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ABSTRACT 

 

The purpose of this thesis is to analyze the extent to which the historical financial data of 
a stock suffice to make meaningful predictions about its future price with the use of 
Machine Learning. The intuition behind our task is that, as the price of a stock fluctuates, 
it is assumed to follow certain patterns which we hope to capture using Deep Learning 
and utilize for future predictions. 

Firstly, we will expand on the necessary theoretical background information regarding 
Machine Learning, focusing particularly on the neural networks that will later be used. 
Following that, we will examine how existing research regarding stock market forecasting 
using similar techniques fared in the past and we will proceed to propose a regression 
model using Long short-term memory (LSTM), a Recurrent Neural Network architecture 
most suitable for this kind of tasks. Finally, using data from Athens Stock Exchange, we 
will attempt to make predictions about the future trajectories of the stocks’ prices and 
draw conclusions from them. 
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ΠΕΡΙΛΗΨΗ 
 

Ο σκοπός αυτής της πτυχιακής είναι να αναλυθεί ο βαθμός στον οποίο τα ιστορικά 
οικονομικά δεδομένα μια μετοχής επαρκούν για να πραγματοποιηθούν ουσιώδεις 
προβλέψεις της μελλοντικής της τιμής με τη χρήση Μηχανικής Μάθησης. Η διαίσθηση 
πίσω από την εργασία μας είναι ότι, καθώς η τιμή μιας μετοχής κυμαίνεται, θεωρείται πως 
ακολουθεί κάποια μοτίβα τα οποία ελπίζουμε να αντιληφθούμε χρησιμοποιώντας Βαθιά 
Μάθηση και να τα αξιοποιήσουμε για μελλοντικές προβλέψεις. 

Αρχικά, θα παραθέσουμε το απαραίτητο θεωρητικό υπόβαθρο σχετικό με τη Μηχανική 
Μάθηση, εστιάζοντας ιδιαίτερα στα νευρωνικά δίκτυα που θα χρησιμοποιηθούν στη 
συνέχεια. Έπειτα, θα εξετάσουμε τις ήδη υπάρχουσες έρευνες σχετικά με τις προβλέψεις 
χρηματιστηριακών αγορών που χρησιμοποιούν παρόμοιες τεχνικές και θα προτείνουμε 
ένα μοντέλο παλινδρόμησης χρησιμοποιώντας Μακροχρόνια βραχυχρόνια μνήμη 
(LSTM), μία αρχιτεκτονική Επαναλαμβανόμενων νευρωνικών δικτύων (RNN) που είναι 
πλέον κατάλληλη για τέτοιου είδους προβλήματα. Τέλος, χρησιμοποιώντας δεδομένα 
από το Χρηματιστήριο Αθηνών, θα επιχειρήσουμε να πραγματοποιήσουμε προβλέψεις 
για τις μελλοντικές πορείες των τιμών των μετοχών και να εξάγουμε συμπεράσματα από 
αυτές. 
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PREFACE 
 

This thesis was conducted as part of my Bachelor’s Degree in Computer Science at the 

Department of Informatics and Telecommunications of the National and Kapodistrian 

University of Athens, spanning about 6 months. The first half of these was devoted 

entirely to research, both regarding neural networks in general as well as specifically for 

related forecasting problems. The latter half was focused on the development of the 

necessary code and the actualization of the predictive experiments. 
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 BACKGROUND 

 Types of Machine Learning 

  Supervised Learning 

Supervised Learning is the task of generating a model that can map any valid input to 

some specific output. In order to achieve this, we split our available data – which should 
be in the form of a vector of inputs along with the desired output (label) for each – into 
two sets, the training set and a smaller test set. We then train our model and finally, in 
order to validate its accuracy, try it against the test set. If the results are unsatisfying then 
the model’s parameters should be tweaked and the above process be repeated. 

The most common classes of problems that are usually solvable using Supervised 
Learning are the following: 

 

 Classification 

Classification is the problem of discovering to which of a set of known categories a new 

input belongs. Those categories – or classes – can be two (binary classification) or 
more (multiclass classification). A simple example of binary classification can be seen 
in Figure 1 where we have multiple datapoints of both healthy and diseased people and 
we’re trying to draw a line so as to be able to predict a new person’s health based on their 
Gene 1 and Gene 2 values. 

 

Figure 1: A Classification example 

 

 Regression 

Regression is also used for predicting and forecasting but for continuous values as 

opposed to classification’s discrete ones. 

Continuing the theme of the above example, a regression one could be the following:  
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Figure 2: A Regression example 

Here, if for a new patient we know either the years they’ve survived or their Gene 1 value, 
we can predict the other one with the help of the plotted line. It should be noted that in 
this simple case a mere line seemed enough – that’s called linear regression. In cases 
where greater predictive power is needed, one may have to use more complex non-linear 
regression models. 

Time series prediction, cases of which are weather forecasting as well as our task, stock 
market prediction, is a common type of regression problem and we will be revisiting it in 
later chapters. 

 

 Unsupervised Learning 

Contrary to Supervised Learning, Unsupervised Learning does not require output 

variables for the provided input data, but it’s also used in cases where the optimal end 
result is not predetermined. Its aim is instead to help find previously unknown patterns or 
correlation in the data. 

Unsupervised Learning methods include: 

 

 Clustering 

Clustering is the task of discovering inherent groupings in the available data. This is done 
by grouping data objects in such a way that objects in the same cluster are more similar 
(in some regard) to each other than those in other clusters. 

Let’s see one clustering example by plotting flowers based on their petal length and width 
(Figure 3). Here, contrary to supervised learning, we don’t know beforehand how many 
different flower categories those belong to. We just provide a clustering algorithm (such 
as K-Means) with a desired number and it tries to best differentiate our data into this many 
clusters. 
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Figure 3: A Clustering example, using K-Means algorithm 

 

 Association 

Association rule learning is a method for discovering relations between variables of the 
available data. 

Association rule problems aren’t exactly describable with a single figure and given that 
they’re unrelated to our subject there’s no reason to analyze them further, but one good 
case for association would be knowing the products that the customers of a certain store 
bought and trying to find out which ones people have a tendency to buy together.  

 

 Reinforcement Learning 

This type of learning differs from the previously mentioned ones and it’s concerned with 
how software agents should act in a specific environment, aiming to maximize some 
predefined reward function. Reinforcement Learning is not Supervised Learning since it 
does not require a labeled set of input data but it also differs from Unsupervised Learning 
in that we know the expected reward beforehand and model our agent with it in mind. 
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Their generality allows them to be applicable in a vast range of fields, such as genetic 
algorithms, game theory, as well as any problem that could also be tackled using 
Supervised Learning – in that case, the reward is given when the output for a training set 
input matches its given label. 

 

 Neural Networks 

Artificial Neural Networks (ANNs) were originally designed with the purpose to mimic the 

architecture of the human brain and its ability to process and learn information. While 
newer advances in ANNs have weakened that original link between the two, the 
fundamental idea remains that both human brains and ANNs learn by example and 
improve over time. The basic unit of computation in both is the neuron, often called a 
node or unit in ANNs. 

 

Image 1: Brain Neuron (left) compared to Artificial Neuron (right) 

From this point onwards we will focus solely on Artificial Neural Networks and the 
abbreviation “NN” will refer to them. 

 

 Network Architecture 

 Neuron 

First of all, let’s focus on the design of a single neuron as depicted in Image 1 (right), 
often also referred to as a perceptron. It receives any number of inputs along with a real-
valued weight for each one and constructs a linear combination, possibly adding a 

constant value for that specific neuron – known as bias – in the form of ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖 . Then, 

this output value is inputted to an activation function, the purpose and characteristics of 
which we’ll explain next up. 

Before doing that however, let’s examine the purpose of the bias and why its utility cannot 
be replaced by the weighted inputs. We’ll do that by example, using the simplest possible 
neuron with just one input and a sigmoid activation function (which, while we haven’t 
defined yet, does not affect our observations which would hold true with any other in its 
place). This neuron and the graph depicting its output value relative to its input x can be 
seen in Figure 4. 
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Figure 4: Output graph (right) of a Sigmoid Neuron without bias (left) 

The problem here is that regardless of the input’s and the weight’s values the neuron’s 
output is always zero-centered. Obviously, for flexibility’s sake, we would like to be able 
to overcome that limitation. That is where the bias comes in: 

 

Figure 5: Output graph (right) of a Sigmoid Neuron with bias (left) 

As we can see, changing the bias’s value effectively allows us to shift the neuron’s output 
to the left or right. 

Despite all that, it is worth noting that sometimes the bias is not considered a fundamental 
part of the neuron and, depending on the task as well as the size of the overall network, 
it may be omitted. 
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 Activation Function 

The output of the activation function of a neuron is, for all intents and purposes, the 
output of that neuron. With some activation functions, such as Sigmoid or tanh, that output 
may always be in a closed interval (such as [0, 1] or [−1, 1] respectively), with values near 
the right end signifying that the neuron should to be activated, while those near the left 
one meaning that the neuron is to remain inactive. For other activation functions that 
interval may be left-closed as is the case for ReLU, or it can even be open – an example 
of which is Leaky ReLU.  

At this point it’s not yet evident why we would need an activation function. Besides, if our 

only requirement was to have a result in some interval (𝑎, 𝑏), it would be much simpler 
to, say, normalize the neuron’s output to that interval and be done with it. For that purpose, 
let’s examine the final output of the simple NN depicted below: 

 

Image 2: A simple Neural Network 

𝑜1 = 𝑦(𝑤5ℎ1 + 𝑤6ℎ2) = 𝑦(𝑤5 ∙ 𝑦(𝑤1𝑥1 + 𝑤3𝑥2) + 𝑤6 ∙ 𝑦(𝑤2𝑥1 + 𝑤4𝑥2)) 

Assuming a hypothetical linear activation function 𝑦(𝑥) = 𝑘𝑥, where 𝑘 is a constant, the 

above can be rewritten as: 𝑜1 = 𝑘(𝑤5𝑘(𝑤1𝑥1 + 𝑤3𝑥2) + 𝑤6𝑘(𝑤2𝑥1 + 𝑤4𝑥2)) =

𝑘2(𝑤5𝑤1𝑥1 + 𝑤5𝑤3𝑥2 + 𝑤6𝑤2𝑥1 + 𝑤6𝑤4𝑥2). 

As we can observe, were we to use a linear activation function, the output we’d get would 
simply be a polynomial of first degree in regards to the input values. And while this 
example was rather small-scale, that linearity would hold true regardless of the number 
of neurons and layers in the network. While a network comprised solely from linear 
equations would undoubtedly be computationally cheap, it would also have limited power 
and, consequently, limited performance especially in complex problems. As such, we 
deduce that activation functions are not only necessary, but it is a requirement for them 
to be non-linear. 

What this all comes down to is the necessity for NNs to be able to learn and represent 
any arbitrary complex function which maps inputs to outputs. That ability is indeed 
achieved by using non-linear activation functions that allows NNs to be considered 
Universal Function Approximators [1]. 

When it comes to choosing an activation function for a neuron there isn’t a one-size-fits-
all answer. The requirement is just a non-linear function that is also differentiable, which 
is needed to perform an optimization algorithm called backpropagation that will be 
explained later on. 

The most frequently used ones are the following: 
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Figure 6: Frequently used Activation Functions 

 

Indicatively, ReLU is often preferred especially in deep NNs due to its speed, while the 
once ubiquitous sigmoid has decreased in popularity. Still, each one has its advantages 
and its drawbacks and the optimal one will depend on the task at hand. Also note that an 
activation function is a characteristic of the node itself meaning that, if for whatever reason 
that is deemed desirable, it is possible to have neurons with different activation function 
within the same network. 

 

 Layers 

Neural Networks are comprised of layers each of which is comprised by multiple neurons. 

Every NN has exactly one input layer through which the input data enters the network 
and exactly one output layer which serves as the result of the NN itself.  

The number of neurons of the input layer is usually equal to the number of features of the 
input data, while that of the output layer depends on the task. For instance, for a NN 
serving as a binary classifier the output layer may contain a single neuron where a value 
below in the interval [0,0.5) indicates classification in class A and, conversely, a value in 

(0.5,1]  indicates classification in class B. In n-class classification however, n output 
neurons may be preferred, with the value of each one signifying the probability of the 
input belonging to the nth class. 

Between the input and the output there can exist 0 or more hidden layers. NNs that 
contain multiple hidden layers are referred to as deep – and hence the subfield of 
Machine Learning that employs their use is called Deep Learning. Networks without a 
single hidden layer are only capable of representing linear separable functions or 
decisions (for example, in binary classification that would include the “AND” and “OR” 
problems but not the “XOR” problem) which are obviously rather trivial and the sort of 
problems that are usually tackled with simpler means than NNs like Support Vector 
Machines (SVMs). Networks with exactly 1 hidden layer can approximate any function 
that contains a continuous mapping from one finite space to another while 2 layers suffice 
to represent an arbitrary decision boundary to arbitrary accuracy with rational activation 
functions and can approximate any smooth mapping to any accuracy [2]. 

Based on that final fact it would stand to reason that one would never need to use more 
than 2 hidden layers for any NN but, beside that mathematical fact, they are indeed 
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sometimes used as they have in some cases been observed to increase accuracy. Even 
then, 3 hidden layers is the greatest number of layers that is practically used and even 
that has been found to significantly increase the network’s training time [3]. As such, if 
training time is a major factor the current application one should seek to minimize the 
number of network layers [4]. 

However, apart from choosing the number of the hidden layers themselves, another non-
trivial task is to determine the correct number of neurons to use in each one. An initial 
thought, given that we’re indifferent to the training time required, could be to have a multi-
layer network with a very large number of neurons in each hidden layer in order to have 
our network adapt as much as possible for our input data.  Besides the complexity and 
the obvious computational difficulties of that approach, it turns out that its results would 
actually also be suboptimal. To understand why we need to familiarize ourselves with a 
required property of NNs called Generalization: the network’s ability to make decisions 
about previously unknown data based on what it has been trained on. When there is a 
great number of parameters (weights) that are modifiable during training, as would be the 
case of a NN with multiple hidden layers containing multiple neurons, the network tends 
to adjust to specific details of the training set, which inevitable leads to overfitting [5]. 

There actually are many rule-of-thumb methods for determining an acceptable number of 
neurons to use in the hidden layers, such as the following [2]: 

• The number of hidden neurons should be between the size of the input layer and 
the size of the output layer. 

• The number of hidden neurons should be 2/3 the size of the input layer, plus the 
size of the output layer. 

• The number of hidden neurons should be less than twice the size of the input layer. 

To conclude, the selection of a good enough architecture for any neural network will come 
down to trial and error. For most cases, it’s suggested to strive to have a network be 
sufficiently small to adapt to the important and primary characteristics of the data used 
for its training, yet also able to ignore any secondary details that would hinder its ability 
to generalize. 

 

 Training risks 

The concept of training has already been mentioned so far and it would thus be a good 
idea to further expand on it before proceeding. As mentioned in 1.1.1, the training process 
generally requires splitting our initial dataset comprised of labelled inputs into two sets, 
named training and test, with only the training set being initially provided to our model. 

The caveat here is that we do not want our model to adapt to that training set too closely 
as that would cause Overfitting. Overfitting occurs when the trained model is adapted 
too closely – or even exactly – to the data points with which it was trained. Consequently, 
despite high measures of accuracy in the training set, its accuracy when used for new 
data will be significantly lower and worse than it would have been with an optimal model 
(with less training set accuracy). 

The opposite phenomenon is called Underfitting, where the trained model is unable to 
adequately capture the underlying structure of the data. It can either be caused by lack 
of training or by using too simple of a model for the task at hand – that could be, for 
instance, trying to fit a linear model to non-linear data as depicted in Figure 7 (left). 
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Overfitting on the other hand can occur when a model is too complicated or may simply 
be the result of overtraining. A visual representation of the latter can be seen in Figure 7 
(right). 

 

Figure 8: Testing and Training Errors plotted against Training Steps 

In Figure 8 we see the calculated training and testing errors for some model as training 
progresses through time. Both errors keep decreasing until a certain point, after which 
the training error keeps decreasing (albeit more slowly) while the testing error starts 
increasing. The red dotted line signifies the “ideal” model, one that is sufficiently trained 
to generally make predictions about new data with an accuracy that isn’t far worse than 
the training one. 

In order to prevent overfitting, a technique named Regularization is used. Its exact 
purpose is to significantly reduce the variance of the model, without substantial increase 
in its bias. There are different approaches when it comes to regularization, one of which 
is early stopping of training, which was described above. Due to its ease of use, early 
stopping should almost always be used, unless there’s a specified reason not to for any 
particular problem [6].  

In NNs in particular, a regularization method that is frequently used is called Dropout. 
What that does is randomly deactivate neurons and/or connections during the training 
phase, as shown in Image 3. 

Figure 7: Examples of Underfitted (left), Optimal (center) and Overfitted (right) models 
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Image 3: An example of a NN before (left) and after (right) applying dropout 

This forces the network to not rely on specific neurons or connections to extract specific 
features while training. Once the training is complete, all neurons and connections are 
restored to their original locations.   

It is worth noting that using dropout layers negatively affects the overall training time: The 
number of epochs required to converge will be increased even though the training time 
of each epoch will be shortened [7]. 

 

 Cost function 

In the beginning, the weights in between our network’s layers will be initialized to some 

arbitrary values. While research has been made to suggest strategies with which to 
initialize them [8], it is to be expected that our first outputs will diverge significantly from 
the optimal ones. So, in order to be able to quantify by how much the network’s output 
was wrong we need to employ a Cost Function (also known as Loss Function). This 
function’s utility is the knowledge that by minimizing its value we achieve higher prediction 
accuracy. 

The most frequently used cost function is called Mean Squared Error (MSE) and is 
computed as: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1

 

where 𝑌 is the vector of observed predicted values and �̂� the vector of their desired ones. 

Other widely used cost functions include Mean Error (ME), Mean Absolute Error (MAE), 
Mean Percentage Error (MPE), Mean Absolute Percentage Error (MAPE) and Cross-
Entropy Loss. Factors to consider when choosing a particular cost function over another 
include the activation function chosen for our network’s neurons, whether we value a 
metric (such as precision or recall) more than just accuracy as well as how 
disproportionately harshly we want to cost larger errors. In any case, a good rule of thumb 
is that, unless we have a justification for preferring another one, MSE will suffice for most 
practical uses. 

The exact way the cost function is used to iteratively improve the network is using the 
backpropagation algorithm with the help of gradient descent, both of which terms we’ll 
examine next up. 
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 Gradient Descent 

As we’ve just mentioned, in order to maximize our model’s performance, the requirement 
is to minimize the cost function. The way this is generally done in NNs is using an 
algorithm called Gradient Descent (GD).  

The mathematics of it are admittedly fairly complicated, but an intuitive explanation can 
easily be given by imagining the graph of any arbitrary function. Regardless of its 
complexity, there is a simple way to find a local minimum of it: Choose a random point of 
it as a starting point and then calculate the derivative (gradient) there. If it is negative then 
choose another point to the right of the function relative to the value of the gradient (“step”) 
while if it’s positive respectively choose a point that is a step to the left. We repeat this 
process until either the gradient is 0 – in which case we found our minimum – or until the 
gradient changes sign, in which case we decrease the step even more and keep moving 
towards the minimum. Even though this iterative algorithm provides no guarantee that the 
minimum we’ll find will be a global one and in fact it most likely won’t be, finding a local 
minimum has been proven to yield good enough results without being computationally 
daunting. 

 

Figure 9: Simulation of Gradient Descent's convergence after multiple iterations 

Gradient descent can be generalized to functions with several variables like most widely 
used cost functions have. In such cases however, we cannot visualize the direction 
towards the local minimum schematically. In these the result we get is a vector with 
equally many variables, the sign of each one showing whether that particular cost function 
variable should be increased or decreased and with its absolute value indicating how 
much should the variable change. 

When using GD in a NN we use our entire dataset in each iteration – that is, in order for 
the network’s weights to update once we need to run through every sample in our training 
set and repeat that for every iteration. What that entails is the fact that for a single 
improvement numerous calculations (possibly millions, depending on the training set’s 
size) need to be done. 

That is why in practice in most NNs today variations of the above are used, mostly 
Stochastic Gradient Descent (SGD) and Minibatch Gradient Descent. Their 
difference is that they instead use only one or a subset of the training set’s data (often 
50) at random respectively, pass them through the network, and update the network’s 
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weight right away. Both those variations provide faster convergence than GD, but they 
are more likely to end in a worse minimized error function than it. Minibatch GD in 
particular is sometimes presented as the middle-ground between GD and SGD combining 
most of their advantages, but ultimately choosing the best Gradient Descent variation 
comes down to the training set’s size, our training time limitations and our necessity for 
optimal accuracy. 

As a last note, it may be useful to keep in mind that, unlike the deterministic GD, both 
SGD and Minibatch GD are, as the former’s name suggests, stochastic. Consequently, 
it’s fully possible and even likely that, due to their inherent randomness in choosing the 
training examples, these two will produce different local minima each time they’re run. If 
precise consistency in our results is required then GD should be preferred. 

 

 Backpropagation 

The “natural” way of information flow in a NN that we’ve been describing so far has only 
been forward. That is called forward propagation and describes exactly the path an 
input follows since entering the input layer until it exits through the output layer, passing 
any and all hidden layers in between in order.  

Backpropagation (or Backpropagation Through Time – BPTT, to be precise), on the 
other hand, is an algorithm almost universally used in the training of ANNs for supervised 
learning. At the end of each iteration (that is, a full pass of a batch/part of the training set 
though the network) we can compare the model’s outputs with the correct values. Given 
a cost function (as described in 1.2.3) we are able to quantify the divergence between 
actual and expected values and with the help of gradient descent (or one of its variants 
as detailed in 1.2.4) we can calculate how much the weights that resulted in those values 
should be changed and then change them accordingly. This entire process is repeated 
for as many epochs (passes over the entire dataset) as we want, but usual factors to 
take into account for when to stop it include: 

• When the model’s validation accuracy (or whatever metric is more important for 

the current problem) has not increased in 𝑋 epochs (where often 𝑋 ∈ [5, 20]) 
• When the validation accuracy starts to drop (which can happen due to overfitting 

– see 1.2.2) 

• Time and/or hardware constraints 
Note that whenever we refer to accuracy above as a factor to stop training, we emphasize 
validation accuracy – that is of the testing set – as opposed to training accuracy. The 
reason for that is simply that backpropagation is designed to always keep increasing 
training accuracy, at least until it reaches a local minimum of the error function after which 
it will stagnate. However, as it was explained in 1.2.2, it is possible and even likely for the 
optimal testing accuracy to have been reached before then, at which point the training 
process should halt. 

Without delving too deep into the math of backpropagation (which tends to quickly get 
fairly daunting even for small scale networks), the formula for an updated weight 𝑤𝑖

′ after 

backpropagation is 𝑤𝑖
′ = 𝑤𝑖 − 𝑎

𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝑤𝑖
 , where 𝑤𝑖 is the weight’s last value and 

𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝑤𝑖
 is 

the partial derivative calculated with gradient descent.  

The term 𝑎 ∈ (0,1] which we have not yet talked about is called learning rate and it is a 
constant value on which depends how quickly backpropagation will converge to a 
minimum. This constant need to be small enough so as to guarantee convergence, but 
the smaller it gets the slower that convergence is bound to happen. The optimal learning 
rate depends both on the cost function and the problem in question [9], with a common 
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practice being starting from a relatively large one and, if the training criterion diverges, 
gradually decrease the learning rate until no divergence is observed [10]. 

 

 Types of Neural Networks 

Most of what we’ve discussed so far, applies to all kinds of NNs. There are, however, 

some differences among different types of NNs that we’ll expand on here. 

 

 Feed-forward Neural Networks 

The most widely recognized kind of NN and the one discussed so far is that of 

Feedforward Neural Network (FNN). In these, the information moves only in a single 
direction – forward – which is evident from the fact that the neurons of one layer connect 
only to neurons of the next layer. An FNN containing at least one hidden layer (in addition, 
of course, to the input and the output layers) is more specifically called a Multilayer 
Perceptron (MLP). FNNs have no notion of order in time, and the only input they consider 
to provide an output is the one they are directly exposed to. 

 

 Convoluted Neural Networks 

A special case of MLPs are Convoluted Neural Networks (CNNs). The simplest way to 
describe their usefulness is that they use various regularization techniques to decrease 
the number of parameters that the network needs to process. This is very clearly 
understood in an example for the most frequent use case of CNNs, image recognition: 
Given a 48𝑥48 image, where each pixel has 3 separate values of interest (Red-Green-

Blue), we get 48 ∙ 48 ∙ 3 = 6912 of parameters for the input layer which is not necessarily 

unreasonable. However, for a higher resolution image, say, 1000𝑥1000 the number of 

input parameters rises to 1000 ∙ 1000 ∙ 3 = 3 ∙ 106 which is certainly not computationally 
manageable. This is where various filters and specific layers are used in CNNs to 
effectively group together many of those parameters before the actual training on them 
begins. Other uses of CNNs include image classification as well as video recognition. 

While we won’t delve deeper into the above since we won’t be using them for our stock 
market prediction problem, studying them provides a clearer understanding of NNs in 
general and it is useful to juxtapose them with the ones that we will encounter later on. 

 

 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) expand the functionality of MLPs in that they allow 
the output of nodes to be fed as input to these nodes themselves or even ones in previous 
layers. In other words, the output of the hidden layers for any input point is directed, apart 
from the output layer, again in the hidden layer for the next input point in order – that is 
called the hidden state. The necessity for that functionality stems from an underlying 
assumption in traditional NNs, that all inputs (and, by extension, outputs) are independent 
of each other. While this is indeed the case in a plethora of problems, there are some like 
series prediction where any output depends on previous ones. In general, whenever there 
is a sequence of data that is sequentially inputted in the network and the order of it is 
important, that is when RNNs are most useful. A common use case is speech recognition, 
where in order to predict the next word in a sentence the previous words are required and 
there’s a need for our NN to remember them. Stock prices are just another example of 
such timeseries. 
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Image 4: A Recurrent Neural Network, folded (left) and unfolded (right) 

 

An RNN is often depicted like on the left of Image 4 for simplicity’s sake, while on the right 
it can be seen unfolded (or unrolled) into a full network. What is meant by that is that, say, 
for a sequence of K words, the network would be unfolded into a K-layer NN, with each 
layer corresponding to a single word. Let’s further clarify the notation of this image:  

• W, V and U are various, possibly different between them, weights. It’s worth noting 
that those weights are the same across all steps, reflecting that each layer 
performs the exact same task, just with different inputs. 

• 𝑥𝑡 is the input at the time step 𝑡 – which would be a word in our example. 

• 𝑠𝑡 is the hidden state at the time step 𝑡 which is calculated using the formula 𝑠𝑡 =
𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1)  where 𝑓  is an activation function. 𝑠−1  which is required to 

calculate the following hidden states is typically initialized to 0. 

• 𝑜𝑡 is the output at time step 𝑡, which is what we would expect to be the network’s 

prediction for the next word in a sentence, having seen the previous 𝑡 − 1 words. 
If we don’t care about such partial outputs and we merely require, for instance, a 
prediction at the end of the sentence then all those outputs but the last could be 
omitted. [11] 
 

A simple extension of RNNs is that of bidirectional RNNs (Image 5). These are 
effectively two conventional RNNs stacked on top of each other and are based on the 
intuition that for certain problems, mainly revolving around text data due to grammatical 
and syntactical rules, require knowledge of future states to make better predictions for 
the current one. While they’re significantly useful for these problems, bidirectional RNNs 
cannot be used for predictions in timeseries-related tasks – since we obviously cannot 
base our predictions for the present time on future data – and as such we will not be 
exploring them further. 
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Image 5: A bidirectional RNN 

 

Let’s now discuss the problems that RNNs face. A major one which is also commonly 
found in other deep NNs is known as the vanishing gradient problem. Vanishing 
gradients make it difficult for the model to learn long-term dependencies. We’ll again 
illustrate this through an example, where an RNN is given this sentence: 

 

In this, were the RNN try to predict the last two words “german” and “shepherd”, it would 
need to take into account the inputs “brown”, “black, and “dog” which are the nouns and 
adjectives that describe a german shepherd. However, the word “brown” is quite far from 
the word “shepherd” and to calculate the backpropagation error of the “shepherd” back to 

“brown” we need to calculate the partial derivative 
𝜕ℎ15

𝜕ℎ2
 which, due to the chain rule, can 

be written as 
𝜕ℎ15

𝜕ℎ2
=

𝜕ℎ15

𝜕ℎ14

𝜕ℎ14

𝜕ℎ13
…

𝜕ℎ2

𝜕ℎ1
. The problem lies in that these chains of gradients, 

when their values are lesser than 1, can cause the loss from “shepherd” with respect to 

“brown” to approach 0, thereby “vanishing”. This makes it difficult for the weights to take 
into account words that occur at the start of a long sequence. As a result, during forward 
propagation the word “brown” may not have any effect in the prediction of “shepherd” 
because the weights weren’t updated due to the vanishing gradient [12].  

A similar and, in a way, “opposite” problem to the above that can also arise in RNNs is 
that of exploding gradients, which occurs by repeatedly multiplying gradients with 
values greater than 1. Exploding gradients can make learning unstable that may not be 

able to learn from the training data or even results in 𝑁𝑎𝑁 (Not A Number) weight values 
during training [13]. To some extent, this can be mitigated by gradient clipping, that is 
simply clipping the gradients if their norm exceeds a given threshold [14], [15]. 

Several approaches have been proposed to overcome both these problems, with some 
performance improvements in discrete cases [16]. Still, achieving that in traditional RNN 
architectures – especially in the case of the vanishing gradients – has proven largely 
difficult with conventional methods [17].  

 

 LSTMs 

Long short-term memory (LSTM) is an RNN architecture introduced in 1997 by 

Hochreiter and Schmidhuber [18] (and later refined by many others) in order to provide a 
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viable alternative to those domains that traditional RNNs are lacking, by changing how 
outputs and the hidden state are computed. 

The factor that has probably contributed the most in their popularity is that LSTMs 
specialize in so-called “long-term dependencies” – in a simple text recognition example 
that could mean having to predict a word based on information from paragraphs or even 
pages before it instead of a just few words before it in the same phrase. While RNNs are 
too supposed to be theoretically capable of tackling such problems, in practice this has 
been shown to be significantly challenging [19]. 

Let’s begin our dive into LSTMs by directly comparing them to RNNs (Image 6). 

 

Image 6: The repeating module of a standard RNN (above) compared to that of an LSTM (below) 

 

It is immediately obvious that the rationale of having a repeating module (cell) in a 
chainlike layout remains unchanged between the two. What does change – and 
significantly so – is the inner structure of each such module. A standard RNN’s cell 
contains just a single NN layer (such as a tanh layer) whereas in LSTM a single cell 
consists of four NN layers, interacting in a specific way. We will further analyze all of them 
next up by dissecting a single LSTM module. 
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A key characteristic of LSTMs that sets them apart from many other types of RNNs is that 
of the cell state (the horizontal line running through the top of the diagram) in addition to 
the module’s output (hidden state). The cell state is what effectively acts as the “memory” 
of the network and inside each cell there are ways to add or remove information to it in a 
carefully regulated manner. It is also important that information can potentially flow 
unchanged through the module and that is what allows LSTMs to be free of the vanishing 
gradient problem discussed in 1.2.6.3. 

It’s now time to talk gates. Gates are structures composed out of a sigmoid NN layer and 
a pointwise multiplication operation that provide a way to optionally let information 
through. More specifically, the sigmoid layer outputs a number in the range [0, 1] where 

0 means “let nothing through” while 1 means “let everything through”. 

 

 

Image 7: Dissection of an LSTM cell 

 

LSTM cells each use three of those gates, as annotated in Image 7. All three of them take 
as their input both the previous hidden state ℎ𝑡−1 and the current data input 𝑥𝑡. From left 
to right we have the following: 

i. The forget gate which outputs how much of the new input should be added to the 
cell state. At first, the notion of a forget gate might seem redundant or even 
counter-productive since the tasks that LSTMs are used for explicitly require being 
able to remember previous information. It does however improve the prediction 
capabilities of the network, with a simple example of that being again text 
recognition: if the subject of a text excerpt changes after a full stop, it would be 
helpful to omit/forget information about the previous one going forward. 
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ii. The input gate which is further comprised of two parts. First, a sigmoid layer 
decides which values should be let through. Then, a second NN layer gives weight 
to the values that will be passed, signifying their level of importance (a tanh layer 
sets these weights in the range [−1, 1]). 

iii. Last but not least, the output gate. The sigmoid layer, as before, decides which 
parts of the input should be included in the output and that result is then multiplied 
with the cell state after the latter is put through tanh. That is how the combined 

result of the new input and the cell state is finally outputted (ℎ𝑡). 
To recap, from beginning to end an LSTM memory cell performs 3 basic functions which 
correspond to the 3 gates we just described respectively: 

i. Decide what information from the previous cell state is worth remembering and 
forget that which is deemed irrelevant. 

ii. Selectively update the cell state using the new input. 
iii. Decide which part of the cell state should be outputted as the new hidden state. 

 

Image 8: Flow of information in an LSTM cell 

 

It should be noted that what we’ve just described is the “vanilla” and most fundamental 
version of LSTMs, but this type of network often appears with slight differences in 
literature. Some variants add “peephole connections” to some or all of the gates that allow 
them to also get the cell state as an input, while others for instance couple the forget and 
input gates, so that the cell can only decide to forget a piece of information if it also inputs 
some new in its place.  

A notable and more significant variation of LSTM is called Gated Recurrent Unit (GRU), 
introduced just in 2014 by Cho et al [20]. As can be seen in Image 9, a GRU cell is simpler 
than an LSTM one since it doesn’t only combine the forget and input gates into a single 
update gate but it also merges the cell state with the hidden state. While GRUs are 
currently rising in popularity and research into their tradeoffs is still ongoing, so far neither 
they nor any other commonly used LSTM variant seem to have exhibited any significant 
improvements compared to the vanilla one [21]. 
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Image 9: A GRU cell 

 

 Stock Market Information 

 Stock 

The stock (also known as “capital stock” or “equity”) of a corporation is comprised of 
all of the shares into which ownership of the corporation is divided. A single share of the 
stock represents fractional ownership of the corporation in proportion to the total number 
of shares. This typically entitles the stockholder to that fraction of the company's earnings, 
proceeds from liquidation of assets, or voting power, often dividing these up in proportion 
to the amount of money each stockholder has invested. Not all stock is necessarily equal, 
as certain classes of stock may be issued for example without voting rights, with 
enhanced voting rights, or with a certain priority to receive profits or liquidation proceeds 
before or after other classes of shareholders. 

The price of a stock fluctuates fundamentally due to the theory of supply and demand, 
even though there are many factors that influence the demand for a particular stock. The 
price of every stock changes on a daily basis, on days that the stock market operates 
(which mainly excludes weekends and some holidays). The data that is extracted at the 
end of a day for a particular stock are the values “Open”, “Close”, “High”, “Low” which 
represent the price that the stock had at the start of the day, the price that it had at the 
end of the day, the highest price that it reached during that day and the lowest one 
respectively. Finally, there is also a value for “Volume”, which represents the number of 
shares traded in that day. 

Some people merely purchase particular stocks and hold onto them as a long-term 
investment, hoping that their price will increase in the distant future while others – referred 
to as traders – constantly buy and sell various stocks, aiming to profit by buying when 
the stock price is at its lowest and selling it at its highest before it starts declining again. 
Some are actually doing that as the prices change during the day – called Day Traders – 
who also tend to use shorter timeframes for the previously mentioned values (such as 
hour or even 5-minute live intervals) but most only use the values extracted after the stock 
market closes – called End-of-Day Traders. The latter ones are also the reason why for 
most practical purposes one can get sufficient results by solely focusing on the “Close” 
value of the stocks. Regardless of their preferred way of trading, traders are the core 
users of all kinds of software for analyzing and predicting the stock market. 
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 Stock Market and Stock Exchanges 

By stock market we don’t mean any physical place but rather the aggregation of buyers 
and sellers of stocks. By contrast, a stock exchange is the institution or organization – 
accompanied by an actual venue – where traders are able to buy and sell shares of 
stocks, as well as bonds and other financial assets that are beyond our current interest. 

The stock exchange of Greece is known as the Athens Stock Exchange (ATHEX). It 
was founded in 1876 and it is based in the capital city of Athens [22]. For reference, the 
two noteworthy stock exchanges in the U.S. are the New York Stock Exchange (NYSE 
– 1792) and the NASDAQ (1971) while one of the oldest stock exchanges is England’s 
London Stock Exchange (1571). 

 

 Stock Market Index 

A stock market index is a measurement of a section of the stock market and is computed 

from the prices of selected stocks (typically a weighted average). Three of the most major 
U.S. ones are Dow Jones, NASDAQ and S&P 500, while for ATHEX those would be the 
General Index and FTSE/XA. Since they fundamentally act as benchmarks, it is not 
feasible to directly buy shares of an index. Despite that, this nature of stock market indices 
makes them a frequent focus for analytical and machine learning purposes.   

 

 Stock Market Prediction  

 Random Walk Hypothesis 

It has been suggested – and one could even argue it makes intuitive sense – that stock 
markets largely behave in random ways and are thus inherently impossible to predict. 
The term for that has been coined as “Random Walk Hypothesis” (RWH) and can be 
traced back to the 19th century. Extensive research has been made on this topic, 
analyzing long-spanning periods (and subperiods within them) and has long concluded 
that this claim does not hold true [23], [24].  

 

 Methods of Market Analysis 

The first of the two major methods of market analysis is called Technical Analysis and 
it is a means of examining and predicting price movements in the financial markets, by 
using historical price charts and market statistics. It is based on the idea that if a trader 
can identify previous market patterns, they can form a fairly accurate prediction of future 
price trajectories. Those traders have a lot of dedicated software at their disposal like 
Metastock, TradingView and TC2000 to name a few.  

The counterpart to technical analysis is Fundamental Analysis which focuses on 
external events and influences, as well as financial statements and industry trends. 
Essentially, contrary to technical traders who derive all their information they need from 
charts with historical price data, fundamental traders look at factors outside of the price 
movements.  

While both technical and fundamental analysis are currently used today – often together 
– by traders around the world, if we were to categorize our own attempts at predicting the 
stock market they would undoubtedly fall into the former category. 
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 Related Work 

 Stock Data-related approaches 

Predicting stock prices data with deep learning using past prices as input is a decently 

common task around the world, by Computer Science students and researchers alike. 
The abundance of such research served as a valuable resource both for references as 
well as ideas regarding which approach to take.  

While limited attempts have been made with mere FFNs [25], it was soon evident that for 
this task more specialized types of NNs are preferable. There have been methodologies 
that were fairly successful using CNNs [26], but the majority of existing research on this 
subject utilized RNNs and specifically LSTMs which were what led the focus of the 
experimental part for this thesis in that direction. Most of them were pretty straight-
forward, revolving around single-day predictions on NIFTY (an Indian stock index) [27], 
various American companies’ stocks [28] as well as Chinese ones [29], predictions which 
we will too try to replicate for ATHEX’s General Index.  

Lastly, it bares mentioning that there exist stock data-related ML approaches that do not 
involve NNs, but rather SVMs or Random Forests [30]. Nevertheless, as was presented 
by another paper which compared such approaches [31], LSTMs still appear to be the 
superior choice for this task. 

 

 Predictions using NLP 

A different approach than ours and one that does qualify as fundamental analysis, is that 

of using Natural Language Processing (NLP) to analyze relevant excerpts from current 
affairs regarding companies that participate in the stock market and then perform 
predictions based on the information gathered. 

In one such paper [32], the researchers used news excerpts – short phrases, labelled 
“events” – from Reuters and Bloomberg and simulated a real stock trader, achieving an 
accuracy better than state-of-the art baseline methods by a factor of nearly 6%.  

Similar techniques were employed in another paper [33], where a merged model was 
used combining stock price prediction using an RNN with textual – sentiment – analysis, 
again from news articles.  

However, for this approach to be of any practical use, a plethora of data in necessary. In 
the first paper used 10 million events for 15 companies and even then, they found that for 
the lower fortune ranking companies for which they had fewer news available the 
prediction results were significantly worse compared to the rest. The latter one did not 
report significant improvements in accuracy, despite having a dataset in the hundreds of 
thousands of news articles.   

Consequently, given the relative scarcity of detailed coverage on Greek companies in 
English and the limited state-of-the-art NLP algorithms capable of analyzing news 
sources in Greek, a conscious decision was made to limit our work to simpler 
“conventional” predictions using just the stocks’ data. 
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 PROPOSED APPROACH 

 Task Definition 

Quite simply, we want to take a given stock or stock index and attempt to predict the 
future behavior of its price, though not necessarily its exact future value, by identifying 
patterns that appeared on its data in the past. 

In accordance to what we described in 1.3.1, there is a handful of values that comprise a 
stock’s daily data. As we explained there, “Close” is the one that better encapsulates the 
concept of “value” for the stock in that day and as such will be the target of our forecasting 
attempts.  

As for the forecasting itself, there are two main ways to approach it. Those are:  

a) Predicting the price of the following day, based on the data gathered up to the 
current one. 

b) Make predictions in increments, which would mean performing predictions for a 
prespecified period of time, starting from a given day. This could be repeated 
multiple times throughout the test set. 

Both of these will be explored our experiments, with the focus being particularly on the 
latter. 

 

 Tools and Technologies 

The code development was done entirely in Python 3.6, using a prominent library 

specializing in NNs named Keras. It runs Google’s TensorFlow behind the scenes (and 
can also utilize a variety of other backends like Theano) but is also designed so as to be 
significantly user-friendly without sacrificing the functionality these lower-level libraries 
provide, a fact that has led to its growing popularity among both researchers and large 
organizations. Keras allows building powerful NNs with a high level of abstraction, 
allowing one to specify layers, activation and loss functions, compile and finally train a 
model in a matter of a few lines. For these reasons, Keras with TensorFlow were selected 
for the implementation of this thesis’ experiments. Other notable Python libraries that 
were used due to their well-known usefulness in a multitude of tasks such as file 
manipulation, scientific calculations and more include pandas, numpy and scikit-learn. 

 

 Dataset 

Stocks’ and stock indices’ historical data, especially when going back more than a couple 
of years, is generally not too easy to find freely available. That was also the case for the 
Greek Stock Exchange, the official site of which only provides data for the last 30 days 
(https://www.athexgroup.gr/el/web/guest/index-historic/). Following some online 
research, the necessary data was found and taken from https://gr.investing.com/. For 
each of the stocks and indices there was at least 5 years’ worth years of daily data 
(“Open”, “Close”, “High”, “Low” and “Volume”, starting from 2013 up to and including 
2019), which resulted in csv files of around 1600 rows each. 

The amount of data practically needed is a matter of discussion. In fact, some research 
indicates that, after a certain point, more data may actually increase the test error [34]. 
This research, however, did not contain any testing using LSTMs which are known to 
perform better with more data and, after some limited experimentation with our final 
model, it was evident that using more data consistently yielded better results than using 

https://www.athexgroup.gr/el/web/guest/index-historic
https://gr.investing.com/
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subsets of it. It is of course possible that if we had decades of data available then it may 
well have been preferable to omit some of them. 

 

 Focusing on Stock Indices 

Intuition dictates that, even if one of the stocks that comprise it were to behave out of the 

ordinary, the underlying patterns of an index’s movement would not be considerably 
affected. The apparent benefit of this fact is that it would render the movement of indices 
more predictable than that of individual stocks which in turn should entail greater 
prediction accuracy. For that reason, we will focus our predictions on ATHEX’s General 
Index, although we will additionally perform some of the same tests on Coca-Cola’s stock 
(EEE) which is ATHEX’s stock with the higher market capitalization at the time of writing 
[35]. 

Note that whenever “stock” is being mentioned in later chapters it will refer to either stock 
or stock index unless otherwise specified, since they don’t differ in any other way that is 
relevant in the context of this thesis. 

 

 Data Preprocessing 

 Data Cleaning 

This is usually quite an important step in ML experiments, even though in our particular 

dataset no significant filtering or cleaning was required. In our case, the data for each 
stock was in csv format and it contained the following issues: 

a) Unnecessary quotation marks around certain values. 
b) Commas instead of periods as decimal separators (difference between Greek and 

English conventions) which prevented their parsing in code. 
c) ‘K’ and ‘M’ to represent thousands and millions respectively in “Volume” values 

which again prohibited their parsing as numbers. 
d) Visibly invalid data, such as unexpected zeroes or missing values. 

The last one was luckily very rare and only appeared on a couple of “Volume” values 
which were replaced with the average volume of the surrounding few days, while the rest 
were easily corrected by finding and replacing them in-place with a simple Python script. 

 

 Normalization 

There is one major reason for the necessity of data normalization and feature scaling in 

particular that we’ll examine here and that is variable ranges. A simple example of that 
can be given by assuming a hypothetical ML task where a model used to classify a 
company’s employees takes as an input two features about them, their age (roughly in 
the range [20, 70]) and their yearly salary (the values for which could vary from a few 
thousand euros to possibly hundreds of thousands). Given how ML algorithms work, the 
salary would be given much greater gravity, resulting in the age feature being effectively 
ignored. A similar problem could arise in our data, where we have for example “Close” 
stock prices (with values in the tens or hundreds) next to their “Volume” (ranging from 
tens of thousands to tens of millions). In order to prevent that, we rescale all features in 
one particular range (normally [0, 1] or [−1, 1]) using feature scaling.  

As is the case with many kinds of related tasks, a paper showed that the normalization 
method of stock data which is to be used in NNs for forecasting purposes can have a 
significant impact on prediction accuracy [36]. However, in that same paper it is concluded 
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that no one technique consistently outperforms the others and, for simplicity’s sake, the 
common min-max rescaling was chosen for our experiments. Of course, there are cases 
that bear mentioning where more elaborate preprocessing techniques were used, such 
as in a paper [37] where the stocks’ prices were treated as a wave function which allowed 
them to be transformed in a way that stripped them of any noise, before again feeding 
them to an LSTM. 

While we’re in the topic of normalization and regardless of the method chosen, it is worth 
mentioning a typical trap. In code, the dataset is often first loaded in its entirety and then 
split into the different sets, as described in the beginning. It’s very easy – and fairly 
tempting, since it would also result in a couple of less lines of code – to perform the 
normalization of the data before splitting it. This though would be a clear mistake, since it 
effectively includes information from the validation and test sets, to which we are not yet 
supposed to have access, and would incorporate that into the training – that is sometimes 
referred to as data leakage. Instead, it is imperative that we first generate a normalization 
scale by fitting only the training set’s data and then simply transform the rest of the data 
in that range (both of which can be easily achieved in Python using 
sklearn.preprocessing.MinMaxScaler). 

 

 Training Strategy 

The way in which we train our NN, like any NN, is of paramount importance but when first 
tackling the challenge of training a NN using stock market data, one realizes that the 
decision for what exactly to provide to it as a training set is not trivial. 

Our approach involves using data “windows” which will be promptly explained below: 

 

 Training window 

In supervised learning – as is the case here – we use labeled training data, typically a 
vector of pair values: an input accompanied with the desired output for it. Here, the data 
that we have consists of float values (stock prices) for various consecutive dates – notice 
that our explanation here will assume our only having a single price feature for our stocks 
(e.g. “Close”) but the exact same methodology can be also applied when having more 
features.  

A single price in itself does not contain enough information to predict anything meaningful, 
and as such it’s obvious that plainly providing every single data point (price) in our training 
set as an input wouldn’t be of any use. Here’s where the concept of the training windows 
needs to be introduced. Simply enough, a training window is but a fancy term referring to 
a vector of values as single input during training. To expand on this, we first make sure 
that our datapoints are in order (sorted by date from oldest to newest) and then we define 
a fixed size for our training window which we will be calling 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 . 

Following that, we get the first (oldest) 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 stock prices and insert them 
into a vector which becomes our first training input. The second one includes an equal 
number of stock prices, but this time starting from 𝑝𝑟𝑖𝑐𝑒𝑠[1]  and ending with 

𝑝𝑟𝑖𝑐𝑒𝑠[𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒], assuming that our stock prices exist in a (zero-indexed) 
array named 𝑝𝑟𝑖𝑐𝑒𝑠 with size 𝑝𝑟𝑖𝑐𝑒𝑠𝑆𝑖𝑧𝑒 . Similarly, the next training input will be the 

vector with the values from 𝑝𝑟𝑖𝑐𝑒𝑠[2] to 𝑝𝑟𝑖𝑐𝑒𝑠[𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 + 1] and so on, until 

the last one which will contain the prices 𝑝𝑟𝑖𝑐𝑒𝑠[𝑝𝑟𝑖𝑐𝑒𝑠𝑆𝑖𝑧𝑒 − 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 −
1] . . 𝑝𝑟𝑖𝑐𝑒𝑠[𝑝𝑟𝑖𝑐𝑒𝑠𝑆𝑖𝑧𝑒 − 1]. 

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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After this process, we are left with an array of input vectors but, as we previously 
mentioned, an output label as it’s called is of course needed to perform any sort of 
training, the structure of which will be our next consideration.  

 

 Training labels 

Here, there are two main potential angles to examine, both of which will end up being 
used in some way later in our tests. 

Everything depends on our assumption of what information the values inside a training 
window can provide. The intuition behind them is that some patterns that appeared within 
the prices in a single window are the ones that contributed to what follows (which is the 
output) and, as such, if they were to reappear in our test set, they should also result in 
the same output. 

The first and simpler approach is to consider the single value that follows a window as its 
output. That would make 𝑝𝑟𝑖𝑐𝑒𝑠[𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒] the output of the window with the 

values  𝑝𝑟𝑖𝑐𝑒𝑠[0]. . 𝑝𝑟𝑖𝑐𝑒𝑠[𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 − 1] and in general for some 𝑥, a window 

with the values 𝑝𝑟𝑖𝑐𝑒𝑠[𝑥]. . 𝑝𝑟𝑖𝑐𝑒𝑠[𝑥 + 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 − 1] would have the single 
value 𝑝𝑟𝑖𝑐𝑒𝑠[𝑥 + 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒] as its output. This way, we construct a vector of 
all those outputs which, along with the training window inputs, comprise our training set, 
as such: 

 

Image 10: Example of training windows with single outputs 

 

The alternative, as one could guess, is to provide multiple values as a label for each 
training window input, instead of just one. This is known in timeseries prediction tasks as 
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“multi-step” forecasting (as opposed to the “single-step” above) and again involves 
constructing a window of values, this time those that trail the training window. Assuming 
a 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒  of size greater than 1 , here the output for the 

𝑝𝑟𝑖𝑐𝑒𝑠[0]. . 𝑝𝑟𝑖𝑐𝑒𝑠[𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 − 1] training window will be a prediction window 
containing the values 𝑝𝑟𝑖𝑐𝑒𝑠[𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒]. . 𝑝𝑟𝑖𝑐𝑒𝑠[𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 +
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 − 1] and so on, until every training window is accompanied by a 
prediction window, the bundle of which will represent the training set.  

 

  

Image 11: Example of training windows with prediction window outputs 

 

For both of these methods, it should be noted that the structure of the training inputs and 
outputs ought to be preserved throughout the validation and test sets as well (even using 
the same 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 for the latter method) since that will naturally also be 
the shape of the model’s predictions. Furthermore, due to the need for values even after 
the last training window as depicted above, both methods result in fewer overall data point 
inputs than the training set’s size (1 and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 fewer respectively in 
quantity).  

Lastly, it is important to underline that the training window’s size is one of the most 
impactful design choices in our model. Too small of a window will be unable to pick up 
significant patterns and would result in our predictions being barely better than random 
ones. On the contrary, a window that is too large will not only provide us with less overall 
training data but, perhaps more importantly, will also miss subtle patterns that may merely 
appear in a handful of prices as those would be drowned down by the more overreaching 
ones within that window. As is often the case with such parameters, experimentation was 

needed here to arrive at a “just right” value for 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒. 
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 Model Design 

The code that generates the model itself is the following: 

1. self.model = Sequential() 
2. self.model.add(LSTM(units=model_params["neurons"], return_sequences=True, 

 input_shape=(params["training_window"], model_params["features_num"]))) 
3. self.model.add(Dropout(model_params["dropout_rate"])) 
4. for _ in range(model_params["hidden_layers"]): 
5.     self.model.add(LSTM(units=model_params["neurons"], return_sequences=True)) 
6.     self.model.add(Dropout(model_params["dropout_rate"])) 
7. self.model.add(LSTM(units=model_params["neurons"])) 
8. self.model.add(Dropout(model_params["dropout_rate"])) 
9. self.model.add(Dense(units=model_params["dense_units"]), 
10.  activation=model_params["activation"])) 
11. self.model.compile(optimizer=model_params["optimizer"], loss=model_params["loss"]) 

The approach of using stacked LSTM layers was chosen, with a variable number of them, 
as evident by the 𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠["ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠"] variable. The merit that multiple such 
layers provide is that complex relations between the data can be identified and learned, 
although there exists the danger of also doing so for characteristics of the training set 
alone that are not representative of the expected data in general (overfitting). After 
experimenting with up to 5 total LSTM layers, a number of 4  was deemed most 
appropriate for our later experiments. Each one of those is immediately followed by a 
Dropout layer whose value of 0.2 (that is 20% of neurons are to be randomly deactivated 
each time) is very commonly chosen as a good compromise between retaining model 
accuracy and preventing overfitting. 

Another configurable part of our architecture was the variable 𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠["𝑛𝑒𝑢𝑟𝑜𝑛𝑠"], 
which represents the number of input neurons each LSTM layer receives. A greater 
number of input neurons improves the capabilities of the model but only up to a certain 
degree and furthermore, as is also the case with more layers, leads to increased training 
time. They also have an inverse correlation between them, as in that models with fewer 
layers tend to require more neurons and vice versa. Solid values for this parameter were 
found to be around the value of 100. 

Lastly, in the last line of the excerpt above, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 and 𝑙𝑜𝑠𝑠 parameters can be seen 
for which there was no reason to diverge from the usual choices for them, “adam” which 
is regarded as a fairly robust general purpose optimizer and “mse” (mean squared error) 
respectively. 

 

 Parameter tuning 

Apart from the tuning of the parameters regarding our model’s architecture itself, there is 

also a number of other values, mainly regarding the training phase, that are customizable 
and have from little to paramount effect to our results. Namely: 

▪ Training window size 
▪ Prediction window size (when applicable) 
▪ Choice of features  
▪ Learning rate 
▪ Batch size  
▪ Number of training epochs 

 
It is realistically impossible to manually test every possible combination of all reasonable 
values for each of these parameters, as is to give detailed reasoning for each and every 
one of them. It is well established in the field of ML that a lot of trial and error is required 
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regarding hyperparameters and that is how the choices were made here as well. Some 
will be mentioned later on when presenting the results, but generally: 

▪ Training window size, being a particularly impactful parameter, was part of a lot of 
testing. Small values (around 30 or less) proved to be inefficient, and the best 
results which are presented below were produced using a training window of size 
64. 

▪ For simplicity but also since it would be the most relevant, initially only the “Close” 
price (feature) was used. The comparison between just “Close” and more features 
being used can be seen in the last part of 3.2.2.2. 

▪ The learning rate, perhaps being the single most important hyperparameter to tune 
in a neural network [38], was also the topic of extensive testing. While the default 

value of 0.001 produced decent results, a value of 0.0005 was ultimately preferred.  
▪ For the batch size, which is often a not too large power of 2, the value of 64 was 

chosen. This change, along with the learning rate one, of course also affected the 
number of training epochs required. 
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 RESULTS 

 Metrics 

Before presenting the results themselves, it is necessary to shortly explain the metrics on 
which we’ll be evaluating the accuracy of our predictions. 

“Accuracy” itself as a metric, which is possibly the most common metric used in ML in 
general, is in fact not applicable in regression problems, the category in which ours 

belongs. The reason for that being that we cannot compute a value for 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
 or 

rather if we did it would always be equal to 0 since we are not trying to predict exact 
outputs but rather values that are as “close” to it as possible (according to our cost 
function). Instead, our focus will be on the loss – both during training and validation. The 
combination of these two also enables the prevention of overfitting through the use of 
early stopping, as shown in Figure 8 of 1.2.2.  

Of course, we will also be seeing the plotted price predictions on top of the actual stock’s 
price in a single graph, to be able to easily compare them. For that part, should one have 
knowledge of the financial field, they may be familiar with candlestick graphs to project 
stock data. However, the utility of those derives from their ability to simultaneously display 
“Low”, “High”, “Open” and “Close”. Since only “Close” is of interest here, a simple line 
graph will be preferred instead. 

 

Figure 10: A stock's price candlesticks graph (left) and its respective “Close” line graph (right) 

 

 Types of prediction 

In all of the cases that we will be presenting, the figures depicting predictions were made 
on the test set of that stock’s dataset and each such figure will be followed by a second 
one illustrating the validation loss along with the loss during the training of the model. 

   

 Single-step prediction 

Let’s start by a simple prediction, using just 2 LSTM layers and using the training window 

with single outputs, as described in 2.6.2 and similar to the ones made in [27], [28] and 
[29]. After training our model, we use it to predict the last 15% of our dataset (our test set) 
and the plotted results are as follows: 
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Figure 11: Single-step prediction of General Index 

 

Figure 12: Model loss for Figure 11 
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We will be seeing graphs like Figure 12 depicting our model’s loss later as well, similar 
also to the respective loss figures in [29], so let’s focus on that figure first. The fact that 
both train and validation loss alike are steadily decreasing indicates a good fit and that 
our model is not overfitting to our training data. As for why the validation loss is (almost) 
constantly lower than the training one, that is something commonly explainable with two 
reasons. Firstly, the training loss for an epoch is calculated as the average of the losses 
over each batch of training data (that is, during the epoch) as opposed to the validation 
loss which is computed at the end of the epoch. Secondly and perhaps most notably, any 
regularization used (a case of which are the dropout layers of our model) are applied 
during training but not during validation and that fact also contributes to the plotted loss 
above. 

So, given that we are not overfitting, how can our predictions be so close to the real prices 
as they seem at first glance? After all, predicting the exact future prices of stocks, let 
alone for long time periods is supposed to be a difficult and highly erroneous task. In order 
to understand what exactly is depicted in Figure 11, we need to inspect our graph more 
closely, for instance just the last 30 days: 

 

Figure 13: Last 30 days of Figure 11 

Here, it is evident that our predicted price does not overlap with the real one, as one could 
be mistaken to believe when first seeing Figure 11. Instead, it is quite similar to a 1-day 
shifted version of the real price. Remember, the line of the “predicted price” above was 
not generated at once at the beginning of the test set, but is rather the product of multiple 
1-day predictions. Essentially, this means that our model does indeed learn, but what it 
really learns is that a successful prediction of a day’s price is generally very near to that 
of the previous day. 

This of course does not entail that this kind of prediction lacks any practical use. One 
such could be anomaly detection, where if a day’s price diverges too much from the 
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predicted one an automatic mechanism could be triggered, such as a notification system. 
Nonetheless, we would like to further experiment with different kinds of predictions, which 
we will be doing in the rest of this thesis. 

 

 Sequence predictions 

A fundamental drawback of the single-step prediction is that it can only ever predict at 
most one day in the future after the last available in our data. And while this may be 
enough for some uses, we would like to examine how possible it is to perform decent 
predictions for periods of time greater than a day. This is what we will be trying next up, 
opting to make predictions for periods spanning some days, iteratively starting at various 
points in our test set. For the number of days for those sequences we will select 15 as a 
number that is large enough to prove our model’s abilities without it being too large to be 
impossible to predict, but this is obviously easily parameterized. 

 

 Multi-step prediction 

Moving away from single-step predictions, one could think to use the previously 
established training window, but use it instead to predict a number of future stock prices 
instead of just one. This is the approach described in the second half of 2.6.2, using the 
concept of prediction windows which are sometimes used for timeseries-related 
problems, although no existing research for their use in this context was found. The 
results of that can be seen below: 

 

Figure 14: Multi-step prediction of General Index 
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Figure 15: Model loss for Figure 14 

 

What is immediately obvious here is that all predictions have very similar “shapes”. 
Evidently, during training the model learned an average trend that stock prices tend to 
follow in 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 steps and then applied it to every prediction it was asked 
to perform, resulting in the different predictions only differentiating in regards to the y-axis 
based on the input test data, while preserving an almost identical shape. 

Results using this method were always similar to the above, irrespective of the number 
of epochs and various different values for other parameters. Given that such outputs differ 
significantly from what we were trying to accomplish, a different method to predict 
sequences of future prices had to be sought after. 

 

 Single-step sequence prediction 

The next approach involved resorting back to the initial training methodology where a 
training window of multiple values was again used to predict a single value in the future. 
The difference with the single-step prediction in 3.2 is that we now employ a different 
prediction method and instead we now make predictions for a prespecified number of 
consecutive values, sequentially, with our trained model up to that point – the inspiration 
for which was an article with similar work on this subject [39]. This is done by gradually 
replacing values of the input window with predicted ones and performing new predictions 
using the old ones as part of the input. For example, if we wanted to predict sequences 
spanning 4 days, each one would be generated using our test set as follows: 
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Image 12: Example of testing windows generating a prediction sequence 

 

Here, were we to expect to see exact price predictions we would merely set ourselves up 
for disappointment as performing predictions based – even partly – on past predictions 
isn’t likely to yield precise numerical results since prediction errors will inevitably 
accumulate. What we hope to achieve here is to predict a smooth trajectory of the price 
for the next 15 days, which should give us a general indication of whether the price is 
expected to rise, fall or remain about the same. So let’s apply that technique again to the 
same stock we’ve been experimenting on so far, the General Index: 
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Figure 16: Prediction Sequences for General Index, after 90 epochs of training 

 

Figure 17: Model loss for Figure 16 
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As we can see, most prediction sequences turned out fairly accurate with few missing 
entirely like Seq 12 but others even capturing some curves in the prices’ graph such as 
Seq 5 and 11. 

Moreover, it is interesting to see how our model gradually learns, by examining the same 
prediction sequences but with less epochs of training:  

 

 

Figure 18: Prediction Sequences for General Index, after 10 epochs of training 
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Figure 19: Prediction Sequences for General Index, after 30 epochs of training 

 

Additionally, up until now we have only been training on “Close” prices, the same ones 
that we are trying to predict. Using the method of training we just used, let’s also attempt 
to retrain out model, this time using more features, and juxtapose the results: 

 

Table 1: Loss for General Index's predictions using different features 

Features Loss 

[“Close”] 0.00019 

[“Close”, “Volume”] 0.00075 

[“Close”, “Open”, “Low”, “High”] 0.00026 

[“Close”, “Open”, “Low”, “High”, “Volume”] 0.00043 

 

The second column represents the lowest possible validation loss that we were able to 
get each time in a reasonable number of epochs, employing early stopping. 

Before drawing any conclusions and in order to further test our model’s capabilities, let’s 
also try the same on Coca-Cola’s stock (EEE) without altering any hyperparameters and 
again using the last 15% of the dataset as the test set. 
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Figure 20: Prediction Sequences for EEE's stock 

 

Figure 21: Model loss for Figure 20 
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Here we again see that many prediction sequences managed to capture the general 
movement of the stock in their time period, even though one could argue that this time 
more of them failed to visibly succeed in that. 

 

Table 2: Loss for EEE's predictions using different features 

Features Loss 

[“Close”] 0.0010 

[“Close”, “Volume”] 0.0016 

[“Close”, “Open”, “Low”, “High”] 0.0017 

[“Close”, “Open”, “Low”, “High”, “Volume”] 0.0020 

 

By comparing the two tables above we can observe that, using features other than “Close” 
in fact worsened our model’s loss. A possible explanation for that is that “Open”, “Low” 
and “High” are values that are approximate to “Close” and tend to function more like noise 
– and the effect of that noise was lesser in the index’s loss where fluctuations between 
those 4 values in any day are, naturally, minor compared to those of any single stock. On 
the other hand, “Volume” operates in an entirely different manner and any association 
between it and the “Close” price seemingly failed to be captured by our model. 

Finally, regardless of the features used and despite having about the same number of 
data inputs to train, EEE’s loss was consistently found to be higher than that of the 
General Index. This further reinforces, even if not categorically, our initial assumption 
regarding the connection between stocks’ and stock indices’ predictability made in 2.4, 
that it is in fact comparatively easier to perform predictions on indices than on any 
particular stock. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Stock Market Predictions using LSTM Neural Networks 

K. Tsiaras   53 

 

 CONCLUSION 

 Conclusions 

It is reasonable to say that we succeeded in our goal which was to show that it is indeed 
feasible to make reasonable predictions regarding stock price movements using LSTM 
neural networks and even such that can span multiple days in the future.  

It should, however, go without saying that betting money based on these predictions 
would be at the very least reckless. Stock trading should be done with at least some 
decent knowledge of stock market proceedings and there is no shortage of sophisticated 
analytical tools for that purpose, as described in 1.4.2. Of course, creating an actually 
profitable model was never the purpose of this thesis but rather exploring the forecasting 
capabilities of NNs which we achieved. 

 

 Future Work 

The domain of stock market forecasting using deep learning is extremely vast and 

undoubtedly extends far beyond the scope of a single thesis.  

Even in the model presented here and despite the efforts made for its optimization, as is 
often the case in ML it is entirely possible that a different combination of its parameters 
and/or a slightly different architecture could yield better results. 

Future work could also involve training with more data, not only from stock exchanges 
around the world, but also from the significantly more volatile and ever-changing domain 
of cryptocurrencies which has entered the mainstream in the last couple of years. 

Lastly, a more meaningful extension of what is presented here would be to train a similar 
model using data from multiple stocks and stock indices, thus attempting to create a 
unified predictor that could even perform predictions on stocks that it hasn’t been trained 
on. Such a model, although it probably wouldn’t outperform stock-specific ones, could 
prove valuable for predictions regarding newer stocks or generally in cases where limited 
past data is available. 
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ABBREVIATIONS – ACRONYMS 
 

ANN Artificial Neural Network 

ATHEX Athens Stock Exchange 

CNN Convoluted Neural Network 

EEE Coca-Cola’s stock 

FNN Feedforward Neural Network 

GD Gradient Descent 

GRU Gated Recurrent Unit 

LSTM Long Short-Term Memory 

ML Machine Learning 

MLP Multilayer Perceptron 

MSE Mean Squared Error 

NLP Natural Language Processing 

NN Neural Network 

ReLU Rectified Linear Unit 

RNN Recurrent Neural Network 

SGD Stochastic Gradient Descent 

SVM Support Vector Machine 
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