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Abstract
Insect populations appear with a high spatial, temporal and type-specific diversity in orchards. One of the many monitoring
tools for pest management is the manual assessment of sticky traps. However, this type of assessment is laborious and
time-consuming so that only a few locations can be controlled in an orchard. The aim of this study is to test state-of-the
art object detection algorithms from deep learning to automatically detect cherry fruit flies (Rhagoletis cerasi), a common
insect pest in cherry plantations, within images from yellow sticky traps. An image annotation database was built with
images taken from yellow sticky traps with more than 1600 annotated cherry fruit flies. For better handling in the
computational algorithms, the images were augmented to smaller ones by the known image preparation methods “flipping”
and “cropping” before performing the deep learning. Five deep learning image recognition models were tested including
Faster Region-based Convolutional Neural Network (R-CNN) with two different methods of pretraining, Single Shot
Detector (SSD), RetinaNet, and You Only Look Once version 5 (YOLOv5). R-CNN and RetinaNet models outperformed
other ones with a detection average precision of 0.9. The results indicate that deep learning can act as an integral component
of an automated system for high-throughput assessment of pest insects in orchards. Therefore, this can reduce the time for
repetitive and laborious trap assessment but also increase the observed amount of sticky traps
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Erkennung der Kirschfruchtfliege (Rhagoletis cerasi L.) in Bildern von Gelbtafel-Klebefallen mit
Methoden des Deep Learning

Zusammenfassung
Insektenpopulationen treten in Obstanlagen mit einer hohen räumlichen, zeitlichen und artenspezifischen Vielfalt auf. Eine
wichtige Methode zur Überwachung von Schadinsekten in Obstanlagen ist der Einsatz von Klebefallen. Die manuelle
Auswertung der Klebefallen hinsichtlich des Vorhandenseins des jeweiligen Schadinsekts ist mühsam und zeitaufwändig,
sodass nur wenige Standorte in einer Obstanlage kontrolliert werden können. In der vorliegenden Studie wurden Bil-
derkennungsalgorithmen des maschinellen Lernens getestet, um die Kirschfruchtfliege (Rhagoletis cerasi), eine wichtige
Schädlingsinsektenart in Kirschplantagen, in Bildern von gelben Klebefallen automatisch zu erkennen. Eine Datenbank aus
Bildaufnahmen von gelben Klebefallen mit mehr als 1600 manuell markierten Kirschfruchtfliegen nebst zusätzlichen Me-
tainformationen wurde erzeugt. Zur Verbesserung der Durchführbarkeit des maschinellen Lernens erfolgte eine Erhöhung
der Anzahl der Bilder mittels der üblichen Methoden „Spiegeln“ und „Zuschneiden“. Fünf Deep-Learning-Bilderkennungs-
modelle wurden getestet, darunter Faster Region-based Convolutional Neural Network (R-CNN) mit zwei verschiedenen
Vortrainingsmethoden, Single Shot Detector (SSD), RetinaNet und You Only Look Once Version 5 (YOLOv5). R-CNN-
und RetinaNet-Modelle übertrafen die anderen Modelle mit einer durchschnittlichen Erkennungsgenauigkeit von 0,9. Die
Ergebnisse zeigen, dass Deep Learning als integraler Bestandteil eines automatisierten Systems zur Hochdurchsatzbewer-
tung gelber Klebefallen zum Monitoring der Kirschfruchtfliege in Kirschplantagen fungieren kann. Durch die Reduzierung
der Auswertungszeit der gelben Klebefallen kann zukünftig deren Anzahl und damit die Stichprobendichte in Kirschplan-
tagen erhöht werden.

Schlüsselwörter Annotation · Kirschfruchtfliege · Deep Learning · Insektenerkennung · Gelbtafeln

Introduction

Agricultural plants are often threatened by pests such as
specific insects, making it difficult to produce high-quality
food. Different pest control methods are available based on
cultivation standards. Once the species of a pest is identi-
fied, many methods can be improved by adapting them. In
order to keep track of that, one can lay out yellow sticky
traps that are subsequently evaluated by experts. Addition-
ally, changing climatic conditions are occurring all over the
world, owing mostly to the phenomena of climate change
that affect temporal and spatial patterns of precipitation and
temperature causing significant effects on crop-pest inter-
actions (Heeb et al. 2019). Losses due to pests are not only
economic (40% of the world’s food supply is destroyed
by pests) but also decreasing food security (IPPC Secre-
tariat 2021). Responding appropriately to usually growing
healthy food demands under these potentially threatening
situations, necessitates the use of innovative pest detection
techniques and technologies more than ever (Saleem et al.
2021; Böckmann et al. 2021). One of the main priorities of
any pest management solution is to find suitable methods
and models in order to detect insects better (Böckmann et al.
2021). Nowadays, scientific and technological advances,
particularly in image processing techniques and computer
vision technology have enabled the application of new tools
for describing areas affected by insects and also facilitating
pest management to increase yields in the context of preci-
sion horticulture (Zude-Sasse et al. 2016; Cardim Ferreira

Lima et al. 2020). The combination of these techniques
and data-driven computing tools such as machine learning
(ML), more specifically deep learning (DL) approaches,
have led to increased accuracy in translating unstructured
image data to practical information for the end-user. In re-
cent years ML data driven methods have been more and
more employed in insect detection and monitoring systems
(Cardim Ferreira Lima et al. 2020; Jiang et al. 2008) and,
more specifically, deep learning methods have been em-
ployed in pest detection studies (Wenyong et al. 2021).
Wang (2022) indicated that the complexity of data prepro-
cessing in traditional methods of artificial intelligence and
machine learning models is high, therefore he proposed an
improved deep learning model namely, AlexNet, for detect-
ing crop diseases and insect pests. Thenmozhi et al. (2021)
applied convolutional neural network (CNN) for two dif-
ferent insect datasets with 24 classes. The results showed
more than 90% accuracy for classification using a CNN
model. Kuzuhara et al. (2020) studied the application of
region based convolutional neural Networks (R-CNN) and
“You Only Look Once” v3 (YOLOv3) for insect pest detec-
tion. They concluded that deep learning models need a large
dataset to optimize parameters during the training stage and
consequently proposed data augmentation methods to over-
come the lack of data problem. These studies showed that
the deep learning approach is one of the most suitable data
driven models for image processing and object detection
studies for insect pest detection.
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The insect detection image processing of installed sticky
traps using DL data driven methods can be entwined with
two main challenges. On the one hand, many parameters
including different types of insects, appropriate annotation
methods, image resolution, etc., should be considered when
using trap images for object detection. On the other hand,
the selection of DL methods that are suitable for process-
ing images needs to be properly tested and adapted. This
can be difficult because of the magnitude of available ML
methods for object detection. In this context, the objective
of this study focuses on the application of different object
detection DL methods, namely, faster R-CNN, single-shot
detector (SSD), RetinaNet, and YOLOv5, for insect detec-
tion on sticky trap images using two high resolution data
sets, i.e. a single-class—cherry fruit fly (Rhagoletis cerasi)-
and a multi-class data set, taken from insect traps on cherry
orchards located in eastern Germany.

Fig. 1 Study area

Fig. 2 Example of yellow sticky
traps on cherry orchard. a Year
2020, b Year 2021

Materials andMethods

Study Area and Data

The cherry orchard is located in the Leibniz Institute of
Agricultural Engineering and Bio-economy (ATB) research
site in Marquardt, eastern Germany; the longitude and lati-
tude of the field center is 52°2800100N 12°5702700E (Fig. 1).
The data consist of two high-resolution sets of images that
display insects on hanging yellow sticky traps (Fig. 2) in
cherry orchards placed at 0.74 to 2.17m over the ground in
two consecutive years (2020 and 2021). The most serious
pest of cherries is the European cherry fruit fly (Rhago-
letis cerasi), which appears in orchard between mid-May
and mid-June (Böhm 1949). The datasets consist of 140
and 850 images for 2020 and 2021, respectively. In 2020,
within the images, 47 different classes were detected and
labeled, whereas in 2021, within the images, the whole
area of each trap was categorized in two classes, namely,
RHAGCE for European cherry fruit fly and non-RHAGCE.
Since the target pest is the European cherry fruit fly, all
deep learning object detection models in the present study
have been trained and validated based on the 2021 labeling
method.

Insect Annotation

Many insects find bright yellow to be very attractive and
European cherry fruit fly (Rhagoletis cerasi) is not an ex-
emption (Lu et al. 2019). As Fig. 2 shows, the images have
been labeled in a way that each trapped insect has a class
label and a bounding box. For the annotation, the computer
vision annotation tool (CVAT) was applied. Using bounding
boxes, the CVAT software enabled the insect individuals
to be quickly annotated within the images using bound-
ing boxes specified with left-down (x_min, y_min), right-up
(x_max, y_max) points. The images with annotated classes
in CVAT were stored as a comma-separated values (csv)
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and converted to the pattern analysis, statistical modeling
and computational (PASCAL) visual object classes (VOC)
model format (Everingham et al. 2015). In order to make
the data persistent and easier to employ, all information in
each individual image was further converted to the Exten-
sible Markup Language (XML) format by PASCAL-VOC
(Everingham et al. 2007), which is composed of several at-
tributes, such as filename, size and objects that consists of
a label and a bounding box.

Data Augmentation

In order to increase the amount of data, the augmenta-
tion techniques including flipping and cropping was used.
Flipping is a frequent technique in computer vision that
leads to a significant performance improvement (Shorten
and Khoshgoftaar 2019). It aids in preventing a model from
learning a certain order of pixels used to create an object.
By shifting one’s point of view, one can gain a more gen-
eral and fine-tuned “understanding” of an object. Cropping
is used to reduce the size of the input. This can boost per-
formance; for example, a batch of a smaller size can be
processed faster. While the insects are just a small part
of the photo, the insects may occupy a bigger area in the
cropped picture. As a result, the model may extract differ-
ent features than the original sized input. Two methods of
cropping were applied. First, grid cropping created patches
from a picture of equal size. Second, sliding window crop-
ping created images of a fixed size by moving a window
over the image and cutting it out at every step. The latter

Table 1 Data augments techniques

Year Augment tech Total added images

2020 Flippinga 806

2021 Flippinga 1203

2021 Grid croppingb 50,110

2021 Sliding window croppingb 177,325
aThe resolution of image has not been changed (3248–4032
pixels× 1960–3024 pixels)
bThe cropped parts has the resolution of (300 pixels× 300 pixels)

Fig. 3 a A visual representation that shows how machine learning (ML) and deep learning (DL) are regarded within the context of artificial
intelligence (AI); b Architecture of a DL model (Chollet 2017)

allows the identical object to appear in a different area of
the cropped image (See Table 1). Due to less complexity,
i.e., detection of one class only, the single-class problem
should be “easier” for the model to learn. Therefore, explo-
ration with grid cropping methods are evaluated on the 2021
data set for feasibility reasons prototypically. The reason is
that a small object can be harder to detect in a large im-
age. When cropping the images into sub images, the objects
will take up more space when occurring. Also, detecting on
smaller images may have a performance boost during train
and test time and can be elaborated on in future research.

Deep Learning Models

As shown in Fig. 3, deep learning (DL) is a subfield of
artificial intelligence (AI) and machine learning (ML). The
term “deep” in this approach refers to a layered structure
in the learning process, and it is not always associated with
a deeper understanding of this problem-solving methodol-
ogy. The sample deep learning model is composed of an
input layer, multiple hidden layers and one output layer.
Each layer has multiple fully connected nodes. The layer
names are self-explanatory, as the input layer handles input
data and the output layer delivers output values, for ex-
ample probabilities for a class in a classification problem.
The hidden layers lay between them and do the calcula-
tions between the layers. As a result, it is also known as
“hierarchical representations learning” and “layered repre-
sentations learning.” (Chollet 2017).

Although the idea of DL was first introduced in 1993, it
was not really applied for more than a decade because of
the lack of data and high-performance computing hardware
as well as popularity of other ML models at the time such
as support vector machines (SVM). However, Many labeled
datasets have been collected since 2006 and, moreover, sig-
nificant progress in computers and data training methods
have been made in the recent years that removed obstacles
to apply DL methods (Fig. 4). In fact, more recently it has
become a rather hot topic in image processing, specifically
the CNN models (Chollet 2017; Hatt et al. 2019).
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Fig. 4 Short history of deep
learning models

Fig. 5 Region based convolutional neural networks (R-CNN) model for insect detection

In order to apply deep learning to detect cherry fruit flies,
five different models were applied in this study: i) Faster-
RCNN model pretrained using a residual neural network
(ResNet); ii) Faster-RCNN model pretrained using Mo-
bileNet; iii) single-shot detector (SSD); iv) RetinaNet (one-
stage deep CNN); and v) YOLOv5. Faster R-CNN mod-
els are a modified version of R-CNN (Girshick 2015). The
model is known as a two-staged approach because it ex-
tracts region proposals at the first stage and computes CNN
features on latter proposals at second stage.

As shown in Fig. 5, given the input images as three-di-
mensional matrices (RGB), the model extracts region sug-
gestions for each input image using the selective search
technique, which recursively merges comparable neighbor-
ing region pairings into bigger ones using a similarity mea-

sure. Then, using affine image warping, each proposal is
transformed to a fixed size that serves as an input layer for
the CNN. Then the CNN generates a feature vector from
each area suggestion. Finally, each class is predicted us-
ing a separate linear support vector machine (SVM) model.
Fast-RCNN is a form of R-CNN that uses a neural net-
work instead of SVM and modifies the feature computa-
tion. A further development of both models is called Faster-
RCNN, which is a single and unified network for object
detection. On the PASCAL VOC 2007 data set, relative
to R-CNN, the Faster-RCNN model takes a shorter time
(about 0.2 s) for image proposal and detection (Liu et al.
2016). SSD is a single-stage object detection model pro-
posed by Liu et al. (2016). Similar to Faster R-CNN, SSD
uses an offset prediction of the default boxes and its confi-
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Fig. 6 Deep learning workflow
used in the present study

dence values but at different scales. RetinaNet is a single-
stage object detection model based on the focal loss in-
troduced by Lin et al. (2020) that also uses anchor boxes.
You Only Look Once (YOLO) proposed by Redmon et al.
(2016) is the last single-stage object detection model that
divides images into grids at the first step. In a grid, each cell
detects objects within itself. The latest version (YOLOv5)
has been used in present study. The general workflow of all
applied models has been shown in Fig. 6. It includes data
preparation and annotation, classification made by a deep
learning algorithm and iterative evaluation of the results. In
order to give a broad overview of different learning rate be-
haviors, an extensive grid search is applied for the learning
rates [10–2, 10–3, ..., 10–7, 10–11 and 10–12] onto each model
for the 2020 and 2021 data set. They are used along with
a stochastic gradient descent optimizer and a momentum
of 0.9 (Ruder 2016). The learning rate hyper-parameters
define how much the weights are adjusted during the back-
propagation process of the neural network according to the
loss of stochastic gradient descent. The training process is
combined with a learning rate scheduler that is applied after
15 episodes. It multiplies the learning rate by 0.1 similar to
Liu et al. (2016). That should make a network find a more
exact solution and fine-tune its parameters in theory.

As shown in Fig. 6, the model evaluation and tuning
plays an important role in the DL model. This stage in-
cludes the loss function in the training stage and preci-
sion/recall metrics in the validation and test stages. The
loss functions—also called error function—calculate how
far a model output deviates from its ground truth. It is com-
posed of the classification loss (Lcls) and the bounding box
regression loss (Lreg) (Lin et al. 2020).

Backbones and Pre-training

Backbones and pre-training in object detection models have
been used for improvement in DL model results. A back-
bone describes a certain method for feature extraction of
images in any CNN model like MobileNet (Howard et al.
2017), ResNet (He et al. 2016) or Visual Geometry Group-
16 (VGG-16) network (Krizhevsky et al. 2017). A pre-
trained backbone can use its knowledge of extracting certain
features out of the data for a new problem and accelerates
training, especially when the new data set is similar to the
one used during pre-training. A pre-trained backbone net-
work has been applied in this study in order to improve the
performance of DL models.

ClassificationModel EvaluationMetrics

In the case of a classification issue with two output classes
(RHAGCE, non-RHAGCE), the prediction model’s output
is a probability that decides, which class the output is allo-
cated to. There are four possible results of a classification
prediction model, namely, true positive (TP), false posi-
tive (FP), true negative (TN), and false negative (FN). This
list of possible results defines an important metric for the
model, called the confusion matrix (Tharwat 2021; Bradley
1997) (Table 2).

Precision and recall are the measures used to evaluate the
model based on these four possible outputs. Precision [0,
1] quantifies how accurate the model is when it produces

Table 2 Confusion matrix

Ground truth class/Predicted
class

RHAGCE Non-RHAGCE

RHAGCE Count of TPs Count of FNs

Non-RHAGCE Count of FPs Count of TNs
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a positive outcome. Recall [0, 1] measures how many cor-
rect TPs can be produced by the model (Tharwat 2021).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Here, TP means that the predicted label correctly esti-
mates the ground truth label, TN denotes that the predicted
label correctly estimates the absence of the ground truth
label, FP means that the predicted label wrongly estimates
a ground truth label, if it is present and FN indicates that
the predicted label estimates a ground truth label, if it is
absent.

In order to find the degree of overlap between predicted
bounding box around the target insect individual and its
associated annotated bounding boxes, the object detection
methods use the intersection over union (IoU) metric, which
is calculated by Eq. 3 (Ren et al. 2015).

IoU =
area .predicted \ groundtruth/

area .predicted [ groundtruth/
(3)

IoU and precision-recall measures are used to compute
average precision (AP), which is the most popular evalu-
ation metrics for object detection models. It is defined as
the area under the precision-recall curve (AUC-PR) eval-
uated at α threshold of IoU is equal to AP@α. The latter
parameter has been calculated in the VOC2007 challenge
(Everingham et al. 2015) by the following equation:

AP =
1

11

Xr=1

r=0
pint .r/ ; r = 0; 0.1; 0.2; :::; 1 (4)

pint .r/ = p .er/ ;er Wer � r (5)

where pint is the interpolated average precision and interpo-
lated average precision (pint). For a class and a set of pre-
cision at a certain recall level (r), one sums the maximum
precision at each rank level (er), i.e., at every recall rank.
This measure approximates the AUC-PR (Everingham et al.
2015).

Table 3 Class distribution of
insects on yellow sticky traps in
cherry orchard of the study area

2020 annotation (140 Images—47 classes)

Scientific name Class-Name Insect count Observed in # images

Indefinable insects NOTHIN 2644 89

Background of image BACKGR 885 23

Rhagoletis cerasi RHAGCE 469 84

Drosophila 1DROSG 183 38

Chrysopidae 1CHASF 151 12

Muscidae 1MUSCF 109 31

Formicidae 1CHSAF 100 19

Other 40-Classes 364 114

2021 annotation (850 Images—1 class)

Rhagoletis cerasi RHAGCE 1626 401

The main idea of using AP is to reduce the impact of
the “wiggles” in the precision-recall curve. This parameter
is shown in the form of AP@α, which means that the AP
precision is defined at α threshold of IoU (Ren et al. 2015).
In the present study, AP@0.5 and AP@0.75 was calculated
for all DL models. If the number of classes (C) exceeded
one, the AP will be the average value for all classes or
mAP:

mAP =
1

C

Xi=C

i=1
APi ; C = 1; 2; ::: (6)

Since all models run by an efficient computational sys-
tem, frame per seconds (fps) was used to describe the per-
formance of the model. FPS determines how quickly the
object detection DL model processes images and generates
the model output.

Results and Discussions

Insect Annotation Results

There are a total number of 4905 annotations for 140 im-
ages of the 2020 data set, more than 90% of the annota-
tions belong to the 7 upper classes in terms of occurrence
(at least 100 times). By eliminating the first two classes,
“NOTHIN” and “BACKGR”, the most frequent class was
RHAGCE or European cherry fruit fly, which was observed
in 60% of the sticky trap’s images. Regarding the observa-
tion results in 2020, it was decided that in the 2021 images
only the RHAGCE class will be considered as a target pest
for cherry orchards (See Table 3). The annotation results
clearly showed that the size of both datasets is limited,
ergo, data augmentation techniques are needed to increase
the performance and results of the DL models by creat-
ing additional and diverse instances for training datasets.
Table 4 shows the results of data classification after apply-
ing augmentation techniques.
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Table 4 Class distribution of
insects (most frequent classes)
after data augmentation

2020 annotation

Scientific name Class-Name Insect count Observed in # images

Indefinable insects NOTHIN 16,638 610

Background of image BACKGR 6048 164

Rhagoletis cerasi RHAGCE 3424 573

Drosophila 1DROSG 1073 216

Chrysopidae 1CHASF 919 78

Muscidae 1MUSCF 775 215

Formicidae 1CHSAF 393 97

2021 annotation

Rhagoletis cerasi RHAGCE 4872 1203

Deep Learning Models Evaluation

For the training, validating and testing of the DLmodels, the
augmented 2021 data set was randomly divided into three
sets, wherefore the length of the training and testing data
sets are 977 and 108 images, respectively. The validation
data consisted of the remaining 118 images. All training,
testing and validating images were resized to 1000× 1000
pixels to have identical image sizes. The training results
of all models showed that after 30 episodes (even earlier)
the amount of loss function stopped changing, ergo, the
calculated training weights after 30 episodes have been ap-
plied for validating and testing stages. Fig. 7 shows the loss
development graphs of some DL models. Each subgraph
shows a different model and its learning rate. The summed
loss is the sum of the loss for the bounding box regression
and classification, respectively.

Based on the model validation results, the appropriate
learning rates for insect detection on the 2021 data set,
were chosen to be 10–2, 10–3 and 10–5 with an AP of 0.9
(Fig. 8).

Fig. 7 Loss function graphs during training stage for four different DL model; the loss (green) is the summation of loss for the bounding box
regression (blue) and classification (orange)

After finding the appropriate learning rates, the model
performance was measured on the test data set, where the
goal was to find out the performance on the unseen data.
For the learning rates, the results from training were limited
to the best values, i.e. (10–2, ..., 10–5). The models that were
dropped due to a loss of “NaN” were also ignored during
training because there are no weights available for testing.
For testing, the weights after training for 30 episodes have
been used. The average precision was calculated for the IoU
thresholds 0.5 (AP@0.5) and 0.75 (AP@0.75) (Table 5).

Regarding the training, validating and test results, the
Faster R-CNN-MobileNet and RetinaNet models with
learning rates of 0.01 and 0.001 were suitable DL algo-
rithms for detecting European cherry fruit flies in yellow
sticky traps images.

As Fig. 9 shows, the DL model detected European cherry
fruit flies on sticky traps after 30 epochs, properly. The
impact of the sliding window cropping (SW) data aug-
mentation technique on performance of the DL model has
been evaluated by cropping the original size images into
the 300× 300 pixels patches and predictions for all patches
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Fig. 8 Grid search learning rate development considering average pre-
cision on the validation data set for year 2021

merged and mapped to the original size of the image. In
this regard, a RetinaNet was trained with the learning rate
of 0.001. The results show a recall and precision values of
1 and 0.9 on the validation data, respectively (see Fig. 10).
Although the performance of the model improved, train-
ing the SW model is very slow and the performance of
the computing system degrades noticeably. Moreover, the
trained model on SW cropped data computes 0.34 frame
per second (fps) on average, which is significantly smaller
than DL models before applying the latter data augmenta-
tion method i.e. 11 to 16 fps.

Regarding the results of the 2021 DL models, Faster
R-CNN and RetinaNet models have been chosen for multi-

Table 5 Average precision results on test data 2021 for the intersection over union (IoU) threshold of 0.5 and 0.75 (AP@0.5 and AP@0.75)

DL model Learning rate (lr) AP@0.5 AP@0.75 Average fps

Faster R-CNN MobileNet 0.01 0.88 0.69 15.47

Faster R-CNN MobileNet 0.001 0.88 0.59 15.76

RetinaNet ResNet 0.001 0.88 0.6 11.91

SSD VGG-16 0.0001 0.88 0.55 9.33

SSD VGG-16 0.001 0.87 0.57 9.48

Faster R-CNN ResNet 0.001 0.86 0.59 10.99

RetinaNet ResNet 0.0001 0.86 0.42 11.88

Faster R-CNN ResNet 0.0001 0.84 0.53 9.83

SSD VGG-16 0.00001 0.84 0.35 9.33

SSD VGG-16 no pretrain 0.0001 0.83 0.37 9.33

Faster R-CNN MobileNet 0.0001 0.81 0.33 15.63

YOLOV5 0.001 0.76 0.73 15.04

YOLOV5 0.0001 0.76 0.67 14.75

YOLOV5 0.01 0.75 0.75 14.21

SSD VGG-16 no pretrain 0.00001 0.75 0.18 9.24

Faster R-CNN ResNet 0.01 0.51 0.71 10.96

RetinaNet ResNet 0.00001 0.28 0.1 10.34

Faster R-CNN MobileNet 0.00001 0.19 0.09 13.35

YOLOV5 0.00001 0 0 14.87

class object detection for the 2020 data set. After data aug-
mentation, 732 images splitting as 588/71/73 images for
training/validation/test stages were selected. For this data
set only classes that occurred over 100 times (except “noth-
ing” and “background”) were considered. In training and
validation stages, the Faster R-CNN ResNet model with
learning rate, mAP@0.5 and fps of 0.01, 0.5 and 1.35, re-
spectively, outperformed the other models. Moreover, the
prediction results for Rhagoletis cerasi, Drosophila, Musci-
dae and Formicidae classes are shown in Table 6.

The precision recall curves (Fig. 11) of Faster R-CNN
ResNet model with learning rate of 0.01 for multi-class
object detection clearly showed that the AP@0.5 for
“RHAGCE” class is considerably higher than other in-
dividual classes. It is related to the fact that the DL models
have been already trained on the same class using the 2021
data set.

The single-class data set had an output performance of
around 9–16 frames per second (fps), which means that the
model takes 111 millisecond (ms) to 62.4ms on average
for computing one input image. For on-site detection, this
can be considered as a decent value providing almost real-
time detection. However, when considering image-stream-
ing of 30 fps, which is a typical frame rate for videos, the
models are not fast enough to be used for what one can
consider “live” detection with sufficient performance. Tak-
ing a closer look at the loss values over the episodes for the
2021 model, one notices that a smaller loss does not always
correspond to better results. This is why it is also very im-
portant to consider metrics like the AP or plot the predicted
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Fig. 9 Results of the Faster R-CNN-MobileNet with learning rate of 0.01 for two test (prediction) images. Ground truth and predictions with
confidences over 0.5 are green bordered. Predictions that have a confidence value below 0.5 are purple bordered

predictions. As Kuzuhara et al. (2020) have already shown,
increasing the dataset using augmentation methods could
increase the model’s performance. By adding more artifi-
cial data, the data set will get better balanced. In the present
study, five different deep learning models were applied to
detect cherry fruit flies on yellow sticky traps images and,
consequently, choose the better models for multi-class in-
sect detection in the study area. This is a complementary
of Böckmann et al. (2021) study published in the litera-
ture. As indicated in Thenmozhi et al. (2021) and Wenyong
et al. (2021), DL can be valuable modeling tools to help
increase our understanding of the complex insect detection
processes in pest management solution linked to the agri-
cultural management practices.

Conclusions

This study shows different methods and approaches for ap-
plying computer vision to the problem of insect detection.
The best deep learning (DL) model (Faster R-CNN) reach
an average precision of around 0.88 for the single class data
set. The speed performance for the single-class data set is
around 9–16 frames per second during test time. Since the
final goal is to develop a system that can automatically de-
tect the type and number of insect pests on sticky traps,
the results can be considered as a step towards real-time
detection. The multi-class data set was limited to its most
occurring classes and achieved a mean average precision of
around 0.51. The best class (cherry fruit fly) in the multi-
class object detection model achieved the average precision
of 0.82. It can be concluded that the imbalance in the data
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Fig. 10 RetinaNet+ Prediction on 300× 300 pixels cropped with sliding window

Table 6 Results of test (prediction) stage with AP@0.5 for Rhagoletis cerasi (RHAGCE), Drosophila (1DROSG), Muscidae (1MUSCF) and
Formicidae (CHSAF) classes

DL model Learning rate (lr) mAP@0.5 Average fps

Faster R-CNN ResNet 0.01 0.51 1.44

Faster R-CNN ResNet 0.0001 0.14 1.72

Faster R-CNN MobileNet 0.001 0.19 1.52

Faster R-CNN MobileNet 0.0001 0.1 1.37

RetinaNet ResNet 0.001 0.42 1.2

RetinaNet ResNet 0.00001 0 1.74

Fig. 11 The precision recall curves of Faster R-CNN ResNet model
with learning rate of 0.01 for multi-class object detection with
mAP@0.5 of 0.51. (Classes: Rhagoletis cerasi (RHAGCE),Drosophila
(1DROSG), Muscidae (1MUSCF) and Formicidae (CHSAF))

set causes performance differences between classes. This
lack of proportion in datasets can be fixed by adding artifi-
cial data for the underrepresented classes in future studies.
The main achievement of current study is to successfully
translate results of DL models into useful information for
horticultural management.

Furthermore, the results show possibilities of improv-
ing the model performance by increasing the dataset using
sliding window data augmentation for single class. This
method is time-consuming and only achieves around 0.34
fps which is far away from real-time. However, this method
gives a different view on the problem and suggests tweaks
like parallelization and merging of bounding boxes to in-
crease the performance.
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