the expansion coefficients of the

perturbed eigenfunction jx :

c , 4j
k K

jk k
0åx x=

Î

( )

where cjk is the kʼth component of C and k
0x is an unperturbed

eigenfunction. The matrix L is a diagonal matrix with the
frequency perturbations k

2dw as entries.
Detailed discussions of quasi-degenerate perturbation theory

with application to solar and stellar problems can be found in,
e.g., Lavely & Ritzwoller (1992), Roth (2002), Schad (2013),
Herzberg (2016), and W. Herzberg & M. Roth (2018, in
preparation).
The complete general matrix element Hk k¢ is calculated as

H D I , 5k k k k k k= -¢ ¢ ¢ ( )

where Dk k¢ is the general matrix element, which accounts for
the mode coupling due to the magnetic field. An analytical
expression of Dk k¢ for a superposition of zonal toroidal
magnetic fields was recently derived by Kiefer et al. (2017b).
It is given by
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where B B,s s¢ are toroidal magnetic fields with harmonic
degrees s sand ¢, kx and kx ¢ are eigenfunctions, and the integral
extends over the stellar volume V. The sum in Equation (6)
extends over the values of harmonic degrees s and s¢ of the
investigated magnetic field model, see Equation (12). The
cross-terms between configurations of unequal harmonic
degree are thus included in the calculation of the matrix
element. The full analytical expression of Dk k¢ is given in
Equations (31), and (G62)–(G86) of Kiefer et al. (2017b). Ik k¢
in Equation (5) accounts for the modal interactions due to the
perturbations in stellar structural quantities, which arise as a
result of the magnetic field. We derive Ik k¢ for the case of a
superposition of zonal toroidal magnetic fields in Section 3.
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The shift in angular frequency of a mode can be
approximated by

, 7k k k k
2 2dw w dw w= + - ( )

where k
2dw is the perturbation of the squared angular frequency:

H
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k K

k k kk
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+
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which is expanded up to second order (Schad et al. 2011). In
this article, we do not consider perturbations to the eigenfunc-
tions but focus on the more accessible quantity—the shifts in
mode frequency. However, the perturbation of the eigenfunc-
tions by a superposition of zonal toroidal magnetic fields can be
calculated with the theory presented here: To second order, the
perturbed eigenfunction kx is given by
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where k
0x is the unperturbed eigenfunction. Equations (8)

and (9) are basic results of non- or quasi-degenerate
perturbation theory, see, e.g., Sakurai & Napolitano (2014).

In the present work, we concentrate on the self-coupling of
modes. This reduces the computational effort to obtain Hk k¢ by
a factor of K 2∣ ∣ , i.e., from the square of the number of coupling
modes to only one general matrix element Hkk. This
approximation is justified, as the coupling strength decreases
with increasing frequency difference and the radial and
horizontal eigenfunction become less similar for modes of
different radial order and harmonic degree. We expect the error
introduced by this approximation to be of the order of a few
percent. Schad (2013) found that for differential rotation, the
self-coupling matrix elements are typically two orders of
magnitude larger than the cross-coupling matrix elements. We
expect this to be similar for a magnetic field as the perturbing
agent. The eigenfunctions are not perturbed in the self-coupling
limit, as can be seen from Equation (9). In this approximation,
we find from Equations (7) and (8) that the shift in mode
frequency can be calculated by

H

2
. 10k

k kk k
2

dn
w w

p
=

+ -
( )

3. The Indirect Effect

If a magnetic field is present, the Lorentz force has to be
added to the equation of motion. Hence, the structure of the star
is slightly changed compared to the equilibrium. We treat this
change as a small perturbation to the nonmagnetic star. The
Lorentz force for a superposition of axisymmetric zonal
toroidal magnetic fields is given by

F B Br r r,
1

4
, , , 11tor tor torq

p
q q= ´ ´( ) ( ( )) ˆ ( ) ( )

with the toroidal magnetic field

B B er r a r Y, , , 12
s s

stor s
0å åq q

q
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¶
¶
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B B er r a r Y, , . 13
s s

stor s
0å åq q

q
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¶
¶

f
¢

¢
¢

¢
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The second magnetic field Btor
ˆ is introduced to keep track of

the individual contributions in a superposition of components
of distinct harmonic degree. Here, a(r) and a rˆ ( ) are the radial
profiles of the component of the magnetic field with harmonic
degrees s and s¢, respectively. Ys

0 q( ) is a spherical harmonic
function of degree s and azimuthal order 0. In this article, we
will be referring to relations and properties of the spherical
harmonic functions and the generalized spherical harmonic
functions Yl

N m, , which can be found in Appendix D of Kiefer
et al. (2017b). Many useful relations for the spherical harmonic
functions can also be found in, e.g., Dahlen & Tromp (1998).
The spherical harmonics are a special case of the generalized
spherical harmonics with Y Yl

m
l

m0,= in the convention that is
used in this work.
The Lorentz force for a magnetic field of the form presented

in Equation (12) can be written as

F

e e
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where the radial functions of the radial component and the
colatitudinal component are given by

15
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respectively. The coefficients are l N l N 1 2l
NW = + - +( )( )

and l2 1 4lg p= +( ) . The last two factors of both equations
are Wigner 3j symbols. Extensive lists of their properties can be
found in, e.g., Edmonds (1960), Regge (1958), and Dahlen &
Tromp (1998). We will be referring to only those properties of
the Wigner 3j symbols that are listed in AppendixE of Kiefer
et al. (2017b). Equations (15) and (16) are the vector spherical
harmonic expansion coefficients of the Lorentz force for a toroidal
magnetic field specified in Equation (12). They are derived in
detail in Appendix B.
We expand aspherical perturbations to all stellar structural

quantities in spherical harmonics (Woodhouse & Dahlen 1978;
Lavely & Ritzwoller 1992; Dahlen & Tromp 1998):

Q r Q r Y, , 17
s s

s s
, ,

,
0åd q d q=

l

l
l

¢
¢( ) ( ) ( ) ( )

where the quantity Q can be the gravitational potential f,
density ρ, pressure p, or squared sound speed c2. We consider
only zonal toroidal magnetic fields as perturbations. Hence, the
azimuthal order of the spherical harmonic in the expansion (17)
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is set to 0. The ranges of the summation indices are determined
by the configuration of the considered magnetic field: the
indices s and s¢ take the values of the model magnetic field. The
index λ extends over all even values between 0 and s s+ ¢.
This can be seen from properties of the Wigner 3j symbols
(E29) and (E30c) in Kiefer et al. (2017b) and the fact that we
only consider magnetic fields with even harmonic degree.
Restricting the magnetic field to even harmonic degrees ensures
antisymmetry about the equator which is generally observed for
the Sun (Hathaway 2015).

The aspherical perturbation to the gravitational potential
rs s,dfl ¢( ) can be calculated by solving

18
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where G is the constant of gravitation, g0 is the unperturbed
gravitational acceleration, 0r is unperturbed density, and s s, , l¢
and s s, , l¢ are the vector spherical harmonic coefficients of the
radial and colatitudinal component of the Lorentz force. This
equation is derived in Sweet (1950). Having obtained s s,dfl ¢ by
numerically integrating Equation (18), we can calculate the
perturbations in density, pressure, and squared sound speed:
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where 1G is the first adiabatic exponent and c0
2 is unperturbed

sound speed. The derivatives of ln 1G are supplied in the solar
model that was used for this work (Christensen-Dalsgaard et al.
1996). We present brief derivations of Equations (19)–(21) in
AppendixD.

The general matrix element for the indirect effect is derived
in Appendix E of Lavely & Ritzwoller (1992). We neglect
terms due to rotation and ellipticity and transform the general
matrix element from perturbations in bulk modulus 0k and
density 0r into perturbations in squared sound speed c0

2 and
density 0r , see Equation (64). This yields

I l l
m m
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r R r r dr
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where Kl is the bulk modulus perturbation kernel and R 2
l
( ) is the

density perturbation kernel, which are listed in AppendixC.

4. Disturbing the Sun

We modeled six different toroidal magnetic field distribu-
tions. Their radial profiles were modeled with Gaussians

a r
B r

2
exp 0.5 , 23scale

2

s p
m

s
= -

-⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( )

where Bscale is a factor to scale the distribution to the desired
maximum value. In Table 1 the locations of the maximum of
the field distribution μ and the width in terms of the Gaussian
standard deviation σ are given in the third and fourth columns.1

The maximum values of the distribution are given in the fifth
column. The sixth and seventh columns of Table 1 give the
values of the plasma beta

p

B

8
24

2
b

p
= ( )

at the location of the maximum of the field distribution and at
the photospheric level above the maximum of the distribution.
Here, p is the gas pressure and B is the magnetic field strength.
The plasma beta is the ratio of gas pressure to magnetic
pressure. It must be noted that the values for β change with
latitude as the spherical harmonics, with which the radial
distribution are multiplied, see Equation (12), have a latitudinal
dependence. This latitudinal dependence of the field distribu-
tions can be appreciated in the left panel of Figure 1, where
magnetic field model A is shown in a meridional cut. The
β values in Table 1 can thus be seen as minimal values.
Perturbations to the gravitational potential were neglected,

i.e., we applied the Cowling approximation (Cowling 1941).
This affects the sensitivity kernel R 1

l
( ) (Equation (52)) and the

perturbations to the structural quantities (Equations (18)–(21)).2

In our calculations, we used the standard solar model
Model S by Christensen-Dalsgaard et al. (1996). Included in
the version of the model we used is an extended set of

variables, e.g., the derivatives
p

ln

ln
1

r

¶ G
¶( ) and

p

ln

ln
1

r
¶ G
¶( ) which are

needed for the computation of the perturbation of the squared
sound speed.

Table 1
Computed Models of the Toroidal Magnetic Field

Model Degree μ σ Bmax Bmaxb ( ) photosphereb ( )
R( ) R( ) (kG) 10 3´ -

A 2 0.9 0.04 50 21.3 0.39
B 2 0.9 0.04 40 33.3 0.62
C 2 0.72 0.05 300 14.5 9 108´
D 4 0.9 0.04 50 21.3 0.39
E 2 0.9 0.04 50 15.5 0.29

4 0.9 0.04 −30
F 2 0.97 0.01 10 16.0 154

1 To avoid confusion, the center of the Sun is at a value of R0  and the
photosphere is located at R1 . This places the tachocline around R0.72 .
2 If the Cowling approximation is not applied, the eigenfunctions of the
gravitational potential df have to be calculated because they are required in
Equation (52). The ADIPLS code (Christensen-Dalsgaard 2008) that was used
for the computation of the set of eigenmodes can provide these functions.

4

The Astrophysical Journal, 854:74 (17pp), 2018 February 10 Kiefer & Roth



Model A is of harmonic degree s=2, has its maximum at
R0.90m =  with a width of R0.04s = , and has a maximum

field strength of B 50 kGmax = , see the left panel of Figure 1.
The maximum field strength is located at latitudes of 45 . The
right panel of Figure 1 shows the resulting frequency shifts as a
function of unperturbed mode frequency for modes with

l4 148  . To enhance clarity, we show only every fourth
harmonic degree starting at l=4. The frequency shifts are
averaged over the azimuthal order m and are thus the mean
shift of each multiplet. This shift is usually reported in studies
of solar oscillation frequencies as a function of the level of
activity (e.g., Broomhall 2017).

We calculated the general matrix elements for the direct and
indirect effects separately. Thus, we can also examine the shifts
caused by the two effects separately. In the left panel of
Figure 2, the mean multiplet shifts of model A are shown for
only the direct effect. In the right panel, the same is shown for
the indirect effect. Note the different orders of magnitude of the
shifts in the two panels.

Magnetic field model C, which is a strong field in the
tachocline region with B 300 kGmax = , is depicted in the left
panel of Figure 3. We modeled this field with a harmonic

degree of s=2, at a depth of R0.72m = , and with a width of
R0.04s = . The resulting frequency shifts as a function of

unperturbed mode frequency for modes of harmonic degree
l4 148  are shown in the right panel of Figure 3.

Notice the small magnitude of the shifts compared to the field
model A. We chose the strength of this model because Antia
et al. (2000) put an upper limit of 300 kG on magnetic fields in
the tachocline region from analyses of mode splitting
coefficients.
Model B is the same as model A, but with a lower maximum

field strength. We will use this model in the next section to
investigate differences between two configurations of the same
geometry and depth but different strengths. Field configuration
D has the same parameters for the radial function a(r) as
models A and B, but has a harmonic degree of s=4. Model E
is a superposition of two fields, one with s=2 and one with
s=4. Both fields are located at R0.9m =  with a width of

R0.04s = . The s=2 component has a maximum field
strength of B 50 kGmax = , while the s=4 component has a
strength of B 30 kGmax = - . The cross-terms between the two
configurations are included in the calculation of the general
matrix elements. As can be seen in Figure 11 in Appendix E,

Figure 1. Left panel: visualization of magnetic field model A. Right panel: multiplet frequency shifts for model A as a function of unperturbed mode frequency. Every
fourth harmonic degree is shown.

Figure 2.Multiplet frequency shifts caused by the direct (left panel) and indirect effect (right panel) for magnetic field model A. Notice the different magnitudes of the
shifts in the left and right panels.
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due to the superposition of the two fields, the maximum of the
field is closer to the equator compared to model A.
Model F is a shallow field located at R0.97m =  with a

width of R0.01s = , with a maximum field strength of
B 10 kGmax = , and has harmonic degree s=2. The multiplet
shifts for this model are only of the order of some tens of nHz
as can be seen in Figure 14 in Appendix E. The shifts caused
by the indirect effect are much smaller still, being at the level of
a few 10 Hz15- . The shape of the frequency shifts as a function
of mode frequency is rather different compared to the other
models.
Figures 7−14 in Appendix E show visualizations of the

magnetic fields, the resulting frequency shifts as functions of
mode frequency and of lower turning point, as well as the
shifts as a function of mode frequency separated for the direct
and indirect effect for field models D, E, and F.
In Figure 4, the frequency shifts for models A and C are

shown as functions of lower turning point of the modes. As
can be seen in the right panel, only modes with lower turning
point below or in the magnetized region around the

Figure 3. Left panel: visualization of magnetic field model C. Right panel: multiplet frequency shifts for model C as a function of unperturbed mode frequency. Every
fourth harmonic degree is shown.

Figure 4. Multiplet frequency shifts for model A (left panel) and model C (right panel) as a function of lower turning point. Notice the different magnitudes of the
shifts in the left and right panels.

Figure 5. Difference of the multiplet frequency shifts for model B and model A
(in the sense B − A) as a function of unperturbed mode frequency. Every fourth
harmonic degree is shown.
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tachocline experience a significant shift. Modes with turning
points above the magnetic field are no longer disturbed by
the direct effect. They can, however, still experience a
weak shift due to the indirect effect, see lower row of
panels in Figure 8 in Appendix E. As can be seen in the left
panel of Figure 4, for model A, the maximum shifts are
experienced by the modes of the highest degree we
calculated, as they have their lower turning point in the
magnetized region.

5. Discussion

The six magnetic field configurations we tested produce very
distinct patterns in the frequency shifts as a function of
unperturbed mode frequency. While models A, B, and D lead
to a decrease of the multiplet frequency for a wide range of
mode frequencies, the shift is generally positive for models C,
E, and F.

The multiplet shifts for field model A are presented in the
right panel of Figure 1. The shifts for this model decrease for
mode frequencies higher than 2 mHzn » and have their
minimum at around 3.8 mHzn » . For even higher frequencies
they increase and become positive for modes with 5 mHzn .
Ridges of modes with the same radial order are apparent. The
pattern seen here is determined by the direct effect. As seen in
Figure 2, the shifts caused by the indirect effect (right panel)
are much smaller than those caused by the direct effect (left
panel).

The mean multiplet shift caused by the indirect effect is
negative for all models and all modes. The dependence of the
shift as a function of frequency resembles the surface effect,
see, e.g., Ball & Gizon (2014) or Basu (2016). For modes of
low degree, as can be seen for the l=4 modes, the lowest
harmonic degree we considered here, the multiplet shift caused
by the indirect effect is lower than for the next harmonic
degrees we considered for models D and E. This peculiarity
may help to rule out some field configurations if it is not
observed for the Sun. We shall study the behavior of the low
degree mode frequencies in a separate article as these are of
special importance for asteroseismic studies of the magnetic
activity of a star for which only modes up to l=3 can be
observed. We speculate that magnetic fields in the upper part

of the solar convection zone can explain at least part of
the discrepancy between model frequencies and observed
frequencies.
The direct effect is the dominant contribution to the total

shift for all model fields we investigated. The indirect effect is
only important for more complex field configurations and
when the magnetic field strength near the photosphere is so
strong as to give a plasma beta 1b < . The shifts caused by the
indirect effect are of the same order of magnitude as those
caused by the direct effect for models D and E, as can be seen
from Figures 10 and 12 in Appendix E. For the other models,
which all have harmonic degree s=2, the contribution from
the indirect effect to the mean multiplet shift can well be
neglected.
Generating plots for observed shifts as a function of the

lower turning point of the modes, analogously to Figure 4,
might give an indication of the location of magnetic field
concentrations in the Sun. For this, the shifts of modes that
have their lower turning point rather close to the surface have
to be determined. If the shifts begin to decrease at a certain
harmonic degree, as they do for the shifts for model C, their
turning point can then be interpreted as the location of
maximal magnetic field strength in this region. We note that
such a location is not necessarily the location of the maximum
field strength in the Sun, as deeper seated magnetic fields
result in a smaller frequency shift even if they are stronger
than more shallow magnetic fields. This can be seen by
comparison of the left and right panels of Figure 4: model A,
which has a maximum magnetic field strength of 50 kG
located at R0.9 , produces shifts at the μHz level. Whereas
model C, which has a maximum magnetic field strength of six
times that of model A, produces shifts that are only at the nHz
level.
In Figure 5, the difference of the multiplet frequency shifts

for model B and model A is shown as a function of unperturbed
mode frequency. We show differences between the shifts of
models B and A in the sense model B—model A, that is, the
model with the weaker magnetic field minus the model with the
stronger field. On the Sun, the frequency shifts are correlated
with the level of magnetic activity. Hence, model B with a
maximum field strength of 40 kG would correspond to the

Figure 6. Left panel: same as Figure 5, but for a restricted frequency range. Right panel: observed mean multiplet frequency shifts between the maximum of solar
cycle 23 and the minimum of cycle 23. Figure adapted from Broomhall (2017). Note the different color coding in the two panels.
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activity maximum and model A with B 50 kGmax = would
correspond to the activity minimum. In this picture, the toroidal
magnetic field gets weaker in the ascending part of the cycle
and reaches its minimum strength at the activity maximum. It
then gets built up again by the solar dynamo and reaches its
maximum strength at the activity minimum. The large field
strength then causes the activity to increase again as magnetic
flux starts to rise to the surface.

In the left panel of Figure 6, we show the same as in Figure 5
but for a restricted frequency range of 1700–4000 μHz. In the
right panel of Figure 6, we show the results of Broomhall
(2017; called B17 hereafter). She investigated the mean
multiplet frequency shifts between the maximum of solar cycle
23 and the minimum of the same cycle from Global Oscillation
Network Group (GONG) data. As can be seen, the differences
between our two model magnetic field produce shifts in the
multiplet frequencies that are strikingly similar to those
reported by B17. Our results have the correct order of
magnitude, while our frequency shifts are about 0.1 Hzm
higher than the solar shifts. This can, however, easily be
corrected by adjusting the field strength of either model A or B.
We find that the shifts of modes of low harmonic degree have a
maximum at mode frequencies of 3800 Hzn m» . As can be
seen in Figure 5, they decrease for higher frequencies and even
turn negative at about 5000 Hzm . This behavior is not apparent
in the result of B17. An extension of the measurement of
the observed frequency shifts to mode frequencies above
4000 Hzm may help to discern the model fields that best
reproduce the shifts.

As can be seen in the last two columns of Table 1, the β
values of the six models we consider here, cover a wide range.
The tachocline field, model C, has the smallest β at its location
of maximum magnetic field strength, but the highest value in
the photosphere. Overall, the multiplet shifts for model C are
very small, as can be seen in Figure 3. The shifts of model F,
for which photosphere 154b =( ) , are also only of the order of
nHz. The other four models have β values at the photospheric
level that are 1< . These models produce multiplet frequency
shifts that are of the order of μHz. From this, we gather that the
magnetic field needs to have an appreciable field strength in the
near-surface layers if the mean multiplet shifts shall reach the
μHz level as is observed for the Sun.

For the model field E, which is a superposition of two fields,
we find that the shifts are positive for most modes, see
Figure 12 in Appendix E. It is noteworthy that each of the two
components of this model would lead to negative shifts on their
own as can be seen for model A and model D. Also, the
shifts are significantly different from zero already for mode
frequencies below 2 mHz.

6. Conclusion

The search for the layers where strong magnetic fields are
located in the interior of the Sun can be conducted with
helioseismic forward calculations and inversions. In this article,
we described our efforts to carry out forward calculations of the
effect of toroidal magnetic fields on solar multiplet frequencies
of acoustic oscillations. The theoretical framework we present
here is also applicable to stellar models.

We investigated six models for the magnetic field. A strong
tachocline field, model C, produced only small shifts of the
order of a few nHz. The maximum field strength of 300 kG is
already at (Antia et al. 2000) or even high above the expected

limit of magnetic fields in this region of the Sun (Arlt
et al. 2007). With this, we can safely state that toroidal
magnetic fields in the solar tachocline are not responsible for
the observed frequency shifts over the solar cycle.
Basu (1997) put an upper limit of 300 kG on the strength of

toroidal magnetic fields concentrated below the convection
zone base. This is the strength of magnetic field model C.
Hence, the effect of fossil fields in the solar radiative zone with
comparable strengths can also only be of the order of nHz.
Since we did not investigate poloidal magnetic field config-
urations, we cannot rule out poloidal fossil fields of this
strength. We note again that the effect of near-surface magnetic
field concentrations on acoustic oscillations are stronger by
orders of magnitude and will thus likely impede the detection
of fossil fields in the frequencies of solar acoustic oscillations.
An investigation of the perturbation of eigenfunctions of low
harmonic degree due to fossil fields is worthwhile and might
put tighter constraints on the strength of such fields.
Shifts in multiplet frequencies of the Sun are measured

between two differently magnetized states of the Sun.
Commonly, these shifts are reported between an activity
minimum and a following or preceding activity maximum. The
difference of the multiplet shifts caused by our models A and B
are found to be of the same order of magnitude as the observed
shifts on the Sun. Also, the behavior of the shifts as a function
of frequency and harmonic degree strongly resembles the solar
values reported by B17. This might indicate that there are
magnetic field distributions of the geometry and depth of our
models A and B in the Sun. The location of the maximum field
strength is at R0.9  and they both have a field strength in the
photosphere, which gives a plasma beta β that is smaller than
unity. In general, we found that the β value in the very shallow
layers must be of the order of unity to produce multiplet shifts
that reach the observed μHz level.
A detailed study of splitting coefficients with the theory we

presented here is expedient and will be conducted shortly. This
will yield further insight into the depth, shape, and strength of the
magnetic field concentration necessary to produce the observed
frequency shifts and splitting coefficients caused by toroidal
magnetic fields. It was shown by Schad et al. (2013) that analyses
of perturbed eigenfunctions can be used to infer the solar
meridional circulation. For this, the cross-coupling of modes has
to be included, as self-coupling alone does not change the
eigenfunction. Future integrated investigations of perturbed
eigenfunctions, frequency shifts, and splitting coefficients, which
can all be determined with the general matrix elements presented
by Kiefer et al. (2017b) and in this article, are a promising
tool to shed more light on the workings of the solar dynamo.
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supplying the extended version of Solar Model S. We also
thank Kolja Glogowski for computing the full set of solar
oscillation eigenmodes as well as for helpful discussions,
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sions, and our institute’s internal referee Wolfgang Schmidt
for reading the initial manuscript and his remarks, which
helped to improve this article. We thank the anonymous
referee for taking the time to review this paper. The research
leading to these results received funding from the European
Research Council under the European Unions Seventh
Framework Program (FP/2007-2013)/ERC Grant Agreement
no. 307117.
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Appendix A
Decomposition of a Real Valued Vector Field

In order to expand the Lorentz force in terms of spherical harmonics, we use every real vector field u that can be expanded in terms
of vector spherical harmonics (Dahlen & Tromp 1998):

u Y . 25
l m l

l

l
m

l
m

l
m

l
m

l
m

l
m

0

  å å Y F= + -
=

¥

=-

( )

The vector spherical harmonics, which are complete, are defined by
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where l is the harmonic degree, m is the azimuthal order with m l m - , Yl
m is a spherical harmonic function, and we work in

spherical geometry with the coordinates r, ,q f( ) radius, colatitude, and azimuth. The vector spherical harmonic coefficients in
Equation (25) are given by
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With Equations (25)–(31), the components of the vector field u are calculated as
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Appendix B
Expansion of the Lorentz Force

The Lorentz force, see Equation (11), for the toroidal configuration defined in Equation (12), is given by
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where a and â are the radial profiles of the two magnetic field component, which are superposed. All dependencies were dropped.
The Lorentz force (35) will now be projected onto the vector spherical harmonics, as defined in Equations (32)–(34). Each vector
component is treated separately.

B.1. The Radial Component

We concentrate on one magnetic field configuration with indices s s, ¢, which is indicated by including the indices s s, ¢ to the
notation of the vector spherical harmonic coefficients, e.g., s s l

m
, , ¢ . Calculating the sum over different configurations in Equation (46)

then yields the total effect of the superposition.
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With Equation (32), the radial component of the Lorentz force can be written as
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We define the angular kernel
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m0, = , see Dahlen & Tromp (1998). The relations for the generalized spherical harmonics we use here can

be found in AppendixD of Kiefer et al. (2017b). With Equation (D18) from Kiefer et al. (2017b), we can write
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The angular integral over the product of three generalized spherical harmonics can be calculated with the help of Equation (C.198) of
Dahlen & Tromp (1998). Making use of the properties of the Wigner 3j symbols (E30a)–(E30c) in Kiefer et al. (2017b), we find that

0m = , as otherwise the angular integral vanishes. It can also be seen that the integrals over the first and last term in the bracket in
Equation (39) always vanish due to Equation (E30a) in Kiefer et al. (2017b). We thus find
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where we made use of Equations (E27) and (E28) from Kiefer et al. (2017b) and we dropped the upper index on as 0m = always
holds.

B.2. The Azimuthal and Colatitudinal Components

Carrying out the same procedure for the azimuthal component as for the radial part leads to 0m = . With Equations (28), (34), and
(35), we find that 00 =l and hence F 0tor, =f , as can be expected from Equation (35). It remains to explicitly calculate the
colatitudinal component of the Lorentz force:
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We define the two angular kernels
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The following properties and equations are then used to obtain the vector spherical harmonic coefficient: Equation (D18) from Kiefer
et al. (2017b) to evaluate the colatitudinal derivatives; Equation (D16) from Kiefer et al. (2017b) with m=0 to absorb the factor
cot q in the kernel ;2 Equation (C.198) from Dahlen & Tromp (1998) to evaluate the angular integral in Equation (42); properties
(E27)–(E30c) of the Wigner 3j symbols in Kiefer et al. (2017b). With all of this, we find
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where we dropped the upper index on  as 0m = always holds.
The complete Lorentz force vector for a superposition of toroidal magnetic fields can thus be written as
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where the second summation extends over all even values between 0 and s s+ ¢ due to properties of the Wigner 3j symbols (E28) and
(E30c) from Kiefer et al. (2017b).

Appendix C
The Sensitivity Kernels

We reproduce the sensitivity kernels presented in Lavely & Ritzwoller (1992), Section 6), which appear in the general matrix
element for the indirect effect given in Equation (22):3
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where K rl ( ) is the bulk modulus perturbation kernel and R r2
l ( )( ) is the density perturbation kernel.

3 We corrected two mistakes compared to Lavely & Ritzwoller (1992): In
Equation (52), we added a factor rx to the second term in the second square
bracket and, in Equation (53), we corrected the factor before the first integral
from r2 to rl.
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The Woodhouse coefficients (Woodhouse 1980) are given by
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The cases, which occur in the sensitivity kernels, are
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For useful identities of the Woodhouse coefficients, the reader is referred to the Appendix of Woodhouse (1980) and Appendix D.2.3
of Dahlen & Tromp (1998).

Appendix D
Perturbations in Structural Quantities

In Section 3, we found for the perturbations in the structural quantities:
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where rs s,dfl ¢( ) is found by integrating Equation (18) numerically. Equation (57) can be obtained from Equation (18) by using the
Poisson equation

r G r4 602f p r =( ) ( ) ( )

to solve for the perturbation in the density rs s,drl ¢( ). The derivation of Equation (57) can also be found in Mathis & Zahn (2004).
Introducing perturbations Q Q Qd + with gQ p, , r= to the equation of hydrostatic support gdp dr r= - yields

g
d p r

dr
r g r , 61s s

s s s s
,

0 , , 0

d
dr d r= - -

l
l l¢

¢ ¢
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( ) ( ) ( )

where the equilibrium equation has been subtracted and only terms linear in the perturbations are retained. The gravitational
acceleration is expanded, like the structural quantities, according to Equation (17). The expansion coefficient of the aspherical
perturbation to the gravitational acceleration is given by
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which is derived in Mathis & Zahn (2004), Section 5.2. By inserting Equation (57) and (62) into Equation (61), we find
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Applying the inverse chain rule and eliminating the radial derivative yields Equation (58).
The kernel for the indirect effect as given in Equation (90) of Lavely & Ritzwoller (1992) includes perturbations of the bulk

modulus 0k and density 0r . It can be transformed to perturbations in squared sound speed c0
2 and density 0r . The transformation is

obtained by introducing perturbations in the defining equation of the squared sound speed c0
2

0 0k r= , subtracting the unperturbed
equation, and linearizing in the perturbations. This yields

r r c r c r , 64s s s s s s, 0
2

, 0
2

,dk r d dr= +l l l
¢ ¢ ¢( ) ( ) ( ) ( ) ( )

which was used to obtain Equation (22) from Equation (90) in Lavely & Ritzwoller (1992). The aspherical perturbation to the bulk
modulus can be expanded according to Equation (17). The perturbation in squared sound speed (Equation (59)) is derived in Aerts
et al. (2010), Section 3.6. Compared to Aerts et al. (2010), we neglect perturbations to the chemical abundances.

Appendix E
Additional Figures

Figures 7, 9, 11, and 13 show visualizations of the magnetic field configurations of models C, D, E, and F. Figures 8, 10, 12, and 14 show
the computed frequency shifts of models C, D, E, and F as functions of unperturbed mode frequency and lower turning point of the modes.
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Figure 7. Visualization of magnetic field model C.

Figure 8. Top row: multiplet frequency shifts for model C as a function of unperturbed mode frequency (left panel) and as a function of lower turning point (right
panel). Bottom row: multiplet frequency shifts for model C as a function of unperturbed mode frequency for the direct and indirect effect in the left and right panels,
respectively. Notice the different magnitudes of the shifts in the left and right panels. Every fourth harmonic degree is shown in all plots.
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Figure 9. Visualization of magnetic field model D.

Figure 10. Top row: multiplet frequency shifts for model D as a function of unperturbed mode frequency (left panel) and as a function of lower turning point (right
panel). Bottom row: multiplet frequency shifts for model D as a function of unperturbed mode frequency for the direct and indirect effect in the left and right panel,
respectively. Every fourth harmonic degree is shown in all plots.
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Figure 11. Visualization of magnetic field model E.

Figure 12. Top row: multiplet frequency shifts for model E as a function of unperturbed mode frequency (left panel) and as a function of lower turning point (right
panel). Bottom row: multiplet frequency shifts for model E as a function of unperturbed mode frequency for the direct and indirect effect in the left and right panels,
respectively. Every fourth harmonic degree is shown in all plots.
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Figure 13. Visualization of magnetic field model F.

Figure 14. Top row: multiplet frequency shifts for model F as a function of unperturbed mode frequency (left panel) and as a function of lower turning point (right
panel). Bottom row: multiplet frequency shifts for model F as a function of unperturbed mode frequency for the direct and indirect effect in the left and right panel,
respectively. Notice the different magnitudes of the shifts in the left and right panels. Every fourth harmonic degree is shown in all plots.

16

The Astrophysical Journal, 854:74 (17pp), 2018 February 10 Kiefer & Roth



ORCID iDs

René Kiefer https://orcid.org/0000-0003-4166-5343

References

Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. 2010, Asteroseismology
(Dordrecht: Springer)

Antia, H. M., Chitre, S. M., & Thompson, M. J. 2000, A&A, 360, 335
Arlt, R., Sule, A., & Rüdiger, G. 2007, A&A, 461, 295
Baldner, C. S., Antia, H. M., Basu, S., & Larson, T. P. 2009, ApJ, 705, 1704
Ball, W. H., & Gizon, L. 2014, A&A, 568, A123
Basu, S. 1997, MNRAS, 288, 572
Basu, S. 2016, LRSP, 13, 2
Basu, S., Broomhall, A.-M., Chaplin, W. J., & Elsworth, Y. 2012, ApJ, 758, 43
Broomhall, A.-M. 2017, SoPh, 292, 67
Charbonneau, P. 2010, LRSP, 7, 3
Christensen-Dalsgaard, J. 2008, Ap&SS, 316, 113
Christensen-Dalsgaard, J., Däppen, W., Ajukov, S. V., et al. 1996, Sci,

272, 1286
Cowling, T. G. 1941, MNRAS, 101, 367
Dahlen, F. A., & Tromp, J. 1998, Theoretical Global Seismology (1st ed.;

Princeton, NJ: Princeton Univ. Press)
Duez, V., Mathis, S., Brun, A. S., & Turck-Chièze, S. 2008, in Proc. IAU

S259, Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, ed.
K. G. Strassmeier, A. G. Kosovichev, & J. E. Beckman (Cambridge:
Cambridge Univ. Press), 177

Duez, V., Mathis, S., & Turck-Chièze, S. 2010, MNRAS, 402, 271
Dziembowski, W. A., & Goode, P. R. 2005, ApJ, 625, 548

Edmonds, A. R. 1960, Angular Momentum in Quantum Mechanics (2nd ed.;
Princeton, NJ: Princeton Univ. Press)

Fan, Y. 2009, LRSP, 6, 4
García, R. A., Mathur, S., Salabert, D., et al. 2010, Sci, 329, 1032
Gough, D. O., & Thompson, M. J. 1990, MNRAS, 242, 25
Hanasoge, S. M. 2017, MNRAS, 470, 2780
Hathaway, D. H. 2015, LRSP, 12, 1
Herzberg, W. 2016, PhD thesis, Albert-Ludwigs Universität Freiburg
Jimenez-Reyes, S. J., Regulo, C., Palle, P. L., & Roca Cortes, T. 1998, A&A,

329, 1119
Kiefer, R., Schad, A., Davies, G., & Roth, M. 2017a, A&A, 598, A77
Kiefer, R., Schad, A., & Roth, M. 2017b, ApJ, 846, 162
Lavely, E. M., & Ritzwoller, M. H. 1992, RSPTA, 339, 431
Libbrecht, K. G., & Woodard, M. F. 1990, Natur, 345, 779
Mathis, S., & Zahn, J. P. 2004, A&A, 425, 229
Mathis, S., & Zahn, J.-P. 2005, A&A, 440, 653
Mestel, L., & Moss, D. L. 1977, MNRAS, 178, 27
Miesch, M., & Teweldebirhan, K. 2016, AdSpR, 58, 1571
Regge, T. 1958, NCim, 10, 544
Roth, M. 2002, PhD thesis, Albert-Ludwigs-Universität Freiburg
Sakurai, J. J., & Napolitano, J. J. 2014, Modern Quantum Mechanics (2nd ed.;

Harlow: Pearson Education Limited)
Salabert, D., Régulo, C., García, R. A., et al. 2016, A&A, 589, A118
Schad, A. 2013, PhD thesis, Albert-Ludwigs-Universität Freiburg
Schad, A., Timmer, J., & Roth, M. 2011, ApJ, 734, 97
Schad, A., Timmer, J., & Roth, M. 2013, ApJL, 778, L38
Sweet, P. A. 1950, MNRAS, 110, 548
Woodard, M. F., & Noyes, R. W. 1985, Natur, 318, 449
Woodhouse, J. H. 1980, GeoJI, 61, 261
Woodhouse, J. H., & Dahlen, F. A. 1978, GeoJI, 53, 335

17

The Astrophysical Journal, 854:74 (17pp), 2018 February 10 Kiefer & Roth

https://orcid.org/0000-0003-4166-5343
https://orcid.org/0000-0003-4166-5343
https://orcid.org/0000-0003-4166-5343
https://orcid.org/0000-0003-4166-5343
https://orcid.org/0000-0003-4166-5343
https://orcid.org/0000-0003-4166-5343
https://orcid.org/0000-0003-4166-5343
https://orcid.org/0000-0003-4166-5343
http://adsabs.harvard.edu/abs/2000A&amp;A...360..335A
https://doi.org/10.1051/0004-6361:20065192
http://adsabs.harvard.edu/abs/2007A&amp;A...461..295A
https://doi.org/10.1088/0004-637X/705/2/1704
http://adsabs.harvard.edu/abs/2009ApJ...705.1704B
https://doi.org/10.1051/0004-6361/201424325
http://adsabs.harvard.edu/abs/2014A&amp;A...568A.123B
https://doi.org/10.1093/mnras/288.3.572
http://adsabs.harvard.edu/abs/1997MNRAS.288..572B
https://doi.org/10.1007/s41116-016-0003-4
http://adsabs.harvard.edu/abs/2016LRSP...13....2B
https://doi.org/10.1088/0004-637X/758/1/43
http://adsabs.harvard.edu/abs/2012ApJ...758...43B
https://doi.org/10.1007/s11207-017-1068-5
http://adsabs.harvard.edu/abs/2017SoPh..292...67B
https://doi.org/10.12942/lrsp-2010-3
http://adsabs.harvard.edu/abs/2010LRSP....7....3C
https://doi.org/10.1007/s10509-007-9689-z
http://adsabs.harvard.edu/abs/2008Ap&amp;SS.316..113C
https://doi.org/10.1126/science.272.5266.1286
http://adsabs.harvard.edu/abs/1996Sci...272.1286C
http://adsabs.harvard.edu/abs/1996Sci...272.1286C
https://doi.org/10.1093/mnras/101.8.367
http://adsabs.harvard.edu/abs/1941MNRAS.101..367C
https://doi.org/10.1111/j.1365-2966.2009.15955.x
http://adsabs.harvard.edu/abs/2010MNRAS.402..271D
https://doi.org/10.1086/429712
http://adsabs.harvard.edu/abs/2005ApJ...625..548D
https://doi.org/10.12942/lrsp-2009-4
http://adsabs.harvard.edu/abs/2009LRSP....6....4F
https://doi.org/10.1126/science.1191064
http://adsabs.harvard.edu/abs/2010Sci...329.1032G
https://doi.org/10.1093/mnras/242.1.25
http://adsabs.harvard.edu/abs/1990MNRAS.242...25G
https://doi.org/10.1093/mnras/stx1342
http://adsabs.harvard.edu/abs/2017MNRAS.470.2780H
https://doi.org/10.1007/lrsp-2015-4
http://adsabs.harvard.edu/abs/2015LRSP...12....4H
http://adsabs.harvard.edu/abs/1998A&amp;A...329.1119J
http://adsabs.harvard.edu/abs/1998A&amp;A...329.1119J
https://doi.org/10.1051/0004-6361/201628469
http://adsabs.harvard.edu/abs/2017A&amp;A...598A..77K
https://doi.org/10.3847/1538-4357/aa8634
http://adsabs.harvard.edu/abs/2017ApJ...846..162K
https://doi.org/10.1098/rsta.1992.0048
http://adsabs.harvard.edu/abs/1992RSPTA.339..431L
https://doi.org/10.1038/345779a0
http://adsabs.harvard.edu/abs/1990Natur.345..779L
https://doi.org/10.1051/0004-6361:20040278
http://adsabs.harvard.edu/abs/2004A&amp;A...425..229M
https://doi.org/10.1051/0004-6361:20052640
http://adsabs.harvard.edu/abs/2005A&amp;A...440..653M
https://doi.org/10.1093/mnras/178.1.27
http://adsabs.harvard.edu/abs/1977MNRAS.178...27M
https://doi.org/10.1016/j.asr.2016.02.018
http://adsabs.harvard.edu/abs/2016AdSpR..58.1571M
https://doi.org/10.1007/BF02859841
http://adsabs.harvard.edu/abs/1958NCim...10..544R
https://doi.org/10.1051/0004-6361/201527978
http://adsabs.harvard.edu/abs/2016A&amp;A...589A.118S
https://doi.org/10.1088/0004-637X/734/2/97
http://adsabs.harvard.edu/abs/2011ApJ...734...97S
https://doi.org/10.1088/2041-8205/778/2/L38
http://adsabs.harvard.edu/abs/2013ApJ...778L..38S
https://doi.org/10.1093/mnras/110.6.548
http://adsabs.harvard.edu/abs/1950MNRAS.110..548S
https://doi.org/10.1038/318449a0
http://adsabs.harvard.edu/abs/1985Natur.318..449W
https://doi.org/10.1111/j.1365-246X.1980.tb04317.x
http://adsabs.harvard.edu/abs/1980GeoJI..61..261W
https://doi.org/10.1111/j.1365-246X.1978.tb03746.x
http://adsabs.harvard.edu/abs/1978GeoJI..53..335W

	1. Introduction
	2. Perturbation Theory
	3. The Indirect Effect
	4. Disturbing the Sun
	5. Discussion
	6. Conclusion
	Appendix ADecomposition of a Real Valued Vector Field
	Appendix BExpansion of the Lorentz Force
	B.1. The Radial Component
	B.2. The Azimuthal and Colatitudinal Components

	Appendix CThe Sensitivity Kernels
	Appendix DPerturbations in Structural Quantities
	Appendix EAdditional Figures
	References



