
  

 
 

ΝΑTIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS 
 

SCHOOL OF SCIENCE 
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS 

 

 
 
 

 
THESIS 

 

 
IMPLEMENTATION OF THE AES ENCRYPTION ALGORITHM IN PARALLEL GPU 

AND CPU ARCHITECTURES 

 
 
 

George Nikolaou Gousios 

Nikolaos Anastasiou Dimizas 
 
 

 
 
 

 
 
 

 
Advisor: Dimitris Gizopoulos, Professor 

 

 
 
 

 
 
 

 
ATHENS 

 

NOVEMBER 2015 
  



 

 
 

ΔΘΝΗΚΟ ΚΑΗ ΚΑΠΟΓΗΣΡΗΑΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΧΝ 
 

ΥΟΛΖ ΘΔΣΗΚΧΝ ΔΠΗΣΖΜΧΝ 
ΣΜΖΜΑ ΠΛΖΡΟΦΟΡΗΚΖ ΚΑΗ ΣΖΛΔΠΗΚΟΗΝΧΝΗΧΝ 

 

 
 
 

 
ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ 

 

 
ΤΛΟΠΟΗΖΖ ΣΟΤ ΑΛΓΟΡΗΘΜΟΤ ΚΡΤΠΣΟΓΡΑΦΖΖ AES Δ ΠΑΡΑΛΛΖΛΔ 

ΑΡΥΗΣΔΚΣΟΝΗΚΔ CPU ΚΑΗ GPU 

 
 
 

Γεώργηος Νηθοιάοσ Γούσηος 

  Νηθόιαος Αλαστασίοσ Γήκηδας 
 
 

 
 
 

 
 
 

 
Δπηβιέπωλ: Γεκήτρες Γθηδόποσιος, Καζεγετής 

 

 
 
 

 
 
 

 
ΑΘΖΝΑ 

 

ΝΟΔΜΒΡΗΟ 2015 

 

  



 

 

 

 
THESIS 

 

 
 

IMPLEMENTATION OF THE AES ENCRYPTION ALGORITHM IN PARALLEL GPU 

AND CPU ARCHITECTURES 
 
 

 

 

 

 

 

 

 

GOUSIOS GEORGE 

Α.Μ.: 1115201000031 

 
DIMIZAS NIKOLAOS 

Α.Μ: 1115201000017 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
ADVISOR: Dimitris Gizopoulos, Professor 

 

 
 
 

  



 

 

 

 
ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ 

 

 
 

ΤΛΟΠΟΗΖΖ ΣΟΤ ΑΛΓΟΡΗΘΜΟΤ ΚΡΤΠΣΟΓΡΑΦΖΖ AES Δ ΠΑΡΑΛΛΖΛΔ 

ΑΡΥΗΣΔΚΣΟΝΗΚΔ CPU ΚΑΗ GPU 
 
 

 

 

 

 

 

 

 

ΓΟΤΗΟ ΓΔΧΡΓΗΟ 

Α.Μ.: 1115201000031 

 
ΓΖΜΗΕΑ ΝΗΚΟΛΑΟ 

Α.Μ: 1115201000017 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
ΔΠΗΒΛΔΠΧΝ: Γεκήτρες Γθηδόποσιος, Καζεγετής 

 

 
 
 

  



 

ABSTRACT 

 

 The subject of this thesis is the implementation of the AES encryption algorithm in 
CUDA parallel code, aiming a significant acceleration over the original serial (C 

language) code. Parallel software development was realized using a baseline serial C 
code for the AES algorithm, though many changes have taken place, in spite of the 
similarity of the two implementations. 

 In the beginning of the thesis, we were called to find a way to write code which 

would have identical functionality to the C code used as a baseline. Though the initial 
code was in C and CUDA supports C and C++ code, which is something that would 
make the production of new code seem easy, the main problem was finding a way to 

make proper use of all available CUDA threads and obtain the best possible 
acceleration, without removing any features of the algorithm or reducing its functionality.  

 After the finalization and validation of the CUDA code, we implemented 
performance optimizations. Finally we developed some tests to determine the actual 

(real-time, not theoretical) acceleration to an Encryption-Decryption procedure, 
performed several (10/100/1000) times. Results confirmed our intuition. In conclusion, 
certain variants of the AES encryption algorithm can be accelerated by GPUs obtaining 

significantly improved performance, which could reach acceleration levels up to 70 
times compared to the baseline serial code. 
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ΠΔΡΗΛΖΦΖ 

 

 Τν αληηθείκελν ηεο παξνύζαο πηπρηαθήο εξγαζίαο είλαη ε πινπνίεζε ηνπ 
αιγνξίζκνπ θξππηνγξάθεζεο AES κε ρξήζε CUDA παξάιιεινπ θώδηθα, κε θύξην 

ζηόρν ηελ επίηεπμε ζεκαληηθήο επηηάρπλζεο ηνπ αιγνξίζκνπ, ζε ζρέζε κε ηελ ζεηξηαθή 
πινπνίεζή ηνπ. Γηα ηελ πινπνίεζε ηνπ ινγηζκηθνύ, ρξεζηκνπνηήζεθε ν αληίζηνηρνο 
θώδηθαο ζε C ωο βάζε, αλ θαη ελζωκαηώζεθαλ αξθεηέο αιιαγέο, παξ‟όιε ηελ ζπλάθεηα 
πνπ παξνπζηάδεη ε C κε ηελ CUDA ωο γιώζζεο πξνγξακκαηηζκνύ. 

 Σηελ αξρή ηεο αλάπηπμεο ηνπ θώδηθα, θαινύκαζηαλ λα βξνύκε έλαλ ηξόπν λα 
ρξεζηκνπνηήζνπκε ηελ CUDA γηα λα παξάγνπκε έλα πξόγξακκα ην νπνίν ζα είρε 
αθξηβώο ηελ ίδηα ιεηηνπξγηθόηεηα κε ηνλ αξρηθό ζεηξηαθό. Παξ‟όηη απηό κπνξεί λα 

θαίλεηαη απιό ιόγω ηεο νκνηόηεηαο ηεο C κε ηελ CUDA,  ην πξαγκαηηθό δήηεκα ήηαλ λα 
βξνύκε έλαλ ηξόπν ώζηε λα αμηνπνηήζνπκε όζν δπλαηόλ θαιύηεξα ην πιήζνο ηωλ 
CUDA threads έηζη ώζηε λα πεηύρνπκε ηελ θαιύηεξε δπλαηή επηηάρπλζε, ρωξίο όκωο 

παξάιιεια λα ζπζηαζηνύλ νπνηεζδήπνηε ιεηηνπξγίεο ηνπ ινγηζκηθνύ ή λα κεηωζεί ε 
ιεηηνπξγηθόηεηά ηνπ. 

 Μεηά ηελ αλάπηπμε ηνπ CUDA θώδηθα, ζπκπεξηιήθζεζαλ θάπνηεο δηνξζώζεηο θαη 
βειηηζηνπνηήζεηο ζην πξόγξακκά καο, έηζη ώζηε λα κεηωζνύλ θαηά ην δπλαηό νη  

πεξηηηέο θαη ρξνλνβόξεο δηαδηθαζίεο. Σηε ζπλέρεηα, ζπκπεξηιάβακε θάπνηα εθηειέζηκα 
tests κε ζθνπό λα κεηξήζνπκε ζηελ πξάμε ηελ επηηάρπλζε ζε έλαλ επαλαιακβαλόκελν 
θύθιν Κξππηνγξάθηζεο-Απνθξππηνγξάθηζεο. Τα απνηειέζκαηα επαιήζεπζαλ ηηο 

αξρηθέο καο εθηηκήζεηο. Τέινο, θαηαιήμακε όηη νξηζκέλεο κνξθέο ηνπ AES αιγνξίζκνπ 
κπνξνύλ λα επηηαρπλζνύλ ζε ζεκαληηθό βαζκό, έηζη ώζηε λα νινθιεξώλνληαη αθόκα 
θαη 70 θνξέο πην γξήγνξα απ‟ηνλ ζεηξηαθό C θώδηθα. 
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 The current document is the thesis of George Gousios and Nikolaos Dimizas, as 

part of the undergraduate study program of the Department of Informatics and 

Telecommunications (D.I.T) of the National and Kapodistrian University of Athens  

(abbreviated in Greek as “ΕΚΠΑ”). The current project was developed and tested using 

a remote server equipped with a CUDA-enabled NVIDIA GPU. On our end, we used 

Linux based distributions to develop the code and connected to the aforementioned 

server via the ssh protocol. 

For the completion of the current thesis, we would like to thank our advisor 

Professor, Dimitris Gizopoulos and the department‟s PhD candidate Stamos 

Katsigiannis for their cooperation, advice and their valuable contribution to the 

successful completion of this project. 
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1. INTRODUCTION 

 

Subject and Goals of the Thesis 

 

The current thesis focuses on the development of parallel programs for AES-

based encryption in the CUDA language for GPUs. The variant of AES algorithm we 

have used is the AES ECB, which has been implemented previously in C language [4]. 

With the vast amount of data in PCs, servers, laptops, smartphones, tablets, etc. 

today, and the continuous expansion of the Internet and the way people use it, (data 

transfers, instant messaging, etc.), it‟s been clearer than ever that there is a growing 

need for security and data privacy against attackers. Personal information leakage is 

becoming more dangerous than ever, and unreliability of used tools is rendered 

unacceptable, to such extend that cryptography is implemented in the vast majority of 

the world‟s applications that use the Internet (or any type of network) as a means of 

communication. For example, Skype uses end-to-end cryptography using the AES 

algorithm among other methods [5]. It‟s even worth mentioning that cryptography is also 

used on offline applications as a means of extra privacy.  

How can we make sure that such a compute-intensive task can be performed as 

fast as possible? While the CPU frequency is a significant factor on a system‟s 

processing power and therefore execution capability, the effort of the computing 

industry to keep Moore‟s Law valid for more years to come has driven the integration of 

more processing cores per chip (either CPU or GPU chip), in order for the hardware to 

be able to keep up with the execution needs.  

Throughout the years, different approaches of optimization have been made, 

many of those concerning not only the CPU, but also the GPU. Such approaches can 

be useful for many applications. In fact, many systems nowadays include several 

dozens (or even hundreds) of CPUs and GPUs to meet the execution demands. The 

hardware compatibility is not enough though; there has to be proper software 

development in order to take full advantage of the techniques that can be used. 

Software APIs (such as POSIX, OpenMP, CUDA, OpenCL, etc, depending on the goals 

of the developer) are commonly included in nowadays‟ software from the start of their 

production. 
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Cryptography is usually a service extension (or even a service on its own), thus it is a 

burden on the computer (client computer or server depending on whether client-side or 

server-side encryption is used). Parallel programming is a way to optimize (often 

rewrite) the serial code of the task in order to make better use of the hardware and as a 

result complete computing tasks faster. So how can we use parallel programming to 

achieve that in the case of cryptography? That is what remains to be examined through 

the rest of this thesis. 
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2. ENCRYPTION ALGORITHMS 

 

Since the very first days that encryption started to be implemented in applications, 

many efforts have taken place to find a secure way to encrypt data, but also in a way 

that the whole process is efficient. Once again different approaches resulted in several 

cipher categories: 

 

2.1 Encryption Algorithm Categories 

 

a)Symmetric/Asymmetric Ciphers 

 

Figure 1: Encryption process 

 

i) Symmetric encryption is the oldest and best-known technique. A secret key, which 

can be a number, a word, or just a string of random letters, is applied to the text of a 

message to change the content in a particular way. This might be as simple as shifting 

each letter by a number of positions in the alphabet. As long as both the sender and the 

recipient know the secret key, they can encrypt and decrypt all messages that use this 

key. That means that anyone who has the key can use it to decrypt the cipher and have 

access to the data the two participants of the communication try to protect. As a result, 

Symmetric Encryption is quite simple as well as very dangerous. Usually the key is 



IMPLEMENTATION OF THE AES ENCRYPTION ALGORITHM IN PARALLEL GPU AND CPU ARCHITECTURES 

GOUSIOS GEORGE, DIMIZAS NIKOLAOS  17 

being distributed via a public network (e.g. the Internet) and a privacy breach is very 

likely, should the key fall into the wrong hands. 

 

ii) Asymmetric encryption solves the aforementioned security problem. In an 

Asymmetric algorithm there are two keys instead of one, which are related in a way that 

they are considered a pair. The first key – the public key – is made available to anyone 

who wants to send a message to person A. The second key – the private key – is kept 

secret so that only person A knows it. Any message encrypted with the public key can 

be decrypted (using exactly the same algorithm) with the private key, and vice versa.  

 

So, if Asymmetric encryption is so much safer, why are Symmetric algorithms way 

more popular? That is because Asymmetric encryption is much slower and requires far 

more processing power for both encryption and decryption of the message. 

 

b) Block and Stream Ciphers  

Block and Stream ciphers are a sub-category of Symmetric Ciphers. 

i) Block ciphers encrypt a group of plaintext symbols (called a block) with a fixed size 

(e.g. 128-bit). The encoding of each block may or may not depend on any of the 

previous blocks. It should be noted that the same key is used to encrypt every block of 

the text. The DES (Data Encryption Standard) and the AES (Advanced Encryption 

Standard [9]) algorithms are perfect examples of Symmetric Block Ciphers. 

 

ii) Stream ciphers convert one symbol of plaintext directly into a symbol of ciphertext.  

The encoding of each block may or may not depend on any of the previous blocks, as 

well. For each symbol, a different key is generated and used.  

 

Both Block and Stream ciphers have their pros and cons and that is why they are 

used in somewhat different situations, according to the needs of the application.  

Block ciphers have high diffusion (information from one plaintext symbol affects several 

ciphertext symbols – the whole block it belongs to) and they have higher immunity to 
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tampering (it‟s more difficult to insert symbols without detection). On the other hand, 

they are slower, (the entire block must be accumulated before encryption or decryption 

can begin), and an error in one symbol can corrupt the entire block. 

Stream ciphers are faster in general (linear in time and constant in space) and 

have low error propagation (an error in encrypting one symbol will most likely not affect 

subsequent symbols). Their disadvantage lies on the fact that they have low diffusion 

(all information of a plaintext symbol is contained in a single ciphertext symbol) and that 

they are susceptible to insertions/modifications (a potential attacker can insert spurious 

text that looks authentic). 

There are also other categories of cipher algorithms that are out of the scope of 

this thesis and therefore will not be examined. 

 

2.2 Block Cipher Modes  

 

An Encryption algorithm can be paired with a block cipher mode of operation to 

determine the way the algorithm is being applied to a file that contains more than 1 

blocks of data. Below we present some of the basic categories of Block Cipher Modes 

[12]. 

 

i)ECB (Electronic Codebook): the file is divided into blocks and each block is 

encrypted separately (which means there are no dependencies between blocks of the 

file). ECB has the disadvantage that identical plaintext blocks are encrypted into 

identical ciphertext blocks, which means that it does not hide data patters well. It is 

considered the simplest cipher mode though. 

 

ii)CBC (Cipher Block Chaining): an IBM invention from 1976. In this mode, each block 

of plaintext is XORed with the previous ciphertext block before being encrypted. This 

way, each ciphertext block depends on all plaintext blocks processed up to that point. 

CBC also makes use of an initialization vector in the first block, in order to make each 

message unique. 
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iii)GCM (Galois/Counter Mode): widely adopted because of its efficiency and 

performance. It also includes authentication code for the message and is designed to 

provide both data authenticity (integrity) and confidentiality. It has minimum latency, 

minimum operation overhead and its throughput rates are considered state of the art, 

 

 

2.3 The AES encryption algorithm 

 

 

Figure 2: AES logo 

 

As we mentioned above, the AES (Advanced Encryption Standard) Encryption 

Algorithm is a symmetric block cipher used on many applications throughout the world. 

It is also known as the Rijndael algorithm though that name refers to a family of cipher 

algorithms with different block sizes and key lengths. As far as the AES algorithm is 

concerned, it includes three members of the Rijndael family, each one having a 128-bit, 

196-bit and 256-bit key respectively, as well as a fixed block size of 16 bytes (=128 

bits). 

From a historical point of view, the AES algorithm is a straight evolution from the 

DES (Data Encryption Standard) algorithm. The DES algorithm (a symmetric block 

cipher that has a Feistel structure [16]), which was published as the Federal Information 

Processing Standards (FIPS) 46 standard in 1977, used a fixed 56-bit key and 64-bit 

block size. Attempts had been made through the years to crack it and several of these 

were successful and within reasonable time limits. Through the years the DES‟s security 

was questioned, with the main argument being that the 56-bit key used was too short. 

During the 90‟s, the RSA (Rivest, Shamir and Adelman) conducted a series of cipher 

crack challenges to determine whether the algorithm was sufficient in terms of security. 

As a result, in 1999 (the 3rd and final RSA challenge to crack the DES), the message 
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“See you in Rome (Second AES Candidate Conference, March 22-23, 1999” was 

cracked in a little more than 22 hours, indicating the redundancy of DES and pointing 

out the need of a more advanced and secure cipher – DES belonged to the past. 

There were certain approaches to address DES‟s security issues, the most 

important of which being the 3DES algorithm. On this approach, the DES algorithm is 

applied three times on each block, and the key size is increased in most cases, since 

three separate keys of 56 bits are used that may or may not be identical. As a result the 

key size of the algorithm can be 56 bits (all three keys are identical), 112 bits (two of the 

keys are identical) or 168 bits (all keys are different). The increase of the key size did 

not solve the problem however, as due to certain vulnerabilities when reapplying the 

same encryption three times, using 168 bits has a reduced security equivalent to 112 

bits and using 112 bits has a reduced security equivalent to 56 bits. That is one of the 

reasons 3DES was questioned in terms of security, and therefore wasn‟t a preferable 

option when other algorithms emerged.  

In 2000, the AES algorithm was introduced with several advantages over its 

predecessor, such as the choice between 128-, 196- and 256-bit key sizes and a more 

mathematically efficient and elegant cryptographic algorithm. Since then, the AES 

algorithm is implemented on both software and hardware units and is considered fairly 

secure up to this day, which means that is admittedly difficult to break using 

conventional computing resources. Its reliability is verified by the fact that it was initially 

selected for use within the US government [9] and nowadays it is used almost 

everywhere, including most wireless networks. 

 

The cipher optimally uses some pre-calculated tables that store values which are 

being used throughout the encryption rounds. These tables are often called S-boxes, 

Rcons, etc. The reversed tables are being used in the decryption stage of the algorithm. 

Each of these tables has a certain purpose in the program. In fact it is accessed on a 

specific step of the algorithm. 

One reason that AES was better in general than 3DES is that 3DES uses 64 bit 

blocks, the same as DES, while AES uses 128 bit blocks, which means that using AES 

provides additional insurance that it is harder to sniff leaked data from identical blocks. 

When using 3DES, the user needs to switch encryption keys every 32GB of data 

transfer to minimize the possibility of leaks; identical to when using the standard DES 
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encryption. Last but not least, AES proved itself to be much faster than 3DES. Of 

course, this is also a matter of hardware configuration as well as optimization, but in 

general, that point stands [31]. 

 

 
  

KEY SIZE POSSIBLE COMBINATIONS 

1-bit 2 

2-bit 4 

4-bit 16 

8-bit 256 

16-bit 65536 

32-bit 4.2 x 109 

54-bit (DES) 7.2 x 1016 

64-bit 1.8 x 1019 

128-bit (AES) 3.4 x 1038 

192-bit (AES) 6.2 x 1057 

256-bit (AES) 1.1 x 1077 

Table 1: Key size vs Possible Combinations to break the cipher 

using brute force attack[32] 
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2.3.1 Steps of the AES cipher 

 

 

Figure 3: Steps of AES algorithm 

The AES algorithm consists of a certain number of rounds of encryption on each 

block, which is 10 for 128-bit keys, 12 for 192-bit keys and 14 for 256-bit keys. These 

rounds consist of four steps and are all identical except for the last round in each case. 

For future reference, the state table is referred to the state of the block that is being 

encrypted at a specific moment of the encryption process. 

Before the rounds start, an initialization process is performed, which is called Key 

Expansion. During this process, the key is expanded into another key (though the 

resulting key is not always longer), whose parts are used through different iterations. 

This key is often referred to as the expanded key. The size of the new key can be 

calculated by multiplying 16-bits with the number of rounds that are going to be 
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performed plus 1 (an initial AddRoundKey operation, will be explained later). So we 

have: 

 

176-byte for an initial 128-bit key :(16*(10+1)) 

208-byte for an initial 192-bit key :(16*(12+1)) 

240-byte for an initial 256-bit key :(16*(14+1)) 

 

Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256 

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128 

Number of rounds 10 12 14 

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128 

Expanded key size (words/bytes) 44/176 52/208 60/240 

Table 2: AES key specifications 

 

A quick review of the basic steps of each round includes the following: 

i)SubBytes: the first step of each round, the algorithm uses the S-box lookup table to 
perform a byte-by-byte substitution of the block. 

 

ii)ShiftRows: the second step of each round. Shift Rows is a simple permutation to 

scramble the byte order inside each 128-bit block. 

 

iii)MixColumns: The third step aims to mix up the bytes in each column separately. It 

further scrambles up the 128-bit input block, using the arithmetic GF (28
)  

 

Note: Steps 2 and 3 causes each bit of the ciphertext to depend on every bit of the 

plain-text after 10 rounds of processing. 
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iv)AddRoundKey: The final step of each round. Each of the 16 bytes of the state is 

XORed against each of the 16 bytes of a portion of the expanded key for the current 

round. The Expanded Key bytes are never reused. So once the first 16 bytes are 

XORed against the first 16 bytes of the expanded key then the expanded key bytes 1-

16 are never used again. The next time the Add Round Key function is called bytes 17-

32 are XORed against the state. This step is also executed once in the start of the 

cipher , after the Key Expansion step. 

Now let‟s take a further insight on each of those operations: 

 

a)SubBytes Transformation 

 

The forward substitute byte transformation, called SubBytes, is a simple table 

lookup. AES defines a 16X16 matrix of byte values (the S-box we mentioned earlier). 

This table contains a permutation of all possible 256 8-bit values. Each individual byte of 

State is directly mapped into a new byte in the S-box in the following way: The leftmost 

4 bits of the byte are used as a row value and the rightmost 4 bits are used as a column 

value. These row and column values server as indexes into the S-box to select a unique 

8-bit output value. For example, the hexadecimal value {95} references row 9, column 5 

of the S-box, which contains the value {2A}. Accordingly, the value {95} is mapped into 

the value {2A}. Here is an example of the SubBytes transformation:  

 

 

Figure 4: SubBytes 1 

 

The S-box is constructed in the following way: 
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1. Initialize the S-box with the byte values in ascending sequence row by row. The 

first row contains {00}, {01},…,{0F}, the second row contains {10}, {11},…,{1F} and 

so on. Thus, the value of the byte at row x, column y is {xy}. 

2. Map each byte in the S-box to its multiplicative inverse in the finite field of GF(28). 

The value {00} is mapped to itself, 

3. Each byte in the S-box consists of 8 bits labeled {b7,b6.b5,b4,b3,b2,b1,b0}. The 

following transformation is applied to each bit of each byte in the S-box: 

, 

Where Ci is the i-th bit of byte C with the value {63}. That is 

(C7C6C5C4C3C2C1C0) = (01100011). The prime („) indicates that the variable is 

to be updated by the value on the right. The AES standard depicts this 

transformation in matrix form as follows: 

 

 

 

 

Figure 5: SubBytes 2 
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Figure 6: SubBytes 3 and AddRoundKey 

 

 

In ordinary matrix multiplication, each element in the product matrix is the sum of 

products of the elements or one row and one column. In this case, each element in the 

product matrix is the bitwise XOR of products of elements of one row and one column. 

Further, the final addition is a bitwise XOR. 
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Figure 7: S-Box 

 

Figure 8: Inverse S-Box 
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As an example, the input value {95} is considered. The multiplication inverse in 

GF(28) is {95}-1=(8A), which is 10001010 in binary. Using the above equation, the result 

is (2A), which will appear in row {09}, column {05} of the S-box. 

 

The inverse substitute byte transformation, called InvSubBytes, makes use of the 

inverse S-box (figure 8). The input {2A} produces the output {95} and the input {95} to 

the S-box produces {2A}. The inverse S-box is constructed by applying the inverse of 

the transformation in our previous equation, followed by taking the multiplicative inverse 

in GF(28). The inverse transformation is: 

, 

 

Where byte d={05}, or 00000101. It can be represented as follows: 

 

 

 

 

To verify that InvSubBytes is the inverse of SubBytes, the matrices in SubBytes 

and InvSubBytes are labeled as X and Y respectively, and the vector versions of 

constants c and d are labeled as C and D, respectively. For some 8-bit vector B, our 

previous equation gives: 
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It must be proved that: 

 

  

 

Multiply out, it must satisfy that: 

 

 

 

This becomes: 
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It is proved from the above equation that YX equals to the identity matrix, and the 

YX=D, so that  

 

equals the null vector. 

The S-box is designed to be resistant to known cryptanalytic attacks. Specifically, 

the Rijndael developers sought a design that has a low correlation between input bits 

and output bits, and the property that the output cannot be described as a simple 

mathematical function of the input. In addition, the constant in the initial equation is 

chosen so that the S-box has no fixed points and no opposite fixed points. 

The S-box must be invertible, that is IS-Box[S-box(a)]=a. However, the S-box is 

not self-inverse, in the sense that it is not true that S-box(a)=IS-box(a). For example, S-

box({95})={2A}, but IS-box({95})={AD}. 
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b)ShiftRow Transformation 

 

 

Figure 9: ShiftRows 1 

 

 

In the forward shift row transformation, called ShiftRows, the first row of state is 

not altered. For the second row, a 1-byte circular left shift is performed. For the second 

row, a 1-byte circular left shift is performed. For the 3rd and 4th row, a 2-byte and 3-byte 

shift is performed respectively. Here is an example: 

 

 

Figure 10: ShiftRows 2 

 

The inverse ShiftRow transformation, called InvShiftRows, performs a circular shift 

in the opposite direction (right shift) for each of the last three rows. 

The ShoftRow transformation is more substantial than it may first appear. This is 

because the State, as well as the cipher input and output is treated as an array of four 
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4-byte columns. Thus, on encryption, the first 4 bytes of the plaintext are copied to the 

first column of State, and so on. However the round key is applied to State column by 

column. Thus, a row shift moves an individual byte from one column to another, which is 

a linear distance of a multiple of 4 bytes. Moreover, the transformation ensures that the 

4 bytes of one column are spread out to four different columns. 

 

c) MixColumns Transformation 

 

Figure 11: MixColumns 1 

 

The forward mix column transformation, called MixColumns operates on each 

column individually. Each byte of a column is mapped into a new value that is a function 

of all four bytes in the column. The transformation can be defined by the following matric 

multiplication on State. 

 

(3.3) 
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Each element in the product matric is the sum of products of elements of one row 

and one column. In this case, the individual additions and multiplications are performed 

in GF(28). The MixColumns transformation on a single column j (0≤ j ≤ 3) of State can 

be expressed as: 

 

The following is an example of MixColumns: 

 

 

 

 

The first column of the above example will be verified now. In GF (28), addition can 

be implemented by bitwise XOR operation and multiplication by a value (i.e by {02}) can 

be implemented as a 1-bit left shift followed by a conditional bitwise XOR with 

(00011011) if the leftmost bit of the original value (prior to the shift) is 1. Thus, to verify 

the MixColumns transformation on the first column, these equations must be verified: 
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For the first equation, 

 

 

and

 

 

 

 

The other equations can be similarly verified. 

The inverse mix column transformation, called InvMixColumns, is defined by the 

following matrix multiplication: 
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(3.5) 

 

It is not immediately clear that Equation 3.5 is the inverse of equation (3.3). To 

show that: 

 

Which is equivalent to showing that: 

 

(3.6) 
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That is, the inverse transformation matrix times the forward transformation matrix 

equals the identity matrix. To verify the first column of equation (3.6), the following 

equations must be verified: 

 

 

 

 

 

The other equations can be similarly verified. 

The coefficients of the matrix in Equation (3.3) are based on a linear code with 

maximal distance between code words, which ensures a good mixing among the bytes 

of each column. The mix column transformation combined with the shift row 

transformation ensures that after a few rounds, all output bits depend on all input bits. 

In addition, the choice of coefficients in MixColumns, which are all {01}, {02}, or 

{03}, was influenced by implementation considerations. As we discussed, multiplication 

by these coefficients involves at most a shift and a XOR. The coefficients in 

InvMixColumns are more formidable to implement. However, encryption was deemed 

more important that decryption. This is due to the fact that the CFB and OFB modes 
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only use encryption, and also as with any block cipher, AES can be used to construct a 

message authentication code, and for this only encryption is used. 

 

d) AddRoundKey Transformation 

 

In the forward add round key transformation, called AddRoundKey, the 128 bits of 

State are bitwise XORed with the 128 bits of the round key. The operation is viewed as 

a columnwise operation between the 4 bytes of a State column and one word of the 

round key. It can also be viewed as a byte-level operation. The following is an example 

of AddRoundKey: 

 

 

Figure 12: AddRoundKey 

 

The first matrix is State, and the second matrix is the round key. 

The inverse add round key transformation is identical to the forward add round key 

transformation because XOR operation is its own inverse. 

The add round key transformation is as simple as possible and affects every bit of 

State. The complexity of the round key expansion, plus the complexity of the other 

stages of AES ensure security. 

 

2.4 Concluding Remarks 

 

The AES algorithm was developed by two Belgian cryptographers, Joan Daemen 

and Vincent Rijmen, based on their previous design called “Square” [34]. Unlike its 
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predecessor (DES), it is not a Feistel network, but rather a substitution-permutation 

network. 

It is definitely a state of the art algorithm for encryption. Combining it with the 

appropriate block cipher mode will result in ciphers that can cover most (if not all) 

needs, whether it is elevated security we are focusing on, or increased performance. Its 

reliability has been proven over the years and it is not by chance that it has been used 

for decades for classified document encryption by the U.S government. It is also worth 

noting that all discovered security holes on this algorithm up to this day didn‟t prove 

anything but the fact that someone would be able to crack it in several billions of years.  
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3. PARALLEL PROGRAMMING 

 

3.1 Introduction 

 

Parallel programming is the idea of the simultaneous use of multiple compute 

resources to solve a computational problem. The resources may coexist inside a CPU 

(or other computer components), a whole computer system or even multiple computers. 

Traditionally, software has been written for serial computation, rather than parallel. In 

order to understand parallel programming, it is necessary to have a complete picture of 

how a serial program works. These are the main characteristics of a serial program: 

 

 A problem is broken into a discrete series of instructions 

 Instructions are executed sequentially one after another 

 Executed on a single processor 

 Only one instruction may execute at any moment in time 

 

A simple example of serial programming would be a C language program that reads 

some data from a text file, makes some calculations on that data and prints a result in 

the user‟s screen. These steps are performed in a specific order or else there is going to 

be a problem with the output, a logical error.  

Now imagine another program where we need to do two separate things: one is to 

read some data from a text file and print it, and the other is to make some separate 

calculations. These two tasks of the program are totally independent. A serial program 

would do either one of them first, and then proceed to finish the other. That is not 

necessary though, as we can make use of parallel programming to start both those 

tasks simultaneously and thus save time on the execution of the program. 

If these examples seem too simple, there are more complicated reasons that one 

should consider implementing parallel programming on his software. For example, in 

certain situations, the program is waiting for some kind of input from the client. The use 
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of serial programming on this example would automatically mean that the time until the 

person gives the input will be wasted (no other instructions can be executed). 

However, there are other scenarios where we can use parallelism to further optimize 

the software we are working on. Except from finding the separate tasks of the program 

and assigning them to certain available resources, there is a very common case where 

we tend to divide a certain task into parts which will be treated by a different resource. A 

good example would be image processing. The image may contain many millions of 

pixels, resulting in really slow serial software implementations. It is relatively easy to 

divide the image in sub-images of a certain size (depending on our system resources), 

let each task run separately and combine the sub-images to form the final result. And 

the performance gains can be massive. 

Another case where parallel programming is really meaningful is Event-Driven 

software. Event-driven programming is a programming paradigm in which the flow of the 

program is determined by events such as user actions (mouse clicks, key presses), 

sensor outputs or messages from other programs. In most cases where other code 

should be running, serial code would block the whole program (until an event gets 

triggered) and render it useless. 

 

3.2 CPU parallel programming 

 

When focusing on parallel programming on a single computer system, there are 

several computer components to consider. At first, the component often associated with 

command execution is the CPU, so one would probably think that parallel programming 

is making use of the CPU in such a way as to be able to execute many commands 

simultaneously, and would not be entirely wrong. Let‟s take a look at how parallel 

programming in the CPU started and its evolution through the years. 

The evolution of the CPU through the years was mainly focused on shrinking the 

area of the integrated circuit (IC), which drove down the cost per device on the IC while 

increasing functionality. At some point CPUs were created with stock frequencies of 

about 4Ghz which means they would get really hot on full load. Problems such as the 

ones we mentioned earlier, along with this one initiated the introduction of multi-core 

CPUs, which have more than one processing unit (core) and as a result have the 
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capability of processing multiple instructions at the same time. Simultaneous execution 

of different independent tasks became possible. Around 2005-2006 most high-end 

commercially available CPUs were Dual Core. Nowadays, most mid-range computers 

use Quad Core CPUs, while there are also higher end Octa-Core CPUs (8 cores) and 

even 10 core CPUs (Intel Xeon E7-8870), especially designed for server use. Multi-core 

CPUs can be interpreted as the simplest form of parallel computing. 

The basic element of parallel programming is the thread. Threads are one of several 

technologies that make it possible to execute multiple code paths concurrently inside a 

single application. A common case is that a CPU core can run one thread at a specific 

time. In other words, a quad core CPU is able to run four threads simultaneously. In 

more advanced cases there are CPUs with cores that support more than 1 thread at a 

time. Such an example is Intel‟s Hyper-threading technology, which allows each core to 

maintain two threads at each moment. 

Parallel Programming in a CPU is based on a multi-threading approach of software. 

Back on the introduction‟s example,  a software developer could make better use of a 

multi-core CPU if he created one thread that would be responsible for the user‟s input 

(I/O operation), and a second one that would do the independent calculations. These 

two threads would run in parallel on any CPU with at least 2 cores, and the problem 

would finish up significantly faster. 

Historically, hardware vendors have implemented their own proprietary versions of 

threads. These implementations differed substantially from each other making it difficult 

for programmers to develop portable threaded applications. In order to take full 

advantage of the capabilities provided by threads, a standardized programming 

interface was required.  

Since C++ 2011 release became official, there is native thread support for C++, 

while it was previously impossible to make use of threads in C++ without an external 

thread API. In practice, since C++ 2011 release, depending on the platform that the 

code is being compiled on, either pthreads (in case of Linux systems) or Windows 

threads (in case of Windows systems) can be used. This provided a standardized way 

to include multithreading in the C++ language and enabled programmers to include 

thead support for their software easily. 

There are several thread implementations used, though the basic two are the 

following: 
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3.2.1 POSIX Threads 

 

More commonly known as pthreads, it is a low-level API for working with threads. 

POSIX threads has been specified as an interface for UNIX systems by the IEEE 

POSIX 1003.1c standard in 1995, and has continued to evolve and undergo revisions 

and improvements. 

Pthreads defines a set of C programming language types, functions and 

constants. It is implemented with a pthread.h header and a thread library. The 

procedures are divided into four basic groups: 

 Thread management – creating, joining threads, etc 

 Mutexes (objects used for thread synchronization) 

 Condition Variables 

 Synchronization between threads using read/write locks and barriers 

What is really important about pthreads is that it provides fine-grained control over 

thread management (create, join, etc), shared memory and synchronization (mutexes). 

For that reason, it requires proper programming and manual setting of al l operations by 

the programmer. 

Last but not least, there are implementations of the API on many Unix-like POSIX-

compatible operating systems, such as FreeBSD, NetBSD, OpenBSD, Linux, Mac OSX 

and Solaris. DR-DOS and Microsoft Windows implementations also exist 

(the SFU/SUA subsystem provides a native implementation of a number of POSIX 

APIs, and third-party packages such as pthreads-w32,  implements pthreads on top of 

existing Windows API). 

3.2.2 OpenMP 

 

OpenMP stands for Open Multi-Processing and is an API that supports multi-

platform shared memory multiprocessing programming in C, C++, and Fortran, on 

most processor architectures and operating systems, including Solaris, AIX, HP-

UX, Linux, Mac OS X, and Windows platforms (the meaning of shared memory will be 
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explained later). It consists of a set of compiler directives, library routines, 

and environment variables that influence run-time behavior. 

Often paired with MPI implementations, OpenMP works at a much higher level 

than POSIX threads. Notably, MPI (Message-Passing Interface) is a standardized and 

portable message-passing system used widely in parallel programming. 

OpenMP has the advantages of being cross platform, and simpler for some 

operations. It handles threading in a different manner, in that it gives you higher level 

threading options and is relatively easy to embed in existing code, unlike POSIX threads 

implementations. 

 We have included OpenMP in our software development as a means of comparison 

with both the serial and the CUDA code, performance-wise. This comparison has 

produced some interesting results, but more on that later. 

As we mentioned earlier, in cases where much processing power is required, 

complex computing systems are used, containing up to hundreds of multi-core 

processors. These systems are often file/web servers that need to serve millions of 

requests in minimal time. Many corporate enterprises or high activity service providers  

may even contain huge areas filled with these systems, taking advantage of parallel 

programming as much as possible. 

3.3 GPU parallel programming 

 

We have already discussed threaded applications in the CPU, but there is more to 

parallel programming than CPU threading cases. General-purpose computing on 

graphics processing units (GPGPU) is the use of a graphics processing unit (GPU), 

which typically handles computation only for computer graphics, to perform computation 

in applications traditionally handled by the central processing unit (CPU). The use of 

multiple graphics cards in one computer, or large numbers of graphics chips, further 

parallelizes the already parallel nature of graphics processing. In addition, even a single 

GPU-CPU framework provides advantages that multiple CPUs on their own do not offer 

due to specialization in each chip. Two are the dominant implementations of general-

purpose GPU programming: 

 

https://en.wikipedia.org/wiki/Compiler_directive
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IMPLEMENTATION OF THE AES ENCRYPTION ALGORITHM IN PARALLEL GPU AND CPU ARCHITECTURES 

GOUSIOS GEORGE, DIMIZAS NIKOLAOS  44 

3.3.1 OpenCL 

 

Figure 13: OpenCL 

 

Open Computing Language (OpenCL) is a framework for writing programs that 

execute across heterogeneous platforms consisting of central processing 

units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-

programmable gate arrays (FPGAs) and other processors. OpenCL specifies a 

language for programming these devices and application programming interfaces (APIs) 

to control the platform and execute programs on the compute devices. OpenCL 

provides parallel computing using task-based and data-based parallelism. OpenCL is an 

open standard maintained by the non-profit technology consortium Khronos Group. 

OpenCL defines a C-like language for writing programs, called kernels, that 

execute on the compute devices. defines an application programming interface (API) 

that allows programs running on the host to launch kernels on the compute devices and 

manage device memory, which is (at least conceptually) separate from host memory. 

Programs in the OpenCL language are intended to be compiled at run-time, so that 

OpenCL-using applications are portable between implementations for various host 

devices.[22] The OpenCL standard defines host APIs for C and C++; third-party APIs 

exist for other programming languages such as Python,  Java and .NET. 
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3.3.2 CUDA 

 

 

Figure 14: CUDA logo 

 

 CUDA, which stands for Compute Unified Device Architecture,[23] is a parallel 

computing platform and application programming interface (API) model created 

by NVIDIA. It allows software developers to use a CUDA-enabled graphics processing 

unit (GPU) for general purpose processing. The CUDA platform is a software layer that 

gives direct access to the GPU's virtual instruction set and parallel computational 

elements. 

 CUDA is designed to be able to work with programming languages such as C, 

C++ and Fortran. That enables programmers to use GPU resources without graphics 

knowledge, to achieve their tasks. This is a huge advantage mainly because previous 

API solutions like Direct3D and OpenGL required special skills and experience in 

graphics programming for someone to embed into his code. 

 CUDA was initially released in 2007, though it managed to become one of the 

most (if not the most) dominant GPGPU approach. It has some advantages over other 

approaches, the main of which are the following: 

 Scattered reads – code can read from arbitrary addresses in memory. 

 Unified virtual memory. 

 Unified memory. 

https://en.wikipedia.org/wiki/CUDA#cite_note-CUDA_intro_-_AnandTech-1
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/NVIDIA
https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Instruction_set
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 Shared memory – CUDA exposes a fast shared memory region that can be 

shared amongst threads. This can be used as a user-managed cache, enabling 

higher bandwidth than is possible using texture lookups. 

 Faster downloads and readbacks to and from the GPU. 

 Full support for integer and bitwise operations, including integer texture lookups. 

 

CUDA uses threads that run on the GPU area. Better yet, it uses sets of threads 

called blocks. A function that is called to run on the GPU is called a kernel. For 

example, the host code (CPU code e.g C) can invoke a kernel (that will run on the GPU) 

and that kernel could run with 3 blocks of 1024 threads each. Blocks are also grouped 

into grids, in such a way that a grid is a 2D array of blocks.  

In addition, a warp size is the number of threads running concurrently on a multi-

processor (GPU/CPU).  In actuality, the threads are running both in parallel and 

pipelined.  The total threads that are being executed are divided into warps, which run 

simultaneously. For example, if warp size is 32 and 58 threads need to be executed, the 

first warp will contain threads 0…31, and the second one will contain the remaining 

32…57. [33] 

Graphics cards have way more cores than CPUs in general, so it is normal to be 

able to run several thousands of threads in parallel. This alone gives hope for great 

potential with GPU parallel programming. 

 

Finally, CUDA does not come without its limitations, such as the fact that only 

NVIDIA cards may support CUDA, the fact that CUDA does not support the whole C 

standard (because it runs host code through a C++ compiler), etc. Weighing the pros 

and cons makes CUDA a very good choice though, and throughout this thesis we‟ll be 

showing the acceleration it can provide to a serial piece of code. 

 

3.4 Classification of parallel computers 

 

As we move on to a larger scale and come to the point where we examine 

computer systems with multiple CPUs or GPUs, we move to a new informatics area 
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referred to as parallel computing. There are many factors to examine on this area, and 

thus there are several ways to categorize. The most important of them are the following: 

 

 Classification based on the instruction and data streams 

 

The term „stream‟ refers to a sequence or flow of either instructions or data 

operated on by the computer. In the complete cycle of instruction execution, a flow of 

instructions from main memory to the CPU is established. This flow of instructions is 

called instruction stream. Similarly, there is a flow of operands between processor and 

memory bi-directionally. This flow of operands is called data stream. 

 

Flynn’s Classification 

 

Flynn‟s classification [19] is based on multiplicity of instruction streams and data 

streams observed by the CPU during program execution. Let Is and Ds are minimum 

number of streams flowing at any point in the execution, then the computer organisation 

can be categorized as follows: 

 

a)Single Instruction and Single Data stream (SISD) 

 

In this organisation, sequential execution of instructions is performed by one CPU 

containing a single processing element (PE), i.e., ALU under one control unit. 

Therefore, SISD machines are conventional serial computers that process only one 

stream of instructions and one stream of data. 

 

b)Single Instruction and Multiple Data stream (SIMD) 

 

In this organisation, multiple processing elements work under the control of a 

single control unit. It has one instruction and multiple data stream. All the processing 

elements of this organization receive the same instruction broadcast from the CU. Main 
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memory can also be divided into modules for generating multiple data streams acting as 

a distributed memory. Therefore, all the processing elements simultaneously execute 

the same instruction and are said to be 'lock-stepped' together. Each processor takes 

the data from its own memory and hence it has on distinct data streams. Every 

processor must be allowed to complete its instruction before the next instruction is taken 

for execution. Thus, the execution of instructions is synchronous. 

 

c)Multiple Instruction and Single Data stream (MISD) 

 

In this organization, multiple processing elements are organised under the control 

of multiple control units. Each control unit is handling one instruction stream and 

processed through its corresponding processing element. But each processing element 

is processing only a single data stream at a time. Therefore, for handling multiple 

instruction streams and single data stream, multiple control units and multiple 

processing elements are organised in this classification. All processing elements are 

interacting with the common shared memory for the organisation of single data stream. 

The only known example of a computer capable of MISD operation is the C.mmp built 

by Carnegie-Mellon University. 

 

d)Multiple Instruction and Multiple Data stream (MIMD) 

 

In this organization, multiple processing elements and multiple control units are 

organized as in MISD. But the difference is that now in this organization multiple 

instruction streams operate on multiple data streams. Therefore, for handling multiple 

instruction streams, multiple control units and multiple processing elements are 

organized such that multiple processing elements are handling multiple data streams 

from the Main memory. The processors work on their own data with their own 

instructions. Tasks executed by different processors can start or finish at different times. 

They are not lock-stepped, as in SIMD computers, but run asynchronously. This 

classification actually recognizes the parallel computer. That means in the real sense 

MIMD organisation is said to be a Parallel computer. All multiprocessor systems fall 

under this classification. 
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 Classification based on the structure of computers 

Flynn‟s classification discusses the behavioral concept and does not take into 

consideration the computer‟s structure. For reference, there are: 

 

i)Shared Memory System / Tightly Coupled Systems: 

A shared memory computer has multiple cores that have access to the same 

physical memory. The cores may be part of multicore processor chips, or they may be 

on discrete chips. We have several models to analyze, but the basic ones are: 

1)Uniform Memory Access Model (UMA): The main memory is uniformly shared 

by all processors in multiprocessor systems and each processor has equal access 

time to shared memory. This model is used for time-sharing applications in a multi 

user environment. 

2)Non-Uniform Memory Access Model (NUMA): In shared memory 

multiprocessor systems, local memories can be connected with every processor. 

The collection of all local memories form the global memory being shared. In this 

way, global memory is distributed to all the processors. In this case, the access to 

a local memory is uniform for its corresponding processor as it is attached to the 

local memory. But if one reference is to the local memory of some other remote 

processor, then 37 Elements of Parallel Computing and Architecture the access is 

not uniform. It depends on the location of the memory. Thus, all memory words are 

not accessed uniformly. 

3)Distributed Memory Systems: These systems do not share the global memory 

because shared memory concept gives rise to the problem of memory conflicts, 

which in turn slows down the execution of instructions. Therefore, each processor 

is having a large local memory, not shared by any other processor 

 

 Classification based on the grain size 

 

This classification is based on recognizing the parallelism in a program to be 

executed on a multiprocessor system. The idea is to identify the sub-tasks or 
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instructions in a program that can be executed in parallel. But it is not sufficient to check 

for the parallelism between statements or processes in a program. The decision of 

parallelism also depends on the number and types of processors available, memory 

organization and dependency of data, control and resources. 

 

3.5 Parallel Programming Issues 

 

Though parallel programming seems to offer much potential to software 

development, it surely has its hidden risks and difficulties. During a problem analysis, 

one should understand thoroughly the needs that need to be met, and afterwards he 

should locate the code that can be parallelized. Then there is the issue of dividing the 

available resources (e.g cores/threads). This can be as simple as dividing a big array 

into smaller pieces and assigning them to threads, but sometimes the problem is way 

more complicated. 

Few are the times that the data is totally independent and this causes a common 

problem with the parallel code. A simple example is the case in which two threads try to 

increase the same variable by one. This operation is analyzed in three separate 

operations in assembly code: reading of the current value, increasing the value and 

writing it back. The expected output is shown below: 

 

Figure 15: Race Condition 1 

However in parallel code there is no way to determine the exact way the threads will 

run, unless the programmer explicitly sets them to run in a specific way. That is, there is 

now way to predict the order that the six commands (three per thread) will be executed.  



IMPLEMENTATION OF THE AES ENCRYPTION ALGORITHM IN PARALLEL GPU AND CPU ARCHITECTURES 

GOUSIOS GEORGE, DIMIZAS NIKOLAOS  51 

It is not impossible that both threads read the initial value of the variable, which will 

eventually increase the variable by one, not two. 

As a result, the output of the program can be as wrong as the following: 

 

Figure 16: Race Condition 2 

The aforementioned example is a simple case of what we call a Race Condition 

problem, and is generally one of the main problems in parallel programming. It is by no 

means unsolvable, but it requires attention proper set up on developer level. In complex 

problems, Race Condition can be really hard to face, not to mention that debugging 

parallel programs is significantly more difficult than serial ones. 

Race condition problems can be addressed with thread synchronization. Depending 

on the implementation, there are several ways a program can achieve synchronization. 

For example, in java there is the “Synchronized” declaration, which indicates that when 

a thread invokes the method/function of an object, it will acquire a lock which will not 

allow another thread to have access to that object‟s method. 

 In C and Linux distributions, synchronization is handled by two mechanisms, 

semaphores and spinlocks. These are handled manually, which means it is the 

developer‟s duty to set them up and handle them correctly throughout the whole 

execution of the program. They are almost the same as common variables and are 

functioning as a lock-unlock mechanism. 

POSIX threads uses mutex locks (similar to semaphores), condition variables, 

barriers, spinlocks and read-write locks. CUDA, on the other hand uses native functions 

such as __syncthreads() , which pauses execution until all threads from the current 

block reach that point in the code. Other methods include cudaDeviceSynchronize() and 

__threadfence(). 
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In a completely different perspective, parallel programming is not for every part of 

every algorithm. One should not try to parallelize everything on his code, as the result 

may often result in worse performance. In OpenMp implementations, overuse of 

parallelism could result – in the worst case – in minor performance decrease. That‟s not 

the case with CUDA, though. CUDA thread performance has been proven stellar 

especially in highly parallelizable programs. That is why a common mistake is jumping 

to the conclusion that the GPU is faster than the CPU for every calculation, which is 

plain wrong. In other words, CPUs and GPUs have significantly different architectures 

that make them better suited to different tasks. 

A CPU core may be many times faster than a GPU core. It almost always runs at a 

much higher frequency, it uses technologies such as 3-Level cache memories (much 

faster than RAM and GPU memory), branch prediction, prefetch, micro op re-ordering 

and are out of order. CUDA cores are by no means that powerful. It is in the number of 

parallel threads that can be run where the power of the GPU truly shines. At the 

moment that this thesis was written, the highest-end commercially available CPU (Intel 

Xeon E7-8870)  can run 20 threads in parallel, whereas the highest-end NVIDIA CUDA 

GPU (NVIDIA GTX TITAN Z) can handle as many as 5760. Last but not least, there is 

also the memory overhead that should not be ignored. CUDA kernel invocations require 

memory allocation and copy operations to and from the device memory (GPU memory). 

These operations are costly in terms of time and should not be overused for no reason, 

in order to avoid odd overheads. The use of some of them is a necessary additional 

time cost, though in order for our program to function properly. 

Therefore, we can assume that in specific (non parallelizable) programs, a solid 

serial (CPU) code can be as efficient and effective as it gets. It is very important to be 

able to determine if a part or several parts of a program would actually benefit from a 

parallel implementation. That means that once again the developer has to come down 

to a conclusion about whether it makes sense to implement it in his code or not.  

Developing such skills takes time and experience. 
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3.6 Conclusion 

 

 Parallel Programming in general is considered to be the high end of computing, 

and there is a reason behind that statement. It has been used to model difficult 

problems in many areas of science and engineering, such as nuclear/particle physics, 

biotechnology, genetics, molecular sciences, Electrical Engineering, Circuit Design, 

Defense, Weapons, etc. Implementing it may sometimes be conceived mistakenly as an 

add-on to software or an “unnecessary” feature  to a – otherwise – perfectly functional 

program, but the truth is, all optimization aside, there are many cases in which even the 

simplest/shortest program cannot function properly without its use. Sure, parallel 

programming introduces new difficulties in programming, but in the end it is well worth 

the time and effort. 

To sum up, despite it being a relatively new concept, parallel programming is the 

new trend everywhere nowadays, and there is no denying that much of the existent 

software is rewritten to take advantage of its capabilities. Experts worldwide agree on its 

huge potential both through theoretical calculations and through real time 

measurements. Even given its few years in the field, parallel programming has vastly 

increased the possible calculations that can be achieved in a certain amount of time, 

since its first use. Of course that is both the result of hardware and software evolution. 

We should be optimistic that as the years go by, parallel code development will become 

easier, more widespread and more effective. 

The following figure shows the evolution of computing performance throughout the 

last twenty years: 
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Figure 17: Evolution of computing performance [3] 
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4. IMPLEMENTING CUDA PROGRAMMING ON AES CODE 

 

The main task we had to face during our thesis this year is the application of 

CUDA parallel programming techniques on existing C AES code [4]. The base C code 

we used was of course serial and quite a few changes had to be made in order for 

everything to be able to run normally. But first we should try to explain the reasons 

parallel programming could be embedded on our test code, as well as the main idea 

behind our implementation. 

We have already mentioned in a previous chapter the several block cipher modes 

that can be combined with the AES algorithm, or any other cipher algorithm. Depending 

on the block cipher mode, there can be some parallelism on the algorithm, much 

parallelism or even no parallelism.  

Some block cipher modes require that the encryption of a block of data uses data 

from its previous encrypted block (or blocks) in order for the encryption to be achieved. 

That means that the algorithm definitely has to encrypt each block in a serial pattern. As 

we have already mentioned earlier in this thesis, one of the most representative 

examples of this case is the CBC block cipher mode, which stands for Chain Block 

Chaining. The way in which the CBC mode operates can be explained briefly through 

the following diagram. 

 

 

Figure 18: CBC 
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The first block of data is XOR-ed against the IV (initialization vector) to produce 

the first ciphertext block, and then the n-th block of data is XOR-ed against last 

encrypted block before you encrypt this block. It is obvious that no significant data 

parallelism can be applied on CBC, at least during the encryption process. 

However this is not the case with every block cipher mode. There are cipher block 

modes that allow for data parallelism to be achieved, at least to some extent. The GCM 

(Galois/Counter Mode), for example can be parallelized (e.g using OpenMp or CUDA), 

at least for the part of encryption and decryption (some parts of the algorithm may not 

be easily parallelizable). Parallelism on the authentication section of any encryption 

algorithm is not considered important, and in some cases it is not even possible. 

Most importantly for the context of the current thesis, the ECB mode (which stands 

for Electronic Code Block) can be implemented in parallel code relatively easy, due to 

the fact that it is basically a raw cipher. That means that each data block of input is 

encrypted separately and it produced some cipher block output. In the end all those 

cipher blocks are combined together to form the ciphertext. In the same way, during the 

decryption process, each cipher data block is decrypted to a plaintext block, and all 

those plaintext blocks will form the final plaintext.  

For the aforementioned reasons, comparing serial and parallel performance on the 

ECB mode should produce some interesting results. ECB may be the simplest mode of 

all, but it is arguably the case that will most properly indicate the significant difference in 

performance, should the software take advantage of all available sources. And our test 

results agree with this statement.  

For the encryption process, the main idea behind our CUDA implementation 

consists of the following steps: 

 The initial plaintext is saved in a buffer 

 A C function is called in order to initialize the CUDA parameters, determine 

the required blocks and threads that will be used and copy the input buffer to 

the device (GPU) memory. The total amount of threads that will be used is 

equal to the number of data blocks the input buffer contains. For example a 

150bit plaintext consists of 9,3~10 blocks. In this perspective, each thread 

will be responsible for the encryption of its dedicated data block e.g thread 7 

will encrypt the 7th block of the input file, etc. It is quite obvious that in our 
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case, there is absolute independence on the data and there is no need for 

synchronization on this point, nor a shared memory or inter-thread 

communication techniques. 

 A CUDA kernel is called for the specified blocks and threads. Each thread 

on this invocation calls the block encryption function on the device (GPU) for 

its dedicated block, and writes back the resulting block (cipher block) on the 

buffer, after computing its correspondent offset.   

 After the main encryption process is complete, the kernel function finishes 

and the C function that was mentioned on the 2nd step of the process copies 

the buffer (that now contains the whole ciphertext) back to host memory 

(RAM), that is in a C buffer. 

 

Naturally, the decryption process uses the same logic to produce the final plain 

text that is identical to the initial plaintext that we received from input. As far as input is 

concerned, there are a few things we changed in order to increase the functionality of 

the program. 

In the original C serial code, there were two types of input methods. The first one 

(test_encrypt) used the command line so the user had to manually type in a text that 

would be encrypted and then decrypted back to the plaintext. In our implementation, we 

changed the input method to file input, so that the input buffer would be filled via a .txt 

file. In our humble opinion, this method is way better for testing purposes because the 

user can fill in the input.txt file anyway he likes, instead of typing manually in the 

command line. Of course, this method introduces some I/O operation delays to the total 

run time, but these are not taken under consideration on our timings, because they are 

not related in any way to the cipher. So the displayed timings do not include these 

delays. 

The second input method is random generation of a 1MB buffer that is later used 

as an input (test_performance). This method aims at measuring pure performance when 

data sets reach way bigger numbers, as user sets the data size for the cipher to be 

applied, as a command line parameter. For example, if a user sets 600mb as input data, 

the 1MB input buffer is randomly initialized, and the encryption-decryption circle is 

applied to it in a 600 –times loop. Then, some results are being displayed on the user, 
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including the total run time. This method suited our needs perfectly, so we didn‟t change 

it in any way, besides include more detailed timing results, such as total time, 

encryption-decryption time, memory operations‟ time (cudaMemcpy both host-to-device 

and device-to-host, cudaMalloc, cudaMemset, cudaFree), etc. The statistical diagrams 

we include later on that include our test results are almost exclusively based on this 

method, as it was made possible to test the parallelized code against different sets of 

data. 

 

Notably, the OpenMP implementation that we developed used the same serial 

code we used as a base on the CUDA code, with the addition of some “#pragma omp  

parallel/for” tags, which divides a piece of code/loop into separate tasks and assigns 

them to CPU threads on a high level. Though taking advantage of all available CPU 

threads also resulted in a definitely not insignificant performance increase with minimal 

effort software-wise, this only served as a comparative method to the CUDA code, 

which dominated the performance charts. 

 On the next chapter, we will present a detailed set of our results, comparing 

serial, OpenMP and CUDA timings (total, memory operations, etc), with a set of 

different parameters, including different key sizes and different data sets. 
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5. SOFTWARE IMPLEMENTATION AND RESULTS 

 

5.1 Hardware Information 

 

 First we should take a look at the hardware we used for the completion of the 

current thesis. The full hardware list is shown below and it belongs to one of our 

university‟s computers. This is the hardware on which we made all our tests and drew 

our results. The hardware on the machines we used for developing the code is quite 

different but that is irrelevant to our results. 

 We transferred our files using WinSCP and connected remotely via SSH protocol 

to run remote compilation and execution commands. The computer was equipped with 

a CUDA-enabled graphics card (Tesla C2070) with 448 CUDA cores and compute 

capability 2.0 and the CPU has 4 cores supporting one thread each, so we had no 

problem testing both CPU threads on OpenMP and CUDA threads. 

 Notably, the computer runs Ubuntu, a Linux distribution, so our communication 

was via a command line environment used for remote connections, which is called 

Putty. 

Processor: AMD Phenom
TM

 II X4 965 @ 3.40 GHz [1 Processor, 4 Cores, 4 Threads] 

L1 Instruction Cache: 64.0 KB x 4 (2-way set associative) 

L1 Data Cache: 64.0 KB x 4 (2-way set associative) 

L2 Cache: 512 KB x 4 (16-way set associative) 

L3 Cache: 6.00 MB (48-way set associative) 

Memory: 8 GB [4x2GB DDR3 1800 MHz] 

Hard Drive: Seagate Barracuda 1TB 3.5" 

GPU: 
NVIDIA Corporation GF100GL [Tesla C2050 / C2070] (rev a3), CUDA cores:  448 

core clock: 1.15Ghz, Memory clock: 1.5Ghz, Compute capability: 2.0 

Operating System: Ubuntu 14.04.2 LTS 3.13.0-48-generic x86_64 

GCC: v4.8.2 

NVidia Driver: v340.29 , CUDA version 6.5.12 



IMPLEMENTATION OF THE AES ENCRYPTION ALGORITHM IN PARALLEL GPU AND CPU ARCHITECTURES 

GOUSIOS GEORGE, DIMIZAS NIKOLAOS  60 

5.2 Implementation Analysis 

 

 While the algorithm for the AES ECB was ready and written in C code as a base 

for our CUDA and OpenMP implementations, there were surely some changes to be 

made and some factors to be considered in order to be able to perform our assigned 

task. In the current chapter, we will present the main idea on which we relied to make 

the AES ECB parallel, using the OpenMP and the CUDA library. 

 What we have to explain initially is the way the algorithm works. The input file 

(either given by hand via the terminal, generated in the program or read from a text file) 

is divided in blocks of 16bytes each (128-bit, as the AES standard indicates). If the input 

size is not divisible by 16, the last block is partially filled with the input data, and the rest 

of the block is filled with some specific data that is added for that purpose only, and it is 

called pad. 

The CBC block mode that we use on our implementation does not provide any 

dependencies between blocks. Therefore each one of these blocks is encrypted totally 

independently from the others and in the end of the process all encrypted blocks are 

joined to form the encrypted file, also known as the ciphertext. The same stands for the 

decryption process too. 

 In addition, the C base code included two executable files, each working in quite a 

different way. The first one (named test_encrypt) was mainly aiming at showing how the 

whole process works. It received the input from the user using a terminal. Then it 

displayed the input file (also known as plaintext) in hexadecimal form, then the 

ciphertext (also in hexadecimal form) and in the end the plaintext again, in order to 

show that the initial and final plaintexts were equal, the way they should be. We 

included a verification method that checks the initial and ending plaintext to verify that 

the whole process was completed successfully. 

 The following figures depict an example of the test_encrypt execution:

 

Figure 19: Execution example of test_encrypt executable 1 
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Figure 20: Execution example of test_encrypt executable 2 
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 Moreover, the second executable (called test_performance) was intended for 

performance measurements exclusively, hence the name. The user provides no input 

data whatsoever, as it is automatically generated in the code. The only input the user is 

asked to give is the size of the file that will be encrypted (in megabytes), using the “–

data X” flag. The X parameter can range between 1 to the maximum value of an int 

(integer) variable, which is 2,147,483,647 (we tested up to 10000mb ~= 10gb of data). 

 

 

 

 Last but not least, the user is responsible to set the mode to ECB, using the “–ecb“ 

flag, as the code was initially designed to work on other block cipher modes as well, 

such as CBC and GCM. There is also the optional choice of choosing a key size (in 

bits), using the “–key X” flag, with available values being 128, 192, and 256, as the AES 

standard allows for encryption. If the user doesn‟t specify a key size, the default value of 

128-bit key is used. 

 Naturally, tests performed on the sequential code were the longest by far, and 

larger keys led to an even longer test.  
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 Below we show some cases of the execution of the serial code. 

 

 

Figure 21: Baseline code execution 1 
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Figure 22: Baseline code execution 2 

  

 

 

The first and the last part of both our implementations is exactly the same as with 

the serial C code and includes initialization of some parameters, the key creation(in a 
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custom random way – not using the built-in random library), key expansion, as well as 

key destruction. 

As far as the OpenMp is concerned, there is not much thought to take place. As 

we have mentioned earlier, OpenMP automates things for thread parallelism on a 

higher level so it requires minimal developer intervention. The use of “#pragma omp” 

parallel and “#pragma omp for” brackets divides the work of the for-loop into threads 

and automates the process by itself. It is worth noting that it takes full advantage of all 

available threads (in our case four). 

 For the transition to this approach, little intervention was needed, mainly including 

the OpenMP library header file to our .c source files, with this simple line of code: 

 

 

Therefore, the compilation call in our makefile looks like the following: 

 

 

 

Other than that, the aforementioned #pragma brackets were basically the only 

addition to the base C serial code: 
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 What actually takes place in this part of code is that each loop is assigned to one 

OpenMP thread, which means that –in a simple case- a 40-times loop would result in 4 

threads performing 10 loops each. In our encryption example, each for loop represents 

the initialization and encryption of one block of the input file. Therefore, at any given 

moment a maximum of 4 blocks are handled concurrently by 4 threads of the CPU, 

which obviously accelerates the whole process. 

 We should also mention that we changed the timing used in the serial code, which 

was in seconds, to milliseconds for greater accuracy. That is also the case for both the 

OpenMP and CUDA approach. 

 On the other hand, the CUDA approach was significantly more complicated. We 

worked on two separate ways on using CUDA for the AES algorithm, which resulted in 

two executables, just like in the serial code. 

 Both of these test executables, while differ on the input method as we mentioned, 

use the same cuda (.cu) file for the enctyption/decryption process, so the process can 

be explained in the same way for both of them.  

 After the initialization process, the input is analyzed to determine how many blocks 

it will be divided to. If the input size in chars (and in our case, bytes, as a character is 

converted to a uint8_t type variable which is an integer of 1byte) is divisible by 16 (the 

block size) then the quotient will be the number of CUDA threads that will be used. Each 

CUDA thread will encrypt its dedicated block. In case the size is not divisible by 16, we 
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take the integer quotient and add one more block for the remainder, e.g if size=70, the 

number of threads needed will be integer(70/16) +1 = 4 + 1 = 5.  

 Next, there are some initializations to be done before we can launch the CUDA 

code (kernel). Most importantly, we have to allocate (cudaMalloc) GPU memory for the 

plaintext to be passed to the CUDA code, along with a struct (called ctx), which contains 

the key struct and some other parameters. After the allocation process, we have to copy 

the values of the data we need from the CPU memory to the GPU memory 

(cudaMemCpy host to device), so that it can be accessible from the kernel. It is 

noteworthy that some variables (mostly the ones that are read-only by the CUDA code) 

can be passed by value rather than copied implicitly to the GPU memory. 

 During the previous process, the whole input buffer is copied to the GPU 

memory and is accessible by all threads. Each thread will only deal with one block, 

though. After the kernel is called (__global__ function), the last thread is responsible to 

check if the last block of the plaintext must be padded. In case size is not a product of 

16 in bytes, then the last block will be incomplete and the padding process serves in 

filling it. In general, the __device__ function which is responsible for the block 

encryption is called by each thread, using a different offset of the plaintext buffer as a 

function argument. In the end of the procedure, each thread writes back its block to the 

buffer (which still resides in the GPU memory) and the CUDA kernel terminates. The 

host code (C) is then responsible to copy the buffer and some other parameters (e.g 

return status) back to the CPU memory (cudaMemCpy device to host) so that it is 

accessible from the CPU. The host code now has access to the ciphertext. The 

decryption process works likewise, and when it is finished, the host code has received 

the final plaintext. 

For the test_encrypt executable, the data is read from a text file, and in the end, as 

a part of an error-checking procedure, the program compares the final plaintext with the 

initial input and reports back to the user. A successful run should display that the two 

buffers are exactly the same: 

 

 

Figure 23: Verification Message 
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For the test_performance executable, the procedure explained above is repeated 

for a 1mb buffer in a loop. The times of the loop are determined by the user, using the 

“–data X” flag we mentioned earlier. For example, with a “-data 100” flag, a random 1mb 

buffer with data will be generated,  and it will be encrypted and decrypted 100 times, 

displaying detailed timing results at the end of its execution: 

 

Figure 24: Detailed timing results 

  

 

Because of our limitation on CUDA blocks/threads that can run simultaneously, in 

our test_encrypt implementation, we have divided the initial file to 8000-char buffers that 

get encrypted/decrypted and then combined to form the final output. This way, the 

algorithm will run successfully no matter how large the input text (.txt) file is. 

For compilation, we used the nvcc compiler (v6.5.12) and several .c and .cu 

source files. The content of our corresponding  makefile is the following: 

 

 

 

  Test files were left almost intact through the transition from C to 

OpenMP/CUDA, with the only changes involving the way the input was received by our 

program, as we have already mentioned.  
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 It is also worth noting that the CUDA implementation contains more detailed 

timing, as it is important to observe the timings for total execution, memory operations 

(cudaMalloc, cudafree, cudaMemCpy host-to-device and device-to-host), 

encryption/decryption timings, etc. This is shown below: 

 

 

Figure 25:Serial code timings 

 

 

 

 

Figure 26: OpenMP timings 
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Figure 27: CUDA timings 

 

5.3 Code Optimization 

 

 After the developing of all the features that we intended to include in our code, and 

test cases using all available parameters (including different key sizes, smaller or larger 

files, etc.), we had to find ways to further optimize our code, given the algorithm we had 

chosen and the possibilities that were offered.  

 Firstly, as far as OpenMP is concerned, we trusted there were no further 

significant optimizations that could be included. Since OpenMP is a high level library 

and we were called to apply it to an existing piece of C code, there was no room for new 

ideas to reduce execution time or memory requirements. 

 On the other hand, CUDA works in quite a different way. In our first try, all needed 

parameters for encryption and decryption were copied to GPU memory using 

CudaMemCpy. As we moved deeper in CUDA programming we realized that certain 

values could be passed by value, avoiding the memory operations overhead which 

could prove to be quite costly, especially on large test cases.  

Using the standard nvcc profiler (nvprof) we could take a deeper look at what 

functions are called, when and how many times, depending on the . The –print-gpu-

trace includes all cuda API calls made as well as detailed info for each one of them. 

It was obvious that the memory operations were a bit more than we wanted or 

expected. We decided to omit every possible memory allocation and copy process that 

was unnecessary, using by-value argument function calls when the data was read-only. 
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The improvement was visible, definitely not great, but the results got even better 

by a factor of 5% and we are convinced that we no longer include anything but the 

absolutely necessary operations in our code, as far as our knowledge goes. 

 

 

Figure 28: nvcc profiler example 

 

5.4 Main Difficulties 

 

 Despite our acceptable level of knowledge on cryptography in general, the AES 

algorithm and a certain amount of experience and skill in CUDA programming, we came 

to find out that we needed to dive in a more extensive study of both areas. Our initial 

idea was solid enough and possible to realize, but certain details needed further 

investigation before we could proceed any further. 
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 Despite the fact that the theoretical block encryption rounds and steps seem to be 

simple enough in a theoretical level, they proved to be somewhat harder to understand 

while written in C code. Luckily enough, the code was clean and straightforward, so step 

by step we were able to overcome all our difficulties and obtain an excellent grasp of 

what happens to the block on each round and step, as well as the usefulness of each 

step. 

 In addition, we were curious to find out the main idea behind the S-box and the 

other pre-configured tables used in each step. To clarify, even if it out of the general 

scope of this document, we wondered what makes a “good” S-box, how one can fill it in 

the best possible way, and what difference could any changes to it possible make. That 

was, admittedly, a more complex issue but we wanted to obtain as complete as possible 

knowledge on the subject of our thesis, so we invested a portion of our time on this 

matter. 

 Moreover, we studied the significance of a random key, the impact of the 

predictability of the key on the cipher‟s security and what makes a random key 

generator better in general. We found out that if a key (or even a part of the key) is in 

any way predictable, it could lead to a breach of security on the cipher, especially on 

simpler block cipher codes, like ECB. That is because, due to the fact that the same key 

is used on each block, two same blocks encrypted with AES ECB will produce the same 

cipherblock (unlike chain ciphers like CBC where cipherblocks depend on previous 

cipherblocks), possibly leading to security flaws. Luckily the base C code we received 

had a custom random key generator that, from our research, was acceptably capable of 

producing random keys.  

 On the other hand, since CUDA is relatively new, documentation was almost our 

only advisor to developing. Several problems we had to face were not examined on any 

forum or site, leading us to face our most severe difficulties in the development part. 

The CUDA documentation is quite complete and easy to understand, but we thought 

some areas could have been explained better. One particular problem we had to deal 

with, was the CUDA kernels not running because of improper set of max-registers-per-

thread, which is defined on compilation by the way. In several cases, kernels could not 

run at all, while on others only some of the threads were able to run. In other cases 

where many registers are being used can cause a low maximum occupancy and thus 

cause a number of processing cores to remain idle, which can impact performance. 
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After excessive research we chose a number of max-registers-per-thread that could 

achieve stability throughout the program while assuring that threads are not making 

unnecessary use of registers. 

 

5.5 Comparison and Results 

  

This is the part of the thesis we put our implementations to test in real world data 

and compare it to each other, as well as the serial C code. From what we have already 

analyzed, and given the true capabilities of threaded programming and most importantly 

a General Purpose GPU Computing (GPGPU computing) program, the results should 

lead us to positive conclusions. Let‟s find out. 

During the tests, we used the test_performance executable, which, as we 

mentioned, uses user defined size but random generated data for its test purposes and 

then displays the results. The data parameters we used in all Serial, OpenMP and 

CUDA executables in megabytes are 1, 5, 10, 50, 100, 1000, 10000 and were chosen 

carefully in order to better depict the impact of parallelism in a wide range of data sizes. 

We can safely assume that in even larger datasets, the results will be similar to the 

10000mb execution. 

Below we present a series of tables and charts, which we trusted that better depict 

our results in each case. We compare the execution time in each implementation whilst 

changing the key size, compute the speedup, explain the impact of the key size on each 

one and of course, compare all those implementations, which was our main cause to 

start with. 
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5.5.1 Sequential Results 

 

Firstly, we present the info we gathered from the sequential/serial program 

executions. These serve only as a comparative to any of the other parallel 

implementations we are discussing. 

Sequential 128-bit key results: 

 

Graph 1: Sequential 128-bit key chart 

 What could help better explain the previous graph, is the throughput that the serial 

code is able to handle on a certain amount of time, for example per second. The 

following table demonstrates how the throughput varies with the input size.  

Size (MB) 1 5 10 50 100 1000 10000 

Throughput 

(MB/s) 

0.85 0.86 0.86 0.86 0.87 0.87 0.87 

Table 3: Sequential throughput 128-bit key  
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 As we can see, there is not much variation, which is to be expected, because of 

the nature of the serial program. The same argument stands for the other two key sizes, 

of course, and will be verified shortly. The code is able to process an average of 0.86mb 

of data input per second during our 128-bit key tests.  

 We can expect a smaller average throughput on our 192-bit and 256-bit key tests, 

given the fact that the 128-bit test runs 10 rounds of encryption on each block. 

 

Sequential 192-bit key results: 

 

Graph 2: Sequential 192-bit key chart 

 

 From the chart above, we will now proceed to present our throughput results: 

Size (MB) 1 5 10 50 100 1000 10000 

Throughput 

(MB/s) 

0.71 0.71 0.72 0.72 0.72 0.72 0.72 

Table 4: Sequential throughput 192-bit key 
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 The average throughput is 0.72mb/s, which is less than our previous tests with the 

128-bit key, naturally. That verifies our previous expectations. Each block goes through 

2 additional rounds of encryption (12 in total) when a 192-bit key is used which explains 

why the program cannot keep up with our 128-bit key results.  

 

Sequential 256-bit key results: 

 

Graph 3: Sequential 256-bit key chart 

  

The throughput results are as follows: 

  

Size (MB) 1 5 10 50 100 1000 10000 

Throughput 

(MB/s) 

0.6 0.61 0.62 0.61 0.61 0.61 0.61 

Table 5: Sequential throughput 256-bit key 

 



IMPLEMENTATION OF THE AES ENCRYPTION ALGORITHM IN PARALLEL GPU AND CPU ARCHITECTURES 

GOUSIOS GEORGE, DIMIZAS NIKOLAOS  77 

 For the same reasons as described above, the 256-bit key test throughput falls 

behind both the 128-bit and 192-bit key throughputs, because it involves 14 rounds of 

encryption on each block (4 more than the 128-bit key test and 2 more than the 192-bit 

key test respectively). It averages on 0.61mb/s. 

The first thing that pops to the eye is that the key size affects real world timings in 

the execution. This is totally natural and can be easily explained due to the fact that the 

size of the key in the AES algorithm defines the number of rounds that each block of the 

file will go through in the process of both the encryption and the decryption. It is a part of 

the AES algorithm, as standardized. As a matter of fact, the 128bit key sets the number 

of rounds (Nr) to 10, the 192bit key to 12 and the 256bit key to 14. Therefore, this is 

something expected, and should affect not only the serial, but the OpenMP and CUDA 

implementations as well. 

 

How much does the size of the key affect real world time, though? For comparison 

purposes we present the following table, for 1gb of data (though in this implementation, 

the percentages should be roughly the same regardless of the data size we compare 

against different key sizes): 

 

Key size Performance compared to 128-bit key 

execution time 

128-bit  100% 

192-bit  119% 

256-bit  141% 

Table 6: Sequential key size - performance 
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5.5.2 OpenMP Results 

 

Now that we set our comparative base, let‟s take a look at the OpenMP results: 

 

 

Graph 4: OpenMP 128-bit key chart 

 The corresponding throughput table is the following 

Size (MB) 1 5 10 50 100 1000 10000 

Throughput 

(MB/s) 

3.1 3.4 3.4 3.4 3.4 3.4 3.3 

Table 7: OpenMP throughput 128-bit key 

 

It may seem strange that on 10gb of data input, the throughput drops significantly. 

That is probably because of cache memory misses and the time that is requires to 

replace dirty blocks on the cache. The cache is a very fast type of memory that is 

embedded in the CPU and is used to accelerate calculations. Basically the CPU often 

copies blocks of memory from the RAM to the cache in order to allow it to have much 

faster access to the data later. In large data sets, the cache may get full and it may be 
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necessary to replace some of these entries, and that explains the slightly elevated 

timing levels on the 10gb test. 

 

OpenMP 192-bit key results:  

 

 

Graph 5: OpenMP 192-bit key chart 

The corresponding throughput table is the following  

  

Size (MB) 1 5 10 50 100 1000 10000 

Throughput 

(MB/s) 

2.56 2.8 2.8 2.8 2.8 2.8 2.55 

Table 8: OpenMP throughput 192-bit key 
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Once again we can observe that the throughput drops on the 10gb data test. This 

is due to the same reasons as in the 128-bit key tests, and we can expect it on the 256-

key test that follows, as well. 

The data throughput capabilities of the OpenMP program is naturally reduced on 

each test compared to the 128-bit, for the same reasons we explained on the sequential 

program. The 2 additional rounds of the encryption and decryption processes slow 

down the whole process, resulting in less efficiency and thus throughput capability.  

 

 

 OpenMP 256-bit key results:  

 

Graph 6: OpenMP 256-bit key chart 

 

The corresponding throughput table is the following  

  

Size (MB) 1 5 10 50 100 1000 10000 

Throughput 2.3 2.3 2.3 2.3 2.4 2.4 2.1 
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(MB/s) 

Table 9: OpenMP throughput 256-bit key 

 

 Once again, both the 10GB test throughput is reduced due to cache memory 

reasons, and each individual throughput is reduced even more due to the 14 rounds of 

encryption and decryption. Our expectations are verified. 

 

 How much does the key affect the real-time timings though? It can be easily 

presented through this table: 

 

Key size Performance compared to 128-bit key 

execution time 

128-bit  100% 

192-bit  121% 

256-bit  141% 

Table 10: OpenMP key size-performance 

 

 We can see that key size affects our 1GB test results in a very similar factor to the 

sequential executions. The 192-bit key takes 121% of the time versus the serial‟s 119% 

percentage, and the 256-bit key takes 141% for both serial and OpenMP. 

 

 

 

The real question, however, is how does OpenMP code compare to the sequential 

code? These bar charts can paint the main picture:  
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Graph 7: Sequential vs OpenMP 128-bit key chart 

  

 Optically the results seem satisfying. The chart above contains info about tests 

from 1mb to 10gb though and that is why we are going to provide an additional barchart 

for each key size to better depict our results as far as the 3 largest tests are concerned. 
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Graph 8: Sequential vs OpenMP 128-bit key barchart 
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In addition, the 192-bit key results are shown below:  

 

 

Graph 9: Sequential vs OpenMP 192-bit key chart 
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Graph 10: Sequential vs OpenMP 192-bit key barchart 

 

 

  

3920.4 
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 Finally, the 256-bit key comparison is depicted in the following charts:  

 

 

Graph 11: Sequential vs OpenMP 256-bit key chart 
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Graph 12: Sequential vs OpenMP 256-bit key barchart 

 

Even though these bar charts can give the main impression of acceleration in the 

execution of the algorithm, our main concern here is the actual speedup in terms of 

percentages. But to better understand the concept of speedup in parallel computing we 

should take a brief look at Amdahl‟s law. 

 Amdahl‟s law [29] is a model for the expected speedup and the relationship 

between parallelized implementations of an algorithm and its sequential 

implementations, under the assumption that the problem size remains the same when 

parallelized. The main variables it involves can be shown in the equation below: 

  16500.4 

  4380.7 

    1638.6 
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 n ϵ N, the number of threads of execution 

 B ϵ [0,1], the fraction of the algorithm that is strictly serial 

The time T(n) an algorithm takes to finish when being executed on n thread(s) of 

execution corresponds to: 

 ( )   ( ) (  
 

 
(   )) 

 

Therefore, the theoretical speedup S(n) that can be had by executing a given algorithm 

on a system capable of executing n threads of execution is: 

 ( )  
 ( )

 ( )
 

 ( )

 ( ) (  
 
 
(   ))

 
 

  
 
  
(   )

 

  

So, theoretically, if a problem is 100% parallelizable (though it never is), and we have 4 

available threads of execution (just like our test machine), then B=0, n=4 and S(n)=4. It 

is foolish to expect such a speedup though, since no algorithms are 100% 

parallelizable, and the AES ECB is no exception to that rule. 

 It is more convenient to use the S(n)=T(1)/T(n) equation for our results, since we 

already have the timings of the executions, whilst lacking the B parameter. Another way 

to calculate the speedup would be to divide the corresponding throughputs. So:  

 

 

 

 

 

 

128-bit key: 

Data size (MB) OpenMP vs. Sequential (speedup) 
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1 3.65 

10 3.89 

100 3.89 

1000 3.93 

10000 3.93 

Table 11: OpenMP vs Sequential 128-bit key speedup  

 

 

192-bit key 

Data size (MB) OpenMP vs Sequential (speedup) 

1 3.78 

10 3.88 

100 3.89 

1000 3.94 

10000 3.94 

Table 12: OpenMP vs Sequential 192-bit key speedup 
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256-bit key 

Data size (MB) OpenMP vs Sequential (speedup) 

1 3.77 

10 3.95 

100 3.96 

1000 3.96 

10000 3.96 

Table 13: OpenMP vs Sequential 256-bit key speedup 

 

 As we can see, the speedup in each case is very close to 4 which would be the 

perfect speedup, if the algorithm was 100% parallelizable. That leads us to two 

conclusions. First, only a very small part of the algorithm is strictly sequential, and 

second, parallel programming is working very well in our case with OpenMP threads. 
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5.5.3 CUDA Results 

 

 Finally, we present the core of our testing procedure, which is the presentation of 

the results of the CUDA approach to the AES algorithm.  

 

Graph 13: CUDA 128-bit key chart 

 

The deriving throughput table is the following: 

Size (MB) 1 5 10 50 100 1000 10000 

Throughput 

(MB/s) 

2.1 9.1 15.6 35.7 43.5 52 52.6 

Table 14: CUDA throughput 128-bit key 
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CUDA 192-bit key results:  

 

 

Graph 14: CUDA 192-bit key chart 

 

Again, we present the average throughput on each of our tests: 

Size (MB) 1 5 10 50 100 1000 10000 

Throughput 

(MB/s) 

2 9.1 12.5 33.3 38.4 44.6 45.4 

Table 15: CUDA throughput 192-bit key 
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 CUDA 256-bit key results:  

 

 

Graph 15: CUDA 256-bit key chart 

 

The final throughput table: 

Size (MB) 1 5 10 50 100 1000 10000 

Throughput 

(MB/s) 

2.1 8.3 11.3 29.4 34.5 40 40 

Table 16: CUDA throughput 256-bit key 

 

 Naturally, key size also affects the CUDA implementation. Below we present the 

table with the comparison of the timings of 1gb data input, using all 3 key sizes. 

  



IMPLEMENTATION OF THE AES ENCRYPTION ALGORITHM IN PARALLEL GPU AND CPU ARCHITECTURES 

GOUSIOS GEORGE, DIMIZAS NIKOLAOS  94 

Key size Performance compared to 128-bit key 

execution time 

128-bit  100% 

192-bit  116% 

256-bit  132% 

Table 17: CUDA key size-performance 

 

 What is really interesting is that the key size affects are results but to a 

significantly minor extent in comparison with the sequential and OpenMP approaches, 

which were in fact quite the same. The final and complete table of 1gb input is the 

following: 

 

 Sequential OpenMP CUDA 

128-bit  100% 100% 100% 

192-bit  119% 121% 116% 

256-bit  141% 141% 132% 

Table 18: All implementations key size-performance 

 

Pure numbers don‟t tell the whole story, though. Our main purpose is to compare 

CUDA to Sequential and OpenMP code. First let‟s take a look at the bar charts. 
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CUDA vs Sequential code 

 

 

Graph 16: CUDA vs Sequential 128-bit key chart 
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Graph 17: CUDA vs Sequential 128-bit key barchart 
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Graph 18: CUDA vs Sequential 192-bit key chart 
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Graph 19: CUDA vs Sequential 192-bit key barchart 
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Graph 20: CUDA vs Sequential 256-bit key chart 
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Graph 21: CUDA vs Sequential 256-bit key barchart 
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CUDA vs OpenMP 

 

 

Graph 22: CUDA vs OpenMP 128-bit key chart 
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Graph 23: CUDA vs OpenMP 128-bit key barchart 
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Graph 24: CUDA vs OpenMP 192-bit key chart 
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Graph 25: CUDA vs OpenMP 192-bit key barchart 

 

  



IMPLEMENTATION OF THE AES ENCRYPTION ALGORITHM IN PARALLEL GPU AND CPU ARCHITECTURES 

GOUSIOS GEORGE, DIMIZAS NIKOLAOS  105 

 

 

 

Graph 26: CUDA vs OpenMP 256-bit key chart 
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Graph 27: CUDA vs OpenMP 256-bit key barchart 
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Needless to say the diagrams above show clearly in an optical way that CUDA is 

able to run the algorithm in parallel in a much faster pace, and to be precise, handling 

much more throughput for the same time. The results are indeed impressive and verify 

our initial expectations about CUDA code and its performance boost potential. 

Before we present the speedup results, we should clarify that just because our test 

machine and in particular the GPU can run 448 threads in parallel, it is wrong to assume 

that the perfect speedup would be 448 (again, in case of a 100% parallelizable 

algorithm). This assumption would be true only if the CPU threads on our AMD 

processor were exactly the same in all aspects, which is very far from true. GPU and 

CPU threads have many differences that start from architecture reasons to many other 

reasons we referred to many times in this thesis.  

Given the previous charts, it is more than obvious that the speedup is going to be 

huge, especially compared to the sequential code, but also in comparison to OpenMp.  
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Sequential vs OpenMP vs CUDA 
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CUDA Speedup  

CUDA speedup vs Sequential 

 

128-bit key 

 

Data size (MB) CUDA vs Sequential (speedup) 

1 2.43 

10 18 

100 49.3 

1000 59.5 

10000 60.5 

Table 19: CUDA vs Sequential 128-bit key speedup 

 

192-bit key 

 

Data size (MB) CUDA vs Sequential (speedup) 

1 2.84 

10 17.3 

100 53.3 

1000 62 

10000 63.6 

Table 20: CUDA vs Sequential 192-bit key speedup 

256-bit key 
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Data size (MB) CUDA vs Sequential (speedup) 

1 3.5 

10 23.1 

100 54.6 

1000 65.5 

10000 65.7 

Table 21: CUDA vs Sequential 256-bit key speedup 

 

 At first glance, we notice three things. First, the speedup is increasing significantly 

when using larger data sets as an input, and secondly, the larger the key, the higher the 

speedup given the same input data. It is clear that using CUDA in the AES ECB 

algorithm makes perfect sense in most cases performance-wise, but the stats show that 

CUDA is ultra-efficient when using bigger keys and large input sizes. 

 Last but not least, since the speedup is lower for smaller inputs, one could wonder 

if there is a threshold to that speedup at some point. There comes the question whether 

the speedup is always >1 (and therefore it makes sense to use CUDA over serial code), 

or in small inputs the sequential runs faster. The answer unsurprisingly is that on small 

input data, the serial code could run faster. The real question, is how small. 

 As a matter of fact, we found out that encryption runs faster on serial code if the 

input ranges from some bytes to several kilobytes. But that changes drastically once we 

pick larger inputs for encryption/decryption. Even on our smallest data set (1mb) using 

the smallest possible key (128-bit), the least speedup is 2.46 which is too much to 

neglect.  Whether the same point stands in a CUDA vs OpenMP comparison, is 

something we will examine right away. 
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CUDA speedup vs OpenMP 

 

128-bit key 

 

Data size (in mb) CUDA vs OpenMP (speedup) 

1 0.67 

10 4.4 

100 12.6 

1000 15.2 

10000 15.8 

Table 22: CUDA vs OpenMP 128-bit key speedup 

 

192-bit key 

 

Data size (in mb) CUDA vs OpenMP (speedup) 

1 0.76 

10 4.6 

100 13.4 

1000 15.7 

10000 17.8 

Table 23: CUDA vs OpenMP 192-bit key speedup 
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256-bit key 

 

Data size (in mb) CUDA vs OpenMP (speedup) 

1 0.94 

10 5.86 

100 14 

1000 16.2 

10000 19 

Table 24: CUDA vs OpenMP 256-bit key speedup 

 Sure, the results are not as impressive as on the previous comparison, but first of 

all that was to be expected since OpenMP is still a parallel implementation which means 

its faster than the sequential one, and secondly some of these numbers still remain very 

impressive performance-wise. 

 What stands out here, is the fact that OpenMP is faster than CUDA on our first 

sample input of 1MB, on all key sizes. That leads us to the conclusion that for small 

inputs of several MBs it is more efficient to use CPU parallelism instead of CUDA. That 

fact only stands for these cases, however. We can see that CUDA beats OpenMP by far 

in our second (10MB) test input, and the difference is getting even wider when the input 

sizes get even larger. In addition, the observation we made on the CUDA vs Sequential 

comparison still stands. CUDA is faster on both larger data sets and bigger key sizes, 

even against OpenMP.  

 To summarize, we proved the superiority in performance that CUDA shows over 

both sequential C code and OpenMP CPU-parallel implementations, throughout a 

series of tests using different input and key sizes. It may now be clear that it is not 

always the best option, referring to small input sizes, but when the input reaches sizes 

over 5-7MB the performance gains are massive. To simplify, CUDA may not be the 

most appropriate solution in cryptography for text format messages in an Instant 

Messaging application (which should have a maximum size of several KBs), but it surely 

excels in terms of performance in file cryptography. 
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5.6 Speedup Tables 

 

 Below we present the final speedup tables that show the results of our testing as a 

whole in a graphical way. These bar charts paint the bigger picture and summarize the 

point of this thesis. 

 

Graph 28: Sequential vs OpenMP vs CUDA 128-bit key speedup 
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Graph 29: Sequential vs OpenMP vs CUDA 192-bit key speedup 
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Graph 30: Sequential vs OpenMP vs CUDA 256-bit key speedup 
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6. TABLE OF RESULTS 

  

 Lastly, we present the tables with all timing values of the sequential, OpenMP and 

CUDA implementations, which helped to draw the results we discussed on this chapter 

and create the diagrams, charts and secondary tables we used to better present and 

further explain our results. Some of the values we presented in our charts were slightly 

approximated in order to provide rounder percentages. 

 These tables were filled with the values we drew from executing the 

test_performance executable on each implementation, using different data sizes and 

different keys. As far as the sequential implementation is concerned, the 10GB input 

took over an hour to complete and, while we have the actual timings in milliseconds 

(and of course used it in the charts and speedup calculations), we didn‟t include it. 

Furthermore it is natural to expect a timing which is around 10x the time of the 1gb 

timing. 

 What really stands out in the CUDA parts of these tables is the initialization time. A 

brief description of this stage of the algorithm would be that it includes reading the 

command line arguments and setting up the program accordingly (such as block cipher 

mode, key size and input data), initialization of variables such as the key and ctx structs, 

as well as block buffers to be used, plus one more costly procedure. This procedure is 

the CUDA initialization (driver initialization and CUDA context creation) and is a 

necessary overhead for the CUDA code to run. According to NVIDIA‟s forums, there are 

compilation modes that are supposed to instruct the CUDA driver to behave in such a 

way that no such initialization is needed every time a piece of CUDA code runs, but we 

believed that this overhead should be included in our tests anyway. To be precise, in a 

475ms initialization time, this very delay would take up to 465ms. 

 This process happens once, in the first CUDA API call so we forced called 

cudaFree(0) in the beginning of our code to provoke it implicitly.  

 On that note, we can observe that the initialization time remains somewhat stable, 

regardless of the key size or input data. That is to be expected, as the only thing that 

changes throughout the whole process is the creation of a smaller/larger key, which 

should make minor difference in timing. 
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 One other thing that may seem somewhat strange at first glance is the fact that 

decryption seems to take longer than the encryption process. One would think that 

since all stages of encryption are reversible, it would take approximately the same time 

for both the encryption and decryption, but from our research this is not true. Some 

stages in the decryption process apparently take more time than their corresponding 

encryption stages. It is also worth noting that in CUDA, decryption requires some more 

memory operations (CudaMemCopy) in comparison to the encryption process, which 

also slows down the program a little bit. 
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Timing Using 128-bit key (ms) 
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size Serial CPU implementation OpenMP implementation CUDA Implementation 
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Total 

Encryption 

Time 

Total 

Decryption 

Time  

Cuda 

viriables 

initialization  

Cuda 

viriables 

initialization  

1 1178 10 480 688 322 17 130 175 478 458 

9 11 

1 2 

5 5755 10 2330 3416 1489 20 604 864 555 460 

41 54 

5 6 

10 11562 10 4695 6858 2963 17 1205 1741 641 452 

82 107 

12 13 

50 57862 10 23510 34342 14689 17 5983 8694 1417 475 

408 534 

59 64 

100 114811 10 46648 68154 29280 20 11902 17358 2327 445 

810 1072 

122 126 

1000 1148744 10 466215 682517 292216 17 118727 173473 19298 465 

8170 10663 

1239 1257 

10000 11550000 10 - - 3010467 22 1256903 1753542 190126 552 

824438 107134 

12389 13007 

Table 25: All timings 128-bit key 
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Timing Using 192-bit key (ms) 
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Total 

Encryption 

Time 

Total 

Decryption 

Time  

Cuda 

viriables 

initialization  

Cuda 

viriables 

initialization 

1 1407 10 564 834 379 15 154 211 494 470 

11 13 

2 2 

5 6977 10 2823 4143 1808 18 732 1058 556 445 

49 62 

5 6 

10 13985 10 5685 8290 3565 18 1441 2106 804 584 

94 126 

11 12 

50 69492 10 28124 41358 17368 20 7163 10454 1532 437 

469 626 

59 63 

100 138636 10 56213 82413 35498 20 14402 21075 2655 464 

949 1242 

118 124 

1000 1391841 10 563830 828000 353548 18 142711 210819 22480 540 

9421 12519 

1203 1296 

10000 14000450 10 - - 3920472 22 1757249 2163201 220292 463 

94689 125138 

12293 12759 

Table 26: All timings 192-bit key 
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Timing Using 256-bit key (ms) 
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Serial CPU implementation OpenMP implementation CUDA implementation 
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Total 

Encryption 

Time 

Total 

Decryption 

Time 

Cuda 

viriables 

initialization  

Cuda 

viriables 

initialization  

1 1663 10 672 981 442 15 179 250 469 443 

12 14 

1 1 

5 8196 10 3316 4871 2171 20 858 1292 593 467 

53 73 

6 7 

10 16262 10 6578 9674 4181 20 1693 2470 713 462 

111 140 

12 13 

50 81388 10 32932 48447 20675 23 8324 12326 1721 472 

535 714 

57 60 

100 164010 10 66090 97911 41401 20 16736 24646 2958 461 

1065 1432 

121 131 

1000 1638680 10 660901 977764 414173 20 167159 246996 25479 472 

10775 14232 

1309 1328 

10000 16500450 10 - - 

4780723 

 

18 1946792 2833913 251076 462 

107484 143128 

12782 13118 

Table 27: All timings 256-bit key 
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ABBREVIATIONS - ACRONYMS 

 

CUDA Compute Unified Device Architecture 

CPU Central Processing Unit 

GPU Graphics Processing Unit 

DES Data Encryption Standard 

AES Advanced Encryption Standard 

RSA Rivest, Shamir, and Adelman 

H2D Host to Device 

D2H Device to Host 
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