
NATIONAL AND KAPODESTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSC THESIS

Efficient Queries in MongoDB with Encrypted Fields

Andriani G. Triantafyllou
Eleni G. Mantzana

Supervisors: Alexios Delis, Professor NKUA
Panagiotis Liakos, PhD student NKUA

ATHENS
OCTOBER 2017

BSC THESIS

Efficient Queries in MongoDB with Encrypted Fields

Andriani G. Triantafyllou
S.N.: 1115201300179
Eleni G. Mantzana

S.N.: 1115201300091

SUPERVISORS: Alexios Delis, Professor NKUA
Panagiotis Liakos, PhD student NKUA

ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ

Efficient Queries in MongoDB with Encrypted Fields

Ανδριανή Γ. Τριανταφύλλου
Ελένη Γ. Μαντζάνα

Επιβλέποντες: Αλέξιος Δελής, Καθηγητής ΕΚΠΑ
Παναγιώτης Λιάκος, Υποψήφιος Διδάκτορας ΕΚΠΑ

ΑΘΗΝΑ
ΟΚΤΩΒΡΙΟΣ 2017

ΠΤΥΧΙΑΚΗ

Efficient Queries in MongoDB with Encrypted Fields

Ανδριανή Γ. Τριανταφύλλου
Α.Μ.: 1115201300179
Ελένη Γ. Μαντζάνα
Α.Μ.: 1115201300091

ΕΠΙΒΛΕΠΟΝΤΕΣ: Αλέξιος Δελής, Καθηγητής ΕΚΠΑ
Παναγιώτης Λιάκος, Υποψήφιος Διδάκτορας ΕΚΠΑ

ΠΕΡΙΛΗΨΗ

Στην παρούσα πτυχιακή εργασία παρουσιάζουμε αποδοτικές τεχνικές εισαγωγής δεδο-
μένων και εκτέλεσης ερωτημάτων (queries) σε μια μη σχεσιακή βάση δεδομένων (Non
Relational Database), δίνοντας την επιλογή στον χρήστη να κρυπτογραφήσει κάποια από
τα πεδία της εγγραφής που εισάγει. Ασχοληθήκαμε με τον Java Driver μιας μη σχεσιακής
βάσης και πιο συγκεκριμένα της MongoDB, τροποποιώντας κάποιες ήδη υπάρχουσες
συναρτήσεις του και ενισχύοντάς τον με δικές μας συναρτήσεις προκειμένου να πετύ-
χουμε την κρυπτογράφηση (encryption) των δεδομένων. Με τις αλλαγές που πραγμα-
τοποιήσαμε, υποστηρίζεται πλέον η εισαγωγή εγγραφών στη βάση οι οποίες περιέχουν
κρυπτογραφημένα πεδία (encrypted fields). Συγκεκριμένα, έχουν υλοποιηθεί δύο τρόποι
κρυπτογράφησης: κρυπτογράφηση με χρήση SHA-256[1] και BCrypt[2] κρυπτογράφηση.
Η SHA-256 (Secure Hash Algorithm μήκους 256 bits) βασίζεται σε πολλαπλούς “γύρους”
κατακερματισμού (hashing). Η BCrypt επίσης βασίζεται σε hashing συνάρτηση, προσδί-
δοντας όμως μεγαλύτερη ασφάλεια λόγω της salt προσθήκης, ένα τυχαίο δεδομένο που
χρησιμοποιείται κατά την παραγωγή της κρυπτογραφημένης εξόδου των δεδομένων. Για
την κρυπτογράφηση των πεδίων με τις δύο παραπάνω μεθόδους έχουν αξιοποιηθεί οι βι-
βλιοθήκες DigestUtils[3] και ΒCryptPasswordEncoder[4] του Spring για την SHA-256 και
την BCrypt αντίστοιχα. Σκοπός της παρούσας πτυχιακής, λοιπόν, αποτελεί η χρονική με-
λέτη των εισαγωγών και της εκτέλεσης ερωτημάτων πάνω στη NoSQL βάση, σε σύγκριση
με τον απλό Java Driver που δεν χρησιμοποιεί κρυπτογράφηση.

Αρχικά, παρατίθεται και αναλύεται ο αλγόριθμος που χρησιμοποιήθηκε για την αποδο-
τική εισαγωγή των δεδομένων με χρήση της SHA-256 κρυπτογράφησης στα επιλεγόμενα
πεδία μιας εισαγωγής. Βασικό στοιχείο της υλοποίησης είναι το ότι δίνεται η δυνατότητα
καθορισμού από τον χρήστη των συγκεκριμένων πεδίων που επιθυμεί να εμφανίζονται
στη βάση κρυπτογραφημένα. Επιπλέον, μελετάται ο αλγόριθμος που αναπτύχθηκε για
την αποδοτική αναζήτηση στη βάση των εγγραφών οι οποίες περιέχουν κρυπτογραφη-
μένα πεδία και αναλύεται ο τρόπος υλοποίησής του, που είχε ως αποτέλεσμα οι χρόνοι
εισαγωγής και αναζήτησης με ταυτόχρονη ύπαρξη κρυπτογραφημένων πεδίων να αντα-
γωνίζονται αυτούς του ήδη υπάρχοντος Java Driver.

Στη συνέχεια, παρουσιάζεται ο αλγόριθμος για την εισαγωγή των δεδομένων με χρήση
BCrypt κρυπτογράφησης στα επιλεγόμενα πεδία μιας εγγραφής. Δίνεται η δυνατότητα
προσδιορισμού των συγκεκριμένων πεδίων, που θα είναι κρυπτογραφημένα. Παρακάτω,
προβάλλεται ο αποδοτικότερος αλγόριθμος για την εφαρμογή ερωτημάτων πάνω στη
βάση για αυτόν τον τρόπο κρυπτογράφησης και αναλύονται οι παράγοντες διαφοροποίη-
σής του από τον προαναφερθέν.

Ακολούθως, παρατίθονται χρονικές μετρήσεις τόσο απλών, βασικών ερωτημάτων, αλλά
και πιο πολύπλοκων ερωτημάτων όπως για παράδειγμα με χρήση ενσωματωμένων πε-
δίων (embedded fields). Γίνεται σύγκριση των αποτελεσμάτων τόσο μεταξύ των δύο πα-
ραπάνω τρόπων προσέγγισης σε ό,τι αφορά τους χρόνους εισαγωγής και αναζήτησης
εγγραφών στη βάση, όσο και μεταξύ της υλοποίησης με κρυπτογραφημένα πεδία και του
αρχικού, ευρέως διαδεδομένου, Mongo Driver που δεν υποστηρίζει επερωτήσεις σε κρυ-
πτογραφημένα πεδία. Παράλληλα, γίνεται ανάλυση των trade-offs σε κάθε περίπτωση.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κρυπτογραφημένη Εισαγωγή Πεδίων σε Mongo Βάση Δεδο-
μένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ασφάλεια, nosql βάσεις, mongodb, κρυπτογραφημένα πεδία, χρο-
νικές μετρήσεις εισαγωγών και ερωτημάτων

ABSTRACT

In this thesis, we present efficient techniques for inserting data and running queries over
a non-relational database, giving the user the option to encrypt certain fields, the ones
they want, of the document they insert. We worked on the Java Driver of a non-relational
database, more specifically the MongoDB, by modifying some of its existing functions
and enhancing it with our own functions in order to achieve encryption of the data. With
the changes we made to the Java Driver, our application now supports the insertion of
documents containing encrypted fields and gives the user the ability to run queries even
about the encrypted fields. In particular, two encryption modes have been implemented:
encryption using SHA-256 and BCrypt encryption. The SHA-256 (256-bit Secure Hash
Algorithm) is based on multiple “rounds” of hashing. BCrypt also relies on a hashing fun-
ction, but considered to be a more secure algorithm due to the addition salt, a random data
used in the production of the encrypted data output. In order to encrypt the fields with the
two encryption types wementioned before, we have utilized the libraries DigestUtils [3] and
BcryptPasswordEncoder[4] from Spring for SHA-256 and BCrypt encryption respectively.
The main purpose of this thesis is to study the efficiency of inserting data and running
queries on a NoSQL database, with the data containing encrypted fields, compared to the
simple Java Driver that does not support encryption.

First, the algorithm used in order to efficiently insert documents into the database using
the SHA-256 encryption on the requested fields is quoted and analyzed. A key element of
the implementation is that we provide the user with the ability to define the specific fields
they want to appear on the database as encrypted fields. In addition to this, the algorithm
developed in order to achieve efficient querying on the database for document fields that
are encrypted, and its implementation is analyzed. The algorithm we developed resulted
in having an insertion time with encryption and a querying process time (with the data
being encrypted) that competes with the time the existing Java Driver needs to complete
those processes.

Then, the algorithm used in order to support BCrypt encryption is presented and analyzed.
Again, the user is able to specify the fields they want to encrypt with the BCrypt algorithm.
Below, the most efficient algorithm for querying the base for this encryption mode is shown
and the factors that make it different from the SHA-256 are analyzed.

Subsequently, time measurements of both simple, basic queries and more complicated
queries, such as using embedded fields, are presented. The results are compared in two
ways: firstly, there is the comparison between the two encryption methods, SHA-256 and
BCrypt, and secondly, the comparison between our approach and the existing insert, find
etc methods of Mongo Driver library. At the same time, trade-offs are analyzed in each
case.

SUBJECT AREA: Insertion of Encrypted Fields in MongoDB

KEYWORDS: nosql database, mongodb, security, encrypted fields, insertion and
query time measurements

ΑCKNOWLEDGEMENTS

Wewould like to thank our supervisors, Mr. Alexis Delis and Mr. Panagiotis Liakos for their
excellent guidance and asistance in the preparation of this thesis.

CONTENTS

INTRODUCTION . 11

1. STORING DATA . 13

1.1 Relational Databases . 13

1.2 Non Relational Databases . 13

2. DATABASE SECURITY PROBLEMS . 15

2.1 Encryption as a solution . 15
2.1.1 Encryption in Relational Databases . 15
2.1.2 Encryption in Non Relational Databases . 16
2.1.3 Our solution . 17

3. MONGODB PRELIMINARIES . 19

3.1 MongoDb Common Terms . 19
3.1.1 JSON-like Documents . 19
3.1.2 MongoDB Collections . 20
3.1.3 The MongoDB _id Field . 21

3.2 Java Driver . 21
3.2.1 Connect to MongoDB instance stored in MongoDB online 21
3.2.2 Insert documents . 21
3.2.3 Query . 22

4. DOCUMENT’S FIELD ENCRYPTION APPROACH 24

4.1 Define Encrypted Fields . 24

4.2 Supporting SHA-256 Encryption . 24
4.2.1 About SHA-256 . 24
4.2.2 Insert Document . 24
4.2.3 Queries . 27

4.3 Supporting BCrypt Encryption . 29
4.3.1 About BCrypt . 29
4.3.2 Insert Document . 29
4.3.3 Queries . 31

5. TIME MEASUREMENTS . 34

5.1 About Test Environment . 34

5.2 Queries on Original Mongo Driver . 35
5.2.1 Insert Queries of Documents . 35
5.2.2 Find All Queries of Documents . 38

5.3 Queries on SHA-256 Encryption . 41
5.3.1 Insert Queries of Documents with Encrypted Fields 41

5.3.2 Find All Queries of Documents with Encrypted Fields 45
5.3.3 Find Queries Matching Values of Documents . 49

5.4 Queries on BCrypt Encryption . 50
5.4.1 Insert Queries of Documents with Encrypted Fields 50
5.4.2 Find All Queries of Documents with Encrypted Fields 54
5.4.3 Find Queries Matching Values of Documents . 57

6. CONCLUSION . 59

TERMINOLOGY TABLE . 60

ABBREVIATIONS, ACRONYMS . 61

REFERENCES . 62

FIGURES LIST

Figure 1: Migrating Relational Database to Document [23] 14

Figure 2: Json example . 17

Figure 3: Json example with SHA-256 Encrypted Field 18

Figure 4: Json example with BCrypt Encrypted Field 18

Figure 5: Json example of Encrypted Field . 18

Figure 6: Json Example of human being . 19

Figure 7: Json Example no.2 of human being 20

Figure 8: The steps to connect in MongoDB through the Java Driver 21

Figure 9: Insertion of a single Document in MongoDB 22

Figure 10: Insertion of multiple Documents in MongoDB 22

Figure 11: Find Queries on a MongoDB through the Java Driver. 23

Figure 12: mLab’s Statistic Environment . 34

Figure 13: MongoDB’s Driver Insert Documents with Plain Fields 35

Figure 14: MongoDB’s Driver Insert Documents with Embedded Fields 36

Figure 15: MongoDB’s Driver Find All Documents with Plain Fields 38

Figure 16: MongoDB’s Driver Find All Documents with Embedded Fields . . . 39

Figure 17: SHA-256’s Approach Insert Documents with Plain Fields 41

Figure 18: SHA-256’s Approach Insert Documents with Embedded Fields . . . 42

Figure 19: Insert Queries of Plain Documents, SHA-256’s Approach compared
to MongoDB’s Driver . 44

Figure 20: Insert Queries of Documents with Embedded Fields, SHA-256’s Ap-
proach compared to MongoDB’s Driver 45

Figure 21: SHA-256’s Approach Find All Documents with Plain Fields 46

Figure 22: SHA-256’s Approach Find All Documents with Embedded Fields . . 46

Figure 23: Find Queries of Plain Documents, SHA-256’s Approach compared
to MongoDB’s Driver . 48

Figure 24: Find Queries of Documents with Embedded Fields, SHA-256’s Ap-
proach compared to MongoDB’s Driver 49

Figure 25: BCrypt’s Approach Insert Documents with Plain Fields 50

Figure 26: BCrypt’s Approach Insert Documents with Embedded Fields 51

Figure 27: Insert Queries of Plain Documents, Comparing SHA-256’s Approach,
BCrypt’s Approach, MongoDB’s Driver 53

Figure 28: Insert Queries of Documents with embedded fields, Comparing SHA-
256’s Approach, BCrypt’ Approach, MongoDB’s Driver 54

Figure 29: BCrypt’s Approach Find All Documents with Plain Fields 55

Figure 30: BCrypt’s Approach Find All Documents with Embedded Fields . . . 56

Figure 31: FindQueries of Plain Documents, Comparing SHA-256’s Approach,
BCrypt’s Approach, MongoDB’s Driver 57

Figure 32: Find Queries of Documents with embedded fields, Comparing SHA-
256’s Approach, BCrypt’s Approach, MongoDB’s Driver 57

TABLES LIST
Table 1: Schema Design Differences between MongoDB and RDBMS 20
Table 2: MongoDB’s Insert Measurements . 37
Table 3: MongoDB’s Find All Documents Measurements 40
Table 4: The insertOne function compared to insertMany 43
Table 5: SHA-256’s Approach Insert Measurements 43
Table 6: SHA-256’s Approach Find All Documents Measurements 47
Table 7: Sample of Measurements. Find Queries Matching Different Combi-

nations of Field Values . 50
Table 8: BCrypt’s Approach Insert Measurements 51
Table 9: BCrypt’s Approach Find All Documents Measurements 55
Table 10: Sample of Measurements 2. Find Queries Matching Different Com-

binations of Field Values . 58

INTRODUCTION
Nowadays, we live in a modern society in which Internet has become an integral part of
our lives. People of different ages and different professional fields use it for both personal
and professional reasons. One of the main reasons they use it is the potential to store data
online. Storing data online offers them numerous advantages. Some of these advantages
are the easy access on the data saved, the fact that the data are portable and accessible
from everywhere, the potential for multiple access on them, the back-up usage of them,
etc.

Usually, people have the tension to store sensitive information on the internet. So, most
companies which provide such services are very concerned for the data safety and are
trying their best in order to provide the users with secure applications We also have to take
into consideration the fact that not only everyday people need to store their data online,
but also a great amount of large companies are becoming digital day by day and choose to
run their applications and their systems on cloud services. However, the malicious attacks,
attacks against computer systems or database systems in order to crack them and gain
access to the data they contain, have increased in a noticeable scale. It has become an
urgent need for the world of informatics to develop secure methods of storing data online,
wihtout them being vulnerable to malicious attacks.

The applications supplying us with online storing services, store the data of their users
either in Relational or Non Relational databases. Technology, at the time, has made
an impressive progress on what concerns the security threats in Relational Databases,
providing the users with a wide variety of different secure storing and managing practices,
as we are going to analyze later, especially compared to the options given for Non Re-
lational Databases. This is the reason why we decided to focus on Non Relational Da-
tabases whose use in web applications is ever-increasing because of their advantages
on managing big data. More specifically, we focused on the Non Relational Database
called MongoDB. After carefully studying on it, we came to the conclusion that its driver
does not support any form of encryption on the fields of the documents a database can
contain, resulting to the absence of the option to run queries on documents containing
encrypted fields so we decided to enrich the original Java Driver by supporting insertions
with documents including encrypted fields and we gave the user the ability to perform
queries on those documents.

An approach similar to ours has already been implemented by Xingbang Tian, Baohua
Huang and Min Wu on 2014 in order to be presented to the 2014 IEEE Workshop[5].
This approach, titled “A Transparent Middleware for Encrypting Data in MongoDB”, offers
field encryption by extending some of the existing interface. The algorithm is based on
a flag that indicates whether the BSON document contains an encrypted field or not and
the implementation does not offer querying process on the encrypted fields. The basic
disadvantages of this approach are that having a flag that informs the user whether the do-
cument contains encrypted fields is considered a security vacuum and its existence slows
down the search process and the fact that search on encrypted values is not supported.

Our approach, on the other hand, provides a solution to those problems by introducing
some methods that enhance the MongoDB Java Driver with the operations of insert a
document that contains an encrypted value, insert a batch of documents that contain an
encrypted value and search queries with matching values. The implementation we are
going to present you is running on a MongoDB and it allows the user to choose between
two different encryption types, the SHA-256 and the BCrypt, which are extensively ana-
lyzed below, while trying to meet two basic requirements of a synchronous management

system used to handle a large volume of sensitive data: the urgent requirement to ensure
the data security, e.g. a password, against a wide variety of attacks and the demand of
time-efficient insertion of large volume of data into databases.

Efficient Queries in MongoDB with Encrypted Fields

1. STORING DATA
1.1 Relational Databases
A widespread model for managing efficiently a database system is the Relational Model
[6]. The Relational Database Model (RM) was introduced by Edgar F. Codd in 1969. This
model works as follows: all the data contained in a database are represented by tuples
consisting of specific variables. A model consists of tables and every tuple is part of a
table, with the tables being able to be correlated with each other. A tuple is inserted into the
database using a SQL query, the INSERT e.g. INSERT INTO TABLE (column1, column2,
column3, …, columnN) VALUES (value1, value2, value3, …, valueN);. A user can access
the data directly by running a SELECT query on the database, e.g. SELECT column1,
column2, ... FROM tableName WHERE column1 = 1;, with the software system being
responsible for returning the correct results to the user.

The basic feature of the Relational Model is that the representation of the data has to be
very specific, the information has to be consistent and represented in a logical way. In
order to achieve that, we have s to place some limitations on the design of the model.

Thus, two very important issues arise, which are the basic problems of the SQL databases.
The first one is about the flexibility and the scalability of the database and the second
one is about the complexity of the data that can be inserted into the database. On what
concerns the first issue, for an SQL database to quickly return the search results, all the
contents of a table have to be on the same server, otherwise the tables are difficult to
handle and the querying process slows down significantly. As far as the complexity of the
data is concerned, as we have already mentioned, the data to be inserted into a Relational
Database should somehow correspond to and fit into one of the tables that are already
present on the model.

Given the fact that we are at a time where the size of the data and the information we
want to be stored is enormous and its form is quite complex, one can easily understand
that the use of a model that does not have the limitations of the Relational Model is now
imperative, in order to get the results of e.g. a search as fast as possible [7, 8].

1.2 Non Relational Databases
Apart from the Relational Model, there is also the Non Relational Model, which is represen-
ted by the NoSQL[9] databases. The term NoSQL was firstly introduced by Carlo Strozzi
in 1998 in order to describe a shell-baseed relational database management system he
created. The termwas reintroduced to the programming community in early 2009 by Johan
Oskarsson, in an event he arranged, dedicated to ”open source distributed, non relational
databases”. There are five different types of NoSQL databases:

1. Key-Value Store,
2. Document-based Store,
3. Graph-based,
4. Column-based store and
5. Multi-model databases.

On this paper we examine the MongoDB, which is an example of a Document-based Store
database.

Andriani G. Triantafyllou, Eleni G. Mantzana 13

Efficient Queries in MongoDB with Encrypted Fields

NoSQL databases allow us to store data that are not only represented by a tuple that is
part of a table, like a SQL database, but data that are modeled in other ways too, like for
example a JSON-like (JavaScript Object Notation) document. These systems are mainly
used when we have to store a very large amount of data (like big data applications) and in
real-time online applications. A real-time online application is an app that enables the users
to upload and receive information the exact moment they are using it, without requiring a
software check in order to upload or download the data. An example of such an application
is Facebook and Twitter, where the user posts a status update or tweets something, and
the content of their post/tweet is immediately available to their friends and followers.

Those databases came to give a solution to two main SQL databases problems:

1. this of flexibility and scalability of the database
2. and this of the complexity of the data that can be inserted in the database.

On what concerns the scalability, the fact that a NoSQL database does not consist of a
certain model with certain tables, results to a more “flexible” database. That means that
the database can be splitted on many servers, with the split not causing a problem to
the insertion and querying process on what concerns the time needed to complete those
two actions. This characteristic makes the expansion of a Non Relational Database much
cheaper and less complex than the expansion of a Relational Database[10, 11].

A major problem for the SQL databases is that they do not allow embedded fields, which
is a very efficient way of representing possible relations between the data, and that the
data have to be represented in a certain way: a way that makes them fit into a table of
the model. On the contrary, a NoSQL database, and especially a MongoDB which is a
Document-based Store database can store data with the only “restriction” being that they
are JSON-like documents. In those documents, the user is given the chance to store data
of any type, with every kind of relations they want and without the restriction of a certain
format.

Figure 1: Migrating Relational Database to Document [23]

Andriani G. Triantafyllou, Eleni G. Mantzana 14

Efficient Queries in MongoDB with Encrypted Fields

2. DATABASE SECURITY PROBLEMS
Today, everything runs on a database, from web applications to businesses. Databases
are mostly used to store the information needed for the above to operate and most of
the time the data they contain are sensitive and should not be accessed by everyone. A
database can be stored locally, on one or multiple servers, at the cloud. The sensitivity of
the information stored makes the databases a target to various malicious attacks such as
DDoS attacks (Distributed Denial of Service attack), SQL injections for the Relational Da-
tabases or direct server attacks. This situation creates a major problem to every operation
relying on databases: the administrator of the database has to continuously secure the
private data from every possible attack.

2.1 Encryption as a solution
In general, apart from protecting the databases in a physical way by securing the servers
with firewalls, the confidentiality of the data is protected by using various encryption types
before storing the data. Precisely, before inserting the data into the database, a key is
used in order to encrypt the sensitive value and instead of storing the original value, the
encrypted one is stored. The encryption protects the data in a way that even if someone
compromises the servers physically or manages to gain access to the data in another way,
the only thing they will actually obtain is a huge amount of data that, without the key to
decrypt them, is useless [12, 13].

2.1.1 Encryption in Relational Databases
All relational databases nowadays are using one or more of the following encryption
approaches:

1. Transparent/External database encryption,
also known as “data at rest”. In this method, the whole database is encrypted and
it is mostly used to encrypt data that are stored on physical storage media such as
hard disk drives.

2. Column-level encryption,
where individual columns of a table are encrypted with a key. The main problem with
this method is that the database’s performance decreases, as well as searching and
indexing because of the time needed to decrypt each column.

3. Field-level encryption,
which ismostly usedwhen a user needs the data to be both encrypted and comparable
without the need to decrypt them.

4. Encrypting File System,
a method that applies not only to data that are part of a database system, but to data
that are independent from the database. This type of encryption is used to encrypt
databases that do not require frequent changes due to the performance issues it
has.

5. Symmetric and asymmetric database encryption,
the symmetric encryption applies a private key to data that is stored in a database.
The data can be decrypted by applying the same secret key to the encrypted value.
The main advantage of this method is the speed. Asymmetric encryption uses two

Andriani G. Triantafyllou, Eleni G. Mantzana 15

Efficient Queries in MongoDB with Encrypted Fields

keys, a public and a private one. The public key is the encryption key and it can be
accessed by anyone whereas the private key is unique and can be accessed by a
certain user and it is used to decrypt the data.

6. Key management,
after the introduction of symmetric and asymmetric encryption, it became urgent to
store all public and private keys to the database because even if a single key was lost,
the data that had been encrypted with that key would be lost too. A Key Management
System was the solution to that problem.

7. Hashing,
where sensitive data, for example a password, is converted into a string of a fixed
length by applying a hashing algorithm to it and then the string is stored into the
database. A big advantage of hashing is that it is irreversible, in order to match 2
values, one has to apply the same hashing algorithm on both of them and compare
the hashed results. To make hashing even stronger, methods like salting and pepper
were introduced.

8. Application-level encryption,
where the application itself is responsible for the encryption of the data.

2.1.2 Encryption in Non Relational Databases
On this paper we deal with a NoSQL database, and especially the MongoDB. Right now,
MongoDB supports only two encryption modes:

1. Transport Encryption, where all of the MongoDB’s network traffic is encrypted
using TLS/SSL (Transport Layer Security/Secure Sockets Layer). TLS/SSL are both
cryptographic protocols that secure the communications over a computer network.
They use symmetric cryptography, public-key cryptography and a message authe-
ntication code in order to secure the integrity of the data.

2. Encryption at Rest, where the MongoDB Enterprise uses AES256-CBC (Advanced
Encryption Standard in Cipher Block Chaining mode) algorithm via OpenSSL. In
this case, the data are encrypted with a symmetric key that is used in order to
both encrypt and decrypt the data. Those symmetric keys are also stored into the
database, while the master key is external to the server.

Andriani G. Triantafyllou, Eleni G. Mantzana 16

Efficient Queries in MongoDB with Encrypted Fields

2.1.3 Our solution
After carefully examining the aspects of SQL and NoSQL databases on what concerns
the security of the data, we reached the conclusion that even though both models support
encryption in different ways, none of the models provides a default, build-in, efficient way
of running queries on the database while supporting encryption. Given the fact that we
cannot change the basic structure of the Relational Model, we decided to work on a Non
Relational Database, the MongoDB and enhance the MongoDB Java Driver.

The MongoDB is a document database with great scalability and flexibility. We can store
JSON-like documents, whose fields can vary. On what concerns the security, we have
already mentioned the basic ready-to-use encryption methods this database provides,
transport encryption and encryption at rest.When compared to a SQL database,MongoDB
does not offer the variety of encryption types the SQL offers. So our idea is to improve the
Java Driver by overriding some of its functions: insertOne, insertMany, find, and modify
the Driver in order to provide encryption to the documents.

We decided to use two different algorithms, the SHA-256 and the BCrypt. Our approach
is to enhance MongoDB with something like the Column-level encryption or the Field-
level encryption that SQL offers, using hashing algorithms. When a user wants to insert a
document into the database, they can choose which field of the JSON document they want
to encrypt and they also have the ability to choose the encryption algorithm they want to
use. In order to achieve that, we created an application in which the user gives the name
of the field to encrypt and the encryption method.

Basically, we implemented some functions that work exactly like the original Java Driver
functions, but in their body, we get the value of the field we want to encrypt, we apply the
encryption algorithm and we write back to the document the encrypted string. In order to
be able to decrypt the documents, we took advantage of the fact that a MongoDB can store
documents with completely different fields. More specifically, we created another collection
in which we store a document that contains information about the field we encrypt and the
encryption type. When we want to execute a query, we open that document and apply the
right decryption to the right field in order to get the result of the query. Our method does
not only support documents with simple fields, but also embedded fields.

Below are some examples from the documents we store in our database:

1. Simple document, inserted using the Java Driver:

1 {
2 “ _ id ” : {
3 “ $oid ” : “ 59e97b212271ed377050ceb5 ”
4 } ,
5 “name” : “ Michael ” ,
6 “ e - mai l ” : “ mike@bulls . com”
7 }

Figure 2: Json example

Andriani G. Triantafyllou, Eleni G. Mantzana 17

Efficient Queries in MongoDB with Encrypted Fields

2. Document with encrypted field, using SHA-256:

1 {
2 “ _ id ” : {
3 “ $oid ” : “ 59e97c872271ed1 f 98e33e35 ”
4 } ,
5 “name” : “ Michael ” ,
6 “ e - mai l ” : “ ba742 f 7 f 8e f 43237d1a4cca486e0486836cc3177b122a29afa

42 f 89e5c575617 ”
7 }

Figure 3: Json example with SHA-256 Encrypted Field

3. Document with encrypted field, using BCrypt:

1 {
2 “ _ id ” : {
3 “ $oid ” : “ 59e97b212271ed377050ceb5 ”
4 } ,
5 “name” : “ Michael ” ,
6 “ e - mai l ” : “ $2a$10$RXsso1W1HUhKhKWpDQhuaOOx8taPXW2eLP003

NZYOCbtsm2aXs0Za ”
7 }

Figure 4: Json example with BCrypt Encrypted Field

4. Document from the collection with fields and encryption types:

1 {
2 “ _ id ” : {
3 “ $oid ” : “ 59e9785c50304 f 276cc34798 ”
4 } ,
5 “ f i e l d ” : “ e - mai l ” ,
6 “ enc ” : “ random ”
7 }

Figure 5: Json example of Encrypted Field

Andriani G. Triantafyllou, Eleni G. Mantzana 18

Efficient Queries in MongoDB with Encrypted Fields

3. MONGODB PRELIMINARIES
As we mentioned before, there are plenty different types of NoSQL Databases. One of
them, widely known and used by the programming community is MongoDB [14]. One
reason that explains the widspread use of MongoDB is the fact that this NoSQL database is
free and open-source, published under the GNU Affero General Public License. This Non
Relational Database is a document-oriented database. A document-oriented database
contains data that are stored in adjustable, JSON-like documents, that give us the capability
of storing documents varying in fields’ content and an easily modified data structure. This
document model is quite intuitive for developers to learn and use, while still providing a
schema-less design, high efficiency and automatic scaling qualities which are now urgent
needs for the era of information and cannot be satisfied by the traditional RDBMS systems.
Many drivers have been developed in quite a few languages such as Python, Ruby, Scala
etc. but in this thesis we chose to analyze and enhance the Java driver.

3.1 MongoDb Common Terms
3.1.1 JSON-like Documents
Each record in MongoDB is a document that consists of pairs of fields and values. This
document is similar to a JSON-Object, which means that the value of a field may consist
of an entire other document or even an array of other documents. This is an advantage
that cannot be applied to RDBMS systems, and is known as embedded fields. Embedded
documents are used to store relationships between data by storing the related data in a
single document. This operation allows applications to have access to the related data
and modify them in fewer steps. We provide you with such an example below:

1 {
2 “ f i r s tname ” : “ John ” ,
3 “ lastName ” : “ Smith ” ,
4 “ age ” : 25 ,
5 “ address ” : {
6 “ s t reetAddress ” : “ 21 2nd S t ree t , New York ” ,
7 “ s t a t e ” : “NY” ,
8 “ postalCode ” : “ 10021 -3100 ”
9 } ,
10 “ phoneNumbers ” : [
11 {
12 “ type ” : “home” ,
13 “ number ” : “ 212 555 -1234 ”
14 } ,
15 {
16 “ type ” : “ mobi le ” ,
17 “ number ” : “ 123 456 -7890 ”
18 }
19] ,
20 “ ch i l d r en ” : [] ,
21 “ spouse ” : n u l l
22 }

Figure 6: Json Example of human being

Andriani G. Triantafyllou, Eleni G. Mantzana 19

Efficient Queries in MongoDB with Encrypted Fields

3.1.2 MongoDB Collections
MongoDB’s documents are managed and stored in Collections. Collections are similar to
tables in RDBMS systems. However, in Mongo’s system we are not obligated to store
documents with identical data structure. Each document may vary from the others stored
in the same collection. For example, the document below could be stored in the same
collection as the one described above.

1 {
2 “ f i rs tName ” : “ Andr ian i ” ,
3 “ lastName ” : “ T r i a n t a f y l l o u ” ,
4 “ age ” : 22 ,
5 “ address ” : {
6 “ s t reetAddress ” : “ 21 2nd S t ree t ” ,
7 “ c i t y ” : “New York ” ,
8 “ s t a t e ” : “NY” ,
9 “ postalCode ” : “ 10021 -3110 ”
10 } ,
11 “ phoneNumbers ” : [
12 {
13 “ type ” : “home” ,
14 “ number ” : “ 212 1234 -1234 ”
15 } ,
16 {
17 “ type ” : “ mobi le ” ,
18 “ number ” : “ 123 456 -7899 ”
19 }
20]
21 }

Figure 7: Json Example no.2 of human being

As you can see, some fields such as “children”, “spouse”, etc have been omitted. These
examples represent the schema-less design, which was introduced by the NoSQL Da-
tabases and is one of their greater innovations. A lot of people misunderstand the term
“schema-less”. Schema-less doesn’t indicate that you don’t have to design the schema of
your application, analyze it and comprehend how it works. The term refers to the fact that
the documents stored, are not obligated to have a specific data structure, they can differ.
Below, we will present the main differences between RDBMS and MongoDB schema .

Table 1: Schema Design Differences between MongoDB and RDBMS

RDBMS MONGODB
Each table row has the same structure,
columns

Documents’ Structure can Differ

Joins, Transactions are Supported Joins, Transactions are not Supported
SQL Queries No SQL queries, javascript
Fixed Schema Dynamic Schema
Vertical Scaling Horizontal Scaling

Andriani G. Triantafyllou, Eleni G. Mantzana 20

Efficient Queries in MongoDB with Encrypted Fields

3.1.3 The MongoDB _id Field
All the documents stored in MongoDB are mandatory to be composed of the _id field [15].
This field acts as the primary key of the record. It can be either defined by the user, or
be automatically generated by the MongoDB Driver. So for example, in the above human
beings document representations figures 6, 7, MongoDBwill add a 24 digit unique identifier
to each document of the collection.

3.2 Java Driver
The driver we are about to examine is the Java Driver of MongoDB [16]. It’s quite simple
and we will present the fundamental steps to connect to a MongoDB[17], insert some
documents and run queries on the database.

3.2.1 Connect to MongoDB instance stored in MongoDB online
The connection steps are described below :

• In line 1 an object of class MongoCredential is created, which stores the user’s sign
in information.

• In line 3 an object of class MongoClient is created, in order to initialize the Client with
the user information given before.

• Following in line 6 an object of classMongoDatabase is created, storing the database
requested, in this case the database db.

1 MongoCredential c r eden t i a l = MongoCredential . c rea teCreden t i a l (
usrnm , db , pswd . toCharArray ()) ;

2

3 MongoClient mongoClient = new MongoClient (new ServerAddress (s r v r)
, Arrays . asL i s t (c r eden t i a l)) ;

4 / / Access database named db , p rov id ing owner ’ s username usrnm and
owner ’ s password pswd and Server ’ s Address s r v r

5

6 MongoDatabase database = mongoClient . getDatabase (db) ;
7 / / Access database db in order to access the c o l l e c t i o n s s tored

i n i t

Figure 8: The steps to connect in MongoDB through the Java Driver

3.2.2 Insert documents
1. Single Document Insertion

• In line 1 a Document is created with the embedded fields name.first, name.last
and the field e-mail. Their values are “Angelina”, “Jolie”, “angelinaJ@gmail.com”
respectively.

• In line 3 this document is inserted in the MongoCollection.

Andriani G. Triantafyllou, Eleni G. Mantzana 21

Efficient Queries in MongoDB with Encrypted Fields

1 Document document = new Document (“name” , new Document (“ f i r s t ” , “
Angel ina ”) . append (“ l a s t ” , “ J o l i e ”)) . append (“ e - mai l ” , “
angelinaJ@gmail . com”) ;

2

3 mongoCol lect ion . inser tOne (document) ;

Figure 9: Insertion of a single Document in MongoDB

2. Multiple Documents Insertion

• In line 1 aDocument is createdwith the embedded fields “name.first”, “name.last”
and the field “e-mail”. Their values are Angelina, Jolie, angelinaJ@gmail.com
respectively.

• In line 3 aDocument is createdwith the embedded fields “name.first”, “name.last”
and the field “e-mail”. Their values are “Keira”, “Knightley”, “keiraK@gmail.com”
respectively.

• In line 5 these documents are both inserted in the MongoCollection as an array
of Documents.

1 Document document = new Document (“name” , new Document (“ f i r s t ” , “
Angel ina ”) . append (“ l a s t ” , “ J o l i e ”)) . append (“ e - mai l ” , ”
angelinaJ@gmail . com”) ;

2

3 Document ke i r a = new Document (“name” , new Document (“ f i r s t ” , “
Kei ra ”) . append (“ l a s t ” , “ Kn igh t ley ”)) . append (“ e - mai l ” , “
keiraK@gmail . com”) ;

4

5 mongoCol lect ion . insertMany ((Arrays . asL i s t (angel ina , ke i r a))) ;

Figure 10: Insertion of multiple Documents in MongoDB

3.2.3 Query
• In line 1 all the Documents of the collection are found and returned through the
FindIterable[18] class.

• In line 4 all the Documents of the collection that include the field “e-mail” with the
value “angelinaJ@gmail.com” are found and returned through the FindIterable [18]
class.

• In line 7 all the Documents of the collection featuring the embedded field “name.last”
with the value “Knightley” are found and returned through the FindIterable [18] class.

Andriani G. Triantafyllou, Eleni G. Mantzana 22

Efficient Queries in MongoDB with Encrypted Fields

1 F ind I t e rab le <Document> r e su l t s = c o l l e c t i o n . f i n d () ;
2 / / Find a l l the documents Stored
3

4 F ind I t e rab le <Document> r e s u l t = c o l l e c t i o n . f i n d (new Document (“ e -
mai l ” , “ angelinaJ@gmail . com”)) ;

5 / / Find a l l the documents s tored wi th the pa i r { f i e l d = “ e - mai l ” ,
value = “ angelinaJ@gmail . com ” }

6

7 F ind I t e rab le <Document> r e su l t 2 = c o l l e c t i o n . f i n d (new Document (“
name . l a s t ” , “ Kn igh t ley ”)) ;

8 / / Find a l l the documents s tored wi th the pa i r { embeddedfield = “
name . l a s t ” , value = “ Kn igh t ley ” }

Figure 11: Find Queries on a MongoDB through the Java Driver.

Andriani G. Triantafyllou, Eleni G. Mantzana 23

Efficient Queries in MongoDB with Encrypted Fields

4. DOCUMENT’S FIELD ENCRYPTION APPROACH
In this thesis, we decided to implement our approach of this issue, MongoDB’s lack of
handling encrypted fields. So, two algorithms supporting field encryption have been de-
veloped. The encryption types used are BCrypt and SHA-256 Encryption. At this section,
we will be describing and analyzing them in detail, while justifying our algorithm choices.

4.1 Define Encrypted Fields
In our Approach we support two different encryption types. The user is free to choose the
encryption type to be used. So, the user has the potential to define the record fields by their
names and the encryption to be performed on them. At this point, they can either choose
to perform the SHA-256 encryption type or the BCrypt encryption to all the specified fields
of a collection. This approach minimizes the continuous queries about the encryption type
to be performed to each field of the Document given. These fields are stored in another
collection in the database, in order to be always accessible to the system and result to the
right performance of the operations on the database collection.

In order to achieve time enhancement and be competitive to the original Mongo Driver
and its operations, the field collection which stores the specified encrypted fields is stored
in a cache memory between our application and the database. The data are managed in
a user friendly way. These data are necessary through the database’s operations and the
queries giving us access to them may vary depending on quite a few factors such as the
database’s size, etc. So, this choice eliminates such queries on the database, saving a lot
of time. The cache is widely used during both the insertion of a document and the various
queries on the Database’s Collection, ensuring the right handling of the data.

4.2 Supporting SHA-256 Encryption
4.2.1 About SHA-256
SHA-2 (Secure Hash Algorithm 2) is implemented by a set of cryptographic hash functions,
developed by the United States National Security Agency (NSA) and published in 2001
[1]. SHA-256 is part of this set. A cryptographic function is an algorithm that transforms
a digital data into an other form which cannot identify the original input data and differs
significantly. Usually, this output data has a fixed length, in SHA-256 case that’s 256 bit.
The algorithm is based on shift amounts and additive constants performed on a number
of rounds. It provides a secure way to store data because the hash is quickly generated
from the original data, but the original data can not be easily discovered from the hash,
so it is not easy to crack. In other words, the inverse process hash-to original is almost
impossible.

4.2.2 Insert Document
The insertion of plain Documents with no Encrypted Fields is still supported from theDriver.
The Driver presented is an enhanced, enriched edition of the original one, supporting most
of the operations in encrypted fields too. The encryption can be applied to both plain fields
and embedded fields. Below, we present the algorithms’ pseudocode for these settings.

1. Insert Document with Encrypted Fields
The document is modified before being inserted. The encryption function splits the
fields, examining each one separately. If the field name is included in the Client’s
cache, storing the Encrypted Fields, then the field’s value is replaced by the SHA-

Andriani G. Triantafyllou, Eleni G. Mantzana 24

Efficient Queries in MongoDB with Encrypted Fields

256 output of the original field value.

• In line 1 is defined the function insertOneHash, that inserts a Document in the
Collection after modifying it properly.

• In line 7 is defined the function encryptIfNeeded2, that encrypts a specific field
of a Document if it is necessary.

• In line 19 is defined the function encryptDocument, which examines each pair
Field,Value of the Document and encrypts it if needed.

Pseudocode 1: Insertion algorithm for a single Document of SHA-256’s Approach
1 FUNCTION insertOneHash (Document document)
2 {
3 INITIALISE doc TO the RETURN value of CALL encryptDocument (

document ,EMPTY_STRING)
4 INSERT doc to the c o l l e c t i o n
5 }
6

7 FUNCTION encryptI fNeeded2 (S t r i ng fieldName , S t r i ng value , Entry
<F ie ld , Value> en t ry)

8 {
9 IF f ieldName has to be encrypted
10 {
11 IF f ieldName has to be encrypted i n SHA-256 way
12 {
13 INITIALIZE encoded TO SHA-256 encrypted form of value
14 SET Value of en t ry TO encoded
15 }
16 }
17 }
18

19 FUNCTION Document encryptDocument (Document doc , S t r i ng pathD)
20 {
21 FOR each pa i r { f i e l d , value } i n doc
22 {
23 INITIALIZE path TO “ ”
24 INITIALIZE fieldName TO f i e l d
25 IF pathD i s not Empty
26 SET path TO pathD . f ieldName
27 ELSE
28 ADD fieldName TO path
29 INITIALIZE f i e l dVa l ue TO value
30 IF f i e l dVa l ue i s a S t r i ng
31 {
32 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

f i e l dVa l ue
33 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
34 }
35 ELSE_IF f i e l dVa l ue i s an In tege r
36 {
37 INITIALIZE in tegerVa lue TO the i n t ege r format o f

Andriani G. Triantafyllou, Eleni G. Mantzana 25

Efficient Queries in MongoDB with Encrypted Fields

f i e l dVa l ue
38 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

in tge rVa lue
39 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
40 }
41 ELSE_IF f i e l dVa l ue i s a F loa t
42 {
43 INITIALIZE f l oa tVa l ue TO the f l o a t format o f f i e l dVa l ue
44 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

f l oa tVa l ue
45 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
46 }
47 }
48 RETURN doc
49 }

2. Insert Document with Embedded Encrypted Fields
In case of embedded fields the Document’s structure differs. In that case, so, the
function encryptDocument is modified.

• In line 1 is defined the function encryptDocument, which examines each pair
field,Value of the Document and encrypts it if needed.

• The function has an extra case now in line 12. This condition is added because
of the Embedded Fields. In that case, the Value is an other one Document, so
the function recursively calls itself with parameter the Value.

Pseudocode 2: Insertion algorithm for multiple Documents of SHA-256’s Approach
1 FUNCTION Document encryptDocument (Document doc , S t r i ng pathD)

2 {
3 FOR each pa i r { f i e l d , value } i n doc
4 {
5 INITIALIZE path TO “ ”
6 INITIALIZE fieldName TO f i e l d
7 IF pathD i s not Empty
8 SET path TO pathD . f ieldName
9 ELSE
10 ADD fieldName TO path
11 INITIALIZE f i e l dVa l ue TO value
12 IF f i e l dVa l ue i s a Document
13 {
14 INITIALIZE tempDoc TO the Document format o f f i e l dVa l ue
15 CALL encryptDocument (tempDoc , path) ;
16 }
17 ELSE_IF f i e l dVa l ue i s a S t r i ng
18 {
19 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

f i e l dVa l ue
20 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
21 }
22 ELSE_IF f i e l dVa l ue i s an In tege r

Andriani G. Triantafyllou, Eleni G. Mantzana 26

Efficient Queries in MongoDB with Encrypted Fields

23 {
24 INITIALIZE in tegerVa lue TO the i n t ege r format o f

f i e l dVa l ue
25 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

in tge rVa lue
26 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
27 }
28 ELSE_IF f i e l dVa l ue i s a F loa t
29 {
30 INITIALIZE f l oa tVa l ue TO the f l o a t format o f f i e l dVa l ue
31 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

f l oa tVa l ue
32 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
33 }
34 }
35 RETURN doc
36 }

4.2.3 Queries
1. Find Query With No Parameter

• In line 10 is called the function decryptDocument which sets all the encrypted
Values in SECRET_VALUE, as we see in its definition below.

• The decryptDocument is recursive, due to the embedded fields which may
contain the Document.

Pseudocode 3: Find all, in pseudocode, of SHA-256’s Approach
1 FUNCTION L i s t f i n d ()
2 {
3 INITIALIZE docs TO the RETURN value of CALL MongoDB ’ s

o r i g i n a l f i n d () f unc t i on
4 IF docs i s Empty
5 RETURN nu l l
6 ELSE
7 {
8 INITIALIZE documentsList TO a L i s t o f Documents
9 FOR each document i n docs
10 ADD the RETURN value of CALL decryptDocument (document ,

EMPTY_STRING) TO documentsList
11 RETURN documentsList
12 }
13 }
14

15

16

17 FUNCTION Document decryptDocument (Document document , S t r i ng
pathD)

18 {
19 FOR each pa i r { f i e l d , value } i n document

Andriani G. Triantafyllou, Eleni G. Mantzana 27

Efficient Queries in MongoDB with Encrypted Fields

20 {
21 INITIALIZE fieldName TO f i e l d
22 INITIALIZE path TO “ ”
23 IF pathD i s not Empty
24 SET path TO pathD . f ieldName
25 ELSE
26 ADD fieldName TO path
27 INITIALIZE f i e l dVa l ue TO value
28 IF f i e l dVa l ue i s a Document
29 {
30 INITIALIZE tempDoc TO the Document format o f f i e l dVa l ue
31 CALL decryptDocument (tempDoc , path) ;
32 }
33 ELSE
34 {
35 IF path i s an encrypted f i e l d
36 SET value to SECRET_VALUE
37 }
38 }
39 RETURN document ;
40 }

2. Find Query With Document Parameter
• In line 3 is called the function encryptDocument that returns the Encrypted
format of the Document given. In SHA-256 encryption, the output of a specific
data remains always the same.

• In line 4 is called the original find(document) of MongoDB’s document. We
search for the encrypted form of the Document, as the Documents are not
stored in their original format.

• In line 11 is called the function decryptDocument which sets all the encrypted
Values in SECRET_VALUE.

Pseudocode 4: Find document matching values, in pseudocode, of SHA-256’s Approach
1 FUNCTION L i s t f i n d (Document document)
2 {
3 SET doc TO the re tu rn value o f CALL encryptDocument (

document ,EMPTY_STRING)
4 INITIALIZE docs TO the RETURN value of CALL MongoDB ’ s

o r i g i n a l f i n d (doc) f unc t i on
5 IF docs i s Empty
6 RETURN nu l l
7 ELSE
8 {
9 INITIALIZE documentsList TO a L i s t o f Documents
10 FOR each document i n docs
11 ADD the RETURN value of CALL decryptDocument (document ,

EMPTY_STRING) TO documentsList
12 RETURN documentsList ;
13 }

Andriani G. Triantafyllou, Eleni G. Mantzana 28

Efficient Queries in MongoDB with Encrypted Fields

14 }

4.3 Supporting BCrypt Encryption
4.3.1 About BCrypt
The BCrypt algorithm is based on a hashing function designed by Niels Provos and David
Mazières[1]. It is based on the Blowfish cipher, which is a symmetric-key block cipher.
This algorithm is mostly used in order to hash passwords. The fact that is uses salt,
makes the BCrypt algorithm invulnerable against rainbow table attacks. A rainbow table
is a precomputed table that is used in order to reverse a cryptographic hash function and
crack passwords, like the BCrypt. The way the BCrypt algorithm is implemented, makes
it resistant to brute-force search attacks. All the BCrypt hashed strings have the prefix
“$2a$” or “$2b$” or “$2y$”. The rest of the hash string is a 128-bit salt encoded as 22
characters and a 184-bit hash value encoded as 31 characters. The hashed string also
contains the cost parameter, which indicates the number of key expansion rounds. For
example, if we have the hash string:

$2a$10$N9qo8uLOickgx2ZMRZoMyeIjZAgcfl7p92ldGxad68LJZdL17lhWy

the $2a$ indicates this is a BCrypt hashed string, the salt is N9qo8uLOickgx2ZMRZoMye
and the hash value is IjZAgcfl7p92ldGxad68LJZdL17lhWy. The value 10$ is the cost
parameter, we have 21

�
0 key expansion rounds.

4.3.2 Insert Document
BCrypt encryption can be applied to both plain and embedded fields, like the SHA-256
encryption. The document is modified by changing the value of the field the user chose to
encrypt and then inserted into the database.

1. Insert Document with Encrypted Fields
In order to modify the document, we need to know the field that we have to encrypt.
So, we check if the collection that contains the sets <FieldToEncrypt, Encryption-
Type> includes field name requested. When found, we replace the value of this field
with the hashed string that occurred after applying the BCrypt encryption on the
original value.

• In line 1 the function insertOneRandomPass is defined. This function inserts
the document into the Collection after encrypting the requested field.

• In line 6 the function encryptIfNeeded2 is defined. This function checks if the
collection of the fields to encrypt contains a specific field of the Document,
encrypts the value and sets the encoded value to the field.

• In line 15 the function encryptDocumentRandomPass is defined. This function
checks if we are dealing with a plain or an embedded field in order to give the
right path to the encryptIfNeeded2 function.

Pseudocode 5: Insertion of Document with plain fields, in pseudocode, of BCrypt’s Approach
1 FUNCTION insertOneRandomPass (Document document) {
2 INITIALISE doc TO the RETURN_VALUE of encryptDocument (

document , EMPTY_STRING)
3 INSERT doc i n t o the c o l l e c t i o n
4 }

Andriani G. Triantafyllou, Eleni G. Mantzana 29

Efficient Queries in MongoDB with Encrypted Fields

5

6 FUNCTION encryptI fNeeded2 (S t r i ng fieldName , S t r i ng value , Entry
<F ie ld , Value> en t ry) {

7 IF f ieldName has to be encrypted {
8 IF f ieldName has to be encrypted wi th BCrypt {
9 INITIALIZE encoded TO BCrypt encrypted form of value
10 SET Value of en t ry TO encoded
11 }
12 }
13 }
14

15 FUNCTION Document encryptDocument (Document doc , S t r i ng pathD)
{

16 FOR each pa i r { f i e l d , value } i n doc {
17 INITIALIZE path TO “ ”
18 INITIALIZE fieldName TO f i e l d
19 IF pathD i s not Empty
20 SET path TO pathD . f ieldName
21 ELSE
22 ADD fieldName TO path
23 INITIALIZE f i e l dVa l ue TO value
24 IF f i e l dVa l ue i s a S t r i ng {
25 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

f i e l dVa l ue
26 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
27 }
28 ELSE_IF f i e l dVa l ue i s an In tege r {
29 INITIALIZE in tegerVa lue TO the i n t ege r format o f

f i e l dVa l ue
30 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

in tge rVa lue
31 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
32 }
33 ELSE_IF f i e l dVa l ue i s a F loa t {
34 INITIALIZE f l oa tVa l ue TO the f l o a t format o f f i e l dVa l ue
35 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

f l oa tVa l ue
36 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
37 }
38 }
39 RETURN doc
40 }

2. Insert Document with Embedded Encrypted Fields
If the document the user wants to insert into the database contains embedded fields,
we need to modify the function encryptDocument, in order to support embedded
fields. The function is defined below, with some changes in the way we handle the
path of the field that is about to be encrypted.

Pseudocode 6: Insertion of Document with embedded fields, in pseudocode, of BCrypt’s
Approach

Andriani G. Triantafyllou, Eleni G. Mantzana 30

Efficient Queries in MongoDB with Encrypted Fields

1 FUNCTION Document encryptDocument (Document doc , S t r i ng pathD)
2 {
3 FOR each pa i r { f i e l d , value } i n doc
4 {
5 INITIALIZE path TO “ ”
6 INITIALIZE fieldName TO f i e l d
7 IF pathD i s not Empty
8 SET path TO pathD . f ieldName
9 ELSE
10 ADD fieldName TO path
11 INITIALIZE f i e l dVa l ue TO value
12 IF f i e l dVa l ue i s a Document
13 {
14 INITIALIZE tempDoc TO the Document format o f f i e l dVa l ue
15 CALL encryptDocument (tempDoc , path) ;
16 }
17 ELSE_IF f i e l dVa l ue i s a S t r i ng
18 {
19 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

f i e l dVa l ue
20 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
21 }
22 ELSE_IF f i e l dVa l ue i s an In tege r
23 {
24 INITIALIZE in tegerVa lue TO the i n t ege r format o f

f i e l dVa l ue
25 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

in tge rVa lue
26 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
27 }
28 ELSE_IF f i e l dVa l ue i s a F loa t
29 {
30 INITIALIZE f l oa tVa l ue TO the f l o a t format o f f i e l dVa l ue
31 INITIALIZE s t r i ngVa lue TO the s t r i n g format o f

f l oa tVa l ue
32 CALL encrypt I fNeeded2 (path , s t r ingVa lue , f i e l d)
33 }
34 }
35 RETURN doc
36 }

As we observe in line 15, we recursively check whether we have reached to a field
that maybe is the one the user wants to encrypt.

4.3.3 Queries
1. Find Query With No Parameter,

The Find QueryWith No Parameter is exactly the same as in the SHA-256 encryption
approach, Pseudocode 3 .

Andriani G. Triantafyllou, Eleni G. Mantzana 31

Efficient Queries in MongoDB with Encrypted Fields

2. Find Query With Document Parameter,
The Find Query With Document Parameter differs from the SHA-256 encryption ap-
proach, due to the fact that a specific value doesn’t always have the same BCrypt
encryption, because of the salt value. So, in that case the algorithm has to be adjusted
properly.

• In line 5 is called the function parseDocument. The function parses the Docu-
ment, finds the encrypted fields and stores them to the 3rd parameter. Also
a new Document is constructed, which is composed of the fields that do not
require encryption.

• In line 6 the original find(document) function of the MongoDB’ driver is called.
In this way we minimize the loops, restricting the documents to modify.

• In line 12, the condition refers to the case that the Document given in the Find
query is not composed of encrypted fields.

• In line 18, the condition refers to the case that the Document given in the Find
query is composed at least of one encrypted field.

• In line 22, the condition refers to the fact that the Documents compared are
composed of the same pairs<Field, Value>.

Pseudocode 7: Find Documents matching values, in pseudocode, of BCrypt’s Approach
1 FUNCTION L i s t f i n d (Document document)
2 {
3 INITIALIZE f i e l d s TO a Map wi th Pairs <F ie ld , Value>
4 INITIALIZE temp TO a new Document
5 CALL parseDocument (document , temp , f i e l d s ,EMPTY_STRING)
6 INITIALIZE docs TO the RETURN value of CALL MongoDB ’ s

o r i g i n a l f i n d (doc) f unc t i on
7 IF docs i s Empty
8 RETURN nu l l
9 ELSE
10 {
11 INITIALIZE documentsList TO a l i s t o f Documents
12 IF f i e l d s i s Empty
13 {
14 FOR each tempDocument i n docs
15 ADD the RETURN value of CALL decryptDocument (

tempDocument ,EMPTY_STRING) TO documentsList
16 RETURN documentsList
17 }
18 ELSE
19 {
20 FOR each tempDocument i n docs
21 {
22 IF tempDocument matches to Document
23 ADD the RETURN value of CALL decryptDocument (

tempDocument ,EMPTY_STRING) TO documentsList
24 }
25 RETURN documentsList
26 }

Andriani G. Triantafyllou, Eleni G. Mantzana 32

Efficient Queries in MongoDB with Encrypted Fields

27 }
28 }

Andriani G. Triantafyllou, Eleni G. Mantzana 33

Efficient Queries in MongoDB with Encrypted Fields

5. TIME MEASUREMENTS
In this part, we are going to analyze the results of our implementation and compare our
approach with the Java Driver’s implementation.

5.1 About Test Environment
All the tests were run on the mLab[19]. mLab is a cloud database service that hosts
MongoDB databases. The cloud providers that cooperate with mLab are Amazon, Google
and Microsoft Azure. Due to the fact that we wanted to simulate realistic conditions, we
chose a cloud database in order to test the limits of our implementation in two ways:

1. amount of time needed to encrypt all Documents

2. how latency affects the insertion time.

Specifically, we created andmanaged different amounts of Documents in order to examine
each method’s score. In our tests, we reached the number of 250.000 documents stored
at a time, which size was 50MB. As one can see in figure 12 the mLab’s environment is
accurate and intuitive to comprehend. This was one of the reasons justifying our tests’
environment choice. All the tests were run on the same Computer System and Internet
Connection, in order to accomplish same circumstances to all of them.

Figure 12: mLab’s Statistic Environment

Andriani G. Triantafyllou, Eleni G. Mantzana 34

Efficient Queries in MongoDB with Encrypted Fields

For the visualization of the results, we used a free online program called “plot.ly” [20]. We
have implemented two different chart types:

• Scatter Plot

• Line Plot

The Line Plot was used in order to instantly compare the implementations and the Scatter
Plot for individual time measurements of each method.

5.2 Queries on Original Mongo Driver
Firstly, we run some test cases using the Original MongoDB Java Driver. These were used
throughout our method’s evaluation as a comparison.

5.2.1 Insert Queries of Documents
Below, you can see the time measurements of the Insert Queries tests.

• In table 2 we present all the measurements thoroughly.

1. The documents’ number varies from 500 to 250.000.

2. Column 2 , of table 2, refers to the insertion of plain documents without embed-
ded fields.

3. Column 3, of table 2, refers to the insertion of documents with embedded fields.

• The figure 13 visualizes the measurements for the queries on plain documents.

• The figure 14 visualizes themeasurements for queries on documents with embedded
fields.

Figure 13: MongoDB’s Driver Insert Documents with Plain Fields

Andriani G. Triantafyllou, Eleni G. Mantzana 35

Efficient Queries in MongoDB with Encrypted Fields

Figure 14: MongoDB’s Driver Insert Documents with Embedded Fields

Observations:
• The duration of inserting documents with embedded fields exceeded that of plain
documents, due to the bigger datasize.

• The plot of insertion of documents with plain fields exhibits a linear increase.

• The plot of insertion of documents with embedded fields exhibits a linear increase
with some abnormalities, appearing on the diagram as rough edges.

• Those abnormalities occurred because of the network latency.

• In the small tests, for up to 30.000 documents, the insertion times are exactly the
same.

Andriani G. Triantafyllou, Eleni G. Mantzana 36

Efficient Queries in MongoDB with Encrypted Fields

Table 2: MongoDB’s Insert Measurements

Insert Queries
Number of
Documents

Time (secs) for
Documents with
Plain Fields

Time (secs) for
Documents with
Embedded
Fields

500 0.5730946 0.5816705
1000 0.5895274 0.5947747
2000 1.1122522 1.1722622
4000 2.238315 2.3365142
8000 4.446298 4.6910906
16000 8.927377 9.352967
20000 11.22777 11.720046
30000 16.896626 17.622036
40000 22.315216 23.741806
50000 27.78702 32.082764
60000 33.72613 35.375786
70000 39.170597 43.732872
80000 44.747826 48.89606
90000 50.125816 54.56426
100000 56.716427 59.703728
110000 61.912457 70.96251
120000 66.72994 71.24544
130000 72.721596 76.78131
140000 78.76392 90.32357
150000 83.63236 100.17131
160000 89.57758 106.662766
170000 94.80113 114.17041
180000 100.5821 107.920784
190000 105.77751 113.98962
200000 112.25198 118.2887
250000 139.61145 149.65392

As we can see from the above table:

• The average insertion time for a document without embedded fields is constant,
around 0.000556 seconds, regrardless of the amount of documents we are inserting
into the database .

• The insertion time for a document with embedded fields varies from 0.00054 to
0.00121 seconds.

Andriani G. Triantafyllou, Eleni G. Mantzana 37

Efficient Queries in MongoDB with Encrypted Fields

5.2.2 Find All Queries of Documents
At this section are presented the time measurements of the FindAll Queries tests.

• In table 3 are presented all the measurements thoroughly.

1. The documents’ number varies from 500 to 250.000.

2. Column 2, of table 3 refers to the find query of plain documents, without embed-
ded fields.

3. Column 3, of table 3 refers to the find query of documents with embedded fields.

• The figure 15 visualizes the measurements for queries on documents with plain
fields.

• The figure 16 visualizes themeasurements for queries on documents with embedded
fields.

Figure 15: MongoDB’s Driver Find All Documents with Plain Fields

Andriani G. Triantafyllou, Eleni G. Mantzana 38

Efficient Queries in MongoDB with Encrypted Fields

Figure 16: MongoDB’s Driver Find All Documents with Embedded Fields

Observations:
• The plot of time needed to execute queries to documents without embedded fields
exhibits a linear increase with some rough edges.

• These edges occur due to the network latency.

• The plot of time needed to execute queries to documents with embedded fields
exhibits a linear increase, but with some rough edges.

• These edges occur due to the network latency.

• The duration of the find queries in documents with embedded fields does not always
exceed that of the documents with plain fields. As we mentioned earlier, a document
with embedded fields has a bigger size compared to a document with plain fields.
This fact results to greater document insertion duration when we are dealing with
documents with embedded fields. On the matter of queries though, the size of the
document does not affect the querying process when it comes to small documents,
like the ones we used in order to test our implementation. By observing the diagrams,
we notice that sometimes the queries we run for documents without embedded fields
took more time than the ones for documents with embedded fields, proving the
previous statement. These plots also point out that the latency has a very important
role in the time it takes to communicate with the database and process the data.

Andriani G. Triantafyllou, Eleni G. Mantzana 39

Efficient Queries in MongoDB with Encrypted Fields

Table 3: MongoDB’s Find All Documents Measurements

Find Queries
Number of
Documents

Time (secs) for
Documents with
Plain Fields

Time (secs) for
Documents with
Embedded
Fields

500 0.73660636 0.7245615
1000 0.98596567 0.8598934
2000 0.9515232 1.3168386
4000 1.4927201 1.5118712
8000 2.159213 1.8968664
16000 3.3412073 3.1834989
20000 2.981193 3.1781032
30000 8.836872 4.1284575
40000 5.579202 6.6470017
50000 7.3707237 5.9651155
60000 11.757226 6.5864515
70000 10.55608 7.783245
80000 21.848125 9.090209
90000 9.81017 10.326397
100000 21.510502 11.210602
110000 19.305304 11.980717
120000 13.375557 13.204302
130000 24.490334 15.394913
140000 22.50495 16.354048
150000 21.636757 22.519304
160000 30.727268 20.033978
170000 21.761988 19.232533
180000 28.148558 19.99701
190000 37.385254 20.933147
200000 33.20038 22.276958
250000 39.06967 27.231556

• The query time for a document without embedded fields varies from 0.000147 to
0.000372 seconds.

• The query time for a document with embedded fields varies from 0.000113 to
0.000375 seconds.

As we can see, the latency can cause a slowdown to the querying process with the
slowest query being three times slower than the fastest one. This happens because in
order to execute queries, in our implementation, we used the FindIterable[18] function,
which gets the documents one by one and runs the query on them. This process results
to continuous connections to the database and disconnections, because our database is
hosted by mLab, a cloud service. Those connections and disconnections are the main
reason why we observe those abnormalities on the plots.

Andriani G. Triantafyllou, Eleni G. Mantzana 40

Efficient Queries in MongoDB with Encrypted Fields

5.3 Queries on SHA-256 Encryption
5.3.1 Insert Queries of Documents with Encrypted Fields
Below are presented the time measurements of the Insert Queries tests of our SHA-256
Approach, Pseudocode 1.

• In table 5 are presented all the measurements thoroughly.

1. The documents’ number varies from 500 to 250.000.

2. Column 2, of table 5, refers to the insert query of plain documents, without
embedded fields.

3. Column 3, of table 5, refers to the insert query of documents with embedded
fields.

• The figures 17 ,18 visualize the measurements for the queries on plain documents
and documents with embedded fields respectively.

Figure 17: SHA-256’s Approach Insert Documents with Plain Fields

Andriani G. Triantafyllou, Eleni G. Mantzana 41

Efficient Queries in MongoDB with Encrypted Fields

Figure 18: SHA-256’s Approach Insert Documents with Embedded Fields

Observations:
• The duration of inserting documents with embedded fields exceeded once again that
of plain documents, due to the bigger datasize.

• Both plots of insertion of documents with plain fields and with embedded fields exhibit
a linear increase.

• In the small tests, for up to 50.000 documents, the insertion times are almost the
same.

• At this point, we need to point out a situation we dealt with during the experiment
period. MongoDB’s Java Driver consists of two insert functions.

1. insertOne function[21] : Inserts a single document into a collection.

2. insertMany function[22] : Inserts multiple documents into a collection.

The two of them should be exploited properly. At the start of test measurements,
we exploited insertOne function, inserting the documents one by one. This choice
resulted in achieving same time scores in SHA-256’s Approach and MongoDB’s
Driver. However, we noticed that the SHA-256’s time scores increased in an extreme
way when we increased the datasize. Consequently, we exploited insertMany fun-
ction and the result was remarkable. In table 4 we present a sample of the time
decrease.

Andriani G. Triantafyllou, Eleni G. Mantzana 42

Efficient Queries in MongoDB with Encrypted Fields

Table 4: The insertOne function compared to insertMany

Insert Queries
Number of
Documents

Time (secs)
of insertOne
for
MongoDB’s
Driver

Time (secs)
of
insertMany
for
MongoDB’s
Driver

Time (secs)
of insertOne
for
SHA-256’s
Approach

Time (secs)
of
insertMany
for
SHA-256’s
Approach

1000 148 0,59 152 0,77
2000 317 1,11 317 1,43

Table 5: SHA-256’s Approach Insert Measurements

Insert Queries
Number of
Documents

Time (secs) for
Documents with
Plain Fields

Time (secs) for
Documents with
Embedded
Fields

500 0.686565 0.73590267
1000 0.767477 0.819133
2000 1.4297721 1.6111319
4000 2.8627377 3.1608565
8000 5.767674 6.3819146
16000 11.440591 12.951159
20000 14.283775 15.95993
30000 21.358059 24.928192
40000 28.489304 31.699194
50000 35.416405 39.543854
60000 42.56149 48.123077
70000 49.812492 56.435375
80000 56.865116 63.46296
90000 63.86848 71.23979
100000 71.353096 80.192635
110000 78.01235 87.49852
120000 85.50201 95.75311
130000 93.93346 102.99113
140000 99.94496 111.88866
150000 106.95854 119.26789
160000 113.97095 127.529175
170000 120.8392 135.75302
180000 127.82629 142.8367
190000 135.18794 151.31757
200000 142.71826 160.72505
250000 177.43808 199.31969

• The query time for a document without embedded fields varies from 0.000709 to
0.00136 seconds.

Andriani G. Triantafyllou, Eleni G. Mantzana 43

Efficient Queries in MongoDB with Encrypted Fields

• The query time for a document with embedded fields varies from from 0.000797 to
0.00146 seconds.

SHA-256’s Approach VS MongoDB’s Java Driver:
At this point we visualized the comparison between the MongoDB’s Original Java Driver
and the SHA-256’s Approach we implemented.

1. The figure 19 refers to the Insert Queries of Plain Documents.

• Both lines exhibit a linear increase.

• The MongoDB’s method is quicker, the line is always above in the plot graph.

• However, their distance is quite small considering the datasize methods are
dealing with.

2. The figure 20 refers to the Insert Queries of Documents with Embedded Fields.

• Plot lines exhibit a linear increase in insertion of Documents with embedded
fields, too.

• The MongoDB’s method is slightly quicker, as you could see the line is always
above in the plot graph.

• However, their distance is quite small considering the datasize methods are
managing.

• This distance is caused by time needed to complete the encryption of the list
of Documents that are about to be inserted. As it was described earlier, each
document is parsed, splitted and modified properly.

Figure 19: Insert Queries of Plain Documents, SHA-256’s Approach compared to MongoDB’s Driver

Andriani G. Triantafyllou, Eleni G. Mantzana 44

Efficient Queries in MongoDB with Encrypted Fields

Figure 20: Insert Queries of Documents with Embedded Fields, SHA-256’s Approach compared to
MongoDB’s Driver

5.3.2 Find All Queries of Documents with Encrypted Fields
It has been referred that the encrypted values are not revealed at the find function.

At this point are presented the time measurements of the Find All Queries tests of our
SHA-256 Approach, Pseudocode 3.

• In table 6 are presented all the measurements thoroughly.

1. The documents’ number varies from 500 to 250.000.

2. Column 2, of table 6, refers to the find query of plain documents, without embed-
ded fields.

3. Column 3, of table 6, refers to the find query of documents with embedded
fields.

• The figures 21 ,22 visualize the measurements for the queries on plain documents
and documents with embedded fields respectively.

Andriani G. Triantafyllou, Eleni G. Mantzana 45

Efficient Queries in MongoDB with Encrypted Fields

Figure 21: SHA-256’s Approach Find All Documents with Plain Fields

Figure 22: SHA-256’s Approach Find All Documents with Embedded Fields

Andriani G. Triantafyllou, Eleni G. Mantzana 46

Efficient Queries in MongoDB with Encrypted Fields

Table 6: SHA-256’s Approach Find All Documents Measurements

Find Queries
Number of
Documents

Time (secs) for
Documents with
Plain Fields

Time (secs) for
Documents with
Embedded
Fields

500 1.1322337 1.0521961
1000 1.5329167 1.0891377
2000 1.7948279 1.2429496
4000 1.9028713 1.8752402
8000 2.257894 13.40974
16000 9.348973 14.747366
20000 3.7049177 6.0010247
30000 4.7231293 14.650656
40000 7.1344132 9.867553
50000 10.1499405 14.473209
60000 20.029806 19.54934
70000 15.686469 19.1773
80000 17.562069 15.2384205
90000 21.434359 38.409718
100000 22.51756 20.97913
110000 18.748234 23.962803
120000 25.043268 23.162762
130000 23.00232 24.800764
140000 32.0544 33.640625
150000 26.225332 31.206146
160000 35.097347 34.534893
170000 30.322437 39.228428
180000 39.49263 32.146206
190000 55.512093 35.34592
200000 44.708668 45.45475
250000 51.00995 51.468918

Observations:
• The query time for a document without embedded fields varies from 0.000204 to
0.00226 seconds.

• The query time for a document with embedded fields varies from 0.0002058 to
0.0021 seconds.

• In find queries, we do not have a linear increase, there are many abnormalities.

• Those abnormalities are caused by the network latency, as connections and discon-
nections occure during the testing and due to the FindIterable[18] class, as referred
above.

Andriani G. Triantafyllou, Eleni G. Mantzana 47

Efficient Queries in MongoDB with Encrypted Fields

SHA-256’s Approach VS MongoDB’s Java Driver:
Follows the visualization of the comparison between the MongoDB’s Original Java Driver
and the SHA-256’s Approach find method we implemented.

The figures 23, 24 refer to the Find Queries of documents with and without embedded
fields, respectively.

• Both lines show abnormalities due to the network latency and the connections / dis-
connections to the database which occur from FindIterable’s[18] implementation.

• The MongoDB’s method is quicker, the line is always above in the plot graph.

• However, their distance is quite small considering the datasize methods are dealing
with.

• This distance is due to the decryption time of the list of Documents to be shown. As
it was described, each document is parsed, splitted and modified properly in order
to not reveal it’s encrypted value.

Figure 23: Find Queries of Plain Documents, SHA-256’s Approach compared to MongoDB’s Driver

Andriani G. Triantafyllou, Eleni G. Mantzana 48

Efficient Queries in MongoDB with Encrypted Fields

Figure 24: Find Queries of Documents with Embedded Fields, SHA-256’s Approach compared to
MongoDB’s Driver

5.3.3 Find Queries Matching Values of Documents
Throughout the experiment process we also run some tests of find queries with parameters.
Accurately, we run tests of different combinations, such as :

• “value matches unencrypted field”,

• “value matches encrypted field”,

• “combination of the previous two”,

• “queries for embedded fields”, etc.

We came to the conclusion that both methods, SHA-256’s and MongoDB’s Driver behave
almost the same. There is a logic explanation about this behavior. In the SHA-256’s ap-
proach, all the documents are finally stored in the database maintaining the encrypted
form of the values. In our find implementation, Pseudocode 4, we call MongoDB Driver’s
find function with the encrypted form of the Document given as parameter. SHA-256’s
hashing method results, always, in the same output value. So, we query the database
using a Document with the same value structure as the ones stored in it. The hashing
method that SHA-256 provides is rapid, resulting in unnoticed time duration.

In table 7 you could see a sample of these time measurements. They refer to a database
with 250.000 documents stored and present the average time duration of the queries. The
differences are due to some factors such as:

• The number of values given to the query, specifies the document asked, eliminating
the options. Increasing that number decreases the query time.

• Documents with embedded fields have a bigger size compared to documents with
plain fields.

Andriani G. Triantafyllou, Eleni G. Mantzana 49

Efficient Queries in MongoDB with Encrypted Fields

Table 7: Sample of Measurements. Find Queries Matching Different Combinations of Field Values

Find Queries Matching Values
Query Type Time (secs) for

Find Query

Match Non Encrypted Value 1,03
Match Encrypted Plain Value 1,05
Match Encrypted Embedded Value 1.41
Match Combination of non
encrypted, encrypted plain values

0,38

Match Combination of non
encrypted, encrypted embedded
values

0,41

5.4 Queries on BCrypt Encryption
5.4.1 Insert Queries of Documents with Encrypted Fields

• In table 8 are presented all the measurements of our BCrypts’ Approach, Pseudo-
code 5, thoroughly.

1. The documents’ number in this case varies from 10 up to 4.000.

2. Column 2, of table 8, refers to the insert query of plain documents, without
embedded fields.

3. Column 3, of table 8, refers to the insert query of documents with embedded
fields.

• The figures 25 ,26 visualize the measurements for the queries on plain documents
and documents with embedded fields respectively.

Figure 25: BCrypt’s Approach Insert Documents with Plain Fields

Andriani G. Triantafyllou, Eleni G. Mantzana 50

Efficient Queries in MongoDB with Encrypted Fields

Figure 26: BCrypt’s Approach Insert Documents with Embedded Fields

Table 8: BCrypt’s Approach Insert Measurements

Insert Queries
Number of
Documents

Time (secs) for
Documents with
Plain Fields

Time (secs) for
Documents with
Embedded
Fields

10 1.2195458 1.97198
20 2.2082877 2.6226175
50 5.3310995 5.9294763
100 10.54379 11.246323
300 31.495565 37.920063
500 54.42532 56.639286
700 75.834045 83.02905
900 98.46125 94.08907
1000 104.407 102.40931
1200 121.850105 134.20966
1400 141.87135 152.50159
1600 165.37697 174.87648
1800 183.35474 198.94284
2000 211.24365 218.98067
4000 407.44736 412.40356

Observations:
• The query time for a document without embedded fields varies from 0.1018 to 0.121
seconds.

• The query time for a document with embedded fields varies from from 0.1024 to
0.197 seconds.

Andriani G. Triantafyllou, Eleni G. Mantzana 51

Efficient Queries in MongoDB with Encrypted Fields

BCrypt vs SHA-256, MongoDB Driver:
Follows the visualization of the comparison between the MongoDB’s Original Java Driver
the SHA-256’s Approach and the BCrypt’s Approach find method we implemented.

The figures 27, 28 refer to the Insert Queries of documents with and without embedded
fields, respectively.

• MongoDB’s, SHA-256’s methods are almost the same. Their plot lines converge.

• BCrypt is much slower than the others.

Balancing the trade offs between query delay and security
After running a big amount of tests, we came to the conclusion that the SHA-256 encryption
can compete with the Java Driver implementation in the matter of both insertions and
queries. On the contrary, the BCrypt encryption has a very poor performance compared
to the other two methods. So why would someone use the BCrypt encryption as a valid
security option when its performance is at first glance a very poor one?

On this moment, the issue of the trade-offs is raised. Considering the fact that some of
the information stored in databases is very sensitive, for example sets like <Username,
Password> or credit cards credentials, the applications that use and store this kind of data
have to make a decision. Most of the time, this decision translates into extra security or
better time performance.

When it comes to big data storage, id est the application struggles to simultaneously
store a very large amount of data in a database within reasonable time limits and by
default including encrypted fields, an encryption with a high insertion speed is the most
appropriate method. Those insertions are called batch inserts and in our implemenation
are carried out by the insertMany function, by applying the SHA-256 encryption, which
provides the reasonable time limits we referred to before.

The main reasons we are using this encryption type are that SHA-256:

• is a quick encryption method as one can observe by looking at the previous plots

• is securing the data in a way that one cannot reverse the hashing and cannot access
the original value of the encrypted field

• is securing the data in a way that even if the whole database is stolen, one cannot
decrypt the encrypted fields without having the key, so basically, the data are useless

Apparently, not all applications are supposed to need to store such large amounts of data,
but are more demanding in matters of security. Such applications or applications’ modules
are e.g. a login system where the users provide the app with a username and a password
and the back end is responsible to complete the verification of the username and the
password in order to allow the users enter their accounts.

In this case, where we are handling passwords, a simple hash function is considered an
inadequate security approach. An extra safeguard is necessary in order to ensure the
users that their passwords cannot be cracked. Apart from malware and phising, which are
nowadays the most common ways to ”steal” someone’s password, there are three more
advanced attacks that can be used in order to crack a password. Those are:

• dictionary attacks

• brute force attacks

• rainbow table attacks

Andriani G. Triantafyllou, Eleni G. Mantzana 52

Efficient Queries in MongoDB with Encrypted Fields

BCrypt, as we mentioned before, is a method that adds a salt, a random data, as an
additional input to a one-way hash function in order to secure the data against dictionary
and rainbow table attacks. This factor makes the BCrypt encryption an approach that offers
additional security to the data, and like we already mentioned, this additional security is
crucial to some applications.

This algorithm is mostly used in order to secure passwords and when we are handling
a single password, in terms of MongoDB, we are actually handling one single document
with one - or more, depends on the need of the application - encrypted field.

By observing the plots in figures 27 and 28, we realize that although the insertion times
for documents using BCrypt as their type of encryption are 10 times slower than those of
MongoDB’s Java Driver and SHA-256, when it comes to a single document, the difference
in insertion times is not that sensible. If we take into consideration the network delay and
the I/Owith the database, the delay of the BCrypt in comparison with the two othermethods
is acceptable, and at the same time, the users are offered a more secure encryption for
the most important field, which is the password.

Overall, we presume that in order to have more efficient insertions, we have to partly
sacrifice the protection of an encrypted field value against all three advanced attacks and
in order to have a safeguard against those attacks, we have to deal with slower insertions
of the records into the database. Our approach offers a complete solution to this problem
because we provide the user with both options, and they get to decide whether security
or quick insertions is what matters to them the most, as our implementation supports both
SHA-256 and BCrypt encryption.

Figure 27: Insert Queries of Plain Documents, Comparing SHA-256’s Approach, BCrypt’s
Approach, MongoDB’s Driver

Andriani G. Triantafyllou, Eleni G. Mantzana 53

Efficient Queries in MongoDB with Encrypted Fields

Figure 28: Insert Queries of Documents with embedded fields, Comparing SHA-256’s Approach,
BCrypt’ Approach, MongoDB’s Driver

5.4.2 Find All Queries of Documents with Encrypted Fields
It has been referred that the encrypted values are not revealed at this function.

• In table 9 are presented all the measurements of find method, Pseudocode 3, thor-
oughly.

1. The documents’ number in this case varies from 10 up to 4.000.

2. Column 2, of table 9, refers to the insert query of plain documents, without
embedded fields.

3. Column 3, of table 9, refers to the insert query of documents with embedded
fields.

• The figures 29, 30 visualize the measurements for the queries on plain documents
and documents with embedded fields respectively.

Andriani G. Triantafyllou, Eleni G. Mantzana 54

Efficient Queries in MongoDB with Encrypted Fields

Table 9: BCrypt’s Approach Find All Documents Measurements

Find Queries
Number of
Documents

Time (secs) for
Documents with
Plain Fields

Time (secs) for
Documents with
Embedded
Fields

10 0.15611355 0.11285697
20 0.16469336 0.16001631
50 0.16176115 0.2054268
100 0.32398608 0.38630733
300 0.6301775 1.2132382
500 0.81100154 1.4928799
700 0.7767368 1.391824
900 0.7737809 1.2900754
1000 0.8568008 1.669696
1200 1.0047315 1.2995803
1400 1.0407746 1.5793337
1600 1.0328734 1.7288271
1800 3.5929008 1.5828195
2000 1.6137465 1.422204
4000 2.4182215 2.5644693

Figure 29: BCrypt’s Approach Find All Documents with Plain Fields

Andriani G. Triantafyllou, Eleni G. Mantzana 55

Efficient Queries in MongoDB with Encrypted Fields

Figure 30: BCrypt’s Approach Find All Documents with Embedded Fields

Observations:
• The query time for a document without embedded fields varies from 0.0007 to 0.015
seconds.

• The query time for a document with embedded fields varies from from 0.001 to 0.011
seconds.

BCrypt vs SHA-256, MongoDB Driver: Follows the visualization of the comparison bet-
ween the MongoDB’s Original Java Driver the SHA-256’s Approach and the BCrypt’s find
method we implemented.

The figures 31, 32 refer to the Find Queries of documents with and without embedded
fields, respectively.

• Both lines show abnormalities due to the network latency and the connections / dis-
connections to the database which occur from FindIterable’s[18] implementation.

• However, their distance is quite small considering the datasize methods are dealing
with.

• The MongoDB’s method is quicker, the line is always above in the plot graph. This
distance is due to the decryption time of the list of Documents to be shown. As it was
described, each document is parsed, splitted and modified properly in order to not
reveal it’s encrypted value.

Andriani G. Triantafyllou, Eleni G. Mantzana 56

Efficient Queries in MongoDB with Encrypted Fields

Figure 31: Find Queries of Plain Documents, Comparing SHA-256’s Approach, BCrypt’s Approach,
MongoDB’s Driver

Figure 32: Find Queries of Documents with embedded fields, Comparing SHA-256’s Approach,
BCrypt’s Approach, MongoDB’s Driver

5.4.3 Find Queries Matching Values of Documents
We came to the conclusion that our BCrypt’s Encryption method andMongoDB’s Driver do
not behave the same. In most times, BCrypt’s measurements were quite longer. However,
this can be explained of the implementation, Pseudocode 7. In the BCrypt’s approach, as in
SHA-256’s, all the documents are finally stored in the database with the encrypted form of
the values. BCrypt’s hashing method results, almost always, in a different output value for
a particular input value. So, in our find implementation, firstly, we query the database using
a Document constructed of the non encrypted field values given. In that case we examine
each one of these Documentsmatching the encrypted fields. In case non-encrypted values
are not given in the query, we parse through all the documents stored in the database.
In any case, the number of documents to examine can vary depending on the database’s
size. In conclusion, queries duration depends on the factors described above showing

Andriani G. Triantafyllou, Eleni G. Mantzana 57

Efficient Queries in MongoDB with Encrypted Fields

wide time differences. In most measurements, the time duration was slightly quicker than
the insert duration.

In table 10 you could see a sample of these time measurements. They refer to a database
with 1000 documents stored and present the average time duration of the queries. Below
are described some observations:

• The number of values given to the query, specifies the document asked, eliminating
the options. Increasing that number decreases the query time.

• If the Document given as a parameter, is composed of a field encrypted in the
database then because of the implementation all the database is exported. Each
document is parsed to check if the field’s value matches with the given on the query.

Table 10: Sample of Measurements 2. Find Queries Matching Different Combinations of Field
Values

Find Queries Matching Values
Query Type Time (secs) for

Find Query

Match Non Encrypted Value 0,03
Match Encrypted Plain Value 102,3
Match Encrypted Embedded Value 103,1
Match Combination of non
encrypted, encrypted plain values

0,2

Match Combination of non
encrypted, encrypted embedded
values

0,25

Andriani G. Triantafyllou, Eleni G. Mantzana 58

Efficient Queries in MongoDB with Encrypted Fields

6. CONCLUSION
In this thesis, we have implemented a middle ware software that enriches the original
MongoDB JavaDriver in order to support insertions and searches on JSON-like documents
that contain encrypted fields. After thoroughly analyzing the advantages and disadvantages
of a wide variety of encryption modes, we decided to include in our implementation two
encryption types, the SHA-256 and the BCrypt. So, we implemented the appropriate me-
thods to support such practices.

To commence, our implementation focused on introducing these services providing the
user with the option to choose between the two encryption types. After successfully de-
veloping the necessary algorithms for insertion of a single document, insertion of multiple
documents at once and search queries matching one or more fields’ value (in case of
search parameter’s absence, we return all the documents) we proceeded with some opti-
mizations.

On what concerns the SHA-256 encryption, those optimizations resulted in achieving
competitive insertion and query times, in comparison with the original MongoDB Java
Driver. On the other hand, the BCrypt encryption, even though it does not compete with
the SHA-256 operations, because of the nature of the algorithm (multiple hashing rounds
in addition to salt), it offers additional security to multiple threats. On that grounds, it is up
to the user to counterbalance the pros and cons of each method and pick the one that
suits better to their needs.

In conclusion, the implementation offers the potential to be further extended and provide
the user with more querying options like range queries, apart from the matching queries
we already offer.

Andriani G. Triantafyllou, Eleni G. Mantzana 59

Efficient Queries in MongoDB with Encrypted Fields

TERMINOLOGY TABLE
Σχεσιακή Βάση Δεδομένων Relational database
Μη Σχεσιακή Βάση Δεδομένων Non-relational database
NoSQL βάση NoSQL database
Κρυπτογράφηση Encryption
Αλγόριρθμος Algorithm
Κατακερματισμός Hashing
Ερώτημα Query
Εγγραφή τύπου JSON JSON document
Συμμετρική και ασύμμετρη κρυπτογρά-
φηση

Symmetric and Asymmetric encryption

Ενσωματωμένο πεδίο Embedded field
Κρυπτογράφημα Cipher
Επίθεση στο Rainbow table Rainbow table attacks
Βίαιη επίθεση Brute force attacks
Επίθεση DDoS DDoS attacks
Υπηρεσίες νέφους Cloud services

Andriani G. Triantafyllou, Eleni G. Mantzana 60

Efficient Queries in MongoDB with Encrypted Fields

ABBREVIATIONS, ACRONYMS
JSON JavaScript Object Notation
NoSql Not Only Sql
RDBMS Relational DataBase Management Sys-

tem
RM Relational Model
SHA-2 Secure Hash Algorithm 2
Mongo MongoDB

Andriani G. Triantafyllou, Eleni G. Mantzana 61

Efficient Queries in MongoDB with Encrypted Fields

REFERENCES
[1] Gilbert, Henri, and Helena Handschuh. ”Security analysis of SHA-256 and sisters.” In International

workshop on selected areas in cryptography, pp. 175-193. Springer, Berlin, Heidelberg,
2003.[Accessed: Aug 22, 2017].

[2] “Spring’s Security BCrypt Class” BCrypt implements OpenBSD-style Blowfish password hashing
function. [Online]. Available: https://docs.spring.io/spring-security/site/docs/current/apidocs/org/
springframework/security/crypto/bcrypt/BCrypt.html. [Accessed: Oct 15, 2017].

[3] “DigestUtils Class” Implementation of Operations to simplify common MessageDigest tasks. [Online].
Available: https://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/
codec/digest/DigestUtils.html. [Accessed: Oct 15, 2017].

[4] “Spring’s Security BCryptPasswordEncoder” Implementation of PasswordEncoder that uses
the BCrypt strong hashing function. [Online]. Available: https://docs.spring.io/spring-security/
site/docs/current/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.
html.[Accessed: Oct 15, 2017].

[5] Tian, Xingbang, Baohua Huang, and Min Wu. ”A transparent middleware for encrypting data in
MongoDB.” In Electronics, Computer and Applications, 2014 IEEE Workshop on, pp. 906-909. IEEE,
2014. [Accessed: May 20, 2017].

[6] Codd, Edgar F. The relational model for database management: version 2. Addison-Wesley Longman
Publishing Co., Inc., 1990. [Accessed: September 18, 2017].

[7] Leavitt, Neal. ”Will NoSQL databases live up to their promise?.” Computer 43, no. 2 (2010). [Accessed:
Aug 25, 2017].

[8] “How to Pick Database” [Online]. Available: http://www.zdnet.com/article/rdbms-vs-nosql-how-do-
you-pick/. [Accessed: Sept 23, 2017].

[9] Moniruzzaman, A. B. M., and Syed Akhter Hossain. ”Nosql database: New era of databases for
big data analytics-classification, characteristics and comparison.” arXiv preprint arXiv:1307.0191
(2013).[Accessed: Aug 22, 2017].

[10] “Compare Databases”. [Online]. Available: https://infocus.emc.com/april_reeve/big-data-and-nosql-
the-problem-with-relational-databases. [Accessed: Oct 18, 2017].

[11] “Database Differences” [Online]. Available: https://www.loginradius.com/engineering/relational-
database-management-system-rdbms-vs-nosql. [Accessed: Oct 22, 2017].

[12] Popa, Raluca Ada, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan,”CryptDB:
protecting confidentiality with encrypted query processing.”. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pp. 85-100. ACM, 2011. [Accessed: May 15, 2017].

[13] Ge, Tingjian, and Stan Zdonik,”Answering aggregation queries in a secure system model.”. In
Proceedings of the 33rd international conference on Very large data bases, pp. 519-530. VLDB
Endowment, 2007. [Accessed: May 15, 2017].

[14] “MongoDB’s Definiton” [Online]. Available: https://www.mongodb.com/what-is-mongodb. [Accessed:
Aug 25, 2017].

[15] “MongoDB Document’s structure” [Online]. Available: https://docs.mongodb.com/manual/core/
document/#document-structure. [Accessed: Aug 18, 2017].

[16] “MongoDB Java Driver” [Online]. Available: https://mongodb.github.io/mongo-java-driver. [Accessed:
Aug 18, 2017].

[17] “MongoDB’s Connection Tutorial 2” [Online]. Available: https://www.w3resource.com/mongodb/
mongodb-java-connection.php. [Accessed: Aug 25, 2017].

[18] “FindIterable Class” MongoDB’s Java Driver FindIterable. Available: http://mongodb.github.io/mongo-
java-driver/3.6/javadoc/com/mongodb/client/FindIterable.html. [Accessed: Aug 15, 2017].

[19] “Mlab, MongoDb’s Service” [Online Program]. Available: https://mlab.com/. [Accessed: Jun 15, 2017].
[20] “Online Graph Maker” [Online Program]. Available: https://plot.ly/create/. [Accessed: Oct 15, 2017].
[21] “insertOne function” MongoDB’s Java Driver insertOne function. Available: https://docs.mongodb.

com/manual/reference/method/db.collection.insertOne/. [Accessed: Aug 15, 2017].
[22] “insertMany function” MongoDB’s Java Driver insertMany function. Available: https://docs.mongodb.

com/manual/reference/method/db.collection.insertMany/. [Accessed: Aug 15, 2017].
[23] “Migrating Relation Database to Document” [Online]. Available: https://www.slideshare.net/matkeep/

migrating-from-relational-databases-to-mongodb. [Accessed: Oct 15, 2017].

Andriani G. Triantafyllou, Eleni G. Mantzana 62

https://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/crypto/bcrypt/BCrypt.html
https://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/crypto/bcrypt/BCrypt.html
https://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/digest/DigestUtils.html
https://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/digest/DigestUtils.html
https://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
http://www.zdnet.com/article/rdbms-vs-nosql-how-do-you-pick/
http://www.zdnet.com/article/rdbms-vs-nosql-how-do-you-pick/
https://infocus.emc.com/april_reeve/big-data-and-nosql-the-problem-with-relational-databases
https://infocus.emc.com/april_reeve/big-data-and-nosql-the-problem-with-relational-databases
https://www.loginradius.com/engineering/relational-database-management-system- rdbms-vs-nosql
https://www.loginradius.com/engineering/relational-database-management-system- rdbms-vs-nosql
https://www.mongodb.com/what-is-mongodb
https://docs.mongodb.com/manual/core/document/#document-structure
https://docs.mongodb.com/manual/core/document/#document-structure
https://mongodb.github.io/mongo-java-driver
https://www.w3resource.com/mongodb/mongodb-java-connection.php
https://www.w3resource.com/mongodb/mongodb-java-connection.php
http://mongodb.github.io/mongo-java-driver/3.6/javadoc/com/mongodb/client/FindIterable.html
http://mongodb.github.io/mongo-java-driver/3.6/javadoc/com/mongodb/client/FindIterable.html
https://mlab.com/
https://plot.ly/create/
https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/
https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/
https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/
https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/
https://www.slideshare.net/matkeep/migrating-from-relational-databases-to-mongodb
https://www.slideshare.net/matkeep/migrating-from-relational-databases-to-mongodb

	Introduction
	Storing Data
	Relational Databases
	Non Relational Databases

	Database security problems
	Encryption as a solution
	Encryption in Relational Databases
	Encryption in Non Relational Databases
	Our solution

	MongoDB Preliminaries
	MongoDb Common Terms
	JSON-like Documents
	MongoDB Collections
	The MongoDB _id Field

	Java Driver
	Connect to MongoDB instance stored in MongoDB online
	Insert documents
	Query

	Document's Field Encryption Approach
	Define Encrypted Fields
	Supporting SHA-256 Encryption
	About SHA-256
	Insert Document
	Queries

	Supporting BCrypt Encryption
	About BCrypt
	Insert Document
	Queries

	Time Measurements
	About Test Environment
	Queries on Original Mongo Driver
	Insert Queries of Documents
	Find All Queries of Documents

	Queries on SHA-256 Encryption
	Insert Queries of Documents with Encrypted Fields
	Find All Queries of Documents with Encrypted Fields
	Find Queries Matching Values of Documents

	Queries on BCrypt Encryption
	Insert Queries of Documents with Encrypted Fields
	Find All Queries of Documents with Encrypted Fields
	Find Queries Matching Values of Documents

	Conclusion
	Terminology Table
	Abbreviations, Acronyms
	References

