

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Streaming Data Processing Frameworks

Aikaterini – M - Ntenti

Supervisor: Gunopoulos Dimitrios, Professor NKUA

ATHENS

MAY 2017

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Πλαίσια Επεξεργασίας Συνεχούς Ροής Δεδομένων

Αικατερίνη – Μ - Ντέντη

Επιβλέπων: Γουνόπουλος Δημήτρης, Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

ΜΑΙΟΣ 2017

BSc THESIS

Streaming Data Processing Frameworks

Aikaterini – M - Ntenti
S.N.: 1115201000130

SUPERVISOR: Gunopoulos Dimitrios, Professor NKUA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Πλαίσια Επεξεργασίας Συνεχούς Ροής Δεδομένων

Αικατερίνη Μ. Ντέντη

Α.Μ.: 1115201000130

ΕΠΙΒΛΕΠΟΝΤΕΣ: Γουνόπουλος Δημήτρης, Καθηγητής ΕΚΠΑ

ABSTRACT

The scope of this thesis is to review in detail some of the most significant Apache
Streaming Processing Frameworks: Apache Spark, Apache Storm, Apache Flink,
Apache Samza and Apache Kafka. Each one of these tools is designed in a specific
way, but every one of them is used for the same purpose: streaming data processing,
manipulation and handling. In this thesis, we go over their features and concepts and
analyze in detail the way they work. Moreover, we provide a comparison report which
includes the major differences and similarities between them. After obtaining a high
level idea of how they differ as frameworks, we provide the Word Count example, which
is similar to the Hello World example, but for streaming data programming. In the end,
we conclude on how the Apache Streaming Processing Frameworks contribute to the
world and answer the following questions:

 How and why enterprises use the tools?

 Which are the Use Cases?

 Is there a possible integration between them?

Key words: streaming data processing, concepts, WordCount example, integration,
Apache streaming Processing frameworks

ΠΕΡΙΛΗΨΗ

O σκοπός αυτής της πτυχιακής εργασίας είναι να αναλύσει με λεπτομέρεια τα πιο
σημαντικά Πλαίσια Επεξεργασίας Συνεχούς Ροής Δεδομένων: Apache Spark, Apache
Storm, Apache Flink, Apache Samza και Apache Kafka. Κάθε ένα από αυτά τα
εργαλεία, είναι σχεδιασμένο με έναν ξεχωριστό τρόπο, ωστόσο κάθε ένα από αυτά
χρησιμοποιείται για τον ίδιο σκοπό: επεξεργασία συνεχής ροής δεδομένων,
επεξεργασία και χειρισμός τους. Στην πτυχιακή αυτή, αναφέρουμε τα χαρακτηριστικά
και τις έννοιές και αναλύουμε λεπτομερώς τον τρόπο με τον οποίο λειτουργούν.
Επιπλέον, παρέχουμε μια έκθεση σύγκρισης που περιλαμβάνει τις μεγάλες διαφορές
και ομοιότητες μεταξύ τους. Αφού αποκτήσετε μια μεγαλύτερη ιδέα για το πώς
διαφέρουν ως πλαίσια, παρέχουμε το παράδειγμα Word Count, το οποίο είναι παρόμοιο
με το παράδειγμα Hello World, αλλά αφορά τον προγραμματισμό συνεχούς ροής
δεδομένων. Τέλος, καταλήγουμε στο συμπέρασμα για το πώς τα πλαίσια επεξεργασίας
συνεχούς ροής δεδομένων της Apache συμβάλλουν στον κόσμο και απαντούν στις
ακόλουθες ερωτήσεις:

 Πώς και γιατί οι επιχειρήσεις χρησιμοποιούν τα εργαλεία;

 Ποιες είναι οι περιπτώσεις χρήσης;

 Υπάρχει πιθανή ενοποίηση μεταξύ τους;

Λέξεις-κλειδιά: επεξεργασία δεδομένων ροής, έννοιες, παράδειγμα WordCount,
ενοποίηση, πλαίσια επεξεργασίας συνεχούς ροής δεδομένων της Apache

CONTENTS

PREFACE ... 11

1. INTRODUCTION .. 12

2. APACHE STORM OVERVIEW .. 14

2.1 What is Apache Storm ... 14

2.2 Apache Storm Concepts .. 14

3. APACHE SPARK STREAMING OVERVIEW .. 16

3.1 What is Apache Spark Streaming ... 16

3.2 Spark Streaming Concepts .. 16

4. APACHE KAFKA OVERVIEW .. 20

4.1 What is Apache Kafka .. 20

4.2 Kafka basic concepts ... 20

5. APACHE FLINK OVERVIEW .. 24

5.1 What is Flink ... 24

5.2 Apache Flink Basic Concepts ... 24

6. APACHE SAMZA OVERVIEW .. 28

6.1 What is Samza .. 28

6.2 Apache Samza Basic Concepts .. 28

7. SIMILARITIES AND DIFFERENCES BETWEEN THE APACHE STREAMING
ENGINES .. 30

7.1 Word Count example in Storm .. 31

7.2 Word Count example in Spark .. 31

7.3 Word Count example in Flink .. 32

7.4 Word Count example in Kafka ... 32

7.5 Word count example in Samza .. 33

8. STREAMING TOOLS USES CASES AND INTEGRATION IN THE BUSINESS
FIELD .. 34

9. ΣΥΜΠΕΡΑΣΜΑΤΑ ... 35

REFERENCES .. 36

LIST OF IMAGES

Figure 1: DStream and series of RDDs ... σελ. 17

Figure 2: List of Transformations ... σελ. 18

Figure 3: Output Operations .. σελ. 18

Figure 4: Kafka's APIs ... σελ. 21

Figure 5: Anatomy of a topic .. σελ. 21

Figure 6: Consumers in Kafka ... σελ. 22

Figure 7: Example Dataflows ... σελ. 25

Figure 8: Word Count in Storm .. σελ. 31

Figure 9: Word Count in Spark .. σελ. 32

Figure 10: Word Count in Flink .. σελ. 32

Figure 11: Word Count in Kafka .. σελ. 33

Figure 12: Word Count in Samza .. σελ. 33

LIST OF TABLES

Table 1: Table with results of the comparison ... σελ. 30

PREFACE

This thesis has been written to fulfill the graduation requirements and get a bachelor in
Informatics and Telecommunications in University of Athens. I was engaged in
researching and writing this thesis from October 2016 to April 2017.I would like to thank
my supervisor for their guidance and support during this process.

Streaming Data Processing Frameworks

A. Ntenti 12

1. INTRODUCTION

The demand for stream processing is increasing a lot these days. The reason is that
often processing big volumes of data is not enough. Data has to be processed fast and
needs to be analyzed. The speed at which data is generated, consumed, processed,
and analyzed is increasing at an unbelievably rapid pace.

The industries demand data processing and analysis in real-time. Traditional big data-
styled frameworks such as Apache Hadoop is not well-suited for these use cases. As a
result, multiple open source projects have been started in the last few years to deal with
the streaming data. All were designed to process a never-ending sequence of records
originating from more than one source.

In contrast to the traditional database model where data is first stored and indexed and
then subsequently processed by queries, stream processing takes the inbound data
while it is in flight, as it streams through the server. Stream processing also connects to
external data sources, enabling applications to incorporate selected data into the
application flow, or to update an external database with processed information.

A stream processing solution has to solve different challenges:

• Processing massive amounts of streaming events (filter, aggregate, rule,
automate, predict, act, monitor, alert)

• Real-time responsiveness to changing market conditions

• Performance and scalability as data volumes increase in size and complexity

• Rapid integration with existing infrastructure and data sources: Input (e.g. market
data, user inputs, files, history data from a DWH) and output (e.g. trades, email
alerts, dashboards, automated reactions)

• Fast time-to-market for application development and deployment due to quickly
changing landscape and requirements

• Developer productivity throughout all stages of the application development
lifecycle by offering good tool support and agile development

• Analytics: Live data discovery and monitoring, continuous query processing,
automated alerts and reactions

• Community (component / connector exchange, education / discussion, training /
certification)

• End-user ad-hoc continuous query access

• Alerting

• Push-based visualization

From Storm to Kafka, there are over a dozen open source projects in various stages of
completion, such as:

• Apache Storm

• Apache Flink

• Apache Spark

• Apache Kafka

• Apache Samza

Streaming Data Processing Frameworks

A. Ntenti 13

which we are going to analyze further.

Streaming Data Processing Frameworks

A. Ntenti 14

2. APACHE STORM OVERVIEW

2.1 What is Apache Storm

Apache Storm is a distributed stream processing computation framework written in the
Clojure programming language. Originally created by Nathan Marz and team at
BackType, the project was open sourced after being acquired by Twitter. The initial
release was on 17 September 2011.

A Storm application is designed as a topology in the shape of a directed acyclic graph
with spouts and bolts acting as the graph vertices. It uses spouts and bolts to define
information sources and manipulations to allow batch, distributed processing of
streaming data. Edges on the graph are named streams and direct data from one node
to another. Together, the topology acts as a data transformation pipeline.

The general topology structure is similar to a MapReduce job, with the main difference
being that data is processed in real time as opposed to in individual batches.
Additionally, Storm topologies run indefinitely until killed.

2.2 Apache Storm Concepts

The main concepts of Storm are listed below:

1. Topologies

2. Streams

3. Spouts

4. Bolts

5. Stream groupings

6. Reliability

7. Tasks

8. Workers

1. A Storm topology is a graph of spouts and bolts that are connected with stream
groupings. It is a real-time application and similar to a MapReduce job. One major
difference is that a MapReduce job eventually finishes, whereas a topology runs forever
or until you kill it.

2. The stream is the core abstraction in Storm. A stream is an unbounded sequence of
tuples that is processed and created in parallel. Streams are defined with a schema that
names the fields in the stream's tuples. By default, tuples can contain integers, longs,
shorts, bytes, strings, doubles, floats, booleans, and byte arrays. Every stream is given
an id when declared.

3. A spout is a source of streams in a topology. Generally spouts will read tuples from
an external source and emit them into the topology. Spouts can either be reliable or
unreliable. A reliable spout is capable of replaying a tuple if it failed to be processed by
Storm, whereas an unreliable spout forgets about the tuple as soon as it is emitted.
Spouts can emit more than one stream. The main method on spouts is nextTuple().

https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/MapReduce

Streaming Data Processing Frameworks

A. Ntenti 15

4. Bolts are logical processing units. They can do anything from filtering, functions,
aggregations, joins, talking to databases, and more. Spouts pass data to bolts and bolts
process and produce a new output stream. They can, also, do simple stream
transformations. Doing complex stream transformations often requires multiple steps
and thus multiple bolts.

Bolts can emit more than one stream. The main method in bolts is the execute method
which takes in as input a new tuple.

5. A stream grouping defines how the streams should be partitioned among the bolt's
tasks. There are eight built-in stream groupings in Storm, and somebody can also
implement a custom stream grouping:

Shuffle grouping: Tuples are randomly distributed across the bolt's tasks in a way
such that each bolt is guaranteed to get an equal number of tuples.

Fields grouping: The stream is partitioned by the fields specified in the grouping. For
example, if the stream is grouped by the "user-id" field, tuples with the same "user-id"
will always go to the same task, but tuples with different "user-id"s may go to different
tasks.

Partial Key grouping: The stream is partitioned by the fields specified in the grouping,
like the Fields grouping, but are load balanced between two downstream bolts, which
provides better utilization of resources when the incoming data is skewed. This paper
provides a good explanation of how it works and the advantages it provides.

All grouping: The stream is replicated across all the bolt's tasks. Use this grouping with
care.

Global grouping: The entire stream goes to a single one of the bolt's tasks.
Specifically, it goes to the task with the lowest id.

None grouping: This grouping specifies that you don't care how the stream is grouped.
Currently, none groupings are equivalent to shuffle groupings. Eventually though, Storm
will push down bolts with none groupings to execute in the same thread as the bolt or
spout they subscribe from (when possible).

Direct grouping: This is a special kind of grouping. A stream grouped this way means
that the producer of the tuple decides which task of the consumer will receive this tuple.

Local or shuffle grouping: If the target bolt has one or more tasks in the same worker
process, tuples will be shuffled to just those in-process tasks. Otherwise, this acts like a
normal shuffle grouping.

6. Storm guarantees that every spout tuple will be fully processed by the topology. It
does this by tracking the tree of tuples triggered by every spout tuple and determining
when that tree of tuples has been successfully completed. Every topology has a
"message timeout" associated with it. If Storm fails to detect that a spout tuple has been
completed within that timeout, then it fails the tuple and replays it later.

7. Each spout or bolt executes as many tasks across the cluster. Each task corresponds
to one thread of execution, and stream groupings define how to send tuples from one
set of tasks to another set of tasks. It supports parallelism.

8. Topologies execute across one or more worker processes. Each worker process is a
physical JVM and executes a subset of all the tasks for the topology. Storm tries to
spread the tasks evenly across all the workers.

Streaming Data Processing Frameworks

A. Ntenti 16

3. APACHE SPARK STREAMING OVERVIEW

3.1 What is Apache Spark Streaming

Apache Spark is a fast and general-purpose cluster computing system. Originally
developed at the University of California, Berkeley's AMPLab, the Spark codebase was
later donated to the Apache Software Foundation, which has maintained it since. Spark
provides an interface for programming entire clusters with implicit data parallelism and
fault-tolerance.

Spark Streaming is an extension of the core Spark API that enables scalable, high-
throughput, fault-tolerant stream processing of live data streams. Data can be ingested
from many sources like Kafka, Flume, Kinesis, or TCP sockets, and can be processed
using complex algorithms expressed with high-level functions like map, reduce, join and
window. Finally, processed data can be pushed out to file systems, databases, and live
dashboards. In fact, you can apply Spark’s machine learning and graph processing
algorithms on data streams.

It, also, provides a high-level abstraction called discretized stream or DStream, which
represents a continuous stream of data. DStreams can be created either from input data
streams from sources such as Kafka, Flume, and Kinesis, or by applying high-level
operations on other DStreams. Internally, a DStream is represented as a sequence of
RDDs.

The supported languages, by Spark, are: Scala, Java or Python.

3.2 Spark Streaming Concepts

The basic concepts of Spark Streaming are the following:

1. Discretized Streams (DStreams)

2. Input DStreams and Receivers

3. Transformations on DStreams

4. Output Operations on DStreams

5. DataFrame and SQL Operations

6. MLlib Operations

7. Caching / Persistence

8. Checkpointing

9. Accumulators, Broadcast Variables, and Checkpoints

1. Discretized Stream or DStream is the basic abstraction provided by Spark Streaming.
It represents a continuous stream of data, either the input data stream received from
source, or the processed data stream generated by transforming the input stream.
Internally, a DStream is represented by a continuous series of RDDs, which is Spark’s
abstraction of an immutable, distributed dataset. Each RDD in a DStream contains data
from a certain interval, as shown in the following figure.

Streaming Data Processing Frameworks

A. Ntenti 17

Figure 1: DStream and series of RDDs

Any operation applied on a DStream translates to operations on the underlying RDDs.

2. Input DStreams are DStreams representing the stream of input data received from
streaming sources. Every input DStream is associated with a Receiver object which
receives the data from a source and stores it in Spark’s memory for processing. Spark
Streaming provides two categories of built-in streaming sources:

 Basic sources: Sources directly available in the StreamingContext API. Examples:
file systems, and socket connections.

 Advanced sources: Sources like Kafka, Flume, Kinesis, etc. are available through
extra utility classes. These require linking against extra dependencies as
discussed in the linking section.

Input DStreams can also be created out of custom data sources.

Regarding the Receiver Reliability, there can be two kinds of data sources based on
their reliability. Sources like Kafka and Flume allow the transferred data to be
acknowledged. If the system receiving data from these reliable sources acknowledges
the received data correctly, it can be ensured that no data will be lost due to any kind of
failure. This leads to two kinds of receivers:

 Reliable Receiver: A reliable receiver correctly sends acknowledgment to a
reliable source when the data has been received and stored in Spark with
replication.

 Unreliable Receiver: An unreliable receiver does not send acknowledgment to a
source. This can be used for sources that do not support acknowledgment, or
even for reliable sources when one does not want or need to go into the
complexity of acknowledgment.

3. Transformations allow the data from the input DStream to be modified. Some of the
common transformations are listed below:

Streaming Data Processing Frameworks

A. Ntenti 18

Figure 2: List of Transformations

4. Output operations allow DStream’s data to be pushed out to external systems like a
database or a file systems. Since the output operations actually allow the transformed
data to be consumed by external systems, they trigger the actual execution of all the
DStream transformations .Currently, the following output operations are defined:

Figure 3: Output Operations

5. One can easily use DataFrames and SQL operations on streaming data. Each RDD
is converted to a DataFrame, registered as a temporary table and then queried using
SQL. It also, allows the user to run SQL queries on tables defined on streaming data
from a different thread.

6. Spark also offers the ability to use machine learning algorithms provided by MLlib.

7. Similar to RDDs, DStreams also allow developers to persist the stream’s data in
memory. That is, using the persist() method on a DStream will automatically persist
every RDD of that DStream in memory. This is useful if the data in the DStream will be
computed multiple times (e.g., multiple operations on the same data). Hence, DStreams
generated by window-based operations are automatically persisted in memory, without
the developer calling persist().

For input streams that receive data over the network (such as, Kafka, Flume, sockets,
etc.), the default persistence level is set to replicate the data to two nodes for fault-

Streaming Data Processing Frameworks

A. Ntenti 19

tolerance. Note that, unlike RDDs, the default persistence level of DStreams keeps the
data serialized in memory.

8. A streaming application must operate 24/7 and hence must be resilient to failures
unrelated to the application logic such as system failures, JVM crashes, etc. For this to
be possible, Spark Streaming needs to checkpoint enough information to a fault-
tolerant storage system such that it can recover from failures. There are two types of
data that are checkpointed:

 Metadata checkpointing

 Data checkpointing

Metadata checkpointing is primarily needed for recovery from driver failures, whereas
data or RDD checkpointing is necessary even for basic functioning if stateful
transformations are used.

9. Accumulators and Broadcast variables cannot be recovered from checkpoint in Spark
Streaming. If you enable checkpointing and use Accumulators or Broadcast variables as
well, you’ll have to create lazily instantiated singleton instances for Accumulators and
Broadcast variables so that they can be re-instantiated after the driver restarts on
failure.

Streaming Data Processing Frameworks

A. Ntenti 20

4. APACHE KAFKA OVERVIEW

4.1 What is Apache Kafka

Apache Kafka, although originally developed by LinkedIn, is an open-source stream
processing platform developed by the Apache Software Foundation written in Scala and
Java. This streaming platform allows you to publish and subscribe to streams of
records, store streams of records in a fault-tolerant way and process streams of records
as they occur. This makes it highly valuable for enterprise infrastructures to process
streaming data on the grounds that Apache Kafka is fast, scalable, and durable.

Here are some of the main reason enteprises and organizations use Apache Kafka:

 Stream processing: A framework such as Spark Streaming reads data from a
topic, processes it and writes processed data to a new topic where it becomes
available for users and applications. Kafka’s strong durability is also very useful
in the context of stream processing.

 Messaging: Kafka works well as a replacement for a more traditional message
broker. Message brokers are used for a variety of reasons (to decouple
processing from data producers, to buffer unprocessed messages, etc). In
comparison to most messaging systems Kafka has better throughput.

 Website activity tracking: The web application sends events such as page views
and searches Kafka, where they become available for real-time processing,
dashboards and offline analytics in Hadoop

 Operational metrics: Alerting and reporting on operational metrics.

 Log aggregation: Kafka can be used across an organization to collect logs from
multiple services and make them available in standard format to multiple
consumers, including Hadoop.

 Event Sourcing: Event sourcing is a style of application design where state
changes are logged as a time-ordered sequence of records. Kafka's support for
very large stored log data makes it an excellent backend for an application built
in this style.

4.2 Kafka basic concepts

Kafka runs as a cluster on one or more servers. The Kafka cluster stores streams of
records in categories called topics. Each record consists of a key, a value, and a
timestamp.

Kafka has four core APIs:

 The Producer API allows an application to publish a stream records to one or
more Kafka topics.

 The Consumer API allows an application to subscribe to one or more topics and
process the stream of records produced to them.

 The Streams API allows an application to act as a stream processor, consuming
an input stream from one or more topics and producing an output stream to one
or more output topics, effectively transforming the input streams to output
streams.

Streaming Data Processing Frameworks

A. Ntenti 21

 The Connector API allows building and running reusable producers or
consumers that connect Kafka topics to existing applications or data systems.

Figure 4: Kafka's APIs

In Kafka the communication between the clients and the servers is done with a simple,
high-performance, language agnostic TCP protocol.

Topics and Logs

A topic is a category or feed name to which records are published. All Kafka messages
are organized into topics that are always multi-subscriber, that is, a topic can have zero,
one, or many consumers that subscribe to the data written to it.

For each topic, the Kafka cluster maintains a partitioned log that looks like this:

Figure 5: Anatomy of a topic

Streaming Data Processing Frameworks

A. Ntenti 22

Each partition is an ordered, immutable sequence of records that is continually
appended to a structured commit log. The records in the partitions are each assigned a
sequential id number called the offset that uniquely identifies each record within the
partition.

Distribution

The partitions of the log are distributed over the servers in the Kafka cluster with each
server handling data and requests for a share of the partitions. Each partition is
replicated across a configurable number of servers for fault tolerance.

Producers

Producers publish data to the topics of their choice. The producer is responsible for
choosing which record to assign to which partition within the topic. This can be done in
a round-robin fashion simply to balance load or it can be done according to some
semantic partition function.

Consumers

Consumers read from any single partition, allowing you to scale throughput of message
consumption in a similar fashion to message production. Consumer instances can be in
separate processes or on separate machines. If all the consumer instances have the
same consumer group, then the records will effectively be load balanced over the
consumer instances. If they have different consumer groups, then each record will be
broadcast to all the consumer processes.

Figure 6: Consumers in Kafka

A two server Kafka cluster hosting four partitions (P0-P3) with two consumer groups.
Consumer group A has two consumer instances and group B has four.

More commonly, however, we have found that topics have a small number of consumer
groups, one for each "logical subscriber". Each group is composed of many consumer
instances for scalability and fault tolerance.

Streaming Data Processing Frameworks

A. Ntenti 23

The way consumption is implemented in Kafka is by dividing up the partitions in the log
over the consumer instances so that each instance is the exclusive consumer of a "fair
share" of partitions at any point in time. This process of maintaining membership in the
group is handled by the Kafka protocol dynamically.

Guarantees

Kafka makes the following guarantees about data consistency and availability:

 Messages sent to a topic partition will be appended to the commit log in the order
they are sent

 A single consumer instance will see messages in the order they appear in the log

 A message is ‘committed’ when all in sync replicas have applied it to their log

 Any committed message will not be lost, as long as at least one in sync replica is
alive

Streaming Data Processing Frameworks

A. Ntenti 24

5. APACHE FLINK OVERVIEW

5.1 What is Flink

Apache Flink is a community-driven open source framework for distributed big data
analytics, like Hadoop and Spark. It originated from a research project called
Stratosphere, of which the idea was conceived in 2008 by a professor named Volker
Markl in Germany and was accepted from the Apache organization in 2014, as a top-
level project.

This streaming dataflow engine, written in Java and Scala, provides data distribution,
communication, and fault tolerance for distributed computations over data streams. It
aims to bridge the gap between MapReduce-like systems and shared-nothing parallel
database systems. More specifically, it provides:

 Stream execution, even if batch

 Programming in JVM but execution as Database

 Makes easier user handling

 Little required configuration and tuning

 Supports many file systems

 Many deployment options

 Integration with Hadoop

 Supports many use cases like Batch and Real - Time streaming on top of the
same streaming engine

 Supports building complex data pipelines

5.2 Apache Flink Basic Concepts

Programs and Dataflows

The basic building blocks of Flink programs are streams and transformations. A stream
is an intermediate result, and a transformation is an operation that takes one or more
streams as input, and computes one or more result streams from them. When executed,
Flink programs are mapped to streaming dataflows, consisting of streams and
transformation operators. Each dataflow starts with one or more sources and ends in
one or more sinks. The dataflows may resemble arbitrary directed acyclic graphs.

In most cases, there is a one-to-one correspondence between the transformations in
the programs and the operators in the dataflow. Sometimes, however, one
transformation may consist of multiple transformation operators.

Parallel Dataflows

Programs in Flink are inherently parallel and distributed. Streams are split into stream
partitions and operators are split into operator subtasks. The operator subtasks execute
independently from each other, in different threads and on different machines or
containers.

Streaming Data Processing Frameworks

A. Ntenti 25

The number of operator subtasks is the parallelism of that particular operator. Streams
can transport data between two operators in a one-to-one pattern, or in a redistributing
pattern:

 One-to-one streams

 Redistributing streams

Tasks & Operator Chains

Flink chains operator subtasks together into tasks. Each task is executed by one thread.
Chaining operators together into tasks is a useful optimization: it reduces the overhead
of thread-to-thread handover and buffering, and increases overall throughput while
decreasing latency. The chaining behavior can be configured in the APIs.

The sample dataflow in the figure below is executed with five subtasks, and hence with
five parallel threads.

Figure 7: Example Dataflows

Distributed Execution

A Flink cluster consists of three types of processes: the client, the Job Manager, and at
least one Task Manager. The master process or JobManager, coordinates the
distributed execution. Jobmanagers schedule tasks, coordinate checkpoints, coordinate
recovery on failures, etc. The worker processes or TaskManagers, execute the tasks of
a dataflow, and buffer and exchange the data streams. There must always be at least
one worker process.

Streaming Data Processing Frameworks

A. Ntenti 26

The master and worker processes can be started in an arbitrary fashion: Directly on the
machines, via containers, or via resource frameworks like YARN. Workers connect to
masters, announcing themselves as available, and get work assigned.

Each TaskManager is a JVM process, and may execute one or more subtasks in
separate threads. To control how many tasks a worker accepts, a worker has so called
task slots (at least one).

Each task slot represents a fixed subset of resources of the TaskManager. Slotting the
resources means that a subtask will not compete with subtasks from other jobs for
managed memory, but instead has a certain amount of reserved managed memory.

By default, Flink allows subtasks to share slots, if they are subtasks of different tasks,
but from the same job. The result is that one slot may hold an entire pipeline of the job.
Allowing this slot sharing has two main benefits:

 A Flink cluster needs exactly as many tasks slots, as the highest parallelism used
in the job

 It is easier to get better resource utilization.

The slot sharing behavior can be controlled in the APIs, to prevent sharing where it is
undesirable.

Time and Windows

Aggregating events works slightly differently on streams than in batch processing.
Windows can be time driven or data driven. One typically distinguishes different types of
windows, such as tumbling windows (no overlap), sliding windows (with overlap), and
session windows (gap of activity).

Time

When referring to time in a streaming program, one can refer to different notions of time:

 Event Time is the time when an event was created. It is usually described by a
timestamp in the events, for example attached by the producing sensor, or the
producing service

 Ingestion time is the time when an event enters the Flink dataflow at the source
operator

 Processing Time is the local time at each operator that performs a time-based
operation

State and Fault Tolerance

While many operations in a dataflow simply look at one individual event at a time some
operations remember information across individual events. These operations are called
stateful. The state of stateful operations is maintained in what can be thought of as an
embedded key/value store. The state is partitioned and distributed strictly together with
the streams that are read by the stateful operators.

Fault Tolerance Checkpoints

Streaming Data Processing Frameworks

A. Ntenti 27

Flink implements fault tolerance using a combination of stream replay and checkpoints.
A checkpoint defines a consistent point in streams and state from which a streaming
dataflow can resume, and maintain. The events and state updates since the last
checkpoint are replayed from the input streams.

Batch on Streaming

Flink executes batch programs as a special case of streaming programs, where the
streams are bounded. A DataSet is treated internally as a stream of data. The concepts
above thus apply to batch programs in the same way as well as they apply to streaming
programs, with minor exceptions:

 Programs in the DataSet API do not use checkpoints. Recovery happens by fully
replaying the streams. That is possible, because inputs are bounded. This
pushes the cost more towards the recovery, but makes the regular processing
cheaper, because it avoids checkpoints

 Stateful operation in the DataSet API use simplified in-memory/out-of-core data
structures, rather than key/value indexes

 The DataSet API introduces special synchronized iterations, which are only
possible on bounded streams.

Streaming Data Processing Frameworks

A. Ntenti 28

6. APACHE SAMZA OVERVIEW

6.1 What is Samza

Apache Samza is an open-source near-realtime, asynchronous computational
framework for stream processing developed by the Apache Software Foundation in
Scala and Java. It uses Apache Kafka for messaging, and Apache Hadoop YARN to
provide fault tolerance, processor isolation, security, and resource management.

Samza is a stream processing framework with the following features:

 Simple API: Unlike most low-level messaging system APIs, Samza provides a
very simple callback-based “process message” API comparable to MapReduce.

 Managed state: Samza manages snapshotting and restoration of a stream
processor’s state. When the processor is restarted, Samza restores its state to a
consistent snapshot. Samza is built to handle large amounts of state (many
gigabytes per partition).

 Fault tolerance: Whenever a machine in the cluster fails, Samza works with
YARN to transparently migrate your tasks to another machine.

 Durability: Samza uses Kafka to guarantee that messages are processed in the
order they were written to a partition, and that no messages are ever lost.

 Scalability: Samza is partitioned and distributed at every level. Kafka provides
ordered, partitioned, fault-tolerant streams. YARN provides a distributed
environment for Samza containers to run in.

 Pluggable: Though Samza works out of the box with Kafka and YARN, Samza
provides a pluggable API that lets you run Samza with other messaging systems
and execution environments.

 Processor isolation: Samza works with Apache YARN, which supports
Hadoop’s security model, and resource isolation through Linux CGroups.

6.2 Apache Samza Basic Concepts

Streams

Samza processes streams. A stream is composed of immutable messages of a similar
type or category. For example, a stream could be all the clicks on a website or any other
type of event data. Messages can be appended to a stream or read from a stream. A
stream can have any number of consumers, and reading from a stream doesn’t delete
the message.

Jobs

Streaming Data Processing Frameworks

A. Ntenti 29

A job in Samza performs a logical transformation on a set of input streams to append
output messages to set of output streams. In order to scale the throughput of the stream
processor, Samza splits streams and jobs up into smaller units of parallelism: partitions
and tasks.

Partitions

Each stream is divided into one or more partitions. Each partition in the stream is a
totally ordered sequence of messages. Each message in this sequence has an identifier
called the offset, which is unique per partition. The offset can be a sequential integer,
byte offset, or string depending on the system implementation.

When a message is appended to a stream, it is appended to only one of the stream’s
partitions. The assignment of the message to its partition is done with a key chosen by
the writer.

Tasks

A job is scaled by breaking it into multiple tasks. The task is the unit of parallelism of the
job, just as the partition is to the stream. Each task consumes data from one partition for
each of the job’s input streams. A task processes messages from each of its input
partitions sequentially, in the order of message offset. There is no defined ordering
across partitions. This allows each task to operate independently.

The number of tasks in a job is determined by the number of input partitions. However,
one can change the computational resources assigned to the job satisfy the job’s
needs. The assignment of partitions to tasks never changes: if a task is on a machine
that fails, the task is restarted elsewhere, still consuming the same stream partitions.

Dataflow Graphs

One can compose multiple jobs to create a dataflow graph, where the edges are
streams containing data, and the nodes are jobs performing transformations. This
composition is done purely through the streams the jobs take as input and output. The
jobs are otherwise totally decoupled: they need not be implemented in the same code
base, and adding, removing, or restarting a downstream job will not impact an upstream
job.

These graphs are often acyclic, however, it is possible to create cyclic graphs if you
need to.

Containers

Partitions and tasks are both logical units of parallelism but they don’t correspond to any
particular assignment of computational resources. Containers are the unit of physical
parallelism, and a container is essentially a Unix process. Each container runs one or
more tasks. The number of tasks is determined automatically from the number of
partitions in the input and is fixed, but the number of containers is specified by the user
at run time and can be changed at any time.

Streaming Data Processing Frameworks

A. Ntenti 30

7. SIMILARITIES AND DIFFERENCES BETWEEN THE APACHE
STREAMING ENGINES

After analyzing each one of the Apache Streaming Tools above, it is now time to
compare their functionalities and characteristics and provide a walk-through all the
similarities and differences between them.

When choosing between different systems there are a couple of points that should be
taken into consideration:

Table 1: Table with results of the comparison

 Storm Spark
Streaming

Flink Kafka Samza

Category ESP/CEP ESP ESP/CEP ESP ESP

Streaming
API

Spout, Tuple HDFS,
DStream

DataStream KafkaStream Message

Cluster
Managemen
t

Mesos, Yarn Mesos, Yarn,
Standalone

Yarn, Tez,
Standalone

Any Yarn

Process
Model

Event Micro-batch

Batch

Event

Micro-Batch

Batch

Event Event

Latency Very low Medium Low Low Low

Throughput Low High High Medium High

Fault-
Tolerance

Yes Yes Yes Yes Yes

Language
Support

Any JVM Scala/Java/P
ython

Scala/Java/P
ython

Java Scala/Java

Delivery
Guarantee

At Least
Once

Exactly Once Exactly Once At Least
Once

At Least
Once

Streaming Data Processing Frameworks

A. Ntenti 31

Data Flow Topology Application Streaming
Dataflow

Process
Topology

Job

Windowing Time-based

Count-based

Time-based Time-based

Count-based

Time-based Time-based

In fact, there are even more points of interest, that make each tool special regarding the
needs of the enterprise or the individuals who want to process and transform streaming
data.

The most simple and characteristic example that we can provide in order to distinct the
different APIs is the WordCount example, which is the similar to as the HelloWorld
example, but it is used in Streaming Tools programming.

7.1 Word Count example in Storm

In the following example, we will define a Topology that reads sentences of a spout and
streams out of WordCountBolt the total number of times it has seen that word before.

So, at first, we have to define a topology. Then a spout and a bolt must be defined to
split the words. Numbers 5, 8 and 12 are the parallelism hints and they define how
many independent threads around the cluster will be used for execution of every
component.

Figure 8: Word Count in Storm

SplitSentence emits a tuple for each word in each sentence it receives, and WordCount
keeps a map in memory from word to count. Each time WordCount receives a word, it
updates its state and emits the new word count. In this example, we used shuffle
grouping which sends the tuple to a random task. There's a few different kinds of
stream groupings. In addition, bolts can be defined in any language.

7.2 Word Count example in Spark

Word Count by Apache Spark can be implemented in Scala. A simple implementation of
the Word Count example follows below:

Streaming Data Processing Frameworks

A. Ntenti 32

Figure 9: Word Count in Spark

Firstly, we have to create a Scala Spark context. Then, load the input file (inputFile) in
order to split up the words in it. Then, we add how many time each word appears on the
file and save the results in an output file.

7.3 Word Count example in Flink

The Word Count example implementation in Flink, is supported in Scala as well.

Figure 10: Word Count in Flink

The fromElements method of the ExecutionEnvironment and Stream
ExecutionEnvironment determines the DataSet/DataStream type by extracting the type
of the first input element.

Using flatMap(), map(), groupBy() and sum() methods, it counts how sums how many
times a word appears in the sentence and groups by the words.

7.4 Word Count example in Kafka

In the Word Count example implemented in Kafka, we first create a KStreamBuilder
instance and with builder.stream() allow it to generate elements individually and adding
them to the Builder. Then, it splits each text line, by whitespace, into words. After that, it
invokes ‘flatMapValues’ instead of the more generic ‘flatMap’ and use ‘map’ to ensure
the key of each record contains the respective word. Finally it counts the occurrences of
each word. We must provide a name for the resulting KTable, which will be used to
name e.g. its associated state store and change log topic.

Streaming Data Processing Frameworks

A. Ntenti 33

Figure 11: Word Count in Kafka

7.5 Word count example in Samza

Below it’s a sample of how the Word Count example is implemented with Scala in
Samza. In this case, the whole topology is the WordCountTask, which does all the work.
In Samza the components are defined by implementing particular interfaces, in this
case it’s a StreamTask. Its parameter list contains all what’s need for connecting with
the rest of the system.

Figure 12: Word Count in Samza

Streaming Data Processing Frameworks

A. Ntenti 34

8. STREAMING TOOLS USES CASES AND INTEGRATION IN THE
BUSINESS FIELD

Big data technologies are widely adopted in small and large companies, since the need
of real-time processing and analysis is critic. In finance industry, banks are using the
Hadoop alternative - Spark to access and analyze call recordings, complaint logs,
emails, forum discussions, etc. to gain insights which can help them make right
business decisions for credit risk assessment, targeted advertising and customer
segmentation. Financial institutions are, also, leveraging big data to detect fraudulent
transactions in real-time. Apache Spark plays a significant role in e-commerce, as well.

Well-known e-commerce platforms, Ali Baba, the world's largest retailer, and eBay,
prefer Spark to analyze hundreds of petabytes of data or to provide targeted offers and
enhance customer experience, which are proven examples of the Spark efficiency and
performance. Of course, Spark is used in Social Media applications, such as Pinterest
or other common applications like TripAdvisor, which provides advice to millions of
travellers by comparing hundreds of websites to find the best hotel prices for its
customers.

Apache Storm, on the other hand, is used in various fields, from healthcare to social
media. More specifically, it is used by Twitter to power a wide variety of Twitter systems,
ranging in applications from discovery, real-time analytics, personalization, search,
revenue optimization etc. Yahoo chooses Storm for stream/micro-batch processing of
user events, content feeds, and application logs and Spotify powers a wide range of
real-time features at Spotify, including music recommendation, monitoring, analytics,
and ads targeting. Together with Kafka and Cassandra, based messaging, Storm is
used to build low-latency fault-tolerant distributed systems with ease.

Integration with Kafka is a common thing in the big data area, due to its performance
characteristics and its scalability. Apache Kafka is, also, used at LinkedIn for activity
stream data and operational metrics. This powers various products like LinkedIn
Newsfeed, LinkedIn Today in addition to our offline analytics systems like Hadoop. In
addition, as the demand for real-time (sub-minute) analytics grew, Netflix moved to
using Kafka as its primary backbone for ingestion via Java APIs or REST APIs. Netflix's
system now supports ingestion of ~500 billion events per day and at peak up to ~8
million events per second. It has paired Kafka with streaming stacks like Apache Spark
and Apache Samza to route data and load it into back-end data stores like
ElasticSearch and Cassandra, as well as directly into real-time analytics engines.

Apart from LinkedIn, where Apache Samza it is currently used to process tracking data,
service log data, and for data ingestion pipelines for real-time services, and Netflix,
other companies use Samza is used in integration with Spark in TripAdvisor, in order to
process billions of events daily for analytics, machine learning, and site improvement.
Uber, in addition, uses Samza to provide stream processing as a service. Currently, this
platform supports two categories of use cases: metrics aggregation and near real time
state machine for doing database updates. Nevertheless, Samza could be related to
fraud detection and root cause analysis in the near future.

Finally, Alibaba’s search infrastructure team uses, also, Apache Flink to update product
detail and inventory information in real-time, improving relevance for users. Ericsson, on
the other hand, used Apache Flink to build a real-time anomaly detector with machine
learning over large infrastructures. Apache Flink, thrives also in ETL for business
intelligence infrastructure, as Zalando uses it to transform data for easier loading into its
data warehouse, converting complex payloads into relatively simple ones and ensuring
that analytics end users have faster access to data.

Streaming Data Processing Frameworks

A. Ntenti 35

9. ΣΥΜΠΕΡΑΣΜΑΤΑ

In the era of exponential technology, as the speed of business accelerates,
organizations are producing increasingly vast volumes of high velocity data in very
different formats. Hence, the more streaming frameworks such as Apache Spark,
Apache Storm, Samza, Flink etc. will be leveraged in the business field, in order to
process and handle real-time data streams and information, allowing the ability to
analyze risks before they occur.

From Finance to Healthcare, from Social Media to the Internet of Things, the need to
deal with the disproportionate size of data sets, is transparent. Traditional big data-
styled frameworks like Hadoop are not appropriate for these use cases.

In conclusion, enterprises should utilize state of the art technical equipment for
streaming data analysis in order to survive the technological competition, though
supporting much faster decision making. The benefits of streaming integration and
intelligence are plenty and the right choice of streaming tools, can drastically change a
company’s market position.

Streaming Data Processing Frameworks

A. Ntenti 36

REFERENCES

[1] Apache Storm http://storm.apache.org [Προσπελάστηκε 02/12/16]
[2] "Apache Storm Graduates to a Top-Level Project". [Προσπελάστηκε 02/12/16]
[3] Spark Overview http://spark.apache.org/docs/2.0.2/index.html [Προσπελάστηκε 04/12/16]

[4] Spark Streaming http://en.wikipedia.org/wiki/Apache_Spark#Spark_Streaming
[Προσπελάστηκε 04/12/16]

[5] http://spark.apache.org/docs/latest/streaming-programming-guide.html#deploying-applications
[Προσπελάστηκε 4/12/16]

[6] Apache Kafka A distributed streaming platform http://kafka.apache.org/ [Προσπελάστηκε 01/04/17]

[7] Apache Kafka for Beginners http://blog.cloudera.com/blog/2014/09/apache-kafka-for-beginners/
[Προσπελάστηκε 06/01/17]

[8] Apache Flink https://flink.apache.org/ [Προσπελάστηκε 06/01/17]

[9] https://www.slideshare.net/sbaltagi/apacheflinkwhathowwhywhowherebyslimbaltagi-57825047
[Προσπελάστηκε 14/01/16]

[10] Apache Flink: What, How, Why, Who, Where? https://www.youtube.com/watch?v=G77m6Ou_kFA
[Προσπελάστηκε 30/01/16]

[11] Samza http://samza.apache.org/ [Προσπελάστηκε 06/01/17]
[12] All the Apache Streaming Projects: An Exploratory Guide https://thenewstack.io/apache-streaming-

projects-exploratory-guide/ [Προσπελάστηκε 06/01/17]

[13] V2 of Apache streaming technologies https://twitter.com/ianhellstrom/status/710917506412716033
[Προσπελάστηκε 06/02/17]

[14] http://spark.apache.org/powered-by.html [Προσπελάστηκε 07/04/17]
[15] http://storm.apache.org/releases/current/Powered-By.html [Προσπελάστηκε 07/04/17]
[16] Apache Storm Use Cases - Edureka Blog https://www.edureka.co/blog/apache-storm-use-cases/

[Προσπελάστηκε 07/04/17]
[17] Apach Samza Powered By https://cwiki.apache.org/confluence/display/SAMZA/Powered+By

[Προσπελάστηκε 07/04/17]

[18] Flink Use Cases https://flink.apache.org/usecases.html [Προσπελάστηκε 07/04/17]

[19] Powered by https://kafka.apache.org/powered-by [Προσπελάστηκε 07/04/17]

http://storm.apache.org/
https://hortonworks.com/blog/apache-storm-graduates-top-level-project/
http://spark.apache.org/docs/2.0.2/index.html
http://en.wikipedia.org/wiki/Apache_Spark%23Spark_Streaming
http://spark.apache.org/docs/latest/streaming-programming-guide.html%23deploying-applications
http://kafka.apache.org/
http://blog.cloudera.com/blog/2014/09/apache-kafka-for-beginners/
https://flink.apache.org/
https://www.slideshare.net/sbaltagi/apacheflinkwhathowwhywhowherebyslimbaltagi-57825047
https://www.youtube.com/watch?v=G77m6Ou_kFA
http://samza.apache.org/
https://thenewstack.io/apache-streaming-projects-exploratory-guide/
https://thenewstack.io/apache-streaming-projects-exploratory-guide/
https://twitter.com/ianhellstrom/status/710917506412716033
http://spark.apache.org/powered-by.html
http://storm.apache.org/releases/current/Powered-By.html
https://www.edureka.co/blog/apache-storm-use-cases/
https://cwiki.apache.org/confluence/display/SAMZA/Powered+By
https://flink.apache.org/usecases.html
https://kafka.apache.org/powered-by

	PREFACE
	1. INTRODUCTION
	2. APACHE STORM OVERVIEW
	2.1 What is Apache Storm
	Apache Storm is a distributed stream processing computation framework written in the Clojure programming language. Originally created by Nathan Marz and team at BackType, the project was open sourced after being acquired by Twitter. The initial releas...
	2.2 Apache Storm Concepts

	3. APACHE SPARK STREAMING OVERVIEW
	3.1 What is Apache Spark Streaming
	3.2 Spark Streaming Concepts

	4. APACHE KAFKA OVERVIEW
	4.1 What is Apache Kafka
	4.2 Kafka basic concepts

	5. APACHE FLINK OVERVIEW
	5.1 What is Flink
	5.2 Apache Flink Basic Concepts

	6. APACHE SAMZA OVERVIEW
	6.1 What is Samza
	6.2 Apache Samza Basic Concepts
	Streams
	Samza processes streams. A stream is composed of immutable messages of a similar type or category. For example, a stream could be all the clicks on a website or any other type of event data. Messages can be appended to a stream or read from a stream. ...

	7. SIMILARITIES AND DIFFERENCES BETWEEN THE APACHE STREAMING ENGINES
	7.1 Word Count example in Storm
	7.2 Word Count example in Spark
	7.3 Word Count example in Flink
	7.4 Word Count example in Kafka
	7.5 Word count example in Samza

	8. STREAMING TOOLS USES CASES AND INTEGRATION IN THE BUSINESS FIELD
	9. ΣΥΜΠΕΡΑΣΜΑΤΑ
	REFERENCES

