

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

INTERDISCIPLINARY MASTERS PROGRAM IN MICROELECTRONICS

MSc THESIS

Design and Implementation in FPGA Technology of a
High-Performance Block Scan and Map to Symbols

Module for CCSDS-122 Image Data Compression

Maria K. Taipliadou

Supervisors: Antonios Paschalis,Professor
Nektarios Kranitis, Assistant Professor

ATHENS

JANUARY 2022

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ
ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Σχεδίαση και Υλοποίηση σε Τεχνολογία FPGA μίας
Μονάδας BSMS Υψηλής Απόδοσης σύμφωνα με το

Διαστημικό Πρότυπο CCSDS-122 Συμπίεσης Δεδομένων
Εικόνας

Μαρία Κ. Ταϊπλιάδου

Επιβλέποντες: Αντώνης Πασχάλης, Καθηγητής
Νεκτάριος Κρανίτης, Αναπληρωτής Καθηγητής

ΑΘΗΝΑ

ΙΑΝΟΥΑΡΙΟΣ 2022

MSc THESIS

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module

for CCSDS-122 Image Data Compression

Maria K. Taipliadou

S.N.: MM305

SUPERVISORS: Antonios Paschalis,Professor
Nektarios Kranitis, Assistant Professor

January 2022

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Σχεδίαση και Υλοποίηση σε Τεχνολογία FPGA
μίας Μονάδας BSMS Υψηλής Απόδοσης

 σύμφωνα με το Διαστημικό Πρότυπο CCSDS-122
Συμπίεσης Δεδομένων Εικόνας

Μαρία Κ. Ταϊπλιάδου

Α.Μ.: ΜΜ305

ΕΠΙΒΛΕΠΟΝΤΕΣ: Αντώνης Πασχάλης, Καθηγητής
Νεκτάριος Κρανίτης, Αναπληρωτής Καθηγητής

Ιανουάριος 2022

ABSTRACT

Remote sensing is recognized as a cornerstone monitoring technology. The
latest high resolution and high-speed space-borne imagers provide an explosive
growth in data volume and instrument data rates in the range of several Gbps.
This competes with the limited on-board storage resources and downlink
bandwidth, making image data compression a mission-critical on-board
processing task.

The Consultative Committee for Space Data Systems (CCSDS) issued in 2005 a
recommended standard for Image Data Compression (IDC) (CCSDS-122.0-B-1)
which defines a transform-based 2D image data compression algorithm designed
specifically for use on-board in a space platform or a payload. An extension of
this standard, CCSDS-122.0-B-2, was issued in 2017 to define all necessary
modifications to support a recommended standard for Spectral Preprocessing
Transform for Multispectral and Hyperspectral Image Compression. The new
issue supports images of higher dynamic range and for larger word sizes.
Another recommended standard, CCSDS-122.1-B-1, was issued concurrently in
2017 to define the dedicated spectral preprocessing transforms.

In this master thesis is introduced a new high-performance architecture and
implementation in FPGA technology for a key-part of the CCSDS-IDC algorithm,
the submodule of the Bit Plane Encoder which implements the Block Scan and
Map to Symbols process, hereafter termed BSMS, is described. The proposed
architecture implementation is based on the standard’s existing parallelism, while
at the same time introduces new attributes of speed, since it can process one
data sample per one clock cycle and thus outperforms previous implementations
that required more clock cycles.

SUBJECT AREA: Digital Design, FPGA hardware accelerators

KEYWORDS: Hardware Accelerator, FPGA, VHDL, Image Data Compression,

CCSDS, Bit Plane Encoder

ΠΕΡΙΛΗΨΗ

Η τηλεπισκόπιση αποτελεί ακρογωνιαίο λίθο των σύγχρονων τεχνολογιών
παρατήρησης. Τα σύγχρονα διαστημικά οπτικά όργανα απεικόνισης υψηλής
ανάλυσης και υψηλής ταχύτητας οδηγούν σε εκρηκτική αύξηση του όγκου
δεδομένων και επιβάλλουν ρυθμούς δεδομένων της τάξης των αρκετών Gbps.
Αυτό έρχεται σε αντίθεση με τους περιορισμένους πόρους αποθήκευσης
δεδομένων εν πτήσει και το περιορισμένο εύρος ζώνης κατερχόμενης ζεύξης,
καθιστώντας την συμπίεση δεδομένων εικόνας μια βασική υποστηρικτική
τεχνολογία επεξεργασίας δεδομένων εν πτήσει.

Η Συμβουλευτική Επιτροπή για Συστήματα Διαστημικών Δεδομένων (CCSDS)
εξέδωσε το 2005 ένα συνιστώμενο πρότυπο για τη συμπίεση δεδομένων εικόνας
(Image Data Compression – IDC) (CCSDS-122.0-B-1), το οποίο ορίζει έναν
αλγόριθμο συμπίεσης δεδομένων 2D εικόνας που βασίζεται σε μετασχηματισμό,
σχεδιασμένο ειδικά για χρήση εν πτήσει σε διαστημική πλατφόρμα ή ωφέλιμο
φορτίο. Μια επέκταση αυτού του προτύπου, CCSDS-122.0-B-2, εκδόθηκε το
2017 για να οριστούν όλες οι απαραίτητες τροποποιήσεις για την υποστήριξη
ενός συνιστώμενου προτύπου για τον μετασχηματισμό φασματικής
προεπεξεργασίας για πολυφασματική και υπερφασματική συμπίεση εικόνας. Η
δεύτερη έκδοση υποστηρίζει εικόνες υψηλότερου δυναμικού εύρους και για
μεγαλύτερα μεγέθη λέξεων. Ένα άλλο συνιστώμενο πρότυπο, το CCSDS-122.1-
B-1, εκδόθηκε ταυτόχρονα το 2017 για τον καθορισμό των αποκλειστικών
φασματικών μετασχηματισμών προεπεξεργασίας.

Στην παρούσα διπλωματική εργασία, εισάγεται μια νέα αρχιτεκτονική υψηλής
απόδοσης και η αντίστοιχη υλοποίησή της σε τεχνολογία FPGA μίας
υπομονάδας κλειδί του αλγορίθμου CCSDS-IDC, της υπομονάδας του Bit Plane
Encoder που πραγματοποιεί τη διαδικασία Block Scan and Map to Symbols, που
στην συνέχεια θα ονομάζουμε μονάδα BSMS. H νέα υλοποίηση βασίζεται επίσης
στην εκμετάλλευση της παραλληλίας του προτεινόμενου αλγορίθμου, ενώ
ταυτόχρονα επιτυγχάνει την επεξεργασία ενός δείγματος δεδομένων ανά κύκλο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ψηφιακή Σχεδίαση, Επιταχυντές υλικού σε FPGA

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Επιταχυντής υλικού, FPGA, VHDL, συμπίεση εικόνας,

CCSDS, Bit Plane Encoder

Αφιερωμένη στον πατέρα μου Κωνσταντίνο Ταϊπλιάδη

που χωρίς εκείνον δεν θα ήμουν εδώ σήμερα.

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να ευχαριστήσω τον κ. Αντώνη Πασχάλη, καθηγητή μου στο Μεταπτυ-
χιακό και μετέπειτα επιβλέποντα καθηγητή μου στην Διπλωματική εργασία, που
μου έδωσε την ευκαιρία να συμμετάσχω σε ένα ερευνητικό project και με
εμπιστεύτηκε με ένα κρίσιμο κομμάτι αυτού. Ακόμα, θέλω να ευχαριστήσω τον
σύντροφο μου Γιάννη που με την στάση του και τις πολύτιμες συμβουλές του μου
έδωσε τη στήριξη που χρειαζόμουν ώστε να ολοκληρώσω την παρούσα δουλειά.
Τέλος θέλω να ευχαριστήσω τους δύο πυλώνες της ζωής μου, τους γονείς μου
Κωνσταντίνο και Περιστέρα, που μου επέτρεψαν να ανοίξω τα φτερά μου και να
πετάξω, πάντα ελεύθερη να ορίζω την κατεύθυνση και προσφέροντας
παράλληλα απλόχερα τη στήριξή τους σε όλο το δύσκολο αυτόν δρόμο.

CONTENTS

PREFACE ... 23

1. INTRODUCTION .. 25

2. CCSDS STANDARD OVERVIEW AND RELATED WORK......................... 27

2.1 Compressor overview ... 27

2.1.1 Bit Plane Encoder overview... 28

2.1.1.1 Block Scan and Map to Symbols .. 32

2.1.1.1.1 AC coefficient words coding stages 1-3 .. 33

2.1.1.1.2 Mapping words to symbols .. 35

2.2 Related work .. 38

3. PROPOSED ARCHITECTURE .. 39

3.1 Architecture of the BSMS ... 39

3.2 Pipeline architecture ... 42

3.3 Block scan example .. 45

4. BSMS VERIFICATION AND VALIDATION STRATEGY 57

5. EXPERIMENTAL RESULTS .. 58

6. CONCLUSIONS ... 59

LIST OF FIGURES

Figure 2.1: Block Diagram of the Compressor for 3D Images 27

Figure 2.2: Block Diagram of the Compressor for 2D Images 28

Figure 2.3: Schematic of Wavelet-Transformed Image 28

Figure 2.4: Overview of the Structure of a Coded Segment 31

Figure 2.5: Coded Bit Plane Structure for a Coded Segment 32

Figure 3.1: Block and ports of the BSMS module ... 42

Figure 3.2: Block Diagram of BSMS design without pipeline (1/2) 43

Figure 3.3: Block Diagram of BSMS design without pipeline (2/2) 43

Figure 3.4: Block Diagram of BSMS design with pipeline (1/2) 44

Figure 3.5: Block Diagram of BSMS design with pipeline (2/2) 44

LIST OF TABLES

Table 2.1: Within-Subband Coordinates for Coefficients in a Single Family 29

Table 2.2: Subband of Origin for AC Coefficients ... 29

Table 2.3: Summary of Maximum Word Lengths and Impossible Word Values . 36

Table 2.4: Integer Mapping for Two-Bit Words ... 36

Table 2.5: Integer Mapping for Three-Bit Words ... 37

Table 2.6: Integer Mapping for Four-Bit Words ... 37

Table 3.1: Ports’ name and function for the BSMS module 41

Table 3.2: Coefficient values for block example .. 45

Table 3.3: Coefficient and bitplane values for Parents and Children................... 46

Table 3.4: Coefficient and bitplane values for Grandchildren (1/3) 46

Table 3.5: Coefficient and bitplane values for Grandchildren (2/3) 47

Table 3.6: Coefficient and bitplane values for Grandchildren (3/3) 47

Table 5.4.1: Implementation statistics targeting XC7Z045 FPGA. 58

Table 5.4.2: Comparisons with the existing implementation targeting the same

XC7Z045 FPGA .. 58

PREFACE

This thesis was conducted at the Digital Systems and Computer Architecture
Laboratory (DSCAL) of the Department of Informatics and Telecommunications,
of the National and Kapodistrian University of Athens (NKUA). It was carried out
within the Space Technology Group in the context of the research project
SISYFOS.

This research has been co-financed by the European Union and Greek national
funds through the Operational Program Competitiveness, Entrepreneurship and
Innovation, under the call RESEARCH – CREATE – INNOVATE (project code:
T1EDK-04298).

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 25

1. INTRODUCTION

The huge amounts of data generated from latest and future high-resolution, high-
speed imagers in Earth Observation (EO) satellite missions, make image data
compression one of the most challenging on-board payload data processing
tasks [1]. On-board data compression is the key to overcome the telemetry rates
bottleneck and hardware implementation of on-board data compression is the
key to address the data-rate challenges of today’s and future remote sensing
payloads. On-board processing of payload data is a challenging task since data-
rates and data volumes produced by remote sensing payloads increase while the
available downlink bandwidth is comparatively stable [2].
Source coding for data compression is a method utilized in data systems to
reduce the volume of digital data to achieve benefits in areas including, but not
limited to,

a) reduction of transmission channel bandwidth

b) reduction of the buffering and storage requirement

c) reduction of data-transmission time at a given rate.

In 2005, the Consultative Committee for Space Data Systems (CCSDS) issued
the Image Data Compression (IDC) standard CCSDS 122.0-B.1 [3]. CCSDS-IDC
defines a particular transform-based image data compression algorithm
applicable to many types of spaceborne instrument payloads. The recommended
standard provides both lossless and lossy (both rate and quality limited)
compression, suitable for monoband two-dimensional (2D) images.
This Recommended Standard addresses image data compression, which is
applicable to a wide range of space-borne digital data, where the requirement is
for a scalable data reduction, including the option to use lossy compression,
which allows some loss of fidelity in the process of data compression and
decompression and provides a compression method that ensures that the
distortion in the reconstructed image does not exceed user-specified limits.

This Recommended Standard applies to data compression applications of space
missions anticipating packetized telemetry cross support. In addition, it serves as
a guideline for the development of compatible CCSDS Agency standards in this
field, based on good engineering practice.

The purpose of this Thesis is to go one step further than the existing
implementation of the established Recommended Standard for the image data
compression algorithm. The submodule that was implemented for this project can
be applied for either two-dimensional digital spatial image or and digital three-
dimensional image data from payload instruments, such as multispectral and
hyperspectral imagers.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 26

This thesis is organized as follows: In Chapter 2, a brief description of the
CCSDSIDC algorithm is presented along with the focus of this thesis, the Bit
Plane Encoder. Related work is also presented. In Chapter 3, the proposed
architecture for the BSMS is introduced. The verification and validation strategy
of the BSMS design is described in Chapter 4. Experimental implementation
results and comparisons are provided in Chapter 5, while Chapter 6 concludes
the thesis.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 27

2. CCSDS STANDARD OVERVIEW AND RELATED WORK

2.1 Compressor overview

This work is an implementation of the CCSDS 122.0-B-2 standard for Image
Data Compression [4]. This standard proposes the Bit Plane Encoder as the
encoder that precedes the Entropy encoding process. The Bit Plane Encoder can
be used for both simple (2D) and Multispectral/Hyperspectral (3D) image
compression.

The standard for Multispectral/Hyperspectral (3D) image compression extends
the (two-dimensional) CCSDS Image Data Compression standard by providing
an effective method of encoding three-dimensional image data. The input to the
compressor is a three-dimensional image that has signed or unsigned integer
sample values [5]. The compressed image output from the compressor is an
encoded bitstream from which an exact or approximate reconstruction of the
input image can be recovered.
The compressor consists of two main functional parts, depicted in figure 2.1: a
spectral transform, and a set of 2D encoders.

Figure 2.1: Block Diagram of the Compressor for 3D Images

The purpose of the spectral transform is to exploit the similarities between the
spectral bands of an image, creating a transformed image that it is more
efficiently compressed by the 2D encoders. Each transformed band is
independently compressed by a 2D encoder. In practice, an implementation of
the 2D encoder may be reused multiple times to accomplish this task. Two
additional minor functional stages are also included, named upshift stage and
downshift stage, with the purpose of adapting the bit depth before each of the
two main functional parts.
The compressed image, consists of a header that encodes image and
compression parameters followed by a body that is produced by an entropy
coder, which losslessly encodes the mapped quantizer indices.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 28

A standard specifically for multispectral and hyperspectral (three-dimensional)
lossless image compression has not been developed. Rather than developing a
new standard, an existing two-dimensional image compression standard is used.
Candidates include the wavelet-based image compression standards JPEG2000
and CCSDS 122.0-B-2, and the predictive-based JPEG-LS standard, all of which
are capable of providing lossless image compression. For this project the
CCSDS 122.0-B-2 standard was used.

Figure 2.2: Block Diagram of the Compressor for 2D Images

The CCSDS 122.0-B-2 Image Data Compression (CCSDS-IDC) algorithm
consists of two functional parts: a) a Discrete Wavelet Transform (DWT) that
performs decorrelation and b) a Bit Plane Encoder (BPE) which encodes the
decorrelated data [4].

2.1.1 Bit Plane Encoder overview

Following the DWT, the Bit Plane Encoder (BPE) processes wavelet coefficients
in groups of 64 coefficients referred to as blocks. An example of a block is
illustrated in Figure 2.3 as comprised of shaded pixels. A block loosely
corresponds to a localized region in the original image.

Figure 2.3: Schematic of Wavelet-Transformed Image

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 29

Information pertaining to a block of coefficients is jointly encoded by the BPE. A
block consists of a single coefficient from the LL3 subband, referred to as the DC
coefficient, and 63 AC coefficients. The AC coefficients in a block are arranged
into three families,F0,F1 and F2. Figure 2.3 illustrates a single block of coefficients
and the family structure.

Each family Fi in the block has one parent coefficient, pi, a set Ci of four children
coefficients, and a set Gi of sixteen grandchildren coefficients. The grandchildren
in family Fi are further partitioned into groups numbered j=0,1,2,3, denoted Hij, as
illustrated in Figure 2.3. This structure is used for jointly encoding information
pertaining to groups of coefficients in the block.

A wavelet coefficient is identified by its coordinates within its subband. Thus
coordinates (r, c) indicate the wavelet coefficient in row r, column c within the
subband, with the upper left pixel in a subband having coordinates (0,0).
The DC coefficient for each block is a single coefficient from the LL3 subband.
The coordinates for the other coefficients in the block can be determined from the
coordinates of the DC coefficient. For a block with DC coefficient with
coordinates (r, c) within the LL3 subband, Table 2-1 lists the coordinates for the
AC coefficients, within their respective subbands of origin.

Table 2.1: Within-Subband Coordinates for Coefficients in a Single Family

Table 2.2: Subband of Origin for AC Coefficients

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 30

Blocks shall be processed by the Bit Plane Encoder consecutively in the raster
scan in the order in which their corresponding DC coefficients occur in LL3: row
by row, each row being processed from left to right.

A segment is defined as a group of S consecutive blocks. Coding of DWT
coefficients proceeds segment-by-segment and each segment is coded
independently of the others.

A segment of blocks is further partitioned into gaggles. Each gaggle consists of
16 blocks, except for possibly the last gaggle in a segment, which contains S
mod 16 blocks when Sis not a multiple of 16.

An AC coefficient is represented using the binary representation of the
magnitude of the coefficient, along with a bit indicating the sign when the
coefficient is nonzero.

BitDepthAC_Blockm denotes the maximum number of bits needed to specify the
magnitude of any AC coefficient in the mth block. For each segment, the BPE
computes BitDepthAC, which denotes the maximum value of BitDepthAC_Blockm

for the segment.

The BPE successively encodes bit planes of coefficient magnitudes in a
segment, inserting AC coefficient sign values at appropriate points in the coded
segment data stream. Bit plane b consists of the bth bit of the two’s-complement
integer representation of each DC coefficient, and the bth bit of the binary integer
representation of the magnitude of each AC coefficient. Here, bit plane index b=0
corresponds to the least significant bit. The BPE proceeds from most-significant
bit to least significant bit, thus b decreases from one bit plane to the next,
beginning with b= BitDepthAC-1, and ending with b=0.

The structure of a coded segment is shown in Figure 2.4(a). Within a coded
segment, header information is encoded. Then quantized DC coefficients from
the blocks are encoded. Then AC bit depths are encoded. Then DWT coefficient
blocks are encoded, one bit plane at a time, proceeding from the most significant
to the least significant bit plane. The coding of a single bit plane is performed in
several stages, and the resulting order of encoded data is illustrated in Figure
2.4(b). E.g., parent coefficients are coded in stage 1 for all blocks of the segment
before encoding child coefficients in stage 2. The resulting encoded bit stream
constitutes an embedded data format that provides progressive transmission.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 31

Figure 2.4: Overview of the Structure of a Coded Segment

The Bit Plane Encoder, for the AC coefficients coding, mainly consists of three
processes. First the scan of a block takes place which results in a sequence of
words. The words are generated from the bitplane bits, starting with bitplane
band proceeds per bitplane until bitplane 0 is reached. Afterwards, these words
are mapped to variable length binary words, called symbols, according to length.
Next, a subset of these words is further entropy coded using variable-length
binary codes, again according to length. The first two processes form the BSMS
(Block Scan and Map to Symbols).

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 32

2.1.1.1 Block Scan and Map to Symbols

Coding of a bit plane is performed in stages numbered 0-4. The coded bits
produced at the stages for each block are interleaved, as illustrated in Figure
2.4(b) and Figure 2.5. Thus, a coded bit plane first consists of all the stage 0 bits
(if any) in the segment, then all of the coded stage 1 bits in the segment, and so
on, finishing with all of the encoded stage 4 bits in the segment. This produces
an embedded bit string with information from the highest bit plane of all S blocks
in the first part of the output bit string followed by information from lower bit
planes, and allows progressive decoding of the coded string. This improves
image reconstruction quality when the coded bit sequence is truncated.

Figure 2.5: Coded Bit Plane Structure for a Coded Segment

Stage 0 for a block consists of at most a single bit, which is simply the bth most
significant bit of the two’s-complement representation of the DC coefficient.

The remaining stages (1-4) encode AC coefficient bits. The stage in which bits
from AC coefficients in a bit plane are coded depends on the type of the AC
coefficient at the bit plane, which we now define. At bit plane b, the type of an AC
coefficient x, denoted tb(x), has one of the following values:

–tb(x) = 0 if |x| < 2b, (x is not due for selection at this bit plane);

–tb(x) = 1 if 2b≤ |x| < 2b+1, (x is due for selection at this bit plane);

–tb(x) = 2 if 2b+1≤ |x|, (x has already been selected at a previous bit plane);

–tb(x) = -1 if b< BitShift(Γ), (x must be zero at this bit plane due to subband
scaling).

Here, Γ denotes the subband containing x. Thus, during bit-plane encoding, each
AC coefficient typically proceeds from type 0 to 1, to 2, to -1. For a set of
coefficients Ψ, we define tmax(Ψ) as the maximum of the coefficient types in Ψ.

An AC coefficient x is said to be selected at bit plane b if tb(x) = 1. I.e., the
‘selection’ of a coefficient marks the first bit plane where a non-zero magnitude
bit is encoded for the coefficient. Note that tb(x) = 1 if the bth most significant
magnitude bit of x is equal to ‘1’ and all more significant magnitude bits of x are
equal to ‘0’.

The type of a coefficient determines the stage when coding of a coefficient bit
takes place. When an AC coefficient x is of type 0 or 1 (implying tb+1(x)=0), the bth

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 33

most significant magnitude bit of x is coded in stages 1-3. Otherwise, the bit is
included, uncompressed, in stage 4 if x is of type 2, or not encoded at all when x
is of type -1.

In stages 1-3 of BPE encoding bit plane b, the bth magnitude bit of each AC
coefficient x such that tb+1(x)=0 is encoded. The bth magnitude bits of the parent
coefficients are coded in stage 1, the children in stage 2, and the grandchildren in
stage 3. Each of these stages also includes coded bits indicating the sign of each
coefficient x for which tb(x)=1. The coding in stages 1-3 makes use of the family
structure to group together AC coefficients for entropy coding.

The coding performed in stages 1-3 for a block consists of two parts. First, a
sequence of variable length binary words are defined which completely describe
the bits to be encoded in these stages. Next, a subset of these words are further
entropy coded.

Stage 4 of coding consists of the bth magnitude bit of each AC coefficient x with
tb(x)=2. These bits are included in the coded data stream uncompressed.

2.1.1.1.1 AC coefficient words coding stages 1-3

The bits encoded in stages 1-3 for a block can be determined by a sequence of
words, as described below.

In addition to the sets Ci, Gi, Hij, P is defined as the list of parents in the block:

P = {p0, p1, p2}.

The list of descendants in family i, denoted Di, is defined as

Di = {Ci, Gi}.

The list of descendants in a block, denoted B, is defined as

B = {D0,D1,D2}.

{A, B} denotes the concatenation of the lists A and B.

A shorthand notation for certain binary words that describe information about bit
plane b for a list of coefficients Ψ is defined as follows:

–let typesb[Ψ] denote the binary word consisting of the bth magnitude bit of each
coefficient x in Ψ such that tb(x) equals 0 or 1.

–let signsb(Ψ) denote the binary word consisting of the sign bit of each coefficient
x in Ψ such that tb(x) = 1, with a sign bit of ‘1’ for negative coefficients and ‘0’ for
nonnegative coefficients.

–given a list of type values Λ={λ0,λ1,λ2, …, λl}, let tword[Λ] denote the binary word
consisting of the sequence of type values λi in Λ that are equal to 0 or 1.

Any of these words can be null (i.e., have length zero).

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 34

The list P shall be ordered P = {p0,p1,p2}, while the ordering on the lists Ci and Hij

shall be determined by the order in which their member coefficients’ coordinates
are listed in Table 2.1.

The bth magnitude bits for all AC coefficients that are type 0 at bit plane b+1 (i.e.,
not selected before the current bit plane) shall be communicated to the decoder
by joining them to form binary words associated with each data type (parent,
child, grandchild):

–typesb[P]

–typesb[Ci] for i= 0, 1, 2; and

–typesb[Hij] for i= 0, 1, 2, j= 0, 1, 2, 3.

At early bit planes, many sets of coefficients in a block tend to all be of type 0,
and thus many of these words are initially all zeros. To effectively encode in this
situation, the BPE shall make use of the following transition words to indicate
when groups of coefficients at a lower depth are all Type 0:

–tranB = null, if tranB= 1 at any more significant bit plane, tword[{tmax(B)}],
otherwise.

–tranD = tword[{tmax(Di) : i=0,1,2, such that tmax(Di)≠1 in all more significant bit
planes}].

–tranG = tword[{tmax(Gi) : i=0, 1, 2, such that tmax(Di)>0 in current or any more
significant bit planes }].

–tranHi = tword[{tmax(Hi0),tmax(Hi1),tmax(Hi2),tmax(Hi3)}] for i= 0,1,2.

At bit plane b, the BPE shall use the following sequence of words, generated in
three stages, to update all of the AC coefficients in the block that were Type 0 at
the previous bit plane:

a)Stage 1 (parents):

typesb[P],signsb[P].

b)Stage 2 (children):

1)tranB

2)tranD, if tranB≠0 and tmax(B)≠-1

3)typesb[Ci] and signsb[Ci] for each i such that tmax(Di)>0 in current or any more

significant bit planes.

c)Stage 3 (grandchildren):

If tranB = 0 or tmax(B) = -1, then stage 3 is unnecessary and shall be omitted.

Otherwise stage 3 consists of:

1)tranG

2)tranHi, for each i such that tmax(Gi)≠0, -1

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 35

3)typesb[Hij] and signsb[Hij] for each i such that tmax(Gi)≠0, -1 and each j such that
tmax(Hij)≠0, -1.

All of the words generated in the above stages are variable length (including the
null word).

Words typesb[P], typesb[Ci], typesb[Hij], tranD, tranG, tranHi shall be entropy coded,
i.e., each shall be replaced with a corresponding variable-length codeword,
whenever such a word has a length of at least 2 bits.

The sign bit words are not coded further, because AC coefficients are generally
positive and negative with about equal probability. The tranB word is always, at
most, one bit in length and is never entropy coded.

Stage 4 Coding

In stage 4 of coding, the bth magnitude bit of each AC coefficient x with type
tb(x)=2 shall be included in the output bit stream.

For each block, the output bit string shall consist of the bth magnitude bit of type 2
coefficients, in the following order:

–pi, for each i= 0,1,2

–members of Ci, for each i= 0,1,2

–members of Hij, for each i= 0,1,2, and each j= 0,1,2,3.

Members of the sets Ci and Hij shall be processed in the order listed in Table 2.1.

No bits shall be coded in stage 4 for AC coefficients x not of type 2 (tb(x) ≠ 2).

The resulting strings for all blocks in the segment shall be concatenated to
produce the entire stage 4 output string for the coded segment.

2.1.1.1.2 Mapping words to symbols

The entropy coding procedure used to encode the words typesb[P], typesb[Ci],
typesb[Hij], tranD, tranG, tranHi shall be accomplished through the use of variable-
length codes. Words having a length of one bit, and sign-bit words, shall be
included in the compressed data stream without further coding. Words of length
greater than one bit shall be coded in the sequence in which they occur within
each stage with entropy coding.

Certain bit sequences cannot appear as values for certain words and this fact is
taken into account in the entropy coding process. For example, tranD can never
equal 000, because this condition would be inferred from the fact that tranB=0.
Table 2.3 summarizes the maximum word lengths and impossible values for
each word that is entropy coded.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 36

Table 2.3: Summary of Maximum Word Lengths and Impossible Word Values

The process of variable-length coding of these words shall follow a two-step
process:

–first, the word values shall be mapped to integer values referred to as symbols
and then

–each integer shall be encoded using a variable-length binary codeword.

Under the mapping, two-bit, three-bit, and four-bit words shall be mapped to
symbols using table 2.4, 2.5, or 2.6, respectively.

The mapping process takes into account the fact that certain words can never be
assigned certain bit sequences, as tabulated in table 2.3 and this is reflected in
tables 2.5 and 2.6.

The entropy encoding, which is the second step, follows the outputs of the BSMS
design, since the BSMS concludes with the mapping to symbols process.

Table 2.4: Integer Mapping for Two-Bit Words

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 37

Table 2.5: Integer Mapping for Three-Bit Words

Table 2.6: Integer Mapping for Four-Bit Words

The mappings are intended to produce symbol values in order of decreasing
frequency. (I.e., the most frequently occurring word is mapped to symbol value 0,
the next most frequent to 1, etc.) This makes effective coding possible through
the entropy encoding procedure that follows, because the codewords are
arranged in order of increasing length.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 38

2.2 Related work

A Reconfigurable FPGA Implementation of CCSDS 122.0-B-1 Image Data
Compression took place at Digital Systems & Computer Architecture Laboratory
(DSCAL) on 2014. When the existing implementation took place, the goal was to
implement the CCSDS’s proposed algorithm for Image Data Compression, with a
Hardware Description Language, in this case VHDL. Functionality was the main
requirement and as a result the design was slow in terms of clock frequency.

The previous implementation was based on an FSMD design. That is a finite-
state machine, which controls the program flow along with the datapath inside
each state, while performing bitplane processing operations. FSMDs are
essentially sequential programs in which statements have been scheduled into
states, thus resulting in more complex state diagrams and more complex design
altogether.

In addition to the low clock frequency, the FSMD of this implementation was
configured in such a way that for each input sample or for each output the design
needed two clock cycles, thus resulting to a very slow data flow. So a need for a
faster design occurred. For this thesis a new architecture was developed that
achieves both clock frequency increase and also the need for just one clock
cycle for each sample.

This work was published at the On-Board Payload Data Compression Workshop
(OBPDC 2014) [1].

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 39

3. PROPOSED ARCHITECTURE

3.1 Architecture of the BSMS

The implementation of the CCSDS 122.0-B-2 proposed algorithm for lossless
image data compression, that took place in this project is based on a three-
process architecture. There’s one synchronous process, where all the registers
are defined and two asynchronous processes, one that consists of the word
generation logic and one for the control signals.

The components of the BSMS design are a DRAM used as a history table, two
encoding-mapping modules and one component for the IDs assignment for each
symbol generated.

The BSMS module receives its inputs from the Segment Bitplane Buffer. The
Segment Bitplane Buffer unit implements a transformation of the block-oriented
data organization of DWT coefficients to a bit plane-oriented data organization
and provides BPE with a high-performance access to all the bitplanes of a
segment. The BSMS module fetches an already formatted bitplane for all the S
blocks of the segment concurrently from the SBB unit in one BRAM access.

As it is proposed in the standard, there are two different indicators for the number
of bitplanes that need to be processed. The BitDepthAC and the
BitDepthAC_blockm. The first refers to the maximum number of bitplanes for the
whole segment and the second to the maximum number of bitplanes for each
block. The BSMS module processes one bitplane at a time starting with
b=BitDepthAC and ending with b=1. It begins with the b=BitDepthAC bitplane for
the first block of the segment, then moves to the b=BitDepthAC bitplane for the
second block and continues until the b=BitDepthAC bitplane for the last (S) block
in the segment. Afterwards it moves on to the next biplane (b=BitDepthAC-1),
again for all the blocks in the segment, and the procedure ends at bitplane b=1
and block=S. For every bitplane processed, when the current bitplane b is larger
than BitDepthAC_blockm, the word generation procedure is omitted, as there is
nothing to be encoded for the current block.

Once the bitplane, signs and BitDepthAC_blockm have been obtained from the
segment buffer, there’s one last thing needed so that the generation of the binary
words can begin. Due to the sequence described above, in which the bitplanes
have to be processed, and because of the dependencies that occur from a
bitplane to the next in the same block, a memory is introduced into the design.
This memory is necessary so that every time the BSMS moves on to the next
bitplane, it can have access to all the needed information from the previous
bitplane for the encoding of the current bitplane for the same block.

The proposed description for the types and transition words generation is
translated into gate logic with a mask-based implementation. Next, the words and
signs along with their corresponding masks go through the encoding and
mapping components. There is one component for three-bit words (tranD, tranG,
P) and one for four-bit words (tranH0, tranH1, tranH2, C0, C1, C2, H00, H01, …,
H23). First a decision is made, according to the corresponding masks, about

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 40

which bits are useful in the incoming words and then the useful bits are left
shifted, as most significant bits. This procedure, along with the derivation of the
word length, again according to mask, is the first step for the encoding process
with second being the mapping into symbols. The outputs of these components,
symbols, signs and their lengths, compose accordingly each output stage.

The length values of the transition and type words are then used as inputs for the
IDs generation component. There is one component instantiation for two bit
words, one for three and one for four. The outputs of these components go
through some combinatorial logic, from which another output of the BSMS is
derived (QTD_out) every time the end of a gaggle is reached. QTD_out exits the
BSMS module along with the stages outputs.

The control part of the design is implemented with a Finite State Machine. The
need for an FSM design occurred when additional cases where introduced in the
design to ensure a valid execution. The encoding part of the algorithm is done in
one state and additional states are used, before and after the encoding, to check
if the encoding can begin, to catch up with the arrival of valid data at the
beginning and to insert some needed flags between output data, to denote when
a whole bitplane has been processed for all the blocks in a segment, in the
output FIFOs and lastly a state for when the encoding is finished.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 41

The submodule of BSMS was developed to be integrated into the existing 2D
encoder as a Plug-and-Play module. So the original block’s ports are used. The
ports’ name and their function are presented in Table 3.1 and the block of the
BSMS is depicted in Figure 3.1.

Table 3.1: Ports’ name and function for the BSMS module

Port Name Port Function

Inputs

clk Clock signal

reset Asynchronous reset

srst Synchronous reset

en_AC Enable signal to start encoding

double_buf Address indicator for Segment buffer

seg_id Segment ID

S Number of blocks in current segment

BitDepthAC Max number of bitplanes in current
segment

AC_Bit_depth_out_ram Max number of bitplanes in current
block

bp_seg_buff_dout Bitplane data from Segment buffer

signs_seg_buff_dout Signs data from Segment buffer

stage1_full, stage2_full,

stage3_full, stage4_full, QTD_full

FIFO is full signals from the output
FIFOs

Outputs

bp_seg_buff_addr_bpe Bitplane address for the Segment
buffer

signs_seg_buff_addr_bpe Signs address for the Segment buffer

addr_p_bpe BitDepthAC_Blockm address for the
Segment Buffer

stage1out, stage2out,

stage3out, stage4out, QTD_out

BSMS outputs

stage1_we, stage2_we,

stage3_we, stage4_we, QTD_we

Write in FIFO signals for the output
FIFOs

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 42

Figure 3.1: Block and ports of the BSMS module

3.2 Pipeline architecture

The first requirement for the new implementation was that the processing of each
bitplane should be completed in one clock cycle, unlike the existing
implementation in which the same procedure was done in two clock cycles. That
was taken into consideration from the beginning of the design development.

When that was succeeded and the functionality was verified, the next
requirement was for the clock frequency to increase. This was achieved by
introducing some pipelining into the design.

In Figures 3.1 and 3.2 the architecture of the BSMS before the pipelining is
presented and the architecture of the BSMS after the pipelining is presented in
Figures 3.3 and 3.4.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 43

Figure 3.2: Block Diagram of BSMS design without pipeline (1/2)

Figure 3.3: Block Diagram of BSMS design without pipeline (2/2)

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 44

Figure 3.4: Block Diagram of BSMS design with pipeline (1/2)

Figure 3.5: Block Diagram of BSMS design with pipeline (2/2)

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 45

3.3 Block scan example

The encoding that takes place in the BSMS module, concerns only the AC
coefficients. So, for the Block Scan example below, we assume that the DC
coefficients are omitted. Lets also assume that the values of the AC coefficients,
that is parents, children and grandchildren, are the following:

Table 3.2: Coefficient values for block example

 Parents

-p0 = -6

-p1 = 10

-p2 = 5

 Children

-C0 = {2, 5, 2, 0}

-C1 = {3, -5, 0, 0}

-C2 = {-1, 3, 3, 0}

 Grandchildren

-G0 = {1, 13, 0, 0, 9, 15, -5, 6, 10, 0, -4, -1, 0, 8, 0, 11}

-G1 = {0, -1, 6, 3, -2, 0, 0, 4, 1, -3, 4, 1, 0, 0, 0, -7}

-G2= {0, 1, -11, 13, 7, 5, 0, 1, -2, 9, 11, 1, -4, 0, 0, -8}

 BitDepthAC_Blockm = 4

The above values, if put together one by one, with their binary equivalent
vertically, they form four bitplanes as shown in tables 3.2, 3.3, 3.4, 3.5 below.
The first row of each bitplane b is the formed bitplane. In the second (yellow) row
are the previous (b+1) types, that initially are all set to zero, and in the third (red)
row is the result of the logical OR from the previous two lines, that is the current
(b) types.

The next calculations are the ones taking place in the combinational logic right
before the symbol mapping.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 46

Table 3.3: Coefficient and bitplane values for Parents and Children

Table 3.4: Coefficient and bitplane values for Grandchildren (1/3)

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 47

Table 3.5: Coefficient and bitplane values for Grandchildren (2/3)

Table 3.6: Coefficient and bitplane values for Grandchildren (3/3)

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 48

Bitplane b=4

typesb = typesb+1+ bitplaneb

Stage 1

Mask based implementation of 3-bit words typesb[P] and signsb[P]

-types3[P] = 010
-signs3[P] = _0_

Initially, typesb+1[P] = 000

typesb[P] = typesb+1[P] + bitplaneb[P] = 000 + 010 = 010

types_datab[P] = typesb[P] = 010

types_maskb[P] = typesb+1[P] = 000

signs_datab[P] = signsb[P] = 100

signs_maskb[P] = types_datab[P] • /types_maskb[P] = 010 • 111 = 010

typesb[P] = types_datab[P] = 010

Stage 2

Mask based implementation of 1-bit tranBb& 3-bit tranDb

-tranB3= 1

Initially, tranBb+1= 0

tranB_datab= (or typesb[B]) = 1

tranB_maskb= tranBb+1= 0

-tranD3= 101

Initially, tranD0b+1= 0, tranD1b+1= 0, tranD2b+1= 0

tranD0_datab= (or typesb[D0]) = 1

tranD1_datab= (or typesb[D1]) = 0

tranD2_datab= (or typesb[D2]) = 1

tranD0_maskb= tranD0b+1+ /tranB_datab= 0 • 1 = 0

tranD1_maskb= tranD1b+1+ /tranB_datab= 0 • 1 = 0

tranD2_maskb= tranD2b+1+ /tranB_datab= 0 • 1 = 0

Mask based implementation of 4-bit words typesb[Ci] and signsb[Ci]

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 49

-types3[C0] = 0000

-signs3[C0] = ____

Initially, typesb+1[C0] = 0000

typesb[C0] = typesb+1[C0] + bitplaneb[C0] = 0000 + 0000 = 0000

types_datab[C0] = typesb[C0] = 0000

types_maskb[C0] = typesb+1[C0] + /tranD0b+ /tranBb= 0000 + 0000 + 0000 =
0000

signs_datab[C0] = signsb[C0] = 0000

signs_maskb[C0] = types_datab[C0] • /types_maskb[C0] = 0000 • 1111= 0000

-types3[C1] = ____
-signs3[C1] = ____

Initially, typesb+1[C1] = 0000
typesb[C1] = typesb+1[C1] + bitplaneb[C1] = 0000 + 0000 = 0000

types_datab[C1] = typesb[C1] = 0000
types_maskb[C1] = typesb+1[C1] + /tranD1b+ /tranBb= 0000 + 1111 + 0000 =
1111

signs_datab[C1] = signsb[C1] = 0100
signs_maskb[C1] = types_datab[C1] • /types_maskb[C1] = 0000 • 0000 = 0000

-types3[C2] = 0000
-signs3[C2] = ____

Initially, typesb+1[C2] = 0000
typesb[C2] = typesb+1[C2] +bitplaneb[C2] = 0000 + 0000 = 0000

types_datab[C2] = typesb[C2] = 0000
types_maskb[C2] = typesb+1[C2] + /tranD2b+ /tranBb= 0000 + 0000 + 0000 =
0000

signs_datab[C2] = signsb[C2] = 1000
signs_maskb[C2] = types_datab[C2] • /types_maskb[C2] = 0000 • 1111= 0000

Stage 3

Mask based implementation of 3-bit tranbG

-tran3G = 1_1

Initially, tranG0b+1= 0, tranG1b+1= 0, tranG2b+1= 0

tranG0_datab= (or typesb[G0]) = 1

tranG1_datab= (or typesb[G1]) = 0

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 50

tranG2_datab= (or typesb[G2]) = 1

tranG0_maskb= tranG0b+1+ /tranD0b+ /tranBb= 0 + 0 + 0 = 0

tranG1_maskb= tranG1b+1+ /tranD1b+ /tranBb= 0 + 1 + 0 = 1

tranG2_maskb= tranG2b+1+ /tranD2b+ /tranBb= 0 + 0 + 0 = 0

Mask based implementation of 4-bit tranb[H0]

-tran3H0= 1111

Initially, tranH00b+1= 0, tranH01b+1= 0, tranH02b+1= 0, tranH03b+1= 0

tranH00_datab= (or typesb[H00]) = 1

tranH01_datab= (or typesb[H01]) = 1

tranH02_datab= (or typesb[H02]) = 1

tranH03_datab= (or typesb[H03]) = 1

tranH00_maskb= tranH00b+1+ /tranG0b+ /tranBb= 0 + 0 + 0 = 0

tranH01_maskb= tranH01b+1+ /tranG0b+ /tranBb= 0 + 0 + 0 = 0

tranH02_maskb= tranH02b+1+ /tranG0b+ /tranBb= 0 + 0 + 0 = 0

tranH03_maskb= tranH03b+1+ /tranG0b+ /tranBb= 0 + 0 + 0 = 0

Mask based implementation of 4-bit tranb[H1]

-tran3H1= ____

Initially, tranH10b+1= 0, tranH11b+1= 0, tranH12b+1= 0, tranH13b+1= 0

tranH10_datab= (or typesb[H10]) = 0

tranH11_datab= (or typesb[H11]) = 0

tranH12_datab= (or typesb[H12]) = 0

tranH13_datab= (or typesb[H13]) = 0

tranH10_maskb= tranH10b+1+ /tranG1b+ /tranBb= 0 + 1 + 0 = 1

tranH11_maskb= tranH11b+1+ /tranG1b+ /tranBb= 0 + 1 + 0 = 1

tranH12_maskb= tranH12b+1+ /tranG1b+ /tranBb= 0 + 1 + 0 = 1

tranH13_maskb= tranH13b+1+ /tranG1b+ /tranBb= 0 + 1 + 0 = 1

Mask based implementation of 4-bit tranb[H2]

-tran3H2= 1011

Initially, tranH20b+1= 0, tranH21b+1= 0, tranH22b+1= 0, tranH23b+1= 0

tranH20_datab= (or typesb[H20]) = 1

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 51

tranH21_datab= (or typesb[H21]) = 0

tranH22_datab= (or typesb[H22]) = 1

tranH23_datab= (or typesb[H23]) = 1

tranH20_maskb= tranH20b+1+ /tranG2b+ /tranBb = 0 + 0 + 0 = 0

tranH21_maskb= tranH21b+1+ /tranG2b+ /tranBb = 0 + 0 + 0 = 0

tranH22_maskb= tranH22b+1+ /tranG2b+ /tranBb = 0 + 0 + 0 = 0

tranH23_maskb= tranH23b+1+ /tranG2b+ /tranBb = 0 + 0 + 0 = 0

Mask based implementation of 4-bit words types[Hij] and signs[Hij]

-types3[H00] = 0100

-signs3[H00] = _0__

Initially, typesb+1[H00] = 0000

typesb[H00] = typesb+1[H00] + bitplaneb[H00] = 0000 + 0100 = 0100

types_datab[H00] = typesb[H00] = 0100

types_maskb[H00] = typesb+1[H00] + /tranH00b+ /tranBb= 0000+ 0000 + 0000 =
0000

signs_datab[H00] = signsb[H00] = 0000

signs_maskb[H00] = types_datab[H00] • /types_maskb[H00] = 0100• 1111 =
0100

-types3[H01] = 1100

-signs3[H01] = 00__

Initially, typesb+1[H01] = 0000

typesb[H01] = typesb+1[H01] + bitplaneb[H01] = 0000 + 1100 = 1100

types_datab[H01] = typesb[H01] = 1100

types_maskb[H01] = typesb+1[H01] + /tranH01b+ /tranBb= 0000 + 0000 + 0000
= 0000

signs_datab[H01] = signsb[H01] = 0010

signs_maskb[H01] = types_datab[H01] • /types_maskb[H01] = 1100 • 1111 =
1100

-types3[H02] = 1000

-signs3[H02] = 0___

Initially, typesb+1[H02] = 0000

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 52

typesb[H02] = typesb+1[H02] + bitplaneb[H02] = 0000 + 1000 = 1000

types_datab[H02] = typesb[H02] = 1000

types_maskb[H02] = typesb+1[H02] + /tranH02b+ /tranBb= 0000 + 0000 + 0000
= 0000

signs_datab[H02] = signsb[H02] = 0011

signs_maskb[H02] = types_datab[H02] • /types_maskb[H02] = 1000 • 1111 =
1000

-types3[H03] = 0101

-signs3[H03] = _0_0

Initially, typesb+1[H03] = 0000

typesb[H03] = typesb+1[H03] + bitplaneb[H03] = 0000 + 0101 = 0101

types_datab[H03] = typesb[H03] = 0101

types_maskb[H03] = typesb +1[H03] + /tranH03b+ /tranBb= 0000 + 0000 + 0000
= 0000

signs_datab[H03] = signb[H03] = 0000

signs_maskb[H03] = types_datab[H03] • /types_maskb[H03] = 0101 • 1111 =
0101

-types3[H10] = ____

-signs3[H10] = ____

Initially, typesb+1[H10] = 0000

typesb[H10] = typesb+1[H10] + bitplaneb[H10] = 0000 + 0000 = 0000

types_datab[H10] = typesb[H10] = 0000

types_maskb[H10] = typesb+1[H10] + /tranH10b+ /tranBb= 0000 + 1111 + 0000
= 1111

signs_datab[H10] = signsb[H10] = 0100

signs_maskb[H10] = types_datab[H10] • /types_maskb[H10] = 0000 • 0000 =
0000

-types3[H11] = ____

-signs3[H11] = ____

Initially, typesb +1[H11] = 0000

typesb[H11] = typesb[H11] + bitplaneb[H11] = 0000 + 0000 = 0000

types_datab[H11] = typesb[H11] = 0000

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 53

types_maskb[H11] = typesb+1[H11] + /tranH11b+ /tranBb= 0000 + 1111 + 0000
= 1111

signs_datab[H11] = signsb[H11] = 1000

signs_maskb[H11] = types_datab[H11] • /types_maskb[H11] = 0000 • 0000 =
0000

-types3[H12] = ____

-signs3[H12] = ____

Initially, typesb +1[H12] = 0000

typesb[H12] = typesb +1[H12] + bitplaneb[H12] = 0000 + 0000 = 0000

types_datab[H12] = typesb[H12] = 0000

types_maskb[H12] = typesb+1[H12] + /tranH12b+ /tranBb= 0000 + 1111 + 0000
= 1111

signs_datab[H12] = signsb[H12] = 0100

signs_maskb[H12] =types_datab[H12] • /types_maskb[H12] = 0000 • 0000 =
0000

-types3[H13] = ____

-signs3[H13] = ____

Initially, typesb +1[H13] = 0000

typesb[H13] = typesb+1[H13] + bitplaneb[H13] = 0000 + 0000 = 0000

types_datab[H13] = typesb[H13] = 0000

types_maskb[H13] = typesb+1[H13] + /tranH13b+ /tranBb= 0000 + 1111 + 0000
= 1111

signs_datab[H13] = signsb[H13] = 0001

signs_maskb[H13] = types_datab[H13] • /types_maskb[H13] = 0000 • 0000 =
0000

-types3[H20] = 0011

-signs3[H20] = __10

Initially, typesb +1[H20] = 0000

typesb[H20] = typesb+1[H20] + bitplaneb[H20] = 0000 + 0011 = 0011

types_datab[H20] = typesb[H20] = 0011

types_maskb[H20] = typesb+1[H20] + /tranH20b+ /tranBb= 0000 + 0000 + 0000
= 0000

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 54

signs_datab[H20] = signsb[H20] = 0010

signs_maskb[H20] = types_datab[H20] • /types_maskb[H20] = 0011 • 1111 =
0011

-types3[H21] = ____

-signs3[H21] = ____

Initially, typesb +1[H21] = 0000

typesb[H21] = typesb+1[H21] + bitplaneb[H21] = 0000 + 0000 = 0000

types_datab[H21] = typesb[H21] = 0000

types_maskb[H21] = typesb+1[H21] + /tranH21b+ /tranBb= 0000 + 1111 + 0000
= 1111

signs_datab[H21] = signh_vb[H21] = 0000

signs_maskb[H21] = types_datab[H21] • /types_maskb[H21] = 0000 • 0000 =
0000

-types3[H22] = 0110

-signs3[H22] = _00_

Initially, typesb+1[H22] = 0000

typesb[H22] = typesb+1[H22] + bitplaneb[H22] = 0000 + 0110 = 0110

types_datab[H22] = typesb[H22] = 0110

types_maskb[H22] = typesb+1[H22] + /tranH22b+ /tranBb= 0000 + 0000 + 0000
= 0000

signs_datab[H22] = signh_vb[H22] = 1000

signs_maskb[H22] = types_datab[H22] • /types_maskb[H22] = 0110 • 1111 =
0110

-types3[H23] = 0001

-signs3[H23] = ___1

Initially, typesb+1[H23] = 0000

typesb[H23] = typesb+1[H23] + bitplaneb[H23] = 0000 + 0001 = 0001

types_datab[H23] = typesb[H23] = 0001

types_maskb[H23] = typesb+1[H23] + /tranH23b+ /tranBb= 0000 + 0000 + 0000
= 0000

signs_datab[H23] = signh_vb[H23] =1001

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 55

signs_maskb[H23] = types_datab[H23] • types_maskb[H23] = 0001 • 1111 =
0001

Stage 4

Refinement bits:
-Parents = {}
-Children = {}
-Grandchildren = {}

ref_datab[P] = bitplaneb[P] = 010

ref_maskb[P] = typesb+1[P] = 000

ref_datab[C0] = bitplaneb[C0] = 0000

ref_maskb[C0] = typesb+1[C0] = 0000

ref_datab[C1] = bitplaneb[C1] = 0000

ref_maskb[C1] = typesb+1[C1] = 0000

ref_datab[C2] = bitplaneb[C2] = 0000

ref_maskb[C2] = typesb+1[C2] = 0000

ref_datab[H00] = bitplaneb[H00] = 0100

ref_maskb[H00] = typesb+1[H00] = 0000

ref_datab[H01] = bitplaneb[H01] = 1100

ref_maskb[H01] = typesb+1[H01] = 0000

ref_datab[H02] = bitplaneb[H02] = 1000

ref_maskb[H02] = typesb+1[H02] = 0000

ref_datab[H03] = bitplaneb[H03] = 0101

ref_maskb[H03] = typesb+1[H03] = 0000

ref_datab[H10] = bitplaneb[H10] = 0000

ref_maskb[H10] = typesb+1[H10] = 0000

ref_datab[H11] = bitplaneb[H11] = 0000

ref_maskb[H11] = typesb+1[H11] = 0000

ref_datab[H12] = bitplaneb[H12] = 0000

ref_maskb[H12] = typesb+1[H12] = 0000

ref_datab[H13] = bitplaneb[H13] = 0000

ref_maskb[H13] = typesb+1[H13] = 0000

ref_datab[H20] = bitplaneb[H20] = 0011

ref_maskb[H20] = typesb+1[H20] = 0000

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 56

ref_datab[H21] = bitplaneb[H21] = 0000

ref_maskb[H21] = typesb+1[H21] = 0000

ref_datab[H22] = bitplaneb[H22] = 0110

ref_maskb[H22] = typesb+1[H22] = 0000

ref_datab[H23] = bitplaneb[H23] = 0001

ref_maskb[H23] = typesb+1[H23] = 0000

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 57

4. BSMS VERIFICATION AND VALIDATION STRATEGY

The BSMS VHDL design has been extensively verified by RTL simulation using
Vivado Simulation. The existing VHDL code that was developed in 2014 was
used as a golden reference model of BSMS.

On a first level the verification was accomplished with tests on the BSMS code
alone, using three memories, one with random bitplanes, one with random signs
and one with random bit depths, that simulate the segment buffer. Moreover to
verify the correct flow of data at the outputs of the BSMS module, a testbench
with random stalls was developed. That testbench triggered the FIFOs’ full
signals to rise at random times throughout encoding. With the addition of some
logic in the design it was ensured that when a FIFO is full, the design behaves
correctly saving the information to be outputted when the FIFO is ready to
receive it.

And on a second level the submodule was verified with the BSMS being
integrated into the 2D encoder design and tested with real images, using the
output bitstream of the 2D encoder with the exiting BSMS module as a golden
reference. The tests performed on the Bit plane encoder include a significant
amount of test images from the corpus of images [3] available in [6].

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 58

5. EXPERIMENTAL RESULTS

The proposed architecture was implemented targeting the ZC706 Evaluation
Board for the Zynq-7000 XC7Z045 SoC FPGA.

The frequency of 280.9 MHz (period 3.56 ns) was achieved for the BSMS
module and 181.8 MHz (period 5.5 ns) for the 2D Encoder with the new BSMS
module integrated.

The proposed architecture processes 1 sample / cycle, in contrast with the
previous implementation that processes 1 sample / 2 cycles.

Moreover, experimental results are also provided for comparisons with the
previous implementation. The Xilinx Vivado Design Suite tool was used for the
implementation, analysis and simulation.

The detailed implementation statistics including FPGA resources are shown in
Table 5.1.

Table 5.4.1: Implementation statistics targeting XC7Z045 FPGA.

 Used Available Util%

LUTs 1890 218600 0.86
BRAMs 0 545 0.00
Registers 1320 437200 0.30

Comparison in power and timing analysis with the existing work, targeting the
same XC7Z045 SoC FPGA is shown in Table 5.2.

Table 5.4.2: Comparisons with the existing implementation targeting the same XC7Z045 FPGA

 this Thesis Theodorou

Power 0.329 W 0.262 W
Frequency 280.9 MHz 207.2 MHz
Clock Period 3.560 ns 4.825 ns
Clock cycles 2328 4641
Samples/cycle 1 0.5

The power consumption statistics were evaluated using the Xilinx Vivado power
estimator on the post Synthesis design using default environmental settings.
To compare in terms of Clock cycles, the two designs were simulated for a
segment of 128 blocks and 18 bitplanes, assuming in both that the FIFOs, where
the stages’ data are pushed in, are never full.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 59

6. CONCLUSIONS

In this thesis, we have introduced a high performance architecture for the BSMS
module of the Bit Plane Encoder of the CCSDS 122.0B2 Image Data
Compression (IDC) algorithm. The proposed parallel architecture achieves 1
sample/cycle while the deep pipeline enables high clock frequencies.

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

M. Taipliadou 60

REFFERENCES

[1] N. Kranitis, G. Theodorou, A. Tsigkanos, A. Paschalis and R. Vitulli, "An Over 2 Gbps

Reconfigurable FPGA Implementation of CCSDS 122.0-B-1 Image Data Compression," 2014.

[2] N. Kranitis, G. Theodorou, A. Tsiganos, A. Paschalis and R. Vitulli, "A Reconfigurable FPGA

Implementation of CCSDS 122.0-B-1 Image Data Compression for ESA PROBA-3

Coronagraph System Payload," in On-Board Payload Data Compression Workshop (OBPDC

2014), Venice, Italy.

[3] CCSDS, "Image Data Compression, 120.1-G-2, Green Book," 2005.

[4] CCSDS, "Image Data Compression, 122.0-B-2, Blue Book," 2017.

[5] CCSDS, "Spectral Preprocessing Transform for Multispectral and Hyperspectral Image

Compression, 122.1-B-1, Blue book," 2017.

[6] CCSDS, "CCSDS 122 Test Image Set," [Online]. Available: http://cwe.ccsds.org/sls/docs/.

[7] CCSDS, “Image Data Compression, 122.0-B-1, Blue Book,” 2005.

	PREFACE
	1. INTRODUCTION
	2. CCSDS STANDARD OVERVIEW AND RELATED WORK
	2.1 Compressor overview
	2.1.1 Bit Plane Encoder overview
	2.1.1.1 Block Scan and Map to Symbols
	2.1.1.1.1 AC coefficient words coding stages 1-3
	2.1.1.1.2 Mapping words to symbols

	2.2 Related work

	3. PROPOSED ARCHITECTURE
	3.1 Architecture of the BSMS
	3.2 Pipeline architecture
	3.3 Block scan example

	4. BSMS VERIFICATION AND VALIDATION STRATEGY
	5. EXPERIMENTAL RESULTS
	6. CONCLUSIONS

