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ABSTRACT 

 

Remote sensing is recognized as a cornerstone monitoring technology. The 
latest high resolution and high-speed space-borne imagers provide an explosive 
growth in data volume and instrument data rates in the range of several Gbps. 
This competes with the limited on-board storage resources and downlink 
bandwidth, making image data compression a mission-critical on-board 
processing task.  
 
The Consultative Committee for Space Data Systems (CCSDS) issued in 2005 a 
recommended standard for Image Data Compression (IDC) (CCSDS-122.0-B-1) 
which defines a transform-based 2D image data compression algorithm designed 
specifically for use on-board in a space platform or a payload. An extension of 
this standard, CCSDS-122.0-B-2, was issued in 2017 to define all necessary 
modifications to support a recommended standard for Spectral Preprocessing 
Transform for Multispectral and Hyperspectral Image Compression. The new 
issue supports images of higher dynamic range and for larger word sizes. 
Another recommended standard, CCSDS-122.1-B-1, was issued concurrently in 
2017 to define the dedicated spectral preprocessing transforms. 
 
In this master thesis is introduced a new high-performance architecture and 
implementation in FPGA technology for a key-part of the CCSDS-IDC algorithm, 
the submodule of the Bit Plane Encoder which implements the Block Scan and 
Map to Symbols process, hereafter termed BSMS, is described. The proposed 
architecture implementation is based on the standard’s existing parallelism, while 
at the same time introduces new attributes of speed, since it can process one 
data sample per one clock cycle and thus outperforms previous implementations 
that required more clock cycles. 
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ΠΕΡΙΛΗΨΗ 

 

 

Η τηλεπισκόπιση αποτελεί ακρογωνιαίο λίθο των σύγχρονων τεχνολογιών 
παρατήρησης. Τα σύγχρονα διαστημικά οπτικά όργανα απεικόνισης υψηλής 
ανάλυσης και υψηλής ταχύτητας οδηγούν σε εκρηκτική αύξηση του όγκου 
δεδομένων και επιβάλλουν ρυθμούς δεδομένων της τάξης των αρκετών Gbps. 
Αυτό έρχεται σε αντίθεση με τους περιορισμένους πόρους αποθήκευσης 
δεδομένων εν πτήσει και το περιορισμένο εύρος ζώνης κατερχόμενης ζεύξης, 
καθιστώντας την συμπίεση δεδομένων εικόνας μια βασική υποστηρικτική 
τεχνολογία επεξεργασίας δεδομένων εν πτήσει.  
 
Η Συμβουλευτική Επιτροπή για Συστήματα Διαστημικών Δεδομένων (CCSDS) 
εξέδωσε το 2005 ένα συνιστώμενο πρότυπο για τη συμπίεση δεδομένων εικόνας 
(Image Data Compression – IDC) (CCSDS-122.0-B-1), το οποίο ορίζει έναν 
αλγόριθμο συμπίεσης δεδομένων 2D εικόνας που βασίζεται σε μετασχηματισμό, 
σχεδιασμένο ειδικά για χρήση εν πτήσει σε διαστημική πλατφόρμα ή ωφέλιμο 
φορτίο. Μια επέκταση αυτού του προτύπου, CCSDS-122.0-B-2, εκδόθηκε το 
2017 για να οριστούν όλες οι απαραίτητες τροποποιήσεις για την υποστήριξη 
ενός συνιστώμενου προτύπου για τον μετασχηματισμό φασματικής 
προεπεξεργασίας για πολυφασματική και υπερφασματική συμπίεση εικόνας. Η 
δεύτερη έκδοση υποστηρίζει εικόνες υψηλότερου δυναμικού εύρους και για 
μεγαλύτερα μεγέθη λέξεων. Ένα άλλο συνιστώμενο πρότυπο, το CCSDS-122.1-
B-1, εκδόθηκε ταυτόχρονα το 2017 για τον καθορισμό των αποκλειστικών 
φασματικών μετασχηματισμών προεπεξεργασίας.   
 
Στην παρούσα διπλωματική εργασία, εισάγεται μια νέα αρχιτεκτονική υψηλής 
απόδοσης και η αντίστοιχη υλοποίησή της σε τεχνολογία FPGA μίας 
υπομονάδας κλειδί του αλγορίθμου CCSDS-IDC, της υπομονάδας του Bit Plane 
Encoder που πραγματοποιεί τη διαδικασία Block Scan and Map to Symbols, που 
στην συνέχεια θα ονομάζουμε μονάδα BSMS. H νέα υλοποίηση βασίζεται επίσης 
στην εκμετάλλευση της παραλληλίας του προτεινόμενου αλγορίθμου, ενώ 
ταυτόχρονα επιτυγχάνει την επεξεργασία ενός δείγματος δεδομένων ανά κύκλο.  

 

 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ψηφιακή Σχεδίαση, Επιταχυντές υλικού σε FPGA 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Επιταχυντής υλικού, FPGA, VHDL, συμπίεση εικόνας, 

CCSDS, Bit Plane Encoder 
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1. INTRODUCTION 
 

The huge amounts of data generated from latest and future high-resolution, high-
speed imagers in Earth Observation (EO) satellite missions, make image data 
compression one of the most challenging on-board payload data processing 
tasks [1]. On-board data compression is the key to overcome the telemetry rates 
bottleneck and hardware implementation of on-board data compression is the 
key to address the data-rate challenges of today’s and future remote sensing 
payloads. On-board processing of payload data is a challenging task since data-
rates and data volumes produced by remote sensing payloads increase while the 
available downlink bandwidth is comparatively stable [2]. 
Source coding for data compression is a method utilized in data systems to 
reduce the volume of digital data to achieve benefits in areas including, but not 
limited to, 

a) reduction of transmission channel bandwidth 

b) reduction of the buffering and storage requirement 

c) reduction of data-transmission time at a given rate. 

In 2005, the Consultative Committee for Space Data Systems (CCSDS) issued 
the Image Data Compression (IDC) standard CCSDS 122.0-B.1 [3]. CCSDS-IDC 
defines a particular transform-based image data compression algorithm 
applicable to many types of spaceborne instrument payloads. The recommended 
standard provides both lossless and lossy (both rate and quality limited) 
compression, suitable for monoband two-dimensional (2D) images. 
This Recommended Standard addresses image data compression, which is 
applicable to a wide range of space-borne digital data, where the requirement is 
for a scalable data reduction, including the option to use lossy compression, 
which allows some loss of fidelity in the process of data compression and 
decompression and provides a compression method that ensures that the 
distortion in the reconstructed image does not exceed user-specified limits. 

This Recommended Standard applies to data compression applications of space 
missions anticipating packetized telemetry cross support. In addition, it serves as 
a guideline for the development of compatible CCSDS Agency standards in this 
field, based on good engineering practice. 

The purpose of this Thesis is to go one step further than the existing 
implementation of the established Recommended Standard for the image data 
compression algorithm. The submodule that was implemented for this project can 
be applied for either two-dimensional digital spatial image or and digital three-
dimensional image data from payload instruments, such as multispectral and 
hyperspectral imagers. 
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This thesis is organized as follows: In Chapter 2, a brief description of the 
CCSDSIDC algorithm is presented along with the focus of this thesis, the Bit 
Plane Encoder. Related work is also presented. In Chapter 3, the proposed 
architecture for the BSMS is introduced. The verification and validation strategy 
of the BSMS design is described in Chapter 4. Experimental implementation 
results and comparisons are provided in Chapter 5, while Chapter 6 concludes 
the thesis. 
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2. CCSDS STANDARD OVERVIEW AND RELATED WORK 
 

2.1   Compressor overview 

This work is an implementation of the CCSDS 122.0-B-2 standard for Image 
Data Compression [4]. This standard proposes the Bit Plane Encoder as the 
encoder that precedes the Entropy encoding process. The Bit Plane Encoder can 
be used for both simple (2D) and Multispectral/Hyperspectral (3D) image 
compression.  

The standard for Multispectral/Hyperspectral (3D) image compression extends 
the (two-dimensional) CCSDS Image Data Compression standard by providing 
an effective method of encoding three-dimensional image data. The input to the 
compressor is a three-dimensional image that has signed or unsigned integer 
sample values [5]. The compressed image output from the compressor is an 
encoded bitstream from which an exact or approximate reconstruction of the 
input image can be recovered. 
The compressor consists of two main functional parts, depicted in figure 2.1: a 
spectral transform, and a set of 2D encoders. 

 

Figure 2.1: Block Diagram of the Compressor for 3D Images 

The purpose of the spectral transform is to exploit the similarities between the 
spectral bands of an image, creating a transformed image that it is more 
efficiently compressed by the 2D encoders. Each transformed band is 
independently compressed by a 2D encoder. In practice, an implementation of 
the 2D encoder may be reused multiple times to accomplish this task. Two 
additional minor functional stages are also included, named upshift stage and 
downshift stage, with the purpose of adapting the bit depth before each of the 
two main functional parts. 
The compressed image, consists of a header that encodes image and 
compression parameters followed by a body that is produced by an entropy 
coder, which losslessly encodes the mapped quantizer indices. 
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A standard specifically for multispectral and hyperspectral (three-dimensional) 
lossless image compression has not been developed. Rather than developing a 
new standard, an existing two-dimensional image compression standard is used. 
Candidates include the wavelet-based image compression standards JPEG2000 
and CCSDS 122.0-B-2, and the predictive-based JPEG-LS standard, all of which 
are capable of providing lossless image compression. For this project the 
CCSDS 122.0-B-2 standard was used.  

 

 

Figure 2.2: Block Diagram of the Compressor for 2D Images 

The CCSDS 122.0-B-2 Image Data Compression (CCSDS-IDC) algorithm 
consists of two functional parts: a) a Discrete Wavelet Transform (DWT) that 
performs decorrelation and b) a Bit Plane Encoder (BPE) which encodes the 
decorrelated data [4]. 

 

2.1.1   Bit Plane Encoder overview 

Following the DWT, the Bit Plane Encoder (BPE) processes wavelet coefficients 
in groups of 64 coefficients referred to as blocks. An example of a block is 
illustrated in Figure 2.3 as comprised of shaded pixels. A block loosely 
corresponds to a localized region in the original image. 

 

Figure 2.3: Schematic of Wavelet-Transformed Image 
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Information pertaining to a block of coefficients is jointly encoded by the BPE. A 
block consists of a single coefficient from the LL3 subband, referred to as the DC 
coefficient, and 63 AC coefficients. The AC coefficients in a block are arranged 
into three families,F0,F1 and F2. Figure 2.3 illustrates a single block of coefficients 
and the family structure. 

Each family Fi in the block has one parent coefficient, pi, a set Ci of four children 
coefficients, and a set Gi of sixteen grandchildren coefficients. The grandchildren 
in family Fi are further partitioned into groups numbered j=0,1,2,3, denoted Hij, as 
illustrated in Figure 2.3. This structure is used for jointly encoding information 
pertaining to groups of coefficients in the block. 

A wavelet coefficient is identified by its coordinates within its subband. Thus 
coordinates (r, c) indicate the wavelet coefficient in row r, column c within the 
subband, with the upper left pixel in a subband having coordinates (0,0). 
The DC coefficient for each block is a single coefficient from the LL3 subband. 
The coordinates for the other coefficients in the block can be determined from the 
coordinates of the DC coefficient. For a block with DC coefficient with 
coordinates (r, c) within the LL3 subband, Table 2-1 lists the coordinates for the 
AC coefficients, within their respective subbands of origin. 
 

Table 2.1: Within-Subband Coordinates for Coefficients in a Single Family 

 

Table 2.2: Subband of Origin for AC Coefficients 
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Blocks shall be processed by the Bit Plane Encoder consecutively in the raster 
scan in the order in which their corresponding DC coefficients occur in LL3: row 
by row, each row being processed from left to right. 

A segment is defined as a group of S consecutive blocks. Coding of DWT 
coefficients proceeds segment-by-segment and each segment is coded 
independently of the others.  

A segment of blocks is further partitioned into gaggles. Each gaggle consists of 
16 blocks, except for possibly the last gaggle in a segment, which contains S 
mod 16 blocks when Sis not a multiple of 16. 

An AC coefficient is represented using the binary representation of the 
magnitude of the coefficient, along with a bit indicating the sign when the 
coefficient is nonzero. 

BitDepthAC_Blockm denotes the maximum number of bits needed to specify the 
magnitude of any AC coefficient in the mth block. For each segment, the BPE 
computes BitDepthAC, which denotes the maximum value of BitDepthAC_Blockm 

for the segment. 

The BPE successively encodes bit planes of coefficient magnitudes in a 
segment, inserting AC coefficient sign values at appropriate points in the coded 
segment data stream. Bit plane b consists of the bth bit of the two’s-complement 
integer representation of each DC coefficient, and the bth bit of the binary integer 
representation of the magnitude of each AC coefficient. Here, bit plane index b=0 
corresponds to the least significant bit. The BPE proceeds from most-significant 
bit to least significant bit, thus b decreases from one bit plane to the next, 
beginning with b= BitDepthAC-1, and ending with b=0. 

The structure of a coded segment is shown in Figure 2.4(a). Within a coded 
segment, header information is encoded. Then quantized DC coefficients from 
the blocks are encoded. Then AC bit depths are encoded. Then DWT coefficient 
blocks are encoded, one bit plane at a time, proceeding from the most significant 
to the least significant bit plane. The coding of a single bit plane is performed in 
several stages, and the resulting order of encoded data is illustrated in Figure 
2.4(b). E.g., parent coefficients are coded in stage 1 for all blocks of the segment 
before encoding child coefficients in stage 2. The resulting encoded bit stream 
constitutes an embedded data format that provides progressive transmission. 
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Figure 2.4: Overview of the Structure of a Coded Segment 

The Bit Plane Encoder, for the AC coefficients coding, mainly consists of three 
processes. First the scan of a block takes place which results in a sequence of 
words. The words are generated from the bitplane bits, starting with bitplane 
band proceeds per bitplane until bitplane 0 is reached. Afterwards, these words 
are mapped to variable length binary words, called symbols, according to length. 
Next, a subset of these words is further entropy coded using variable-length 
binary codes, again according to length. The first two processes form the BSMS 
(Block Scan and Map to Symbols).  
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2.1.1.1   Block Scan and Map to Symbols  

Coding of a bit plane is performed in stages numbered 0-4. The coded bits 
produced at the stages for each block are interleaved, as illustrated in Figure 
2.4(b) and Figure 2.5. Thus, a coded bit plane first consists of all the stage 0 bits 
(if any) in the segment, then all of the coded stage 1 bits in the segment, and so 
on, finishing with all of the encoded stage 4 bits in the segment. This produces 
an embedded bit string with information from the highest bit plane of all S blocks 
in the first part of the output bit string followed by information from lower bit 
planes, and allows progressive decoding of the coded string. This improves 
image reconstruction quality when the coded bit sequence is truncated. 

 

Figure 2.5: Coded Bit Plane Structure for a Coded Segment 

Stage 0 for a block consists of at most a single bit, which is simply the bth most 
significant bit of the two’s-complement representation of the DC coefficient. 

The remaining stages (1-4) encode AC coefficient bits. The stage in which bits 
from AC coefficients in a bit plane are coded depends on the type of the AC 
coefficient at the bit plane, which we now define. At bit plane b, the type of an AC 
coefficient x, denoted tb(x), has one of the following values: 

–tb(x) = 0 if |x| < 2b, (x is not due for selection at this bit plane); 

–tb(x) = 1 if 2b≤ |x| < 2b+1, (x is due for selection at this bit plane); 

–tb(x) = 2 if 2b+1≤ |x|, (x has already been selected at a previous bit plane); 

–tb(x) = -1 if b< BitShift(Γ), (x must be zero at this bit plane due to subband 
scaling). 

Here, Γ denotes the subband containing x. Thus, during bit-plane encoding, each 
AC coefficient typically proceeds from type 0 to 1, to 2, to -1. For a set of 
coefficients Ψ, we define tmax(Ψ) as the maximum of the coefficient types in Ψ. 

An AC coefficient x is said to be selected at bit plane b if tb(x) = 1. I.e., the 
‘selection’ of a coefficient marks the first bit plane where a non-zero magnitude 
bit is encoded for the coefficient. Note that tb(x) = 1 if the bth most significant 
magnitude bit of x is equal to ‘1’ and all more significant magnitude bits of x are 
equal to ‘0’. 

The type of a coefficient determines the stage when coding of a coefficient bit 
takes place. When an AC coefficient x is of type 0 or 1 (implying tb+1(x)=0), the bth 
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most significant magnitude bit of x is coded in stages 1-3. Otherwise, the bit is 
included, uncompressed, in stage 4 if x is of type 2, or not encoded at all when x 
is of type -1. 

In stages 1-3 of BPE encoding bit plane b, the bth magnitude bit of each AC 
coefficient x such that tb+1(x)=0 is encoded. The bth magnitude bits of the parent 
coefficients are coded in stage 1, the children in stage 2, and the grandchildren in 
stage 3. Each of these stages also includes coded bits indicating the sign of each 
coefficient x for which tb(x)=1. The coding in stages 1-3 makes use of the family 
structure to group together AC coefficients for entropy coding. 

The coding performed in stages 1-3 for a block consists of two parts. First, a 
sequence of variable length binary words are defined which completely describe 
the bits to be encoded in these stages. Next, a subset of these words are further 
entropy coded. 

Stage 4 of coding consists of the bth magnitude bit of each AC coefficient x with 
tb(x)=2. These bits are included in the coded data stream uncompressed. 

 

2.1.1.1.1   AC coefficient words coding stages 1-3 

The bits encoded in stages 1-3 for a block can be determined by a sequence of 
words, as described below.  

In addition to the sets Ci, Gi, Hij, P is defined as the list of parents in the block:  

P = {p0, p1, p2}. 

The list of descendants in family i, denoted Di, is defined as  

Di = {Ci, Gi}. 

The list of descendants in a block, denoted B, is defined as  

B = {D0,D1,D2}. 

{A, B} denotes the concatenation of the lists A and B. 

A shorthand notation for certain binary words that describe information about bit 
plane b for a list of coefficients Ψ is defined as follows: 

–let typesb[Ψ] denote the binary word consisting of the bth magnitude bit of each 
coefficient x in Ψ such that tb(x) equals 0 or 1. 

–let signsb(Ψ) denote the binary word consisting of the sign bit of each coefficient 
x in Ψ such that tb(x) = 1, with a sign bit of ‘1’ for negative coefficients and ‘0’ for 
nonnegative coefficients. 

–given a list of type values Λ={λ0,λ1,λ2, …, λl}, let tword[Λ] denote the binary word 
consisting of the sequence of type values λi in Λ that are equal to 0 or 1. 

Any of these words can be null (i.e., have length zero). 
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The list P shall be ordered P = {p0,p1,p2}, while the ordering on the lists Ci and Hij 

shall be determined by the order in which their member coefficients’ coordinates 
are listed in Table 2.1. 

The bth magnitude bits for all AC coefficients that are type 0 at bit plane b+1 (i.e., 
not selected before the current bit plane) shall be communicated to the decoder 
by joining them to form binary words associated with each data type (parent, 
child, grandchild): 

–typesb[P] 

–typesb[Ci] for i= 0, 1, 2; and 

–typesb[Hij] for i= 0, 1, 2, j= 0, 1, 2, 3. 

At early bit planes, many sets of coefficients in a block tend to all be of type 0, 
and thus many of these words are initially all zeros. To effectively encode in this 
situation, the BPE shall make use of the following transition words to indicate 
when groups of coefficients at a lower depth are all Type 0: 

–tranB = null, if tranB= 1 at any more significant bit plane, tword[{tmax(B)}], 
otherwise. 

–tranD = tword[{tmax(Di) : i=0,1,2, such that tmax(Di)≠1 in all more significant bit 
planes}]. 

–tranG = tword[{tmax(Gi) : i=0, 1, 2, such that tmax(Di)>0 in current or any more 
significant bit planes }]. 

–tranHi = tword[{tmax(Hi0),tmax(Hi1),tmax(Hi2),tmax(Hi3)}] for i= 0,1,2. 

At bit plane b, the BPE shall use the following sequence of words, generated in 
three stages, to update all of the AC coefficients in the block that were Type 0 at 
the previous bit plane: 

a)Stage 1 (parents): 

typesb[P],signsb[P]. 

b)Stage 2 (children): 

1)tranB 

2)tranD, if tranB≠0 and tmax(B)≠-1 

3)typesb[Ci] and signsb[Ci] for each i such that tmax(Di)>0 in current or any more 

significant bit planes. 

c)Stage 3 (grandchildren): 

If tranB = 0 or tmax(B) = -1, then stage 3 is unnecessary and shall be omitted. 

Otherwise stage 3 consists of: 

1)tranG 

2)tranHi, for each i such that tmax(Gi)≠0, -1 
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3)typesb[Hij] and signsb[Hij] for each i such that tmax(Gi)≠0, -1 and each j such that 
tmax(Hij)≠0, -1. 

All of the words generated in the above stages are variable length (including the 
null word). 

Words typesb[P], typesb[Ci], typesb[Hij], tranD, tranG, tranHi shall be entropy coded, 
i.e., each shall be replaced with a corresponding variable-length codeword, 
whenever such a word has a length of at least 2 bits. 

The sign bit words are not coded further, because AC coefficients are generally 
positive and negative with about equal probability. The tranB word is always, at 
most, one bit in length and is never entropy coded. 

 

Stage 4 Coding 

In stage 4 of coding, the bth magnitude bit of each AC coefficient x with type 
tb(x)=2 shall be included in the output bit stream. 

For each block, the output bit string shall consist of the bth magnitude bit of type 2 
coefficients, in the following order: 

–pi, for each i= 0,1,2 

–members of Ci, for each i= 0,1,2 

–members of Hij, for each i= 0,1,2, and each j= 0,1,2,3. 

Members of the sets Ci and Hij shall be processed in the order listed in Table 2.1. 

No bits shall be coded in stage 4 for AC coefficients x not of type 2 (tb(x) ≠ 2). 

The resulting strings for all blocks in the segment shall be concatenated to 
produce the entire stage 4 output string for the coded segment. 

 

2.1.1.1.2   Mapping words to symbols 

The entropy coding procedure used to encode the words typesb[P], typesb[Ci], 
typesb[Hij], tranD, tranG, tranHi shall be accomplished through the use of variable-
length codes. Words having a length of one bit, and sign-bit words, shall be 
included in the compressed data stream without further coding. Words of length 
greater than one bit shall be coded in the sequence in which they occur within 
each stage with entropy coding. 

Certain bit sequences cannot appear as values for certain words and this fact is 
taken into account in the entropy coding process. For example, tranD can never 
equal 000, because this condition would be inferred from the fact that tranB=0. 
Table 2.3 summarizes the maximum word lengths and impossible values for 
each word that is entropy coded. 
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Table 2.3: Summary of Maximum Word Lengths and Impossible Word Values 

 

 

The process of variable-length coding of these words shall follow a two-step 
process: 

–first, the word values shall be mapped to integer values referred to as symbols 
and then 

–each integer shall be encoded using a variable-length binary codeword. 

Under the mapping, two-bit, three-bit, and four-bit words shall be mapped to 
symbols using table 2.4, 2.5, or 2.6, respectively. 

The mapping process takes into account the fact that certain words can never be 
assigned certain bit sequences, as tabulated in table 2.3 and this is reflected in 
tables 2.5 and 2.6. 

The entropy encoding, which is the second step, follows the outputs of the BSMS 
design, since the BSMS concludes with the mapping to symbols process. 

 

 

Table 2.4: Integer Mapping for Two-Bit Words 
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Table 2.5: Integer Mapping for Three-Bit Words 

 

 

Table 2.6: Integer Mapping for Four-Bit Words 

 

The mappings are intended to produce symbol values in order of decreasing 
frequency. (I.e., the most frequently occurring word is mapped to symbol value 0, 
the next most frequent to 1, etc.) This makes effective coding possible through 
the entropy encoding procedure that follows, because the codewords are 
arranged in order of increasing length. 
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2.2   Related work 

A Reconfigurable FPGA Implementation of CCSDS 122.0-B-1 Image Data 
Compression took place at Digital Systems & Computer Architecture Laboratory 
(DSCAL) on 2014. When the existing implementation took place, the goal was to 
implement the CCSDS’s proposed algorithm for Image Data Compression, with a 
Hardware Description Language, in this case VHDL. Functionality was the main 
requirement and as a result the design was slow in terms of clock frequency.  

The previous implementation was based on an FSMD design. That is a finite-
state machine, which controls the program flow along with the datapath inside 
each state, while performing bitplane processing operations. FSMDs are 
essentially sequential programs in which statements have been scheduled into 
states, thus resulting in more complex state diagrams and more complex design 
altogether.  

In addition to the low clock frequency, the FSMD of this implementation was 
configured in such a way that for each input sample or for each output the design 
needed two clock cycles, thus resulting to a very slow data flow. So a need for a 
faster design occurred. For this thesis a new architecture was developed that 
achieves both clock frequency increase and also the need for just one clock 
cycle for each sample. 

This work was published at the On-Board Payload Data Compression Workshop 
(OBPDC 2014) [1].  
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3. PROPOSED ARCHITECTURE 

3.1   Architecture of the BSMS 

The implementation of the CCSDS 122.0-B-2 proposed algorithm for lossless 
image data compression, that took place in this project is based on a three-
process architecture. There’s one synchronous process, where all the registers 
are defined and two asynchronous processes, one that consists of the word 
generation logic and one for the control signals.  

The components of the BSMS design are a DRAM used as a history table, two 
encoding-mapping modules and one component for the IDs assignment for each 
symbol generated. 

The BSMS module receives its inputs from the Segment Bitplane Buffer. The 
Segment Bitplane Buffer unit implements a transformation of the block-oriented 
data organization of DWT coefficients to a bit plane-oriented data organization 
and provides BPE with a high-performance access to all the bitplanes of a 
segment. The BSMS module fetches an already formatted bitplane for all the S 
blocks of the segment concurrently from the SBB unit in one BRAM access.  

As it is proposed in the standard, there are two different indicators for the number 
of bitplanes that need to be processed. The BitDepthAC and the 
BitDepthAC_blockm. The first refers to the maximum number of bitplanes for the 
whole segment and the second to the maximum number of bitplanes for each 
block. The BSMS module processes one bitplane at a time starting with 
b=BitDepthAC and ending with b=1. It begins with the b=BitDepthAC bitplane for 
the first block of the segment, then moves to the b=BitDepthAC bitplane for the 
second block and continues until the b=BitDepthAC bitplane for the last (S) block 
in the segment. Afterwards it moves on to the next biplane (b=BitDepthAC-1), 
again for all the blocks in the segment, and the procedure ends at bitplane b=1 
and block=S. For every bitplane processed, when the current bitplane b is larger 
than BitDepthAC_blockm, the word generation procedure is omitted, as there is 
nothing to be encoded for the current block.  

Once the bitplane, signs and BitDepthAC_blockm have been obtained from the 
segment buffer, there’s one last thing needed so that the generation of the binary 
words can begin. Due to the sequence described above, in which the bitplanes 
have to be processed, and because of the dependencies that occur from a 
bitplane to the next in the same block, a memory is introduced into the design. 
This memory is necessary so that every time the BSMS moves on to the next 
bitplane, it can have access to all the needed information from the previous 
bitplane for the encoding of the current bitplane for the same block.  

The proposed description for the types and transition words generation is 
translated into gate logic with a mask-based implementation. Next, the words and 
signs along with their corresponding masks go through the encoding and 
mapping components. There is one component for three-bit words (tranD, tranG, 
P) and one for four-bit words (tranH0, tranH1, tranH2, C0, C1, C2, H00, H01, …, 
H23). First a decision is made, according to the corresponding masks, about 
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which bits are useful in the incoming words and then the useful bits are left 
shifted, as most significant bits. This procedure, along with the derivation of the 
word length, again according to mask, is the first step for the encoding process 
with second being the mapping into symbols. The outputs of these components, 
symbols, signs and their lengths, compose accordingly each output stage.  

The length values of the transition and type words are then used as inputs for the 
IDs generation component. There is one component instantiation for two bit 
words, one for three and one for four. The outputs of these components go 
through some combinatorial logic, from which another output of the BSMS is 
derived (QTD_out) every time the end of a gaggle is reached. QTD_out exits the 
BSMS module along with the stages outputs.  

The control part of the design is implemented with a Finite State Machine. The 
need for an FSM design occurred when additional cases where introduced in the 
design to ensure a valid execution. The encoding part of the algorithm is done in 
one state and additional states are used, before and after the encoding, to check 
if the encoding can begin, to catch up with the arrival of valid data at the 
beginning and to insert some needed flags between output data, to denote when 
a whole bitplane has been processed for all the blocks in a segment, in the 
output FIFOs and lastly a state for when the encoding is finished. 

  



Design and Implementation in FPGA Technology  
of a High-Performance Block Scan and Map to Symbols Module  
for CCSDS-122 Image Data Compression 

 

M. Taipliadou   41 
 

The submodule of BSMS was developed to be integrated into the existing 2D 
encoder as a Plug-and-Play module. So the original block’s ports are used. The 
ports’ name and their function are presented in Table 3.1 and the block of the 
BSMS is depicted in Figure 3.1. 

Table 3.1: Ports’ name and function for the BSMS module 

Port Name Port Function 

Inputs 

clk Clock signal 

reset Asynchronous reset 

srst Synchronous reset 

en_AC Enable signal to start encoding  

double_buf Address indicator for Segment buffer 

seg_id Segment ID 

S Number of blocks in current segment 

BitDepthAC Max number of bitplanes in current 
segment 

AC_Bit_depth_out_ram Max number of bitplanes in current 
block 

bp_seg_buff_dout Bitplane data from Segment buffer 

signs_seg_buff_dout Signs data from Segment buffer 

stage1_full, stage2_full, 

stage3_full, stage4_full, QTD_full 

FIFO is full signals from the output 
FIFOs 

Outputs 

bp_seg_buff_addr_bpe Bitplane address for the Segment 
buffer  

signs_seg_buff_addr_bpe Signs address for the Segment buffer 

addr_p_bpe BitDepthAC_Blockm address for the 
Segment Buffer 

stage1out, stage2out, 

stage3out, stage4out, QTD_out 

BSMS outputs 

stage1_we, stage2_we, 

stage3_we, stage4_we, QTD_we 

Write in FIFO signals for the output 
FIFOs 
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Figure 3.1: Block and ports of the BSMS module 

 

3.2   Pipeline architecture  

The first requirement for the new implementation was that the processing of each 
bitplane should be completed in one clock cycle, unlike the existing 
implementation in which the same procedure was done in two clock cycles. That 
was taken into consideration from the beginning of the design development.  

When that was succeeded and the functionality was verified, the next 
requirement was for the clock frequency to increase. This was achieved by 
introducing some pipelining into the design.  

In Figures 3.1 and 3.2 the architecture of the BSMS before the pipelining is 
presented and the architecture of the BSMS after the pipelining is presented in 
Figures 3.3 and 3.4. 
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Figure 3.2: Block Diagram of BSMS design without pipeline (1/2) 

 

 

 

Figure 3.3: Block Diagram of BSMS design without pipeline (2/2) 
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Figure 3.4: Block Diagram of BSMS design with pipeline (1/2) 

 

 

 

Figure 3.5: Block Diagram of BSMS design with pipeline (2/2) 
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3.3   Block scan example 

The encoding that takes place in the BSMS module, concerns only the AC 
coefficients. So, for the Block Scan example below, we assume that the DC 
coefficients are omitted. Lets also assume that the values of the AC coefficients, 
that is parents, children and grandchildren, are the following:  

 
Table 3.2: Coefficient values for block example 

 Parents 

-p0 = -6 

-p1 = 10 

-p2 = 5 

 

 Children 

-C0 = {2, 5, 2, 0} 

-C1 = {3, -5, 0, 0} 

-C2 = {-1, 3, 3, 0} 

 

 Grandchildren 

-G0 = {1, 13, 0, 0, 9, 15, -5, 6, 10, 0, -4, -1, 0, 8, 0, 11} 

-G1 = {0, -1, 6, 3, -2, 0, 0, 4, 1, -3, 4, 1, 0, 0, 0, -7} 

-G2= {0, 1, -11, 13, 7, 5, 0, 1, -2, 9, 11, 1, -4, 0, 0, -8} 

 

       BitDepthAC_Blockm = 4 

 

 

The above values, if put together one by one, with their binary equivalent 
vertically, they form four bitplanes as shown in tables 3.2, 3.3, 3.4, 3.5 below. 
The first row of each bitplane b is the formed bitplane. In the second (yellow) row 
are the previous (b+1) types, that initially are all set to zero, and in the third (red) 
row is the result of the logical OR from the previous two lines, that is the current 
(b) types. 

The next calculations are the ones taking place in the combinational logic right 
before the symbol mapping. 
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Table 3.3: Coefficient and bitplane values for Parents and Children 

  

 

 
Table 3.4: Coefficient and bitplane values for Grandchildren (1/3) 
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Table 3.5: Coefficient and bitplane values for Grandchildren (2/3) 

 

 

 
Table 3.6: Coefficient and bitplane values for Grandchildren (3/3) 

 



Design and Implementation in FPGA Technology  
of a High-Performance Block Scan and Map to Symbols Module  
for CCSDS-122 Image Data Compression 

 

M. Taipliadou   48 
 

 

Bitplane b=4  

typesb =  typesb+1+ bitplaneb 

 

Stage 1 

Mask based implementation of 3-bit words typesb[P] and signsb[P] 

-types3[P] = 010 
-signs3[P] = _0_ 

Initially, typesb+1[P] = 000 

typesb[P] = typesb+1[P] + bitplaneb[P] = 000 + 010 = 010 

types_datab[P] = typesb[P] = 010 

types_maskb[P] = typesb+1[P] = 000 

signs_datab[P] = signsb[P] = 100 

signs_maskb[P] = types_datab[P] • /types_maskb[P] = 010 • 111 = 010 

typesb[P] = types_datab[P] = 010 

 

Stage 2 

Mask based implementation of 1-bit tranBb& 3-bit tranDb 

-tranB3= 1  

Initially, tranBb+1= 0 

tranB_datab= (or typesb[B] ) = 1  

tranB_maskb= tranBb+1= 0 

 

-tranD3= 101  

Initially, tranD0b+1= 0, tranD1b+1= 0, tranD2b+1= 0 

tranD0_datab= (or typesb[D0]) = 1  

tranD1_datab= (or typesb[D1]) = 0  

tranD2_datab= (or typesb[D2]) = 1  

tranD0_maskb= tranD0b+1+ /tranB_datab= 0 • 1 = 0 

tranD1_maskb= tranD1b+1+ /tranB_datab= 0 • 1 = 0 

tranD2_maskb= tranD2b+1+ /tranB_datab= 0 • 1 = 0 

 

Mask based implementation of 4-bit words typesb[Ci] and signsb[Ci] 
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-types3[C0] = 0000 

-signs3[C0] = ____ 

Initially, typesb+1[C0] = 0000 

typesb[C0] = typesb+1[C0] + bitplaneb[C0] = 0000 + 0000 = 0000 

types_datab[C0] = typesb[C0] = 0000 

types_maskb[C0] = typesb+1[C0] + /tranD0b+ /tranBb= 0000 + 0000 + 0000 = 
0000 

signs_datab[C0] = signsb[C0] = 0000 

signs_maskb[C0] = types_datab[C0] • /types_maskb[C0] = 0000 • 1111= 0000 

 

-types3[C1] = ____  
-signs3[C1] = ____ 

Initially, typesb+1[C1] = 0000 
typesb[C1] = typesb+1[C1] + bitplaneb[C1] = 0000 + 0000 = 0000 

types_datab[C1] = typesb[C1] = 0000 
types_maskb[C1] = typesb+1[C1] + /tranD1b+ /tranBb= 0000 + 1111 + 0000 = 
1111 

signs_datab[C1] = signsb[C1] = 0100  
signs_maskb[C1] = types_datab[C1] • /types_maskb[C1] = 0000 • 0000 = 0000 

 

-types3[C2] = 0000 
-signs3[C2] = ____ 

Initially, typesb+1[C2] = 0000 
typesb[C2] = typesb+1[C2] +bitplaneb[C2] = 0000 + 0000 = 0000 

types_datab[C2] = typesb[C2] = 0000 
types_maskb[C2] = typesb+1[C2] + /tranD2b+ /tranBb= 0000 + 0000 + 0000 = 
0000 

signs_datab[C2] = signsb[C2] = 1000 
signs_maskb[C2] = types_datab[C2] • /types_maskb[C2] = 0000 • 1111= 0000 

 

Stage 3 

Mask based implementation of 3-bit tranbG 

-tran3G = 1_1 

Initially, tranG0b+1= 0, tranG1b+1= 0, tranG2b+1= 0 

tranG0_datab= (or typesb[G0]) = 1 

tranG1_datab= (or typesb[G1]) = 0 
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tranG2_datab= (or typesb[G2]) = 1 

tranG0_maskb= tranG0b+1+ /tranD0b+ /tranBb= 0 + 0 + 0 = 0 

tranG1_maskb= tranG1b+1+ /tranD1b+ /tranBb= 0 + 1 + 0 = 1 

tranG2_maskb= tranG2b+1+ /tranD2b+ /tranBb= 0 + 0 + 0 = 0 

 

Mask based implementation of 4-bit tranb[H0] 

-tran3H0= 1111 

Initially, tranH00b+1= 0, tranH01b+1= 0, tranH02b+1= 0, tranH03b+1= 0 

tranH00_datab= (or typesb[H00]) = 1 

tranH01_datab= (or typesb[H01]) = 1 

tranH02_datab= (or typesb[H02]) = 1 

tranH03_datab= (or typesb[H03]) = 1 

tranH00_maskb= tranH00b+1+ /tranG0b+ /tranBb= 0 + 0 + 0 = 0 

tranH01_maskb= tranH01b+1+ /tranG0b+ /tranBb= 0 + 0 + 0 = 0 

tranH02_maskb= tranH02b+1+ /tranG0b+ /tranBb= 0 + 0 + 0 = 0 

tranH03_maskb= tranH03b+1+ /tranG0b+ /tranBb= 0 + 0 + 0 = 0 

 

Mask based implementation of 4-bit tranb[H1] 

-tran3H1= ____ 

Initially, tranH10b+1= 0, tranH11b+1= 0, tranH12b+1= 0, tranH13b+1= 0 

tranH10_datab= (or typesb[H10]) = 0 

tranH11_datab= (or typesb[H11]) = 0 

tranH12_datab= (or typesb[H12]) = 0 

tranH13_datab= (or typesb[H13]) = 0 

tranH10_maskb= tranH10b+1+ /tranG1b+ /tranBb= 0 + 1 + 0 = 1 

tranH11_maskb= tranH11b+1+ /tranG1b+ /tranBb= 0 + 1 + 0 = 1 

tranH12_maskb= tranH12b+1+ /tranG1b+ /tranBb= 0 + 1 + 0 = 1 

tranH13_maskb= tranH13b+1+ /tranG1b+ /tranBb= 0 + 1 + 0 = 1 

 

Mask based implementation of 4-bit tranb[H2] 

-tran3H2= 1011  

Initially, tranH20b+1= 0, tranH21b+1= 0, tranH22b+1= 0, tranH23b+1= 0 

tranH20_datab= (or typesb[H20]) = 1  
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tranH21_datab= (or typesb[H21]) = 0  

tranH22_datab= (or typesb[H22]) = 1 

tranH23_datab= (or typesb[H23]) = 1 

tranH20_maskb= tranH20b+1+ /tranG2b+ /tranBb = 0 + 0 + 0 = 0 

tranH21_maskb= tranH21b+1+ /tranG2b+ /tranBb = 0 + 0 + 0 = 0 

tranH22_maskb= tranH22b+1+ /tranG2b+ /tranBb = 0 + 0 + 0 = 0 

tranH23_maskb= tranH23b+1+ /tranG2b+ /tranBb = 0 + 0 + 0 = 0 

 

Mask based implementation of 4-bit words types[Hij] and signs[Hij] 

-types3[H00] = 0100 

-signs3[H00] = _0__ 

Initially, typesb+1[H00] = 0000 

typesb[H00] = typesb+1[H00] + bitplaneb[H00] = 0000 + 0100 = 0100 

types_datab[H00] = typesb[H00] = 0100 

types_maskb[H00] = typesb+1[H00] + /tranH00b+ /tranBb= 0000+ 0000 + 0000 = 
0000 

signs_datab[H00] = signsb[H00] = 0000 

signs_maskb[H00] = types_datab[H00] • /types_maskb[H00] = 0100• 1111 = 
0100 

 

-types3[H01] = 1100 

-signs3[H01] = 00__ 

Initially, typesb+1[H01] = 0000 

typesb[H01] = typesb+1[H01] + bitplaneb[H01] = 0000 + 1100 = 1100 

types_datab[H01] = typesb[H01] = 1100 

types_maskb[H01] = typesb+1[H01] + /tranH01b+ /tranBb= 0000 + 0000 + 0000 
= 0000 

signs_datab[H01] = signsb[H01] = 0010 

signs_maskb[H01] = types_datab[H01] • /types_maskb[H01] = 1100 • 1111 = 
1100 

 

-types3[H02] = 1000 

-signs3[H02] = 0___ 

Initially, typesb+1[H02] = 0000 
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typesb[H02] = typesb+1[H02] + bitplaneb[H02] = 0000 + 1000 = 1000 

types_datab[H02] = typesb[H02] = 1000 

types_maskb[H02] = typesb+1[H02] + /tranH02b+ /tranBb= 0000 + 0000 + 0000 
= 0000 

signs_datab[H02] = signsb[H02] = 0011 

signs_maskb[H02] = types_datab[H02] • /types_maskb[H02] = 1000 • 1111 = 
1000 

 

-types3[H03] = 0101 

-signs3[H03] = _0_0 

Initially, typesb+1[H03] = 0000 

typesb[H03] = typesb+1[H03] + bitplaneb[H03] = 0000 + 0101 = 0101 

types_datab[H03] = typesb[H03] = 0101 

types_maskb[H03] = typesb +1[H03] + /tranH03b+ /tranBb= 0000 + 0000 + 0000 
= 0000 

signs_datab[H03] = signb[H03] = 0000 

signs_maskb[H03] = types_datab[H03] • /types_maskb[H03] = 0101 • 1111 = 
0101 

 

-types3[H10] = ____ 

-signs3[H10] = ____ 

Initially, typesb+1[H10] = 0000 

typesb[H10] = typesb+1[H10] + bitplaneb[H10] = 0000 + 0000 = 0000 

types_datab[H10] = typesb[H10] = 0000 

types_maskb[H10] = typesb+1[H10] + /tranH10b+ /tranBb= 0000 + 1111 + 0000 
= 1111 

signs_datab[H10] = signsb[H10] = 0100 

signs_maskb[H10] = types_datab[H10] • /types_maskb[H10] = 0000 • 0000 = 
0000 

 

-types3[H11] = ____ 

-signs3[H11] = ____ 

Initially, typesb +1[H11] = 0000 

typesb[H11] = typesb[H11] + bitplaneb[H11] = 0000 + 0000 = 0000 

types_datab[H11] = typesb[H11] = 0000  
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types_maskb[H11] = typesb+1[H11] + /tranH11b+ /tranBb= 0000 + 1111 + 0000 
= 1111 

signs_datab[H11] = signsb[H11] = 1000 

signs_maskb[H11] = types_datab[H11] • /types_maskb[H11] = 0000 • 0000 = 
0000  

 

-types3[H12] = ____ 

-signs3[H12] = ____ 

Initially, typesb +1[H12] = 0000 

typesb[H12] = typesb +1[H12] + bitplaneb[H12] = 0000 + 0000 = 0000 

types_datab[H12] = typesb[H12] = 0000 

types_maskb[H12] = typesb+1[H12] + /tranH12b+ /tranBb= 0000 + 1111 + 0000 
= 1111 

signs_datab[H12] = signsb[H12] = 0100 

signs_maskb[H12] =types_datab[H12] • /types_maskb[H12] = 0000 • 0000 = 
0000 

 

-types3[H13] = ____ 

-signs3[H13] = ____ 

Initially, typesb +1[H13] = 0000 

typesb[H13] = typesb+1[H13] + bitplaneb[H13] = 0000 + 0000 = 0000 

types_datab[H13] = typesb[H13] = 0000  

types_maskb[H13] = typesb+1[H13] + /tranH13b+ /tranBb= 0000 + 1111 + 0000 
= 1111 

signs_datab[H13] = signsb[H13] = 0001 

signs_maskb[H13] = types_datab[H13] • /types_maskb[H13] = 0000 • 0000 = 
0000  

 

-types3[H20] = 0011 

-signs3[H20] = __10 

Initially, typesb +1[H20] = 0000 

typesb[H20] = typesb+1[H20] + bitplaneb[H20] = 0000 + 0011 = 0011 

types_datab[H20] = typesb[H20] = 0011 

types_maskb[H20] = typesb+1[H20] + /tranH20b+ /tranBb= 0000 + 0000 + 0000 
= 0000 
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signs_datab[H20] = signsb[H20] = 0010 

signs_maskb[H20] = types_datab[H20] • /types_maskb[H20] = 0011 • 1111 = 
0011 

 

-types3[H21] = ____ 

-signs3[H21] = ____ 

Initially, typesb +1[H21] = 0000 

typesb[H21] = typesb+1[H21] + bitplaneb[H21] = 0000 + 0000 = 0000 

types_datab[H21] = typesb[H21] = 0000  

types_maskb[H21] = typesb+1[H21] + /tranH21b+ /tranBb= 0000 + 1111 + 0000 
= 1111 

signs_datab[H21] = signh_vb[H21] = 0000 

signs_maskb[H21] = types_datab[H21] • /types_maskb[H21] = 0000 • 0000 = 
0000  

 

-types3[H22] = 0110 

-signs3[H22] = _00_ 

Initially, typesb+1[H22] = 0000 

typesb[H22] = typesb+1[H22] + bitplaneb[H22] = 0000 + 0110 = 0110 

types_datab[H22] = typesb[H22] = 0110 

types_maskb[H22] = typesb+1[H22] + /tranH22b+ /tranBb= 0000 + 0000 + 0000 
= 0000 

signs_datab[H22] = signh_vb[H22] = 1000 

signs_maskb[H22] = types_datab[H22] • /types_maskb[H22] = 0110 • 1111 = 
0110 

 

-types3[H23] = 0001 

-signs3[H23] = ___1 

Initially, typesb+1[H23] = 0000 

typesb[H23] = typesb+1[H23] + bitplaneb[H23] = 0000 + 0001 = 0001 

types_datab[H23] = typesb[H23] = 0001  

types_maskb[H23] = typesb+1[H23] + /tranH23b+ /tranBb= 0000 + 0000 + 0000 
= 0000 

signs_datab[H23] = signh_vb[H23] =1001 
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signs_maskb[H23] = types_datab[H23] • types_maskb[H23] = 0001 • 1111 = 
0001  

 

Stage 4 

Refinement bits: 
-Parents = {}  
-Children = {} 
-Grandchildren = {} 

ref_datab[P] = bitplaneb[P] = 010 

ref_maskb[P] = typesb+1[P] = 000 

ref_datab[C0] = bitplaneb[C0] = 0000 

ref_maskb[C0] = typesb+1[C0] = 0000 

ref_datab[C1] = bitplaneb[C1] = 0000 

ref_maskb[C1] = typesb+1[C1] = 0000 

ref_datab[C2] = bitplaneb[C2] = 0000 

ref_maskb[C2] = typesb+1[C2] = 0000 

ref_datab[H00] = bitplaneb[H00] = 0100 

ref_maskb[H00] = typesb+1[H00] = 0000 

ref_datab[H01] = bitplaneb[H01] = 1100 

ref_maskb[H01] = typesb+1[H01] = 0000 

ref_datab[H02] = bitplaneb[H02] = 1000 

ref_maskb[H02] = typesb+1[H02] = 0000 

ref_datab[H03] = bitplaneb[H03] = 0101 

ref_maskb[H03] = typesb+1[H03] = 0000 

ref_datab[H10] = bitplaneb[H10] = 0000 

ref_maskb[H10] = typesb+1[H10] = 0000 

ref_datab[H11] = bitplaneb[H11] = 0000 

ref_maskb[H11] = typesb+1[H11] = 0000 

ref_datab[H12] = bitplaneb[H12] = 0000 

ref_maskb[H12] = typesb+1[H12] = 0000 

ref_datab[H13] = bitplaneb[H13] = 0000 

ref_maskb[H13] = typesb+1[H13] = 0000 

ref_datab[H20] = bitplaneb[H20] = 0011 

ref_maskb[H20] = typesb+1[H20] = 0000 
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ref_datab[H21] = bitplaneb[H21] = 0000 

ref_maskb[H21] = typesb+1[H21] = 0000 

ref_datab[H22] = bitplaneb[H22] = 0110 

ref_maskb[H22] = typesb+1[H22] = 0000 

ref_datab[H23] = bitplaneb[H23] = 0001 

ref_maskb[H23] = typesb+1[H23] = 0000 
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4. BSMS VERIFICATION AND VALIDATION STRATEGY 

The BSMS VHDL design has been extensively verified by RTL simulation using 
Vivado Simulation. The existing VHDL code that was developed in 2014 was 
used as a golden reference model of BSMS.  

On a first level the verification was accomplished with tests on the BSMS code 
alone, using three memories, one with random bitplanes, one with random signs 
and one with random bit depths, that simulate the segment buffer. Moreover to 
verify the correct flow of data at the outputs of the BSMS module, a testbench 
with random stalls was developed. That testbench triggered the FIFOs’ full 
signals to rise at random times throughout encoding. With the addition of some 
logic in the design it was ensured that when a FIFO is full, the design behaves 
correctly saving the information to be outputted when the FIFO is ready to 
receive it. 

And on a second level the submodule was verified with the BSMS being 
integrated into the 2D encoder design and tested with real images, using the 
output bitstream of the 2D encoder with the exiting BSMS module as a golden 
reference. The tests performed on the Bit plane encoder include a significant 
amount of test images from the corpus of images [3] available in [6]. 
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5. EXPERIMENTAL RESULTS 

The proposed architecture was implemented targeting the ZC706 Evaluation 
Board for the Zynq-7000 XC7Z045 SoC FPGA. 

The frequency of 280.9 MHz (period 3.56 ns) was achieved for the BSMS 
module and 181.8 MHz (period 5.5 ns) for the 2D Encoder with the new BSMS 
module integrated. 

The proposed architecture processes 1 sample / cycle, in contrast with the 
previous implementation that processes 1 sample / 2 cycles. 

Moreover, experimental results are also provided for comparisons with the 
previous implementation. The Xilinx Vivado Design Suite tool was used for the 
implementation, analysis and simulation. 

The detailed implementation statistics including FPGA resources are shown in 
Table 5.1. 
 

Table 5.4.1: Implementation statistics targeting XC7Z045 FPGA. 

 Used Available Util% 

LUTs 1890 218600 0.86 
BRAMs 0 545 0.00 
Registers 1320 437200 0.30 

 
Comparison in power and timing analysis with the existing work, targeting the 
same XC7Z045 SoC FPGA is shown in Table 5.2.  
 

Table 5.4.2: Comparisons with the existing implementation targeting the same XC7Z045 FPGA 

 this Thesis Theodorou 

Power 0.329 W 0.262 W 
Frequency 280.9 MHz 207.2 MHz 
Clock Period 3.560 ns 4.825 ns 
Clock cycles 2328 4641 
Samples/cycle 1 0.5 

 
 
 
The power consumption statistics were evaluated using the Xilinx Vivado power 
estimator on the post Synthesis design using default environmental settings.  
To compare in terms of Clock cycles, the two designs were simulated for a 
segment of 128 blocks and 18 bitplanes, assuming in both that the FIFOs, where 
the stages’ data are pushed in, are never full.   
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6. CONCLUSIONS 

In this thesis, we have introduced a high performance architecture for the BSMS 
module of the Bit Plane Encoder of the CCSDS 122.0B2 Image Data 
Compression (IDC) algorithm. The proposed parallel architecture achieves 1 
sample/cycle while the deep pipeline enables high clock frequencies.  
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