

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

"ΤΕΧΝΟΛΟΓΙΑ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ"

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Graph Based Processing

Ευάγγελος Φ Καραγεώργος

Επιβλέπουσα Μέμα Ρουσσοπούλου, Αναπληρώτρια Καθηγήτρια

ΑΘΗΝΑ

ΔΕΚΕΜΒΡΙΟΣ 2017

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Graph Based Processing

Ευάγγελος Φ. Καραγεώργος

Α.Μ.: Μ1364

ΕΠΙΒΛΕΠΟΥΣΑ Μέμα Ρουσσοπούλου, Αναπληρώτρια Καθηγήτρια

Δεκέμβριος 2017

ΠΕΡΙΛΗΨΗ

Η παρούσα εργασία εξερευνεί την αρχιτεκτονική εξυπηρετητών. Μία ανάλυση
διαφορετικών αρχιτεκτονικών σχεδιασμών αποκαλύπτει τους λόγους για τα διαφορετικά
χαρακτηριστικά εκτέλεσης που αναδεικνύουν. Προτείνεται μία νεα αρχιτεκτονική, ο
γράφος υπολογισμού (process graph), που στοχεύει να αποτελέσει ένα πλαίσιο
ανάπτυξης υπηρεσιών και γενικευμένων υπολογισμών. Ο γράφος υπολογισμού, μαζί με
πιθανές υλοποιήσεις του, στοχεύει στην αντιμετώπιση προβλημάτων επιδόσεων των
υπαρχόντων αρχιτεκτονικών, καθώς και στη διευκόλυνση ανάπτυξης διαχειρίσιμων
υπηρεσιών. Μέσω ανάλυσης και επαλήθευσης, υποστηρίζω ότι τα πιθανά
πλεονεκτήματα που παρουσιάζονται ισχύουν και ότι ο γράφος υπολογισμού είναι ικανός
να είναι ανταγωνιστικός με σύγχρονες αρχιτεκτονικές εξυπηρετητών.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Πληροφορική

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: εξυπηρετητής, υπηρεσία, αρχιτεκτονική, γράφος, επιδόσεις

ABSTRACT

This thesis explores the software architecture of servers. An analysis of different
architectural designs reveals the reasons for the different execution characteristics that
they exhibit. A new computation abstraction is proposed, the process graph, that aims
to be a framework to develop services and generic computations. The process graph,
along with its potential implementations, aims to address performance problems with
other architectures, as well as facilitate the easy development of maintainable services.
Through analysis and evaluation, I argue that the potential benefits that are presented
are valid and the process graph has the potential to be competitive with existing state of
the art server architectures.

SUBJECT AREA: Computer science

KEYWORDS: server, service, architecture, graph, performance

ΠΕΡΙΕΧΟΜΕΝΑ / CONTENTS

1. INTRODUCTION ... 8

2. REQUEST MODEL AND SERVER ARCHITECTURES ... 9

2.1 Server characteristics ... 9

2.2 Request model ... 9

2.3 Thread-based and Event-based architectures .. 9

2.3.1 Thread-based ... 9

2.3.2 Event-based ... 10

2.4 Hybrid and alternative solutions ... 10

3. THE PROCESS GRAPH ... 12

3.1 Definitions .. 13

3.2 HTTP Server example .. 14

3.3 Process graph implementations .. 16

3.3.1 SimpleProcessGraph .. 16

3.3.2 AsynchronousProcessGraph .. 16

4. POTENTIAL BENEFITS AND IMPROVEMENT .. 17

4.1 Elimination of blocking.. 17

4.2 Flexibility of behavior ... 17

5. COMPARISON WITH RELATED WORK .. 21

5.1 SEDA ... 21

5.1.1 Ease of development ... 21

5.1.2 Performance and Flexibility ... 21

5.2 Cohort scheduling ... 22

5.2.1 Ease of development ... 22

5.2.2 Flexibility .. 23

5.3 Enhanced threads ... 23

6. JSERVICE PROTOCOL... 24

7. APPLICATION .. 26

7.1 JServiceServer ... 26

7.2 JServiceClient .. 28

7.2.1 Convolution .. 28

7.2.2 Stress test ... 28

7.2.3 Burst test .. 28

8. EVALUATION .. 31

8.1 Stress test, “blur” service .. 32

8.2 Stress test, both services ... 34

8.3 Burst test, “blur” service ... 37

8.4 Burst test, both services .. 39

8.5 Observations ... 41

9. FUTURE WORK .. 43

10. CONCLUSIONS.. 44

ΣΥΝΤΜΗΣΕΙΣ – ΑΡΚΤΙΚΟΛΕΞΑ – ΑΚΡΩΝΥΜΙΑ / ABBREVIATIONS 45

ΑΝΑΦΟΡΕΣ / REFERENCES .. 46

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ / LIST OF FIGURES

Figure 1: Process graph .. 14

Figure 2: HTTP request - read from cache .. 15

Figure 3: HTTP request - read from file ... 15

Figure 4: HTTP request - error .. 15

Figure 5: Request latency behavior under burst .. 18

Figure 6: JServiceServer idle ... 27

Figure 7: JServiceServer running .. 27

Figure 8: JServiceClient... 29

Figure 9: JServiceClient after running a stress test ... 30

Figure 10: Stress test, "blur" service, multithreaded, server .. 32

Figure 11: Stress test, "blur" service, multithreaded, client .. 32

Figure 12: Stress test, "blur" service, process graph, server ... 33

Figure 13: Stress test, "blur" service, process graph, client ... 33

Figure 14: Stress test, both services, multithreaded, server .. 34

Figure 15: Stress test, both services, multithreaded, client ... 35

Figure 16: Stress test, both services, process graph, server ... 35

Figure 17: Stress test, both services, process graph, client .. 36

Figure 18: Burst test, "blur" service, multithreaded, server .. 37

Figure 19: Burst test, "blur" service, multithreaded, client ... 37

Figure 20: Burst test, "blur" service, process graph, server ... 38

Figure 21: Burst test, "blur" service, process graph, client... 38

Figure 22: Burst test, both services, multithreaded, server .. 39

Figure 23: Burst test, both services, multithreaded, client ... 40

Figure 24: Burst test, both services, process graph, server ... 40

Figure 25: Burst test, both services, process graph, client .. 41

Graph Based Processing

Ε. Καραγεώργος 8

1. INTRODUCTION

The internet age has redefined communication in an unprecedented scale. Globally
deployed and massively popular applications and social media have redefined the
simple client-server model. Performance requirements for servers that handle all those
services pose great challenges to software and hardware engineers. This thesis
focuses on server architectures and how detrimental they are to an entire system’s
performance and behavior.

Servers have been evolving for decades, both at the hardware and software level.
Simple HTTP page servers gave way to web application platforms and distributed
content delivery networks. Exotic deployment strategies like cloud computing and multi-
tiered distributed applications, however, still have a single software component at their
core, the server. A server is the software component that receives requests from clients,
does some processing and returns appropriate responses. A complex application will
typically have numerous servers, like DBMS, network routers, HTTP servers for pages
and web services, cloud endpoints or RPCs. The behavior of these applications
depends directly on the efficiency and performance of the servers they utilize.

In this thesis, I propose a new computational model and server architecture, the process
graph, that attempts to facilitate the easy development of robust and maintainable
services, while providing superior performance, tailored to the application. Through
analysis, testing and evaluation, I demonstrate the benefits that can be gained and the
potential to utilize the process graph approach to develop robust, efficient and flexible
server architectures.

Graph Based Processing

Ε. Καραγεώργος 9

2. REQUEST MODEL AND SERVER ARCHITECTURES

2.1 Server characteristics

Servers have certain characteristics that define their behavior under all circumstances.

From the perspective of a client, an efficient server must basically provide low latency
and availability. A client only cares that a request is processed as quickly as possible,
and that the server has consistent and regular responsiveness.

From the perspective of the server, the system must have high throughput, low latency
and robustness under any load. In order to achieve that, the implementation must
provide:

 Low latency: Every request must spend minimal time on the server. This translates
to minimal time waiting on some queue and minimal actual processing time.

 High resource utilization: The server's available resources, CPU time, memory, I/O
etc. must be fully utilized as much as possible while serving requests, in order to
achieve maximum throughput.

 Scalability: The server should be able to handle as many simultaneous requests
as possible, without causing problems, losing performance or underutilizing the
machine's resources.

2.2 Request model

We can analyze different server architectures, based on a simple request model. Every
request can be served by the server in specific processing steps that alternate between
computation sections and waiting sections. Computation sections are steps that are
purely computational and can fully utilize a processor when they run, like a
mathematical calculation, or processing data in memory. Waiting sections are steps
where the processor blocks waiting for some event to occur, for example waiting for
network input or waiting for data from the disk while reading a file.

2.3 Thread-based and Event-based architectures

2.3.1 Thread-based

On thread-based architectures, every request waits until a thread is available and then
executes to completion on the specific thread. All processing steps will be executed
sequentially, so the thread will alternate between computing and blocking as it executes
computation and waiting sections respectfully. At the instances that the thread blocks,
other threads can utilize the processor if they are on computation sections themselves.
In order to increase processor utilization, we must increase the number of concurrently
running threads. However, as the number of threads increases, more processor time
will be wasted on context-switching among them, so there is a threshold of the number
of threads that, if exceeded, resource utilization and throughput will actually decrease.
In order to overcome this, you need to enforce a maximum number of threads, that
would depend on the number of available CPUs/cores. This imposes a limit on

Graph Based Processing

Ε. Καραγεώργος 10

throughput and scalability, since we can increase concurrency and resource utilization
only by increasing the number of threads.

2.3.2 Event-based

On event-based architectures, the requests are executed in a set of event handlers.
Every handler is called on a particular event, like data availability on an I/O operation.
The server has an event loop and a limited number of threads, typically the number of
available CPUs/cores, that execute event handlers for every dispatched event. Instead
of modelling the service as sequential code execution, one must develop the service as
a set of event handlers for asynchronous I/O operations. The event handlers should
never block in order to take advantage of the architecture's performance. Every
operation that could potentially block must be implemented with separate event
handlers. For instance, a procedure that reads a file must be implemented as triggering
a file read operation with asynchronous I/O and registering a separate event handler for
the rest of the procedure. Request computation sections are implemented in event
handlers, while waiting sections are implemented at event handler boundaries and
ideally do not impede the server threads nor waste any CPU time or resources at any
scale. These architectures can be highly efficient and scalable, but implementation and
debugging of services is much more complex and unintuitive than on thread-based
servers.

2.4 Hybrid and alternative solutions

Although, thread-based application design can be equivalent to event-based or
message-based design in theory, as proposed by C. Lauer [1], in practice, there are
distinct properties of both models that can make a big difference on implementation and
performance. Different design principles result to different architectures that can have
profound impact on execution characteristics.

According to this analysis, event-based architectures can offer superior performance,
but only if implemented correctly. It requires proper asynchronous I/O primitives and
careful implementation of the event handlers. Blocking operations must be avoided,
which can be difficult, as page faults and cache misses can also produce blocking.
Thread-based architectures embrace blocking operations and are far easier to
implement both the server, as well as the services themselves.

To try to mitigate both architectures' drawbacks and utilize their benefits, developers
have often turned to hybrid solutions as alternatives.

One such solution was the staged event-driven architecture (SEDA) [2] by Matt Welsh
et al. SEDA was focused on high scalability and resource utilization for internet-based
services. Request processing is broken down to small stages, connected by event
queues. Every stage has a queue of incoming events, a user-defined event handler and
a thread pool that continually processes those events. Applications are defined as a set
of stages that can send events to other stages. This is essentially a pipeline of stages,
where every request will pass through, as it is being executed. Every stage has its own
thread pool and optional controllers that can regulate the thread pool size, load

Graph Based Processing

Ε. Καραγεώργος 11

shedding and other functionalities. SEDA and derivative work has shown great potential
in the past and performed better than traditional thread-per-request architectures.

Another similar solution was proposed in 2001 in the paper "Using Cohort Scheduling to
Enhance Server Performance" by James Larus et al [3]. The concept is called cohort
scheduling, and tries to execute staged requests, utilizing as many threads as available
cores. Kernel threads "visit" the stages in succession, executing batches of events on
every stage queue. This architecture most closely resembles the process graph, and
specifically the AsynchronousProcessGraph implementation, yielding similar benefits
and peculiarities.

Graph Based Processing

Ε. Καραγεώργος 12

3. THE PROCESS GRAPH

Given our analysis of server architectures, we want an architecture that has the
following characteristics.

 Utilizes multiple CPUs/cores

 Can serve many requests concurrently

 Keeps minimum threads/processes running in parallel

 Minimizes state per request

 Facilitates easy and intuitive development of services

 Is easy to debug and test

 Minimizes processor idle time

 Maximizes resource utilization

 Benefits from, but does not require, asynchronous I/O

In this thesis, I propose a model of computation that attempts to achieve all the stated
goals, by introducing the concept of a process graph. The nodes of the graph represent
simple processing stages of complex computations. A service or any arbitrary
functionality can be represented by a number of these nodes and the specific
connectivity among them.

Graph Based Processing

Ε. Καραγεώργος 13

3.1 Definitions

Processing Item

A processing item is an arbitrary piece of data that can be sent to a node as a
parameter to trigger execution of that node. The data type of the item is a pointer to an
object of any type, and usually encapsulates some kind of execution context.

Processing node

A processing node is an object that can execute a single processing stage. It has a
main user-defined procedure that takes a processing item as a parameter. The node
consumes a processing item, performs a specific task, and produces zero or more new
processing items to be sent to other nodes.

Graph interface

The graph interface is an object that can be used to send a processing item to a specific
processing node for execution.

Process graph

The process graph is the set of available process nodes and a graph interface. The
connectivity of the graph is not explicitly defined, but it depends on the procedures of
the nodes themselves and the execution context. During execution, the host application
will produce processing items and use the graph interface to send them to specific
processing nodes. These nodes, in turn, will execute their procedure and potentially
produce new processing items to be sent to other nodes through the graph interface.

As a new processing item enters the graph, it is executed by a specific node. That node
sends the item to another node or produces new processing items and sends them to
other nodes and so on. Although, this can theoretically continue cycling through the
graph forever, typically, it will stop on some node that doesn't send any items anywhere.
We can call this an execution flow and it is usually a single path on the graph. Many
services and tasks can easily be modeled and implemented as processing nodes. You
can potentially have many different functionalities contained in a single application and
a single process graph.

Graph Based Processing

Ε. Καραγεώργος 14

Figure 1: Process graph

3.2 HTTP Server example

As a simple example of a process graph, you can implement a simple HTTP server as
the following set of processing nodes. Different nodes can perform specific tasks to
process a request and generate a response:

 "read-header": Reads the request header and sends the request to "parse-header"

 "parse-header": Parses the request header and, if it is erroneous, sends the
request to "return-error", else, it sends the request to "dispatch-file"

 "dispatch-file": Searches for the requested file in the cache or the file system. If it
exists in the cache, it sends the request to "return-file", or else, if the file exists on
the disk, it sends the request to "read-file", else, it sends the request to "return-
error"

 "return-error": Returns an erroneous response

 "return-file": Returns a response with the specific file from the cache

 "read-file": Reads the specific file, stores it in the cache, and returns a response
containing the file

The host application will listen for incoming connections and invoke the process graph
to serve them. For every connection, it will create a request processing item and send it
through the graph interface to the "read-header" graph node. The resulting execution
flow will serve the request and return either an error or the requested file to the client.

Graph Based Processing

Ε. Καραγεώργος 15

Figure 2: HTTP request - read from cache

Figure 3: HTTP request - read from file

Figure 4: HTTP request - error

Graph Based Processing

Ε. Καραγεώργος 16

3.3 Process graph implementations

Different implementations of the process graph can yield different execution
characteristics of latency, scalability, throughput and resource utilization, without
changing the code of the graph nodes. For the context of the thesis, I have developed
two different implementations, the SimpleProcessGraph and the
AsynchronousProcessGraph.

3.3.1 SimpleProcessGraph

The SimpleProcessGraph, as the name suggests, is a basic compliant implementation.
It is single-threaded and the graph interface executes each processing node as a simple
function call. Consequently, an entire execution flow is executed as nested function
calls. This results in low-latency processing and a small memory footprint, but it has
very poor throughput and scalability. Also, infinitely long execution flows cannot be
allowed, since they will run until the thread stack overflows, resulting in error.

3.3.2 AsynchronousProcessGraph

The AsynchronousProcessGraph is a more complex implementation. Every processing
node has a queue of pending processing items. The graph interface sends a processing
item to a specific node by inserting it to its queue. Moreover, the graph has a number of
"executor" threads that continually iterate through all processing nodes and execute
items from their queues. The number of executor threads is configurable, but it should
usually be small and not exceed the number of available CPUs/cores. The number of
processing items that a thread executes on a single pass through a node depends on
the size and growth rate of the specific queue. This results in a tendency to equalize the
lengths of the nodes’ queues. The way the executor threads iterate through the
processing nodes, as well as the number of items they process for every node, results
in specific overall execution behavior, scalability, latency and throughput of the graph
itself.

Graph Based Processing

Ε. Καραγεώργος 17

4. POTENTIAL BENEFITS AND IMPROVEMENT

4.1 Elimination of blocking

Using the request model we previously defined, we can implement a service as nodes
of a process graph in such a way as to benefit from its architectural characteristics. We
can encode the computation sections as processing nodes, and the waiting sections at
the boundaries of two consecutive processing nodes, using asynchronous I/O primitives
to our advantage. For example, one processing node can perform some computations,
trigger an I/O operation and send its processing item to a second node. The second
node, in turn, can wait on the I/O operation, perform more computations and trigger
another node, and so on. This way, the process graph implementation can execute the
first node on an item, execute other irrelevant nodes, and execute the second node for
that item later on. In that case, during a portion of the waiting section between the first
and second nodes, the system will work on parts of other requests instead on blocking
and waiting for the I/O operation to finish. This is similar to how an event-based
architecture would behave, eliminating blocking on waiting sections of the request,
when it is appropriate, and utilizing the system's resources better. It would be, however,
simpler to implement, since you don't have to use very specialized operations, events
and handlers. All you have to do is break a serial procedure into smaller parts and
utilize simple async-wait operations on the node boundaries.

4.2 Flexibility of behavior

Another potential advantage of the process graph approach is in terms of flexibility of
responsiveness. Most service systems operate on a typical first-come first-served basis.
The server can be processing a maximum number of requests simultaneously, and
every single request will take a certain time complete, once it starts being processed. If
the server is saturated, new requests will be queued, waiting for their turn to be
processed. This behavior can be modeled as a simple queue system. Requests are
incoming at a certain rate, they are being processed, and the response is forwarded
back to the client. Under queuing theory, you can assume an incoming request rate of
Poisson distribution with parameter λ and a service time of exponential distribution with
parameter μ. Such systems have been thoroughly studied for communication systems,
especially packet-switching networks.

We can define:

 λ: request arrivals per time unit

 μ: request service rate

 Tr: execution time for a request

 T: total time a request is on the server

 ρ: Utilization coefficient, ρ = λ/μ

 θ: request rate stability threshold

Every server architecture can be modeled as a queue system, where given certain
computational resources and an average time μ it takes to process each request, there

Graph Based Processing

Ε. Καραγεώργος 18

is a critical threshold θ of requests per time unit that determines the time it takes to
service each request.

 If the request rate λ is less than θ, every request will be serviced in Tr, and there
will be no congestion on the server.

 If the request rate λ is bigger than θ, the system is out of balance, and every
consecutive request will take longer time to be serviced, until the server is
essentially unresponsive to new requests.

 If the request rate λ is exactly θ, requests will be serviced by a constant rate that is
determined by the constant congestion on the server.

Usually, the server's request queue will be capped at a certain maximum, so that the
response time does not exceed a maximum value, and, if the queue is full, additional
requests will be rejected. The server will be saturated if it is under a constant request
rate λ > θ, and there is little you can do to mitigate that behavior. However, in most
situations, the request rate will not be constant. Most of the time it will be significantly
smaller than θ, and occasionally there will be bursts of requests that might exceed θ for
a limited time frame. The way the server handles these bursts can make a significant
difference to the overall responsiveness.

Figure 5: Request latency behavior under burst

Graph Based Processing

Ε. Καραγεώργος 19

In a conventional server architecture, when a request burst is encountered, the request
queue as well as the response time for each request will grow constantly until the burst
is over. Requests before and at the start of the burst will be serviced instantly, with a
response time close to Tr, while requests during the burst will have a linearly growing
response time. When the burst ends, subsequent requests will still have large response
times, until the queue starts clearing. This behavior can be illustrated in Figure 5 as the
typical behavior.

We can observe that the response time grows linearly, until the burst ends. This means
that some requests will take an unreasonable amount of time to complete. The clients
that issued those requests may timeout, and would ultimately be dissatisfied with the
server's behavior. Even though it is expected that under heavy load any server would
decrease their responsiveness, it seems unfair that requests near the start of the burst
are not affected at all, while requests near the end are heavily degraded. A more
desirable behavior would be such, so that all requests near the burst be affected
equally, as shown in Figure 5 as the desired behavior.

This way, we would contain the spike of unreasonable response times, by distributing
the latency around a larger time-frame. One observation anyone can make is that in
order to achieve that, you must make the requests before the burst take longer to
complete and divert computational resources towards newer requests from the burst. In
a system where a request waits on a queue, and then executes uninterrupted to
completion, this is not possible. You can't predict that a burst is about to occur to delay
execution, and you can't interrupt the execution of a request, once is has already
started. In order to solve this problem, you generally have two options. One option, in a
thread-based system, is to forcibly slow down the execution of the thread that is
processing those requests, by customizing its priority policy. This is, however not a
viable option, since you rarely have such control over the threads. The threads are in
most cases operating system constructs and use preemption with priority policies set by
the kernel. Also, even if you have access to such flexible threading API, fine-grade
control over the thread to manipulate specific requests and parts of requests can be
very difficult. Another option is to break-down the request processing in multiple steps
and control when those steps will run on a thread. Modeling a service as process graph
nodes gives you that exact option. Since the server handles processing stages of
requests separately, it can manage the execution strategy to implement the desired
server behavior.

The AsynchronousProcessGraph implementation tries to exhibit this behavior. In this
implementation, every node has a queue of pending processing items, and a number of
threads that iterate through the nodes and execute a specific number of items every
time. By controlling the number of processing items that are being executed on every
node, the implementation tries to manipulate their queue lengths in a specific manner as
to artificially delay earlier requests and divert computational resources more uniformly
across a wide time-frame of a burst. The end effect of this strategy is as following:

 Requests that arrive before a burst take longer to complete

 Requests that arrive after the burst also take longer to complete

 Requests that arrive during the burst take even longer to complete, but their
latency is kept relatively constrained

Graph Based Processing

Ε. Καραγεώργος 20

Although the burst would be an abrupt and heavy spike in load, the server
responsiveness has a long, gradual and benign bump in latency. From the side of a
client, during the spike, the server increases in latency for a while, but doesn't get to
unreasonable response times.

An additional effect is that even if a request takes a lot longer to complete under heavy
load or a burst, its execution is different from a simple queued server. Typically, under
load, a request will wait on a queue for a long time, before abruptly executing to
completion. The client has no information about the execution status until the request is
serviced. Using our approach, the request will start executing its stages sooner. The
entire request will take some time to finish, but its stages will execute periodically, with
small delays between them. This is a sign of progression, and the client can observe it
and conclude that the request is actually being serviced, as well as estimate how long it
might take to complete. This can be demonstrated for an HTTP request. There are
several points of feedback during an HTTP request after the initial step of the client
initiating the TCP connection.

 The server will accept the TCP connection

 The server will read the request header

 The server will read the request data

 The server will send the response header

 The server will send the response body

 The server will finish sending and terminate the connection

Every step of the way, the client will know about the status of the HTTP request,
because all these steps have feedback. On a simple thread-based HTTP server under
heavy load, the client will wait indefinitely for the TCP connection initiation, while the
request is still in the server's connection queue. Then, the request will execute abruptly,
but if the waiting time is excessive, the client will just assume that there was a network
connection problem and abort. If the server is implemented as a process graph,
however, the client will receive signs of progress early on and at every execution stage.
This is really desirable, since the client will know that their request is being properly
processed, so it wouldn't abort, and can predict when the request will be complete.

Graph Based Processing

Ε. Καραγεώργος 21

5. COMPARISON WITH RELATED WORK

5.1 SEDA

A similar approach to the process graph was the staged event-driven architecture
(SEDA) [2]. SEDA is an architecture that breaks a procedure down to a set of stages.
Every stage is executed independently, by different threads, and a request is processed
stage-by-stage until completion, or until a stage decides to drop the request, based on
load shedding policies. SEDA was popular because it was an architecture that
combined some of the advantages of event-based concurrency with a framework for
adjusting and controlling resource management and adaptive load shedding. The result
was high scalability, robustness, superior performance, better resource utilization and
ease of development of services compared to event-based architectures. Although the
process graph approach is similar to SEDA in many aspects, there are points of
differentiation that I believe can give an edge to the process graph.

5.1.1 Ease of development

Although SEDA was designed to be simple for the developer to construct services,
development on it is far from trivial. SEDA is a framework with a somewhat complex
API. The developer is responsible not only for the service stages and their API-
compliant implementation. In order to take advantage of SEDA's potential performance
the developer must consider advanced features of SEDA, like load shedding, precise
configuration, thread and queue bounds and asynchronous I/O controllers. The process
graph, on the other hand, has a very simple API, and offers decent performance without
very specialized involvement with the graph's internal workings.

5.1.2 Performance and Flexibility

SEDA has a precisely defined architecture. On SEDA, every stage is executed by
dedicated threads in the form of a deep pipeline. This is advantageous in terms of
throughput and scalability, if implemented carefully, but has a severe impact on latency.
A request passes through thread barriers on every stage that is being executed. This
can result in exacerbated latency, due to the sequential involvement of multiple threads
for the same request. An appropriate process graph implementation, like the
aforementioned SimpleProcessGraph, can make sure that a request executes without
interruption on the same thread, minimizing latency. Even on
AsynchronousProcessGraph, there is a high chance that a request will execute on a
single thread, and there is a very small chance every stage will be executed on different
threads, even under high load.

Another problem that can arise on SEDA due to involving multiple threads for a request
is poor performance due to diminished cache locality. Although SEDA tries to mitigate
that by having a pool of shared buffers for specific operations, like file or network data
transfers, any other request-specific data will be accessed by multiple threads during
execution. This can be even worse if the developer doesn't use the specific I/O stages

Graph Based Processing

Ε. Καραγεώργος 22

that SEDA provides that use these shared buffers, using instead external libraries or
naive implementations.

The pipeline approach, also, has the side effect that there is a minimum required
number of threads, at least one per stage, not to mention additional threads for
controllers and asynchronous I/O emulation. If the underlying hardware has too few
CPUs/cores, and the service in question has many stages, it would result in a
suboptimally large number of concurrently running threads. The
AsynchronousProcessGraph implementation, in contrast, can use the optimal number
threads for the hardware it is running on, independent of the number of nodes.

The architectural decisions that were made by SEDA's authors made sense because
they targeted a very specific application domain, OS properties and hardware. Internet
services typically involve superior hardware serving a huge number of clients, with
significantly dynamic load. High throughput, scalability and good resource utilization are
far more important than low latency and ease of development in this context. The
difference with the process graph is that it is not restricted to a specific application
domain. In fact, since the process graph is a more abstract architecture, it is far more
generic. There can be many different implementations that can focus on low latency,
throughput, scalability, better hardware utilization or any other factors. Depending on
the application and deployment in question, the developer can choose an appropriate
implementation, or even develop one themselves, to better fit the requirements.
Additionally, many implementations can coexist, and be switched among themselves,
adapting to current runtime conditions.

5.2 Cohort scheduling

Cohort scheduling [3] is a staged architecture whose execution model is very similar to
the AsynchronousProcessGraph implementation. Services are implemented as
sequential stages. A number of threads, typically one per CPU/core, will traverse the
stages in a specific pattern, executing events from the stages' queues along the way.
The number of events that a thread will execute at one stage is dynamic, and depends
on the load on the server, the queue length and the configuration. Data locality, low
synchronization overhead and low number of expensive context switches are benefits
inherent to both cohort scheduling and the AsynchronousProcessGraph
implementation. The points of differentiation between cohort scheduling, as described,
and the process graph are as follows.

5.2.1 Ease of development

Again, the process graph API is extremely simple. Its purpose was to decouple server
architecture intrinsics from service development, and the resulting API is small, simple
and intuitive. Cohort scheduling implementations still require event semantics and a
complex API to define the services.

Graph Based Processing

Ε. Καραγεώργος 23

5.2.2 Flexibility

We can compare the cohort scheduling architecture with the specific
AsynchronousProcessGraph implementation in terms of performance. Although both
their intrinsic properties can yield similar performance, the process graph is much more
generic. Different implementations can focus on throughput, resource utilization, low
latency or other properties. You can customize the implementation and deployment
parameters to fit an application’s specific needs, without developing different service
process nodes. The cohort scheduling architecture defines a list of sequential
processing stages. The process graph, on the other hand, is a processing abstraction,
and can support complex graph configurations, like loops, recursion and an overall
dynamic execution path.

Overall, Cohort scheduling defines both a server architecture and a scheduling policy.
This approach is tailored to specific application domains, assumptions about the
underlying hardware and specific families of request metrics and distributions. The
process graph, being a generic abstraction tethered to a simple API, can be customized
significantly for a wide set of applications, constraints and deployment environments.

5.3 Enhanced threads

There has been a lot of work on improving threads to be able to use a pure thread-
based model without significant scaling problems. Modern system-provided threads are
far superior to threading decades ago. This has led to a trend of returning to traditional
server architectures. SEDA author Matt Welsh addressed this as early as 2010
(http://matt-welsh.blogspot.gr/2010/07/retrospective-on-seda.html), on which he
acknowledged shortcomings of SEDA and how the server landscape had changed.
Moreover, specialized threading packages like Capriccio [4] address certain
shortcomings of kernel-residing threads by providing lightweight, user-space, fast and
resource aware threads. These solutions are designed to make the traditional thread-
per-request model feasible for high concurrency by significantly empowering threads.
This could shorten the gap between event-based and thread-based concurrency,
making elaborate approaches like the process graph less necessary.

However, there is still significant value to these approaches. Any architecture that uses
a limited number of threads still benefits from improved threads anyway. Faster thread
context-switching, low memory footprint, less kernel crossings, faster synchronization
and lower cache thrashing are bound to improve event-based or staged architectures as
well. Better threading improves both thread-based architectures and process graph
implementations. Of course, thread-based architectures will get the lion's share of
performance improvement, but the additional benefits of the process graph still stand.
The benefits of increased flexibility, precise request control and resource utilization that
the process graph can offer would still give it an edge. In order to implement policies as
described in section 4.2, it is necessary to break request processing down into sections
that can be managed individually. Pure threading solutions cannot do that, since
requests can only be managed as a whole. The only entities that can be managed are
requests, queues of requests and the threads themselves. On a process graph, you can
manage the threads, processing items (which are effectively request stages), and
processing nodes and their queues if applicable.

Graph Based Processing

Ε. Καραγεώργος 24

6. JSERVICE PROTOCOL

In order to develop and evaluate the server architectures that are being presented, I
have designed a service framework and API that can be utilized for arbitrary point-to-
point communication. The original idea was to implement the HTTP protocol, as it is a
common communication protocol. I decided to design a new protocol in order to
highlight the characteristics of the process graph. The protocol is designed around a
form of structured, serializable JSON-based messages.

Message

A JService Message has three main sections.

 Length: a hex-encoded 32-bit unsigned integer that encodes the header length in
bytes

 Header: a JSON object that contains the structured message parameters

 Data: an optional section that contains unstructured binary data

The header has certain protocol-defined fields along with any user-defined ones.

 "parameters": an object with user-defined structured parameters

 "content": an optional header field that specifies the form of the data section, like
the encoding method, data length etc.

A message can convey any kind of information, from a simple signaling message to
large binary blobs of data. In order to facilitate the server-client model I have developed
two specializations of the general message.

Request

A JService Request is a message with additionally defined header fields that represents
a client request to the server.

 "type": a mandatory string that defines a request type

 "source": an optional string that defines the request source as a network hostname

 "destination": an optional string that defines the request destination as a network
hostname

 "persist": an optional boolean that signals the server to keep the underlying
connection open after the response has been sent to the client

 "cookies": an optional array of objects that play a similar role as HTTP cookies

Response

Graph Based Processing

Ε. Καραγεώργος 25

A JService Response is a message with additionally defined header fields that
represents a response from the server to the client.

 "success": a mandatory boolean that signifies a successful request

 "error": an optional object with information about the error, if the request was
unsuccessful

 "cookies": an optional array of objects, similar to Request cookies

The design of the JService message is such that facilitates sequential processing. A
process can read the header length, parse the header and process the data. Even
though one can read the whole message, write it in a buffer and process it later on, the
message can be processed as it is being received, without any intermediary buffer or
memory copy overhead, especially for trivial processing. The utilization of JSON as the
parsable section can be fast and efficient, as the standard is ubiquitous and easy to
implement efficiently.

Graph Based Processing

Ε. Καραγεώργος 26

7. APPLICATION

The implementation part of the thesis includes two separate applications, implemented
in C++, that utilize opLib, an extensive library that I have developed as an application
framework. The JService protocols, the process graph, the server framework and the
windowing application framework are implemented as part of the library, and were
utilized to build the testing applications.

7.1 JServiceServer

JServiceServer is the application that implements the different server architectures to
compare their execution characteristics. During execution, the user can choose among
different server implementations and set appropriate parameters to alter the server's
behavior and performance. You can choose among three different implementations

 Simple: A simple, single-threaded implementation. The server is on a loop waiting
for incoming connections. When a new connection is established, the request is
being parsed, processed and the appropriate response is returned to the client.

 Multithreaded: A thread-based server implementation. A thread waits for incoming
connections and puts them in a queue. A set of executor threads continually
check the queue for available connections. For every connection, an executor
thread removes the connection from the queue, processes the request and
generates the appropriate response. This is not a traditional thread-per-request
server, since the literature suggests that such architectures are inefficient. This
architecture is essentially a bounded thread pool that executes requests as an
M/M/m queue system.

 Process Graph: A server implementation family that utilize a process graph. The
Process Graph choice prompts the user to choose a specific process graph
implementation. The choice "simple" designates a SimpleProcessGraph
implementation, as described earlier. The choice "asynchronous", in turn,
designates the complex AsynchronousProcessGraph implementation.

You also choose the service network port, and the minimum and maximum number of
threads. When the server is running, the application displays a rolling window graph of
requests per second that are being processed.

The application supports two services that were implemented to demonstrate the
server’s behavior on different request characteristics.

 “null”: a trivial echo service that does essentially nothing and returns a simple
response to the client

 “blur”: A computationally intensive service. The service interprets the request data
as an image, performs multiple steps of Gaussian blur on that image, and returns
it back to the client.

Graph Based Processing

Ε. Καραγεώργος 27

Figure 6: JServiceServer idle

Figure 7: JServiceServer running

Graph Based Processing

Ε. Καραγεώργος 28

7.2 JServiceClient

JServiceClient is the application that tests the server for correct behavior and
performance. The application enables the user to set the network connection
parameters and perform certain tests on the server. Along with a small section to define
the network parameters, the main window has three tabs that correspond to different
tests.

7.2.1 Convolution

This tab has a white noise image at the center and a button with the caption “process”
on the bottom. When the user clicks the button, a request is generated for the “blur”
service, with the image as a parameter. The request is being sent to the server, and
when the response arrives, the image at the center is replaced by the result. The test is
simple and has the sole purpose of validating the correct behavior of the server.

7.2.2 Stress test

This tab is for testing the server’s behavior under a high, constant load. You choose the
services being tested, the test iterations for every thread and the number of threads.
Every thread runs a loop where it generates requests for the selected services, queries
the server for its responses and waits for the specified interval. Having many threads
constantly issuing requests will put the server under a constant load. The testing will
start once you click the “start” button and will finish when every thread executes the
number of iterations or when you click “stop”. After the run, a graph will be generated
showing the response time for every request.

7.2.3 Burst test

This tab tests the server’s response to a sudden burst of requests. You choose the
baseline requests per second, the requests per second during the spike and the
duration of the spike in seconds. You also select the services being tested, like the
stress test tab. When the test starts, a constant flow of requests will begin, putting the
server at a low load. Then, the user will click the “spike” button, starting a brief period of
a high request rate, and then receding to the background rate. The test will continue
until the user clicks “stop”. Once again, when the test stops, a graph will be generated,
showing the response time over the duration of the test.

Graph Based Processing

Ε. Καραγεώργος 29

Figure 8: JServiceClient

Graph Based Processing

Ε. Καραγεώργος 30

Figure 9: JServiceClient after running a stress test

Graph Based Processing

Ε. Καραγεώργος 31

8. EVALUATION

In order to test the claims of the thesis, the applications were tuned to conduct
consistent tests for all architectures. The tests were conducted on a machine with the
following characteristics.

 Laptop

 Intel Core i7 4 cores, 2.2 GHz, HyperThreading

 8 hardware threads

 8 GB main memory

 Windows 10 64 bit

The server was parameterized to operate with 8 threads (8 minimum, 8 maximum). The
client was running on the same machine, to exclude networking corner cases and
connectivity issues.

I performed the stress test and burst test using the thread-based architecture and the
AsynchronousProcessGraph implementation of the process graph. Moreover, the tests
evaluate the “null” and “blur” services to show how the server behaves under a quick,
trivial service, a computationally intense service, and both services at the same time.
The tests are conducted to demonstrate the different behavior that the architectures
exhibit under different circumstances.

Graph Based Processing

Ε. Καραγεώργος 32

8.1 Stress test, “blur” service

Figure 10: Stress test, "blur" service, multithreaded, server

Figure 11: Stress test, "blur" service, multithreaded, client

Graph Based Processing

Ε. Καραγεώργος 33

Figure 12: Stress test, "blur" service, process graph, server

Figure 13: Stress test, "blur" service, process graph, client

We observe a consistent rate of service from the server on both architectures. For the
client, however, there is a clear differentiation. For the threaded server, there is a big

Graph Based Processing

Ε. Καραγεώργος 34

fluctuation of latency among the requests. The process graph seems to work in a more
consistent manner in terms of latency.

8.2 Stress test, both services

Figure 14: Stress test, both services, multithreaded, server

Graph Based Processing

Ε. Καραγεώργος 35

Figure 15: Stress test, both services, multithreaded, client

Figure 16: Stress test, both services, process graph, server

Graph Based Processing

Ε. Καραγεώργος 36

Figure 17: Stress test, both services, process graph, client

When we test both services at the same time, the difference becomes more clear.
Although the server still exhibits a constant rate of service, the behavior that the client
observes is widely different. Not only is there an inconsistent latency among requests,
the “null” request and the “blur” request both can have big latency on the multithreaded
server. The process graph implementation demonstrates superior behavior on that
case, since the “null” requests are trivial and should execute almost instantly, it is
expected that there would a distinct differentiation on the response times of the
services.

Overall, on the process graph server, the latency seems to be under reasonable bounds
with consistent behavior.

Graph Based Processing

Ε. Καραγεώργος 37

8.3 Burst test, “blur” service

Figure 18: Burst test, "blur" service, multithreaded, server

Figure 19: Burst test, "blur" service, multithreaded, client

Graph Based Processing

Ε. Καραγεώργος 38

Figure 20: Burst test, "blur" service, process graph, server

Figure 21: Burst test, "blur" service, process graph, client

Graph Based Processing

Ε. Καραγεώργος 39

We observe similar request rate behavior from both server architectures. On the clients,
however, there are specific differences. First, the small latency fluctuation for the
multithreaded server is present, although not so significant as under constant stress, as
was demonstrated above. The other differentiation is on the shape of the curves. The
threaded architecture has the expected saw-tooth appearance. The process graph, on
the other hand, has a latency curve resembling a semi-circle, which, as we stated on
Section 4.2 should be more fair, improve throughput, and even keep the latency under
control for small bursts.

8.4 Burst test, both services

Figure 22: Burst test, both services, multithreaded, server

Graph Based Processing

Ε. Καραγεώργος 40

Figure 23: Burst test, both services, multithreaded, client

Figure 24: Burst test, both services, process graph, server

Graph Based Processing

Ε. Καραγεώργος 41

Figure 25: Burst test, both services, process graph, client

Under both services, the superiority of the process graph implementation is clear. The
response time is more consistent, there is clear distinction on the response time of the
“null” and “blur” services, and the latency is kept under control. On the multithreaded
test you can observe outlier requests reaching over 0.4 seconds, while on the process
graph all requests are kept under 0.25 seconds. A notable observation is that on the
process graph, during low stress, there seems to be a small variation on response time
compared to the threaded architecture.

8.5 Observations

Under the conditions of the tests, the results are consistent with the prediction of the
analysis of the architectures.

 The multithreaded server is slightly more stable under a very small load.

 The process graph implementation is significantly more consistent and stable
under heavy load and on bursts.

 The process graph implementation minimizes outliers; requests with unreasonably
high response time are fewer and more bounded.

 Slow requests don’t affect the latency of fast requests on the process graph.

 Sudden changes on load are handled more gracefully and fairly on the process
graph implementation.

 Even though on both architectures the server processed a similar rate of requests
per second, the architecture and policies of the server significantly alters the
behavior on individual requests and the overall responsiveness towards the
client.

Graph Based Processing

Ε. Καραγεώργος 42

We must note that the architectures being tested and the testing conditions are specific
and selected to demonstrate certain characteristics of the process graph. A properly
deployed test should operate under a real network, multiple client machines, dedicated
server machine and a battery of tests under all common and corner cases, but in the
context of this thesis there was no time or necessary resources to accomplish that.

Also, the multithreaded implementation was not the traditional thread-per-request
model. Some characteristics, like small requests along with expensive requests having
similar response times would not be exhibited. I chose this multithreading model, limited
kernel threads executing requests from a shared queue, to decouple thread
performance and architecture performance. If the threading package is expensive in
terms of memory footprint and context-switching, a limited-threads architecture will
perform better independently of the intrinsic properties of the architecture. On the other
hand, if a user-space, low overhead, scalable threading package is used, the
multithreaded solution might outperform other architectures, making the comparison
more difficult.

Graph Based Processing

Ε. Καραγεώργος 43

9. FUTURE WORK

The current process graph system is a simple model with two basic implementations. I
consider it to be only the beginning, though. There is much experimentation that can be
done in terms of alternative architectures. There can be implementations with
configurable policies regarding prioritization of requests. Since the core concept is so
abstract, further research into this concept is almost limitless.

The core process graph system and library can be further improved in the following
areas:

 Develop more novel process graph implementations

 Optimize the core library and process graph implementations

 Multiple architectures being switched among during runtime

 Dynamic graph management during runtime

 Stand-alone process graph server application with a dynamic graph that can be
controlled externally via IPC

 Collection of optimized general purpose nodes

 Distributed process graph running on multiple connected machines

 Optional message-based processing items instead of pointer-based

 Monitoring tools and testing framework

 Detailed documentation and language support

Moreover, it is essential that the architecture should be evaluated even more
thoroughly. In the context of the thesis, I performed a basic proof-of-concept evaluation
on a trivial server configuration, comparing two basic architectures. Some of the
proposed benefits could not be shown from such a test. More work should be done on
this area.

 Implement real-world services and real-world testing

 Develop services that utilize asynchronous I/O on node barriers to demonstrate
the premise that the performance should approach event-based servers

 Test against event-based architectures

 Test against other hybrid architectures like SEDA

 Test against thread-per-request multithreaded architectures

 Try to match and exceed commercial server application software

 Utilize professional, trusted benchmarking and testing software

Graph Based Processing

Ε. Καραγεώργος 44

10. CONCLUSIONS

Server performance and behavior is closely tied to the underlying hardware, OS and
server architecture and deployment, and request characteristics, load and distribution.
Selecting the appropriate architecture to maximize performance is bound to depend on
all the other factors. Since the hardware, OS, applications and server research are
constantly changing and evolving, it would be unreasonable to expect that server
architectures would remain the same. There is no single architecture that is always
optimal.

The process graph approach has the advantage of not being tied to a specific
architecture or application. Even though I performed a rudimentary analysis of potential
benefits performance wise, and conducted a basic evaluation, further development on
the subject should yield even more impressive results.

Another point that I should make is that the ease of development can be even more
important than minor performance gains. Usually, one of the most expensive aspects of
an application is the human work required to develop and maintain a particular system. I
believe that a good abstract model of computation can drive these costs down. The
testability, maintainability, clarity and ease of development that a modular approach like
the process graph offers could go a long way towards that goal.

Many modular approaches to computation, like pipelines, staged architectures, event
graphs and queue systems can be generalized to an abstract graph of computations.
This is the reason that a process graph can be intuitive as a natural all-encompassing
architectural approach. Usually, such systems are analyzed as graphs during the initial
stages of development. Using an architecture like the process graph maintains this
nature, and the resulting code can be easier to reason about.

Since Internet services and applications are ever more pervasive and ubiquitous, and
internet penetration is always increasing, there has been a need for powerful service
deployment. Server architecture engineering is constantly evolving and expanding.
Research on this area has and will be essential to be able to support the massive
demand of efficiency and performance of applications and services.

Graph Based Processing

Ε. Καραγεώργος 45

ΣΥΝΤΜΗΣΕΙΣ – ΑΡΚΤΙΚΟΛΕΞΑ – ΑΚΡΩΝΥΜΙΑ / ABBREVIATIONS

HTTP Hyperlink Text Transfer Protocol

DBMS DataBase Management System

RPC Remote Procedure Call

CPU Central Processing Unit

I/O Input / Output

SEDA Staged Event-Driven Architecture

API Application Programming Interface

TCP Transmission Control Protocol

OS Operating System

JSON JavaScript Object Notation

IPC Inter-Process Communication

Graph Based Processing

Ε. Καραγεώργος 46

ΑΝΑΦΟΡΕΣ / REFERENCES

[1] Lauer, H. C., & Needham, R. M. (1979). On the duality of operating system structures. ACM SIGOPS
Operating Systems Review, 13(2), 3–19.

[2] Welsh, M., Culler, D., Brewer, E., Welsh, M., Culler, D., & Brewer, E. (2001). SEDA: an architecture
for well-conditioned, scalable internet services. In Proceedings of the eighteenth ACM symposium on
Operating systems principles - SOSP ’01 (Vol. 35, pp. 230–243). Banff, Alberta, Canada: ACM Press.

[3] Larus, J. R., Parkes, M., & Larus, J. (2001, March 1). Using Cohort Scheduling to Enhance Server
Performance.

[4] von Behren, R., Condit, J., Zhou, F., Necula, G. C., & Brewer, E. (2003). Capriccio. ACM SIGOPS
Operating Systems Review, 37(5), 268.

[5] Cooper, R. B., & B., R. (1981). Queueing theory. In Proceedings of the ACM ’81 conference on -
ACM 81 (pp. 119–122). New York, New York, USA: ACM Press.

[6] Amin, A., Mehta, P., Sahay, A., Kumar, P., & Kumar, A. (2014). Optimal solution of real time problems
using Queueing Theory. International Journal of Engineering and Innovative Technology (IJEIT),
3(10).

[7] Alfa, A. S., & Isotupa, K. P. S. (2004). An M/PH/k retrial queue with finite number of sources.
Computers & Operations Research, 31(9), 1455–1464.

[8] Kumar, R., & Kaur, J. (2008). Towards a Queue Sensitive Transport Protocol. In 2008 IEEE
International Performance, Computing and Communications Conference (pp. 319–326). IEEE.

[9] Pariag, D., Brecht, T., Harji, A., Buhr, P., Shukla, A., Cheriton, D. R., … Cheriton, D. R. (2007).
Comparing the performance of web server architectures. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007 - EuroSys ’07 (Vol. 41, p. 231).
New York, New York, USA: ACM Press.

