
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

MSc THESIS

A Study of Typing­Related Bugs in JVM compilers

Stefanos A. Chaliasos

Supervisors: Alex Delis, Professor NKUA
Dimitris Mitropoulos, Assistant Professor NKUA

ATHENS

JULY 2021

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μελέτη Σφαλμάτων Σχετικά με Τύπους στους
Μεταγλωττιστές των JVM Γλωσσών Προγραμματισμού

Στέφανος Α. Χαλιάσος

Επιβλέποντες: Αλέξανδρος Δελής, Καθηγητής ΕΚΠΑ
Δημήτρης Μητρόπουλος, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2021

MSc THESIS

A Study of Typing­Related Bugs in JVM compilers

Stefanos A. Chaliasos
S.N.: CS3190004

SUPERVISORS: Alex Delis, Professor NKUA
Dimitris Mitropoulos, Assistant Professor NKUA

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μελέτη Σφαλμάτων Σχετικά με Τύπους στους Μεταγλωττιστές των JVM Γλωσσών
Προγραμματισμού

Στέφανος Α. Χαλιάσος
Α.Μ.: CS3190004

ΕΠΙΒΛΕΠΟΝΤΕΣ: Αλέξανδρος Δελής, Καθηγητής ΕΚΠΑ
Δημήτρης Μητρόπουλος, Αναπληρωτής Καθηγητής ΕΚΠΑ

ABSTRACT

Compiler testing is a prevalent research topic that has gained much attention in the past
decade. Researchers have mainly focused on detecting compiler crashes and miscom­
pilations caused by bugs in the implementation of compiler optimizations. Surprisingly,
this growing body of work neglects other compiler components, most notably the front­
end. In statically­typed programming languages with rich and expressive type systems
and modern features, such as type inference or a mix of object­oriented with functional
programming features, the process of static typing in compiler front­ends is complicated
by a high­density of bugs. Such bugs can lead to the acceptance of incorrect programs,
the rejection of correct programs, and the reporting of misleading errors and warnings.

In this thesis, we undertake the first ever effort to the best of our knowledge to empirically
investigate and characterize typing­related compiler bugs. To do so, we manually study
320 typing­related bugs (along with their fixes and test cases) that are randomly sampled
from four mainstream JVM languages, namely Java, Scala, Kotlin, and Groovy. We eval­
uate each bug in terms of several aspects, including their symptom, root cause, bug fix’s
size, and the characteristics of the bug­revealing test cases.

Finally, we implement a tool for finding front­end compiler bugs in Groovy and Kotlin com­
pilers by exploiting the findings of our thesis.

SUBJECT AREA: Programming Languages/Software Testing

KEYWORDS: Compiler bugs, Compiler testing, Static typing, Java, Scala, Kotlin,
Groovy

ΠΕΡΙΛΗΨΗ

Ο έλεγχος των μεταγλωττιστών είναι ένα ερευνητικό πεδίο το οποίο έχει τραβήξει το εν­
διαφέρον των ερευνητών την τελευταία δεκαετία. Οι ερευνητές έχουν κυρίως επικεντρω­
θεί στο να βρουν σφάλματα λογισμικού που τερματίζουν τους μεταγλωττιστές, και εσφαλ­
μένες μεταγλωττίσεις προγραμμάτων οι οποίες οφείλονται σε σφάλματα κατά της φάσης
των βελτιστοποιήσεων. Παραδόξως, αυτό το αυξανόμενο σώμα εργασίας παραμελεί άλ­
λες φάσεις του μεταγλωττιστή, με την πιο σημαντική να είναι η μπροστινή πλευρά των
μεταγλωττιστών. Σε γλώσσες προγραμματισμού με στατικό σύστημα τύπων που προ­
σφέρουν πλούσιο και εκφραστικό σύστημα τύπων και μοντέρνα χαρακτηριστικά, όπως
αυτοματοποιημένα συμπεράσματα τύπων, ή ένα μείγμα από αντικειμενοστραφείς και συ­
ναρτησιακά χαρακτηριστικά, ο έλεγχος σχετικά με τους τύπους στο μπροστινό μέρος των
μεταγλωττιστών είναι περίπλοκο και περιέχει αρκετά σφάλματα. Τέτοια σφάλματα μπο­
ρεί να οδηγήσουν στην αποδοχή εσφαλμένων προγραμμάτων, στην απόρριψη σωστών
προγραμμάτων, και στην αναφορά παραπλανητικών σφαλμάτων και προειδοποιήσεων.

Πραγματοποιούμε την πρώτη εμπειρική ανάλυση για την κατανόηση και την κατηγοριοποί­
ηση σφαλμάτων σχετικά με τους τύπους στους μεταγλωττιστές. Για να το κάνουμε αυτό,
μελετήσαμε 320 σφάλματα που σχετίζονται με την διαχείριση τύπων (μαζί με τις διορθώ­
σεις και τους ελέγχους τους), τα οποία τα συλλέξαμε με τυχαία δειγματοληψία από τέσ­
σερις δημοφιλής JVM γλώσσες προγραμματισμού, την Java, την Scala, την Kotlin, και
την Groovy. Αξιολογήσαμε κάθε σφάλμα με βάση διάφορες πτυχές του, συμπεριλαμβα­
νομένου του συμπτώματος του, της αιτίας που το προκάλεσε, της λύσης του, και των
χαρακτηριστικών του προγράμματος που το αποκάλυψε.

Τέλος υλοποιήσαμε ένα εργαλείο το οποίο χρησιμοποιεί τα ευρήματα μας ώστε να βρει με
αυτοματοποιημένο τρόπο σφάλματα στο μπροστινό μέρος των μεταγλωττιστών της Kotlin
και της Groovy.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Γλώσσες Προγραμματισμού/Επαλήθευση Λογισμικού

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Σφάλματα Μεταγλωττιστών, Επαλήθευση Μεταγλωττιστών,
Στατικό σύστημα τύπων, Java, Scala, Kotlin, Groovy

ACKNOWLEDGEMENTS

I would like to thankmy advisor, Dimitris Mitropoulos, for his support and guidance through­
out the years. Dimitris is the one who motivated me to focus on research and the one who
encouraged me during all failures.

It was a pleasant experience to work closely with Thodoris Sotiropoulos. Thodoris brought
me into the world of software testing. I am grateful for his expertise, guidance, and the
personal friendship over the years.

CONTENTS

1. INTRODUCTION 15

1.1 Research Questions . 15

1.2 Languages selection . 16

1.3 Contributions . 16

1.4 Summary of findings . 17

1.5 Proof­of­concept program generator . 17

2. BACKGROUND AND RELATED WORK 18

2.1 Software testing . 18

2.2 Compilers . 18

2.3 Compilers Testing . 19

2.4 Examined languages . 20
2.4.1 Java . 21
2.4.2 Scala . 21
2.4.3 Kotlin . 22
2.4.4 Groovy . 22

2.5 Non­JVM Compiler Bugs and Prior Studies . 23
2.5.1 Understanding compiler bugs . 23
2.5.2 Other bug studies . 23

3. METHODOLOGY 25

3.1 Collecting bugs and fixes . 25
3.1.1 Collecting Java Bugs . 26
3.1.2 Collecting Scala Bugs . 26
3.1.3 Collecting Kotlin Bugs . 27
3.1.4 Collecting Groovy Bugs . 27

3.2 Analyzing bugs . 27

3.3 Threats to validity . 28

4. BUG STUDY 29

4.1 RQ1: Symptoms . 29
4.1.1 Unexpected Compile­Time Error . 29
4.1.2 Internal Compiler Error . 30
4.1.3 Unexpected Runtime Behavior . 31

4.1.4 Misleading Report . 32
4.1.5 Compilation Performance Issue . 33
4.1.6 Comparative Analysis . 34

4.2 RQ2: Bug Causes . 34
4.2.1 Type­related Bugs . 35
4.2.2 Semantic Analysis Bugs . 36
4.2.3 Resolution Bugs . 37
4.2.4 Bugs Related to Error Handling and Reporting . 38
4.2.5 AST Transformation Bugs . 39
4.2.6 Comparative Analysis . 40

4.3 RQ3: Bug Fixes . 40
4.3.1 How Bugs are Introduced? . 40
4.3.2 Size of Bug Fixes . 41
4.3.3 Duration of Bugs . 41
4.3.4 Comparative Analysis . 43

4.4 RQ4: Test Case Characteristics . 43
4.4.1 General Statistics . 43
4.4.2 Language Features . 44
4.4.3 Comparative Analysis . 46

5. IMPLICATIONS AND DISCUSSION 47

6. A PROOF­OF­CONCEPT PROGRAM GENERATOR 49

7. CONCLUSIONS AND FUTURE WORK 51

ABBREVIATIONS ­ ACRONYMS 52

REFERENCES 56

LIST OF FIGURES

4.1 The distribution of symptoms. 29
4.2 The distribution of bug causes. 34
4.3 Size of bug fixes. 42
4.4 Cumulative distribution of bugs through time. 43
4.5 The classification of the language features that appear in test cases, along

with their frequency. For each category, we show the four most frequent
features. 44

LIST OF TABLES

3.1 Statistics on bug collection. 26

4.1 General statistics on test case characteristics. 44
4.2 The five most frequent and the five least frequent features supported by all

studied languages. 45
4.3 The five most bug­triggering features per language. 46

6.1 Summary of the bugs found by our proof­of­concept tool. In total, we have
found 28 bugs in kotlinc and groovyc, of which, 16 have been fixed by
developers. 50

LISTINGS

2.1 A Scala program with a higher­kinded type. 21
2.2 A Kotlin program with a nullable type. 22
4.1 KT­10711: A program that triggers a kotlinc bug 29
4.2 GROOVY­7618: A program that triggers a groovyc bug with an internal

compiler error. 30
4.3 JDK­7041019: A program that triggers a javac bug with an unexpected

runtime behavior. 32
4.4 KT­5511: A program that triggers a kotlinc bug with a misleading report. . 32
4.5 Dotty­10217: A program that triggers a Dotty bug with an compilation per­

formance issue. 33
4.6 KT­9630: A Kotlin program that triggers a bug related to an incorrect type

transformation. 35
4.7 JDK­8039214: A Java program that triggers a bug related to incorrect type

comparisons. 36
4.8 Scala2­5878: A Scala program that triggers a bug related to missing valid­

ation checks. 37
4.9 JDK­7042566: A Java program that triggers a resolution bug. 38
4.10 Scala2­6714: A Scala program that triggers an AST transformation bug. . . 39

PREFACE

Part of the work presented in this thesis has been done in collaboration with Thodoris
Sotiropoulos, Charalambos Mitropoulos, George Drosos, Diomidis Spinellis, and Dimitris
Mitropoulos.

A Study of Typing­Related Bugs in JVM compilers

1. INTRODUCTION

Over the past decade, we have witnessed tremendous advances in compiler reliability
improvement techniques. Dozens of techniques and methods have emerged to validate
compilers’ correctness or facilitate compiler testing and debugging: from program gen­
erators [49, 36, 37, 28] and transformation­based techniques [24, 50, 25, 42], to test
case reduction [40] and test case prioritization approaches [7, 8]. Although the initial
focus was on C/C++ compilers, researchers have also invested much effort on testing
other compilers [27, 13, 15], runtime systems [11, 10], or even dynamic programming lan­
guages [45, 20, 39]. This exciting research work has led to the discovery and fixing of
thousands of bugs in industrial­strength compilers, and has assisted compiler developers
in preventing crashes and miscompilations (i.e., generation of incorrect machine instruc­
tions) from happening.

Most of the proposed techniques though, focus on finding bugs in optimizing compilers.
For example, Nagal et al. [36, 37] craft C programs that exercise optimizations on arith­
metic expressions. Another example is the most recent program generator for C/C++
programs [28], which adopts a set of program generation policies that are tailored to trig­
gering specific buggy optimizations.

We find it surprising that this growing body of work currently neglects other compiler com­
ponents, most notably the front­end. The compiler front­end is responsible for perform­
ing 1) the source code’s lexical analysis and parsing, and 2) a set of semantic analyses
that verifies whether the input code is error­free and respects the semantics of the lan­
guage. In statically­typed languages with 1) rich and expressive type systems that rely on
complex type theories (e.g., higher­kinded types [35], parametric polymorphism, or path­
dependent types [3]), and 2) modern features (e.g., type inference, mix of object­oriented
with functional programming), the implementation of front­ends (and especially the task
of typing programs) has become particularly complex exhibiting a high density of bugs.
For example, at the time of writing, the type checker of the Scala 2 compiler (typer) is the
component that suffers from the most bugs (see scala/bug). Bugs in the implementation
of front­end’s semantic analyses and typing algorithms can potentially affect the ability
of the compiler to effectively deal with certain programs leading to type­safety breaches,
and allowing the compilation of non­portable code, or propagating themselves to other
compiler phases.

1.1 Research Questions

In this work, we conduct the first quantitative and qualitative study of the characteristics
of typing­related compiler bugs. Specifically, we aim to understand their manifestations,
their nature, and obtain insights into how these bugs are introduced, triggered, and fixed.
Specifically, our study seeks answers to the following research questions.

1. (Symptoms) What are the main symptoms of typing­related compiler bugs?
What is the frequency of these symptoms? (Section 4.1)

2. (Bug Causes) What are the categories into which we can group typing­related
bugs based on their root cause? What is the frequency of these categories?
(Section 4.2)

S. Chaliasos 15

https://github.com/scala/bug/issues

A Study of Typing­Related Bugs in JVM compilers

3. (Bug Fixes) How are typing­related compiler bugs introduced? What is the size
of their fixes? How long time does it take to fix these bugs? (Section 4.3)

4. (Test CaseCharacteristics)What are themain characteristics of the bug­revealing
test cases? What language features are prevalent in these test cases? (Sec­
tion 4.4)

1.2 Languages selection

To answer the aforementioned research questions, we examine bugs from the compilers
of four mainstream JVM programming languages, namely Java, Scala, Kotlin, and Groovy.
All these languages are statically­typed object­oriented languages, feature a nominal type
system, and support parametric polymorphism by using the Java generics framework [5].
Beyond that, they support (some to a lesser or greater extent) functional programming
features, while they also adopt some sort of type inference. Java is in the list of the most
widely­used and popular programming languages [18, 44]. The Scala programming lan­
guage [38] is a research product that unifies the object­oriented and functional paradigms.
One of the strengths of Scala is its type system, which offers higher­kinded types, impli­
cits, and structural types. Regarding Kotlin: although it is quite a new language (it first
appeared in 2011), it has gained much popularity recently. It is now Google’s preferred
programming language for building Android applications [32]. Finally, Groovy is a pop­
ular programming language [44] that supports both dynamic and static typing, and also
provides flow­sensitive typing.

Using carefully­crafted search criteria and some heuristics, we obtain 4,101 previously
reported typing­related bugs taken from the issue trackers of the studied languages. We
apply our method on a random sample of 320 bugs. We study each bug report of this
sample, along with the accompanying developers’ discussion, bug fix and test case, and
we finally evaluate every bug in terms of several aspects including, its symptom, its root
cause, and its test case’s characteristics.

1.3 Contributions

Our work makes the following contributions:

• We present a method for collecting and assessing typing­related compiler bugs, and
provide a corresponding reference dataset consisting of bugs taken from popular
JVM compilers (Section 3).

• By examining 320 typing­related bugs, we provide an in­depth analysis on diverse
aspects, including bug symptoms, root causes, bug fixes, and test case character­
istics (Section 4).

• We enumerate the implications of our findings, and discuss potential futures direc­
tions on compiler testing (Section 5).

• We demonstrate the leverage obtained from our work’s findings through the design
and implementation of a proof­of­concept Kotlin and Groovy test­program generator
(Section 6.

S. Chaliasos 16

A Study of Typing­Related Bugs in JVM compilers

1.4 Summary of findings

Some of our representative findings are: 1) most of typing­related bugs (50.94%) mani­
fest as unexpected compile­time errors: the buggy compiler mistakenly rejects correct
programs, 2) the majority of typing­related bugs (40.31%) lie in the implementations of
the underlying type systems and in other core components related to operations on types
(e.g., type inference, subtyping rules), 3) although typing­related bugs are typically fixed
without requiring extensive modifications in compilers’ code base, developers take a few
months to resolve a bug, 4) parametric polymorphism is the most pervasive feature in
the bug­revealing test cases: 57.19% of the bug­revealing test cases involve parametric
polymorphism­related features, e.g., declaration of a parameterized function / class or use
of a parameterized type.

1.5 Proof­of­concept program generator

To demonstrate the practicality of our study, we leverage some of our observations to
design and implement a proof­of­concept program generator for testing the Koltin and
Groovy compilers’ front­end. Our program generator was able to find 28 previously un­
known bugs within two months of testing. More than a half (16 / 28) of the reported bugs
have already been fixed. We do believe that our study can help researchers to build appro­
priate testing techniques or adapt the existing ones for a more holistic testing of compilers.

S. Chaliasos 17

A Study of Typing­Related Bugs in JVM compilers

2. BACKGROUND AND RELATED WORK

In this chapter, we start with discussing the general practice of software testing and then
extend to compilers’ testing. Next, we present the essential elements of the programming
languages examined. The final section covers the related work.

2.1 Software testing

Software testing is an essential part of the software development process. It aims to detect
deficits of software under test. Software testing evaluates the software against various
properties. If testing does not find any issues, the software under test is considered high
quality. In practice, software testing is conducted through bug finding. In general, test
oracles other than requirements/specifications can be used to detect software bugs.

Software testing is as old as software development. Through the years, many methodolo­
gies have emerged around it. A few more well­known software testing practices are [48]:

• Functional testing: Functional testing tries to verify a specification or functionalities
of the code.

• White­box testing vs Black­box testing vsGray­box testing: Black­box testing verifies
and validates the software without any knowledge of the internal implementation.
White­box testing verifies and validates the software with knowledge of the internals
of an application. Gray­box testing applies black­box level tests with knowledge of
the internal implementation.

• Unit testing vs Integration testing: Unit testing verifies the functionality of an encap­
sulated component in the software under testing. Integration testing is a follow­up
to component testing. It tries to prove the interfaces between components, making
sure the integrated product works according to a specification.

• Regression testing: Regression testing focuses on finding software regressions,
where previously working software functionality stops working due to recent changes.

• Security testing: Security testing focuses on finding security issues that enable sys­
tem intrusion by hackers.

2.2 Compilers

A compiler is a program that transforms source code written in high­level programming
languages into low­level representations [1]. The low­level representations can be in
the form of assembly language, machine code, or byte­code (e.g., JVM bytecode). The
primary functionality of a compiler is to translate programs written in more human­friendly
languages into programs that are ready for execution.

The functionality of a compiler includes (but is not limited to):

• Validating the syntactical correctness of the programs, and optionally providing feed­
backs to users.

S. Chaliasos 18

A Study of Typing­Related Bugs in JVM compilers

• Generating correct and efficient low­level code through translations and optimiza­
tions.

• Producing the low­level code according to specifications of assemblers, linkers, or
virtual machines.

A compiler typically consists of three main components: the front­end, the middle­end,
and the back­end. A compilation undergoes the aforementioned three phases. First,
the front­end checks whether the language syntax of the program is correct. Semantic
errors, such as divide­ b­y zero , could also be checked if possible. Third, type checking
is performed statically. Second, the front­end generates an intermediate representation
(IR) of the source code for processing by the middle­end. For optimizing compilers, the
middle­end is where most of the code optimization takes place. Finally, the back­end is
responsible for translating the IR produced by the middle­end into low­level code. The
output from the back­end is typically a program in an assembly language which is then
translated into machine code by an assembler.

2.3 Compilers Testing

Testing compilers is a topic that has attracted many researchers and practitioners over the
past decade. During this time period, plenty of testing techniques have emerged to stress­
test compilers by either detecting compiler crashes, or miscompilations caused by bugs
in the implementation of compiler optimizations or code generation. Although compilers
are considered very reliable, the proposed techniques and tools have managed to detect
thousands of bugs in various, industrial­length compilers. Below we discuss the main
dimensions of compiler testing. more details about compiler testing can be found in the
survey of Chen et al. [9].

Finding compiler crashes. A compiler crash (or internal compiler error) is an unexpected
error (exception) that happens during compilation, which prevents the compiler from gen­
erating the target program or producing an informative error message (in case the input
program is grammatically or semantically incorrect). These crashes are typically caused
by bugs that occur in various compiler phases: from lexical analysis to code generation.

Detecting compiler crashes is done through a straightforward manner. There is typically
a program generator (or a mutation­based fuzzer [45, 39]) producing arbitrary programs
(written in the corresponding source language), which are then given to the compiler un­
der test. Compiler correctness is trivially checked by examining the compiler output for
crashes. Note that these program generators are not necessarily interested in producing
semantically correct programs, as a crash is a clear indication of a bug and should not hap­
pen regardless of whether the input program is legal or not. For example, Superion [45]
and Fuzzball [2] generate programs that are far from being correct.

Finding miscompilations. Another kind of compiler bugs is miscompilations. A miscom­
pilation happens, when the compiler emits incorrect target code which does not respect
the semantics of the original source program. Miscompilations are usually caused by bugs
in compilation optimizations. Compiler optimizations is a series of semantics­preserving
transformations that are applied to an intermediate language in order to boost the per­
formance of final code written in target language. Bugs in optimizations often break the
equivalence between the initial and transformed program, and lead to miscompilations.

S. Chaliasos 19

A Study of Typing­Related Bugs in JVM compilers

Unlike crashes, miscompilations are subtle and difficult to detect, because the compiler
does not raise any compile­time error or any other indication of erroneous behavior during
compilation. Worse, due to the test oracle problem [47], we cannot determine whether
the code generated by the compiler is the expected one, or is equivalent with the original
source program. To address the oracle problem and find miscompilations, there are two
popular testing techniques, which have been extensively used: differential testing and
equivalence modulo inputs (EMI).

Differential testing [33] is a generally­applicable technique, which is suitable for testing
equivalent compiler implementations that follow the same language specification. In this
context, a semantically valid program P is fed to two equivalent compilers, which finally
produce two executables T1 and T2. After running T1 and T2 against a specific input, we
compare the results of executables. A mismatch in the results of T1 and T2 indicates
that there is at least one compiler that generate an executable that does not follow the
semantics of P .

EMI [24] addresses cases where there are no equivalent compiler implementations. EMI
works in the following steps. A semantically correct program P is given to a compiler,
which in turn generates the corresponding executable T . EMI then executes T against a
specific input I and (1) collects coverage information stemming from the execution T , and
(2) tracks the result of T , namely O. As a next step, EMI mutates the initial program P
and generates a new program P ′ by deleting those statements of P that are dead based
on input I. The compiler under test then takes the mutated program P ′ and produces
T ′, which is ultimately run against the same input I. Since P ′ and P contain the same
live statements (with respect to input I), their corresponding executables T and T ′ should
produce the same result O in response to the same input I. When this is not a case, EMI
reports a miscompilation.

Differential testing and EMI are used in conjunction with program generators, or they are
applied to existing programs taken from compilers’ test suites [49, 11, 10, 24, 27]. How­
ever, as differential testing and EMI test the validity of a compiler by running the resulting
executables, the program generators should produce compilable programs.

Finding front­end­related bugs. There is currently a research gap in automated testing
of compiler front­ends (e.g., implementation of type systems, semantic analyses, etc.),
and there are very few testing methods focusing on this particular component of com­
pilers. [13, 41]. The aim of the remainder paper is to study compiler front­ends and see
what are the main types of bugs that mainstream compilers suffer from, how these bugs
manifest themselves, how they are introduced, and what are the characteristics of the
input programs that trigger these bugs. Building upon the findings of our study, future
researchers can design appropriate testing techniques.

2.4 Examined languages

In this study, we examine the compilers of four mainstream JVM programming languages,
namely Java, Scala, Kotlin, and Groovy. All these languages are statically­typed object­
oriented languages, their type system is nominal, while they all support parametric poly­
morphism by using the Java generics framework [5]. They also support (some to a less
extend, but others to a greater extend) functional programming features, including higher­
order functions, function closures, or function composition. Finally, all the examined lan­
guages adopt some sort of type inference, e.g., they allow variable declarations with omit­

S. Chaliasos 20

A Study of Typing­Related Bugs in JVM compilers

Listing 2.1: A Scala program with a higher­kinded type.

class A[X[_] , T] {
def m(x : X [T]) : T = ???

}
. . .
val obj = new A[L i s t , S t r i ng] ()
val x : S t r i ng = obj .m(L i s t (” 1 ” , ” 2 ” , ” 3 ”))

ted types, instantiations of type constructors with omitted type arguments, or function de­
clarations with omitted return types.

2.4.1 Java

Java is in the list of the most widely­used and popular programming languages [18, 44].
Due to high competition in the JVM ecosystem, Java is constantly evolving. Starting from
Java 8 where functional programming features (e.g., lambdas, higher­order functions)
were added to the language, the Java team is announcing more and more releases (in
short time period) that make a lot of improvements to the language. For example, Java 9
added support for modules, Java 10 introduced the var keyword that allows developers to
omit the type of a local variable, Java 14 enhanced the instanceof keyword with pattern
matching support [17], and more.

The Java team is also working on experimental projects in the Java Development Kit
(JDK) that investigate the integration of future Java features. For example, as an addition
to primitive and reference types, the project Valhalla [6] is working on supporting value
types (e.g., objects represented as values). This feature will come with many updates in
both runtime and type system.

2.4.2 Scala

The Scala programming language [38] is a research product that first appeared in 2004.
Scala unifies the object­oriented paradigm with functional programming: beyond stand­
ard object­oriented features, other features, which are typically seen in functional lan­
guages (e.g., algebraic data types, pattern matching), are supported inherently. One of
the strengths of the language is its type system that offers some sophisticated features,
such as higher­kinded types [35], path­dependent types [3], implicits, or even structural
types.

As an example, consider higher­kinded types. Higher­kinded types offer an extra layer of
abstraction over type constructors. Listing 2.1 shows a small Scala program that defines a
higher­kinded type, i.e., a type constructor that receives another type constructor as type
parameter. On lines 1–3, the code defines a type constructor named A that takes two type
parameters. The first type parameter is a type constructor (i.e., denoted as X[_]), while
the second one is a simple type variable named T. The given type constructor X can be
ultimately used to instantiate other types. For example in line 2, the method m receives
a variable of type X[T] that comes from the application of type constructor X to the type
argument T.

At the time of writing, the stable version of Scala is 2.13.5. However, Scala 3 along with

S. Chaliasos 21

A Study of Typing­Related Bugs in JVM compilers

Listing 2.2: A Kotlin program with a nullable type.

val y : String? = nul l
/ / compile −t ime er ro r , y i s nu l l a b l e
y . leng th
y ? . leng th / / OK, re tu rns n u l l

its corresponding compiler (i.e., Dotty), which initially begun as a experimental project,
are approaching. Scala 3 involves major enhancements and additions compared to Scala
2, including contextual abstractions, union and intersection types, metaprogramming fea­
tures, and other.

2.4.3 Kotlin

The Kotlin programming language is developed by the JetBrains team. Although it is a
quite new language (first appeared in 2011), it has gained much popularity recently. It is
now the Google’s preferred programming language for building Android applications [32].

Kotlin provides some distinct features. For example, its type system guarantees null
safety: Kotlin types do not hold null values by default, and there is a special kind of
types called nullable types for storing null values. Nullable types also come with ded­
icated programming constructs for performing safe property accesses on variables that
may point to null.

Consider Listing 2.2 where we define a nullable variable whose type is String?. This type
indicates that the variable can take any string value, or null. Attribute accesses of the
form x.f are not allowed by the type system, when the type of the receiver is nullable (lines
2, 3). Instead, attribute accesses on nullable variables are done through the ?. operator
(line 4), which returns null if the receiver is null, otherwise it returns the value of the
attribute being accessed (i.e., length).

Other important Kotlin’s features are (1) delegation, where the implementation of an in­
terface is delegated to a specific object, (2) extensions where developers can extend the
functionality of a certain class without modifying its declaration. (3) operator overloading,
(4) data classes. Finally, similarly to Scala, it supports both declaration­site and use­site
type variance. Note that non­nullable types, and extension methods are also part of the
new Scala compiler, Dotty.

2.4.4 Groovy

The Groovy programming language supports both dynamic and static typing. A Groovy
program can be run as a script, but there is also the Groovy compiler (i.e., groovyc) for
compiling the code into Java bytecode. The syntax of Groovy is compatible with Java:
every program written in Java should be accepted by groovyc. Groovy’s type system is
very similar to that of Java. However, an important difference is that Groovy provides flow­
sensitive typing. In this context, the inferred type of a local variable changes depending
on its location in the flow of the program.

S. Chaliasos 22

A Study of Typing­Related Bugs in JVM compilers

2.5 Non­JVM Compiler Bugs and Prior Studies

In the related work, we first survey studies on compilers bugs. Then, we continue with
other bug studies.

2.5.1 Understanding compiler bugs

The closest bug study to our work is that conducted by Sun et al. [43]. The authors col­
lected and automatically analyzed 52,732 bugs and 31,399 revisions from the GCC and
LLVM compilers. Their study focused on the following aspects: (1) location of bugs, (2)
size of test cases and bug fixes, (3) lifetime of bugs, and (4) priorities of bugs. Some of
their key findings are: 1) C++ is the most buggy component of the examined compilers, 2)
GCC and LLVM bugs are typically triggered by small test cases 3) most of the bug fixes
are local and 4) developers need a couple of months to resolve the reported bugs. Zhou
et al. [51] recently repeated the empirical study initially conducted by Sun et al. [43], but
this time, the researchers gave emphasis to optimization bugs in GCC and LLVM. Some of
their results (e.g., size of test cases, duration of bugs, locality of bugs) are consistent with
the findings of Sun et al. [43]. In a different spirit, Marcozzi et al. [29] tried to measure the
effect of compiler bugs found by fuzzing tools on real­world application code. According to
their results, most of the fuzzer­found bugs indeed affect the final executables produced by
compilers, but they semantically change only a small portion of the code (typically involving
a small number of functions). Our work is complementary to these previous studies; as it
provides the first insights into understanding the nature of typing­related bugs, a category
of bugs that is currently overlooked. The findings of our work can be combined with the
findings of the other studies in order to perform a more rigorous testing of compilers.

2.5.2 Other bug studies

An often­cited examination of program faults is the seminal paper of Knuth [22]. A sur­
vey [30] lists 18 studies of software system faults and summarizes their results. Here we
briefly present recent studies that are closely related to our work. Trying to investigate the
characteristics of distributed concurrency bugs, Leesatapornwongsa et al. [26] manually
analyzed 104 non­deterministic concurrency bugs from four distributed systems used in a
production environment. Their analysis consisted of several aspects, including bug symp­
toms and fixing. Their findings contribute to the better understanding of distributed bugs
and facilitate the design of future verification and testing tools. Other studies on concur­
rency bugs in server­side JavaScript Wang et al. [46]; Davis et al. [12] showed that such
bugs are mainly caused by atomicity and ordering violations, and beyond shared memory,
a significant number of bugs is triggered by races in external resources, such as files or
databases. Bagherzadeh et al. [4] focused on actor­based concurrency bugs. They con­
structed a dataset consisting of 186 concurrency bugs found in Akka coming from Stack
Overflow questions, and GitHub projects. For each bug in the dataset, they identified
its symptom, root cause, and the Akka APIs that the buggy program uses. Their results
showed that crashes is the most prevalent category of symptoms, while Akka concurrency
bugs are mainly caused by logic faults.

Numerical bugs is another category of bugs that has been examined by previous empirical
studies. Di Franco et al. [14] selected 269 numerical bugs from five popular numerical
libraries (i.e., NumPy, SciPy, LAPACK, and classified them into four categories based

S. Chaliasos 23

A Study of Typing­Related Bugs in JVM compilers

on their patterns and root causes. One of this study’s takeaways is that some of the
numerical bugs can be detected and fixed by adopting rule­based approaches, as many of
them follow specific patterns, e.g., some accuracy bugs can be fixed by simply re­ordering
arithmetic expressions. In a subsequent study, Dutta et al. [16] characterized inference­
related bugs by manually analyzing 118 commits from three probabilistic programming
systems. Their categorization involves accuracy bugs, bugs associated with the handling
of special numerical values (e.g., NaN), and other correctness issues. Based on their
findings, they also proposed a differential testing approach for finding such bugs.

Jin et al. [21] performed one of the first bug studies for performance bugs. They selected
109 real­word performance bugs from well­established systems (e.g., GCC, MySQL), and
showed how these bugs are introduced and fixed. They designed a bug­finding tool that
was able to detect 332 performance issues in MySQL, Apache and Mozilla.

S. Chaliasos 24

A Study of Typing­Related Bugs in JVM compilers

3. METHODOLOGY

First, we create a corpus of typing­related bugs taken from the issue trackers of four JVM
languages (Section 3.1). Then, we explain how we study and analyze the collected bugs
(Section 3.2), and finally, we discuss the limitations and threats to validity of our method
(Section 3.3).

3.1 Collecting bugs and fixes

Our bug collection approach consists of two stages, namely, bug collection and post­
filtering. In the former phase, we search the issue trackers of the studied languages to
gather fixed bugs related to the typing algorithms of the corresponding compilers. Our
study excludes bugs related to the implementation of lexers and parsers. Similarly, bugs
in the implementation of compiler optimizations or code generation are beyond the scope
of this paper. The output of the first phase includes four sets containing the URLs of the
retrieved bug reports. Each set Bl contains bugs related to a language l.

We further filter the collected bugs by performing the post­filtering step. This step aims
to exclude bugs without any explicit fix, and bugs whose fix or report is not accompanied
by a test case that triggers the bug. To do so, we follow three steps. First, for each
language l, we get the ID of each previously collected bug b ∈ Bl. Second, we search the
repository of the corresponding compiler to find all the commits that refer to the given bug
identifier. Third, for completeness, we use the GitHub API to retrieve pull requests that
have references to the given bug. Note that it is a standard practice for the developers of
the studied compilers to include the bug’s numeric identifier in the description of their bug
fixes.

In the post­filtering step, having kept the bugs for which we are able to find corresponding
commits, we further examine their revisions to check whether they contain a test case.
The development team of each compiler places test cases in dedicated directories, e.g.,
tests/. For instance, Scala developers put their test cases into the tests/ directory of
their repository. Therefore, to decide whether the associated commits contain a test case,
we look for file updates in the aforementioned directories. When a commit does not contain
a test case, we look into the corresponding bug report to discover and retrieve any linked
test cases. At the end of the post­filtering phase, we obtain four sets of bugs, where each
set B′

l is a subset of the corresponding set Bl produced by the first step of our collection
approach.

While applying our bug collection method, we had to tackle the following challenge: the
development teams of the languages under examination use diverse issue trackers, and
adopt various categorization strategies for the reported bugs. Therefore, before collecting
bugs, we carefully examined the corresponding issue trackers to identify all the relevant
categories and filtering criteria that can be used to obtain fixed typing­related bugs.

Table 3.1 shows descriptive statistics of our bug collection effort. After applying the bug
collection, and post­filtering step to each language, we got our final dataset, which con­
sists of 4,153 bugs in total, of which 873 bugs are in Java compiler (javac), 1,433 bugs
are in Scala compilers (either scalac or Dotty), 1,601 bugs are in Koltin compiler (kotlinc),
and 246 bugs are in Groovy compiler (groovyc). In the following, we discuss some language­
specific details.

S. Chaliasos 25

A Study of Typing­Related Bugs in JVM compilers

Table 3.1: Statistics on bug collection. Each table entry shows per language statistics about 1) the
total number of the reported issues (Total issues), 2) the number of the selected bugs after running
the first phase of our approach (Phase 1), and 3) the number of the remaining bugs after running

the second phase (Phase 2).

Language Issue Tracker REST Endpoint Total Issues Phase 1 Phase 2
Java Jira https://bugs.openjdk.java.net/rest/api/latest/search 10,872 1,252 873
Scala 2 GitHub https://api.github.com/repos/scala/bug 12,315 1,180 1,067
Scala 3 GitHub https://api.github.com/repos/lampepfl/dotty 4,286 429 366
Kotlin YouTrack https://youtrack.jetbrains.com/api/issues 40,998 2,189 1,601
Groovy Jira https://issues.apache.org/jira/rest/api/2/search 9,710 300 246

3.1.1 Collecting Java Bugs

Focusing on javac typing­related bugs, we inspected bugs reported in the OpenJDK pro­
ject, which is the open­source implementation of the Java SE platform. The OpenJDK
project employs the Jira issue tracker, which, at the time of writing, hosts 10,872 issues
associated with a large number of JDK components, such as the JVM runtime, the Just in
Time (JIT) compiler, Java’s standard library, or other external JDK tools like the bytecode
disassembler.

We used the Jira REST API to find JDK issues that meet the following selection criteria:
1) the type of the issue is “bug”, 2) its status is either “resolved” or “closed”, 3) its “resolu­
tion” field is set to “fixed”, and 4) the issue is related to the Java compiler (i.e., the bug is
assigned to the javac sub­component of JDK). Due to the large volume of JDK issues (>
200k), we applied two more filters. First, we selected bugs that affect JDK 7 and onwards.
We excluded bugs that affect early versions of JDK where crucial features of Java (e.g.,
generics) are not present. Second, we filtered JDK bugs based on their priority. Spe­
cifically, we selected bugs that are considered important, and their priority is “P1”, “P2”,
or “P3”. Running the bug collection and post­filtering steps yielded the final set of javac
bugs, namely B′

j, containing 873 JDK issues.

Remark. The JDK developers do not classify javac bugs further. This means that we
were unable to distinguish between parser bugs or type checker bugs in javac through
automated means. We excluded any javac bug not related to our study during our manual
analysis of bugs (Section 3.2).

3.1.2 Collecting Scala Bugs

We collected Scala bugs from two sources. The first source contains bugs reported for the
Scala 2 compiler (scalac), while the second one includes bugs related to Dotty, the Scala
3 compiler. Both sources are using the issue tracking system of GitHub. For every bug
report related to scalac, there is a dedicated repository, namely scala/bug. Dotty­related
bugs on the other hand, are hosted in the official Github repository of the compiler. At
the time of writing, 12,315 and 4,386 issues have been reported, in total, for scalac, and
Dotty respectively.

The developers of these two compilers perform the classification of the reported issues by
assigning different labels to each issue. We constructed two queries for fetching bugs that
contain labels associated with Scala’s type system and typing procedures. Specifically,
for scalac bugs, we looked for closed GitHub issues to which at least one of the following
labels is assigned: “typer”, “infer”, “should compile”, “should not compile”, “patmat”, “over­
loading”, “dependent types”, “structural types”, “existential”, “gadt”, “valueclass”, “type­
level”, “compiler crash”, “implicit classes”, and “implicit”. For Dotty, we were interested

S. Chaliasos 26

https://bugs.openjdk.java.net/rest/api/latest/search
https://api.github.com/repos/scala/bug
https://api.github.com/repos/lampepfl/dotty
https://youtrack.jetbrains.com/api/issues
https://issues.apache.org/jira/rest/api/2/search
https://github.com/scala/bug

A Study of Typing­Related Bugs in JVM compilers

in closed GitHub issues that combine the “itype:bug”, “itype:crash” or “itype:performance”
label with at least one of the following labels: “area:typer”, “area:overloading”, “area:gadt”,
“area:implicts”, “area:f­bounds”, “area:pattern­matching”, “area:erasure”, “area:match­types”.
We also checked that the issues do not have the labels “won’t fix” and “stat:wontfix”. We
used the Github REST API and fetched 1,180 bugs for scalac, and 429 bugs for Dotty.
After excluding the bugs without an explicit fix or a test case, we were left with 1,067
and 366 bugs for scalac, and Dotty respectively. The final set of bugs B′

s includes 1,433
bugs coming from both Scala compilers.

3.1.3 Collecting Kotlin Bugs

Kotlin developers use the YouTrack issue tracker. Currently, it hosts 40,998 issues and
bugs associated with different aspects of the Kotlin compiler, including type inference,
code generation, IDE support and Android support.

We examined the tracker to identify issues with type: “bug” or “performance problem”,
and status: “fixed”. Kotlin developers characterize issues that cause performance de­
gradation in compilation or runtime as “Performance problems”. We further search for
such issues. Also, Kotlin developers follow a fine­grained categorization for determining
the components affected by the issue. This made it easy for us to identify bugs that oc­
cur in the implementations of the semantic analyses and type checker. Specifically, all
typing­related compiler issues are assigned to categories prefixed by the term “Frontend”.
Thus, we searched for Kotlin issues that belong to such categories. Bugs in the lexer
and the parser are placed in a dedicated category named “Frontend. Lexer & Parser”,
so it was easy for us to exclude them. Our search returned 2,189 Kotlin bugs. After run­
ning the post­filtering phase, we ended up with the final set of Kotlin bugs B′

k. This set
contains 1,601 elements.

3.1.4 Collecting Groovy Bugs

Groovy issues are hosted on a Jira instance that currently contains 9,710 cases. We were
interested in Groovy issues that have the “bug” label, are either “closed” or “resolved”, and
their resolution status is “fixed”. To identify typing­related bugs, we searched for issues
assigned to a category named “Static Type Checker”. Our Jira query fetched 300 Groovy
bugs. The post­filtering step produced the B′

g set consisting of 246 Groovy bugs.

3.2 Analyzing bugs

The total bug population contains 4,153 bugs. Since the manual analysis of each bug
requires a certain amount of time to understand the root cause and the nature of the bug,
it was not feasible for us to study every bug in the population. Therefore, we randomly
sampled 80 bugs from the bug set of each language, leaving us with 320 bugs for manual
analysis in total. Note that analyzing 320 bugs is consistent with the literature of bug
studies. Specifically, Jin et al. [21] have manually analyzed 110 real­world performance
bugs, Di Franco et al. [14] analyzed 269 bugs in numerical libraries, Leesatapornwongsa et
al. [26], and Bagherzadeh et al. [4] analyzed 104 and 186 concurrency bugs in distributed
and actor­based systems respectively.

S. Chaliasos 27

A Study of Typing­Related Bugs in JVM compilers

To better understand the nature of the examined bugs, cover a wide range of scenarios
on how these bugs are triggered, and reduce the possibility of getting biased, we chose to
uniformly study bugs in the selected compilers rather than primarily focusing on a single
one. To this end, our manual analysis was done in an iterative manner. Specifically, in
every iteration, we randomly picked 20 bugs from each language set, and the first two
authors made a first pass over the selected 80 bugs and excluded bugs that are outside
the scope of this study (e.g., a parser bug in a compiler that was mistakenly selected
during bug collection). After agreement, we randomly chose additional bugs, until we had
20 analyzable bugs for each language. Then, the actual analysis of these bugs occured.
We studied each of the selected 80 bugs, (along with their fixes, and the discussion made
by the development teams), and tried to assign every bug to categories based on 1) its
symptom (RQ1), 2) its root cause (RQ2), and 3) the characteristics of the bug­revealing
test cases (RQ4). The procedure described above was repeated four times, i.e., until
studying 320 bugs in total. During these four iterations, we revisited, adapted (i.e., split,
merged or renamed) the proposed categories, and, if it was necessary, re­assigned each
aspect of bugs to other categories.

3.3 Threats to validity

One potential threat to internal validity is associated with the selection criteria and repres­
entativeness of the examined bugs. We were interested in fixed bugs accompanied with
a fix and a test case. Such fixed bugs 1) are real bugs, 2) are important for the developers
(since they are fixed), and 3) have enough information (i.e., a fix and a test case) to under­
stand and characterize them. This is in line with prior work [43, 21, 14], where fixed bugs
were also studied. For selecting typing­related compiler bugs, we first manually examined
the categorization adopted by each development team, and applied (if possible) the ne­
cessary filters for fetching such bugs (e.g., getting all bugs prefixed with the “Frontend”
term in case of Kotlin). When we did not have such information (e.g., in the case of javac),
we did not apply additional filters. We avoided using keywords during search to reduce
the chance of missing relevant bugs. In all cases, during our bug analysis, the selected
bugs were manually examined, and excluded irrelevant ones.

A threat to external validity is the representativeness of the chosen languages and their
compilers. We selected these programming languages, as they hold an important stake
in the JVM technology. The vast majority of applications run on JVM are written in these
languages. According to the annual statistics of Github [18], Java is among the top 3 most
popular programming languages for the last five years, while Scala, beyond industry, it is
also widely used in academia. Kotlin is gaining more popularity over the years, and now it
has become the Google’s primary language for Android development [32]. Finally, Groovy
is on the list of the top 20 most popular languages based on the TIOBE programming com­
munity index [44]. All these languages are object­oriented, while involving complicated
features including, type inference, functional programming features, generics, overload­
ing. We argue that the chosen languages can represent, to some degree, other statically­
typed, object­oriented programming languages (e.g., C++, C#, TypeScript). However,
some of the findings of our work may not be generalized to languages, such as Haskell,
OCaml, or Go.

S. Chaliasos 28

A Study of Typing­Related Bugs in JVM compilers

4. BUG STUDY

We present the main findings of our work providing answers to each of our research ques­
tions. All references to specific bugs provided as examples, are hyperlinked to the corres­
ponding entry in the compiler project’s issue tracking system.

4.1 RQ1: Symptoms

Every bug report of our dataset consists of a short description that contains information
about how the bug is triggered along with the compiler’s expected and actual behavior. To
identify symptom categories, we answered the following question: What did it make the
bug reporter believe that something goes wrong in the compiler? We carefully examined
the differences between the compiler’s expected and actual behavior, and grouped these
differences into categories. We ultimatly identified 5 categories of symptoms, namely,
Unexpected Compile­Time Error, Internal Compiler Error, Unexpected Runtime Behavior,
Misleading Report, and Compilation Performance Issue. Figure 4.1 shows the distribution
of the symptom categories. In the following, we discuss each symptom category in detail.
Further, we elaborate on its frequency and impact, and present a concrete example of a
compiler bug associated with the symptom.

0 20 40 60 80 100 120 140 160

Compilation Performance Issue

Misleading Report

Unexpected Runtime Behavior

Internal Compiler Error

Unexpected Compile-Time Error

7 / 320

18 / 320

53 / 320

79 / 320

163 / 320

Compiler
groovyc
javac
kotlinc
scalac & Dotty

Figure 4.1: The distribution of symptoms.

4.1.1 Unexpected Compile­Time Error

A bug involving this symptom manifests itself when the compiler rejects a well­typed pro­
gram, producing an informative error message to the developer. Such errors may frustrate
developers, leaving themwith the impression that their programs are indeed incorrect. Un­
expected compile­time error is by far the most common symptom, accounting for 50.94%
of the examined bugs.

., Listing 4.1 shows an instance of this symptom (related to kotlinc — see KT­10711).
The program includes a parameterized class named A that takes one type parameter T,
and defines a property named f whose type is given by the type parameter (line 1). Later,

Listing 4.1: KT­10711: A program that triggers a kotlinc bug

class A<T>(val f : T)
fun t e s t () {

l i s t O f <String > () .map (: : A)
}

S. Chaliasos 29

https://youtrack.jetbrains.com/issue/KT-10711
https://youtrack.jetbrains.com/issue/KT-10711

A Study of Typing­Related Bugs in JVM compilers

Listing 4.2: GROOVY­7618: A program that triggers a groovyc bug with an internal compiler error.

in ter face I {
i n t m()

}
i n t m2(I x) {
x .m()

}
void t e s t () {
m2 { −> 1 }

}

the program creates a list of strings (line 3). To convert every element of this list into an
object of class A, the code applies the function map by passing a reference to the con­
structor of class A. map is a parameterized method in class List whose signature is <I,
O> map(fun: I => O): O. Specifically, map 1) is instantiated with two type parameters, I
and O, 2) expects a function with type I => O as input, and 3) returns a value of type O.

The Kotlin compiler rejects the above program providing the following error message:
“error: not enough information to infer type variable T”. Specifically, map is applied to a
list of strings. Thus, the type variable I of function map is instantiated with a String type,
making map expect a function of type String => O as input. However, there is a bug in
the inference engine of kotlinc, which prevents the compiler from instantiating the type
variable T defined in class A (and as a result, the corresponding type of function reference
::A) based on the expected function type String => O.

In the above example, the compiler considers the program as invalid and produces a
corresponding diagnostic message (i.e., inference is not feasible). Other similar types
of wrong error messages involve type mismatches (e.g., inferred type is X, but Y was
expected), unresolved references (e.g., cannot find method m), and accessibility issues
(e.g., private variable cannot be accessed in this context).

4.1.2 Internal Compiler Error

Internal Compiler Error (or crash) is the second most common symptom in our dataset
(24.69%). Such errors manifest themselves when the compiler terminates its execution
abnormally. This symptom differs from unexpected compile­time error, because the com­
piler is unable to yield a normal diagnostic message, or even generate target code. Internal
compiler errors are clear indications that something is not working well in the compiler.

Listing 4.2 presents a Groovy program that triggers a bug (see GROOVY­7618) leading to
an internal compiler error. The program defines a single abstract method (SAM) interface
named I containing an abstract method m that takes no parameters and returns an integer
(lines 1–3). Note that every SAM interface is also a functional one, meaning that instead of
concrete classes, such SAM interfaces can also be implemented by lambda expressions
and functions. The program later defines a function called m2 that expects an instance of
I, and returns a value of int by calling the method m of the given instance. Finally, the
program calls m2 by passing a lambda as an argument (line 8). The type of lambda is ()
=> int.

When groovyc tries to coerce the type of lambda to a SAM type, it computes the arity of

S. Chaliasos 30

https://issues.apache.org/jira/browse/GROOVY-7618
https://issues.apache.org/jira/browse/GROOVY-7618

A Study of Typing­Related Bugs in JVM compilers

lambda by accessing the property params.length. Note that groovyc internally represents
a lambda expression with an object, which among other things, contains a field named
params that stands for the parameter list of lambda. Nevertheless, the given lambda is
parameterless (line 8), and therefore the value of params is null. This in turn, leads to
a NullPointerException, because the params.length access is not guarded by a null­
check of the receiver (params).

Internal compiler errors are often caused by runtime exceptions (e.g., AOBE). Also, they
are triggered by failures of assertions included in the compiler’s source code. Such fail­
ures happen, when the compiler is in an illegal state. For example, Dotty performs a
post­condition check after type erasure to ensure that all types of the program tree are
erased and are consistent with the type of system of JVM. This is not the case in Dotty­
7041, where after type erasure the program tree contains an illegal type leading to an
AssertionError.

4.1.3 Unexpected Runtime Behavior

The 16.56% of our bugs come with an unexpected runtime behavior symptom. Unlike
previous symptoms, a bug related to an unexpected runtime behavior manifests itself
when running the executable generated by the compiler. This involves the successful
compilation of a given source program and the generation of a faulty executable that in
turn, may lead to errors and wrong outcomes.

There are two reasons why a compiler may generate incorrect executables. First, a com­
piler bug can break the soundness of the type system. Hence, the compiler accepts an
invalid program which it should have rejected. Such bugs are important, because they
defeat the safety offered by type systems in statically­typed languages [34]. Second, the
compiler may perform wrong static linking between methods and objects (e.g., it chooses
the wrong overloaded method to call). Like miscompilations caused by optimization bugs,
typing­related bugs with unexpected runtime behavior are very confusing for developers,
and worse, they may be released unnoticed, as many of these unexpected runtime beha­
viors are triggered by specific application inputs.

Consider the Java program of Listing 4.3, which causes a known javac bug (see JDK­
7041019) associated with an unexpected runtime behavior symptom. First, the code
defines a parameterized interface A which is instantiated with a type parameter E. This
interface contains an abstract method m expecting a value of E (lines 1–3). Another para­
meterized interface called B has one type parameter (Y), and extends the interface A in­
stantiated as A<Y[]> (line 4). Later, a class called C implements B<Integer> by overriding
the abstract method m (line 7). Furthermore, on lines 8–11, class C defines a static para­
meterized method, m2. This method defines a type variable Twith upper bound B<?>. Also,
m2 receives a parameter x whose type is T, and returns nothing. The body of this method
calls x.m() by passing an array of strings as input (line 10). Finally, the code defines main,
which invokes m2 using an instance of C as a call argument (12–14).

javac compiles this program successfully, and produces the corresponding bytecode. Un­
fortunately, JVM throws a ClassCastException when running the method call on line 10.
This is because

JVM tries to pass an array of strings in a method expecting an array of integers (notice
that the receiver of the callee method m is an object of class C at runtime, see lines 7,
10, 13)! This soundness issue is caused by a bug in javac. Specifically, when typing the

S. Chaliasos 31

https://github.com/lampepfl/dotty/issues/7041
https://github.com/lampepfl/dotty/issues/7041
https://bugs.openjdk.java.net/browse/JDK-7041019
https://bugs.openjdk.java.net/browse/JDK-7041019

A Study of Typing­Related Bugs in JVM compilers

Listing 4.3: JDK­7041019: A program that triggers a javac bug with an unexpected runtime behavior.

in ter face A<E> {
void m(E x) ;

}
in ter face B<Y> extends A<Y[] > { }
class C implements B<In teger > {

@Override
void m(In tege r [] x) { }
s ta t i c <T extends B<?>> void m2(T x) {

/ / Boom! ClassCastExcept ion a t runt ime .
x .m(new St r i ng [] { ” s ” }) ;

}
s ta t i c void main (S t r i ng [] args) {
m2(new C ()) ;

}
}

Listing 4.4: KT­5511: A program that triggers a kotlinc bug with a misleading report.

in ter face X<T> {
inner enum class C : X<T>

}

method call at line 10, javac instantiates the expected type of m (which at that time is X[],
where X stands for a fresh type variable) based on the upper bound of type parameter
T (i.e., B<?>) of method m2. javac substitutes the type variable X with a capture type
represented as CAP#1, but instead of creating an array type holding elements of type CAP#1,
it mistakenly creates an array type that stores elements of type Object. After this incorrect
type substitution, m now expects something of type Object[]. In Java though, arrays are
covariant, thus, javac treats the argument type String[] as a subtype of the expected
type Object[], and mistakenly allows the call at line 10.

Some common runtime behaviors caused by typing­related bugs with an unexpected
runtime behavior include bytecode verification failures (VerifyError), dynamic linking
and resolution failures (AbstractMethodError, IllegalAccessError), execution failures
(NullPointerException, ClassCastException), or wrong execution results.

4.1.4 Misleading Report

The fourth most common symptom is misleading report (5.62%). Such symptoms appear
when for a given program, the compiler emits a false warning or a false error

False warnings and error messages may be misleading because they suggest ineffective
fixes (e.g., warning about an unsafe cast, but the cast is actually safe). Furthermore, spuri­
ous messages can hide other program errors (e.g., the compiler reports a type mismatch
error instead of an uninitialized variable error). Unlike unexpected compile­time error, in
case of misleading report, the compiler correctly accepts (or rejects), a valid (or invalid)
program. However, it does so by producing wrong diagnostic messages.

Listing 4.4 shows a Kotlin program triggering a bug (see KT­5511) with amisleading report

S. Chaliasos 32

https://bugs.openjdk.java.net/browse/JDK-7041019
https://youtrack.jetbrains.com/issue/KT-5511
https://youtrack.jetbrains.com/issue/KT-5511

A Study of Typing­Related Bugs in JVM compilers

Listing 4.5: Dotty­10217: A program that triggers a Dotty bug with an compilation performance issue.

t r a i t A
t r a i t B
t r a i t C
. . .
t r a i t W
t r a i t Foo [T]
val f : Foo [A | B | C | . . . | W] = ???

symptom. The code defines a parameterized interface named X instantiated by one type
parameter T (line 1). Inside the body of X, the code declares an inner enum named C that
implements X<T>.

For this program, kotlinc generates two compile­time error messages: 1) “error (2, 3):
Modifier ’inner’ is not applicable to enum class”, and 2) “error (2, 26): Expression is in­
accessible from a nested class ‘C’, use ‘inner’ keyword to make the class inner”. These
two error messages are contradictory: the first message says that enum class cannot be
inner, while the second one suggests developer make the enum class inner. This ex­
ample program is indeed invalid, and the first error message is correctly reported by the
compiler. Specifically, a Kotlin developer says: “Enums should have a finite set of val­
ues, enum entries. Each enum entry is a result of statically invoking the constructor of
the enum class. Inner class constructors have an additional non­static parameter which is
an instance of the outer class. Thus they can’t be invoked statically and therefore enums
can’t be inner.”. However, the second error of the compiler is spurious, and it is caused
by a bug in the reporting mechanism of kotlinc.

4.1.5 Compilation Performance Issue

The least common symptom is compilation performance issue (2.19%). Bugs related to
this symptom cause noticeable degradations in compilation performance. The impact of
such bugs is the waste of developers’ time and resources, because the compiler requires
much time or memory to compile even the simplest fragment of code, and in many cases,
compilation never terminates.

Consider the Scala program of Listing 4.5, which triggers a bug in Dotty (see Dotty­10217).

The program defines 24 types (most of them are omitted for brevity): from type A to type
W. Then, the program defines a type constructor Foo which is instantiated with one type
variable T. Finally, the code declares one variable named f with a type that comes from
the application of type constructor with a union type consisting of types A to W.

Dotty spends roughly five minutes to compile this program. Specifically, Dotty performs a
type optimization on union types: a union type of the form T | Null or Null | T becomes
a regular type T. In this context, Dotty examines the union type passed as a type argument
of type constructor Foo (line 7) to see whether this optimization is applicable to this union
type. To do so, Dotty recursively checks if the union type consists of a bottom type (i.e.,
Null or Nothing) by using an internal function named derivesFrom, which returns true
if a given type is an instance of a given class (e.g., NothingClass). The complexity of
derivesFrom is exponential, which means that for a union type containing 24 terms, Dotty
performs 224 calls to derivesFrom!

S. Chaliasos 33

https://github.com/lampepfl/dotty/issues/10217
https://github.com/lampepfl/dotty/issues/10217

A Study of Typing­Related Bugs in JVM compilers

4.1.6 Comparative Analysis

From Figure 4.1, we observe similar trends among studied compilers. The unexpected
compile­time error symptom is the most common symptom for all compilers followed by
internal compiler error, and unexpected runtime behavior. The only exception is kotlinc,
where unexpected runtime behavior is the second most common symptom category. Spe­
cifically, 22 kotlinc bugs were marked with an unexpected runtime behavior symptom,
while 18 bugs were crashes. The high number of kotlinc bugs with an unexpected
runtime behavior symptom is explained by missing well­formed checks on declarations
in the compiler’s implementation. An example of such a missing check is that a Kotlin
class must not implement two interfaces containing members with conflicting signatures.
Around three quarters of groovyc bugs (59 out of 80) make the compiler reject valid code,
while we found only ten groovyc crashes compared to 18, 25, and 26 crashes found in the
Kotlin, Java, and Scala compilers. Finally, we did not observe any groovyc bug causing
any compilation performance issue.

4.2 RQ2: Bug Causes

0 20 40 60 80 100 120

AST Transformation Bugs

Bugs Related to Error Handling & Reporting

Resolution Bugs

Semantic Analysis Bugs

Type-related Bugs

15 / 320

22 / 320

77 / 320

77 / 320

129 / 320

Compiler
groovyc
javac
kotlinc
scalac & Dotty

(a) The distribution of bug causes per compiler

0 20 40 60 80 100 120

AST Transformation Bugs

Bugs Related to Error Handling & Reporting

Resolution Bugs

Semantic Analysis Bugs

Type-related Bugs

15 / 320

22 / 320

77 / 320

77 / 320

129 / 320

Symptom
Unexpected Compile-Time Error
Internal Compiler Error
Unexpected Runtime Behavior
Misleading Report
Compilation Performance Issue

(b) The distribution of bug causes per symptom.

Figure 4.2: The distribution of bug causes.

We classified the examined bugs into categories based on their root cause. To do so, we
studied the fix of each bug and identified which specific compiler’s procedure was buggy.
From our manual inspection, we derived five categories that include bugs sharing common
root causes: Type­related Bugs, Semantic Analysis Bugs, Resolution Bugs, AST Trans­
formation Bugs, and Bugs Related to Error Handling & Reporting. Figure 4.2 illustrates
the distribution of our bug causes. In the following, we provide descriptions and examples
for every category.

S. Chaliasos 34

A Study of Typing­Related Bugs in JVM compilers

Listing 4.6: KT­9630: A Kotlin program that triggers a bug related to an incorrect type transformation.

in ter face A
in ter face B
class C : A, B
fun <T> T .m() : Un i t where T : A, T : B { }
fun main () {
C () . foo ()

}

4.2.1 Type­related Bugs

All types appearing in a program are checked against the set of allowed typing rules as
incorporated in the compiler. A type system designates the main types allowed by a com­
piler, valid operations on these types, how types relate to each other and finally, permiss­
ible ways for the types to be combined. In this context, a compiler internally represents all
types and properties of the underlying type system using specialzed data structures. Fur­
ther, when typing an input program, it applies a broad spectrum of operations to these data
structures based on the rules and design of the type system. Corresponding examples
include, type variable substitutions, type constructor applications, subtyping checks, type
normalizations, and more.

We define a type­related bug when one of these type operations is not implemented cor­
rectly. Since types and their operations are at the heart of a compiler, such correctness
issues have a great impact on the ability of the compiler to accept the given code. There­
fore, type­related bugs are mainly responsible for unexpected compile­time errors (see
Figure 4.2b). We classified 129 out of 320 (40.31%) bugs as type­related, which makes
this bug cause the most common one. Type­related bugs belong to one of the follow­
ing scenarios: 1) incorrect type inference & type variable substitution, 2) incorrect type
transformation / coercion, or 3) incorrect type comparisons & bound computations.

Incorrect Type Inference & Type Variable Substitution. In languages supporting type
inference, explicit typesmay be omitted in a program. The compiler represents these omit­
ted types with type variables, which in turn, are replaced with concrete types at compile­
time, typically by solving a type constraint problem. Many type­related bugs are caused
by building a wrong constraint problem (e.g., the constraint system contains excessive,
missing, or contradictory constraints), or instantiating a type variable in a wrong way. As
a result, for a certain type variable, the compiler infers a wrong type, or in many cases, it
is unable to infer a type at all.

Listing 4.1 gives an example of such a bug. Due to an incorrect handling of function
references, kotlinc constructs a constraint problem with incomplete constraints. This
makes it impossible for the compiler to solve the system and find an optimal solution,
leading to an unexpected compile­time error. Another example is shown in Listing 4.3.
When dealing with an array type containing a type variable, javac performs a wrong type
variable substitution, which causes a soundness bug.

Incorrect Type Transformation / Coercion. Guided by certain rules, a compiler may
transform a certain type into another type for numerous reasons, e.g., type normalization,
type erasure. For example, as shown in Listing 4.5, Dotty normalizes a union type of the
form T | Null to T. Another example involves type erasure where all studied compilers
erase type information from parameterized types.

S. Chaliasos 35

https://youtrack.jetbrains.com/issue/KT-9630

A Study of Typing­Related Bugs in JVM compilers

Listing 4.7: JDK­8039214: A Java program that triggers a bug related to incorrect type comparisons.

in ter face I <X1 ,X2> { }
class C<T> implements I <T , T> { }

public class Test {
<X> void m(I <? extends X, X> arg) { }
void t e s t (C<?> arg) {
m(arg) ;

}
}

Similarly, we have the boxing and unboxing processes where a value type becomes a
reference type, and vice versa. Diverse bugs in the implementation of these type trans­
formations cause many problems.

As an example, consider Listing 4.6, where a Kotlin program triggers KT­9630. Specific­
ally, this program defines a parameterized extension function named m instantiated by one
type variable T that has two upper bounds: A and B (line 4). The code later calls this func­
tion using a receiver of type C (line 6). When typing this program, kotlinc instantiates
type variable T with the intersection type A & B. Since in Kotlin, intersection types are only
used internally for type inference purposes, kotlinc needs to convert the intersection type
A & B into a type that is representable in a program. The problem in this example is that
kotlinc fails to convert type A & B to type C. Consequently, kotlinc rejects the given
code, because it is unable to find the method m in a receiver of type C, even though this
type has been extended with method m.

Incorrect Type Comparison & Bound Computation. Another instance of type­related
bugs are incorrect type comparisons and bound computations. A compiler applies different
kinds of comparisons between types, which are underpinned by formal rules and relations
of the type system. For example, a compiler consults the subtyping rules of the type
system to check whether a value of type T1 is assignable to a variable of type T2. Beyond
that, a compiler implements a number of algorithms dealing with type bounds, such as
computation of lowest upper bound and greatest lower bound. We have identified many
type­related bugs caused by type comparisons and bound computations that do not obey
the rules of the type system.

Listing 4.7 demonstrates a javac bug (see JDK­8039214) caused by an incorrect type
comparison. While type checking the call on line 7, javac checks whether the argument
type C<?> is subtype of the expected type I<? extends X, X>. As part of this subtyp­
ing check, javac tests if the type argument ? of type constructor C is contained in type
argument ? extends X of type constructor I. This type argument comparison is guided
by the containment relation defined in the Java Language Specification (JLS) [19, §4.1.5].
Unfortunately, the implementation of javac does not follow this containment relation to the
letter. Hence, it considers that C<?> is not subtype of I<? extends X, X>. This makes
javac reject this well­formed program.

4.2.2 Semantic Analysis Bugs

Semantic analysis occupies an important space in the design and implementation of com­
piler front­ends. A compiler traverses the whole program and analyzes each program node

S. Chaliasos 36

https://bugs.openjdk.java.net/browse/JDK-8039214
https://youtrack.jetbrains.com/issue/KT-9630
https://bugs.openjdk.java.net/browse/JDK-8039214

A Study of Typing­Related Bugs in JVM compilers

Listing 4.8: Scala2­5878: A Scala program that triggers a bug related to missing validation checks.

case class A(x : B) extends AnyVal
case class B(x : A) extends AnyVal

individually (i.e., declaration, statement, and expression) to type it and verify whether it is
well­formed based on the corresponding semantics. A semantic analysis bug is a bug
where the compiler yields wrong analysis results for a certain program node. The 24.06%
of the inspected bugs are classified as semantic analysis bugs. A semantic analysis bug
occurs due to one of the following reasons: 1) missing validation checks, and 2) incorrect
analysis mechanics.

Missing Validation Checks. This sub­category of bugs include cases where the compiler
fails to perform a validation check while analyzing a particular node. This mainly leads to
unexpected runtime behaviors because the compiler accepts a semantically invalid pro­
gram because of the missing check. In addition to these false negatives, later compiler
phases may be impacted by these missing checks. For example, assertion failures can
arise, when subsequent phases (e.g., back­end) make assumptions about program prop­
erties, which have been supposedly validated by previous stages. Some indicative ex­
amples of validation checks include: validating that a class does not inherit two methods
with the same signature, a non­abstract class does not contain abstract members, a pat­
tern match is exhaustive, a variable is initialized before use.

Consider the Scala program of Listing 4.8, which demonstrates a semantic analysis bug
related to a missing validation check (see Scala2­5878). The program defines two value
classes A and B with a circular dependency issue, as the parameter of A refers to B, and
the parameter of B refers to A.

This dependency problem, though, is not detected by scalac, when checking the validity
of these declarations. As a result, scalac crashes at a later stage, when it tries to unbox
these value classes based on the type of their parameter. The developers of scalac fixed
this bug using an additional rule for detecting circular problems in value classes.

Incorrect Analysis Mechanics. Another common issue related to semantic analysis
bugs is incorrect analysis mechanics. This sub­category contains bugs with root causes
that lie in the analysis mechanics and design rather the implementation of type­related
operations, i.e., these bugs are specific to the compiler steps used for analyzing and typ­
ing certain language constructs. Incorrect analysis mechanics mostly causes compiler
crashes and unexpected compile­time errors.

For example, in Dotty­4487, the compiler crashes, when it types class A extends (Int
=> 1), because Dotty incorrectly treats Int => 1 as a term (i.e., function expression) in­
stead of a type (i.e., function type). Specifically, Dotty invokes the corresponding method
for typing Int => 1 as a function expression. However, this method crashes because the
given node does not have the expected format. Dotty developers fixed this bug by typing
Int => 1 as a type.

4.2.3 Resolution Bugs

One of a compiler’s core data structures is that representing scope. Scope is mainly
used for associating identifier names with their definitions. When a compiler encounters
an identifier, it examines the current scope and applies a set of rules to determine which

S. Chaliasos 37

https://github.com/scala/bug/issues/5878
https://github.com/scala/bug/issues/5878
https://github.com/lampepfl/dotty/pull/4487

A Study of Typing­Related Bugs in JVM compilers

Listing 4.9: JDK­7042566: A Java program that triggers a resolution bug.

class Test {
void t e s t () {

Except ion ex = nul l ;
e r r o r (” e r r o r ” , ex) ;

}
void e r r o r (Object o , Object . . . p) { }
void e r r o r (Object o , Throwable t ,

Object . . . p) { }
}

definition corresponds to the given name.

In languages like those examined in our study where features, such as nested scopes,
overloading, or access modifiers, are prevalent, name resolution is a complex and error­
prone task. A resolution bug is a bug where the compiler is either unable to resolve an
identifier name, or the retrieved definition is not the right one. We found that the 24.06%
of our bugs lie in this pattern. These bugs are caused by one of the following scenarios:
1) there are correctness issues in the implementation of resolution algorithms, 2) the com­
piler performs a wrong query, or 3) the scope is an incorrect state (e.g., there are missing
entries). The symptoms of resolution bugs are mainly unexpected compiler­time errors
(when the compiler cannot resolve a given name or considers it as ambiguous) or unex­
pected runtime behaviors (when resolution yields wrong definitions) — see Figure 4.2b.

Listing 4.9 presents a test case that triggers the javac bug JDK­7042566. For the method
call at line 4, javac finds out that there two applicable methods (see lines 6, 7). In cases
where for a given call, there are more than one applicable methods, javac chooses the
most specific one according to the rules of JLS [19, §15.12.2.2 and §15.12.2.3]. For our
example, the method error defined at line 7 is the most specific one, as its signature is less
generic than the signature of error defined at line 6. This is because the second argument
of error at line 7 (Throwable) is more specific than the second argument of error (Object)
at line 6. However, a bug in the way javac applies this applicability check to methods
containing a variable number of arguments (e.g., Object...) makes the compiler treat
these methods as ambiguous, and finally reject the code.

4.2.4 Bugs Related to Error Handling and Reporting

When an error is found in a given source program, modern compilers do not abort com­
pilation. Instead, they continue their operation to find more errors and report them back to
the developers. In the context of type checking this is typically done by assigning a spe­
cial type (e.g., the top type) to erroneous expressions. Compilers also strive to provide
informative and useful diagnostic messages so that developers can easily locate and fix
the errors of their programs. A bug related to error handling & reporting is a bug where the
compiler correctly identifies a program error, but the implementation of the procedures for
handling and reporting this error does not produce the expected results. We found that
the 6.88% of our bugs are associated with error handling and reporting. All bugs of this
category are related to crashes and wrong diagnostic messages (i.e., misleading reports).

For example, the Kotlin program of Listing 4.4 triggers a bug related to error handling
and reporting. As already discussed, in this program, kotlinc produces an excessive

S. Chaliasos 38

https://bugs.openjdk.java.net/browse/JDK-7042566
https://bugs.openjdk.java.net/browse/JDK-7042566

A Study of Typing­Related Bugs in JVM compilers

Listing 4.10: Scala2­6714: A Scala program that triggers an AST transformation bug.

class A
class B {

def apply (x : I n t) (imp l i c i t a : A) = 1
def update (x : I n t , y : I n t) { }

}
object Test {

imp l i c i t val a = new A()
val b = new B()
b (3) += 4 / / compile −t ime e r r o r here

}

diagnostic message. This message suggests developers to take actions that contradict
with previously reported messages.

4.2.5 AST Transformation Bugs

The semantic analyses of a compiler works on a program’s abstract syntax tree (AST).
Before or after typing, a compiler applies diverse transformations and simplifications to
the AST so that the given program is expressed in terms of simpler constructs.

For example, javac applies a transformation that converts a foreach loop over a list of
integers for (Integer x: list) into a loop of the form for (Iterator<Integer> x =
list.iterator(); x.hasNext();) An AST transformation bug is a bug where the com­
piler generates a transformed program that is not equivalent with the original one, some­
thing that invalidates subsequent analyses. We found that the 4.69% of our bugs are AST
transformation bugs, which cause many unexpected compile­time and internal compiler
errors.

Listing 4.10 demonstrates an instance of this bug category (see Scala2­6714). This Scala
2 program defines a class B overriding two special methods named apply, and update
(lines 2–5). The function apply allows developers to treat an object as a function. For
example, a variable x pointing to an object of class B can be used like x(10). This is equi­
valent to x.apply(10). Furthermore, the update method is used for updating the contents
of an object. For example, a variable x of type B can be used in map­like assignment
expressions of the form x(10) = 5. This is equivalent to calling x.update(10, 5). Notice
that in our example, the apply method takes an implicit parameter of type A. This means
that when calling this function, this parameter may be omitted, letting the compiler pass
this argument automatically by looking into the current scope for implicit definitions of type
A.

Before scalac types the expression on line 9, it “desugars” this assignment, and expresses
it in terms ofmethod calls. For example, b(3) += 4 becomes b.update(3, b.apply(3)(a)
+ 4). Note that the final argument a passed in apply call corresponds to the implicit
definition of line 9. However, due to a bug, scalac ignores the implicit parameter list of
apply, and therefore, it expands the assignment of line 9 as b.update(3, b.apply(3) +
4). Consequently, the expanded method call does not type check, and scalac rejects the
program.

S. Chaliasos 39

https://github.com/scala/bug/issues/6714
https://github.com/scala/bug/issues/6714

A Study of Typing­Related Bugs in JVM compilers

4.2.6 Comparative Analysis

According to Figure 4.2a, type­related bugs form by far the most common bug cause
for all studied compilers. This suggests that reasoning about types is a complex and
challenging task for compilers, and that the corresponding type system implementations
are susceptible to errors. Type­related bugs, resolution bugs, and semantic analysis bugs
are almost uniformly distributed across studied compilers. The Scala compilers and javac
are the outliers though. Specifically, we classify more javac bugs as bugs related to error
handling & reporting compared to the remaining compilers. Furthermore, notice that AST
transformation bugs are particularly common in Scala compilers. We attribute this to the
fact that Scala is a very powerful language, meaning that individual features are often
combined together to establish new features and use cases. scalac and Dotty apply
a large number of transformations (e.g., Dotty implements more than 50 passes until it
performs type erasure) that simplify program tree so that complex features are expressed
through simpler primitives. AST transformation bugs of Scala are associated with eta
expansion, inlining, and desugaring of various language constructs.

4.3 RQ3: Bug Fixes

To get an insight into the complexity of typing­related compiler bugs, we studied how these
errors are introduced, andwhat are the properties of their fixes. We examined the revisions
of each bug fix to measure its size and how many components are affected by the fix.
Finally, we computed and examined the time compiler developers need to resolve a bug.

4.3.1 How Bugs are Introduced?

To understand how bugs are introduced, we manually studied every bug fix and the dis­
cussion among developers in the corresponding bug reports or commit messages. We
found that the bugs of our dataset are mainly introduced by logic errors, algorithmic er­
rors, design errors, or other programming errors.

Logic errors, which stand for defects in logic, sequencing, or branching of a procedure [52],
are the dominant source of bugs in our dataset. Most of these logic errors are missing
cases or steps in the implementation of a routine, or incorrect conditions of an if state­
ment. Other instances of logic errors are extraneous computations, incorrect sequence
of operations, or wrong / insufficient parameters passed to a function. We observed that
the fixes of logic errors usually include changes to a single method or file and consist of
few lines of code. For example, many logic errors are fixed by adding a missing if else
case in the body of a buggy method.

Algorithmic errors are related to errors in the structure and implementation of various al­
gorithms employed by compilers (e.g., inference of a type variable, resolution of amethod).
Algorithmic errors arise either because the implementation of an algorithm is wrong or be­
cause a wrong algorithm has been used. Unlike logic errors, fixes of algorithmic errors
usually involve changes in a few dozen lines of code. A characteristic example of this
category is Dotty­10217 ListingFigure 4.5), in which the implementation of the underlying
algorithm has exponential complexity.

In contrast to logic and algorithmic errors that describe defects in compilers’ implementa­
tions, language design errors express issues at a higher level. They describe the cases

S. Chaliasos 40

https://github.com/lampepfl/dotty/issues/10217

A Study of Typing­Related Bugs in JVM compilers

where although the compiler has the intended behavior and is not buggy, a program re­
veals that this behavior can lead to undesired results. As a result, a re­design is essential
for both the language and the compiler. Fixes of design errors include changes from a few
code lines to significant refactorings in a compiler’s code base. For example, KT­11280
demonstrates a bug that stems from a design issue in the language. When encountering
a condition of the form if (x == A()) b else c, kotlinc implicitly coerces the type of x
to type A inside the true branch of the if statement. However, KT­11280 demonstrates
that this behavior is a source of unsoundness. A developer is free to override the method
equals (this is the method invoked when performing ==), meaning that x is not guaranteed
to have a type of A whenever the check x == A() returns true. Kotlin designers and de­
velopers fixed this by forbidding these implicit coercions whenever equals is overridden.

Other programming errors we observed include declarations of a variable with an incorrect
data type, out­of­bounds array accesses, accesses to null references, and unchecked
exceptions. For example, the groovyc bug of Listing 4.2 is introduced by a missing null
check causing a NullPointerException. The fixes of such faults are usually trivial and
involve a single change in one line of code.

4.3.2 Size of Bug Fixes

We considered the revisions of every bug fix of our dataset, and we excluded file modi­
fications and creations related to test files (e.g., test cases) plus all non­source files (e.g.,
updates in docs). Using automated means, we counted the lines of code modifications
made to source files, and we computed how many source files are updated in each fix.

As Figure 4.3a shows, 89% of the bug fixes contain fewer than 100 lines of code, and 40%
of the bug fixes are less than 10 lines. These results are consistent with the study of Sun
et al. [43]. Specifically, the study indicates that 92% and 50% of the GCC and LLVM bug
fixes include less than 100 and 10 lines of code respectively. On average, the number
of lines of code modified in a bug fix is 52, and the median is 16. For completeness,
Figure 4.3b shows how many files are modified in a bug fix. The majority of fixes change
only few files: 60% of the patches update a single file, and only 4% of the fixes change
more than 5 files. One exception to this pattern is Scala­2742, where the corresponding
fix requires updates in the Scala specification, which result in scattered updates across
multiple compiler components. In summary, this fix consists of more than 3,000 lines of
code and modifies more than 40 source files.

4.3.3 Duration of Bugs

Considering the plots in Figure 4.3, a reader may conclude that most of the bugs are simple
and easy to fix, because they affect only a small part of the compiler. Despite the small
size of fixes, during our manual inspection, we observed that many bugs are challenging to
solve. The developers have long­lasting conversations about potential solutions and their
implications. Hence, we decided to investigate the bugs’ lifetime to better understand the
complexity of bug fixes. To do so, we conducted a quantitative analysis of the time that
elapsed in order to fix them. All bug tracking systems of our studied compilers provide
details about the creation date and resolution date of each bug report. We defined the
duration of a bug as the time interval between its creation and resolution date.

Figure 4.4 shows the bugs’ cumulative distribution function over time. The blue plot indic­

S. Chaliasos 41

https://youtrack.jetbrains.com/issue/KT-11280
https://github.com/scala/bug/issues/2742

A Study of Typing­Related Bugs in JVM compilers

1 3 5 10 25 50 100200 1000 3000
LoC in a Fix

0.0

0.2

0.4

0.6

0.8

1.0

Bu
g

pr
ev

al
en

ce
 (

%
)

(5, 0.27)

(100, 0.89)

(a) Cumulative distribution of lines of code in a fix.

1 2 3 4 5 10 15 45
Number of Files in a Fix

0.0

0.2

0.4

0.6

0.8

1.0

Bu
g

pr
ev

al
en

ce
 (

%
)

(b) Cumulative distribution of files in a fix.

Figure 4.3: Size of bug fixes.

ates that over a half of the investigated bugs were fixed in one month, and 15% of the bugs
took more than a year to be fixed. In terms of days to fix, the median is 24 days and the
mean is 186 days. This suggests that many typing­related bugs are not fixed immediately
after a bug report is opened. Indeed, we encountered many cases where the correspond­
ing bugs undergo careful examination and risk evaluation by developers and the language
committee. This is because fixes of typing­related bugs can potentially break backward
compatibility — a fixed compiler may not be able to compile existing programs that rely on
the old compiler’s behavior. Therefore, to prevent regression bugs, developers carefully
estimate the impact of each suggested fix. For example, after one year of discussions, the
Java team decided to address JDK­8075793 so that existing applications written in Java 7
do not break under the new versions of javac. Beyond that, many typing­related bugs are
closely related to the language specification and design (e.g., Scala­2742, and KT­22517),
and they require fixes and enhancements in both the implementation of the compiler and
the design of the language.

S. Chaliasos 42

https://bugs.openjdk.java.net/browse/JDK-8075793
https://github.com/scala/bug/issues/2742
https://youtrack.jetbrains.com/issue/KT-22517

A Study of Typing­Related Bugs in JVM compilers

1 10 2030 60 180 365730 3000
Duration of Bugs in Days

0.0

0.2

0.4

0.6

0.8

1.0

Bu
g

pr
ev

al
en

ce
 (

%
)

All
javac
kotlinc
groovyc
scalac & Dotty

Figure 4.4: Cumulative distribution of bugs through time.

4.3.4 Comparative Analysis

Consider again Figure 4.4. groovyc bugs (see yellow line) need considerably less time to
be fixed than the bugs of the other compilers. Specifically, the median duration of groovyc
bugs is only 8 days, while the median duration is 21, 34 and 55 days for javac, kotlinc,
and Scala bugs respectively. One explanation to this deviation could be that groovyc is
not as mature as the other compilers, and many groovyc bugs are simple programming
errors (e.g., GROOVY­7618, Listing 4.2), which can be fixed easily, rather than defects
that require much domain expertise and knowledge. Another explanation may lie in the
motivation and resources associated with the project’s development team.

We also performed the Mann­Whitney U test to examine whether the distributions of bugs’
duration are the same for the studied compilers. We found that the duration of Groovy and
Scala bugs is statistically different than that of Kotlin and Java bugs, while the durations
of Kotlin and Java bugs are not.

4.4 RQ4: Test Case Characteristics

Wenow present a discussion on the characteristics of the bug­revealing test cases. Study­
ing the characteristics of test cases gives us an intuition regarding what language features
are promising for uncovering typing­related bugs.

4.4.1 General Statistics

Table 4.1 presents some general statistics on test cases. Roughly 67.5% of the inspec­
ted bugs are triggered by compilable test cases. However, around one third (32.5%) of
typing­related bugs occurs when compiling invalid code, i.e., the corresponding test case
contains e.g., type mismatches, ill­formed declarations. This is an important observation,
because in addition to using valid test cases (as prior work did for detecting optimiza­
tion bugs [24, 49, 28]), identifying typing­related bugs requires passing non­compilable

S. Chaliasos 43

https://issues.apache.org/jira/browse/GROOVY-7618

A Study of Typing­Related Bugs in JVM compilers

Table 4.1: General statistics on test case characteristics.

Compilable test cases 216 / 320 (67.5%)
Non­compilable test cases 104 / 320 (32.5%)
LoC (mean) 10.2
LoC (median) 8
Number of class decl. (mean) 2
Number of class decl. (median) 2
Number of method decl. (mean) 2.9
Number of method decl. (median) 2
Number of method call (mean) 2.5
Number of method call (median) 1

Bounded type parameters
Parameterized function

Parameterized class
Parameterized type Parametric polymorphism (57.19%)

Nested class
Overloading

Overriding
Inheritance OOP features (53.75%)

Primitive types
Type alias

Wildcard type
Subtyping Type system features (36.25%)

Coroutines API
Reflection API

Function API
Collection API Standard library (30.63%)

Function type
Function reference

Functional interface
Lambda Functional programming (31.56%)

Import
Cast

Array
Conditionals Standard features (28.75%)

Flow typing
Variable type inference

Parameter type inference
Type argument inference Type inference (43.44%)

0 10 20 30 40 50 60 70
Bug prevalence (%)

Extension function / property
Java interoperability

Pattern matching
Implicits Other (28.75%)

Figure 4.5: The classification of the language features that appear in test cases, along with their
frequency. For each category, we show the four most frequent features.

programs as input to the compiler under test. These incorrect programs mainly trigger
bugs that cause internal compiler errors, unexpected runtime behaviors, and misleading
reports. The average size of test cases is 10.2 lines of code (LoC), while the median is
8 LoC. This suggests that typing­related bugs are mainly triggered by small fragments of
code. Note that Sun et al. [43] made similar observations for GCC and LLVM bugs.

4.4.2 Language Features

We also identified what specific language features are involved in each test case. Since
the studied languages are primarily object­oriented, we excluded prevalent object­oriented
features that we encountered in almost every test case (e.g., class declaration, object ini­
tialization). Then, we grouped the features exercised in every test case into eight categor­
ies: 1) standard language features containing features seen in almost every language
(e.g., exceptions, casts, loops), 2) object­oriented programming (OOP) features (e.g.,
overriding, inheritance), 3) functional programming features (e.g., higher­order functions),
4) parametric polymorphism (e.g., parameterized functions), 5) type inference features
(e.g., type argument inference) 6) type system­related features (e.g., subtyping), 7) stand­
ard library (e.g., use of collection API), and 8) Other including features not belonging to
any of the previous categories (e.g., named arguments).

S. Chaliasos 44

A Study of Typing­Related Bugs in JVM compilers

Table 4.2: The five most frequent and the five least frequent features supported by all studied
languages.

Most frequent features Least frequent features
Feature Occ (%) Feature Occ (%)
Parameterized type 46.56% Multiple ‘implements’ 2.19%
Type argument inference 31.87% ‘this’ expression 2.19%
Parameterized class 30% Arithmetic expression 1.88%
Parameterized function 26.25% Loops 1.25%
Inheritance 24.06% Sealed class 0.94%

For every category of features, Figure 4.5 presents its frequency along with its four most
frequent features. Parametric polymorphism is pervasive in the corresponding bug­revealing
programs: more than a half of the examined bugs are caused by test cases (57.19%) con­
taining features, such as declaration and use of parameterized functions, use­site vari­
ance, and bounded type parameters. Another interesting observation is that around one
third of test cases employ the standard library, and especially the collections API, which
includes functions and classes for creating and manipulating data structures (e.g., lists).
An example of such a test case is the program of Listing 4.1. Interestingly, APIs such as,
the collections API or the reflection APIs, heavily rely on parametric polymorphism. There­
fore, for stress­testing compilers, a future program generator could generate expressions
that use these APIs in a complex manner without requiring to generate the correspond­
ing parameterized definitions. Other frequent features are: inheritance for OOP features,
subtyping (e.g., A x = new B()) for type system­related features, lambda expressions for
functional programming features, conditionals for standard features, type argument infer­
ence (e.g., X<String> x = new X<>()) for type inference features, and Scala implicits for
Other.

Table 4.2 shows which features are the most frequent and which features are the least
frequent in the examined test cases. This table presents features that are supported by
all studied languages. Features associated with parametric polymorphism (i.e., usage
of parameterized types, functions and classes) and their combinations with type argu­
ment inference are highly common in the bug­revealing test cases. However, features
like arithmetic expressions and loops have a small bug­triggering capability, as they ap­
pear only in 1–2% of the bug­revealing programs. This finding contradicts prior testing
efforts [24, 28] for optimization bugs, which rely on programs with complex arithmetic ex­
pressions, control­ and data­flow (e.g., nested loops).

To find out whether there are any interesting features’ combinations that are more likely
to trigger bugs, we also computed the lift score, which has been also used in previous
bug studies [21], For two features A and B, the lift score is given by: lift(A,B) = P (A∩B)

P (A)P (B)
,

where P (A ∩B) is the probability of a test case containing both features A and B. The lift
score gives an estimation of how strongly two features are correlated. A lift score greater
than 1 means that the features are positively correlated: when a test case contains feature
A, it is also likely to contain feature B. A lift score close to 1 indicates no correlation, while
a lift score smaller than 1 denotes that the features are negatively correlated.

Themost positively correlated categories are standard librarywith functional programming
features, and standard library with type inference features with a lift score of 5. Indeed,
many bug­revealing test cases invoke higher­order methods coming from the standard
library, such as the function map in the program of Figure 4.1.1. Moreover, such test
cases often let the compiler infer some type information, e.g., signature of lambda expres­

S. Chaliasos 45

A Study of Typing­Related Bugs in JVM compilers

Table 4.3: The five most bug­triggering features per language.

Java Scala Kotlin Groovy
Feature Occ (%) Feature Occ (%) Feature Occ (%) Feature Occ (%)
Parameterized type 51.25 Parameterized type 57.5 Parameterized type 36.25 Parameterized type 41.25
Type argument inference 42.5 Parameterized class 42.5 Parameterized class 33.75 Collection API 35
Functional interface 37.5 Inheritance 32.5 Type argument inference 32.5 Type argument inference 35
Parameterized function 35 Implicits 23.75 Parameterized function 26.25 Lambda 25
Parameterized class 30 Parameterized function 22.5 Inheritance 25 Parameterized function 21.25

sions, or type argument of a callee parameterized function. Regarding individual features,
some interesting combinations are: 1) variable arguments with overloaded methods (e.g.,
Listing 4.9) with a lift score of 24, 2) use­site variance with parameterized function (e.g.,
Listing 4.3) with a lift score of 17.1, 3) type argument inference with parameterized function
(e.g., Listing 4.3, 4.6) with a lift score of 12.7, 4) Scala implicits with parameterized class
with a lift score of 10.9, 5) type argument inference with collection API (e.g., Listing 4.1)
with a lift score of 8.6, and 6) type argument inference with parameterized types with a lift
score of of 7.

Remark. Our analysis on test case characteristics does not provide information about
the behavioral characteristics of each test case. For example, our analysis gives the
frequency of casts, but it does not offer details about how and where a cast is used [31].
However, we argue that future testing techniques can still take advantage of our findings to
produce interesting programs by considering features that are more likely to trigger bugs,
and combining these features in divergent ways (see Section 6).

4.4.3 Comparative Analysis

Table 4.3 shows the five most bug­triggering features per language. Again, parametric
polymorphism­related features are in the top of every language under study. Based on
our observation, such techniques could be applicable to more than one compiler. For
example, future testing methods could be effective for testing both kotlinc and javac,
as both compilers suffer from many bugs caused by test cases that use e.g., parameter­
ized functions. Another interesting finding is that implicits, a powerful and popular Scala­
only feature [23], appears in 23.75% of the examined scalac and Dotty bugs. There­
fore, in addition to parametric polymorphism, Scala implicits is a feature which research­
ers and Scala developers could profitably invest time to deeply test. Beyond implicits,
other language­specific features that are common are: pattern matching (21.25%), higher­
kinded types (13.75%), and algebraic data types (13.75%) for Scala, as well as nullable
types (16.25%), and extensions (15%) for Kotlin.

S. Chaliasos 46

A Study of Typing­Related Bugs in JVM compilers

5. IMPLICATIONS AND DISCUSSION

We now discuss several implications of our work, and how our findings can serve as a
basis for future research endeavors in compiler testing.

Typing­related bugs have diversemanifestations. Contrary to optimization bugs, which
mainly manifest as at runtime as errors [24, 49], typing­related bugs can potentially affect
both compilation and runtime (Section 4.1). Researchers should develop appropriate test
oracles that can catch typing­related bugs with a plethora of manifestations. For example,
for finding bugs that manifest as unexpected compile­time errors, a fuzzer should gener­
ate programs that are valid by construction so that rejection of these programs indicates
a potential bug. Similarly, for detecting bugs with a misleading report symptom, a fuzzer
should generate or use programs with known compile­time errors or warnings, and com­
pare these expectations with the actual ones using a form of pattern matching (e.g., via
regular expressions).

Typing­related bugs are located in few specific compiler components. According to
Figures 4.3a and 4.3b (which show that bug fixes are mostly local), typing­related bugs are
caused by incorrect implementations of some few and specific compiler tasks and routines.
In Section 4.2, we showed that these buggy tasks and routines are typically associated
with operations on types (e.g., type inference), name resolution, semantic analysis of de­
clarations, desugaring, or error handling & reporting. A possible direction for researchers
is to introduce targeted methods for identifying bugs in these components. For example,
for finding bugs related to type inference, a mutation strategy could gradually remove type
information from a program, e.g., from variable declarations, or type constructor applic­
ations. For triggering bugs in resolution algorithms, a promising approach could be the
creation of programs that contain and use many overloaded methods or nested declara­
tions. Similarly, for detecting missing validation checks, a potential mutator could inject
faults in the program’s declarations, e.g., it could inject a circular dependency as in the
program of Listing 4.8.

A large number of typing­related bugs is triggered by non­compilable programs.
Almost one third of the studied bugs is triggered by invalid code (Table 4.1). This observa­
tion comes in contrast to existing compiler testing techniques, which feed compilers with
compilable programs [49, 24, 28]. Generating incorrect programs is a challenging task, as
the generated programs must be subtly incorrect, meaning that the programs should be
syntactically correct and contain at most one semantic error. A future research direction
could be the proposal of new program generators and mutators that provide such invalid
test cases. However, since the search space of invalid programs is enormous, a challenge
related to this is to determine the program point to inject the fault, and the nature of the
injected fault (e.g., type mismatch error or non­static method in a static context call error).
To address this, a technique similar to skeletal program enumeration (SPE) [50] could be
used to enumerate all subtly invalid programs based on a given program structure.

Parametric polymorphism is the feature with the most bug­triggering capability.
Test cases that make an extensive use of parametric polymorphism­related features are
responsible for more than a half of the examined bugs (Tables 4.2, 4.3). Therefore, para­
metric polymorphism is a promising feature that future program generators should con­
sider for uncovering typing­related bugs. Parametric polymorphism is supported by all
the studied languages. Conseququently, parametric polymorphism­oriented testing tech­
niques (e.g., a mutator that converts a given class / function into a parameterized one)
could be invaluable for testing multiple compiler implementations. For example, such a

S. Chaliasos 47

A Study of Typing­Related Bugs in JVM compilers

mutator could be applied to testing both javac and kotlinc. Finally, our findings suggest
that parametric polymorphism works well with type argument inference (Section 4.4.2).
Therefore, generating programs involving parameterized types and functions that omitted
type arguments is another interesting research direction.

Use of the standard library is pervasive in test cases. Based on our observation that
around one third of our test cases use the standard library and particularly the collection
API, an interesting direction for stress­testing compilers could be the generation of small
expressions that use these APIs in a complex manner, without requiring the generation
of the corresponding definitions. (e.g., see Listing 4.1, line 4). Interestingly, such APIs
heavily rely on parametric polymorphism.

Control­flow constructs and arithmetic expressions are not common in bug­revealing
test cases. Table 4.3 shows that control­flow constructs (e.g., loops) and arithmetic ex­
pressions barely trigger typing­related compiler bugs. This conflicts with the design and
motivation of prior approaches [49, 28, 37]. For example, as an effort to uncover optimiz­
ation bugs, the recent work of Livinskii et al. [28] adopts a generation policy that creates
complex arithmetic expressions and bitwise operations. Our findings suggest that the ex­
isting techniques should be adapted so that they also consider features that are more
likely to cause typing­related bugs. This would lead to a more holistic testing of compilers.

Implicits and pattern matching are two promising features for testing Scala. Im­
plicits and pattern matching appear in 23.75% and 21.25% of the examined scalac and
Dotty bugs. Hence, in combination with parametric polymorphism, it is worth proposing
methods that are specifically targeting these Scala features. For example, future testing
methods can be inspired by the work of Křikava et al. [23], which describes how implicits
are used in practice, to produce programs that, in turn, exercise different implicits’ idioms
and patterns in a complex manner. Similarly, for validating exhaustiveness checks of pat­
tern matching expressions, a possible testing solution could be the generation of random
algebraic data types, along with the enumeration of their corresponding match patterns.
Such a technique could be also applicable to languages such as Haskell or OCaml.

S. Chaliasos 48

A Study of Typing­Related Bugs in JVM compilers

6. A PROOF­OF­CONCEPT PROGRAM GENERATOR

We demonstrate the leverage obtained from our work’s findings through the design and
implementation of a proof­of­concept Kotlin and Groovy test­program generator. Specific­
ally, our prototype relies on the following observations: 1) parametric polymorphism is a
crucial feature for uncovering typing­related bugs, 2) parametric polymorphism is suppor­
ted by both Groovy and Kotlin, and 3) parameterized types are often combined with type
argument inference (Section 4.4.2).

Our program generator produces programs written in an intermediate language (IR) rep­
resenting a simple object­oriented language that has a limited support on parametric poly­
morphism and type inference. Specifically, our language supports class declarations,
method declarations, local variable declarations, inheritance, subtyping, object initializ­
ations, assignments, method calls, property accesses, constant expressions, (e.g., in­
tegers), conditionals, logical operators (e.g., &&), comparison operators (e.g., <=), para­
meterized classes, bounded type parameters, declaration­site variance, type argument
inference, and local variable type inference. Regarding the type system, our IR contains
three different kinds of types: (1) abstract types for representing type variables and type
constructors, (2) parameterized types for representing types that come from type con­
structor applications, (3) regular types for representing any type that is neither abstract
nor parameterized. Note that our IR does not support other special types, such as primit­
ive types or nullable types.

Our algorithm for generating programs written in the IR is simple and straightforward.
Every program is well­formed by construction and consists of a number of randomly gen­
erated declarations (i.e., classes or methods). Each class declaration includes a random
number of methods and fields, while each method declaration contains one or more ex­
pressions. During generation, we randomly assign types to the signature of methods
(e.g., return type, formal parameter type), or the signature of class fields. These types
are chosen randomly from our type pool, a data structure that contains types that have
already defined in the program. For example, whenever we generate a class declaration,
we add the corresponding type to the pool. For generating expressions, we randomly pick
a type t from the pool and then, we randomly generate a random expression whose type
is a subtype of the type t. Finally, whenever it is applicable, our algorithm randomly omits
type information from local variables’ declaration, or type constructor applications.

Representing the generated programs through an IR allows us to test both compilers. In
particular, having generated a program in IR, we translate it into a concrete source file
(e.g., a Kotlin source file) using language­specific translators. Every translator traverses
the input program (written in IR) and converts every declaration / statement / expression
into the corresponding one that follows the syntax of the target language. The output
of this translation is passed to the compiler under test. When the compiler is unable to
compile the given source file (i.e., it crashes or reports a compile­time error), a potential
bug is found.

Table 6.1 gives a summary of the bugs found by our program generator. In total, we found
28 previously unknown bugs in kotlinc and groovyc, of which 16 bugs have been already
fixed by developers. Our tool was able to find 19 bugs in groovyc and 9 bugs in the Kotlin
compiler. Almost all of the reported bugs manifest as unexpected compile­time errors,
while all but two are typing­related bugs, i.e., one bug was classified as a back­end bug,
and one was classified as a parser bug by the Kotlin developers. These bug detection
results demonstrate that the observations of our study can indeed guide the design of

S. Chaliasos 49

A Study of Typing­Related Bugs in JVM compilers

Table 6.1: Summary of the bugs found by our proof­of­concept tool. In total, we have found 28
bugs in kotlinc and groovyc, of which, 16 have been fixed by developers.

groovyc kotlinc
Symptom Confirmed Fixed Confirmed Fixed
Unexpected compile­time error 5 14 7 1
Internal compiler error 0 0 0 1
Total 5 14 7 2

future techniques on compiler testing, which 1) are useful for finding typing­related bugs,
2) are applicable to more than one compilers.

S. Chaliasos 50

A Study of Typing­Related Bugs in JVM compilers

7. CONCLUSIONS AND FUTURE WORK

We presented the first empirical study of 320 typing­related bugs found in compilers of
four popular JVM languages, that is, Java, Scala, Kotlin, and Groovy. Unlike optimization
bugs, typing­related bugs have diverse manifestations: from unexpected compile­time
errors to compilation performance degradations. Correctness issues found in the core
components of compiler typing processes, such as the type system, inference and resolu­
tion engines, and the semantic validation of declarations, are responsible for the majority
of the inspected bugs. Moreover, although front­end bugs are typically fixed without re­
quiring extensive modifications in compilers’ code base, compilers’ developer need a few
months to resolve a bug, as they carefully assess the impact of each fix to prevent regres­
sion bugs. We also found that a non­trivial number of typing­related bugs is caused by
non­compilable test cases, while loops and arithmetic expressions are hardly seen in the
bug­revealing programs. These observations conflict with the intuition behind the existing
approaches for finding optimization bugs.

We discussed several implications of our study’s findings. Future testing techniques
should consider diverse test oracles, as typing­related bugs affect both compilation and
runtime in various ways. Another interesting future challenge is the generation of subtly
invalid programs that are more likely to trigger typing­related bugs and, most notably,
soundness issues. Furthermore, the existing program generators for C++ could benefit
from the results of our study: their generation strategies could be adapted to include fea­
tures (e.g., type inference, lambdas, overloading) that can potentially uncover inference
or resolution bugs in the C++ compilers.

Finally, we implemented a simple program generator that relies on some of our observa­
tions regarding type inference and parametric polymorphism. Our generator was able to
reveal 27 unexpected compile­time errors, and one internal compiler error in the Kotlin
and Groovy compilers. This demonstrates the practicality of our study: we believe that
researchers can build upon our work’s findings by creating improved compiler validation
methods and tools.

S. Chaliasos 51

A Study of Typing­Related Bugs in JVM compilers

ABBREVIATIONS ­ ACRONYMS

AOBE Array Index Out of Bounds Exception

NPE Null Pointer Exception

CCE Class Cast Exception

S. Chaliasos 52

A Study of Typing­Related Bugs in JVM compilers

BIBLIOGRAPHY

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison­Wesley Longman Publishing Co., Inc., USA, 2006.

[2] Alexander Konovalov. Fuzzball: Scala fuzzer. https://github.com/alexknvl/
fuzzball, 2021. Online accessed; 05­03­2021.

[3] N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki. The Essence of Dependent
Object Types, pages 249–272. Springer International Publishing, Cham, 2016.

[4] M. Bagherzadeh, N. Fireman, A. Shawesh, and R. Khatchadourian. Actor concurrency
bugs: A comprehensive study on symptoms, root causes, api usages, and differences.
Proc. ACM Program. Lang., 4(OOPSLA), Nov. 2020.

[5] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the
past: Adding genericity to the Java programming language. In Proceedings of the 13th
ACM SIGPLAN Conference on Object­Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’98, page 183–200, New York, NY, USA, 1998. Association
for Computing Machinery.

[6] Brian Goetz. State of Valhalla. https://cr.openjdk.java.net/~briangoetz/
valhalla/sov/01-background.html, 2020. Online accessed; 05­03­2021.

[7] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie. Learning to prioritize test
programs for compiler testing. In Proceedings of the 39th International Conference on
Software Engineering, ICSE ’17, page 700–711. IEEE Press, 2017.

[8] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie. Test case pri­
oritization for compilers: A text­vector based approach. In 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST), pages 266–277,
2016.

[9] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang. A survey of
compiler testing. ACM Comput. Surv., 53(1), Feb. 2020.

[10] Y. Chen, T. Su, and Z. Su. Deep differential testing of JVM implementations. In
Proceedings of the 41st International Conference on Software Engineering, ICSE ’19,
page 1257–1268. IEEE Press, 2019.

[11] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao. Coverage­directed differential testing of
JVM implementations. In Proceedings of the 37th ACM SIGPLAN Conference on Pro­
gramming Language Design and Implementation, PLDI ’16, page 85–99, New York,
NY, USA, 2016. Association for Computing Machinery.

[12] J. Davis, A. Thekumparampil, and D. Lee. Node.Fz: Fuzzing the server­side event­
driven architecture. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, page 145–160, New York, NY, USA, 2017. Association for
Computing Machinery.

S. Chaliasos 53

https://github.com/alexknvl/fuzzball
https://github.com/alexknvl/fuzzball
https://cr.openjdk.java.net/~briangoetz/valhalla/sov/01-background.html
https://cr.openjdk.java.net/~briangoetz/valhalla/sov/01-background.html

A Study of Typing­Related Bugs in JVM compilers

[13] K. Dewey, J. Roesch, and B. Hardekopf. Fuzzing the Rust typechecker using CLP. In
Proceedings of the 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’15, page 482–493. IEEE Press, 2015.

[14] A. Di Franco, H. Guo, and C. Rubio­González. A comprehensive study of real­world
numerical bug characteristics. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, page 509–519. IEEE
Press, 2017.

[15] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson. Automated testing of graphics
shader compilers. Proc. ACM Program. Lang., 1(OOPSLA), Oct. 2017.

[16] S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic. Testing probabilistic program­
ming systems. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018, page 574–586, New York, NY, USA, 2018. Associ­
ation for Computing Machinery.

[17] Gavin Bierman. Pattern matching for instanceof. https://openjdk.java.net/jeps/
305, 2017. Online accessed; 05­03­2021.

[18] Github Inc. The state of the Octoverse. https://octoverse.github.com/, 2021.
Online accessed; 05­03­2021.

[19] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java language specific­
ation: Java SE 8 edition. https://docs.oracle.com/javase/specs/jls/se8/jls8.
pdf, 2015.

[20] C. Holler, K. Herzig, and A. Zeller. Fuzzing with code fragments. In Proceedings
of the 21st USENIX Conference on Security Symposium, Security’12, page 38, USA,
2012. USENIX Association.

[21] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and detecting real­
world performance bugs. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12, page 77–88, New
York, NY, USA, 2012. Association for Computing Machinery.

[22] D. E. Knuth. The errors of TeX. Software: Practice & Experience, 19(7):607–687,
July 1989.

[23] F. Křikava, H. Miller, and J. Vitek. Scala implicits are everywhere: A large­scale study
of the use of Scala implicits in the wild. Proc. ACM Program. Lang., 3(OOPSLA), Oct.
2019.

[24] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence modulo inputs.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, page 216–226, New York, NY, USA, 2014. As­
sociation for Computing Machinery.

[25] V. Le, C. Sun, and Z. Su. Finding deep compiler bugs via guided stochastic pro­
gram mutation. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object­Oriented Programming, Systems, Languages, and Applications, OOPSLA
2015, page 386–399, New York, NY, USA, 2015. Association for Computing Ma­
chinery.

S. Chaliasos 54

https://openjdk.java.net/jeps/305
https://openjdk.java.net/jeps/305
https://octoverse.github.com/
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf

A Study of Typing­Related Bugs in JVM compilers

[26] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi. Taxdc: A taxonomy of
non­deterministic concurrency bugs in datacenter distributed systems. In Proceedings
of the Twenty­First International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, page 517–530, New York, NY, USA,
2016. Association for Computing Machinery.

[27] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson. Many­core compiler fuzzing.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’15, page 65–76, New York, NY, USA, 2015. Asso­
ciation for Computing Machinery.

[28] V. Livinskii, D. Babokin, and J. Regehr. Random testing for C and C++ compilers with
YARPGen. Proc. ACM Program. Lang., 4(OOPSLA), Nov. 2020.

[29] M. Marcozzi, Q. Tang, A. F. Donaldson, and C. Cadar. Compiler fuzzing: How much
does it matter? Proc. ACM Program. Lang., 3(OOPSLA), Oct. 2019.

[30] B. Marick. A survey of software fault surveys. Technical Report 1651, Department
of Computer Science. University of Illinois at Urbana­Champaign, 1990. Motorola
Partnerships in Research.

[31] L. Mastrangelo, M. Hauswirth, and N. Nystrom. Casting about in the dark: An
empirical study of cast operations in Java programs. Proc. ACM Program. Lang.,
3(OOPSLA), Oct. 2019.

[32] B. G. Mateus and M. Martinez. On the adoption, usage and evolution of Kotlin fea­
tures in Android development. In Proceedings of the 14th ACM / IEEE International
Symposium on Empirical Software Engineering andMeasurement (ESEM), ESEM ’20,
New York, NY, USA, 2020. Association for Computing Machinery.

[33] W. M. McKeeman. Differential testing for software. Digital Technical Journal,
10(1):100–107, 1998.

[34] R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348–375, 1978.

[35] A. Moors, F. Piessens, and M. Odersky. Generics of a higher kind. In Proceedings
of the 23rd ACM SIGPLAN Conference on Object­Oriented Programming Systems
Languages and Applications, OOPSLA ’08, page 423–438, New York, NY, USA, 2008.
Association for Computing Machinery.

[36] E. Nagai, H. Awazu, N. Ishiura, and N. Takeda. Random testing of C compilers
targeting arithmetic optimization. In Workshop on Synthesis And System Integration
of Mixed Information Technologies (SASIMI 2012), pages 48–53, 2012.

[37] E. Nagai, A. Hashimoto, and N. Ishiura. Reinforcing random testing of arithmetic op­
timization of C compilers by scaling up size and number of expressions. IPSJ Trans­
actions on System LSI Design Methodology, 7:91–100, 2014.

[38] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala programming lan­
guage. 2004.

S. Chaliasos 55

A Study of Typing­Related Bugs in JVM compilers

[39] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim. Fuzzing JavaScript engines with aspect­
preserving mutation. In 2020 IEEE Symposium on Security and Privacy (SP), pages
1629–1642, 2020.

[40] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test­case reduction
for C compiler bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on Pro­
gramming Language Design and Implementation, PLDI ’12, page 335–346, New York,
NY, USA, 2012. Association for Computing Machinery.

[41] C. Sun, V. Le, and Z. Su. Finding and analyzing compiler warning defects. In Pro­
ceedings of the 38th International Conference on Software Engineering, ICSE ’16,
page 203–213, New York, NY, USA, 2016. Association for Computing Machinery.

[42] C. Sun, V. Le, and Z. Su. Finding compiler bugs via live code mutation. OOPSLA
2016, page 849–863, New York, NY, USA, 2016. Association for Computing Ma­
chinery.

[43] C. Sun, V. Le, Q. Zhang, and Z. Su. Toward understanding compiler bugs in GCC
and LLVM. In Proceedings of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, page 294–305, New York, NY, USA, 2016. Association for
Computing Machinery.

[44] TIOBE Software BV. TIOBE index. https://www.tiobe.com/tiobe-index/, 2021.
Online accessed; 05­03­2021.

[45] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion: Grammar­aware greybox fuzzing.
In Proceedings of the 41st International Conference on Software Engineering, ICSE
’19, page 724–735. IEEE Press, 2019.

[46] J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin, and J. Wei. A comprehensive study
on real world concurrency bugs in Node.js. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017, page 520–
531. IEEE Press, 2017.

[47] E. J. Weyuker. On testing non­testable programs. The Computer Journal, 25(4):465–
470, 1982.

[48] Wikipedia contributors. Software testing, 2021. [Online; accessed 22­July­2021].

[49] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in C
compilers. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, page 283–294, New York, NY, USA,
2011. Association for Computing Machinery.

[50] Q. Zhang, C. Sun, and Z. Su. Skeletal program enumeration for rigorous compiler
testing. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan­
guage Design and Implementation, PLDI 2017, page 347–361, New York, NY, USA,
2017. Association for Computing Machinery.

[51] Z. Zhou, Z. Ren, G. Gao, and H. Jiang. An empirical study of optimization bugs in
GCC and LLVM. Journal of Systems and Software, 174:110884, 2021.

[52] D. Zubrow. IEEE standard classification for software anomalies. IEEE Computer
Society, 2009.

S. Chaliasos 56

https://www.tiobe.com/tiobe-index/

	CONTENTS
	INTRODUCTION
	Research Questions
	Languages selection
	Contributions
	Summary of findings
	Proof-of-concept program generator

	BACKGROUND AND RELATED WORK
	Software testing
	Compilers
	Compilers Testing
	Examined languages
	Java
	Scala
	Kotlin
	Groovy

	Non-JVM Compiler Bugs and Prior Studies
	Understanding compiler bugs
	Other bug studies

	METHODOLOGY
	Collecting bugs and fixes
	Collecting Java Bugs
	Collecting Scala Bugs
	Collecting Kotlin Bugs
	Collecting Groovy Bugs

	Analyzing bugs
	Threats to validity

	BUG STUDY
	RQ1: Symptoms
	Unexpected Compile-Time Error
	Internal Compiler Error
	Unexpected Runtime Behavior
	Misleading Report
	Compilation Performance Issue
	Comparative Analysis

	RQ2: Bug Causes
	Type-related Bugs
	Semantic Analysis Bugs
	Resolution Bugs
	Bugs Related to Error Handling and Reporting
	AST Transformation Bugs
	Comparative Analysis

	RQ3: Bug Fixes
	How Bugs are Introduced?
	Size of Bug Fixes
	Duration of Bugs
	Comparative Analysis

	RQ4: Test Case Characteristics
	General Statistics
	Language Features
	Comparative Analysis

	IMPLICATIONS AND DISCUSSION
	A PROOF-OF-CONCEPT PROGRAM GENERATOR
	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	REFERENCES

