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Abstract
Albeit heavily investigated for several decades already, the importance of the immune system in
targeting cancer has received wide clinical attention only in recent years. This is partly because
of long-standing rather traditional concepts on tumor biology on the one hand and the
complexity of the immune system and its processes on the other. The viewpoint of evaluating
existing and emerging approaches in oncology based on toxicity to tumors and the ability to
engage antitumor-immunity is gaining ground across several disciplines. Along those lines, cold
physical plasma was suggested as potential anticancer tool more than a decade ago, but solid
evidence of the immune system playing a role in plasma cancer treatment only emerged in
recent years. Moreover, plasma may support cancer immunotherapies in the future. Cancer
immunotherapies are systemic treatments with biologicals that were reported to synergize with
existing local physical modalities before, such as radiotherapy and photodynamic therapy. This
review outlines key concepts in oncology, immunology, and tumor therapy, links them to plasma
research, and discusses immuno-oncological consequences. Finally, promising future clinical
applications are summarized. Synoptically, first scientific evidence supports an
immuno-oncological dimension of plasma cancer treatment in selected instances, but robust
clinical evidence is still lacking. More basic and clinical research is needed to determine the
immuno-molecular mechanisms and detailed plasma application modalities to facilitate real
patient benefit in the long term.

Keywords: cold physical plasma, immunity, oncology, reactive oxygen species, redox biology,
T-cells

(Some figures may appear in colour only in the online journal)

1. Introduction

Cancer is a highly prevalent and often fatal disease. In 2020, an
estimated 19.3 million new cancer cases and almost 10 million
cancer deaths occurred [1]. The burden of cancer incidence
and mortality is growing worldwide, and the World Health
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Organization described cancer as the first to second leading
cause of death before the age of 70. High mortality in male
patients is most often caused by lung cancer, followed by pro-
state cancer. In women, breast and cervical cancer are leading
causes of cancer death. In addition to the overall frequency of
different tumor entities, the ability of tumors to metastasize
and their aggressiveness are linked to poor clinical outcomes
and shorter life expectancy [2, 3].

A specific set or combination of therapies is suggested for
each type of cancer, consisting of a single or combined use
of surgery, chemotherapy, radiotherapy, or immunotherapy.
Yet, not all tumors respond to therapy [4]. This is due to, for
instance, the tumor’s genetic and functional heterogeneity and
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its need for individual treatments. In addition, the human (and
animal) body has an inbuilt system to address the individual’s
defense needs in a spatiotemporal fashion, the immune sys-
tem. Lately, the importance and understanding of the immune
system in tumor control has increased, as it is involved in both
cancer development and demise [5].

Some processes during tumor growth and the immune
response are regulated by reactive oxygen species (ROS),
which stimulate cells at low concentrations and contribute to
cell death in higher concentrations [6] (see section 2.3). Cold
physical plasmas generate ROS and have been used for med-
ical purposes, including skin disinfection and treatment of
chronic wounds in the clinics since 2013 [7] andwithin clinical
evaluation studies since 2009. Despite a few early and optim-
istic viewpoints [8], utilizing ROS as anticancer agents has
always been deemed too unspecific and general to induce dur-
able responses by the biomedical community when applied in
a pharmacological sense systemically [9]. However, local and
high levels of ROS, especially when complemented with other
types of therapies, have achieved compelling medical success,
as evident for decades already using photodynamic therapy
(PDT), for instance [10]. Considering the widespread reports
on the immunomodulatory action of PDT [11], it was and is
plausible to consider immuno-oncological effects of plasma
treatment, too. However, PDT’s success depends on oxygen
in the tumor micro milieu to generate radicals, and therapy
fails without tissue oxygenation [12]. In contrast, cold phys-
ical plasma creates a plethora of reactive species on its own,
for instance, if admixing oxygen to the feed gas of plasma
jets [13].

Notwithstanding, history teaches that there is no one-size-
fits-all solution in oncology. Clinical plasma antitumor effects
will likely depend on many factors, and the amplitude of con-
tribution of each of them is unclear. For instance, some aspects
depend on tumor features, such as cancer type, stage, and
mutational load, while others are linked to the plasma gen-
eration, such as parameters, excitation frequency, electrode
geometry, feed gas utilized, or total ROS generation potency,
for example. Albeit there is a general agreement that—in
principle—plasma sources achieve similar biomedical effects,
these will still be reached on different spatial (treated area) and
time (exposure) scales for each device. This is meaningful for
oncology if plasma cancer treatment is to be combined with
standard oncological therapy schemes (see section 4), which
also depend on factors like the patients’ immune fitness [14].
Having said that, evidence is accumulating that plasma affects
anticancer immunity [15, 16]. In the present work, the primary
hallmarks and mechanisms, as well as potential links between
plasma, cancer, and immunity are outlined. Additionally, the
main routes and findings of immunostimulation in plasmas
cancer treatment are summarized.

2. Cancer

Albeit it is tempting to subsume all knownmalignancies under
the term cancer, cancer is a dreadfully heterogeneous disease.

This is reflected in the circumstance that approval of new can-
cer therapies is always achieved only for the specific type
of cancer investigated in the respective clinical trial. Later,
approval can be extended to other types of cancers, but this
again requires extensive clinical research. Moreover, compre-
hensivemolecular characterization of individual tumors, along
with documented therapy failure in the same patient (meta-
stasis therapy resistance), exemplifies the high level of tumor
heterogeneity in cancer patients [17]. To this end, modern
oncology aims at predicting patient-specific cancer treatment
that considers the individual tumor genetics and the immune
status [18–20]. Another goal is time-resolved tumor charac-
terization, i.e. re-defining the tumors of the same patient after
therapy failure for subsequent adjustments. Yet, there is con-
siderable genetic heterogeneity within a single tumor of a
patient. The issue of tumor heterogeneity will not be discussed
in detail here, and the interested reader is referred to eminent
reviews on this topic [21, 22]. However, this issue should be
kept in mind when discussing existing and new cancer ther-
apies and antitumor immunity, considering the highly dynamic
nature of these processes and the inability of most single treat-
ment approaches to provide a cure to a broad set of malignan-
cies and patients.

2.1. Characteristics

Malignant neoplasms can originate from different types of
cells in various organs in the body, e.g. from the blood-
forming bone marrow and lymphatic tissues such as leukemia
and lymphoma. Others, such as adenocarcinomas, squamous
cell carcinomas, malignant tumors of the transitional epithe-
lium (urothelial carcinomas), and small cell carcinomas in
the lungs, have their origin in the inner and outer surfaces of
the body (epithelia). In addition, malignant tumors can also
have their origin in the connective and supporting tissue of
bones and joints (e.g. sarcomas), in the supporting cells of the
nervous system (gliomas and neuroblastomas), or in pigment-
forming cells (melanomas) [23].

Cancer cells have slight but significant genetic differences
compared to non-malignant cells, and each person’s cancer has
individual genetic alterations. An estimated 5%–10% of all
cancers are caused by an inherited genetic mutation (hered-
itary). The others emerge by spontaneous mutations that accu-
mulate throughout life that are generated randomly or via
intrinsic or extrinsic factors (e.g. UV light, genotoxic and
carcinogenic molecules, and chronic inflammation) [24–26].
Humans have 23 chromosomes, which are present in each
cell in duplicate. Most cancers develop when the same genes
of both chromosomes are mutated (two-hit hypothesis) [27].
This means two rare mutation events are necessary for cells
to become cancerous. Genes control how cells function, drive
metabolism, and grow and divide. Changes in those genes,
which carry the instructions to make proteins, can cause a
wrong regulation or faulty instruction, leading to dysfunc-
tional proteins or signaling pathways. Those mutations are one
of the hallmarks of cancer [28], as they result in less controlled
or uncontrolled cell division and promote growth (figure 1).
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Figure 1. Hallmarks of cancer from based on [28].

For instance, cancer-causing gene mutations can increase the
production of proteins that actively spur cell growth [29].
Other mutations may cause non-functional proteins otherwise
responsible for repairing DNA damage, resulting in accumu-
lating DNA damage, mutations, and excessive cell prolifera-
tion. Further discussions onmolecular details are not the scope
of this work, and the presence of various proto-oncogenes and
tumor suppressor genes in different ethnic tumor groups has
been adequately summarized for the interested reader [30–32].
Notably, spontaneous gene mutations occur frequently dur-
ing cell proliferation, but regulatory processes control cancer
development through repair mechanisms and the detection of
individual degenerated cells. With about five DNA double-
strand breaks per cell replication, the body faces about three
Mio DNA double-strand breaks per second, corresponding
to 1.5–2 gray of ionizing radiation [33]. The numbers illus-
trate that by chance, harmful mutations are not the exception
but the rule and that the vastly active DNA repair machinery
safeguards the body from its proliferative capacity on a daily
basis [34].

Once a cancer cell grows and forms a bulk of cells (tumor),
there often is an intrinsic risk of developing metastases.
Herein, tumor cells leave their primary tumor bulk site and
spread in a complex and highly selective process via blood
and lymph vessels to other bodily sites.

For this to work for the tumor, the tumor cells need to be
genetically unstable with, e.g. DNA mutations, chromosome
rearrangements, and epigenetic changes to promote suchmeta-
stasis via dysregulation of migratory proteins, for instance
[35]. Other such characteristics, also called hallmarks of can-
cers, are, for example, relative resistance to regulated and indu-
cible cell death, unrestrained replicative potential, deregulated
cellular energetics and metabolism, and evasion of immune

control. In the latter, tumor cells actively downregulate all
phases of the anti-tumor immune response by utilizing a spec-
trum of different strategies andmechanisms [36]. These mech-
anisms counteract the detection by and action of the immune
system, which usually recognizes and eliminates tumor cells
based on their degenerated and pathological character. In addi-
tion, there are other historic and emerging hallmarks of cancer,
which have been extensively described elsewhere [28].

The tissue in which the tumor is embedded (or has embed-
ded itself into) is the so-called tumor microenvironment
(TME) (see section 3), a complex network consisting of tumor
cells, stromal cells, and (infiltrated) immune cells, among
others [37]. It is hoped that the mentioned gene mutations
in cancer cells, metabolic changes, growth behavior, single-
cell migration, metastasis, and TME help characterizing and
describing tumors based on cellular and molecular features
to predict the success of the therapy to a certain degree in
the future. Experimentally, especially in experimental rodent
tumor models, the feasibility of characterizing and describing
the correlating TME composition with survival prognosis and
therapy success is evident [38–40]. The same has been shown
to a great degree for many types of human cancers within ded-
icated studies [41–43]. Still, highly detailed molecular TME
fingerprinting requires expensive technologies, with many of
them not approved for diagnostic purposes. In pathology insti-
tutes of hospitals worldwide, chromogenic staining of ultrathin
tumor biopsies slices and microscopic investigation by highly
experienced examiners have been the gold standard for dec-
ades already. The examiner discriminates tumor tissue from
normal tissue by classifying cells and describing the degree
to which tumor cells differ from healthy cells (grading). The
less differentiated the cancer cells are within a tumor, the
less it resembles normal tissue and the more malignant it is.
Aggressive, undifferentiated tumors can grow faster, metastas-
ize faster, or recur more quickly [44]. This is done for dia-
gnosis in a process called tumor staging. Medicine divides
cancers into four stages based on their progress and ability to
penetrate and invade into healthy, non-malignant tissue. All
tumors start at stage 0, when the first tumor mass forms. Most
stage 0 tumors are small and often remain undetected. They
can but not have to progress through stages I–IV. How long this
will take depends on the type of tumor, its mutational load, the
patient’s genetics, and the amplitude of the other cancer hall-
marks’ presence. Different therapeutic approaches are taken
depending on the tumor type, grade, stage, localization, and
original site of cancer development. In the following, only the
main therapeutic modalities are described.

2.2. Therapeutic approaches

Themain therapeutic approaches are briefly outlined (figure 2)
and summarized below (more complex explanations, other
therapeutic options, examples, and therapeutic success can be
found in detail elsewhere [45–47]). Essentially, a given ther-
apy can be applied locally and specifically to the tumor site.
By contrast, a given agent can be injected, usually into the
bloodstream, and is thus active within the entire body, which
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Figure 2. Local and systemic anticancer therapies.

is called systemic treatment. Systemic treatments also affect
tumor metastases while usually having more side effects,
whereas local treatments are generally well tolerated but lim-
ited in terms of metastases reach.

An early cancer diagnosis, often defined by a tumor stage
of 0 or I–II, is often associated with a high survival rate (for
some cancer types, nearly 100% [48]). Much fewer therapies
are successful in many patients with advanced disease courses
(stages III and IV). In particular, treatments applied locally,
such as surgical removal, are often not complete or curative
if metastases have spread across different bodily sites. Fre-
quently, combination therapy is used, for example, chemo-
therapy or immunotherapy before (neo-adjuvant) or after
(adjuvant) surgical removal of the primary tumor or tumor
nodes. Another challenge to achieving promising clinical out-
comes is the TME, a potential barrier that ultimately decides
the therapeutic success. For instance, a hostile TME (e.g. low
oxygen supply (hypoxia), immunosuppressive milieu, extens-
ive tissue necrosis) can slow or inhibit antitumor immune cells,
regardless of their activation state [49, 50]. Hence, the TME
and heterogeneity of tumors contribute to the complexity and
individuality of cancers and still represent a challenge for suc-
cessful therapy. Unfortunately, if cancer progression cannot
be halted, the primary goal of treatment is to extend life with
medicines exhibiting only few side effects, a process called
palliation. The main therapies that are administered at differ-
ent stages of the disease are explained below:

2.2.1. Surgery (local). The spectrum of surgical interven-
tion ranges from gentle to pervasive and stressful options. For
example, surgery can be minimal with only a small incision
site to remove, e.g. a suspicious skin lesion. However, major
surgical interventions are often needed in oncology, in which
the surgeons remove the tumor and adjacent tissue and the
associated lymph nodes if metastasis is expected or diagnosed.
The advantage is the most efficient removal of primary tumors
of stage I–III, but some remnants may be left behind that
regrow later on (tumor recurrence).

2.2.2. Chemotherapy (systemic). Cancer cells quickly pro-
liferate. Classic chemotherapeutic agents halt cell cycle pro-
gression and hence stop cell division [51]. They do so by,
for example, blocking control processes during cell divi-
sion (e.g. intercalatents, mitosis inhibitors, taxanes), alkylat-
ing DNA (e.g. cisplatin), blocking proteins that regulate
metabolism and proliferation (e.g. tyrosine kinase inhibitors,
mitotane), acting as antimetabolites (e.g. 5-fluorouracil), and

interfering with DNA repair (e.g. nitrosoureas) [52, 53]. The
drugs affect all cells with a higher proliferation rate, includ-
ing highly proliferating non-malignant cells in the gut, bone
marrow, vascular system, and skin and hair follicles, leading
to the typical side effects. In contrast to traditional chemother-
apy, which essentially only slows the growth of all body cells
to a certain extent, targeted chemotherapy is active against can-
cer cells by exploiting their over-dependence on specific sig-
naling pathways [54] (e.g. sorafenib inhibits AKT signaling
pathway [55]).

2.2.3. Biologicals (systemic). Biopharmaceuticals, also
called biologicals, are extracted or semi-synthesized from bio-
logical sources, such as blood products, tissues, bone marrow,
and cell cultures. Major anticancer biologicals are interleuk-
ins and interferons [56], potent cytokines that affect immune-
related processes. Cell therapies, injections of large amounts
of specific types of immune cells, are also considered biologic-
als applied successfully in oncology [57]. Antibodies are the
by far most prominent biological with the greatest application
range across many types of cancers due to specific binding
to surface molecules for blocking cell growth mechanism
(e.g. pertuzumab), angiogenesis (e.g. Avastin), or inducing
apoptosis (e.g. rituximab). One antibody category is so-called
checkpoint inhibitors. They block (by binding to receptors
or ligands and thereby sterically inhibiting their interaction)
immunosuppressive molecules on cancer or immune cells,
thereby promoting anti-tumor immunity (e.g. ipilimumab)
[58]. Cell therapies, are somewhat more complex. Herein,
immune cells are isolated from the patient’s body, expanded
in the laboratory, stimulated with cancer cell material, and
injected back to the patient hoping the cells will elicit potent
antitumor immunity [59]. A similar approach is to isolate
immune cells, genetically modify them for tumor-lytic activ-
ity, and expand them in a laboratory before returning them
to the patient [60, 61]. Despite both approaches’ variable but
undeniable success, the therapies can only be delivered at
enormous economic costs (>10 000–100 000 € per injection),
which potentially limits their global and widespread use.

2.2.4. Physical modalities (local). Physical treatments, such
as radiotherapy and PDT, are applied locally. Radiation ther-
apy uses large doses to kill cancer cells or slow their growth by
damaging DNA. Cancer cells whose DNA is irreparably dam-
aged stop dividing or die. With this therapy, the killing of non-
carcinogenic cells in the surrounding tissue cannot be ruled
out, and conversely, metastases are not affected directly. The
photosensitizers for PDT are locally excited at a wavelength
between 630 and 635 nm and triggers an inflammatory reac-
tion and oxidative stress in tumor cells [62]. Mechanistic-
ally, this occurs via reactive species generation and potentially
strengthens anticancer immunity [63]. However, many solid
tumors are characterized by a hypoxic environment, leading to
a limited therapeutic effect of PDT [12, 64, 65]. A more recent
method, namely cold physical plasmas, is a physical treatment
applied locally and mainly based on reactive species genera-
tion and oxidative stress induction [66]. Multi-ROS generation
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and their trajectories, reactions, and biological effects are
highly complex. Linking specific plasma-derived ROS to spe-
cific biological responses in tissues has so far not been suc-
cessful. It is technically impossible to shield the target from
all but one single reactive species type being generated [7]. By
contrast, species concentrations and individual effects can—
in vitro—often be attributed to a few particular types of spe-
cies, thanks to the ample presence of liquid that is simpler to
investigate compared to tissues [67]. Yet, in vitro models are
not complex enough to predict biomedically relevant effects
of plasma treatment. Nevertheless, plasma technology can be
used and optimized to apply multi-ROS to tissues, thereby cre-
ating different micromilieus. The exogenous ROS generated
by plasma are mostly already known to body cells, as these
generate ROS constantly by endogenous enzymes for differ-
ent purposes, as outlined in the following.

2.3. ROS

Exogenous and endogenous reactive species are relevant for
regulating molecular processes in non-malignant as well as
malignant cells [6, 68]. Lower ROS levels promote cellular
processes, such as proliferation, migration, or angiogenesis,
through so-called oxidative eustress. Conversely, higher ROS
concentrations trigger stress responses leading to oxidative
distress, characterized by cell damage and death beyond redox
signaling [6]. In order to maintain a balance of intracellular
ROS production and removal, many enzymes contribute to
such homeostasis, even though elevated ROS levels are some-
times inevitable [69]. In contrast, dysregulation of these pro-
teins andmechanisms leads to chronically high ROS levels and
oxidative stress. Several diseases are linked to oxidative stress
and ROS, such as diabetes, arteriosclerosis, neurodegenerat-
ive diseases, macular degeneration, and cancer [70, 71]. The
recent view on intracellular ROS includes findings that suggest
different ROS levels in different cellular compartments, indic-
ating an absence of an overall redox balance and focusing on
compartment-specific ROS regulation [72].

The most important enzymes for ROS homeostasis are
nicotinamide adenine dinucleotide phosphate oxidase, xanth-
ine oxidase, superoxide dismutase (SOD), nitric oxide syn-
thase (NOS), and myeloperoxidase (MPO) [73, 74]. High or
low levels and/or activity of one or several redox enzymes are
often found to correlate with disease onset or severity [75].
For example, SOD catalyzes the dismutation of the radical
superoxide anion into hydrogen peroxide (H2O2) or ordin-
ary molecular oxygen (O2), thereby preventing the forma-
tion of peroxynitrite from superoxide with nitric oxide endo-
genously generated by NOS [76]. Intracellular compartments
such asmitochondria, peroxisomes, and the endoplasmic retic-
ulum produce endogenous by-product ROS and, at the same
time, antioxidants to counterbalance oxidative damage [77].
Conversely, oxidative stress caused by ROS dysregulation
promotes damage to cell structure, including proteins, lip-
ids, membranes, and DNA, which play a key role in can-
cer development. For example, the tumor suppressor protein
BReast Cancer 1, early-onset (BRCA1) can inhibit ROS and

estrogen-mediated DNA damage [78]. However, as a mutated
tumor suppressor, it increases estrogen and oxidative stress
production, potentially enabling cancer development [79].

Immune cells are also critical in the production and regula-
tion of ROS. For instance, granulocytes and macrophages can
form reactive species through enzymatically catalyzed pro-
cesses (e.g. MPO converts chloride and hydrogen peroxide to
hypochlorous acid) [80]. The produced ROS are microbicidal,
which is important to kill bacteria, viruses or parasites during
an injury or infection. Furthermore, the ROS induce oxidative
stress in degenerated cells, and ensure the recruitment of other
immune cells to kill pathogens and sick or atypical endogen-
ous cells [81, 82]. ROS are also critical for the immune cells
because they are necessary for redox-based energy and signal
transport, as very low ROS levels also promote lymphocyte
proliferation [83]. Subsequently, ROS has specific effects on
tumor cells and immune cells during an inflammatory process
and can be simulated and examined by cold physical plasma
technology.

3. The immune system

The two arms of an immune response, called innate and adapt-
ive, enable higher organisms to protect themselves efficiently
against pathogenic structures (more detailed immune response
explanations can be found in detail elsewhere [84, 85]). Patho-
gens are disease-causing microorganisms such as bacteria, vir-
uses, parasites, fungi, and pathogenic proteins. This includes
infected body cells that are also pathogenic to the host, as
they contribute to the spread of bacteria and viruses. Along
similar lines, strongly mutated cells, such as cancer cells, can
be immune-recognized and eliminated as well. The innate
immune system consists of physiological barriers, inflammat-
ory processes, and the uptake of particulate substances to con-
tribute to the defense reaction from the first day of life. The
innate immune system cannot use immunization processes to
learn to attack new structures, such as mutated virus entry pro-
teins in the case of the corona virus. Still, it is fast in the
detection of and reaction to well-known structures. By con-
trast, the adaptive immune system can detect new structures,
but it is slow as it is based on molecular learning. It can
detect new structures that were not present in our evolution-
ary history and thus enables an efficient defense through an
extraordinarily complex interaction of many types of immune
cells, the production of antibodies, and the specific recognition
of molecules by immune cells. This is the basis of successful
vertebrate evolution, the quick response to known pathogenic
agents by innate immunity together with the ability to adapt
to pathogens that circumvent innate immunity’s defense and
extend its defense repertoire, which is done by the adaptive
immunity. The core job of the immune system is to defend
from pathogens every second of our lives, e.g. on the skin,
lung, and gut surfaces. Anticancer immunity is an important,
but in relation tiny part of our immune competence repertoire
compared to pathogen defense, which is why the immune sys-
tem is best understood from the infection perspective.
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Figure 3. Innate and adaptive immune response.

3.1. Innate immunity

The innate immune system includes natural barriers such
as skin and mucous membranes and innate immune cells
(figure 3). The barriers make it difficult for pathogens to pen-
etrate the tissue. At the same time, the innate cells recog-
nize evolutionary conserved pathogenic structures (based on
receptors encoded in our germline DNA) to attack foreign
structures (pathogens and their molecules). Together they
build a frontline defense to eliminate pathogens and prevent
their spread. This fast but non-specific reaction is accompanied
by an inflammatory response—a process called inflammation.
It is characterized primarily by the development of heat, red-
ness, and swelling. Furthermore, inflammation is also critical
for successful anticancer immunity and, hence, plasma cancer
treatment, as we will see later.

During this first defense, inflammation is carried out by
different immune cell subpopulations with various tasks.
Tissue-resident phagocytes, such as macrophages, granulo-
cytes, and dendritic cells (DCs), take up microbes intracel-
lularly in the phagosome, followed by the microbe killing
after fusion with lysosomes. In the phagolysosome, antimi-
crobial proteins and ROS are generated at a low pH to facil-
itate efficient microbial killing [80, 86]. Meanwhile, the pha-
gocytes secrete cytokines to communicate with other immune
cells. Those small molecules are necessary to recruit more
immune cells and signal ‘danger’ (pro-inflammatory) to alarm
the tissue or ‘peace’ to dampen local (immune) reactions
(anti-inflammatory). The most relevant molecules expressed
and released by monocytes, macrophages, and DCs to sig-
nal, e.g. for immune cell recruitment, are members of the
interferon (IFN), interleukin (IL), and chemokine (CCL and
CXCL) families [87, 88]. Another prominent member, the
name already tells its initially identified effect, is the tumor-
toxic tumor necrosis factor (TNF). Different subclasses have
different functions. For instance, IL-1α, IL-6, INF-γ, and
TNF-α promote inflammatory responses, whereas IL-12 can
stimulate the growth and function of T-cells. The released

cytokines can attract innate lymphoid cells, such as mast cells,
which secrete cytotoxic granules to kill pathogens. There are
also cytokines to recruit other immune cells, such as natural
killer cells (NK) that recognize and attack infected, degen-
erated, or cancer cells [89]. DCs and other so-called profes-
sional antigen-presenting cells (APCs) can be activated to do
so after making contact with ‘danger’ signals [90] (more on
this process in section 3.1). After their activation, APCs stop
absorbing substances and migrate towards the draining lymph
nodes. During this migration, the engulfed fragments, mainly
proteins, are digested intracellularly. After intracellular pro-
tein breakdown, the resulting peptides are bound to major his-
tocompatibility complex (MHC) molecules and transported in
vesicles to the membrane. The peptide-loaded MHC complex
is then embedded in the membrane and enables the activation
of adaptive immune cells. Focusing on the T-cells, which are
pivotal in antitumor immunity, as we will see later, each T-
cell briefly contacts the APCs in the lymph node to find its
cognate antigen. If none of the APCs show the peptide the
T-cell receptor (TCR) is specific against and the T-cell would
react to, the T-cell leaves into the bloodstream to enter the
next lymph node. If the cognate peptide is presented, the TCR
docks to the MHC-peptide complex to proliferate [91, 92].
Strong immunity always requires both innate and adaptive
responses. It takes two to tango.

3.2. Adaptive immunity

Without adaptive immunity, life would not be possible. Yet,
life is long, and a single highly destructive bacteria or virus
species able to fully evade innate immune detection would
be sufficient to wipe out a given higher species. Luckily,
most vertebrates, including humans, have a so-called adapt-
ive immune system. As the name says, it can adapt an immune
attack against any protein, provided the new protein is embed-
ded in a ‘danger’ context to signal the immune system to focus
on targeting such detrimental structures (e.g. virus-related pro-
teins). Teaching cells to distinguish ‘danger’ signals from
‘peace’ situations is vital to life as most proteins—including
our own and the many that are not part of our body (food)—
are harmless. Their immunological ignorance is critical for
survival, as can be seen with critical allergic and autoim-
mune reactions [93]. The differentiation between ‘danger’ and
‘peace’ is made by the context of protein uptake. Simply
put, damage- and microbe-associated molecules help mount
immune responses [94, 95], while their absence leads to toler-
ance (more in section 3.2).

The cellular adaptive immune response is mediated by
antigen-specific immune cells such as T-lymphocytes (T-cells)
and B-lymphocytes (B-cells). Humoral adaptive immune
responses are the B-cell product and lifesaver in the current
pandemic [96], antibodies (figure 3). Specific subtypes of T-
cells either eliminate infected or cancer cells (CD8+ T-cells,
also called cytotoxic T-cells) or interact with and support
other immune cells (CD4+ T-cells, also called T-helper cells).
T-cell activation via a specific TCR (one TCR type per single
T-cell, with >105–106 different TCRs across all T-cells in the
human body [97]) leads to proliferation and differentiation,
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which activates other adaptive immune cells to elicit immune
responses.

In a way, immunity randomly spawns an army of wildcard
warriors, not knowing if their weapon will ever be needed. T-
cells mature and are selected in the thymus gland. Only those
not identifying body structures (‘self’) can leave the thymus;
all others die in the thymus to avoid unspecific binding and
attacking the body structures (autoimmunity). Most imma-
ture T-lymphocytes die in the thymus, while the few surviv-
ing share two properties. First, they strongly bind to the host’s
MHC-I or MHC-II receptors. Second, they do not (strongly)
bind to peptides of proteins that the body produces to avoid
autoimmunity. The cells reaching both criteria mature further
and are released into the periphery. Each T-cell carries only
one type of TCR. Millions of T-cells (i.e. millions of differ-
ent TCRs) patrol the body daily, searching for that one or
those few APCs sitting in a lymphoid organ (such as lymph
nodes) presenting its cognate antigen. If the T-cell finds the
right (called cognate) antigen on the APC, it produces mil-
lions of TCR-identical subclones that flush the bloodstream
and body. The positive interaction with APCs licenses them
to become active and divide; negative interaction leaves the
T-cell non-activated. During the activation process, the T-cell
requires three signals: antigen recognition: the TCR interacts
with peptide-loaded MHC complex it is primed to target on
APCs in a lymphoid organ (signal 1), co-stimulation: besides
showing the correct peptide to the T-cell, the APC has to
present high levels of co-stimulating ligands indicating alert
(signal 2), and cytokine priming: additional alarming by APC
(signal 3). Signal 1 is made via the TCR binding to MHC
that carries the peptides of the proteins taken up nearby in the
body. CD4+ T-cells bind to MHC-II, and CD8+ T-cells bind
to MHC-I.

Generally speaking, CD8+ T-cells recognize peptides that
have originated from intracellular proteins. If a cell becomes
infected with a virus, the virus hijacks the cells’ intracellular
protein production machinery to produce viral proteins. All
body cells are constantly required to provide MHC-I (their
‘ID-card’) on their cell membrane, which is continuously
loaded with peptides from intracellular protein production.
The virus protein and its fragment, the peptide on MHC-I,
are unknown to the body. The CD8+ T-cell bears a receptor
that is specific for this peptide learns of its target by seeing
the peptide on an APC, which has previously eaten a dead
body cell that had been producing viral proteins. The CD8+

T-cell becomes alarmed, replicatesmillion-fold, and the clones
swarm through the body to find the site of virus replication.
Once arrived at the site of infection, the specific CD8+ cells
scan the MHC-I molecules on all cells in the present tissue. If
CD8+ cells detect the same peptide as initially presented by
the APC in the lymph node, the cytotoxic CD8+ T-cell will
kill the target cell via different mechanisms. The target cell
can no longer produce viral particles. In simple words, this is
how viral infections, including COVID19, are cleared. Albeit
it appears surprising at this stage: themechanism of tumor con-
trol by CD8+ T-cells is very similar [98]. Whether the novel
protein is from a viral or tumor protein mutation is irrelevant.
If it is new and causes trouble, it will be attacked. This process

is supported by CD4+ T-helper cells that have an analog activ-
ation cycle (activation in the lymph node, activity in the target
tissue) with two distinct differences. First, they engage with
MHC-II, which is only present in APCs and carry protein pep-
tides of extracellular origin. The job of the activated CD4+

cells is to support other immune cells, such as B-cells. B-cells
cannot produce antibodies per se. They need a confirmation
that the target its antibody binds to is new to the body and
causes trouble. The activated CD4+ T-cell provides such help.

Humoral immune responses are mounted when T-cells and
B-cells connect via the B-cell receptor (a prototype of an anti-
body) with the ultimate goal of producing antigen-specific
antibodies. These antibodies bind to the target, marking them
for other immune processes and cells for destruction. Anti-
bodies can also mask structures, preventing the structure from
interacting with the target. For instance, anti-corona virus anti-
body sera are given to patients with severe disease courses
[99]. The antibodies bind and mask the viral entry proteins
with the consequence of many viruses being unable to enter
the target cells (e.g. in the lung). In the context of cancer, anti-
bodies can be given in vivo to inhibit structures [100, 101]
or be used in vitro as a diagnostic tool, mark cancer-related
structures (e.g. tumor-specific antigens), or observe disease
progression [102–104]. In immunological research, immune
responses were generated in animal models against newly syn-
thesized chemical substances that had never existed on earth
before [105, 106]. This demonstrates the beautiful power of
our immune system. Its protection unambiguously is key to
our modern lives and societies.

In summary, the immune system is a highly active
molecular communicator and can be activated, showing new
structures to induce an antigen-specific immune response.
Unchecked immune responses would quickly kill its host.
Sepsis (heavy infections in the blood) and COVID19 deaths
(often caused by overshooting immune responses) are prime
examples of why multiple checkpoints and cell types are
needed before the immune system attacks a target. On the
contrary, tumor cells actively suppress immunity, and cancers
evolve mechanisms to escape immune responses.

3.3. Cancer immune evasion

Tumors evolve under immune pressure. This often leads to
cancers hijacking innate immune cells, leading to wound-
healing-like growth stimulation and, ultimately, increased
tumor growth [107]. Simultaneously, as early as 1963, Frank
Macfarlane Burnet described the idea of immunological tumor
surveillance, in which immune cells control the organism
[108]. This immunosurveillance is the elimination phase dur-
ing immunoediting, a dynamic process between tumor cells
and immune cells (figure 4). Similar to infected cells, tumor
cells can be attacked because immune cells identify them as
abnormal due to mutations in the peptides they constantly
present on their ‘ID cards’ (MHC-I) [109]. Cancer cells that
present abnormal peptides are highly immunogenic as they
are easily recognized and eliminated by immune cells. At this
point, it is critical to mention that body cells that express no
or little MHC-I are killed by NK-cells. Still, it remains a good
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Figure 4. Cancer immuno-editing. By killing tumor cells with high
immunogenicity, the immune system puts pressure on cancers for
tumor cell variants with low immuno-stimulating profiles to emerge
and proliferate preferentially.

tumor strategy to downregulate their MHC-I levels as much as
possible to remain undetected from T-cells [110].

As the immune system pressures cancer cells by inactivat-
ing immunogenic variants, only the tumor cells with the best
hiding and growth strategies escape immune control (figure 4,
(2)). It is hypothesized that cancer frequently appears in most
humans but that the few malignant cells are quickly identified
and eradicated by immune cells. Vice versa, tumors develop
better in immunosuppressed patients than in immunocompet-
ent people, illustrating constant immune control from can-
cer. Immune fitness declines with age, while cancer incid-
ence rises with age, a correlation with a putative degree of
cause-consequence relationship. Tumor cells develop different
mechanisms to hide and escape the immune response (immune
escape) [110]. These mechanisms include the expression of
receptors, ligands, and/or a section of molecules with immun-
osuppressive functions. In addition, tumor cells avoid antigen
presentation by reducing MHC expression, as explained. As a
result, cancer cells with reduced antigenicity or immunogeni-
city have an advantage because they evade immune cells and
T-cell-induced killing (figure 4, (3)). Subsequently, the growth
of those cells that remained undetected by the immune system
is promoted. Tumor cell clones are indirectly selected under
pressure for these clones that have the best evasion strategy.
Through this ‘cancer immuno-editing’ process, cancer clones
evolve to avoid immune-mediated elimination by leukocytes
with anti-tumor properties. Again, there are requirements for
this to happen. The tumor cells should be genetically unstable
to a certain degree to allow mutations, which will create a
pool of tumor cells that are similar but not the same. This
diversification enhances the chance that one of the clones is
the fittest to withstand immune control. However, too high
genetic lability leads to dysfunctional regular cellular pro-
cesses and growth disadvantages due to cellular senescence
(inability to proliferate) or death. Hence, ‘successful’ tumors
are often balanced in their features to survive and grow by
a try-and-error strategy, similar to the immune system. Of
course, there is no intention in the system but only the random
biological variances and responses of the cellular environment
that select some properties over others. The tumor bulk comes
with another critical aspect that influences immune cells—the
tumor microenvironment.

3.4. The TME

Being understudied for decades, intensive research and new
laboratory methods and technologies led to detailed profiling
of the TME across many cancer entities. The TME is con-
sidered today a main bottleneck for many types of cancer ther-
apy, including immunotherapy. There are many reasons for
this, which are outlined in detail in other reviews [111–113].

The TME is a complex system that includes cellular and
non-cellular components, such as tumor and immune cells,
stromal cells, blood vessels, extracellular matrix, tumor meta-
bolites, redox reactions, and cytokines [114]. Due to spon-
taneous mutation of the tumor cells and the interaction with
other cells (e.g. immune cells), different mechanisms can
take effect, so the tumor heterogeneity entails a diversity
of the TME. Additionally, most solid tumors have hypoxic
regions and show elevated extracellular acidification, leading
to tumor progression and drug resistance. Such TME pro-
motes the property of tumor cells to evade elimination by sup-
pressing the activity of other immune cells, e.g. by recruiting
immunosuppressive leukocytes, including regulatory T-cells
[115, 116]. The receptors on the tumor cell surface that stim-
ulate or suppress immune cells are highlighted below. First,
as mentioned earlier, the MHC complex, which represents
intracellular metabolites and processes, is downregulated to
reduce the chance of being recognized by tumor-toxic CD8+

T-cells. At the same time, due to high mutational loads or anti-
gens from overexpressed, misfolded, or cell-unspecific pro-
teins are presented on the surface. They are called neoantigens
or tumor-associated antigens as they differentiate between
tumor cells and non-tumor cells [117], even though these
antigens are often not recognized as pathological or foreign
due to the immunosuppressive microenvironment and other
escape mechanisms. In addition, some tumors tend to be more
immunogenic than others, such as melanoma, characterized
by high numbers of neoantigens compared to other types of
cancer [118]. However, an additional tumor immune-escape
mechanism is the down-regulation of these neoantigens by
selecting and eliminating tumor subclones that do not carry
these neoantigens. Different tumor cells with various escape
mechanisms support the generally immune suppressive milieu
as part of the TME.

In addition to MHC, other regulatory molecules on the
cell surface contribute to immune escape mechanisms. Tumor
cells express molecules that suppress the immune response,
such as CTLA-4, CD95L, or programmed death receptor lig-
and 1 (PD-L1). These actively inhibit the cytotoxic function
of immune cells (CD8+ cytotoxic T-cells in particular) or
induce tolerance by activating regulatory T-cells. Depending
on the tumor type, some cancer cells and cancer-supporting
immune cells secrete immunosuppressive molecules. These
include inhibitory cytokines such as IL-10, TGF-β, and the
enzyme indoleamine 2,3-dioxygenase. The latter is strongly
immunosuppressive by producing specific metabolic products
[119, 120]. PD-L1, which is expressed on tumor cells and
non-malignant cells, also has an inhibitory effect on T-cells
by down-regulating TCR expression [121]. Thus, inhibited
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or even killed immune cells can promote the development
of an anti-inflammatory, growth-supportive TME. There are
many ways tumors render their microenvironment to favor
their growth, and many of these are intertwined with immune
cell regulation, polarization, differentiation, migration, and
inhibition [122, 123]. The advent of cancer immunotherapies
helped address such and other hurdles in immuno-oncology.

4. Cancer immunotherapy

Immunotherapy aims to trigger the body’s immune response to
attack tumor cells. By definition, immunotherapy is a systemic
therapy. Local therapies, such as physical modalities, can sup-
port (adjuvant effect) immunotherapies [124, 125]. When dis-
cussing antitumor immune cells, it is mainly referred to cyto-
toxic CD8+ T-cells as these are the effectors eventually killing
the tumors (figure 5).

Basically, there are two main focal points when discuss-
ing the immune system in cancer. The first relates to the sys-
temic immune status and action, such as the ability of the
patient to produce functional immune cells in the bloodstream,
the ability of immune cells to become activated, and the
levels of immuno-suppressants in the blood. Novel and costly
approaches rely on genetic engineering of patient-derived T-
cells with antigen-specific TCRs [126]. The exact receptor
properties need to be identified beforehand for each patient
based on their bio-material and computer modeling to ensure
that the TCR binds to the specific tumor-associated peptide in
the MHC binding groove. The second concerns the tumor’s
local characteristics (TME); e.g. whether it is immunosup-
pressive or immunostimulatory.

4.1. Cancer immunotherapy approaches

Essentially, cancer immunotherapies can be subdivided into
two main classes: cellular and non-cellular. During cellu-
lar therapies, specific immune cells, such as DCs or T-cells,
are grown and amplified in the laboratory and injected into
the patient. Non-cellular immunotherapies concern injecting
small to large molecules (biologicals) into the patient, includ-
ing cytokines, antibodies, single-domain-antibodies (a spe-
cial type of antibodies originally isolated from alpacas/lla-
mas), and vaccines. A related method is the injection of
oncolytic viruses, which are genetically engineered to kill
tumors. Because this process is thought to stimulate antitumor
immunity, oncolytic viruses are often mentioned along with
cancer immunotherapies (figure 6).

There are several ways to modulate T-cell activity through
immunotherapy; the main three key signals to modulate are
‘antigen recognition,’ ‘co-stimulation,’ and ‘cytokine prim-
ing.’ The signal for antigen recognition can be increased
through vaccination applications with a protective or thera-
peutic function. In addition, administering different vaccines
with or without adjuvant substances to increase immuniz-
ation enables a wide range of applications. For example,
vaccines that contain tumor-associated antigens stimulate
the immune system and generate antigen-specific T-cells

Figure 5. Selected immune cells and their function during an
antitumor immune response. CD4+ (and CD8+) find their cognate
antigen (protein peptide) by contact with professional APCs, such as
DCs. Subsequently activated CD4+ T-cells provide co-stimulatory
signals to other immune cells, such as B-cells (middle) for antibody
production. Activated CD8+ T-cells kill tumor cells that present the
specific protein peptide the CD8+ T-cell is armed against. Killing is
performed, for instance, via cytotoxic granules that create pores in
the tumor cell membranes. CD4+ regulatory T-cells (Treg) and also
tumor cells can suppress tumor-toxic immune cell activities.

Figure 6. Several relevant cancer immunotherapies. Antibody
therapies are the by far mostly applied immunotherapy in the
clinics. Much hope lies on anticancer mRNA vaccines, as these have
shown remarkable clinical results [135].

that recognize and attack cancer cells. This could involve
injecting tumor-specific structures such as proteins, peptides
[127], tumor lysates [128], or mRNA [129] to generate T-
cells with tumor-specific TCRs. Furthermore, to increase the
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tumor antigens’ immunogenicity and the chance of inducing
antigen-specific T-cells, adjuvants can be added to the vac-
cine, or DCs are loaded with antigens. Herein, APCs are isol-
ated from patients, expanded in the laboratory, loaded with
the tumor antigen or lysate or mRNA, and returned to the
host [130]. Another application for generating antigen-specific
T-cells is chimeric antigen receptor (CAR) T-cells. Like the
DC-loaded vaccine, lymphocytes are isolated from the patient,
expanded in the laboratory, and genetically modified before
being returned to the host [131].

The by far most promising and currently applied cancer
immunotherapy is antibody therapy. Monoclonal antibodies
are highly specific and readily mask negative immune check-
point surface molecules on tumor or immune cells [132], such
as PD-1, PD-L1, or CTLA 4. In 2018, the Nobel Prize in medi-
cine or physiology was awarded to James P. Allison (USA)
and Tasuku Honjo (Japan) for identifying this concept in onco-
logy. As a result, the activity of lymphocytes is promoted to
secrete cytotoxic molecules and eliminate tumor cells. Anti-
bodies are also used to target tumor growth signaling recept-
ors, for example, epidermal growth factor receptor in head and
neck cancer [133]. Also, angiogenesis, a process of forming
new blood vessels to supply tumor cells with nutrition and oxy-
gen, is frequently targeted using antibody therapy [134].

An effective antitumor immune response requires spe-
cific cytokine profiles. At the same time, some cytokines,
such as IFN, are increasing the visibility of tumor cells to
the immune system via, e.g. MHC-I increase. Accordingly,
cytokine administration has been used for long in cancer
immunotherapy, including the lymphocyte-survival-enhancer
IL-2 [136] and IFN-γ. Another reason for cytokine administra-
tion is their relatively cheap production and simple intraven-
ous administration routine within existing pharmacological
schemes.

The activation of immune cells or modulation of tumor
cells by injecting cytokines, activated immune cells, or
immune checkpoint inhibitors promote an anti-tumor immune
response. However, this leads to further selection pressure on
tumor cells and their TME, and successful therapy requires the
presence of immune cells within the TME, which is not always
the case in strongly immunosuppressive environments. There-
fore, some immunotherapeutic approaches indirectly activate
immune cells by targeting tumors to turn them into immuno-
genic structures. This is achieved by, for instance, induction
of immunogenic cell death (ICD).

4.2. Immunogenic (cancer) cell death (ICD)

The TME influences the body’s antitumor defense through its
heterogeneity and modulates immune cell responses through
the secretion of various cytokines and chemokines. In general,
tumor cells try to avoid the immune response with the help
of their immune escape mechanisms and keep immune cells
away. Conversely, a successful endogenous immune response
is likely increased when more immune cells reach the tumor
tissue. Therefore, tumors are categorized into ‘cold,’ non-
inflamed tumors, characterized by a lack of immune cells,
and ‘hot’ inflamed tumors, characterized by ample immune

Figure 7. The cancer-immunity cycle, describing how ICD
promotes eliciting antitumor immune responses. Reprinted from
[137]. Copyright (2018), with permission from Elsevier.

cells. In mixed form, ‘ignored tumors,’ immune cells accumu-
late at one or several specific sites in or at the tumor without
spreading into the entire tumor area [139]. Various stimulants
are needed to attract immune cells into the tissue to turn a
‘cold’ tumor into a ‘hot’ tumor. One of them is a regulated
form of cell death that stimulates immune cells and causes
sterile inflammation, the act of alarming the immune system
in the absence of pathogens such as bacteria and viruses [140].
This so-called ICD is characterized by the expression of sev-
eral surface markers and the secretion of proteins [140, 141].
These ICD-specific markers include, for example, calreticulin
(CRT), high mobility group box 1 protein (HMGB1), heat
shock proteins (HSP), and the energy currency of cells, aden-
osine triphosphate (ATP). Adaptive immune cells recognize
these ICD molecules as damage-associated molecular pat-
terns (DAMPs) while routinely phagocytosing and taking
up dead tumor material in the TME. Under normal condi-
tions, this would happen in a non-inflammatory, ‘silent’ fash-
ion because dead cells appear million-fold per second in the
body and must not mount immune responses as the clear-
ance of the dead cell is biological routine. If, however, the
tumor material uptake occurs in the presence of inflammat-
ory mediators and DAMPs, the phagocytes become activated
and migrate to the draining lymph node where they can meet
T-cells to (cross) present the cargo (protein-peptides). Sup-
pose an antitumor T-cell with suitable TCR comes in con-
tact with a cross-presenting phagocyte, the former can become
activated, start replicating, and swarm into the bloodstream to
migrate through the body tissues to attack distant cancer sites
(figure 7).

If the TME is not too hostile, e.g. low pH and oxygen,
and if immunosuppressive signals from tumor cells or tumor-
hijacked-immune cells do not dominate, the CD8+ T-cell will
strike and kill. This process is called the cancer immunity
cycle, with ICD being a central point of setting the cycle in
motion. Further information on this can be found elsewhere
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[142, 143]. Many molecular details of ICD have been clarified
as well already [144].

ICD can be induced by different physical, chemical, and
biological therapies, such as ionizing radiation [145], PDT
[146], and specific chemotherapeutics [147]. Cold plasma is a
recent technology among the physical modality family of ICD
inducers, as explained in the following.

5. Plasma, cancer, immunity

5.1. Plasma cancer treatment

Plasma treatment of cancer cells has been the subject of intense
research for over a decade now [148, 149]. The idea follows the
principle of other physical modalities that are applied locally
and topically (i.e. on the skin or bodily surfaces), with some of
them also relying on ROS to mediate biomedical effects, such
as photodynamic therapy, UV therapy, cryo-therapy, hyper-
thermia, and laser therapy [150]. Many studies have re-iterated
the principle that high concentrations of plasma-derived ROS
lead to cellular demise, such as cell cycle arrest, declined
metabolic activity, and cell death [151]. Surprisingly, similar
effects are observed across different plasma devices, albeit
there are differences in, e.g. total energy deposited or treatment
time required to achieve similar treatment efficacy. However,
detailed effects may differ nonetheless, and studies thoroughly
comparing different plasma devices based on congruent labor-
atory protocols andmatched cytotoxicity conditions are rare, if
not absent. One putative study protocol approaching a plasma
jet head-to-head comparison was suggested by us [152] and
should be extended by molecular analyses and the inclusion
of more plasma sources. Nevertheless, most effects observed
in cell culture systems after treatment with different plasma
sources are similar. Those effects can be explained by H2O2

[153] or HOCl [154], which dominate the long-lived species
chemistry [155], and are generated predominantly in cell cul-
ture experiments in the liquid phase. These findings may be
entirely different from effects on tissues, as in the case of
clinical settings or animal experiments. The current critical
knowledge gap in plasma medicine is to identify the specific
treatment settings that dominate anticancer reactive species
formation and plasma effectors such as electric fields in plasma
systems. It is hoped that modulating feed gas fluxes in plasma
jets and thereby modulating the reactive species profiles in
terms of quality and quantity will help decipher those (sets
of) species that are mainly responsible for anticancer effects.
We have recently applied such an approach in a melanoma
mouse model, and the findings suggested atomic and singlet
delta oxygen among such potent anticancer species in question
[156]. However, changing the feed gas admixture also pos-
sibly leads to changes in other plasma parameters, such as
UV, temperature, and electric fields, besides dozens of spe-
cies that usually remain undetected if not complex tools such
as two-photon absorption laser-induced fluorescence [157] or
molecular beam mass spectrometry [158] are utilized. Know-
ing the key antitumor plasma effectors would allow optimizing
plasma sources for such applications.

In parallel, clinical evidence is needed to underline the prac-
tical relevance of plasma cancer treatment. For detailed stud-
ies of experimental (non-patient) plasma cancer treatment, the
reader is referred to recent reviews on this topic [159, 160]. In
Greifswald, Germany, the visionary oncologist Hans-Robert
Metelmann has tested the kINPen plasma jet for the palliat-
ive treatment of 20 patients suffering from incurable ulcerat-
ive head and neck cancer. Several of these patients responded
well to the plasma treatment, as evidenced by tumor growth
deceleration or even tumor mass decline [161]. Unfortunately,
nothing is known about why the plasma treatment worked in
some but not all patients. Was the reactive species composition
optimal in all cases? Should plasma treatment exposure time,
frequency, and onset and offset of plasma treatment be adjus-
ted on a case-to-case basis? Would some tumor areas bene-
fit from lengthy plasma treatments while others only needed
low ‘doses’? There still is much to learn on clinical plasma
cancer treatment, not only regarding the ‘how’ but also the
‘if’. It is hoped that a frequent and less deadly disease, actinic
keratosis, will help answer some of these questions. Actinic
keratosis is a low-grade carcinoma (in situ), potentially devel-
oping into cutaneous squamous cell carcinoma. Several case
report series [162–164] and one randomized clinical trial [165]
showed promising effects of plasma application, and we have
provided mechanistic evidence of plasma-treated lesions in a
mouse model recently [166]. The different responses depend
on the cell type, as some cells are more sensitive to exogenous
ROS than others [167]. It was also observed that the plasma
treatment had a selective toxic effect on tumor cells but not
on non-malignant cells. Plasma treatment is safe, showing
no long-term consequences in mice after 1 year [168, 169]
and humans after 1–5 years [170, 171], at least for the kIN-
Pen. Furthermore, genotoxicity is not observed [172, 173].
DNA damage was observed since it is a secondary event of
apoptosis rather than a consequence of short-lived highly-
reactive species [174]. However, the secondary effects of
plasma-treated tumors raise the question about ICD-induction
and other immune-stimulatory properties. Recently, this ques-
tion has been increasingly investigated, and some studies are
explained in the following.

5.2. Immune-related effects in plasma-treated cancer cells

In vitro, several ICDmarkers, such as secreted and membrane-
bound molecules, have been identified in response to plasma
treatment in different cell lines. Increased ATP release has
been determined after plasma treatment in, for instance, mur-
ine and human melanoma cells [175, 176], human glio-
blastoma cells [177], human nasopharyngeal carcinoma [178],
human lung cancer cells [179], and murine colon cancer cells
[180]. Increased HMGB1 translocation or release was identi-
fied in several plasma-treated cancer cell lines as well, such as
murine and human colorectal cancer cells and human gliomas
and pancreatic cancer cells [152, 177, 181–183]. There are also
chemokines, such as CXCL1 and CXCL10, that are thought
to contribute to pro-immunogenic effects, similar to IFN-γ.
During the cytokine screening campaigns in supernatants, we
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have found one or several of the factors increased many times,
e.g. in melanoma [175, 176] and pancreatic [184, 185] and
prostate cancer [186].

Moreover, a range of membrane-bound molecules is
linked to ICD. These surface markers either have translo-
cated to the surface after stress of the endoplasmic retic-
ulum such as CRT or HSPs, or are related to antigen
presentation (MHC), phagocytosis (CD47), DAMP degener-
ation (CD39/CD73), and immune checkpoints (PD-1, PD-
L1, PD-L2, CTLA-4, TIM-3, LAG-3, etc.). Most studies in
plasma medicine focused on CRT, finding increased expres-
sion of this chaperon on the membrane of plasma-treated cells
[152, 156, 177, 179–182, 187]. As mentioned, these data hint
toward increased immunogenicity and ICD. Following this,
the ability of plasma-treated tumor cells to be phagocytosed
by macrophages or DCs may be increased. This hypothesis
can be strengthened by investigating professional phagocytes’
uptake of plasma-treated tumor cells.

Human, monocyte-derived APCs (differentiated from peri-
pheral blood mononuclear cells) are the gold standard for ana-
lyzing tumor cell uptake, as these cells derive from primary
human blood cells and are, therefore, the in vitro model with
the highest relevance. Increased tumor material uptake by DCs
was observed following the kINPen tumor cell treatment [152]
and kINPen-treated phosphate-buffered saline [182], along
with enhancedDC stimulation profiles [188]. Also, cell lysates
exposed to plasma-derived ROS increased the co-stimulatory
DC profile and ability to interact with T-cells [189]. Strikingly,
ICD cannot only be induced in cell lines from solid tumor cells
but also in leukemia cells, as recently shown [190]. Notably,
in this study, we also provided evidence that plasma-induced
cell stress changes the protein expression of leukemia cells.
This altered the peptide spectrum being presented on MHC-
I, which would potentially amplify the recognition of can-
cer cells by immune cells that were not directly killed by the
plasma process.

5.3. Immune-responses in plasma cancer
treatment—experimental evidence

Before discussing plasma cancer studies in the context of
immune-related effects, a few things need to be clarified. First,
the most relevant models to thoroughly study the immune
system’s impact on cancer therapeutics are syngeneic mur-
ine tumor models (table 1). Syngeneic means the injected
tumor cells have the same biomolecular equipment as the
mouse strain, i.e. the tumor cell line was initially retrieved
from that mouse strain. One of these biomolecular pieces of
equipment is the ID-card (MHC molecules) because not only
the peptide plays a role in recognition by immune cells. The
TCR interacts with an MHC complex like a key–lock prin-
ciple, so these building blocks must also belong to the same
species/strain. Injected tumor cells whose MHC molecules
are different from the mouse strain grow only in immune-
deficient animals called xenografts, with a few rare exceptions
[191]. Naturally, xenograft models are less suitable for study-
ing the immune effects of tumor treatment. Second, immune-
related effects can be suggested in vitro but are obviously

of limited real-world relevance. They can, however, provide
useful information about the inflammatory context. These are,
for instance, the release of cytokine and chemokines and the
expression and release of ICD molecules. A series of syn-
geneic plasma cancer animal experiment reports are available
to inform on immuno-oncological consequences.

5.3.1. Abscopal effects of direct plasma treatment. The
first reports came from Ryo Ono’s laboratory using a syn-
geneic orthotopic mouse model, where melanoma cells were
injected subcutaneously, similar to a naturally occurring skin
tumor. The group investigated the abscopal effect, placing two
B16-tumors in mice, each beneath the skin of one hind leg.
Plasma treatment of one tumor site led to the tumor growth
reduction on the plasma-treated as well as the non-treated site
(abscopal effect) [138]. However, the conclusion was only
reached by merging data from several experiments and two
tumor models, all with different sub-conditions; the raw tumor
weight data, which would allow transparent conclusions, are
not shown. Re-stimulation of splenocytes with melanoma
cells induced IFN-γ production, suggesting activated tumor
antigen-specific T-cells. In a follow-up study, the authors sur-
gically removed the tumor after plasma treatment. Then, they
measured the time and extent of tumor regrowth at the incision
site (assuming that some tumor mass was left behind), which
was found to be reduced in the plasma group [192]. Inter-
estingly, the reduction was also observed if two tumors were
set per mouse, one was treated, both were removed, and the
untreated tumor site was observed. In immunohistochemistry
analysis of the tumor tissue, the authors did not find a signific-
ant difference in proliferation (using the marker Ki67), indic-
ative that the tumor growth kinetics were not altered strongly.
However, significantly greater numbers of tumor-infiltrating
CD8+ but not CD4+ T-cells were found. Using the 4T1 syn-
geneic breast cancer model in an abscopal effect setting sim-
ilar to the studies from Ryo Ono, a true abscopal effect was
found for the first time in a breast cancer model and using
a helium multi-jet plasma device [187]. Moreover, we thor-
oughly investigated the TME using algorithm-driven quant-
itative fluorescence immune-population imaging of whole-
section tumor slices. Elevated levels of T-cells, DCs, and CRT
were found in both the treated and the untreated abscopal-
affected tumors. However, we did not investigate the expres-
sion of CD47. CD47 is currently targeted in clinical trials
using humanized monoclonal antibodies because the molecule
inhibits tumor cell phagocytosis by immune cells [193]. Its
expression levels were studied after DBD-plasma treatment of
B16 melanomas in vivo. Despite tumor reduction and lower
levels in in vitro and in ovo plasma-treated tumors as well as in
silico data, no significant change in intratumoral CD47 levels
in mice was found [194]. This, however, does not exclude that
effects may be achieved with other plasma devices or tumor
models.

5.3.2. Immunization approaches in plasma medicine.
An increased amount of infiltrated immune cells in the
tumor tissue enables T-cells’ activation, proliferation, and
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Table 1. Syngeneic murine tumor models with plasma-mediated growth reduction and reported immune-related effects.

Syngeneic
model

Plasma source/
feed gas Main findings References

B16-melanoma
two flanks

Nanosecond-pulsed
streamer
discharge/humidified
O2 or N2

• Tumor growth reduction on treated site; calculated reduction on
non-treated site (abscopal effect).

• IFN-γ and TNF-α production of splenocytes co-cultured with melanoma
cells in vitro.

[138]

PDA6606
peritoneal
pancreatic
cancer

kINPen MED plasma
jet-treated RPMI1640
cell culture
medium/Ar

• Reduced growth (MRI), improved survival, increased apoptosis
(TUNEL), safe application (hematology).

• Increased CRT, CD11c+ cells (DCs), macrophages.

[201, 202]

B16-melanoma
one flank

Nanosecond-pulsed
streamer
discharge/humidified
O2

• Tumors were plasma-treated and resected, tumor recurrence was delayed
at plasma-treated and non-plasma-treated site but overall proliferation
similar.

• Increased CD8+ but not CD4+ T-cell infiltration.

[192]

CT26
colorectal
cancer one
flank

Nanosecond-pulsed
dielectric barrier
discharge/ambient air

• Vaccination with in vitro plasma-killed CT26 cells protected 1/3 of
animals from subcutaneous growth of subsequently injected live cells,
non-protected animals had bigger tumors than medium or cisplatin (drug)
control.

• Direct tumor treatment increased CRT, HMGB1, and immune cell
infiltrate.

[180]

B16-melanoma
one flank

Nanosecond-pulsed
dielectric barrier
discharge/ambient air

• Vaccination with in vitro plasma-killed B16 cells protected 2/3 of animals
from subcutaneous growth of subsequently injected live cells, similar to
positive control (mitoxantrone), reactive species + pulsed fields alone
protected only 1/3 of animals.

• No TME investigation to infer on immunological effects in vivo.

[195]

CT26
peritoneal
colorectal
cancer

kINPen MED plasma
jet-treated 0.9%
NaCl/Ar

• Repeated peritoneal lavage with plasma-treated NaCl reduced tumor
burden by >80%.

• Increased splenocytes’ T-cell activity upon re-stimulation with CT26 cells
ex vivo; increased intratumoral macrophages.

[181]

B16-melanoma
one flank

kINPen plasma
jet/dry Ar, Ar/O2, He,
He/O2

• Ar-plasma is potent and He/O2 plasma was most potent in reducing tumor
growth, possibly due to atomic and singlet oxygen.

• Strong combination anti-melanoma effect with imiquimod (Aldara)
achieved highest tumor immune-infiltrates and T-cell activation, He/O2

and argon plasma with similar effects.
• Vaccination with Ar kINPen-killed B16 cells protected 50% of mice from

tumor growth after re-challenge with live cells; positive control
(mitoxantrone) was 85%, negative control (mitomycin C) was 20%.

[156]

B16-melanoma
one flank

Hollow-structure
microneedle plasma
patch/He (16.5 slm)

• Tumor growth reduction.
• Combination with checkpoint (anti-PD-L1) immunotherapy improved

anti-melanoma effect.
• Increased intratumoral T-cells and activated DCs.
• Abscopal effect to distant, untreated tumors.

[198]

MX-7 rhabdo-
myosarcoma

Plasma jet at
40 kHz/He

• Plasma treatment increases blood serum HMGB1 levels 1 h after
exposure.

• Similar HMGB1 serum levels 24 h after treatment; no reported effect on
tumor size.

• No TME investigation to infer on immunological effects in vivo.

[200]

CT26
peritoneal
colorectal
cancer

kINPen MED plasma
jet or wINPlas
DBD-treated 0.9%
NaCl/Ar

• Peritoneal tumor mass reduction with kINPen better than wiNPlas.
• Peritoneal lavage cytokines: wINPlas: increased TNF-α; reduced IFN-γ,

IL-2, IL-6, IL-10; kINPen: reduced IFN-γ, IL-6, IL-10; → liquid should
not be too acidic.

[203]

4T1-breast
cancer two
flanks

Plasma multi-jet at
20 kHz/He

• Abscopal effect (growth reduction of untreated tumors if tumor on
different site of the animal was plasma-treated).

• In tissue sections, increased apoptosis (TUNEL), CD8+ and CD4+

T-cells, CRT, and CD11c+ DCs in the plasma-treated and untreated
contra-lateral tumor of the same animal (abscopal immunogenicity).

[187]

(Continued.)
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Table 1. (Continued.)

Syngeneic
model

Plasma source/
feed gas Main findings References

B16-melanoma
one flank

Nanosecond-pulsed
dielectric barrier
discharge/ambient air

• Reduced tumor growth.
• Plasma showed significant changes of CD47 expression in silico, in vitro,

and in ovo, but not in murine tumors in vivo.

[194]

4T1-breast
cancer and
B16-melanoma
one flank

Portable plasma
device (16.5 slm)/He

• 4T1/B16 tumors were incompletely removed to leave tumor mass behind.
• Plasma treatment induced ICD in situ, decreasing tumor recurrence.
• exposure induced strong T-cell responses and cytokine release.

[204]

SB-28-
glioblastoma
one flank

Nanosecond-pulsed
dielectric barrier
discharge/ambient air

• No tumor-reducing plasma effect alone.
• Modest but significant tumor reduction in combination with Auranofin.
• No TME investigation to infer on immunological effects in vivo.

[177]

B16-melanoma
one flank

kINPen plasma
jet/dry Ar or He/O2

• Plasma-treated Ova increased T-cell immune-reactivity compared to
untreated Ova.

• Vaccination with plasma-treated Ova increases protection from
B16-Ova-melanoma growth, and increases T-cell activity and cytokine
release.

• Feed gas composition matters, He/O2 more effective than Ar.

[197]

CT26
peritoneal
colorectal
cancer

kINPen MED plasma
jet-treated 0.9%
NaCl/Ar

• Peritoneal tumor mass reduction with kINPen non-significantly different
from administering the same concentration of hydrogen-peroxide loaded
sodium chloride.

• In vitro ICD induction was similar in both treatment regimens.
• No TME investigation to infer on immunological effects in vivo.

[205]

differentiation. Thereby, memory T-cells differentiate and can
recognize tumor cells, a process that can also be achieved
through immunization. A subsequent study that used a syn-
geneic CT26 colorectal cancer model confirmed the increased
activity of cytotoxic immune cells [180]. The tumor cells
were killed with plasma in the laboratory; as controls, vehicle
liquids and a clinical drug (cisplatin) were used. After injec-
tion of the dead tumor cells into mice, the animals were re-
challenged with viable tumor cells. The hypothesis was that
a vaccine with killed tumor cells activates immune cells and
generates antigen-specific T-cells to kill the live tumor cells
injected later. Interestingly, in the plasma-vaccine group, the
highest percentage of mice (30%) was protected from sub-
sequent tumor growth after live-cell injection of CT26 cells.
Moreover, direct plasma treatment of tumors increased CRT
expression and DC infiltration into the tumor tissue. In a sim-
ilar approach, the study was repeated using the B16-melanoma
model, revealing that 2/3 of mice were protected from tumor
growth by the plasma-treated B16-cell vaccine when live
tumor cells were administered later following the vaccine
prime-boost-scheme [195].

Interestingly, a combination of long-lived ROS and pulsed-
electric field application (both matched to the concentrations
and intensity of the DBD plasma device used) did not lead to
successful immunization, underlining the unique ability and
necessity of short-lived plasma-derived reactive species to per-
form its immunogenic action. What was unknown so far were
two points: first, to what extent is the cancer growth-reducing
and tumor-immunological effect dependent on the composi-
tion of reactive oxygen and species? Second, is the vaccine
generation alsoworkingwith a plasma jet, such as the kINPen?
Data that the latter is true were shown already before in the

two mentioned vaccination studies at an international plasma
cancer meeting in early 2018 [196]. The vaccination efficacy
with the kINPen was 50%, the positive control (mitoxantrone)
provided tumor protection to more than 80%, and the negative
control (mitomycin C) only about 15% [156].

Finally, an entirely novel field of research is introduced:
the plasma-optimized immunogenicity of proteins. This could
be helpful in, for instance, tumor vaccine development. We
were the first to provide comprehensive data on the proof
of concept of such an approach. Using ovalbumin (Ova),
a well-characterized protein, and Ova-reactive T-cells, we
found plasma treatment of Ova to increase the T-cell response
when compared to untreated (native) Ova [197]. Injecting the
plasma-treated Ova into mice also generated stronger T-cell
responses. We then chose a translational approach by employ-
ing B16-melanoma cells genetically engineered to stably
express Ova. Ova-specific T-cells attack these cells. Vaccinat-
ing wild-type mice with plasma-treated Ova provided signific-
antly greater immune protection from melanoma growth and
increased T-cell activity. Importantly, one plasma treatment
mode wasmore potent than another, re-iterating the previously
mentioned power that lies in optimizing plasma sources, espe-
cially jets, via the feed gas compositions. Using mass spec-
trometry and circular dichroism (CD) spectroscopy, oxidative
post-translational protein modifications with a per-aminoacid-
resolution as well as structural protein changes were investig-
ated that depended on the ROS mixture utilized [197].

5.3.3. Plasma as an adjuvant in combination treatment.
ROSmixtures were critical to antitumor efficacy and attracting
or repelling critical immune cells into the TME using plasma
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treatment [156]. Specifically, we identified the helium–oxygen
plasma mode, rich in atomic and singlet delta oxygen, besides
the argon plasma mode, to critically provide tumor con-
trol and elevated tumor-infiltrating leukocytes. Strikingly,
this study was the first to show a combination therapy
approach of plasma treatment with the toll-like-receptor agon-
ist imiquimod in a syngeneic, orthotopic tumor model by
finding increased immune infiltration. Detailed T-cell sub-
population analysis and cytokine profiling provided more
immuno-oncological evidence for plasma treatment of tumor
cells for the first time. Using a so-called hollow cathode
plasma patch and the B16 melanoma model, another report
investigated plasma-mediated tumor control and activation of
DCs and elevated intratumoral T-cell infiltration and combin-
ation therapy with PD-L1 checkpoint inhibitors [198]. This is
the first study of its kind using checkpoint antibodies together
with plasma as an adjuvant treatment. From a clinical per-
spective, such a setup is highly likely since malignant melan-
oma was the first tumor entity the checkpoint immunother-
apy was approved for, but some patients still respond poorly
[199]. Plasma treatment could aid in providing additional
ICD-induced tumor antigen, while T-cell suppression is hal-
ted simultaneously due to the checkpoint antibody therapy so
that new T-cell clones may emerge. An additional study of
note used a syngeneic model of MX-7 subcutaneous rhab-
domyosarcoma tumors [200]. Tumor size was not reported
to shrink after plasma treatment, but in vitro, the cells had
already shown large levels of HMGB1 release after plasma
treatment. Blood was collected one hour after plasma expos-
ure of the tumors in vivo. Markedly elevated levels of HMGB1
were detected in blood serum. This was not the case 24 h
after treatment, arguing for a short-term effect, relying on the
immediate tumor-toxicity of the plasma treatment. Levels of
several other cytokines and cytokines in blood serum were
essentially unchanged. Yet, much is unknown on the mechan-
isms so far, although especially the melanoma models showed
critical proof-of-concept experiments on plasma, supporting
the idea of enhanced antitumor-immunity and tumor growth
reduction.

Using a DBD plasma source and a syngeneic but not ortho-
topic (subcutaneous injection) glioblastoma model using SB-
28 cells, a toxic effect of DBD treatment alone was not found
[177]. In combination with Auranofin, a substance targeting
thiol redox-homeostasis, additive cytotoxicity was observed
in vivo; the TME, which could have supported a role of
immune cells in this additive effect, was, however, not invest-
igated. The model could be interesting for future studies
since the immune system’s role in glioblastoma treatment has
received increasing interest in the past years [206]. In 2021,
a fascinating report emerged, re-iterating the Ryo Ono study
from the incomplete tumor resections published in 2018. The
idea remained the same: many tumor surgeries either inten-
tionally (e.g. in the presence of vital blood vessels) or involun-
tarily leave (micro)tumor tissue behind, and such tumorwound
is prone to cancer recurrence. The question was whether
plasma treatment would induce ICD in situ, thereby empower-
ing antitumor T-cell immunity and reducing disease recur-
rence. The authors could demonstrate the feasibility of such

an approach by using two syngeneic and orthotopic models,
B16 melanoma and 4T1 breast cancer [204]. They suggest a
plasma setup to be feasible as an intraoperative routine follow-
ing cancer excision, which in principle would also be possible
with the kINPen as an approvedmedical product, as evident by
the tumor wound treatments of Hans-Robert Metelmann and
colleagues in Greifswald, Germany [161].

The mentioned direct treatment options are suitable for
tumors that grow on the surface and are easily accessible
(e.g. melanoma). In contrast, as discussed below, solid tumors
cannot be plasma-treated directly due to physiological bar-
riers (at least not in a repeated fashion) but may be tar-
geted by injecting plasma-treated (also referred to as plasma-
conditioned or plasma-activated) liquids.

5.3.4. Plasma-treated liquids for solid tumors. As men-
tioned above, only syngeneic models are discussed here as
these can be used to learn about anticancer immune processes.
The general efficacy of plasma-treated liquids was recently
reviewed [207]. In 2017, a study investigated the ability of
kINPen plasma-treated cell culture medium to treat experi-
mental peritoneal carcinomatosis. In a syngeneic and ortho-
topic (i.e. the tumor occurs at the site in mice where it would
naturally occur in humans as well) model, pancreatic can-
cer was induced by injecting PDA6606 cells intraperitoneally
[201]. The repeated injection of the plasma-oxidized liquid
(cell culture medium) reduced tumor growth as measured
via magnetic resonance imaging, induced apoptosis in cancer
cells, and significantly increased mice’s survival. Intriguingly,
a subsequent analysis of the tumor immune infiltrates revealed
substantially elevated levels of macrophages in the plasma
group, which, however, had no increased expression of the
tumor-supportive M2 macrophage marker CD206 [202]. In
addition, significantly more T-cells, DCs, and expression of
the ICD-marker CRT were observed in the plasma group.
These results already suggested that oxidative tumor cell death
is immunogenic. In parallel, we provided evidence of plasma-
treated sodium chloride (0.9% NaCl), which has the advant-
age over cell culture medium that it is a medical product and
thereby would have fewer regulatory hurdles to take on the
way to the clinics [207]. Plasma-oxidized NaCl reduced CT26
colorectal tumor burden by more than 80%. This was accom-
panied by elevated levels of macrophages in the tumor tis-
sue and increasingly activated splenic T-cells after ex vivo co-
culture with CT26 cells [181].

The generation of plasma-treated NaCl with the kINPen
plasma jet is a lengthy process. For 50 ml, about 30 min of
treatment time were needed. Searching for alternatives, we
compared the kINPen head-to-head against another type of
discharge, the wINPlas [208], capable of generating 500 ml
in 120 min. Interestingly, however, the wINPlas did not sig-
nificantly reduce CT26 peritoneal tumor burden compared to
the kINPen [203]. This was hypothesized to be due to the
high acidification with the wINPlas and extremely tutorial
for designing future plasma-based peritoneal lavage applica-
tions. To exemplify the effect of the high acidification on cells,
we mention the different concentrations of the cytokine IL-2
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Figure 8. Two main modes and hypotheses in supporting anticancer
immunity using plasma technology. In the vaccination approach, an
anticancer vaccine is prepared with the help of plasma in vitro/ex
vivo, and added to the host thereafter to elicit anticancer immunity.

relevant for the survival of T-cells. For example, the average
level of IL-2 in animals without tumors was 2 pg ml−1, which
was elevated by tumor inoculation 400-fold to 800 pg ml−1.
Therapeutically inactive lavage with wiNPlas-generated saline
decreased peritoneal IL-2 concentrations in tumor-bearing
mice to 30 pg ml−1. This suggests that acidification eradic-
ated intraperitoneal T-cell activity almost completely. By con-
trast, therapeutically-effective lavage with kINPen-generated
saline decreased IL-2 levels to about 720 pg ml−1. There-
fore, plasma-treated liquids may play a role in targeting can-
cer, especially peritoneal carcinomatosis, in an immunogenic
fashion but, similar to direct plasma exposure, the details on
the generation and application frequency of plasma-treated
liquids can be possibly optimized. However, these studies also
provided evidence that the anticancer and potentially immun-
ogenic effects strongly relied on the long-lived oxidant H2O2,
which we could show in our latest study [205].

In summary, there is ample evidence from in vitro and
in vivo studies for several tumor models and plasma devices
that plasma treatment reduces tumor growth in an immuno-
genic fashion, which could potentially be transferred to clin-
ical settings.

5.4. Scientific concepts for plasma supporting anticancer
immunity

From the mentioned studies, three main concepts can be
distilled where plasma treatment could support anticancer
immunity.

The first concept involves the direct plasma treatment of
tumors. Local damage will induce ICD and release tumor anti-
gens to promote anticancer T-cell immunity further. At the
same time, plasma treatment elevates inflammatory markers,
leading to the influx of additional immune cells into the tumor,
which can aid in tumor killing or dampen the immunosup-
pressive features of the TME (figure 8, left panel).

However, definitive evidence is missing that this process
contributes to the anticancer effect in the plasma setting. The
issue is that the plasma treatment performs anticancer action
by itself, so it is hard to distinguish how much of the effect

comes from the immune system (at least in the models where
only one subcutaneous tumor was injected). Animal studies
are needed to control for this. Using antibodies, T-cells should
be blocked and eventually removed from the system to infer
on their role. If the long-term (in the sense of a few weeks in
a mouse model) anticancer plasma effects are more potent in
the presence of T-cells, their antitumor contribution is clearly
shown. In the case of sustained tumor growth retardation upon
plasma treatment also in the absence of T-cells, this could be
a result of the treatment to change, e.g. the metabolic profiles
or other TME features of the tumor. In addition, tumor models
with moderate growth kinetics should be chosen to investigate
immune-related processes better. Another unknown factor is
the composition of the TME in the tumor model in question.
It is known that tumor cells can shape the TME in their favor
so that even the most dedicated T-cells will become immun-
osuppressed quickly in the TME. Although this is still a ques-
tion in tumor immunology in general, plasma may be a tool to
study how local tumor damage affects anticancer immunity.
Another point is to unambiguously show that immune-related
molecules, such as DAMPs and ICD markers, are increased
within the tumor after plasma treatment. The unavoidable
nature of most studies is repeated plasma exposure, followed
by animal euthanization at given endpoint days to weeks later.
To study immediate ICD or DAMPs effects, proof of concept
experiments should terminate animal experiments e.g. already
24 h after plasma treatment. This timepoint also allows for
studying the TME in detail. An inspiring approach is blood
collection, as was done in one study 1 h after plasma treatment,
to monitor blood serum HMGB1 levels [200]. However, it is
unclear whether such findings might occur with other tumor
cell types, too. Another elegant method would be the injec-
tion of genetically modified tumor cells with, for instance, an
increased expression of ICD markers per se. The highlight
would be the expression under a joint promoter with a fluores-
cent protein or luciferase to follow the intratumoral expression
of such a marker via in vivo imaging methods.

The second approach is vaccination (figure 8, right panel).
We recently provided the first study of its kind that plasma-
supported vaccination approaches not only of cells but also of
proteins are, in principle, feasible and could be effective [197].
However, it needs to be shown that effects rely on their action
by, e.g. using anti-T-cell antibodies to support this idea con-
ceptually. If not, and improved efficacies of plasma-supported
anticancer vaccination are still shown, other mechanisms than
T-cells need to be considered, e.g. antibody-producing B-cells.
A textbook prime-boost (the COVID19 pandemic news made
these terms clear to everyone today) immune response in the
mouse takes at least twoweeks for T-cell immunity and at least
three weeks for proper antibody production. The Ova antigen
model has already shown increased immunogenicity and suc-
cessful vaccination properties as a plasma-treated model anti-
gen. It further enables studies to clarify fundamental questions.
Nevertheless, proof-of-concept vaccination experiments are
needed to show that plasma treatment can increase the immun-
ogenicity of a tumor or tumor-associated antigen (e.g. MART1
in the case of melanoma) [209]. It is also unclear which plasma
treatment mode, ROS composition, and exposure time are
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needed to increase such immunogenicity to a maximum. In
addition, such an approach may work best in the presence of
an adjuvant, with the best adjuvant needing to be determined.
Moreover, to unambiguously show that the plasma process
increased the width and/or depth of T-cell responses to a given
antigen, TCR sequencing is needed, a technically ambitious
and costly intent. Our recent review can offer more in-depth
information on this approach [15].

The third approach to induce toxic effects in the tumors
and potentially promote anticancer immunity is using plasma-
treated liquids. However, conceptual evidence lacks that such
toxicity is due to the short-lived ROS that makes plasma
unique.What is observed, to the best of our knowledge, mainly
is the presence of H2O2, nitrite, and nitrate only [210–212].
These three molecules could be easily added to liquids with
higher pharmaceutical accuracy and without using techno-
logically elaborated plasma processes that in clinical scen-
arios would succumb to strict regulatory and quality manage-
ment constraints. Some studies claim the presence of some
secret ingredient in such liquids because they cannot replic-
ate the effect of plasma-treated liquid if using concentration-
matched (chemically generated) analogs of such liquids. This,
however, may be a consequence of inaccurate species quan-
tification such as using spectroscopy; the standard methods
used and proposed in redox biology, the community work-
ing with reactive species for decades, should be used instead.
The simplest method to underline the expected dominant effect
of H2O2 in such liquid is the addition of the H2O2 degrading
enzyme catalase in the H2O2 detection method (to show that
the catalase is functional) and the cells exposed to the plasma-
treated liquids or the liquid directly [213]. Moreover, H2O2

deteriorates over time, and nitrite converts to nitrate; hence,
timing in measuring and using such liquids is important. Fur-
thermore, we recently demonstrated in vivo the similar efficacy
of plasma-treated saline and a concentration-matched control
against peritoneal carcinomatosis in mice [205], underlining
the dominant role of H2O2.

There is also the possibility of plasma oxidizing molecules
or biomolecules in liquids. Yet, evidence is lacking that these
oxidized molecules are the primary mediators of biological
effects induced by plasma-treated liquids apart from a detailed
study on Ringer’s lactate by Tanaka and colleagues, which,
however, was not yet confirmed by other groups or for other
plasma devices [214]. Besides the question of the scientific
soundness of using plasma-treated liquids, their anticancer
effects in vitro and in vivo are evident and summarized in
detail elsewhere [215, 216]. In terms of hard evidence on
their immune-stimulating role, all of the mentioned know-
ledge gaps are also present here. T-cell depletion, thorough
investigation of the TME, and more profound exploration of
the TCR clonality are vital to unambiguously demonstrate the
oxidative (likely H2O2-induced) tumor cell death to enable
additional immune protection to a certain degree. Concep-
tionally, our head-to-head study comparing the kINPen vs.
the wINPlas treated liquids in vivo [203] raised many more
questions on whether we understand the generation, stor-
age, characteristics, and applications of such liquids and the
potential differences that may appear when testing several

tumor models. Some of these aspects were investigated in a
very elegant approach, in our hands, by Jinthe van Loenhout.
van Loenhout and colleagues compared several cell lines, util-
izing human primary monocyte-derived DCs, and assaying
several aspects of immunogenicity, such as surface marker,
activation marker, cytokine secretion, and tumor cell phago-
cytosis in the context of plasma-treated liquids [182]. A sim-
ilar, partially less exhaustive study by Tomic and colleagues
extending the investigation to T-cell activation by using tumor
cell lysates exposed to plasma-treated liquids in vitro provides
additional clues to test the immunogenic consequences of
such liquids [189]. Analogous studies are needed to under-
stand better the relationship between the types of liquids,
plasma sources, H2O2, nitrite, and nitrate levels, and cell types
investigated. It is also required to comprehend the immuno-
oncological consequences of plasma-treated liquids within
suitable in vivo models.

5.5. Clinic-related concepts for plasma supporting
anticancer immunity

Plasma is still a relatively recent therapeutic concept in onco-
logy. Concerning the pyramid of evidence-basedmedicine, the
clinical benefit of plasma cancer treatment is markedly ques-
tionable. Randomized and controlled clinical studies with lar-
ger patient cohorts on high-grade tumors are absent in the lit-
erature. Notwithstanding, it is outlined in the following what
are the main clinical applications where plasma cancer treat-
ment might be helpful to stimulate immunity. It should be
mentioned that many new therapies are tested in palliative can-
cer patients, i.e. patients that failed all standard therapies. This
is because it would be unethical to deny patients existing and
clinically proven therapies in favor of novel but even less tested
approaches of unknown efficacy, even if safety testing was
provided.

The first application is the direct and topical treatment of
superficial tumors. In terms of potential targets for gas plasma
treatment in patient-derived samples, this includes skin can-
cer, such as melanoma [217] and cutaneous squamous cell and
basal cell carcinoma [218], as well as ulcerating cancers break-
ing through the skin, such as breast cancer [219–221] and oral
and head and neck squamous cell carcinoma [161, 222, 223]
and oral precancerous lesions [224]. In addition, for most of
these tumor types, in vivo studies had shown pro-immunogenic
effects of plasma treatment as indicated above. Combining
the plasma treatment as an adjuvant with checkpoint therapy
would appear plausible, allowing potentially novel or suppor-
ted existing T-cell clones to amplify their antitumor activities.
However, checkpoint therapy is less used in the palliation of
tumor patients or patients who have already failed to respond
to checkpoint inhibitors. Regarding ulcerating tumors, we
have previously speculated that their infectious cargo, usu-
ally bacteria and fungi, may function as immune boosters
during plasma treatment [225]. Specifically, cancer cells and
pathogens are killed in such infected ulcerating tumors side
by side. The strong immune-stimulating action of micro-
bial products amplifies anti-pathogen and anticancer immune
responses. Preclinical evidence proving this hypothesis in
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those tumor models is scarce, but microbes have long been
hypothesized to support antitumor immunity involuntarily
[226]. For instance, the long-standing application of BCG bac-
teria intentionally instilled into bladder cancer patients’ blad-
ders promotes inflammation [227]. For non-ulcerating melan-
oma and cutaneous squamous cell carcinoma, the skin meta-
stases exposed to plasma would serve as a tumor antigen pool
freed by the plasma treatment to promote immune responses.
Most lesions could be easily removed via surgery. Still, one
of the primary ideas of plasma cancer treatment supporting
immunity is not to debulk the tumor (i.e. eliminating tumor
mass via plasma exposure). Instead, tumor cell killing should
occur in a specific immunogenic fashion in conjunction with
inflaming the TME to provide in situ antitumor vaccination.
Similarly, any tumor wound in the surgerical setting could be
subjected to plasma treatment, e.g. internal tumors. The idea
would be to remove micro-metastases and induce immuno-
genic effects in the residual tumor cells. The caveat of such an
approach is that plasma could be applied only once (i.e. during
surgery). While the idea of treating tumor wounds has been
around for more than 10 years, two in vivo studies provided
experimental evidence that such treatment improves antitumor
immunity [192, 204]. In the case of non-ulcerating tumors,
the human skin is too thick to permit long-ranged plasma
effects, as this was non-successfully tried before using the
kINPen [228]. The relevance of mouse models here is relat-
ive, as their skin is much thinner than human skin. A promising
approach seems the hollowmicroneedle technology combined
with plasma treatment provided by Richard Wirz and Zhen
Gu’s laboratories [198]. Most clinical evidence with regular
plasma exposures is present for treating actinic keratosis, a
grade 0 carcinoma in situ that—by itself—is not fatal. Nothing
is known concerning plasma-treated actinic keratosis’s role in
endorsed anticancer immunity.

As a second clinical approach, the anti-tumor effect of
the plasma could be increased through vaccination (figure 9).
As with the previously explained plasma-oxidized tumor-
associated antigens or plasma-treated tumor lysate, the tumor
could be reduced successfully in vivo [180, 197]. Furthermore,
the studies show evidence of the generation of memory T-cells
after vaccinating oxidized tumor lysates and antigens, which
are essential for detecting cancer cells. The increased immuno-
genicity of the plasma-treated antigens and lysates is based on
an adjuvant (supporting) effect. In tumor cells, plasma induces
immunogenic cell death, which causes increased immunogen-
icity. It could also be speculated that the oxidized differ from
native antigens. While a native protein is probably recognized
as the body’s own, plasma-induced modification could lead to
an alternative reaction of the T-cells and enables an expansion
of the TCR repertoire [229].

Cell transfer therapy with antigen-loaded DCs bypasses
this complicated process and has already been shown for DCs
loaded with plasma-treated lysates in vitro [189]. Yet, such
an approach has not been used in vivo or in clinics. It would
require extensive efforts because the plasma-treated tumor
lysate would be categorized as a medical product, subsiding
specific and extensive regulatory protocols. Moreover, the
detailed treatment protocols and optimal plasma process have

Figure 9. Hypothetical scheme of generating plasma-aided
anticancer vaccines. Reproduced from [15]. CC BY 4.0.

not yet been worked out. However, if sufficient proof-of-
concept data are available, the method could, in principle, be
applied to all tumor types and stages, sufficient immunogen-
icity provided. It should be mentioned that tumor vaccina-
tion is an extensive field of research, and no consensus has
been reached in tumor vaccination immunology on optimal
vaccination strategies. Hence, albeit the approach of plasma
tumor vaccination is encouraging, the clinical application of
this strategy probably is a long-term rather than short-term
achievement.

The third clinical approach envisioned is immunostimu-
lation using plasma-treated liquids (figure 10). So far, clin-
ical evidence is not present. It must be mentioned that only
liquids approved as medical products, such as sodium chlor-
ide and Ringer’s lactate, can be used as plasma-treated liquid
for clinical application [215]. Despite the promising res-
ults seen with using cell plasma-treated culture media, such
solutions have no practical or clinical relevance. Therefore,
those solutions should be avoided to focus research capacit-
ies on clinically promising approaches. Plasma-treated liquids
could be used in combination with hyperthermic intraperiton-
eal chemotherapy [230] or pressurized intraperitoneal aero-
sol chemotherapy (PIPAC) [231]. Here, drug-loaded liquids
are pumped or sprayed into the peritoneal cavity to reduce
tumor burden if the number of locations of metastases are dif-
ficult to remove by surgery. There is not much known about
the immunostimulating effects of HIPEC and PIPAC. Com-
bination with plasma-treated liquid may reduce side effects of
HIPEC and PIPAC and promote immunogenic oxidative cell
death, as suggested in some of our studies [181, 202]. As of
now, it is questionable whether clinical evidence will be gen-
erated to investigate combination treatment with HIPEC or
PIPAC and plasma-treated liquids aiming at increasing anti-
cancer efficacy and promoting immunity. Both treatments are
offered only by a few specialized centers at relatively high
costs and efforts. Related to the field of plasma-treated liquids
is the application of plasma-treated hydrogels to treat surgical
tumor margins [232, 233]. However, clinical application has
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Figure 10. Putative clinical treatment routes of plasma-treated
liquids or hydrogels. The type of liquid needs to be a medical
product if clinical application is envisaged. CTx = chemotherapy;
Ox = oxidized liquid, generated using e.g. a plasma process.
Reproduced from [215]. CC BY 4.0.

not been reported for this plasma approach yet. The same is
true for intratumoral intraosseous injection of plasma-treated
liquids to targeted cancer cells, albeit some promising reports
are available on preclinical evaluations of this application
[234, 235].

6. Conclusion

Compelling evidence suggests plasma-generated ROS to
induce oxidative cancer cell death, which can have inflam-
matory and immunogenic properties. Several syngeneic tumor
models provided evidence of altered immune cell activity and
intratumoral infiltration. However, the amplitude by which
immune cells contribute to anticancer activity is less clear as
of now. Abscopal effects observed in plasma-treated anim-
als indicate unleashed antitumor immune responses. Yet, final
proof using T-cell depletion models is awaited. Clinically,
the dedicated utilization of plasma processes as antitumor
immune-stimulants is not of particular medical interest yet.
This is because the use of plasma technology as an antican-
cer tool is still in its infancy. However, first case reports series
in palliative and heavily infected head and neck cancer tumor
wounds and using an approved argon plasma jet provide evid-
ence of an anticancer efficacy and suggest potential immune-
simulative effects. In general, the vaccination with in situ
plasma treated tumor cells of surface tumors or resected tumor
margins during surgery are leading concepts of how anti-
tumor immunity may be engaged using plasma systems in
oncology. Clinical efficacymight be complemented using ded-
icated plasma-assisted autologous tumor vaccine preparations.

In summary, plasma cancer treatment and immunostimulation
is a promising field, but further studies in vivo and clinical
investigations are awaited to provide more scientific evidence
for its rational use for helping future patients.
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