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ABSTRACT

Region-based analysis is fundamental and crucial in many geospatial-related
applications and research themes, such as traffic analysis, human mobility study and
urban planning.The current thesis examines various methods for road segmentation
and structures that can identify the similarities and the morphology of the generated
segments. To achieve these tasks, a research study was conducted for the detection
of possible ways that can lead to a prosperous division. Compared to previous
studies that focus on segmenting the roads trajectories, in this research the
segmentation of roads is supported by tracking the junctions and the variation of
curvature among the roads. Data structures, such as hash tables or sets of objects
were implemented in order to parcel segments out. The basic criteria of road
comparison are stirred up by the application of locality-sensitive hashing and cluster
analysis. Moreover, in the process of segments alignment by translation and rotation,
we designed a set of proposed methods that examine the deviation in their
morphology. Finally, a number of experiments, that retrieve the segments by dividing
the roads and determine the suitable heuristic for each classification, was conducted.
We compared the findings from our experiments and we concluded that the best
results for high-performance roads were achieved when segmentation by junctions
was applied. For low-performance or link roads, the curvature heuristic was the one
that offered the best results.

SUBJECT AREA: Computational geometry, Nearest neighbor search, clustering

KEYWORDS: road segmentation, morphology, junction, curvature, locality-sensitive
hashing, cluster analysis, heuristics
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1. INTRODUCTION

The primary goal of research in computational geometry is to develop efficient
algorithms and data structures for solving problems stated in terms of basic
geometrical objects, such as points, line segments or polygonal curves. Some of
these problems seem so simple that they were not regarded as problems at all until
the advent of computers.

In many geospatial-related applications, such as trip planning, urban planning/urban
computing and traffic analysis, an urban area is often segmented into sub-regions for
in-depth analysis or complexity reduction. In a Geographical Information System
(GIS), there are two major models to represent spatial data: vector-based model and
raster-based model. Vector-based model uses geometric primitives such as points,
lines and polygons to represent spatial objects referenced by Cartesian coordinates,
while raster-based model quantizes an area into small discrete grid-cells (cuboids for
the 3D spatial objects) indexing all the spatial objects. For example, the vector model
of a road network stores a road segment as a polyline (polygone for a circuit road),
where a polyline consists of a sequence of shape points, represented by coordinates.
The representation of roads as sets of points that form polygonal curves, is the basic
concept of this thesis.

Generally, road segmentation is proven a useful approach to represent and compare
map information with various applications, such as traffic analysis and anomaly
detection. What is the most interesting about this thesis is that we can divide roads
into geometrical objects by implementing diverse segmentation rules. We propose
two segmentation methods, that either check the existence of intersections or the
variation of curvature among the roads. In addition, by introducing a formula based
on the morphology and properties of roads, we are able to retrieve uniform and
consistent segments. The experimental setting and evaluation of the road
segmentation problem and the nearest neighbor search were focused on roads that
originate from the map of big cites provided by Open Street Map. The comparison of
the results that each segmentation method provides, through its experiments, is
based on the amount and the attributes of the produced segments.

Open Street Map is a collaborative project to create a free editable map of the world.
that uses a topological data structure, with two core elements (also known as data
primitives). In this thesis, we take advantage of the basic data primitives, nodes and
ways. Specifically, nodes are defined as points with a geographic position, stored as
coordinates (pairs of a latitude and a longitude) according to WGS-84. Outside of
their usage in ways, they represent map features without a size. Also, we can
describe ways as ordered lists of nodes, standing for a poly-line, or a polygon if they
form a closed loop. They are commonly used for representing linear features such
as streets, and areas.

In order to complete this study, we conduct various experiments retrieving the input
map data with the utilization of OSMParser, a collection of Java classes allowing to
parse raw OSM XML files. Usage of this tool is accomplished by declaring and
instantiating a parser object that produces a structure with the map data primitives.
The input data offer information about the geodetic coordinates of each location.
Typically, Open Street Map records points with their latitude and longitude (x/y
coordinates). We can overtake the absence of elevation (height) by implementing a
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client-side application that claims elevation data for each location and by
constructing a method that converts geodetic coordinates to their respective
Cartesian. Both geodetic and Cartesian coordinates have advantages and
disadvantages depending on the specific applications. For instance, Cartesian
coordinates are more powerful for precisely measuring distances, whereas it
requires intensive computation when performing topological analysis. At the other
end of the spectrum, the utilization of geodetic coordinates may cause deviation
between the results. To surpass this limitation, it is inevitable to develop an
application that retrieves elevation data for every map position. The Google Maps
Elevation API provides elevation data for all locations on the surface of the earth.
Accessing the Google Maps Elevation API is accomplished through an HTTP
interface, with requests constructed as a URL string, consisted of a free API key and
the geodetic coordinates (latitude / longitude) that identify the locations or path
vertices.

In a first phase, by applying various segmentation rules, we can divide roads into
multiple segments. We have to point out that we focus on clustering of the road
segments that originate from a topological analysis and their associations, i.e. by
inspecting the existence of intersections. Contrary to our thesis, other studies, up to
the present, dwell on division and clustering of road trajectories. In a second phase,
we study data grouping and proximity search algorithms by executing processes
based on techniques, such as locality-sensitive hashing and cluster analysis.

Hashing is one of the popular solutions for approximate nearest neighbor search. In
general, hashing is an approach of transforming the data item to a low-dimensional
representation, or equivalently a short code consisting of a sequence of bits. The
application of hashing to approximate nearest neighbor search includes two ways:
indexing data items using hash tables that is formed by storing the items with the
same code in a hash bucket, and approximating the distance using the one
computed with short codes. Locality-sensitive hashing is defined as a technique for
grouping objects into 'buckets' based on some distance metric. Objects that are
close to each other under the chosen metric are mapped to the same bucket with
high probability. As each road segment is defined by sets of Cartesian coordinates,
the metric that is applied, is the Euclidean Distance.

Clustering is the unsupervised classification of patterns (observations, data items or
feature vectors) into groups clusters. The clustering problem has been addressed in
many contexts and by researchers in many disciplines; this reflects its broad appeal
and usefulness as one of the steps in exploratory data analysis. However clustering
is a difficult problem combinatorially and differences in assumptions and contexts in
different communities has made the transfer of useful generic concepts and
methodologies slow to occur. Overall, we can define clustering as the task of
grouping a set of objects in such a way that objects in the same group (called
a cluster) are more similar (in some sense) to each other than to those in other
groups. Specifically, the similarity of two objects described by polygonal curves, is
measured by the computation of their discrete Fréchet distance. In addition, we
present two alignment heuristics for matching two polygonal curves with respect to
the Fréchet distance. The problem of alignment two polygonal chains under
translation and rotation to minimize their distance has been studied using various
proposed methods.
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2. BACKGROUND AND RELATED WORK

As we mentioned in the Introduction, road segmentation is proven a useful approach
to represent and compare map information with various applications, such as traffic
analysis and anomaly detection. By applying various segmentation rules, we can
divide roads into segments and achieve significant clustering. In the following
paragraphs of this subsection, we will refer to previous works, which have used the
segmentation of geometrical objects and clustering, in a number of research fields.

To begin with, we would like to highlight the contribution of a unpublished research
conducted by our professors, Ioannis Emiris and Ioannis Chamodrakas. Their study
is focused on clustering of geometrical objects and methods to evaluate their
performance. The idea of implementing road segmentation by topological features
and road associations originates from their research. The organization of the whole
plan and the conduction of the experiments are performed by their guidance and
consultation.

Gonzalez et al. [11] proposes a novel road network partition approach based on the
road hierarchy. Specifically, the road networks are first divided into areas by high
level roads, then the partition process is recursively performed for each area. The
partition process is implemented by finding the strongly connected components after
the removal of the intersection nodes connected to high level roads as well as the
terminals of high level road segments themselves.

In this paper [13], an image-processing-based approach to segment urban areas into
regions by road networks is reported. Each segmented region is bounded by the
high-level road segments, covering some neighborhoods and low-level streets.
Typically, road segments are classified into different levels (e.g., highways and
expressways are usually high-level roads), providing the research with a more
natural and semantic segmentation of urban spaces than the grid-based partition
method. It is shown that through simple morphological operators, an urban road
network can be efficiently segmented into regions. In addition, a case study in
trajectory mining is presented in order to demonstrate the usability of the proposed
segmentation method, that implements dilation. The purpose of the dilation operation
is to remove the unnecessary details for map segmentation, avoiding the small
connected areas induced by these unnecessary details such as bridges and lanes.

Gaffney et al. [14] proposes trajectory clustering algorithm, which mainly focuses on
grouping similar trajectories as a whole. They model a set of trajectories using a
regression mixture model and use EM (Expectation-Maximization) algorithm to
determine the cluster memberships. However, due to the slow convergence of EM
algorithm, applying this algorithm for our problem, online clustering requiring an
instant response, is not appropriate. In our study, we focus on a clustering algorithm
that utilizes road segments described by polygonal curves.



Geometric Road Segmentation and Clustering

D. Konstantakis 11

3. WEB APPLICATION FOR ELEVATION DATA

3.1 Description

For the retrieval of the necessary elevation information, a web application was
developed. This application behaves as a client that connects to a server and sends
HTTP requests. In order to generate the requests, the application needs to parse the
geodetic coordinates of each location from a xml file. The format of the HTTP
request is described in the next section. The web application was developed as a
JAVA class that contains methods that perform the functionality described in the
following section.

3.2 Request format
In order to access the Google Maps Elevation API, we send requests constructed as
a URL string, using latitude/longitude coordinates to identify the locations. Latitude
and longitude coordinate strings are defined using numerals within a comma-
separated text string and must correspond to a valid location on the face of the earth.
Latitudes can take any value between -90 and 90 while longitude values can take
any value between -180 and 180. If an invalid latitude or longitude value is specified,
the request will be rejected as a bad request. Apart from the values of the geodetic
coordinates, the request requires a free API key, provided by Google Maps Elevation
API.

3.3 Functionality

The functions of the web application are presented at the following figure.

Image 1 : The functionality of the web application
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4. COORDINATE SYSTEM

As it was mentioned in the Introduction, Open Street Map uses the WGS-84
coordinate system, as do most GPS units. A coordinate system is a system which
uses one or more numbers, or coordinates, to uniquely determine the position of the
points or other geometric elements on a manifold such as Euclidean space.
Coordinates systems are often used to specify the position of a point, but they may
also be used to specify the position of more complex figures such as lines, planes,
circles or spheres.

4.1 Geographic - Geodetic coordinate system
A geographic coordinate system is a coordinate system used in geography that
enables every location on Earth to be specified by a set of numbers, called geodetic
coordinates. In geodetic coordinates, the Earth's surface is approximated by an
ellipsoid, and locations near the surface are described in terms of latitude, longitude
and height. The Geodetic system uses polar coordinates defined as follows:
Definition of Latitude 4.1.1 Angle north and south of the equator. Positive angles
are in the northern hemisphere, and negative angles are in the southern hemisphere.
The range of angles is -90 degrees (-π/2 radians) to +90 degrees (+π/2 radians).
Points on the equator have a latitude of zero.
Definition of Longitude 4.1.2 Angle east and west of the Prime Meridian. The
Prime Meridian is a north-south line that passes through Greenwich, United Kingdom.
Positive longitudes are to the east of the Prime Meridian, and negative angles are to
the west. The range of angles is -180 degrees (-π radians) to +180 degrees (+π).
Definition of Height 4.1.3 Also called altitude or elevation, this represents the
height above the Earth ellipsoid, measured in meters. The Earth ellipsoid is a
mathematical surface defined by a semi-major axis and a semi-minor axis. The most
common values for these two parameters are defined by the World Geodetic
Standard 1984 (WGS-84). The WGS-84 ellipsoid is intended to correspond to mean
sea level, although in practice the actual mean sea level varies around the world due
to ocean currents, Coriolis effects, and local variations in Earth’s gravitational field. A
Geodetic height of zero therefore roughly corresponds to sea level, with positive
values increasing away from the Earth’s center.

4.2 Definition of Earth-Centered, Earth-Fixed (ECEF) Coordinates

In order to analyze the properties of the ECEF coordinate system, we need to point
out the definition of the Cartesian coordinate system. Generally, a Cartesian
coordinate system specifies the position of any point in three-dimensional space by
three Cartesian coordinates. Choosing this system for a three-dimensional space
means choosing an ordered triplet of lines (axes) that are pair-wise perpendicular,
have a single unit of length for all three axes and have an orientation for each axis.
ECEF is a right-handed Cartesian coordinate system with the origin at the Earth’s
center, and that is fixed with respect to the Earth. The three axis are defined as:
X : Passes through the equator at the Prime Meridian (latitude = 0, longitude = 0).
Y : Passes through the equator 90 degrees east of the Prime Meridian (latitude = 0,
longitude = 90 degrees).
Z : Passes through the North Pole (latitude = 90 degrees, longitude = any value).
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Conversion from Geodetic to ECEF
As it was mentioned in the Introduction, we need to convert the geodetic coordinates
to the respective Cartesian coordinates (ECEF). An algorithm invented by Olson can
accomplish this conversion. The Olson’s algorithm is considered relatively straight
forward, involving only a few calculations. [17]

Definition 4.2.1 Let lat be the latitude and lon be the longitude of a given location
measured in radians, and let alt be the requested elevation. The produced Cartesian
coordinates are x,y and z.

1.   latesearthRadiuN 22 sin1 

2.      lonlataltNx coscos 

3.      lonlataltNy sincos 

4.     latalteNz sin1 2 

Accuracy
Olson’s algorithm is computationally cheap, and unlike some solutions requires no
special treatment at the poles or equator. It is also extremely accurate. In his original
paper Olson ran a large number of points, regularly sampled in latitude and longitude,
and computed the 3D error in meters for each. For the latitude and longitude
measurements, the maximum error for any point was 161044.4  radians. At the
Earth’s surface, this corresponds to a maximum position error of 9108.2  meters.
The maximum elevation error for any point was 81047.4  meters. These errors are
smaller than the wavelength of visible light, which is accurate indeed.

4.3 Conclusion
Both of these coordinate systems have advantages and disadvantages. The
Geodetic system is used for navigation, mapping and GPS applications, and its three
components can be intuitively interpreted as representing north/south, east/west,
and up/down movements respectively. The ECEF system, however, is more
convenient for calculations involving Euclidean geometry and rotation matrices. It is
therefore frequently necessary to convert back and forth between the two systems.

Image 2 : Geodetic Coordinates : latitude(φ), longitude(λ), height(h)
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5. HIGHWAYS

A highway is any public or private road or other public way on land. It is used for
major roads, but also includes other public roads and public tracks. A highway can
be distinguished between three basic categories, high-performance,low-performance
and link roads. The criteria used to classify the highways are based on the properties
and the morphology of roads.

5.1 High-performance roads

Motorway: A controlled-access highway or motorway is a type of highway which
has been designed for high-speed vehicular traffic, with all traffic flow and
ingress/egress regulated.

Trunk: A trunk road, trunk highway, or strategic road is a major road, usually
connecting two or more cities, ports, airports and other places, which is the
recommended route for long-distance and freight traffic.

Primary: Primary roads form the major routes between the major urban centers. It is
considered as a major highway linking large towns.

Secondary: A secondary road is a highway which is not part of a major route, but
nevertheless forming a link in the national route network.

Tertiary: Outside urban areas, tertiary roads are those with low to moderate traffic
which link smaller settlements such as villages or hamlets.

5.2 Low-performance roads

Residential: A residential road is a street or road generally used for local traffic
within settlement. These roads serve as an access to housing, without function of
connecting settlements. Often lined with housing.

Unclassified: Unclassified roads serve for interconnection of small settlements.
Unclassified roads have lower importance in the road network than tertiary roads,
and are not residential streets or agricultural tracks.

Service: A service road is a local road that runs parallel to a motorway or interstate
highway and that provides access to the property bordering it. This is also commonly
used for access to parking, driveways, and alleys.

5.3 Link Roads

A link road is considered as a transport infrastructure road that links two
conurbations or other major road transport facilities, often added because of
increasing road traffic. A link leads to/from a highway (high or low performance)
from/to a highway that belongs to the same or a lower class. For example, a
motorway-link road may lead from a motorway to a primary road.
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6. ROAD SEGMENTATION

Road Segmentation is the process of partitioning a road into multiple segments. The
goal of segmentation is to simplify the task of data grouping and change the content
of a road into something that is more meaningful and easier to analyze or compare.
Generally, road segmentation means to divide roads into parts, or segments that can
be defined as polygonal curves in the three-dimensional space. The result of road
segmentation is a set of segments that collectively cover the entire highway. Each
segment consists of two or more nodes. Each node can be described as a point with
Cartesian coordinates   3,, Rzyx  .

Image 3 : Categories of Roads

In this thesis, we propose two different methods of road segmentation, segmentation
by junction and segmentation by curvature. Both vary in their implementation and
are applied for different categories of highways. The criteria used for the selection of
the most suitable method for each road classification are mostly depended on the
general attributes and morphology of roads.

Image 4 : Road Segmentation Analysis
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6.1 SEGMENTATION BY JUNCTION

Segmentation by Junction is one of the simplest and most widely used type of road
segmentation. Many applications perform segmentation by junction because it is
considered as an efficient way to produce the road segments by checking only the
existence of intersections among the roads. Especially, in populous and industrial
cities with complicated roads network, segmentation by junction can be applied and
may lead to a prosperous and much higher level of division of the roads. The nodes
that constitutes the produced segments do not display many meaningful variations
regarding their content. This fact helps the conduction of the research and prompts
better analysis of the results.

Image 5 : Junctions in a city

Generally, segmentation by junction is applied for roads that are considered as high-
performance. Given a highway as input, the developed application, responsible for
the segmentation of roads, iterates through each of its nodes and checks if there is
an intersection. An intersection (or junction) is occurred when a node is part of two or
more roads simultaneously. Our methodology is based on the rule “After the
validation of an intersection a segment is created”.

By applying the above rule, a problem arises. There is some great possibility that the
generated segments may include insignificant amount of nodes. This problem could
lead to the construction of plentiful segments and the lack of the system’s capability
to manage the numerous objects. In order to regulate the number of the segments, it
is urgent avoiding the generation of small roads that include two or less nodes. In
addition, it is inevitable that some highways may not include any intersections. To
face this possibility, we invent a formula that takes into account the number of the
nodes and the estimated length of the current segment that is under creation.

6.1.1FORMULA

The following section demonstrates a mathematical equation that is used for
regulating the number of the created segments. It involves the application of an
upper bound concerning the number of points that a segment may have and its
approximate maximum length. It was invented through experimental processes and
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various sets of data. Overall, it improves significantly the methods that generate the
results.

This mathematical equation contains two conditions that must be fulfilled
simultaneously in order to construct a new segment. It is applied as an additional
rule to the respective condition used to determine when a segment is generated
(junction existence or curvature variation).

Formula Definition: Let P be the set of points and  be the length of the under
construction segment. Also, let H be the set of points of the highway which is divided
to the segments,  the mean length of all the highways that belong to the same
category and ρ a minor positive number (e.x. ρ = 8). The formula is:

      andHHP 1

6.1.2Segmentation by Junction - Algorithms

In this paper a set of road segmentation methods are proposed, that are based on
the segmentation by junction. The proposed methods are independent from the
highway content, so these methods can be used in the segmentation stage of verity
applications. Also, the fact that the developed methods include multiple independent
steps, results in capability of altering each step separately to optimize the overall
performance for specific application.

There are three implementations of the road segmentation method by junction. The
basic difference between the proposed methods is that each one of them alternates
in a unique way the rules that must be validated in order to generate a new segment.

6.1.2.1 Algorithm 1 - Segmentation only by Junction

In this section, a segmentation algorithm is presented that is based on the model of
intersections among the roads. The proposed algorithm has five main steps. To
distinguish between the other two algorithms, in the proposed segmentation method,
a segment is generated when a junction is detected. There is no other limitation
regarding the conditions that affects the construction of a new segment.

Description: Given a highway as an argument, we want to generate a number of
segments. The highway contains a set of Points  npppP ,,, 21  in R3. Each
point ip is defined by the Cartesian coordinates that were generated by the
respective geodetic. Every created segment includes a list of segment points S ,
populated by points of the set P .

Algorithm

1. Define a list of segment points S . If the number of points for the highway is
equal to zero, exit.
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2. Iterate through the list of points  npppP ,,, 21  . For each iteration, store the
current point ip .
3. Add the current point ip to the set S .
4. If there is a junction that includes the current point ip , create a new segment
using the set S . After the successful generation of the segment, clear S and initialize
it by adding point ip . Skip to the next iteration.

5. If ip is the last point  ni  , create a new segment using S and exit.

6.1.2.2 Algorithm 2 - Segmentation by Junction - Previous Point Inspection

In this section, a second segmentation algorithm is presented that is based on the
model of junctions among the highways combined with an additional inspection. The
proposed algorithm has six main steps. To differentiate between this proposed
method and the one described in the previous section, we proceed to the following
acceptance: the junctions are chosen when a segment point belongs to two or more
highways and at the same time, the previous segment point must not be part of
another intersection. This limitation is used to reduce the quantity of generated
segments consisted of insufficient number of points.

Description : As described in the algorithm for the first proposed method, a highway
is given as an argument. The purpose is to generate a number of segments. A
highway is defined as a polygonal curve that contains a set of Points

 npppP ,,, 21  in R3. Each point ip is defined by the Cartesian coordinates that
were generated by the respective geodetic. Every created segment includes a list of
segment points S , populated by points of the set P . Also, a Boolean variable
named junction-found containing the information that the previous point belongs or
not to an intersection.

Algorithm

1. Define a list of segment points S . If the number of points for the highway is
equal to zero, exit.
2. Iterate through the list of points  npppP ,,, 21  . For each iteration, store the
current point ip and the previous point 1ip . If i = 0, the value of the previous point is
equal to null.
3. This step is used only for the first point of the list. Check the value of the
previous point 1ip . If it is not initialized (equal to null), instantiate the set of Segment
Points S and populate it by ip .Set the value of the Boolean variable junction-found
as false. Skip to the next iteration.

4. Add the current point ip to the set S .

5. Check if the current point ip is the last point of the list  ni  . If so, create a
segment using the set S and exit.
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6. If there is a junction that includes the current point ip and at the same time the
previous point 1ip is not part of an intersection, a new segment is generated. For this
purpose, create a new segment by using the set S . Clear S and initialize it with ip .
Set the value of the Boolean variable junction-found as true.
Skip to the next iteration.

6.1.2.3 Algorithm 3 - Segmentation by Junction combined with Previous Point
inspection - Application of Formula

In the last section, a segmentation algorithm is discussed, that is based on the
model of algorithm 6.1.2.2 combined with the utilization of the mathematical formula
described in section 6.1.1. The principal difference between the two methods is that
in this proposed algorithm, the junctions are not only chosen when a segment point
belongs to two or more highways and concurrently the previous segment point is not
part of an intersection, but also when some supplemental conditions are verified.
These conditions are introduced by the mathematical formula.

The addition of this formula to the basic rules of segment generation aims to confine
the possibility of not finding any intersections among the highways. Apart from
avoiding consecutive intersections points, the modified rules take into account the
number of points P and the current length estimated for the under construction
segment. Overall, It is very useful for roads with no junctions.

Algorithm
The steps 1 to 5 are the same as the proposed method 6.1.2.2. The last step is
formed as:

6. If there is a junction that includes the current point pi and at the same time the
previous point 1ip is not part of a junction, a new segment is produced. Moreover, if
the above condition is not verified, then the number of points that are included in the
set S of the under construction segment, combined with their mean length, are taken
into consideration. A verification of the previous conditions leads to the creation of a
new segment. After a segment has been constructed, clear the set S and initialize it
with ip . Set the value of the Boolean variable junction-found as true.

Skip to the next iteration.

6.1.2.4 Charts

The following charts were produced by executing the road segmentation application.
The sample that has been used, is a map of the city of Athens. This experiment
focuses on the generation of segments for the high and low-performance roads, by
applying each time a different algorithmic approach related to the segmentation by
junction. The charts display the properties of the created segments and how these
attributes are configured, depended on the corresponding method.
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Number of Segments

The first bar chart illustrates the number of segments generated by the three
methods. Overall, it is clear that the total amount of segments created by the method
11 has the greatest value. It is an expected result, because this method does not
take into consideration any other limitation apart from checking for intersections. On
the contrary, the other two methods lead to a lower number of segments, because
they validate the construction of a new segment by using more conditions, such as
inspecting the properties of the previous checked point or utilizing an upper bound in
respect to the amount of points and the maximum road length for each segment.

Mean length per Segment

1 Algorithm 1 - Segmentation only by Junction
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The second bar chart displays the average road length in meters for each segment.
We understand that the approximate distance of the segments generated by method
1 is smaller than the respective length of the segments created by the other methods
due to the fact the a new segment is produced when a junction is found. It is obvious
that method 22, which additionally inspects the previous point and its participation in
intersections, leads to a higher average road length per segment.

Finally, as it was mentioned, Method 33 utilizes the invented formula. We expected
that the estimated mean road length for the generated segments would be lower
than the mean length of the highways of a certain classification. That justifies the
reason why method 3 displays a slightly lower average road length compared to the
second algorithm.

Average number of points per Segment

The above bar chart illustrates the average number of nodes per segment. The
outcome is that method 1 results in a minimum number of points per segment. In the
opposite direction, the fact that methods 2 and 3 use an extra rule involving the
previous point, results in the usage of more nodes for the creation of a new segment.
Method 3 displays a lower value than method 2, because the third method applies,
additionally to the inspection for junctions for the previous point, an upper bound
concerning the maximum number of the points and the maximum road length.

It follows the execution time diagram for each of the methods (in seconds). The
algorithm we created for the first segmentation method performs the steps for the
construction of segments more times compared to the other two methods.

2 Algorithm 2 - Segmentation by Junction - Previous Point Inspection
3 Algorithm 3 - Segmentation by Junction combined with Previous Point inspection -

Application of Formula
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Execution time

6.2 SEGMENTATION BY CURVATURE

Segmentation by curvature is another type of road segmentation. It is considered as
an efficient way to produce the road segments by detecting the variation of curvature
among a highway. Generally, road curves are regular bends in roads to bring a
gradual change of direction.

Definition of Curvature4 : The "curvature" of a way is determined by iterating over
every set of three points in the line. Each set of three points forms a triangle and that
triangle has a circumcircle whose radius corresponds to the radius of the curve for
that set. Since every line segment (between two points) is part of two separate
triangles, the radius of the curve at that segment is considered to be the smaller,
larger, or average of the radii for its member sets. For the purpose of this research,
the radius of the curve is equal to the mean radius.

Generally, segmentation by curvature is applied for roads that are classified as link
roads or service roads. Given a highway as an argument, the system iterates
through each of its nodes and creates the line segments. A set of nodes can
produce a set of triangles. Each triangle consists of three consecutive nodes. After
the validation of a significant difference in consecutive points’ curvature, a segment
is generated. During the conduction of the experiments, it is inevitable that some
highways may not include any variation in curvature. To face this possibility and in
order to create uniform polygonal curves, the formula that takes into account the
number of nodes and the estimated mean length, is applied.

The construction of a segment is achieved when the estimated curvature of the
current line segment has a greater value than the minimal curvature, computed by
the line segments that are already used to create the current segment. In general
terms, we utilize the rate of change concerning the highway curvature. To reduce the
number of the generated segments, a similar algorithmic approach that involves the
formula used in the segmentation by junction section, is applied.

4 Definition of Curvature by Adam Franco [5]
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Image 6 : Definition of curvature

6.2.1Segmentation by Curvature - Algorithms

In this thesis, we propose another set of road segmentation methods, based on the
segmentation by curvature. The proposed methods are also independent from the
highway content, so they can be used at the segmentation stage of verity
applications. There are two implementations of the road segmentation method by
curvature. The basic difference between the two proposed methods is that each one
of them alternates in a unique way the rules that must be validated in order to
generate a new segment.

6.2.1.1 Algorithm 1 - Segmentation by Curvature

In this section, a segmentation algorithm is presented that is based on the model of
curvature variation between the segments. The proposed algorithm has six main
steps. In the proposed segmentation method, the generation of the segments is only
depends on the variation of curvature among the highway. No other condition is
taken into consideration.

Description Given a highway, we want to create a number of segments. A highway
contains a set of Points  npppP ,,, 21  in R3 and it is defined by Cartesian
coordinates generated by the respective geodetic. Every created segment includes a
list of segment points S, populated by points of set P. Also, let L be the set of the
line segments produced by the highway. The variable min-curvature stores the value
of the minimum curvature of the under construction segment.

Algorithm
1. Define a list of line segments L . Call the Line Segments function that returns

a list with the line segments of a given highway segment. If the set of Points contains
less than three nodes, generate a segment and exit.
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2. Iterate through the list of line segments L .For each iteration, store the
previous line segment.

3. This step is used only for the first line segment. Check if the previous line
segment has been initialized. If it is null, then instantiate the set S , populate it by the
current line segment’s points, set the value of the variable min-curvature equal to the
current line segment curvature and compute the current distance using euclidean
distance. Skip to the next iteration.

4. Check if the current line segment is the last. Then insert the second point of
the current line segment into the set S , set the value of min-curvature equal to the
minimal of min-curvature and current line segment curvature. Create a new segment
using the set S, add it to the list and exit.

5. If the curvature of the current line segment displays a high augmentation in
comparison with the minimum computed curvature, a new segment is generated. For
this purpose, create a new segment by using the set S . Clear the set S and initialize
it with ip . Skip to the next iteration.

6. At the end of each iteration, if none of the above steps (3 to 5) is verified,
then add the second point of the current line segment at the list and then update the
min-curvature.

6.2.1.2 Algorithm 2 - Segmentation by Curvature - Formula

In the second section, another segmentation algorithm is presented and is depended
on the model of curvature variation among the segments. The proposed algorithm
has also six basic steps. The main difference between this method and the first
proposed algorithm, is that at the last step, the conditions that generate the
segments are enhanced by the invented formula.

Description Given a highway, we want to create a number of segments. A highway
contains a set of Points  npppP ,,, 21  in R3 and it is defined by the Cartesian
coordinates generated by the respective geodetic. Every created segment includes a
list of segment points S , populated by points of the set P. Also, let L be the set of
the line segments produced by the highway. The variable min-curvature stores the
value of the minimum curvature of the under construction segment. Also, the
variable current_distance is responsible for saving the estimated distance.

Algorithm
1. Define a list of line segments L. Call the Line Segments function that returns

a list with the line segments of a given highway segment. If the set of Points contains
fewer than three nodes, generate a new segment and exit.

2. Iterate through the list of line segments. For each iteration, store the previous
line segment.

3. This step is used only for the first line segment. Check if the previous line
segment has been initialized. If it is null, then instantiate the set of Segment Points
S , populate it by the current line segment’s points, set the value of the variable min-
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curvature equal to the current line segment curvature and compute the current
distance using euclidean distance. Skip to the next iteration.

4. Check if the current line segment is the last. Then insert the second point of
the current line segment into the set S , set the value of min-curvature equal to the
minimal of min-curvature and current line segment curvature. Create a new segment
using the set S , add it to the list and exit.

5. If the curvature of the current line segment has a greater value compared to
the minimum computed curvature, a new segment is generated. If the above
condition is not verified, then the number of points that are included in the set S,
combined with the road mean length, are taken into account. The validation of either
rule, leads to the creation of a new segment. Clear the set S and initialize it with ip .
Skip to the next iteration.

6. At the end of each iteration, if none of the above steps (3 to 5) is verified,
then add the second point of the current line segment at the list and then update the
values of min-curvature and current distance.

6.2.1.3 Charts

The following charts have been generated by executing the road segmentation
application. The same sample has been used. This experiment focuses on the
generation of segments for the high and low-performance roads, by applying each
time a different algorithmic approach related to the segmentation by curvature. The
charts display the properties of the created segments and how these attributes are
configured depended on the corresponding method.

Number of generated segments

The first bar chart illustrates the number of segments that were generated by the two
methods. Overall, the second method leads to a greater number of segments,
because it validates the construction of a segment by utilizing an upper bound in
respect to the number of points and the mean road length. On the contrary the
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method 15 generates fewer segments, because it does not take into consideration
any other limitation apart from checking for variation in curvature.

Mean length per segment

The second bar chart displays the average road length in meters for each segment.
It can be seen that the approximate distance of the segments generated by the
second method is smaller than the respective value of the segments created by
method 1. Method 2 6 displays the lowest value, because it applies the formula.

Average number of points per segment

The above bar chart illustrates the average number of nodes per segment. We
expected that the first method leads to a higher number of points and on the contrary,
method 2 has a lower value than method 1, because it inspects additionally to the

5 Algorithm 1 - Segmentation by Curvature
6 Algorithm 2 - Segmentation by Curvature - Formula
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curvature variance, the maximum number of the points and the maximum road
length.

Execution time

6.2.1.4 Line Segments Generation Algorithm

The line segment generation algorithm is used by the segmentation methods by
curvature.

Definition: In real or complex vector spaces, if V is a vector space over CorR ,
and L is a subset of V, then L is a line segment if L can be parameterized as :

  1,0|  ttvuL , for some vectors Vvu , in which case the vectors u
and u + v are called the end points of L.

Description : Given a segment that contains a set of Points  npppP ,,, 21  in
R3 defined by the Cartesian coordinates generated by the geodetic, we want to
produce a list with the line segments L.

Algorithm

1. Create each triangle as a set of three consecutive points. The number of the
triangles is equal to  2n . Variable n is defined as the number of the points and is
greater than 3. If a highway segment includes less than three points (and of course
more than 2), then return a line segment with curvature equals to zero.

2. For each triangle, compute its curvature. Each set of three points forms a
triangle and that triangle has a circumcircle whose radius corresponds to the radius
of the curve for that set. Estimation of curvature requires the calculation of the three
sides (a, b and c) and the radius of the circumcircle as the division of the sides’
product  cba  by :
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       cbabaccabcba 

Image 7 : Definition of Circumcircle

The circumcenter is the point where the perpendicular bisectors of a triangle intersect.
The circumcenter is also the center of the triangle's circumcircle - the circle that passes

through all three of the triangle's vertices.

3. Iterate over each triangle and generate a line segment created by the two
first points of the triangle. Since every line segment (between two points) is part of
two separate triangles, the radius of the curve at that segment is considered to be
the average of the radius for its member sets. Add the generated line segments to
the list.

6.3 Choosing the suitable segmentation method

In order to determine which segmentation method is suitable and effective for each
road classification, we conducted an experiment. For this experiment, we assume
that the amount of the generated segments for each road category is depended on
the properties of the highway, combined with the respective utilization of the
proposed segmentation methods.

To confirm the previous assumption, we run the application by executing the two
segmentation methods for some road classifications. We choose the road sample
from the following categories: primary, secondary, tertiary, residential, links roads
and motorways. The first bar charts demonstrates the number of the highways used
for each category. The last two display how the number of segments fluctuates
regarding the method that is applied.

For the roads that are considered low-performance, i.e. residential, segmentation by
junction shows significant difference in the total amount of the constructed segments.
This is an expected outcome, caused by the great number of intersections. At the
other end of the spectrum, the link roads are divided more effectively when the
segmentation by curvature is applied, due to the fact that the existed intersections
are less. For the high-performance roads, both methods display similar behavior.
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Highways per Road Classification

Segmentation By Junction and By Curvature, Segments

Segmentation By Junction and By Curvature, Segments
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7. NEAREST NEIGHBOR

7.1 Nearest neighbor search

Nearest neighbor search (NNS), as a form of proximity search, is the optimization
problem of finding the point in a given set that is closest (or most similar) to a given
point. Closeness is typically expressed in terms of a dissimilarity function: the less
similar the objects, the larger the function values.

Formally, the nearest-neighbor (NN) search problem is defined as follows: given a
set S of points in a space M and a query point Mq , find the closest point in S to q.
A direct generalization of this problem is a k-NN search, where we need to find
the k closest points. Most commonly M is a metric space and dissimilarity is
expressed as a distance metric, which is symmetric and satisfies the triangle
inequality. Even more common, M is taken to be the d-dimensional vector space
where dissimilarity is measured using the Euclidean distance.

Various solutions to the NNS problem have been proposed. The quality and
usefulness of the algorithms are determined by the time complexity of queries as
well as the space complexity of any search data structures that must be maintained.
The informal observation usually referred to as the curse of dimensionality states
that there is no general-purpose exact solution for NNS in high-dimensional
Euclidean space using polynomial preprocessing and polylogarithmic search time. In
this thesis, we study two parallel approximation methods, locality-sensitive hashing
and clustering.

7.2 Euclidean Metric Space

A metric or distance function is a function that defines a distance between each pair
of elements of a set. A set with a metric is called a metric space. A metric induces a
topology on a set, but not all topologies can be generated by a metric. A topological
space whose topology can be described by a metric is called metrizable.
In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" straight-
line distance between two points in Euclidean space. With this distance, Euclidean
space becomes a metric space.

Definition 7.2.1 The Euclidean distance between points p and q is the length of the
line segment connecting them. In Cartesian coordinates, if  npppp ,,, 21  and

 nqqqq ,,, 21  are two points in Euclidean n-space, then the distance  d from
p to q , or from q to p is given by the Pythagorean formula:

         22
22

2
11,, nn qpqpqppqdqpd  
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https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Straight_line
https://en.wikipedia.org/wiki/Straight_line
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8. LOCALITY-SENSITIVE HASHING

Hashing is one of the popular solutions for approximate nearest neighbor search. In
general, hashing is an approach of transforming the data item to a low-dimensional
representation, or equivalently a short code consisting of a sequence of bits. The
application of hashing to approximate nearest neighbor search includes two ways:
indexing data items using hash tables that is formed by storing the items with the
same code in a hash bucket, and approximating the distance using the one
computed with short codes.

An approximation algorithm is allowed to return a point, whose distance from the
query is at most c times the distance from the query to its nearest points. The appeal
of this approach is that, in many cases, an approximate nearest neighbor is almost
as good as the exact one. In particular, if the distance measure accurately captures
the notion of user quality, then small differences in the distance should not matter.
Hashing-based approximate nearest neighbor search algorithms generally use one
main hashing method: a data-independent method, named as locality-sensitive
hashing (LSH).

Locality sensitive hashing (LSH) is a technique for grouping points in space into
'buckets' based on some distance metric operating on the points. Points that are
close to each other under the chosen metric are mapped to the same bucket with
high probability. Locality-sensitive hashing hashes input items so that similar items
map to the same “buckets” with high probability. In general, LSH reduces the
dimensionality of high-dimensional data and differs from conventional and
cryptographic hash functions because it aims to maximize the probability of a
“collision” for similar items. Locality-sensitive hashing has much in common with data
clustering and nearest neighbor search.

8.1 LSH Family

Definition 8.1.1 An LSH family F is defined for metric space  dMM , , a threshold
R > 0 and an approximation factor c > 1. This family F is a group of functions

SMh : which map elements from the euclidean metric space to a bucket Ss .

The LSH family satisfies the following conditions for any two points Mqp , , using
a function h ∈ F which is chosen uniformly at random:

 If   Rqpd , ,then    qhph  (i.e.,p and q collide) with probability at least P1,
 If   cRqpd , ,then    qhph  with probability at least P2,

Alternatively it is defined with respect to a universe of items U that have a similarity
function  1,0: UU .

An LSH scheme is a family of hash functions H coupled with a probability
distribution D over the functions such that a function Hh chosen according
to D satisfies the property that       babhahHh ,Pr  for any Uba , .
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8.2 LSH algorithm for nearest neighbor search

Definition 8.2.1 One of the main applications of LSH is to provide a method for
efficient approximate nearest neighbor search algorithms. Consider an LSH family F.
The algorithm has two main parameters: the width parameter k and the number of
hash tables L.

1. We define a new family G of hash functions g ,where each function g is
obtained by concatenating k functions khh ,,1  from F,       .,,1 phphpg k
A random hash function g is obtained by concatenating k randomly chosen hash
functions from F. The algorithm then constructs L hash tables, each corresponding
to a different randomly chosen hash function g .

2. In the preprocessing step we hash all n points from the data S into each of
the L hash tables. Given that the resulting hash tables have only n non-zero entries,
one can reduce the amount of memory used per each hash table to  nO using
standard hash functions.

3. Given a query point q, the algorithm iterates over L hash functions g . For
each g considered, it retrieves the data points that are hashed into the same bucket
as q. The process is stopped as soon as a point within distance cR from q is found.

Performance : Given the parameters k and L, the algorithm has the following
performance guarantees:

 preprocessing time: )(nLktO , where t is the time to evaluate a function f ∈ F
on an input point p;

 space:  LnO , plus the space for storing data points;

 query time:   kdnPktLO 2 ;

 the algorithm succeeds in finding a point within distance cR from q (if there

exists a point within distance R) with probability at least  LkP111  .

For a fixed approximation ratio 1c and probabilities P1 and P2, one can

2

1

2 log
log,

1log
log

P
PwherenL

P
nkset  

Then one obtains the following performance guarantees:

 preprocessing time:  ktnO p1 ;

 space:  pnO 1 plus the space for storing data points;

 query time:   dktnO p  ;
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8.3 Grid Curve

8.3.1Linear approximation factor

The basic LSH has an approximation factor that is linear in the number of vertices
that a curve can have.

Definition 8.3.1.1 We use a randomly shifted grid in our hashing scheme. Let the
canonical d-dimensional grid of resolution δ be defined as an evenly spaced point
set in Rd , as follows:

    jxNjdiRxxG i
d

d :1|,,1 
Consider a family of such grids parametrized by a shift t:

}|{ˆ
 GptpG t 

Definition 8.3.1.2 Choosing t uniformly at random from the half-open hyper-cube
d),0[  we obtain a family of randomly shifted grids. Let dP  be a polygonal curve

with vertices mppp  ,,, 21 and let ddth : be a hash function.

The curve  Pht is defined as the result of the following two-stage construction.

1. We snap the curve to the grid tG 
ˆ . More precisely, we replace each vertex pi with

its closest grid point iiGqi qpp t 
 
ˆminarg to obtain the curve P .

2. We remove consecutive duplicates in P . That is, we remove the vertex ip if it
is identical to 1ip .

Definition 8.3.1.3 Let LH be the family of hash functions th constructed this way.

The value of th (P) is the resulting polygonal curve. The resulting LSH family is

  dR
tL thH ],0[|   .

Lemma 8.3.1.4 Let dQP , be two curves with m1 and m2 points, respectively,

and let  21,min mm . For any δ > 0, it holds that

.),(21))()((Pr 





 




QPddmQhPh Ftt
H L [8]

Lemma 8.3.1.5 For any value of δ and for any P, Q ∈ Δd , if there exists a value of
t∈[0,δ)d such    QhPh tt

  , then it holds that  dQPdF ),( .

             dQQhdQhPhdPPhdQPd t
F

tt
F

t
FF ,,,),( [8]
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Theorem 8.3.1.6 [8] Let P,Q be two polygonal curves with m1 and m2 points,
respectively,  21 ,min mm , and let rd 4 and .4 23 dc 

For r > 0, it holds that:

 If   rQPdF , , then      21Pr  QhPh tt
 ,

 If   crQPdF , , then      0Pr  QhPh tt


Proof. The first claim follows by plugging in the bounds of Lemma 1:

        
2
1

2
,1,21Pr 






 

r
QPdQPddmQhPh FFtt



On the other hand, the second claim follows from Lemma 2:

     QhPhdmrdrcQPd tt
F   2

3
4,

[8] Hence, no conflicts are observed for very different curves (non-symmetric).

LSH for O(m) approximation

Algorithm

1. Create a grid of size  mr .

2. Random shift of 2),0[  .

3. Snap the curve on the grid and remove consecutive duplicates.
4. The signature is given by the remaining points.
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Collision of near curves : Two near curves collide with some probability

Collision of far curves : Two far curves never collide

8.4 Experiment - Locality Sensitive Hashing

The following charts are produced by the conduction of an experiment aiming at
hashing the generated segments. The charts display the number of segments for
each bucket. Specifically, the road samples are distinguished into the following road
classifications, residential, primary and primary-link roads. A general overview of the
results is that there is an uniform distribution of the segments among the buckets.
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Segments per Bucket (Residential)

Segments per Bucket (Primary)

Segments per Bucket (Primary Links)
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9. CLUSTERING

Cluster analysis or clustering is the task of grouping a set of objects in such a way
that objects in the same group (cluster) are more similar to each other than to those
in other groups.It is a main task of exploratory data mining, and a common technique
for statistical data analysis. Clustering is not one specific algorithm, but the general
task to be solved. It can be achieved by various algorithms that differ significantly in
their notion of what constitutes a cluster and how to efficiently find them. [9]

Image 8 : Cluster analysis with k-means on a Gaussian-distribution-based data set.

Clustering can therefore be formulated as a multi-objective optimization problem.
The appropriate clustering algorithm and parameter settings (including parameters
such as the distance function to use, a density threshold or the number of expected
clusters) depend on the individual data set and intended use of the results. Cluster
analysis as such is not an automatic task, but an iterative process of knowledge
discovery or interactive multi-objective optimization that involves trial and failure. It is
often necessary to modify data preprocessing and model parameters until the result
achieves the desired properties.

Clustering can be considered the most important unsupervised learning problem; so,
as every other problem of this kind, it deals with finding a structure in a collection of
unlabeled data. A loose definition of clustering could be “the process of organizing
objects into groups whose members are similar in some way”. A cluster is therefore
a collection of objects which are “similar” between them and are “dissimilar” to the
objects belonging to other clusters.

9.1 Centroid-based clustering

In centroid-based clustering, clusters are represented by a central vector, which may
not necessarily be a member of the data set. When the number of clusters is fixed to
k, k-means clustering gives a formal definition as an optimization problem: find the k

https://en.wikipedia.org/wiki/Knowledge_discovery
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cluster centers and assign the objects to the nearest cluster center, such that the
euclidean distances from the cluster are minimized.

The optimization problem is known to be NP-hard, and thus the common approach is
to search only for approximate solutions. A particularly well known approximate
method is Lloyd's algorithm, often just referred to as "k-means algorithm". It does
however only find a local optimum, and is commonly run multiple times with random
initialization. Variations of k-means often include such optimizations as choosing the
best of multiple runs, but also restricting the centroids to members of the data set (k-
medoids), choosing medians (k-medians clustering) or choosing the initial centers
less randomly (k-means++).

Most k-means-type algorithms require the number of clusters - k - to be specified in
advance, which is considered to be one of the biggest drawbacks of these
algorithms. Furthermore, the algorithms prefer clusters of approximately similar size,
as they will always assign an object to the nearest centroid. This often leads to
incorrectly cut borders of clusters (which is not surprising since the algorithm
optimizes cluster centers, not cluster borders).

In order to define clustering for n objects, and k > 1, it is imperative to divide the
objects into k subsets (clusters) so as to optimize some objective function. Objects in
the same cluster are more "similar" (or closer) to each other than to those in other
clusters. Optimizing an objective function means minimizing the total distance of
cluster points to some center. It is described extensively in a following section.

9.2 Lloyd’s Algorithm

In computer science, Lloyd's algorithm is an algorithm for finding evenly spaced sets
of points in subsets of Euclidean spaces and partitions of these subsets into well-
shaped and uniformly sized convex cells. Like the closely related k-means clustering
algorithm, it repeatedly finds the centroid of each set in the partition and then re-
partitions the input according to which of these centroids is closest. However, Lloyd's
algorithm differs from k-means clustering in that its input is a continuous geometric
region rather than a discrete set of points.

Definition 9.2.1 Algorithm:

1. Initialize k centers randomly (k-means initialization).
2. Assignment: Assign each object to its nearest center.

3. Update: Calculate mean  

T

t ivT 1

1 
of each cluster, make it new center.

4. Repeat the two steps 2 and 3, until there is no change in the assignments.

Performance [7] : The complexity of this algorithm can be described by the following
aspects. At first, for the computation of the each distance and for the updating of the
clusters, the approximate complexity is equal to  ndO . For assignment, it is  nkdO .
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9.3 K-means++ Initialization

The k-means method is a widely used clustering technique that seeks to minimize
the average squared distance between points in the same cluster. Although it offers
no accuracy guarantees, its simplicity and speed are very appealing in practice. By
augmenting k-means with a very simple, randomized seeding technique, we obtain
an algorithm that is  klog -competitive with the optimal clustering. Preliminary
experiments show that our augmentation improves both the speed and the accuracy
of k-means, often quite dramatically.

It is the speed and simplicity of the k-means method that make it appealing, not its
accuracy. Indeed, there are many natural examples for which the algorithm
generates arbitrarily bad clustering. This does not rely on an adversarial placement
of the starting centers, and in particular, it can hold with high probability even if the
centers are chosen uniformly at random from the data points.

Definition 9.3.1 Algorithm : It follows a proposed method [7] that chooses centers
at random from the data points, but weighs the data points according to their
squared distance squared from the closest center already chosen.

(1) Choose a centroid uniformly at random; t ← 1.

(2) ∀ non-centroid point i = 1, . . . , n − t, let D(i) ← min distance to some centroid,
among t chosen centroids.

(3) Choose new centroid: r chosen with probability proportional to D(r)2 :

    .)(
1

22 





tn

i
iDrDrchooseprob

Let t ← t + 1.

(4) Go to (2) until t = k = given #centroids.

Given D(i) > 0, i = 1, . . . , n − t, compute n − t (float) partial sums

    ,,,1,
1

2 tnriDrP
r

i






and store them in an array (or binary tree) P. To avoid the P(r)’s being very
large, we may normalize all D(i)’s by dividing them by maxi D(i).

Pick a uniformly distributed float x ∈ [0, P(n − t)] and return

     rPxrPtnr  1:,,2,1  ,

where P(0) = 0: r chosen with probability proportional to P(r) − P(r − 1)  D(i)2 .
Can find r by binary search in array P.
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9.4 Assignment

In the clustering method, each segment that was generated, may be a centroid or a
part of a cluster. Considering the centroids have been chosen, each of the remaining
segments is assigned to the cluster of the centroid that is the nearest.

9.5 Objective function

Generally, the objective of a linear programming problem is to maximize or to
minimize some numerical value. In the case of clustering, the purpose is to minimize
the total amount of the distances computed for each segment and the centroid of the
cluster it belongs to. [1]

Definition 9.5.1 The clustering algorithm that was described previously, aims at
minimizing an objective function, in this case a squared error function. The objective
function :

  ,
1 1

2

 


k

j

n

i
j

j
i cxJ

where   2

j
j
i cx  is a chosen distance measure between a data point  j

ix and the

cluster center jc , is an indicator of the distance of the n data points from their
respective cluster centers.

9.5.1Update of Objective cost function

Based on the previous section, we can define the objective function as:

     .',,
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For each i store 2nd best centroid c . Centroid m replaced by non-centroid t :

 For i : c(i) = m,
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 For i : c(i)  m,
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The complexity of updating the Objective Function is   dknO  .

Suppose that n objects having p variables each should be grouped into k (k < n)
clusters, where k is assumed to be given. Let us define jth variable of object i as

 pjniX ij ,,1;,,1   .
The Fréchet distance will be used as a dissimilarity measure in this study although
other measures can be adopted.

Algorithm
The proposed algorithm is composed of the following three steps.

1. Select initial centroids.
- The k-means initialization has been chosen.

2. Update centroids.
- Find the medoid of each cluster, which is the object minimizing the total

distance to other objects in its cluster. Generally, The medoid of a set is the object of
the set that minimizes total dissimilarity (distance) to all other objects in the set.

- Update the current centroid in each cluster by replacing with the calculated
medoid.
3. Assign objects to medoids.

- Assign each object to the nearest medoid and obtain the cluster result.
- Calculate the sum of distance from all objects to their medoids. If the sum is

equal to the previous one, then stop the algorithm. Otherwise, go back to the Step 2.

9.6 Evaluation (Silhouette)

Silhouette refers to a method of interpretation and validation of consistency within
clusters of data. The technique provides a succinct graphical representation of how
well each object lies within its cluster.

The silhouette value is a measure of how similar an object is to its own cluster
(cohesion) compared to other clusters (separation). The silhouette ranges from −1 to
+1, where a high value indicates that the object is well matched to its own cluster
and poorly matched to neighboring clusters. If most objects have a high value, then
the clustering configuration is appropriate. If many points have a low or negative
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value, then the clustering configuration may have too many or too few clusters. The
purpose is to achieve evaluation of clustering without reference to objective function.

Internal evaluation considers the given point set and the clusters, produces quality
coefficient for each partition; k may be a parameter. In the sequel we present an
internal evaluation method, known as Silhouette.

Definition 9.6.1 Let k be the number of computed clusters.
For 1 ≤ i ≤ n, a(i) = average distance of i to other objects in same cluster.
Let b(i) = average distance of i to objects in next best (neighbor) cluster, i.e.

cluster of 2nd closest centroid.
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Based on the value of silhouette, we can evaluate how successful the clustering is.
s(i) → 1 : i seems correctly assigned to its cluster;
s(i)  0 : borderline assignment (but not worth to change);
s(i) → −1: i would be better if assigned to next best cluster.

For  is to be close to 1 we require    ibia  . As  ia is a measure of how
dissimilar  ib is to its own cluster, a small value means it is well matched.
Furthermore, a large implies that i is badly matched to its neighboring cluster. Thus
an  is close to one means that the data is appropriately clustered. If  is is close to
negative one, then by the same logic we see that I would be more appropriate if it
was clustered in its neighboring cluster. An  is near zero means that the datum is
on the border of two natural clusters.

The average  is over all data of a cluster is a measure of how tightly grouped all
the data in the cluster are. Thus the average  is over all data of the entire dataset is
a measure of how appropriately the data have been clustered. If there are too many
or too few clusters, as may occur when a poor choice of k is used in the clustering
algorithm (e.g.: k-means), some of the clusters will typically display much narrower
silhouettes than the rest. Thus silhouette plots and averages may be used to
determine the natural number of clusters within a dataset. One can also increase the
likelihood of the silhouette being maximized at the correct number of clusters by re-
scaling the data using feature weights that are cluster specific.
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Segments per Cluster

This chart displays the distribution of segments among the clusters. It was measured
for primary and secondary roads.

Silhouette per Cluster

This chart illustrates the values of silhouette for each cluster. It was measured for
primary and secondary roads.
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9.7 Fréchet Distance

Given two curves in a metric space, the Fréchet distance F between them can be
defined intuitively as follows. We can imagine a man traversing a finite curved path
while walking his dog on a leash, with the dog traversing a separate one. Assuming
that the dog varies her speed to keep as much slack in her leash as possible: the
Fréchet distance between the two curves is the length of the shortest leash sufficient
for both to traverse their separate paths. It is imperative to note that the definition is
symmetric with respect to the two curves and the Fréchet distance would be the
same if the dog was walking her owner.

Image 9 : Discrete Fréchet Distance

The Fréchet distance is a superior measure for the similarity of polygonal curves, but
it is very difficult to handle. The discrete Fréchet distance considers only positions of
the leash where its endpoints are located at vertices of the two polygonal curves and
never in the interior of an edge. This special structure allows the discrete Fréchet
distance to be computed in polynomial time by an easy dynamic programming
algorithm. When the two curves are embedded in a metric space, such as an
Euclidean space, the distance between two points on the curves is most naturally
defined as the length of the shortest path between them.

Definition 9.7.1 Given polygonal curves ,,,,,,,, 221121 mm qqqQpppP  

a traversal    tt jijiT ,,,, 11  is a sequence of pairs of indices referring to a
pairing of vertices from the two curves such that:

1. 2111 ,,1, mjmiji tt 

2.      1,01,0:, 11   kkkkkk jjandiiTji

3.       1:, 11   kkkkkk jjiiTji
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9.7.1Discrete Fréchet Distance (DFD)

The discrete Fréchet distance, also called the coupling distance, is an approximation
of the Fréchet metric for polygonal curves.The discrete Fréchet distance considers
only positions of the leash where its endpoints are located at vertices of the two
polygonal curves and never in the interior of an edge. This special structure allows
the discrete Fréchet distance to be computed in polynomial time by an easy dynamic
programming algorithm. [7]

Definition Let T be the set of possible traversals for curves P and Q . if  is the

Euclidean distance in dR , their DFD (metric)  QPdF , is defined as:

 
  kk

kk
jijiTF qpQPd 

 ,
maxmin,

All traversals (hence the optimal one) start with pair (1, 1) and finishes with pair
 21,mm .The optimal traversal with regards to the Discrete Fréchet Distance for

curves QP, of length 1m and 2m respectively, has length t:

  .,max 2121 mmtmm 

One optimal traversal can be computed by back-propagation from the filled table of
the dynamic programming algorithm for computing the Discrete Fréchet distance.

Algorithm : An effective algorithm that is used to estimate the Discrete Fréchet
Distance  QP

Fd
, for two polygonal curves QP, , with npppP ,,, 21  and

,,,, 21 mqqqQ  follows :

Algorithm  QPdF , : real;

Input:ca : array [1..n, 1..m] of real;
1. begin;
2. if   1, jica then return  jica ,

3. elsif 11  jandi then    11,:, qpdjica 

4. elsif 11  jandi then       1,,,1max, qpdiicjica i

5. elsif 11  jandi then       jqpdjcjica ,,1,1max, 1

6. elsif 11  jandi then

           ji qpdjcjicicjica ,,1,1,1,1,1,1minmax, 

7. else   jica ,
8. return  jica , ;
9. end;
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9.7.2Mean Discrete Fréchet Curve

Definition Given curves QP, , let    tt jijiT ,,,, 11  denote any optimal
traversal for the DFD, i.e.:

 
  kk

kk
jijiF qpQPd 

,
max,

The Mean Discrete Fréchet Curve is then defined (not uniquely) as:

      .2,,2,
11 tt jiji qpqpQPMDFC  

Image 10 : Estimation of the Mean Fréchet Curve for two curves P and Q

Performance : The Mean Discrete Fréchet Curve of a set of n curves is defined as
the curve that minimizes the sum of DFD’s to all of them. Computing the exact Mean
Discrete Fréchet Curve of n curves has a time complexity of  mnO ,where m is the
length of the longest curve. However, we can approximate the Mean Discrete
Fréchet Curve in time  2nmO .

Let   122lg  hh nhencenh

We construct a complete Binary Tree of height h, where each of the n curves
corresponds to a single leaf. Recall that, a complete binary tree is a binary tree,
which is completely filled, with the possible exception of the bottom level, which is
filled from left to right.

Then, at each internal node, we compute the Mean Discrete Fréchet Curve of its two
children. The final mean curve corresponds to the root of the tree.



Geometric Road Segmentation and Clustering

D. Konstantakis 47

Algorithm 9.7.2.2 : Computing the Approximate mean
1. Define a Complete Binary Tree of height h and root r .
2. randomly scatter the curves to the leaves of the tree .

3.  rraversalPostOrderT

Algorithm 9.7.2.3 :  raversalPostOrderT :

1. Check if the variable node is a leaf. If so, return the node’s curve.

2. If node is not a leaf, then call the method raversalPostOrderT recursively,
with argument the leftChild of the node and store the result as the left curve.

3. If the right child is defined, call the method raversalPostOrderT recursively,
with argument the rightChild of the node and store the result as the right curve.
4. Estimate the Mean Discrete Fréchet Curve passing as arguments left and
right curves.

9.8 Heuristics for matching 3D polygonal chains under translation and
rotation

The next section takes a close look at two complicated heuristic methods used for
the alignment of the polygonal chains that form the segments. [16]

9.8.1Root-Mean-Square Deviation

The root-mean-square deviation (RMSD) is a frequently used measure of the
differences between values (sample and population values) predicted by a model or
an estimator and the values actually observed. The RMSD represents the sample
standard deviation of the differences between predicted values and observed values.
These individual differences are called residuals when the calculations are
performed over the data sample that was used for estimation, and are
called prediction errors when computed out-of-sample.

The RMSD serves to aggregate the magnitudes of the errors in predictions for
various times into a single measure of predictive power. RMSD is a measure of
accuracy to compare forecasting errors of different models for a particular data and
not between datasets, as it is scale-dependent.

9.8.2Heuristic 1

Definition 9.8.2.1 Given a 3D chain C of n vertices, the coordinates of each vertex ci
of C can be represented by a 3D vector ic .
(1) Translate to common origin by subtracting the centroid from all Xxi  :





n

i
ic x

n
x

1

1
,
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and by subtracting centroid cy from all points iy in "set" Y.

(2) Rotate to optimal alignment by 3 × 3 rotation matrix Q.

By definition, 1det,  QQIQQT (orthonormal).

Recall rotated vector is vQ for row vector 3Rv .
Counter-clockwise rotation in the plane about the origin by θ:

  ,,
cossin

sincos
vectorrotatedQyxQ 











 






where 1det,  QQIQQT .

Rotation on 3D sphere by θ, α:

   zyxzyx 





























cossin0

sincoscoscossin

sinsincossincos

Assume common centroid = 0, for pointsets 3,  nRYX :

 
FQ

XQYYXRMSDc  min, , for rotation matrix Q.

Lemma 9.8.2.2 : Optimizing rotation 33 RQ reduces to finding maximum trace:

  1det,,max 3  QIQQYXQtr TTT

Q
, where we compute rotation matrix Q.

Proof. Linear algebra calculations

Definition 9.8.2.3 : SVD (Singular value decomposition)
TT VUYX 

,:

00

00

00

, 321

3

2

1





























 IVVUU TT

where U, V, Σ are 3 × 3, singular values .,0 YXofseigenvalueee T
iii 

We search for rotation Q maximizing      . trUQVtrVUQtr TTTT
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Theorem 9.8.2.4 Maximum occurs at TTT UVQIUQV  , for rotation matrix Q.

Algorithm 9.8.2.5 : c-RMSD calculation

Input: point sets 3,  nRYX of n corresponding points.

Output: minimum c-RMSD of translated and rotated sets

 


n

i ic nxx
1 ,  


n

i ic nyy
1 .

   .:,: YyyyYXxxxX cc 

.: TT VUYXSVD 

Check: Confirm σ3 > 0, where  .,, 321 diag

.TVUQ 

if   TVUUUQthenQ  321 ,,0det

Return nYQX
F



9.8.3Heuristic 2

Definition 9.8.3.1 Given a 3D chain C of n vertices, the coordinates of each vertex ci
of C can be represented by a 3D vector ic . The center c of the chain C corresponds
to the vector:

n

c
c i

i
 . [16]

We observe that given 2 polygonal chains maaaA ,,, 21  and ,,,, 21 nbbbB  if

  ,, BAd F then we must have both   11 ,badist and   nm badist , .

If  is smaller than half the minimum distance between two consecutive vertices in
either A or B, then the Fréchet alignment of A and B must contain only one-to-one
matches between vertices of A and B. That is, we must have m = n and, for 1 ≤ i ≤ n,

  nm badist , .It follows that   nm badist , , where a and b are the centers
of A and B, respectively.

The observation above suggests that we can use the three points, the two
endvertices and the center, as the reference points for each chain. For two polygonal
chains with a small discrete Fréchet distance, their corresponding reference points
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must be close. In general, the position and orientation of each polygonal chain is
determined by the positions of its three reference points. [16]

We have the following heuristic for matching A and B under translation and rotation :
(1) Translate B such that the center a of A and the center b of B coincide.

(2) Rotate B around b such that the two triangles maaa1 and nbbb1 are

coplanar, and such that the two vectors aaa m 

2

1 and bbb n 

2

1 have the same

direction.
(3) Rotate B for around the axis through its two randomly chosen vertices. The

rotation method that is used is the one described in the previous section (heuristic 1-
step 2: rotation).

9.8.4Results

Generally, by applying the 2nd heuristic, it is possible to match two polygonal chains
with m and n vertices in 3R .The following charts illustrate the produced outcomes
that showing its effectiveness in matching two similar polygonal chains.

Contrary to the second heuristic, the first one indicates that the alignment of the
segments, after translation and rotation, is inferior and less effective. The silhouette
values show that the computation of the discrete Fréchet distance for the first
implementation is accomplished in a more efficient way. For similar polygonal curves,
we achieve lower Fréchet distances and as a result, the distribution of the segments
is more uniform and distinguishable. These circumstances are mandatory for a
productive and sufficient clustering analysis.

Silhouette per Cluster for Heuristics 1 and 2 (Primary)

The values of silhouette for each cluster. Applied for primary roads.
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Silhouette per Cluster for Heuristics 1 and 2 (Secondary)

The values of silhouette for each cluster. Applied for secondary roads.

Silhouette per Cluster for Heuristics 1 and 2 (Links)

The values of silhouette for each cluster. Applied for link roads.
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Silhouette per number of clusters

The values of silhouette for different number of clusters. For higher number of
clusters (k) we get lower value of silhouette. This measurement suggests that the
amount of different segment types (- polygonal curves shapes) can be distinguished
to few categories, fact that explains that if we increase the number of cluster,
clustering becomes less effective accurate.
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10. CONCLUSIONS

In this thesis, we have implemented and performed experiments on a set of various
algorithms, in order to divide the roads into segments and group the generated data
in complicated structures. We define the classifications of the highways based on
their morphology and their attributes and we manage to represent them as polygonal
curves.

We designed two algorithms that transform roads into segments. These generated
objects can be more flexible and can be easily utilized by our experiments. We
observed that each segmentation method is affected by the road classification. In
more details, roads that are considered as high-performance don’t display any
significant variation in their curvature. However, those roads can be divided into
segments by looking for junctions. The usage of the proposed formula leads to better
results, as the number of points and the length in the polygonal curves are taken into
consideration. For the low-performance or links roads, where the number of
junctions is minimal, segmentation by curvature combined with our formula is
considered as the best option.

Furthermore, we develop approximation methods that group the data by comparing
their similarity. Both locality-sensitive hashing and clustering achieved to distinguish
the road segments by using similar approaches. The projection of polygonal curves
to grid displays sufficient results for the road identification and comparison. Also,
regarding clustering, we presented two different heuristic methods for curve
alignment. The best results were achieved when the second heuristic was performed.

The results presented above are encouraging and can be improved. The
parallelization of the segmentation methods and the approximation algorithms we
analyzed could offer better time measurements. Moreover, a new heuristic for the
translation and the rotation of the polygonal curves can be designed and
implemented, so that we can determine which of them can provide better
experimental results for the curve alignment. Future work on the road segmentation
can include experiments focused on highways that are related to traffic jam or their
location at a city.
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ABBREVIATION – ACRONYMS

OSM Open Street Map
WGS World Geodetic System
XML eXtensible Markup Language
HTTP HyperText Transfer Protocol
URL Uniform Resource Locator
GPS Global Positioning System
API Application Programming Interface
ECEF Earth-Centered, Earth-Fixed
NNS Nearest Neighbor Search
LSH Locality-Sensitive Hashing
DFD Discrete Fréchet Distance
RMSD Root-Mean-Square Deviation

SVD Singular value decomposition
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