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ABSTRACT 

Time-lapse microscopy now enables detailed imaging data generation and monitoring 
of dynamic cellular processes at the single cell level. Recent studies have highlighted 
the usage and importance of this technology for investigating biological noise in gene 
regulation, cell growth and proliferation etc. Mathematical and statistical model 
development is of growing interest in capturing and testing hypothesis regarding the 
dynamical behavior of biological systems. Modeling bacterial communities forming 
biofilms relies on the efficient and accurate extraction of information from time-lapse 
microscopy data (image frame sequences) of growing bacterial colonies. However, the 
analysis of such "cell movies" data is currently very time consuming and error prone 
since it is essentially performed by human-experts. In this thesis we address this 
important limitation in a multi-resolution image analysis framework.  

We have developed a methodology for identifying accurately the boundaries of 
individual bacterial cells and tracking them from frame to frame so as to construct the 
cells’ genealogy (bacterial cell segmentation and lineage tree construction) even in 
large-size microbial communities where there is great difficulty in identifying the 
individual cell boundaries. The automated and novel pipeline of algorithms we have 
developed combines methods from image processing and machine learning to segment 
and track bacteria precisely.  

The pipeline has been tested and evaluated with two different cell movies datasets and 
several images produced by different labs. The developed methodology has been 
shown to achieve high F-measure score (above 95%) in each evaluation case. It can be 
applied to different image modalities, such as phase contrast, bright field, and 
fluorescent, produced by optical and confocal microscopy. Using extensive 
experimentation we demonstrate the robustness and reliability of the proposed pipeline 
regardless of the image modality used. Our image processing pipeline is fully 
automated, computationally efficient and suitable for high throughput analysis of 
bacterial cell movies without any human intervention on its calibration. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
SUBJECT AREA: Image Analysis and Machine Learning 

KEYWORDS: bacterial segmentation, cell counting, cell lineage construction, cell 
feature extraction and visualization, expectation-maximization. 



 

 

ΠΕΡΙΛΗΨΗ 

H time-lapse μικροσκοπία επιτρέπει πλέον τη λεπτομερή δημιουργία δεδομένων από 
δυναμικές κυτταρικές διεργασίες σε επίπεδο μεμονωμένων κυττάρων (single cell level). 
Πρόσφατες μελέτες έχουν τονίσει τη χρήση και τη σημασία αυτής της τεχνολογίας για τη 
διερεύνηση του βιολογικού θορύβου στη ρύθμιση των γονιδίων, την ανάπτυξη και τον 
πολλαπλασιασμό κυττάρων κλπ. Τα μαθηματικά και τα στατιστικά μοντέλα 
παρουσιάζουν αυξανόμενο ενδιαφέρον για τη σύλληψη και τον έλεγχο υποθέσεων 
σχετικά με τη δυναμική συμπεριφορά των βιολογικών συστημάτων. Για τις βακτηριακές 
κοινότητες που σχηματίζουν βιοϋμένια αυτό εξαρτάται από την αποτελεσματική και 
ακριβή άντληση πληροφοριών από δεδομένα time-lapse μικροσκοπίας (ακολουθίες 
εικόνων) αναπτυσσόμενων βακτηριακών αποικιών. Ωστόσο, η ανάλυση τέτοιων 
δεδομένων «κυτταρικών ταινιών» σήμερα είναι πολύ χρονοβόρα και επιρρεπής σε 
λάθη, δεδομένου ότι ουσιαστικά πραγματοποιείται από έναν άνθρωπο-
εμπειρογνώμονα. Στην παρούσα εργασία ασχολούμαστε με αυτό το σημαντικό 
περιορισμό σε ένα πολλαπλής ανάλυσης πλαίσιο επεξεργασίας εικόνας.  

Έχουμε αναπτύξει μια μεθοδολογία που προσδιορίζει με ακρίβεια τα όρια μεμονωμένων 
βακτηριακών κυττάρων, τα ανιχνεύει από εικόνα σε εικόνα και κατασκευάζει τη 
γενεαλογία τους (κατάτμηση βακτηριακών κυττάρων και κατασκευή γενεαλογικών 
δέντρων) ακόμη και σε μεγάλες μικροβιακές κοινότητες όπου υπάρχει μεγάλη δυσκολία 
στον προσδιορισμό των επιμέρους ορίων των κυττάρων. Η αυτοματοποιημένη και 
καινοτόμος σωλήνωση (pipeline) των αλγορίθμων που αναπτύξαμε συνδυάζει 
μεθόδους από την επεξεργασία εικόνας και τη μηχανική μάθηση για την ακριβή 
βακτηριακή κατάτμηση και ανίχνευση.  

Η προτεινόμενη μεθοδολογία έχει δοκιμαστεί και αξιολογηθεί με δύο διαφορετικά  
σύνολα δεδομένων κυτταρικών ταινιών και αρκετές ανεξάρτητες εικόνες από 
διαφορετικά εργαστήρια. Έχουμε αποδείξει ότι η μέθοδος που αναπτύχθηκε επιτυγχάνει 
υψηλή βαθμολογία F-measure (άνω του 95%) σε κάθε περίπτωση αξιολόγησης. Επίσης 
το λογισμικό μπορεί να εφαρμοστεί σε διαφορετικούς τύπους εικόνας, όπως phase-
contrast, bright field, και φθορίζουσας (fluorescent), που προέρχονται τόσο από οπτική 
όσο και από συνεστιακή μικροσκοπία. Πραγματοποιώντας εκτεταμένα πειράματα που 
αποδεικνύουν την ευρωστία και την αξιοπιστία της προτεινόμενης σωλήνωσης, 
ανεξάρτητα από το τύπο της εικόνας που χρησιμοποιείται. H μεθοδολογία επεξεργασίας 
εικόνας, που αναπτύξαμε, είναι πλήρως αυτοματοποιημένη, υπολογιστικά αποδοτική 
και κατάλληλη για υψηλής ρυθμαπόδοσης ανάλυση βακτηριακών κυτταρικών ταινιών 
χωρίς καμία ανθρώπινη παρέμβαση κατά τη βαθμονόμηση της. 
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FOREWORD 

This study constitutes a very interesting, important and compulsory part of my postgraduate 
studies in the Master's Program “Information Technologies in Medicine and Biology”, which 
is organized and administrated by the Department of Informatics and Telecommunications 
of the National and Kapodistrian University of Athens (UoA), in cooperation with the 
Technological Educational Institute (TEI) of Athens, and in collaboration with the 
Foundation for Biomedical Research of the Academy of Athens (BRFAA) and the Institute 
of Informatics and Telecommunications of National Centre for Scientific Research 
“Democritos”. The Thesis was written in Athens under the supervision of Elias S. 
Manolakos, Associate Professor at the Department of Informatics, University of Athens, and 
Dr. Panagiotis Tsakanikas, postdoctoral researcher in the Biomedical Research Foundation 
of the Academy of Athens, in the final semester of my studies.  

Our collaboration with Dr. Koutsoumanis, Assistant Professor, Department of Food 
Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, and 
his lab members was of major importance in order for us to understand the details intricate 
of the image types we would have to deal with. Moreover, their contribution was crucial as 
they conducted many experiments and provided us with all the experimental data we 
needed to thoroughly test and evaluate the developed algorithms. This collaboration set the 
goals of this study, which are in close correlation with the research interests of Dr. 
Koutsoumanis and his group in data extraction for bacterial micro-colony formation. 
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1. INTRODUCTION 

In this chapter we define the problem of bacterial image processing and the importance 
of it for systems biology approaches. On the first section, we introduce the reader to the 
concepts of micro-colony formation. In the second section, we summarize the 
fundamental principles of microbiological microscopy. Furthermore, we discuss the 
necessity for software development in such fields. 

1.1 From Single Cells to Micro-colonies and Biofilms 

For many years predictive microbiology deals with the development of deterministic 
models based on studies with large microbial populations. Traditional mathematical 
models describe the growth of microbial populations as a whole, without considering the 
individual cells. In “real life” however, contamination of foods with pathogens usually 
occurs at very low numbers and the probability that their multiplication results in an 
infectious level at the time of consumption depends greatly on the kinetics of the 
contaminating cells as well as on whether they are able to grow. Recently, the 
importance of stochastic models which are able to predict the effects of more “realistic” 
contamination events (low microbial numbers) in food safety has been stressed out. 
Thus, predictive microbiology studies have focused on monitoring microbial kinetics at a 
single cell level. 

Individual cells within clonal microbial populations exhibit a remarkable phenotypic 
variation which refers to epigenetic sources of population variation that do not involve 
changes in the genome [1]. For example, the production of a specific protein in 
genetically identical cells in an essentially identical environment can differ among cells 
owing to stochastic fluctuations (or “noise”) during transcription and translation, leading 
to differences in protein levels. The observable consequence of the above variation is 
the behavioral noise of single cells including the noise in the division time. 

The ability of microbial communities to adhere on surfaces or interfaces (e.g. air-liquid 
interface) and to form biofilms has been proved to be an effective driving force for 
microbial survival and persistence. In general, microbial life in the form of biofilms 
represents a special strategy that allows cells to: (a) tolerate conditions and treatments 
that would be lethal to non-attached, planktonic cells and to exhibit dedicated stress 
responses [2-3], (b) grow and exhibit enhanced survival through metabolic cooperativity 
[4-5] and (c) acquire new genetic traits through horizontal gene transfer [6]. The 
strategies through which sessile bacteria develop the aforementioned characteristics 
(e.g. existence of persistent cells, cellular adaptation to antibiotics or/and preservatives) 
are of special scientific importance, mainly due to the severity of problems associated 
with biofilms and in comparison with planktonic counterparts (i.e. free floating, 
constrained or immobilized [7]). Microbial life in the form of biofilms is encountered in 
many (if not all) ecosystems, including eukaryotic tissues, and both natural and 
manmade surfaces [8]. As a consequence, biofilm formation in the food chain can be 
considered as a major risk since adherent cells may at any time be detached and 
contaminate the final products. Given that the physiology of detached cells is highly 
affected by their previous life in biofilm micro colonies, investigating the effect of biofilm 
forming conditions and their impact on subsequent physiology of biofilm cells is of 
utmost importance for assessing the risk of growth of detached cells. 

The formation of a biofilm is a complex process and a number of genes are implicated 
while potential underlying mechanisms for the attachment of bacteria on biotic e.g. fresh 
produce or abiotic surfaces, e.g., industrial equipment, include: (i) the presence of 
extracellular polymeric substances or fimbriae; (ii) bacterial cell surface hydrophobicity 
(charge); (iii) divalent cationic bridges; (iv) bacterial strains; (v) structure of the surface 
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(rough or smooth, intact or cut / injured); (iv) presence of nutrients at the edges of cuts 
or at injury sites of fresh produce. In the case of plant tissue, bacteria may be entrapped 
due to internalization (vascular or other type, such as irrigation water), or translocation 
and this may enhance their resistance to sanitizing agents. Studies on the formation, 
organization and development of biofilm populations, together with those on cell-to-cell 
signaling mechanisms in such communities, are nowadays based on the knowledge 
that biofilm cells show different growth rates and gene expression profiles compared to 
planktonic cells of the same microorganism [9-11]. 

 

1.2 Microscopy Types 

1.2.1 Optical Microscopy 

Optical or light microscopy involves passing visible light transmitted through or reflected 
from the sample through a single or multiple lenses to allow a magnified view of the 
sample. The resulting image can be detected directly by the eye, imaged on 
a photographic plate or captured digitally. The single lens with its attachments, or the 
system of lenses and imaging equipment, along with the appropriate lighting equipment, 
sample stage and support, form the basic light microscope. The most recent 
development is the digital microscope, which uses a CCD camera to focus on the 
exhibit of interest. The image is shown on a computer screen, so eye-pieces are 
somewhat unnecessary. 

Limitations of standard optical microscopy (bright field microscopy) lie in three areas; 

 The technique can only image dark or strongly refracting objects effectively. 

 Diffraction limits resolution to approximately 0.2 micrometres. 

 Out of focus light from points outside the focal plane reduces image clarity (blurry 
image). 

Live cells, in general, lack sufficient contrast to be studied successfully, since the 
internal structures of the cell are colorless and transparent. The most common way to 
increase contrast is to stain the different structures with selective dyes, but this often 
involves killing and fixing the sample. Staining may also introduce artifacts, apparent 
structural details that are caused by the processing of the specimen, and are thus not a 
legitimate feature of the specimen. 

These limitations have all been overcome to some extent by specific microscopy 
techniques that can non-invasively increase the contrast of the image. In general, these 
techniques make use of differences in the refractive index of cell structures. It is 
comparable to looking through a glass window: one (bright field microscopy) does not 
see the glass but merely the dirt on the glass. There is a difference, as glass is a denser 
material, and this creates a difference in phase of the light passing through. The human 
eye is not sensitive to this difference in phase, but clever optical solutions have been 
developed to change this difference in phase into a difference in light intensity. 

In order to improve specimen contrast and/or highlight certain structures in samples, 
special techniques must be used. A huge selection of microscopy techniques is 
available to increase contrast or label a sample. In bacterial microscopy the most 
significant trans-illumination techniques used are bright field, phase contrast, 
fluorescence and differential interference contrast (DIC) microscopy. 
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1.2.1.1 Bright field microscopy 

Bright field microscopy is the simplest of all the optical microscopy illumination 
techniques. Sample illumination is transmitted (i.e., illuminated from below and 
observed from above, i.e. upright microscope) white light and contrast in the sample is 
caused by absorbance of the transmitted light in dense areas of the sample. Bright field 
microscopy is the simplest of a range of techniques used for illumination of samples in 
light microscopes and its simplicity makes it a popular technique. The typical 
appearance of a bright field microscopy image is a dark sample on a bright background, 
hence the name. 

Bright field microscopy typically has low contrast with most biological samples since the 
difference in light absorption is limited. Staining is often required to increase contrast, 
which nevertheless prevents the use of live cells in many situations. Bright field 
illumination is useful for samples which have an intrinsic color, for example chloroplasts 
in plant cells. Bright field microscopy is a standard light microscopy technique and 
therefore magnification is limited by the resolving power possible with the wavelength of 
visible light. Limitations include low contrast of most biological samples and low 
apparent resolution due to the blur of out of focus material. The simplicity of the 
technique and the minimal sample preparation required are significant advantages. 

 

1.2.1.2 Phase Contrast Microscopy 

Phase contrast microscopy is an optical microscopy technique that converts phase 
shifts in light passing through a transparent specimen into brightness changes in the 
image. Light phase shifts are invisible, but become visible when shown as brightness 
variations. 

Phase contrast microscopy is particularly important in biology, as it reveals many 
cellular structures that are not visible with a bright field microscope. These structures 
were made visible to earlier microscopy users only by sample staining, which killed the 
cells. The phase contrast microscopy made it possible for biologists to study living cells 
and how they proliferate through cell division. 

The nucleus in a cell for example will show up darker than the surrounding cytoplasm. 
Contrast is excellent; however it is not for use with thick objects. Frequently, a halo is 
formed even around small objects, which obscures details. The system consists of a 
circular annulus in the condenser, which produces a cone of light. This cone is 
superimposed on a similar sized ring within the phase-objective. Every objective has a 
different size ring, so for every objective another condenser setting has to be chosen. 
The ring in the objective has special optical properties: it, first of all, reduces the direct 
light in intensity, but more importantly, it creates an artificial phase difference of about a 
quarter wavelength. As the physical properties of this direct light have changed, 
interference with the diffracted light occurs, resulting in the phase contrast image. As 
mentioned earlier, one disadvantage of phase-contrast microscopy is halo formation 
(halo-light ring). 

When light waves travels through a medium other than vacuum, interaction with the 
medium causes the wave amplitude and phase to change in a manner dependent on 
properties of the medium. Changes in amplitude (brightness) arise from the scattering 
and absorption of light, which is often wavelength dependent and may give rise to 
colors. Photographic equipment and the human eye are only sensitive to amplitude 
variations. Without special arrangements, phase changes are therefore invisible. Yet, 
often these changes in phase carry important information. 
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Figure 1: Microscopic bright field image (last frame) of a growing micro-colony of Bacillus 

megaterium (left) and Microscopic bright field image with overlaid fluorescence channel of a 
growing micro-colony of Bacillus megaterium [12]. 

 

Phase contrast microscopy proved to be such advancement in microscopy that its 
inventor Frits Zernike was awarded the Nobel Prize (physics) in 1953. 

 

1.2.1.3 Fluorescence Microscopy 

When certain compounds are illuminated with high energy light, they emit light of a 
different, lower frequency. This effect is known as fluorescence. Often specimens show 
their characteristic auto-fluorescence image, based on their chemical makeup. 

This method is of critical importance in the modern life sciences, as it can be extremely 
sensitive, allowing the detection of single molecules. Many different fluorescent dyes 
can be used to stain different structures or chemical compounds. One particularly 
powerful method is the combination of antibodies coupled to a fluorophore as in 
immunostaining. Examples of commonly used fluorophores are fluorescein or 
rhodamine. 

The antibodies can be tailor-made for a chemical compound. For example, one strategy 
often in use is the artificial production of proteins, based on the genetic code (DNA). 
These proteins can then be used to immunize rabbits, forming antibodies which bind to 
the protein. The antibodies are then coupled chemically to a fluorophore and used to 
trace the proteins in the cells under study. 

Highly efficient fluorescent proteins such as the green fluorescent protein (GFP) have 
been developed using the molecular biology technique of gene fusion, a process that 
links the expression of the fluorescent compound to that of the target protein. This 
combined fluorescent protein is, in general, non-toxic to the organism and rarely 
interferes with the function of the protein under study. Genetically modified cells or 
organisms directly express the fluorescently tagged proteins, which enables the study of 
the function of the original protein in vivo. 

Growth of protein crystals results in both protein and salt crystals. Both are colorless 
and microscopic. Recovery of the protein crystals requires imaging which can be done 
by the intrinsic fluorescence of the protein or by using transmission microscopy. Both  
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Figure 2: Microscopic phase contrast image of a growing micro-colony of Escherichia coli [13]. 

 

methods require an ultraviolet microscope as protein absorbs light at 280nm. Proteins 
will also fluorescence at approximately 353 nm when excited with 280 nm light. 

Since fluorescence emission differs in wavelength (color) from the excitation light, an 
ideal fluorescent image shows only the structure of interest that was labeled with the 
fluorescent dye. This high specificity led to the widespread use of fluorescence light 
microscopy in biomedical research. Different fluorescent dyes can be used to stain 
different biological structures, which can then be detected simultaneously, while still 
being specific due to the individual color of the dye. 

To block the excitation light from reaching the observer or the detector, filter sets of high 
quality are needed. These typically consist of an excitation filter selecting the range of 
excitation wavelengths, a dichroic mirror, and an emission filter blocking the excitation 
light. Most fluorescence microscopes are operated in the Epi-illumination mode 
(illumination and detection from one side of the sample) to further decrease the amount 
of excitation light entering the detector. 

 

1.2.1.4 Differential Interference Contrast Microscopy 

Differential interference contrast (DIC) microscopy, also known as Nomarski 
Interference Contrast (NIC) or Nomarski microscopy, is an optical microscopy 
illumination technique used to enhance the contrast in unstained, transparent samples. 
DIC works on the principle of interferometry to gain information about the optical path 
length of the sample, to see otherwise invisible features. A relatively complex lighting 
scheme produces an image with the object appearing black to white on a grey 
background. This image is similar to that obtained by phase contrast microscopy but 
without the bright diffraction halo. 

DIC works by separating a polarized light source into two orthogonally polarized 
mutually coherent parts which are spatially displaced (sheared) at the sample plane, 
and recombined before observation. The interference of the two parts at recombination  
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Figure 3: By attaching fluorescent proteins to the genetic circuit responsible for B. subtilis's 
stress response we can observe the cells' pulses as green flashes [14]. 

 

is sensitive to their optical path difference (i.e. the product of refractive index and 
geometric path length). Adding an adjustable offset phase determining the interference 
at zero optical path difference in the sample, the contrast is proportional to the path 
length gradient along the shear direction, giving the appearance of a three-dimensional 
physical relief corresponding to the variation of optical density of the sample, 
emphasizing lines and edges though not providing a topographically accurate image. 

DIC has strong advantages in uses, involving live and unstained biological samples, 
such as a smear from a tissue culture or individual water borne single-celled organisms. 
Its resolution and clarity in conditions such as this are unrivaled among standard optical 
microscopy techniques. 

The main limitation of DIC is its requirement for a transparent sample of fairly similar 
refractive index to its surroundings. DIC is unsuitable (in biology) for thick samples, 
such as tissue slices, and highly pigmented cells. DIC is also unsuitable for most non 
biological uses because of its dependence on polarization, which many physical 
samples would affect. 

One non-biological area where DIC is useful is in the analysis of planar silicon 
semiconductor processing. The thin (typically 100-1000 nm) films in silicon processing 
are often mostly transparent to visible light (e.g., silicon dioxide, silicon nitride and 
polycrystalline silicon), and defects in them or contamination lying on top of them, 
become more visible. This also enables the determination of whether a feature is a pit in 
the substrate material or a blob of foreign material on top. Etched crystalline features 
gain a particularly striking appearance under DIC. 

Image quality, when used under suitable conditions, is outstanding in resolution and 
almost entirely free of artifacts unlike phase contrast. However analysis of DIC images 
must always take into account the orientation of the Wollaston prisms and the apparent  
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Figure 4: Gene expression is inherently noisy [15]. These cells express two fluorescent proteins, 
one shown in red, and the other in green. Both genes are controlled by the same promoters; 
therefore, if gene expression were deterministic, all cells would have equal amounts of red and 
green (and therefore appear yellow). The presence of cells that are more red than green, or vice 
versa, results from stochastic fluctuations (noise) in gene expression. 

 

lighting direction, as features parallel to this will not be visible. This however, can be 
easily overcome by simply rotating the sample and observing changes in the image. 

 

1.2.2 Confocal Laser Scanning Microscopy 

Confocal laser scanning microscopy (CLSM or LSCM) is a technique for obtaining high-
resolution optical images with depth selectivity. The key feature of confocal microscopy 
is its ability to acquire in-focus images from selected depths, a process known as optical 
sectioning. Images are acquired point-by-point and reconstructed with a computer, 
allowing three-dimensional reconstructions of topologically complex objects. For opaque 
specimens, this is useful for surface profiling, while for non-opaque specimens, interior 
structures can be imaged. For interior imaging, the quality of the image is greatly 
enhanced over simple microscopy because image information from multiple depths in 
the specimen is not superimposed. A conventional microscope "sees" as far into the 
specimen as the light can penetrate with decreasing contrast quality, while a confocal 
microscope only "sees" images one depth level at a time. In effect, the CLSM achieves 
a controlled and highly limited depth of focus. The principle of confocal microscopy was 
originally patented by Marvin Minsky in 1957, but it took another thirty years and the 
development of lasers for CLSM to become a standard technique toward the end of the 
1980s. In 1978, Thomas and Christoph Cremer designed a laser scanning process, 
which scans the three dimensional surface of an object point-by-point by means of a 
focused laser beam, and creates the over-all picture by electronic means similar to 
those used in scanning electron microscopes. This CLSM design combined the laser 
scanning method with the 3D detection of biological objects labeled with fluorescent 
markers for the first time. During the next decade, confocal fluorescence microscopy  
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Figure 5: S. Typhimurium micro-colony monitored by DIC microscope. 

 

was developed into a fully mature technology, in particular by groups working at the 
University of Amsterdam and the European Molecular Biology Laboratory (EMBL) in 
Heidelberg and their industry partners. 

In a confocal laser scanning microscope, a laser beam passes through a light source 
aperture and then is focused by an objective lens into a small (ideally diffraction limited) 
focal volume within or on the surface of a specimen. In biological applications 
especially, the specimen may be fluorescent. Scattered and reflected laser light as well 
as any fluorescent light from the illuminated spot is then re-collected by the objective 
lens. A beam splitter separates off some portion of the light into the detection 
apparatus, which in fluorescence confocal microscopy will also have a filter that 
selectively passes the fluorescent wavelengths while blocking the original excitation 
wavelength. After passing a pinhole, the light intensity is detected by a photodetection 
device (usually a photomultiplier tube (PMT) or avalanche photodiode), transforming the 
light signal into an electrical one that is recorded by a computer. 

The detector aperture obstructs the light that is not coming from the focal point, as 
shown by the dotted gray line in the image. The out-of-focus light is suppressed: most 
of the returning light is blocked by the pinhole, which results in sharper images than 
those from conventional fluorescence microscopy techniques and permits one to obtain 
images of planes at various depths within the sample (sets of such images are also 
known as z stacks). 

The detected light originating from an illuminated volume element within the specimen 
represents one pixel in the resulting image. As the laser scans over the plane of 
interest, a whole image is obtained pixel-by-pixel and line-by-line, whereas the 
brightness of a resulting image pixel corresponds to the relative intensity of detected 
light. The beam is scanned across the sample in the horizontal plane by using one or 
more (servo controlled) oscillating mirrors. This scanning method usually has low 
reaction latency and the scan speed can be varied. Slower scans provide a better 
signal-to-noise ratio, resulting in better contrast and higher resolution. Information can 
be collected from different focal planes by raising or lowering the microscope stage or 
objective lens. The computer can generate a three-dimensional picture of a specimen 
by assembling a stack of these two-dimensional images from successive focal planes. 
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Figure 6: Micro-colony was observed [16]: (A) on the xy plane with phase-contrast microscopy; 
(B) on the xy plane with CLSM; (C) on the xz plane along the diameter-line ‘‘D’’ with CLSM. 

 

Confocal microscopy provides the capacity for direct, noninvasive, serial optical 
sectioning of intact, thick, living specimens with a minimum of sample preparation as 
well as a marginal improvement in lateral resolution. Biological samples are often 
treated with fluorescent dyes to make selected objects visible. However, the actual dye 
concentration can be low to minimize the disturbance of biological systems: some 
instruments can track single fluorescent molecules. Also, transgenic techniques can 
create organisms that produce their own fluorescent chimeric molecules (such as a 
fusion of GFP, green fluorescent protein with the protein of interest). 

 

1.3 Necessity for Software Development 

The available information on the heterogeneity in the growth behavior of single cells is, 
in general, limited mainly due to the technical difficulties in monitoring the growth of 
individual cells. The studies on the variability of individual cell behavior are mainly 
based on time-lapse microscopy studies and require data from hundreds or even 
thousands of cells [17-19]. Among the difficulties of the method is the effective analysis 
of such high number of data. Indeed, monitoring and analyzing the number and the 
properties of individual cells (i.e. division time, size etc) within a growing micro-colony is 
a great challenge. Even the estimation of cell counts is currently very time-consuming 
and prone to errors, since it is essentially performed by the human-user. The 
commercially available software tools quite often fail completely, or provide very 
imprecise cell counts. Estimating accurately the number of cells by processing 
sequences of images of microbial communities and assessing their morphology in a 
fully automated manner is an important open problem in bio-image analysis. So, new 
developments in image analysis of microbial growth at a level of individual cell will 
create new insight and provide effective databases for stochastic modeling approaches 
and microbial risk assessments [20]. Finally, assessing this open issue will benefit the 
system biology related community since a high throughput method is essential for 
microbial community modeling. 
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1.4 Thesis Outline 

The rest of the thesis is organized as follows. In State of the Art chapter we discuss 
other software packages capabilities and introduce the proposed methodology. In the 
Methods Chapter we present and describe the developed pipeline. Chapter IV entitled 
as Datasets and Evaluation Scheme presents the datasets used for evaluation and the 
evaluation scheme followed. In Chapter V, the Results and Discussion Chapter, a 
thorough evaluation of the software is presented along with an illustration of several 
additional features provided by the software. Finally, in the Conclusions and Future 
Work Chapter, we briefly state some final conclusion and point to future advances and 
improvements. 
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2. STATE OF THE ART 

In this chapter we will present the state of the art software packages. On the first 
section, we will describe the existing software packages and discuss their limitations. In 
the second section, we will summarize the capabilities of the proposed pipeline. 

2.1 Existing Software Packages 

There are currently multiple image analysis programs capable of cell detection, 
although most of them work best with eukaryotic cells. Bacterial cells are comparatively 
small in size, often close to the resolution of optical microscopy, making it challenging to 
use standard pixel based techniques to separate clusters of cells and to obtain the 
required subpixel precision. A few image analysis tools have been used for bacterial 
cells, which typically start with image thresholding in order to outline bright or dim cells 
against a uniform background, produced using either phase contrast microscopy or 
fluorescence microscopy of uniformly labeled cells [21-22]. These programs can be 
categorized into two groups based on their approaches. One focuses on maximizing 
resolution of cell outlines by utilizing interpolation between pixel values [21]. This 
method produces high precision cell contours in well-separated cells but fails to identify 
touching or hard-to-resolve cells, preventing analysis of densely packed cells in still 
images as well as progeny in time-lapse images of dividing cells. The other group of 
methods used for bacterial cells images focuses on segmenting the image to separate 
densely packed cells at the expense of precision by using pixel-based operations, such 
as edge detection, watershed, and morphological erosion and dilation [22-23]. However, 
there is a strong demand for the capability of obtaining subpixel precision outlines of 
touching cells in noisy images while increasing automation of the process. 

Several software packages are currently available, where the most widely used and 
efficient are TLM-Tracker [24], CellTracer [23] and MicrobeTracker [25]. TLM-Tracker 
employs multiple alternative algorithms for segmentation, namely threshold-based 
algorithms, watershed transformation and level-set techniques. TLM-Tracker provides 
the ability of lineage construction, where the cells are tracked by searching of 
overlapping cell areas in the proceeding frames of the movie. In the CellTracer, the 
authors developed the concept of hybrid grey-scale/black-white images and they 
extended existing image filters and mathematical morphological operators for grey-
scale images to work with these hybrid images. This approach allows extracting cells 
from an image iteratively in order to gradually convert the grey-scale image into a binary 
mask of segmented cells, without relying on initial cell markers. As far as the tracking 
(lineage computation) is concerned, they incorporated neighboring cell information to 
compute numerical likelihood scores for cell identity between each pair of time points t 
to t+1 and they applied an integer programming method to generate frame to frame 
correspondences between cells and the lineage map. MicrobeTracker exploits for the 
segmentation step several algorithms developed for medical image segmentation and 
computer vision, which include clustering, template-matching, active contours, region 
growing and level set methods. 

All the aforementioned software packages exhibit several limitations in efficiency that 
prevents them to perform reliable in a fully automated way. Specifically, the CellTracer 
requests from the user to have image processing background in order to select the 
appropriate pipeline for the images at hand and this is repeated even for images of the 
same dataset throughout the analysis. The same observations hold for the TLM-
Tracker. MicrobeTracker was found to be extremely non user friendly due to its 
complicated parameterization. The developers give some default parameters settings 
from specific image modalities and organism types, but due to their sensitivity further  
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Table 1: Software Packages Overview 

Software 
Tracking 
Multiple  
colonies 

Robustness 
to dataset 

quality 
Parameterization 

Optical/Confocal 
images 

Phase 
contrast/fluorescent 

images 

CellTracer no no Complex Optical both 

MicrobeTracker no no Complex Both both 

TLM Tracker no no Complex Optical both 

Developed 
Methodology 

yes yes Simple Both both 

 

fine tuning is needed. Furthermore, a very significant disadvantage of all the state of the 
art methods is the lack of generality (overfitting on specific type of data), i.e. they are 
not able to perform robustly for a wide variety of images acquired by several imaging 
settings (microscope type, imaging type etc). As a result of those limitations the 
estimation of cell count and their corresponding features (e.g. length, area, gfp 
quantification, etc), is currently very time-consuming and error prone. So, it is clear that 
efficient and high throughput estimation of cells from sequences of images of microbial 
communities and assessing their morphology is an important and open problem in bio-
image analysis. All the aforementioned limitations (Table 1) clearly state that bacterial 
image processing is still considered as a bottleneck towards a high throughput analysis 
and the need for efficient and automatic tools (high throughput) is apparent. 

 

2.2 Developed Methodology 

In this work, we present a new bacterial cell analysis software, which make use of 
image processing and machine learning methods, utilizes the specific cell shape and 
time-lapse information when available, in order to achieve high precision cell detection 
even in densely packed and noisy images. The presented methodology allows 
automated outlining and subsequent analysis of cells in both single and time-lapse 
image sequences. It is governed by the “divide and conquer” principle combining 
different approaches (from mathematical morphology approaches to machine learning 
techniques) according to the processing level and image quality. The basic framework 
is based on dividing the problem to smaller sub-problems. So, we step from image’s 
level to colony’s level. This enables us to analyze input images independently of the 
number of micro-colonies they contain. This is a very important novel feature that 
previous approaches do not offer. So, a scientist may monitor several micro-colonies at 
the same time and extract their individual feature without the need of cropping and 
further manipulating the raw image. This way one can save time (experimental time for 
data gathering) and money (several assays can be analyzed simultaneously).  

In colony’s level, we divide again the problem in order to successively result to single 
cells. This approach gives us the capability of analyzing colonies regardless of their 
population, i.e. over-crowded images. An interesting property of our methodology is that 
once we reach the colony’s level, regardless of the image origin, the pipeline operates 
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using the same algorithmic pipeline. Also, this property is unique among other software 
packages and it is the one that provide its generality property. The pipeline is fully 
automated, i.e. high throughput, and does not need human interference even for 
different input image modalities. Finally, the robustness of the segmentation enables the 
proposed software to extract valuable information from the input dataset which can be 
visualized according to the needs of human user. 
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3. METHODS 

 

Figure 7: Proposed pipeline overview 

 

In this chapter we will present in detail the developed pipeline, which consists of five (5) 
consecutive steps, i.e. preprocessing, colonies segmentation, bacteria segmentation, 
cell lineage construction, features extraction and visualization. The whole pipeline is 
designated by a continuous cascade process in order to detect the individual single 
cells. The pipeline starts from an image, segments the colonies, detects objects with 
one and/or more cells and finally gets to the desired result, the single cell detection. 
Next we will describe in detail the developed pipeline and illustrate that the 
aforementioned “journey” from image to cell is not only necessary but also gives 
valuable information along the way. The pipeline stages are summarized in Fig. 7. 

 

3.1 Preprocessing 

The pipeline starts with image preprocessing, a very common and necessary process 
used for noise suppression and background uniformities elimination. Also, in our 
methodology, the preprocessing embeds a first level of segmentation, in terms of colony 
segmentation. In more detail, we apply the image denoising methods described in [26-
28], in order to suppress the inherent noise. Then, we apply contrast-limited adaptive 
histogram equalization (CLAHE) as described in [29] so as to emphasize only the 
bacterium related region instead of the noisy and luminous background situated locally 
at a colony area. The effects of these actions are illustrated in Fig. 8.CLAHE operates 
on small regions in the image called tiles rather than the entire image. Its tile’s contrast 
is enhanced so that the histogram of the output region approximately matches the 
histogram specified by the uniform distribution. The neighboring tiles are then combined 
using bilinear interpolation to eliminate artificially induced boundaries. The contrast, 
especially in homogeneous areas can be limited to avoid amplifying any noise that 
might be present in the image. Consequently, the noise of the initial image is removed 
and the pixel belonging to cell areas are separated from colony’s background. 
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Figure 8: Input image in preprocessing stage (left). Output image (right) after denoising and 
CLAHE application. 

 

3.2 Colonies Segmentation 

Following that, we developed a colony segmentation method, where a binary mask 
segmenting the bacterial colonies from the image background is created. For this step, 
we first employ mathematical morphology operators [30] and then apply the Otsu’s 
global thresholding algorithm [31] so as to create the binary image, outlining as 
precisely as possible the area of each colony. However, at this stage, the resulting 
binary image contains small artifacts (due to the image background) additionally to the 
rigid colonies. In order to cope with this, an edge detection algorithm, Canny’s algorithm 
[32] is used to the preprocessed image. The output of Canny’s edge detector produces 
a binary image containing only the edges of each colony. Then, by applying 
morphological dilation to the edge detected image, we construct a binary image 
containing a rough mask of each colony relieved from noisy artifacts. Finally, using a 
simple multiplication operation of the mask created by global thresholding and the mask 
created by edge detection, we get a mask outlining in detail each colony boundary (see 
Fig. 9 for details). 

As a result, we come up with an image where each colony (regardless of its size) is 
segmented and outlined. As mentioned, and it will be more obvious at the next sections, 
the proposed method is based on “divide and conquer” principle. So, from this step and 
forward, each colony will be processed separately and save its properties separately 
(i.e. colony tracking through time, given a time series experiment).This feature is very 
significant since it is very common for a colony (in a multi-colony experiment) to: 1) 
merge with a neighbor colony, 2) move out of the microscope’s field of view, or 3) 
continue to grow individually. So, keeping track of colonies is vital for archiving their 
corresponding properties (number of bacteria, etc.) through time. 

3.3 Single cell Segmentation Algorithm 

In this section we will look into the heart of the developed methodology, which final 
result is single cell segmentation. Having already defined the bacterial colony areas as 
accurately as possible, we need to “zoom in” and detect, in an efficiently way, the 
individual cells.  
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Figure 9: Input image in colonies segmentation stage (left). Output image (right), a mask with 
segmented colonies. 

 

 

 

Figure 10: Initial segmentation image (bottom) created by multiplication of the two masks (top) 

 

Due the large illumination variations in the images (locally and globally), the previously 
identified as foreground areas, include not only cell areas but also a varying degree of 
local background, we apply an adaptive thresholding algorithm [30] to the preprocessed 
image. Thus, we manage to separate the foreground (bacteria) from the non-uniformly  
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Figure 11: Skeletonization of three objects. The object of the top panel (green) has no junctions, 
i.e. collinear object, while the objects in the rest of panels (red) have more than one junction, i.e. 

complex object. 

 

illuminated background (please refer to Fig. 10 top left) but we create small artifacts to 
the background image regions, which are eliminated by multiplying this image with the 
mask created in the previous step. We must note that this type of background (in the 
foreground’s objects) is very common in images acquired by optical microscopes (either 
bright field or phase contrast) and more limited by confocal microscopes. Additionally 
the adaptive threshold used, has no negative effect on confocal images, i.e. it performs 
equally well (in terms of excluding local background pixels) in both image types. As it is 
observed in the Fig. 10 bottom while the most of the local background is removed, the 
result is not ideal, i.e. each segmented object does not correspond to a single 
bacterium. For this, we developed a novel methodology where we treat each object 
individually.  

First, for each object, its skeleton is computed [30] (refer to Fig. 11). Then, if the 
skeleton has junctions, the object is considered as a complex object, i.e. is a cluster of 
several single bacterial cells. We will describe later the process when a complex object 
is detected. In the case that no junctions are found, the object may be either a distinct 
bacterium or two collinear bacteria (collinear object).In the former case the object must 
not be further segmented (single bacterium) and the segmentation process stops while 
in the latter the object must be segmented. 

 

3.3.1 Collinear Object Processing 

We first review the simpler case of no junctions found at the object’s skeleton. In order 
to classify automatically an object into these two categories we developed a “smart” 
criterion, called “deep” valley criterion. Its functionality relies on the difference of the 
physical shape of an object when representing a bacterium at the fission stage [33] 
(similar to a bow tie) or not (please refer to Fig. 12). 
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Figure 12: Bacterial fission [33]. In stage 5 the cell enters into the division stage. Our method 
detects objects having the shape of stage 5, i.e. bow tie shape. 

 

(A) (B)
(C)

(D) (E)

 

Figure 13: Pipeline of identification of bowties in collinear objects 

 

In order to “quantify” the shape of the object and use it for classification we compute the 
Euclidean distances [34] of the object along its centerline and search for a local 
minimum (“deep valley”) (Fig. 13 panel (C)).If such a local minimum exists and fulfills 
the following ratio constraints, then is considered to be a “deep valley”   and . Tis a 
threshold which depends on input image resolution, i.e. how many pixels form a 
bacterium. We must note that the value of T is automatically set by the software when 
the resolution is inserted by the user and it is in the range of [0.65, 0.85] for low to high 
resolution. When the criterion classifies the object as a bacterium being in the division 
phase, the object is split into two discrete bacteria exactly where the “deep valley” is 
found (Fig. 13 panel (C) red circle), otherwise the segmented cell area remains intact. 
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3.3.2 Gaussian Mixture Modeling 

In this section we begin with a brief presentation of GMMs, a powerful pattern 
recognition tool that is used extensively in the Expectation-Maximization framework 
[35]. For more details the interested reader is referred to [36]. Mixture models, is an 
extremely useful tool which provides the ability of model-based approach to 
unsupervised clustering. Complex multimodal probability density functions (PDFs) can 
be represented simply using the models of the Gaussian mixture. This is why they can 
also be used as a method for elaborate class-conditional probability density functions 
representation in supervised learning scenarios. The application of mixture modeling 
here amounts to fitting Gaussian mixtures to the 2D-observations without the 

knowledge of the optimal number of components needed. Let   [       ]
 be a 

random variable of dimensionality , with   [       ]
 representing a specific 

realization of  . Then  has a finite mixture distribution if its probability density function 
can be written as: 

  ( | )  ∑     ( |  )

 

   

 ( ) 

where   ( | )is a component density function,  is the number of components and 
  are their mixing probabilities. Having a specific density function, common for all the 
mixture components yields a parameter set                      where it holds 

that     ∑   
   
   . For the developed methodology, the Normal (Gaussian) density 

function was considered, thus   ( |  )   ( |     ) with a general covariance matrix 
  and mean vector  . Hence, in that case the component parameters are   
(     ). The maximum likelihood (ML) estimate of the mixture parameters , based on 

a set of  independent observations    ( )    ( ) , is 

 ̂        
 

 (   ) ( ) 

where ( ) is the likelihood of the data set under the model. As it is known, the 

maximum likelihood estimate  ̂does not have in general a closed form expression but 
may be approximated iteratively by applying the EM algorithm. 

 

3.3.3 Complex Object Processing 

It is obvious now that when we have a complex object to analyze, it is much more 
complicated and another approach is employed. In that case, we initially estimate the 
number of candidate (possible) bacterial cells residing in each object, using a 
combination of the 1-nearest neighbor (1-NN) algorithm [37] and the watershed 
algorithm [38]. To do so we create a distance matrix of the binary object using the 
Chessboard distance transform. For each object’s pixel, the distance transform 
computes the distance between that pixel and the nearest non-zero pixel of the 
complementary binary image. We then take its complement, force non-object pixels to 
be -Infinite and compute the watershed transform on that. In order to exclude some 
regions of the object’s background erroneously included by the watershed transform we 
multiply the watershed label matrix with the object’s binary mask (see preprocessing 
Section). At this stage some pixels labeled as 0do not belong to a unique watershed 
region and classified to a watershed region according to the nearest neighbor rule. 
Finally, we determine the centroid of each watershed region, and they represent the 
initial centers of the cells into the complex object (Fig. 14 panel (4a)). 
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Figure 14: Schematic overview of the proposed segmentation methodology. (1) Colony 
segmentation, (2) object extraction, (3) skeleton based classification; (4) Complex object 
segmentation: 4a) Segmentation by watershed algorithm, 4b) “puzzle solving” step, 4c) dataset 
generation, 4d) unsupervised mixture modeling, 4e) final result of bacterial segmentation; (5) 
Collinear object segmentation: 5a) Application of “deep” valley criterion and identification of 
“bow ties”, 5b) final result of bacterial segmentation. At step (3), there is a bifurcation leading to 
two different processing routes, according to the object type that is going to be segmented. 
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Figure 15: Dataset generation examples. The dataset’s size is proportional to the object size. 

 

Another issue that we have to surpass is the inherent property of the watershed 
transformation, oversegmentation. To do so, we again apply the aforementioned idea of 
“deep valley” criterion in a slightly modified way. Now, the algorithm attempts to merge 
the erroneously segmented fragments by following specific “constraints”. All pairs in the 
neighborhood are exhaustively examined under the criterion if they should be merged 
or not. The touching objects will be merged only if there is no “bowtie” identified by the 
criterion. If an object can be merged with more than one neighboring object, then the 
merging with the maximum solidity is chosen (solidity is defined as the ratio of area to 
the corresponding convex hull area).Using the prior knowledge of the elliptical shape of 
the bacteria, we can assume that correct single cell objects tend to have solidity close 
to one. So the new object (after possible merging) is also inserted to a queue in order to 
further examine if it should be merged with another watershed fragment. The developed 
methodology can be regarded as “puzzle” solving, and as we will demonstrate in the 
Results Chapter, is robust and efficient (Fig. 14 panel (4b)).  

 

As a final refinement of the segmented single cell objects and in order to outline the 
boundaries of each detected cells as tight as possible we used a machine learning 
approach based on GMM, described in [39]. In [39], the authors transform the pixel 
intensities into data points for GMM modeling. In our case, as one can observe from 
Fig. 16, the intensities of cells are not trustworthy since they do not exhibit a uniform 
distribution over the cell but a rather noisy one. In order to apply a similar technique, we 
use the distance matrix as reference for data point generation (Fig. 14 panel (4c) and 
Fig. 15) instead of the intensities. More specifically, we assume each pixel as a data 
generator in its neighborhood. The total number of data points N to be generated for 
each image object will be proportional to the number of the already estimated bacterial 
centers C. This pool of N data points are distributed among the pixels of the object 
according to their relative distances (in the sense that a ‘‘more internal’’ pixel will 
‘‘throw’’ more points).The physical meaning of this transform is that the pixels closer to 
the object’s centerline are part of it with higher probability than the more distant ones.  
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Figure 16Panel A: Representation of an image object in 3D space, the pixels intensities lie in the z 
axis. Panel B: Representation of the same object distance transform in 3D space, the distance 

values lie in the z axis. It is obvious that distance transform smoothes object abnormalities while 
sharpens the valley between the two bacteria comprising the object. 

 

We may think of this process (moving from pixel distances to a data points distribution) 
as a reverse engineering process where the resulting data points represent the bacterial 
elliptical shape whose outline is reflected as the cell pixels on the image. Specifically, a 
pixel i with distance di acts as 2-D Gaussian generator N(μ, Σ) with μ=(xi, yi). Finally, all 
the pixels belonging to an object, constitute a GMM [35] having as many components 
as their number (M). Each component is assumed to have a mixing coefficient 
proportional to its distance value and equal to 

 ( )  
  

∑   
 
   

 

For each pixel i, we draw N∙π(i) data points, from a2-D Gaussian distribution centered 
at the pixel’s location and having diagonal covariance matrix Σ with both its elements 
set equal to 0.3. This value (0.3) for the variance was selected to be smaller than 0.5 
(the half-distance between neighboring pixels) in order to ensure that data points 
generated by the model (representing ‘‘cell structure’’) will be distributed in a manner 
that guarantees that their abundance reflect the distance as presented in Fig. 16 in 3-D. 
Thus preventing the generation of ‘‘hills’’ of data points in-between pixel locations. This  
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Figure 17: Application of EM algorithm with MML criterion for model selection. Top: No center 
reduction. Bottom: The centers are reduced from 17 to15. 

 

value of the variance was determined by experimentation and has been kept fixed 
throughout the analysis. 

As mentioned before, the total number N of generated data points is analogous to the 
number of the estimated cell centers C and not to the number of pixels in the image 
object. The justification of doing so is the observation that the area of an object does not 
determine its complexity i.e. how many different bacteria holds. On the other hand, the 
number of identified candidate centers can be such an indicator since it approximates 
the number of cells expected to be present in the image object region. Consequently, if 
an object has a lot of candidate centers, it is justified to ‘‘spend’’ more data points to 
capture adequately the underlying distribution of the different bacteria laying in it. 

The first step of the 2-D Gaussian modeling process after data generation is 
initialization, i.e. initial class assignment by computing the log-likelihood of each data 
point to belong to the initial mixture model, where the complete set of mixture model 
parameters and wm are the mixing coefficients. 

The last step is the application of Finite Mixture Models (FMM) [35] in two dimensions. 
Using the so far extracted information on the generated data as initialization we apply a 
modified EM algorithm [36] which employs the MML criterion [40] for model selection 
(see Fig. 17). This is done in order to identify the model that fits best to the data points. 
It is known that EM algorithm tends to overfit the data and favors the more complex 
solution which in our case translates to a solution with more components than the true 
cells in the image object. The MML criterion ensures that the final model will not be a 
complicated one unless it pays for itself. Therefore, the best solution (according to 
MML) may contain less than the initial C components; i.e. results to an FMM that 
explains the generated data points better. 

However, due to the quality of the image dataset, some cell fragments remain 
unmerged. So as to avoid this, we prune all the remaining objects by checking whether 
their circularity is under a pre-specified threshold Circ. Circularity is defined as the ratio 
of minor axis length to major axis length. The bacteria are assumed to have an elliptical 
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shape, so the oversegmentation pieces tend to have more circular shape so their 
circularity tend to be close to 1. Furthermore, we reject objects having area (in pixels) 
under a pre-specified threshold A, which is computed automatically, according to the 
input image resolution. The rejected objects are finally merged with one of their 
touching neighbors according to maximum solidity criterion, mentioned previously. 

3.4 Cell Lineage Construction 

A bacterium in time series can be found in three different states: 1) at the growing state 
(or stay unchanged), 2) at the division state, and 3) disappear from the microscope’s 
field of view. In order to construct the lineage of a single cell, there are two fundamental 
requirements. The first is an efficient segmentation of the bacteria of each colony in 
time series and the second is to track the bacteria along the consecutive frames.  

Having two consecutive frames, the contours of the first frame’s bacteria (frame n-1) 
and the centroids of the second frame’s bacteria (frame n) are extracted, (refer to Fig. 
18 (2) for details).Then, the algorithm matches the centroids of the nth frame with the 
contours of the (n-1)th frame(Fig. 18 (3)).To achieve this, we check whether the 
bacterial centroids of frame n lie into the bacterial contours of frame n-1 or not. If so the 
bacterium is matched with its “ancestor”, otherwise, we continue to search for a match 
among other cells in the neighborhood. The neighborhood is defined as the bacteria 
lying inside a circle, with its center coinciding with the given centroid and its radius 
equals to twice the bacterium’s length. So defining the unmatched bacterium’s 
neighborhood, we apply nearest neighbor algorithm to match the centroid to one of the 
neighboring bacteria, giving priority to bacteria which have not already found their 
“descendants”. The nearest neighbor rule is modified so as to assign a centroid to the 
nearest bacterial contour, by computing the Euclidean distances between the centroid 
and the bacterial contours’ pixels. These steps are repeated for all the consecutive 
frames of time series. Finally, the extracted tracking information is used to create a 
binary tree, which represents the lineage of a starting single cell (at time zero) (e.g. Fig. 
34 and 35). 

Fig. 19(1) presents the correct pattern of lineage tree structure. By definition, the 
lineage trees must have all their leaves at the same depth (complete binary tree). 
Consequently, the patterns presented at Fig. 19 (2) and (3) are erroneous. The first 
erroneous pattern, which can be called false positive pattern, appeared due to the 
detection of a false positive bacterium at the segmentation process. In order to correct 
this error and make the binary tree complete, we merge the erroneous node (false 
positive, red square) with its sibling. The case of the second erroneous pattern, the 
false negative pattern happens due to the false detection of a nonexistent bacterium-
artifact. To make the binary tree complete, the algorithm splits the putative sibling of the 
missing node to form two discrete bacteria. We must note that the algorithm, in order to 
split an object, exploits the segmentation pipeline concerning a complex object (see 
Section 3.3.3) having the constraint that two discrete objects must be left at the end of 
this operation. 
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Figure 18: Lineage construction algorithm overview. (1) Segmented bacteria of two consecutive 
frames, (2) Bacterial contours and centroids extraction from frames n-1 and n respectively, and(3) 

Bacteria matching. 

 

One significant property that can be derived from the proposed cell lineage construction 
algorithm is that it can also contribute to the segmentation result refinement. This 
capability arises from the problem definition, and consequently the lineage tree 
definition. Other datasets in which bacterial death occurs do not permit those 
refinements because the lineage trees are allowed to be incomplete. 
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Figure 19: Possible lineage sub-tree patterns. (1) Error free pattern, (2) False positive pattern (red 
rectangle) and correction (green rectangle) by merging, and (3) False negative pattern (red 

rectangle) and correction (green rectangles) by splitting. 

 

3.5 Feature Extraction & Visualization 

After bacteria segmentation and cell lineage construction, the proposed pipeline 
extracts several single cell and colony based features. Specifically, the single cell 
features that can be extracted are: 1) area, 2) perimeter, 3) major axis length (length), 
4) minor axis length (width), 5) relative position in the colony, 6) bacterial fluorescent 
protein quantity, and 7) division time between bacterial generations. All those features 
can be measured and exported either for each bacterium individually or for each 
bacterial generation (only in time series). As far as the colony level is concerned, the 
method computes colony growing rates in terms of area (either in pixels or in 
micrometers) and the number of bacteria (solution to the bacterial counting problem).  

Another important feature of the developed methodology is the ability to produce 
several naive, yet useful, visualizations.  Having extracted all the aforementioned rich 
information it is vital for a scientist to be able to “see” it. The method can create 
visualizations either by overlaying the result on input time series, e.g. bacterial area 
visualization (Fig. 29 line (1) middle), or by creating feature analysis graphs, e.g. 
histogram of bacterial length (Fig. 29line (1) rightmost).Further visualizations include the 
cell lineage of all the aforementioned single cell features, e.g. bacterial area 
visualization (Fig. 35).Finally, the user can perform statistical analysis by exporting the 
extracted data to excel files, while they can visualize single cell’s features in order to 
observe their variations with the naked eye. 



Bacterial image analysis based on time-lapse microscopy 

A. Balomenos   41 

4. DATASETS & EVALUATION SCHEME 

In this chapter, we will describe the datasets used in order to evaluate the proposed 
pipeline. Additionally, we discuss the evaluation scheme followed. 

4.1 Datasets’ Description 

Throughout the development and evaluation of the proposed pipeline we used several 
datasets from different labs and image modalities, in order to ensure that the algorithm 
is as generic as possible. Here, due to the lack of space, we will present the evaluation 
results from two datasets that exhibits the most of the capabilities and advantages of 
the developed software over the current state of the art. The first time series dataset 
starts with four single salmonella cells(Fig. 20), named from now on as salPhase 
dataset and acquired by phase contrast optical microscopy(please refer to [41] for 
further details). It consists of 86 consecutive frames (5 minute period) where the initial 
growing stages of four micro-colonies are monitored. 

The second time series dataset starts with a micro-colony of four bacteria acquired with 
DIC confocal microscopy. The bacteria were genetically modified by Tampakaki et al. to 
induce green fluorescent protein (GFP) as follows: Escherichia coli and Salmonella 
typhimurium ST474 strains were grown in Luria-Bertani (LB) medium at 37°C. The 
plasmid pDSK-GFPuv [42] was generously provided by Dr. K. Mysore (Samuel Roberts 
Noble Foundation, Inc.) and was transferred from E. coli to S. typhimurium ST474 by 
electroporation (GenePulser, Bio-Rad) following the manufacturer’s instructions. 
Transformants, containing the plasmid, were selected on LB agar plates supplemented 
with kanamycin at the concentration of 50 μg/ml. We will refer to it as confocal GFP 
dataset throughout the text (Fig. 21). Specifically, it consists of 43 consecutive frames 
(5 minute period) where the growing stages of the micro-colony are monitored. 

In order to provide an objective and solid evaluation, we additionally test the proposed 
pipeline with images from several other laboratories. Specifically, our software was 
evaluated using single frames already used by current state of the art software 
packages. The first, used by MicrobeTracker, is a phase contrast confocal microscopy 
image of sparse E.coli bacteria and small micro-colonies (please refer to Fig. 22 for 
details). 
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Figure 20: Images’ stack of SalPhase dataset. 

 

Time

 

Figure 21: Images’ stack of GFP confocal dataset. 
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Figure 22: Single frame provided by MT. E. coli bacteria forming small micro-colonies 

 

 

Figure 23: Single frame provided by CellTracer. E.coli bacteria forming a single micro-colony[13]. 

 

CellTracer’s single frame holds a micro-colony of E.coli bacteria acquired by phase 
contrast light microscopy and was derived from a dataset produced by Elowitz and 
Rosenfeld [13] and it is available from CellTracer’s webpage (please refer to Fig. 23 for 
details).  

TLM-Tracker’s image shows a micro-colony of Bacillus megaterium bacteria generated 
by Stammen et al. [12]. The image was derived from an image sequence which is 
available at TLM-Tracker’s webpage. The dataset was generated by bright field optical 
microscopy (please refer to Fig. 24 for details). 
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Figure 24: Single frame provided by TLM-Tracker [12]. B. megaterium bacteria forming a single 
micro-colony. 

 

 

Figure 25: Single frame from multi-salPhase dataset. S. typhimurium bacteria forming multiple 
micro-colonies 

 

Finally, in order to demonstrate the power of the proposed algorithm in processing large 
number of cells efficiently we used several frames of a dataset, named from now on as 
multi-salPhase, which contains multiple growing micro-colonies of salmonella (Fig. 25), 
acquired by phase contrast optical microscopy (please refer to [41] for further details). 
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The number of bacteria in some micro-colonies of this dataset exceeds the one 
thousand. 

 

4.2 Evaluation Scheme 

For the evaluation we used a two-way scheme as follows. First, we compare the 
counting results to the ground truth. The ground truth evaluation, as we shall call it from 
now on, was performed on the two time series datasets, salPhase and confocal GFP 
dataset. The ground truth of these datasets was created by manual counting and 
provided by expert users (please refer to Fig. 26 for details). Then we compare the cells 
counted by the proposed method to the results from the current state of the art software 
and to the ground truth. The comparative evaluation, as it will be called from now on, 
was performed on the single frame images described previously. 

The evaluation was performed in terms of commonly used metrics, i.e. true positives 
(TPs) which are actual bacteria that were correctly classified as bacteria, false positives 
(FPs) which are artifacts that were incorrectly classified as bacteria and false Negatives 
(FNs) which are actual bacteria that were not classified as bacteria. We must note that 
artifacts can be either true image artifacts or segments of oversegmented bacteria. 
Furthermore we calculate several metrics that can exhibit the efficiency of the software. 
True positive rate (TPR) which represents the percentage of the actual bacteria in an 
image found by each method and defined as: 

    
  

     
 

Another metric is positive predictive value (PPV) which shows the probability that a 
detected bacterium is true positive. PPR is defined as it is illustrated below: 

    
  

     
 

The former is used to evaluate the sensitivity (recall) and the latter the precision of each 
method. We have also used the F-measure to assess the accuracy of each method. F-
measure is a harmonic mean commonly used to characterize the sensitivity versus 
precision trade-off of competing methods, defined as: 

           
  (       )

(       )
 

In order to understand the evaluation scheme, we present an example of a single frame 
evaluation of salPhase dataset, in Fig. 27. Simultaneously, the segmentation results of 
each colony are illustrated. Going clockwise in each white panel and starting at the top 
left square, we represent the TP, FN and FP correspondingly, 
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Figure 26: Example of a ground truth 

 

 

Figure 27: Demonstration of evaluation and segmentation results of a single frame of the 
salPhase dataset by the proposed methodology. 
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5. RESULTS & DISCUSSION 

As we already stated in the Introduction Chapter, image processing and especially the 
segmentation of bacterial cells from microscopy images is the most critical task in 
microbial related community towards high throughput studies. It is still considered as a 
bottleneck in the experimental procedure of microbial studies since no really automation 
and consecutively high throughputness is achieved. In this chapter we will present the 
advantages of the developed methodology over current existing state of the art, 
following the aforementioned evaluation scheme.  

5.1 Pipeline Evaluation based on Ground truth 

In this section, we assess the robustness and efficiency of our pipeline with respect to 
different imaging modalities datasets. As mentioned before, we will use the salPhase 
and GFP confocal datasets of Koutsoumannis’ lab and present the results in 
comparison to the ground truth. 

Figure 28 presents a summary of the evaluation results versus ground truth. We can 
see that the developed method achieves a high recall (over 99%) and a high precision 
(over 96%) for either dataset. This can be translated as an indication that the developed 
methodology is both sensitive and precise. The importance of these results increases 
when someone considers the fact that the two datasets are generated by different types 
of microscopes (optical and confocal) and imaging method (phase contrast and 
differential interference contrast-DIC). In order to further support the results, we have 
also computed the F-measure which is used to characterize the sensitivity versus 
precision trade-off. The developed method achieves an F-measure of about 98% for 
both datasets, showing further its efficiency and robustness across imaging techniques. 
Additionally, in the same figure, we present the cumulative segmentation errors, i.e. the 
sum of FPs and FNs, for the two datasets. From the curves, one can observe that most 
of the errors appear after the mid time of each experiment. At that time the colonies are 
very crowded and the cells start to overlap and grow in 3-dimensions, leaving the 2-D 
structure of the colony. It is noticeable that we count 6856 bacteria out of 6895 counted 
manually (ground truth) for the salPhase dataset and only 263 cumulative errors. For 
the GFP confocal dataset, the pipeline counted 968 bacteria out of 969 counted by the 
annotators and only 40 cumulative errors. 

Next, we move to visual inspection of the segmentation results. Figure 29presents 
some segmentation examples of salPhase (line 1) and confocal GFP (line 2) datasets. 
As it can be observed from a visual review of the figure, the segmentation is pretty 
accurate and the overlaid red contours outline in detail the real contour of each 
bacterium (line 1 leftmost and line 2 leftmost). It is obvious that having such an accurate 
segmentation, we are able to have trustworthy feature extraction and the following 
downstream analysis (e.g. statistical analysis, model development and kinetics 
estimation). The two rightmost images of line 1 present a color-based visualization of 
the area, overlaid on the cells, and the corresponding histogram respectively. The 
different colors overlaid on the bacteria represent their size in squared micrometers, as 
indicated by the adjacent color bar. This visualization enables the user to easily 
distinguish bacteria independently from the feature chooses to visualize. The adjacent 
to the right image displays the cell area histogram. The two rightmost images at line 2 of 
Fig. 29 show the GFP quantification visualization and the corresponding histogram 
respectively. In the first image, the different colors of the bacteria represent their 
average GFP intensity included in each cell contour as color coded by corresponding 
color bar. The results are presented on a synthetic image based on the original input 
image. 
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Figure 28: Evaluation results for SalPhase dataset. Panel A: Evaluation results for the complete 
dataset and cumulative segmentation errors (FNs+ FPs) (please refer to Chapter 4). Panel B: The 

same as in Panel A but for the confocal GFP dataset. As we can see, the developed method, while 
fully automated and user friendly, achieves a high F-measure score (above 97%). This measure is 
consistent regardless the image acquisition modality (i.e. optical, confocal, phase contrast /bright 

field/GFP staining. 

 

 

Figure 29: Evaluation results presentation for SalPhase dataset. Row 1 from left to right: Original 
dataset (stack of phase contrast images), cell segmentation result on one colony (red ellipses 

indicate the contours of segmented cells), and bacterial area visualization of the same colony and 
histogram of the segmented bacterial areas. Row 2 from left to right: Original dataset (stack of 

confocal GFP images), cell segmentation result (red ellipses indicate the contours of segmented 
cells), GFP visualization of the colony on the initial image and histogram of the bacterial GFP 

quantity. We can observe from the figure that the developed methodology is efficient and robust 
while fully automated for a stack of images, usually exhibiting limited intra-variability in terms of 

focus and illumination. 
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Figure 30: Bacterial Growth curves for each colony in the salPhase dataset (line 1) and in the GFP 
confocal dataset (line 2), corresponding colony Area Growth curve, and bacterial length 

distribution. We can observe from the figure that the developed methodology embeds the 
capability of measuring several colony and single cell properties of high importance for further 

analysis. 

 

Figure 30 presents several software capabilities offered for further data analysis of the 
results. Specifically, the subfigures refer to the salPhase and confocal dataset 
correspondingly. The leftmost graph presents the growth rate of each colony individually 
for the 86 frames of the dataset (approximately 7.17 hours). It can be clearly observed 
that the number of bacteria in each colony increases exponentially as it is expected 
according to [41]. The same holds for the colony area. Additionally, the developed 
software can produce histograms for all the single cell features that were mentioned in 
Section 3.5. For example, we present here the histogram of bacterial length (in 
micrometers) of a growing colony which can be used to infer the corresponding 
distribution. Another interesting feature is that one can also create movies of growing 
colonies visualizing single cell features.  

As an additive validation and presentation of the developed method in terms of systems 
biology point of view, we fitted the bacterial number increase with time for each micro-
colony to the primary model of Baranyi and Roberts [43] for the estimation of the growth 
kinetic parameters lag time (λ) and specific maximum growth rate (μmax). In order to 
describe the abrupt transition from the lag to the exponential phase characterizing the 
observed growth, the values of the parameters m and n of the model were fixed to 0 
and 20, respectively as done in [41]. Figure 31 shows a comparison of the fittings for 
data counted manually and with the developed software for a micro-colony and the 
estimated kinetic parameters for the three micro-colonies. As one can observe, for all 
micro-colonies tested, the kinetic parameters that were estimated from the manually 
counted bacteria are almost identical to those estimated from data derived from the  
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Figure 31: Comparison of the fittings for salPhase dataset counted manually and by the 
developed software for a micro-colony; Tables present the kinetic parameters of microbial growth 

estimated. 

 

developed software. These results indicate the software can provide accurate data for 
predictive microbiology as it is outlined in [41]. 

Conclusively, the developed methodology is efficient and robust while fully automated 
even for stacks of images, usually exhibiting limited intra-variability in terms of focus 
and illumination. This intra-variability of a dataset, although limited, has tremendous 
impact on image analysis since standard techniques are often so sensitive that output 
no results at all.  Furthermore, it embeds the capability of measuring several colony and 
single cell properties of high importance for further analysis. 

 

5.2 Software Evaluation versus State-of-the-Art 

At this point, we would like to justify the choice of the specific state of the art software 
packages used in the conducted comparative evaluation. Those software packages are 
the most commonly used in microbiological labs worldwide. As such, they have been 
used in several microbial studies [44-50]. Our objective here is to show that the  
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Figure 32: Software comparison evaluation with the state-of-the-art. First two columns present the 
segmentation/cell detection results of the developed and MicrobeTracker. For the CellTracer and 

TLM Tracker we show no segmentation images since they could not operate with all different 
datasets. The third column summarizes the performance of each method for every different 

dataset. As we can see from the segmentation results (first column) and the relative F-measure 
(≥96% for all cases), the proposed method is robust for different imaging modalities (optical and 

confocal phase contrast, optical bright field) and for data acquired by different labs. Furthermore, 
if one inspects the segmented images, it is clear that the cells’ contours are more reliable, leading 

to a more efficient and robust cell property estimation and GFP measurements. 

 

proposed pipeline is an improvement over the state of the art and to exhibit its ability to 
process images from different laboratories and imaging methods. 

In order to do so, we used the same data that were used by the state-of-the-art software 
to demonstrate their performance upon their presentation. For the sake of an objective 
evaluation, we evaluated each software package with all considered datasets. At this 
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point we must stress that the state of the art software packages need different 
parameterization for images acquired by different imaging methods. Thus, we were 
forced to do extensive experimentation so as to choose the “optimal” parameters set. 
We must also state that the aforementioned parameterization is not trivial and 
straightforward since it also requires to some extent, knowledge of image processing 
concepts (i.e. filter types and their corresponding properties, image segmentation 
methods, etc). On the other hand, the parameterization of the proposed method is 
independent of image modality and depends only to image resolution. The parameters 
are set automatically by the software, once the user inputs the resolution, something 
that frees the user from image processing related concepts. 

Figure 32 exhibits the comparative evaluation results. The microbeTracker was found to 
be the most robust since it is the only that was able to produce results for all images 
used in the evaluation. The rest of the packages gave no results for some image 
modalities despite that we tried several different parameterization. The first and the 
second column of Fig. 32 present the segmentation results (the detected cells are 
outlined by green ellipse) of the developed method and microbeTracker. 

It is clear that the developed methodology is superior from MicrobeTracker in all cases. 
We can notice that in Fig. 32 line 1 column 2, MicrobeTracker gives extremely 
inaccurate results. One could say that this is prospectively since this dataset is ours but 
this claim is rejected by the rest outcomes in the evaluation. So, in order to quantify the 
performance of the different methods we present at the third column of Fig. 32, the 
corresponding summary tables. The proposed method exhibits a notable F-measure 
advantage (over 96%) for all datasets considered. The most significant finding is that 
the proposed pipeline outperforms the rest of the software packages even when it 
comes to their own images. The dashes shown in the tables indicate that the specified 
software did not give results for the specific image modality. The software that was 
found to be the most specific in terms of imaging modality is CellTracer which gave 
results only for its own dataset. It is remarkable that no software package except for the 
proposed gave accurate result in salPhase dataset which contains more than one and 
even over-crowed micro-colony. Additionally CellTracer and TLM Tracker cannot 
analyze images with sparse bacteria and small micro-colonies, such as 
MicrobeTracker’s image. In summary, we can see that the proposed pipeline found 
approximately all the bacteria (for all the images under consideration), i.e. high recall 
percentage-over 98%, while traced a few artifacts as bacteria, i.e. high precision 
percentage-over 94%. At this point and after this evaluation we are safe to conclude 
that the developed methodology not only exhibits superior performance to the current 
state of the art but also is the most generic one since it can process and give 
trustworthy results for several combinations of laboratories, microscopy types and 
imaging techniques. Finally, the developed methodology is fully automated, since does 
not require the user to be familiar with advanced image processing concepts nor 
requiring obscure input rather than the dataset to process and the relationship of 
physical dimensions to imaging pixel size (this information is given by the image 
acquiring software of the microscope system). 

 

5.3 Discussion and Additional Software Capabilities 

Cell lineage construction is a profoundly significant functionality that can favor 
microbiologists in their research. Its importance lies on the fact that the information 
contained can be used to track specific features of a single cell from the time of its birth 
to several progenitors after and several ancestors before. CellTracer and TLM-Tracker 
provide this capability although they do not exploit extensively the derived information,  
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Figure 33: Relative cell position to the centroid of the colony (colony mapping). 

 

while MicrobeTracker does not. In the developed software package, the user is offered 
the ability to link to the cell lineage with several extracted features during the dataset 
processing, while all the aforementioned visualization capabilities are governed by user-
defined queries. The displayed trees in Fig. 33 and Fig. 34correspond to the same cell 
lineage through time (left vertical axis) from salPhase dataset while the displayed trees 
of Fig. 35 and Fig. 36 correspond to the same cell lineage through time (left vertical 
axis) from GFP confocal dataset. Each figure shows one different visualization 
capability available from the software. One interesting feature that can be visualized is 
the position of each bacterium relatively to the colony’s centroids (Fig. 33). 

Figure 34 shows the cells’ area lineage of salPhase dataset’s first colony. One can 
easily see how the area of a cell is growing until a division takes place. When a node 
turns from red to blue and then again to red, it is indicated that a segmentation 
inaccuracy occurs. Specifically, in the area visualization lineage, it is implied that the 
algorithm made a segmentation error and then estimated the bacterial area wrongfully. 
In Figure 35 is illustrated the GFP quantification on the lineage of confocal GFP 
dataset’s colony. We must note that this functionality is offered by TLM-Tracker too. 
Nonetheless, none of the competitor software packages infer the division time of the 
bacteria. 
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Figure 34: Area visualization, we can see the evolution of cell area through time and cell lineage 
simultaneously, one easily see the “critical” cell size just before cell division. 

 

 

Figure 35: GFP quantification visualization through time (GFP confocal dataset). The root node of 
the lineage is a pseudo node, i.e. they do not represent an actual bacterium, because the first 

frame of the dataset contains a micro-colony of four bacteria and not a single cell. 



Bacterial image analysis based on time-lapse microscopy 

A. Balomenos   55 

 

 

Figure 36: Cell division time visualization (red branch shows that the division time of a cell is 
more than 60 minutes). The root node of the lineage is a pseudo node, i.e. they do not represent 

an actual bacterium, because the first frame of the dataset contains a micro-colony of four 
bacteria and not a single cell. 

 

 

 

In Figure 36 we display the lineage which is linked to the division times of the cells. This 
is a very useful property since it can be used to record and study the division time 
across experiments under different conditions. An interesting application could be the 
linkage of division time with position of the cells in the growing colony.  In addition, the 
proposed pipeline can mark the bacteria of the given lineage having division times 
between user defined thresholds (e.g. at Fig. 36 red branches show if the division time 
of a cell is more than 60 minutes). 

 

 

Figure 37: Average bacterium area per generation according to lineage of Fig. 33 (left).Average 
bacterium division time per generation according to lineage of Fig. 35 (right). 
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Figure 38: Multi-salPhase dataset analysis (frame 65 and 78). The four colonies merged with each 
other. The rightmost red frames illustrate the input images. The cyan and the purple boxes 

illustrate the evaluation statistics of each colony and each frame correspondingly. 
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Another novel functionality of the proposed methodology is that having the cell lineage 
we can track the cell generations in time. Knowing a single cell’s generations we can 
create graphs of the average value (and relative deviations) of any (of the measured) 
feature per generation and histograms for each generation individually. For example, in 
Fig.37 left we show the average bacterial area for each generation of salPhase dataset, 
while in Fig. 37 right the average division time is displayed. To the best of our 
knowledge, the developed methodology is the only that offers this variety of capabilities 
as far as the lineage construction is concerned. 

Another significant issue we should discuss is that the proposed methodology is able to 
analyze over-crowed images. As it was presented in Section 5.1, the algorithm can 
segment images with more than one colony in contrast to the rest of the software 
packages. However, the proposed pipeline is efficient even for analyzing over-crowed 
colonies, i.e. containing over thousand bacteria. It is also remarkable that for some 
datasets in which the micro-colonies merge with each other, the algorithm continues to 
segment efficiently the bacterial cells efficiently. Fig. 38 illustrates this functionality. We 
also provide the evaluation results of each colony individually for each frame. It can be 
observed that evaluation metrics of these images and the evaluation metrics of less 
difficult datasets (Section 5.1) are almost stable (recall over 98%, precision over 91% 
and F-measure over 95%). 

Furthermore, we examined the proposed pipeline in terms of computational time. In 
general, the execution time of the proposed pipeline increases quadratically with the 
number of bacteria as implied by the left graph of Fig. 39. In this graph, execution time 
is illustrated versus time (where time is represented by frames) (salPhase dataset’s 
images). As we reach the end of the dataset, the images contain more bacteria. In order 
to make a more precise analysis, we examined the segmentation time according to the 
number of bacteria. Practically, we subtracted the preprocessing time from the 
execution time, so we isolated the so called segmentation time. We can observe from 
the Fig. 39right graph that segmentation time is O(n2) where n stands for number of 
bacteria. The curve fluctuates because the segmentation time is affected by image’s 
quality. If a specific frame is of less quality (e.g. due to noise existence), then 
oversegmentation problem increases, i.e. the initial segmentation is not so precise, so 
the watershed transformation segments to more sub-objects a colony’s complex 
objects, and more time is needed for puzzle solving process. Consequently, we 
conclude that the algorithm complexity is quadratic not to the number of bacteria but to 
the number of fragments lying in each object. If we assume that image quality in a given 
dataset is constant we can infer computational time to increase analogous to the length 
of the colony. Simultaneously, the computational time of EM algorithm is pseudo-
quadratic, having the iterations number of the algorithm to be constant, to the number of 
clusters (i.e. objects-bacteria) and the generated dataset’s size, i.e. O(k∙n). Thus, the 
time consumed by EM phase depends of a colony’s size, i.e. while colony’s size 
increases, k and n increases too. Consequently, the algorithm’s complexity is quadratic. 
It is remarkable though that despite the fact computational time rises quadratically the 
computational time per bacterium is approximately constant, i.e. O(1), see Fig. 39 
middle graph for details. 
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Figure 39: Computational time curves. Execution time of each frame (left). Segmentation time per 
bacterium of each frame (middle). Segmentation time of each frame (right). 
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6. CONCLUSION AND FUTURE WORK 

In this work, we presented a fully automated tool, which can be found very useful while 
enabling high throughput processing of time lapse datasets in microbiology. The 
examples of the software utilization proved the robustness and universality of the 
proposed pipeline. The proposed methodology enables studying how biofilms are 
established and evolving under different environmental conditions in a system biology 
approach, by providing large amount of data about the development of bacterial 
colonies, i.e.:  

• How fast a colony grows? 

• How fast a colony’s bacteria are duplicated? 

• Check whether the position of a bacterium in the colony plays a significant role to its 
reproduction 

• How environmental conditions affect a specific bacterial type and to what extent?  

All the extracted information can be exploited so as to parameterize simulation models 
effectively. So our efficient high throughput analysis tool extracting several features 
from individual cells or complete micro-colonies, e.g. shape, area and axes length, is 
absolutely necessary. 

Future work includes the evolution of the methodology focused on certain stages of the 
pipeline. Specifically, one improvement might be the skeleton extraction algorithm in 
order to derive more precisely results. So, by improving this, we will be able to compute 
the “deep valley” criterion more accurately. Additionally, improvements on the puzzle 
solving algorithm would make the cell synthesis from fragments more efficient. As far 
as, the lineage construction is concerned, we are going to advance the algorithm in 
order to become more insensitive to bacterial perturbations (inside a colony) and 
movement. This will make lineage construction algorithm more robust and reliable. 
Another promising extension, we want to accomplish is to analyze datasets of different 
environments, i.e. micro-fluidic devices or synthetic tissues. However, the most 
significant goal we want to achieve is to exploit the information and the data extracted 
from several datasets, i.e. datasets with different environmental conditions, in order to 
apply a system’s biology approach in micro-colonies development. 
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