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ΠΕΡΙΛΗΨΗ 

 

Οι μεγάλοι όγκοι δεδομένων που παράγονται από πολλές αναδυόμενες εφαρμογές και 
συστήματα απαιτούν την πολύπλοκη επεξεργασία ροών δεδομένων υψηλής ταχύτητας 
σε πραγματικό χρόνο. Η σύζευξη δεδομένων ροών είναι η αντίστοιχη διαδικασία 
σύζευξης των συμβατικών βάσεων δεδομένων και συγκρίνει τις πλειάδες που 
προέρχονται από διαφορετικές σχεσιακές ροές. Ο συγκεκριμένος operator 
χαρακτηρίζεται ως υπολογιστικά ακριβός και ταυτόχρονα εξαιρετικά σημαντικός για την 
ανάλυση δεδομένων σε πραγματικό χρόνο. Η αποτελεσματική και κλιμακούμενη 
επεξεργασία των συζεύξεων δεδομένων ροών μπορεί να γίνει εφικτή από τη 
διαθεσιμότητα ενός μεγάλου αριθμού κόμβων επεξεργασίας σε ένα παράλληλο και 
κατανεμημένο περιβάλλον. Επιπλέον, τα υπολογιστικά νέφη έχουν εξελιχθεί ως μια 
ελκυστική πλατφόρμα για την επεξεργασία δεδομένων μεγάλης κλίμακας, κυρίως λόγω 
της έννοιας της ελαστικότητας. Με τα υπολογιστικά νέφη δίνεται η δυνατότητα 
εκμίσθωσης εικονικής υπολογιστικής υποδομής, η οποία μπορεί να χρησιμοποιηθεί για 
όσο χρόνο χρειάζεται με δυναμικό τρόπο. Στη συγκεκριμένη εργασία υιοθετούμε τις 
βασικές ιδέες και τα χαρακτηριστικά των Qian Lin et al. από το έργο τους "Scalable 
Distributed Stream Join Processing". Η βασική ιδέα που παρουσιάζεται σε αυτό το έργο 
είναι το μοντέλο join-biclique το οποίο οργανώνει τις μονάδες επεξεργασίας ενός 
υπολογιστικού cluster ως έναν ολοκληρωμένο διμερές γράφο. Με βάση αυτή την ιδέα, 
αναπτύξαμε και υλοποιήσαμε ένα σύνολο αλγορίθμων που σχεδιάστηκαν ως 
microservices σε περιβάλλον software containers. Οι αλγόριθμοι εκτελούν την 
επεξεργασία και σύζευξη ροών δεδομένων και μπορούν να κλιμακωθούν οριζόντια. 
Πραγματοποιήσαμε τα πειράματά μας σε περιβάλλον υπολογιστικού νέφους στο 
Google Container Engine χρησιμοποιώντας πλατφόρμα Kubernetes και Docker 
containers. 
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ABSTRACT 

The large and varying volumes of data generated by many emerging applications and 
systems demand the sophisticated processing of high speed data streams in a real-time 
fashion. Stream joins is the streaming counterpart of conventional database joins and 
compares tuples coming from different streaming relations. This operator is 
characterized as computationally expensive and also quite important for real-time 
analytics. Efficient and scalable processing of stream joins may be enabled by the 
availability of a large number of processing nodes in a parallel and distributed 
environment. Furthermore, clouds have evolved as an appealing platform for large-
scale data processing mainly due to the concept of elasticity; virtual computing 
infrastructure can be leased on demand and used for as much time as needed in a 
dynamic manner. For this thesis project, we adopt the main ideas and features of Qian 
Lin et al. in their paper “Scalable Distributed Stream Join Processing”. The basic idea 
presented in that paper is the join-biclique model which organizes the processing units 
of a cluster as a complete bipartite graph. Based on that idea, we developed and carried 
out a set of algorithms designed as containerized microservices, which perform stream 
join processing and can be scaled horizontally on demand. We performed our 
experiments on Google Container Engine using Kubernetes orchestration platform and 
Docker containers. 
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1. INTRODUCTION 

1.1 The emergence of streaming 

Today’s information processing systems face formidable challenges as they are 
presented with new data at ever increasing rates. The widespread adoption of the 
Internet and the world-wide emergence of large cyber-physical systems and 
applications demands for near real-time processing of continuous data streams [1]. A 
broad range of applications and other sources may produce data streams, such as 
smart grids, enhanced medical systems, telemetry from Internet of Things (IoT) devices, 
clickstreams, stock trading and fraud detection algorithms etc. It is increasingly 
important to process and provide efficient real-time analytics for such applications and 
systems. In this context, the streaming paradigm introduces new semantics and also 
raises new operational challenges [2]. 
 
1.2 Stream Joins 

In the streaming computing paradigm, graphs of stream operators are employed to 
process the incoming data in an online fashion. The stream joins are among the most 
important and expensive operators [6]. Compared to one-time joins in traditional 
DBMS’s, continuous stream joins differ substantially in their semantics. They perform 
comparisons between tuples coming from different logical data streams rather than 
database relations. Since the size of the stream is potentially unbounded, the state of 
the data is not known in advance, so responses depend on the set of stream tuples 
available during join evaluation. Normally, streaming tuples are retained in main 
memory and not stored on persistent disk and thus it is not feasible to remember the full 
history of the rapidly accumulating stream elements due to resource limitations. To this 
end, the most common approach to perform joins in the streaming context is to 
introduce windows of data. Such constructs focus on the latest arriving data by 
exploiting a sense of ordering between them, usually established by a unique timestamp 
for each element [10]. 
 
Several parallelization techniques of stream joins have been proposed in the literature, 
both shared memory and shared nothing approaches. Shared memory techniques allow 
for parallel stream joins to scale-up within individual nodes, while shared nothing 
techniques allow for scaling-out parallel stream joins in a multi-node cluster. As 
emphasized by Gibbons in [8], scaling both out and up is crucial to efficiently address 
the challenges in the Big Data context and improve performance by orders of 
magnitude. In this thesis project, we seek to scale-out parallel stream joins into a 
scalable cluster. The goal is to exploit the elasticity (auto-scaling) of a cloud 
environment in order to deal with varying rates of the input streams. We adopt the join-
biclique stream join model as presented in [3]. 
 
1.3 Cloud computing 

Cloud computing has been one of the most hyped trends of the last few years. Initially 
introduced by Amazon [12], now cloud services are offered by numerous providers [13] 
[14]. Cloud computing is a broad term that encompasses many different aspects of a 
modern paradigm for enabling convenient, on-demand network access to a shared pool 
of configurable computing resources (e.g. networks, servers, storage, applications and 
services). These resources can be rapidly provisioned and released with minimal 
management effort and provider interaction. The cloud computing model promotes the 
availability, rapid elasticity and is composed of three service models: SaaS (software as 
a service), PaaS (platform as a service) and IaaS (infrastructure as a service) and four 
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deployment models: private cloud, public cloud, community cloud and hybrid cloud [15]. 
IaaS describes a service that provides access to computing resources in a virtualized 
environment (e.g., computation, storage, and network) on demand. The administration 
of the system lies mostly with the user. PaaS takes some of the administration away 
from the user and allows some (limited) programming of the resources. An example for 
this is Google’s App Engine. Finally, and probably most exposed to the general public 
are SaaS applications. These are offerings such as Slack and Microsoft Office 365 
applications. They offer little to no customization but the convenience of storing data off-
site. We are interested in applying IaaS services to the computation of stream joins. 

 

1.4 Goals of the project 

In this thesis project we seek to address the problem of the distributed stream join 
processing in a cloud environment. In particular, we adopt the main ideas presented in 
the paper “Scalable Distributed Stream Join Processing” by Qian Lin et al. appeared on 
the 2015 ACM SIGMOD International Conference on Management of Data [3]. We are 
interested in providing an alternative implementation of the ideas presented using: 
 

 Cutting-edge technologies and design principles in software engineering, such as 
event-driven micro-services and software containers. 

 

 An elastic infrastructure comprising the processing units of the stream join engine, 
deployed on an IaaS cloud provider. 

 
These are the basic goals of our project. We want to create a multi-node cluster with 
elastic characteristics, which is able to scale in and out on demand, depending on the 
stream workload traffic. The auto-scaling decisions should be set by the operator of the 
cloud application depending on several performance criteria of the processing units 
(e.g. CPU utilization, requests per second etc.). 
 
The main ideas presented in the aforementioned paper include the join-biclique model, 
which organizes the stream join processing units of the cluster as a complete bipartite 
graph or biclique. The authors claim that this model is scalable and elastic with respect 
to the network size and efficient in terms of resource requirements. Their original 
attempt to implement a join engine based on that model is termed BiStream [16]. 
BiStream is based on Apache Storm; a distributed real-time computation framework 
[17]. Unfortunately, the current version of Storm does not support auto-scaling of 
processing units inside a topology. Thus, we opted for an implementation of the shared-
nothing stream join model on an IaaS cloud provider, which natively offers dynamic 
scaling as a service. In order to achieve our goals, we developed a set of algorithms 
based on the original ideas of join-biclique and used state-of-the-art tools to achieve our 
goals. Such tools include Spring Boot [18], Spring Cloud Stream [19], Docker containers 
[20] and Kubernetes [21]. We then deployed the algorithms on Google Cloud platform; 
an IaaS cloud offered by Google Inc. 
  
1.5 Structure of thesis 

The rest of the thesis is structured as follows: Chapter 2 provides some background on 
the problem of streaming joins and discusses related work. Furthermore, it introduces 
the idea and model of join-biclique. It also presents a basic comparison with a similar 
architecture for shared-nothing stream joins. Chapter 3 presents the chosen 
architecture to implement this stream join model and describes our design 
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considerations. Chapter 4 describes the implementation of our design and the 
technology tools that we used. Chapter 5 presents our deployment, experiments and 
results and Chapter 6 concludes the thesis. 
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2. BACKGROUND 

This chapter provides background information on the technologies and concepts 
relevant to this thesis. Section 2.1 introduces important definitions and basic concepts 
on data streams. Section 2.2 describes the online stream join operator in detail. Section 
2.3 provides a relevant literature review on parallel stream joins. Section 2.4 introduces 
the join-biclique model for joining data streams in a distributed environment and 
provides a basic comparison with the join-matrix model.  
  
2.1 Basic Concepts on Data Streams 

We are following the description and semantics of data streams commonly referred in 
related literature [27] [28] [29]. Items of a data stream are often represented as 
relational tuples. Patroumpas et al. in [10] provide the following definitions relevant to 
data streams: 

 

Definition 1 (Tuple Schema): A tuple schema 𝛦 of streaming items is represented as a 
set of finite elements 〈𝑒1𝑒2, , … , 𝑒𝑁〉 . Each element 𝑒𝑖 is termed attribute and its values 
may originate from a specific data type. Every tuple is an instance of the schema and is 
characterized by the values of its attributes.  

 

Normally, a timestamp value may be attached to every streaming tuple to the 
corresponding attribute as a way of determining a natural ordering between the items 
which flow into a stream processing system. Other ways of defining the order among 
tuples may be specified, e.g. a sequence number attribute. Both flavors of ordering may 
be covered from the following definition:  

 

Definition 2 (Time Domain T): A time domain 𝛵 is defined as an infinite set of discrete 

ordered time constants 𝑡 ∈ 𝑇. A time interval [𝑡1, 𝑡2] ∈ 𝑇 may be specified as a set of all 

distinct time instants 𝑡 ∈ 𝑇 for which the following comparison holds: 𝑡1 ≤ 𝑡 ≤ 𝑡2. 

 

In similar spirit, we can now define the concept of a data stream:  

 

Definition 3 (Data Stream): A data stream may be defined as a mapping 𝑆 ∶  𝑇 →  2𝑅, 
where at each instance 𝑡 ∈ 𝑇, the mapping returns a finite subset from the set 𝑅 of 

tuples with common schema 𝐸. 

 

A data stream can also be described as an ordered sequence of elements evolving in 
time. Its current state may include all tuples accumulated so far. Furthermore, an 
instance of the stream at any specific time instant is the finite set of tuples with that 
distinct timestamp value. In general, all of the above definitions can be generalized for 
multiple streams of data. 
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2.2 Online Joins over Data Streams 

The online stream join operator applies a specified predicate among tuples coming from 
two different stream relations. In most cases and due to the unbounded nature of data 
streams, this kind of operator is applied over portions of the most recent tuples, referred 
to as windows. Nevertheless, this is not necessarily true for several systems, which also 
support this operator over full or partial-historical states of the stream [3] [22]. 

In general, different types of windows [10] may be specified over data streams. The 
most common flavor of windows is the time-based sliding window. This kind of window 
is defined by means of time units. A time-based window of WS time units contains all 

tuples {𝑡|𝑡 ′. 𝑡𝑠 − 𝑡. 𝑡𝑠  ≤ 𝑊𝑆}, where 𝑡′ is the latest received tuple in the respective 

stream. In this respect, we may provide a formal definition of the online time-based 
windowed join over two streaming relations [10]:  
 

Definition 4 (Online Windowed Join): The online windowed join is a binary operator 
that may be applied between two streaming relations. The windows for each relation 

may be of the same or different types and scopes. At each time instant 𝑡 ∈ 𝑇, the 
windowed join between two streams returns the concatenation of pairs of tuples which 
match a predicate condition, taken from either window state.  
 

In particular, we intend to join tuples from two logical stream 𝑆1 and 𝑆2. Whenever the 
predicate 𝑃(𝑡𝑠1, 𝑡𝑠2) holds for tuples 𝑡𝑠1 ∈  𝑆1 and 𝑡𝑠2 ∈  𝑆2, an output tuple 𝑡𝑜 is produced 
combining 𝑡𝑠1 and 𝑡𝑠2 and appropriately setting the timestamp. The predicate condition 
involves attributes from both streams (e.g. 𝑆1. 𝐴𝑖  =  𝑆2. 𝐴𝑗). Additionally, several policies 

may be adopted for the timestamp of the newly created output tuple. For example, the 
most recent timestamp value can be chosen, as a way to preserve ordering in the 
derived stream. An alternative solution would be to attach the minimum between the two 
original timestamp values, with the interpretation that the output tuple should expire as 
soon as one of the original tuple expires.  

 

                                                                  Figure 1: Windowed Join [10] 

Figure 1 depicts an online join operation between two data streaming relations 𝑆1 and 𝑆2 
with different windows specified over each of them. Each incoming tuple in a given 
relation is tested for possible matching of the predicate condition with every tuple in the 
opposite relation in the designated window. Arrows show potential matches to be 
returned [10]. 
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2.3 Related Work on Parallel Stream Joins 

Much research effort has been conducted on parallel stream join processing. These 
works can be classified into two main categories as either shared-nothing or shared-
memory models/techniques. Regarding shared-memory models, they focus on joining 
infinite data streams in the context of multi-core and main-memory environments. To 
name a few shared-memory algorithms, Handshake-Join [6] is one of the earliest 
proposals. This model organizes the processing units (threads or processes) as a 
doubly-linked list and the incoming streaming relations are directed into the system from 
opposite sides. The join predicate is evaluated once the relation tuples meet in some 
processing unit. Intuitively, this model reminds the way that football players from 
opposite teams exchange handshakes prior to game beginning. However, this model 
may be sensitive regarding message loss and node failure when moved to the 
distributed environment. The Hells-join has also been proposed recently [33]. This 
operator exploits novel properties of state of the art processors. CellJoin [7] algorithm 
parallelizes stream joins on multi-core Cell processors. Its effectiveness relies heavily 
on the parallelization techniques of the underlying hardware. One of the latest proposals 
for shared-memory systems is ScaleJoin [1]. Its architecture relies on the underlying 
ScaleGate structure which stores the streaming data in a non-blocking concurrent skip-
list.  This technique demonstrates lower latency, better throughput and linear scalability 
with respect to the underlying hardware threads when compared with Hand-Shake Join. 
This kind of operator is not a good fit for a transition to an elastic distributed 
environment, because of the strong data dependencies among its processing units. A 
great deal of research work has also been made on shared-nothing parallel joins in a 
distributed environment with a cluster of commodity machines. For example, Photon 
[11] is designed for joining data streams of web search queries (click-stream analytics) 
in Google. This system supports only equi-joins. Chakraborty and Singh [4] present a 
technique for parallelizing windowed stream joins over a shared-nothing cluster with 
controversial results. D-Streams [31] decomposes continuous streams into discrete 
batches and processes them on Apache Spark [30]. This kind join processing may only 
provide approximate results, as a few target tuple pairs in different batches may miss 
each other for join operation even if they match the join predicate. TimeStream [34] is 
another paradigm of distributed stream join processing system. Similar to our approach, 
this system offloads the computation to a cloud provider. It exploits the dependencies of 
tuples to perform the joins. However, TimeStream incurs high communication overhead 
to maintain the dependencies or synchronize the distributed join states. In similar spirit, 
Elseidy et al [22] present an adaptive operator for shared-nothing parallel joins, but in a 
data flow setting that does not consider sliding windows (our focus in this thesis). 
Furthermore, the presented operator adopts the join-matrix stream join model [32]. This 
model was presented over a decade ago, but has been recently revisited for some 
systems to support distributed join-processing. It organizes the processing units as a 
matrix, with each cell holding partitions of both relations. However, this model suffers 
from high memory consumption, because it presents high replication requirements. 
Each incoming tuple has to be replicated among multiple processing units. Additionally, 
scaling operations are not trivial to implement because of the difficult maintenance of 
the matrix structure. The join-biclique model has been introduced by Qian Lin et al [3] in 
order to overcome both deficiencies and for that purpose we opted to adopt this model 
for our project.  
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2.4 The join-biclique model 

The join-biclique stream join model was introduced by Qian Lin et al in the 2015 ACM 
SIGMOD International Conference on Management of Data [3]. The key design goals of 
join-biclique are:  

 The facilitation of scalability in multi-node environments. 

 The mitigation of memory requirements in the overall distributed streaming join 
system.  

Following the above requirements, join-biclique is modeled after the complete bipartite 
graph or biclique. Thus, we initially present the formal definition of a biclique from graph 
theory [35]:  

 

Definition 5 (Complete bipartite graph): In the mathematical field of graph theory, a 
complete bipartite graph or biclique is a special flavor of bipartite graph where every 
vertex of the first set is connected to every vertex of the second set. 

  

                                                     

                                                          Figure 2: Complete Bipartite Graph 

 

Figure 2 depicts a complete bipartite graph or biclique. It is a graph whose vertices are 

partitioned into two distinct subsets 𝑽𝟏, 𝑽𝟐, such that no edge has both endpoints 
belonging in the same subset. Every possible edge that could connect two vertices in 

different subsets is part of the graph. That is, it is a bipartite graph (𝑽𝟏, 𝑽𝟐, 𝑬) for which 
the following holds: For every two vertices 𝒗𝟏 ∈  𝑽𝟏 and 𝒗𝟐 ∈ 𝑽𝟐, there exists a distinct 
edge 𝒗𝟏𝒗𝟐 in 𝑬. A complete bipartite graph with partitions of size |𝑽𝟏|=m and |𝑽𝟐|=n, is 

termed 𝑲𝒎,𝒏. Every two graphs with the same notation are isomorphic.  

The join-biclique model is based on the biclique graph for joining data streams. In order 
to proceed with the formal definition of the model, we should firstly present the table 
(Table 1) that lists the main symbols along with the corresponding descriptions used in 
the definition and throughout the rest of this report. Afterwards, the model definition 
follows. 
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                                                         Table 1: Join-biclique symbols 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 6 (Join-Biclique Model): Given a cluster of n+m processing units, the join-
biclique model organizes them as a complete bipartite graph. Supposing there are two 
streaming relations R and S, the processing units of relation R belong exclusively to the 
first subset of the bipartite graph for storage and similarly the processing units of 
relation S belong to the second subset of the graph. That is, each subset of the graph 
corresponds to one of the relations for storage. Particularly, tuples from relation R are 
partitioned and stored into one subset of the graph with n units and without replication 
and tuples from relation S are similarly partitioned and stored into the opposite subset of 
the graph with m units. The complete set of partitions that belong to R can be defined as 

the universal set of the n processing units holding the relation’s data: 𝑮𝑹 =
{𝑹𝟏,𝑹𝟐, … , 𝑹𝒏}. The same holds for S: 𝑮𝑺 = {𝑺𝟏,𝑺𝟐, … , 𝑺𝒎}. In the biclique graph, for every 

two processing units (vertices) 𝑹𝒊 and 𝑺𝒋, there exists a distinct edge 𝒓𝒊𝒔𝒋, where 𝒊  ∈ 

{𝟏, 𝟐, … , 𝒏} and 𝒋  ∈ {𝟏, 𝟐, … , 𝒎}. Every distinct edge represents a potential join result 
produced by 𝑹𝒊 ⋈ 𝑺𝒋. 

Each edge of the graph in the join-biclique model represents the join operation between 
two units of the opposite relations. This model is capable of generating the Cartesian 
product of the joinable tuples and thus it supports any kind of join predicate. By and 
large, the basic dataflow setting of the model is the following: Upon receiving an 
incoming tuple, join-biclique always stores it on exactly one processing unit without data 
replicas, and produces the output by sending the tuple to all the machines that (may) 
contain joinable tuples from the opposite relation. One property of the model is that all 
processing units are independent of each other. This property is very important for our 
system because it also allows us to create a collection of small isolated services (the 
processing units), each of which owns their data and is independently isolated, scalable 

𝐒𝐲𝐦𝐛𝐨𝐥 𝐃𝐞𝐬𝐜𝐫𝐢𝐩𝐭𝐢𝐨𝐧 

𝑅, 𝑆 Streaming Relations 

𝑟, 𝑠 Streaming Tuple 

𝑅𝑖, 𝑆𝑗 i − th and j − th partition of 𝑅 𝑎𝑛𝑑 𝑆 

𝐺𝑅 , 𝐺𝑆 Complete set of partitions of R and S 

𝐺𝑅,𝑘 , 𝐺𝑆,𝑙 Subgroup of partitions of R and S 

𝑚, 𝑛 Number of partitions of R and S 

𝑑, 𝑒 Number of subgroups of R and S 

𝑊𝑠 Size of the sliding window 

𝑃 Archive period of the chained in − memory index 
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and resilient to failure. Thus, we can easily define a microservices-based architecture 
from this kind of model, which will be flexible, scalable and elastic [5]. A typical 
deployment may not necessarily operate in a distributed setting. That is, one physical 
machine may host several processing units (services) and thus the relations R and S 
may be only logically separated.  
 

Figure 3(b) presents a possible join-biclique model organization. The relation 𝑅 is split 

into two (n = 2) partitions (𝑅1, 𝑅2) and relation 𝑆 is split into three (m = 3) partitions 
(𝑆1, 𝑆2, 𝑆3). The result of 𝑅 ⋈ S may be obtained if we join every 𝑅𝑖 ⋈ 𝑆𝑗 with 𝑅𝑖 being the 

𝑖 − 𝑡ℎ partition of 𝑅 and 𝑆𝑗 being the 𝑗 − 𝑡ℎ of 𝑆, where 𝑖  ∈ {1,2, … , 𝑛} and 𝑗  ∈ {1,2, … , 𝑚}. 

 

2.4.1 Comparison with Join-Matrix Model 

As already mentioned in section 2.3, the join-matrix model [32] has been recently 
revisited [22] as an alternative way of organizing the processing units of a distributed 
join processing system. In particular, this model organizes the units as a matrix, with 
each axis corresponding to one of the two relations. This is the case for the 2-way joins 
that we are examining in this project. In a scenario with multi-way joins, the matrix may 
be represented as a Hypercube [23]. The join-matrix scheme distributes the incoming 
tuples on the axes of the originating relation and replicates on the other axes. For 

example, when 𝑟1 𝜖 𝑅 arrives in the system, it may be directed to one partition of 𝑅 
(e.g. 𝑅1). This partition may consist of several processing units and the incoming tuple 
will be replicated to all of them. In the meantime, it is joined with every partition of 𝑆 
stored in these units.  
  

 

                                                    Figure 3: Stream Join Models [3] 

Figure 3(a) depicts how the join-matrix model is organized. This model is able to handle 
2-way stream theta-joins in a distributed, parallel and decentralized manner. However, it 
is not amenable to scaling because of matrix dependencies and also suffers from high 
memory consumption because of the replication requirements. To this end, join-biclique 
model was introduced by Qian-Lin et al. in order to address both issues. However, such 
advantages may pose specific shortcomings under certain circumstances. For example, 
join-biclique poses higher network communication cost than join-matrix when using 
random partitioning. If we compare the two models assuming that the relations are of 

equal sizes, each relation in join-biclique uses 
𝑝

2
 processing units. On the other hand, 

the join-matrix model is represented by a √𝑝 × √𝑝 matrix. On the former model, each 



Dynamic Scaling of Parallel Stream Joins on the Cloud 

E. Angelogiannopoulos   21 

tuple has to be sent to 
𝑝

2
 processing units for the joining operation, while on the latter 

model each tuple is sent only to √𝑝 processing units. 
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3. ELASTIC-BICLIQUE SYSTEM ARCHITECTURE 

We designed and developed an alternative implementation of a distributed stream join 
system based on join-biclique model. Our system is able to scale dynamically on-
demand and is built using novel streaming technologies and tools, such as RabbitMQ 
and the Spring Cloud Stream framework [37]. We are focusing on windowed-based 
stream joins and specifically time-based sliding windows [10], as in many streaming 
scenarios [1] [38] [39]. 
 
3.1 System Design 

The elastic-biclique system is built using a microservices-based architecture; it is a fully-
fledged distributed system, which comprises from a collection of small, isolated 
services, each of which holds a specific role in the environment of operation. Each 
service owns its data and is independently isolated from other services as well as 
scalable and resilient to failures. Different types of services integrate with other types to 
form a flexible and cohesive distributed system.  
 

 

                                  

                                     Figure 4: Overall architecture of elastic-biclique 

 
Figure 4 presents a high-level overview of the various services and systems involved 
along with the interconnections between them. The main functional components of 
elastic-biclique consist of the router and joiner microservices along with the RabbitMQ 
message broker [41]. We adopted a message-driven microservices architecture. That 
is, the microservices rely on asynchronous message passing for inter-communication. 
This kind of communication is necessary in order to decouple them, and their 
communication flow both in:  
 

 Time: to better facilitate concurrency 

 Space: to allow distribution and mobility 
 
Without this decoupling it is impossible to reach the level of compartmentalization and 
containment needed for isolation and resilience [5]; properties of great importance for 
the elastic-biclique system. The RabbitMQ message broker was employed to implement 
this kind of asynchronous intercommunication among the microservices. In summary, 
the main services involved in the architecture are the following:  
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 stream-service: This service acts as a stream source adapter which emits 
streaming relations into the system.  

 router-service: This service acts as a dispatcher, which ingests incoming tuples 
and routes them to corresponding services. 

 joiner-service: This service consists of all the processing units. It is responsible 
for join-processing.  

 message-broker: This service is responsible for ingesting and retransmitting 
streaming tuples to the microservices. 

 

Our system is implemented along the lines of the join-biclique model but tries to reduce 
the inter-unit connectivity among its services compared to the original model. The same 
idea is implemented by Qian Lin et al. for their system BiStream. Intuitively, each 
processing unit in the join-biclique model needs to connect with every unit in the 
opposite relation. Fortunately, this kind of inter-communication among the services isn’t 
necessary if we separate data routing and data joining procedures between different 
services. That is, each joiner service (from each relation) only communicates with the 
router service to receive the data to either store or join without directly communicating 

with each other. More specifically, imagine an incoming tuple 𝑟 𝜖 𝑅 from an external 
source arriving at the system. Initially, it enters a router service which directs it to one of 

the services 𝑅𝑖 for storage (in the respective time-based sliding window) and at the 
same time is sent to all the units of 𝑆 for join processing. After the join processing, 𝑟 can 
be discarded from all the units in 𝑆. 
 

3.1.1 Router 

The router service is designed to ingest the incoming tuples from the input streaming 
relations and direct them to the corresponding joiner units for further processing. Except 
from the ingestion of tuples and routing decision tasks, the router is also responsible for 
maintaining statistics related to input data, such as rate of events per second. The 
message broker is involved both for ingesting the input tuples and directing them back. 
Different channels, exchanges and queues inside the broker are used to achieve the 
above functionality. More details about the specific implementation of input/output 
channels within the broker may be found in Chapter 4. 

 

3.1.2 Joiner 

The joiner service ingests the incoming tuples from the router. It comprises all the 
processing units of the distributed join processing system. The joiner services are 
separated into the two main subsets of the bipartite graph and they can be viewed as 

parallel partitions of the two streaming relations (𝑅, 𝑆). These services serve two main 
purposes which translate into two different execution branches. The first branch is 
responsible for data storage (of the tuples which are of the same type of relation as the 
service and belong to the current time-based sliding window) and the other for join 
processing of tuples belonging to the opposite relation. The join processing involves the 
join predicate comparison and the stale tuple discarding from the time-based sliding 

window. To put it into perspective, imagine a tuple 𝑟 ∈ 𝑅 arriving at its corresponding 
joiner service 𝑅𝑖  ∈  𝐺𝑅 for storage. It will be added in the current time-based sliding 

window. If a tuple 𝑠 ∈ 𝑆 arrives in the same 𝑅𝑖 unit, it proceeds with a pairwise 
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comparison of the join predicate with all the tuples stored in the designated time-based 
sliding window. Furthermore, the invalidation of stale tuples from the window should be 
performed. The steps involved in this procedure will be described below. We should 
also note that the data discarding operation is important for releasing memory. This 
process is implemented following the theorem from [3]:  
 
Theorem 1: The stored tuples 𝑟 ∈  𝑅𝑖 can be safely removed from the current time-

based sliding window, when 𝑅𝑖 receives an incoming tuple 𝑠 ∈  𝑆, such that 𝑠. 𝑡𝑠 −
𝑟. 𝑡𝑠  > 𝑊𝑠. In similar spirit, 𝑠 ∈  𝑆 can be discarded from once 𝑆𝑗  receives one tuple such 

that 𝑟. 𝑡𝑠 − 𝑠. 𝑡𝑠  > 𝑊𝑠. 
 
Refer [3] for the corresponding proof of the above theorem. We also need to support 
different in-memory indices, in order to index and efficiently join process the tuples from 
both relations based on join predicate. We use a HashMap for equi-join and a 
BinarySearchTree for non-equi-join predicates. As the authors in [3] point out, it is not 
efficient to organize the entire streaming data with one single index, as it will incur high 
overhead during the stale tuple discarding operation. In order to overcome this kind of 
overhead, we adopt their idea in our implementation, named chained in-memory index. 
Figure 5 depicts a schematic structure of this model. 
 

 

                                      Figure 5: Chained in-memory index [3] 

 

The main idea of the chained in-memory index model is to partition the streaming tuples 
based on the discrete time intervals and construct a sub-index per interval. Each sub-
index is associated with the minimum and maximum timestamps of the tuples that it 

holds. This time interval is named the archive period 𝑃. The sub-indices are chained 
together as a linked-list ordered by the construction time of each index. The stale tuple 
discarding operation can be now performed in the context of the sub-index level rather 
than the tuple level and thus we reduce the overhead of the operation, since the valid 
sub-indices are not affected when the obsolete sub-indices are discarded. In general, 
the following basic operations are performed by the joiner services with respect to the 
time-based sliding window constraint and the chained in-memory index model:  
 

 Data Indexing: When an input tuple arrives at a joiner for storage, it will be first 
added into the active sub-index and update the min/max timestamps. Next, it will 
calculate the difference between min and max timestamps and if this value 

exceeds the designated archive period 𝑃, then the current active sub-index will 
become inactive and archived into the chain and a new empty active sub-index will 
be created. Otherwise, the current active sub-index will remain active. 
 

 Data Discarding: An inactive sub-index may become expired and removed from 
memory by dereferencing it. An inactive sub-index becomes expired when a tuple 
reaches the joiner service and belongs to the opposite relation. According to 
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Theorem 1, if the difference between the timestamp of current tuple and the 

maximum timestamp of the sub-index in question is larger than 𝑊𝑠, then the sub-
index will be expired. Thus, we improve efficiency by avoiding the pairwise 
comparison between every tuple inside each sub-index. 

 

 Join Processing: After marking the expired sub-indices, an incoming tuple from 
the opposite relation needs to join with all the tuples in the remaining sub-indices 
(both the current active and archived). A pairwise window comparison is performed 
with all tuples belonging in these sub-indices. 

 

3.1.3 RabbitMQ Broker 

RabbitMQ is a complete open-source broker implementation of the Advanced Message 
Queuing Protocol (AMQP) [42]. It started as a joint project of LShift and CohesiveFT in 
2007. It is written in the Erlang programming language and is built using the Open 
Telecom Platform (OTP); Erlang’s framework for clustering and failover [43]. In 
particular, RabbitMQ is implemented as an extra AMQP layer on top of OTP using 
Erlang, thus benefiting from the robustness, reliability and flexibility of a proven platform. 
Since 2013, RabbitMQ is part of Pivotal Software. Among the key benefits of RabbitMQ 
are the following:  

 High reliability 

 High availability 

 Scalability 

 Good throughput and latency performance 

 Extensive management and monitoring control 

 Debugging facilities 

 Implementations of tooling and clients in various programming languages (e.g. 
Java, Python etc) 

 

3.1.3.1 AMQP Protocol 

In this subsection, we will briefly present some of the basic functionality of the AMQP 
protocol as defined in the specification manual [45]. AMQP was initially presented in 
2003 by John O'Hara at JPMorgan Chase in London, UK [44]. It is an application layer 
protocol (on top of a reliable transport layer protocol e.g. TCP) for message-oriented 
middleware. The latter entails software or hardware infrastructure which supports 
sending and receiving messages between distributed systems. Particularly, AMQP 
creates full functional interoperability between clients and messaging middleware 
servers (also termed “brokers”). AMQP provides flow controlled, message-oriented 
communication with message-delivery guarantees, along with encryption and 
authentication. Both the networking protocol and the server-side semantics are 
sufficiently defined through:  

 The Advanced Message Queuing Protocol Model (AMQ model), which defines a 
set of components that direct and store the messages within the broker, plus a set 
of rules for wiring these components together. 
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 A wire-level protocol (AMQP) which enables clients to directly interact with the 
broker. A wire-level protocol refers to a way of moving data from point to point in a 
network. 

 

Regarding the AMQ model, it specifies the following main types of components, which 
are interconnected in various ways inside a broker service: 

 Exchange: This is the main entry point inside the broker from the outside world. It 
receives messages from producer applications and routes them to different 
messages queues based on prearranged criteria, such as message contents or 
properties. The model defines two different types of exchanges: 

- Direct: It routes based on a routing key 

- Topic: It routes on a routing pattern 

 Message queue: This is where incoming messages are stored until one or many 
consumer application(s) processes them. 

 Binding: This abstraction defines the relationship between a message queue and 
an exchange and provides the message routing criteria to different queues. 

 

 

Figure 6: Message Flow in AMQ model 
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Figure 7 depicts a complete message flow in the AMQ model which entails all the 
functional components. A typical flow would be the following:  

1. The producer application publishes a message to an exchange. 

2. The exchange receives the message and is now responsible for the routing of 
the message. The exchange takes different types of message attributes into 
account, such as routing key or routing pattern. 

3. Bindings have to be created from the exchange to queues. In this case we see 
two bindings to two different queues from the exchange. The Exchange routes 
the message in to the queues depending on message attributes. 

4. The messages stay in the queue until they are handled by a consumer. 

5. The consumer consumes/processes the message. 

 

Regarding, the wire-level (AMQP) protocol, it is characterized by the following features: 
(i) multi-channel, (ii) asynchronous, (iii) secure, (iv) portable and (v) efficient. Figure 6 
depicts the two layers in which AMQP is split. 

 

 

Figure 7: AMQP Layers [45] 

 
The functional layer uses a set of different commands, which are grouped into logical 
classes of functionality. These commands perform useful work on behalf of the 
application. The transport layer is responsible for the bidirectional transfer of these 
methods from the application to the broker (and backwards) [45]. It handles framing, 
content encoding, heart-beating, error handling, data representation and channel 
multiplexing. 
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3.2 Dataflow Control 

Our main purpose of controlling the dataflow is to balance the load among the different 
services of the system and at the same time the efficient join processing of the two data 
streams. Tuples from both streams are initially entering the system in the RabbitMQ 
broker, where they are direct through a dedicated topic exchange. A single message 
queue is bound to that exchange and receives all the incoming tuples. A pool of router 
services (consumers) reads the tuples and each tuple goes to one of them (randomly). 
In messaging systems, this kind of model is usually termed queuing model. The 
strength of this model is that it allows the system to divide up the processing of data 
over multiple consumer instances and thus enable effective load balancing. This fact 
also lets us scale our processing (related to the router services). For implementation 
details of the above strategy, please refer to Chapter 4. 
 
Once, a tuple enters a router service it is segregated into two different streams:  the 
store stream and the join stream. The store stream routes each tuple to a join service 
for storage and similarly the join stream routes each tuple to the proper join services for 
join processing. We implemented different routing strategies for these two streams 
based on join selectivity.  
 
For high-selectivity predicates that involve anything but equality-joins, a random routing 
strategy is adopted. In particular, non-equi-join (high-selectivity) predicates may 
generate a large number of results over most of the join processing elements. A random 
routing strategy should be preferred for this kind of predicates, because it ensures equal 
load balancing among the processing units of a relation and protects from load 
imbalance when the data is skew. For example, in a non-equi-join predicate scenario, 

let 𝑟 ∈ 𝑅 entering a router service. It is randomly routed to one unit in 𝑅 for storage 
without taking into account the contents of 𝑟 via the store stream. In addition, 𝑟 is sent to 

all units in 𝑆 for join processing via the join stream. The opposite is true for a tuple 𝑠 ∈ 𝑆. 
The store and join streams again involve the RabbitMQ message broker. For the store 
stream, a topic exchange with a single message queue is created. All the joiner services 
from a single relation are competing for the tuples. This technique ensures load-
balancing among the units of the relation in a round robin fashion. It is implemented in 
the same way that was described in the previous paragraph for both streaming relations 
that initially enter the system and consumed by the router services. More 
implementation details should be found in Chapter 4. For the join stream, a dedicated 
topic exchange is created and then a number of queues is bound to that exchange. 
Each queue corresponds to a joiner service from a relation, from which the service 
consumes the tuples. In this way, we can achieve that all units in the target relation 
receive the tuples in the join stream as required from the random routing strategy. This 
model for distributing the join stream reminds us of the publish-subscribe model as each 
tuple is broadcast to every unit in the relation. 
 
However, the random routing strategy poses high network communication cost along 
with extra needless processing cost, because each tuple from the opposite relation has 
to be sent to all the units in the current relation for join processing. For low-selectivity 
joins such as equi-joins, we can alleviate these costs and achieve more efficient join 
processing by implementing a hash-partitioning routing strategy. In particular, a hash-
partitioning routing strategy, routes the tuples based on the hash value of the join 
attribute and targets them into a specific unit. Tuples with the same hash value on the 
join attribute end into the same unit. This technique helps us to perform efficient join 
processing by guaranteeing data locality. We can implement this strategy by hashing of 
the join attribute and enforcing the relevant topic exchanges to route tuples to specific 
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queues (that match the hash value) for both store and join streams. Implementation 
details of this strategy should be found in Chapter 4. 
 
3.3 Tuple Ordering Protocol 

We should implement a protocol that ensures the reliability of join results at the level of 
the join processing services. Faulty join results may arise if tuples arrive out-of-order 
from the store and join streams. This kind of disorder in data streams may arise from 
many sources, such as stream items being routed by different paths in a network, or 
combining streams that are out of synch [47]. We follow a protocol design along the 
lines of the BiStream system as presented in [3].  

 
Before presenting the protocol semantics we should identify the possible scenarios that 
may produce error-prone join results. Figure 7 presents all the possible orders that two 

tuples 𝑟 and 𝑠 may reach the join processing services 𝑆𝑗 and 𝑅𝑖. 

 
 

 

Figure 8: Arrival order of tuples r and s. [3]  

 

In Figure 8(a) the 𝑟 tuple is stored in 𝑅𝑖 before the 𝑠 tuple arrives in the same service for 

join processing. Then the 𝑅𝑖 produces a single join result. At the same time, the 𝑟 tuple 
arrives in 𝑆𝑗 for join processing earlier than the 𝑠 tuple (for storage) and thus is 

discarded and no join result is produced. This case produces a single correct join result 

between 𝑟 and 𝑠, because the result is produced exactly once in 𝑅𝑖. Figure 8(b) depicts 
a symmetric scenario as in 8(a), where a single join result is produced. Figures 8(c) and 
8(d) present faulty scenarios. In 8(c) we can observe that a missed join result occurs, 

when no join result is produced in 𝑅𝑖, because 𝑠 arrives for join processing earlier than 𝑟 
arrives for storage and thus is discarded. At the same time, no join result is produced in 
𝑆𝑗, because 𝑟 arrives out-of-order for join processing earlier than 𝑠 arrives for storage. In 

8(d), we can observe that a duplicate join result occurs due to out-of-order arrivals of 

tuples. In particular, a join result is produced in 𝑅𝑖, when 𝑟 arrives for storage earlier 
than 𝑠 arrives for join processing, thus producing a result. The same join result is 
produced in 𝑆𝑗, when when 𝑟 arrives for join processing later than 𝑠 arrives for storage. 

 
In order to avoid these two possible error cases, we should consider implementing a 
protocol, which guarantees the join results by processing the tuples in consistent order 
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at the joiner service level. Qian Lin et al in [3] present two definitions of an order 
consistent protocol along with a pairwise FIFO protocol, which may be the guide for a 
possible implementation. This implementation should provide guarantees about 
processing the tuples from the store and join streams in consistent order at the joiner 
services. The definitions are presented as follows: 
 
Definition 7 (Order-Consistent Protocol): Given a set of router services 𝑌 and a set of 

join processing services 𝑈, each router service 𝑦𝑖 ∈ 𝑌 sends a set of tuples 𝑋𝑖 = 
{𝑥𝑖1, … , 𝑥𝑖𝑘} as a stream. Each tuple is broadcast to a set of joiner services. A network 
protocol is called order-consistent if and only if: There exists a global tuple sequence 𝑍= 
{𝑥𝑧1, … , 𝑥𝑧𝑘}, where 𝑍 contains each tuple exactly once. For each unit 𝑢𝑗 ∈ 𝑈, it receives 

all the tuples assigned to it (i.e., no loss in the network), and the sequence of tuples it 

processes is a subsequence of the global tuple sequence 𝑍. 
 
The above protocol is presented in [3] to ensure that the relative order for any two 

joining tuples 𝑟 and 𝑠 only depends on a single global order and is consistent over all 
services. The following pairwise FIFO protocol is similarly presented to guarantee that 
for every pair of router and joiner services the in-between message passing and 
processing is FIFO. 
 
Definition 8 (Pairwise FIFO Protocol): Given a router service 𝑦 and a joiner service 𝑢, 
𝑦 sends a set of tuples  𝑋 = {𝑥1, … , 𝑥𝑘 , … } to 𝑢 as a stream. A network protocol is called 

pairwise FIFO if and only if: For any two tuples 𝑥𝑎 and 𝑥𝑏, if 𝑥𝑎 is sent by 𝑦 before 𝑥𝑏, 

then 𝑥𝑎 is processed at 𝑢 before 𝑥𝑏. 
 
The key idea presented with the above protocol is that every tuple holds a counter or id 
that is incremented by one after every sent tuple by the router. The joiner only 
processes those tuples with the expected id. When a tuple is delayed or lost, the 
processing of the following tuples stops and should be continued only after receiving the 
tuple with the expected id or perform some kind of synchronization action. Different 
flavors of this protocol may be implemented.  
 

The authors of [3] present an implementation of the order-consistent protocol based on 
the pairwise FIFO protocol. We opted to follow this protocol for our implementation in 
order to address the two faulty aforementioned scenarios of tuple disorder in the 
streams. The protocol is implemented as follows: Each tuple receives a monotonically 
increasing counter at each router service. This counter is incremented by one for every 
tuple sent by the router. Each joiner service maintains and sorts the incoming tuples 
based on the counter in question; the global sequence referenced in Definition 7 is 
preserved on the order of the counter. Additionally, the joiner should be aware of the 
appropriate timing to proceed with processing the currently maintained and sorted 
tuples. The router should somehow signal the joiner that it should proceed with the 
sorted tuples. A stream punctuation technique [47] is used to implement this kind of 

intervention from the router to the joiner. A punctuation is a pattern 𝑝 inserted into the 
data stream with the meaning that no data tuple 𝑡 matching 𝑝 will occur further on in the 
stream. In our case, every router service emits a signal tuple with a counter to all the 
joiner services periodically (e.g. every 20ms). Recall that message passing between 
every router and joiner service is FIFO. Such a signal tuple indicates that all tuples 
(from this router) with counter less than the signal counter have been received by the 
joiners and thus the joiners should proceed with processing them. The joiners maintain 
a priority queue for tuples coming from both the store and join streams and proceed with 
processing the tuples that have smaller counter than the latest received signal counter. 
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The latest counters from all the routers are stored in a table in each joiner service and 
get update periodically. With this kind of protocol, we are able to guarantee proper 
ordering of the sent tuples at the joiner services and thus ensure join results 
completeness. 
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4. SYSTEM IMPLEMENTATION 

In this chapter, we are going to describe various aspects of the implementation of the 
elastic-biclique system. As we already mentioned, this system is an alternative 
implementation of the join-biclique model presented in [3]. We opted for an 
implementation using the concept of message-driven microservices. Our development 
was carried out in the Java programming language using the open-source Spring Boot 
[18] and Spring Cloud Stream [19] frameworks. 
 
4.1 Spring Boot 

The Spring framework is a very popular Java-based framework for building web and 
enterprise applications. It exists since around 2003 and its main abstractions are 
dependency injection (DI) and inversion of control (IoC). Unlike many other frameworks, 
which focus on only one area, Spring framework provides various modern features 
addressing the modern business needs via its portfolio projects. At its very core, Spring 
framework bases its functionality on the concept of beans; objects that form the 
backbone of an application and are managed by the IoC component of Spring [18]. In 
other words, a bean is an object that is instantiated, assembled, and otherwise 
managed by a Spring IoC container. The framework itself provides the flexibility to 
configure beans in multiple ways, e.g. XML, Annotations, and JavaConfig. With the 
number of features increased the complexity also gets increased and configuring Spring 
applications becomes tedious and error-prone. To this end, the Spring Boot project is 
the next-generation attempt at easy Spring setup configuration. This project makes it 
easy to create Spring-based stand-alone applications that one can easily deploy and 
run with minimum effort on configuration aspects. The primary goals of this project as 
stated in [18] are:  

 Provide a radically faster and widely accessible getting started experience for all 
Spring development. 

 Be opinionated out of the box, but get out of the way quickly as requirements 
start to diverge from the defaults. 

 Provide a range of non-functional features that are common to large classes of 
projects (e.g. embedded servers, security, metrics, health checks, externalized 
configuration). 

 Absolutely no code generation and no requirement for XML configuration. 

While Spring Boot provides the foundation for creating DevOps friendly microservice 
applications, other libraries in the Spring ecosystem help create Stream based 
microservice applications. The most important of these is Spring Cloud Stream. 

 

4.2 Spring Cloud Stream 

Spring Cloud Stream builds on Spring Boot to create stand-alone Spring applications. In 
particular, it is a framework for building message-driven microservice applications. It 
also uses Spring Integration [48] to provide connectivity to message brokers [19] 
(including RabbitMQ). Other features and concepts of this framework include:  

 Opinionated configuration of several middleware messaging brokers (Kafka, 
RabbitMQ, Redis). 

 Persistent publish-subscribe concepts. 
 Consumer groups 
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 Partitions 

From this point-of-view, it seems like the perfect framework for our system. It allows us 
to easily build stream-based microservice applications without dealing with low-level 
complexity and also offers us out-of-the-box integration with the RabbitMQ broker. We 
continue this chapter by describing the main concepts of this framework. 

 

4.2.1 Main Concepts 

The essence of the Spring Cloud Stream programming model is to provide an easy way 
to describe multiple input and output channels of an application that communicate over 
a messaging middleware. Specifically for our case, those input and outputs map into 
RabbitMQ exchanges and queues. Common application configuration for a Source that 
generates data, a Process that consumes and produces data and a Sink that consumes 
data is provided as part of the library. 

 

In essence, a Spring Cloud Stream application consists of a neutral middleware core. 
The deployed application communicates with the outside world through input and output 
channels injected into it by the framework. These channels connect to the external 
broker. Figure 9 presents an overview of the above concept. 

 

 

Figure 9: Spring Cloud Stream abstractions [19]  

As of April 2017, the framework provides Binder implementations for RabbitMQ, Kafka 
and Redis. It automatically detects and uses a binder found on the classpath.  

 

As we have already described, messaging has two models: queuing and publish-
subscribe. In the queuing model, a pool of consumers may read from a producer and 
each data item goes to one of them. On the contrary, in the publish-subscribe model the 
data items are broadcast to all of the consumers. Each model has a strength and a 
weakness. The strength of queuing is that it allows dividing up the processing of data 
over multiple consumer instances, which lets us scale up. Unfortunately, queues aren’t 
multisubscriber; once a consumer reads the data item then it’s gone. The strength of 
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publish-subscribe is that it allows us to broadcast data to multiple processes, but has no 
way of scaling processing since every message goes to every subscriber.  

 

Spring Cloud Stream generalizes the above two concepts. Particularly, the 
communication between different microservices follows a publish-subscribe model, 
where data is broadcast through shared topics. The publish-subscribe communication 
model reduces the complexity of both the producer and the consumer, and allows new 
applications to be added to the ecosystem without disrupting the existing flow. Added to 
that, the queuing model is achieved through the concept of consumer groups (Inspired 
by Apache Kafka consumer groups). All groups which subscribe to a given destination 
receive a copy of published data, but only one member of each group receives a given 
message from that destination. By default, when a group is not specified, Spring Cloud 
Stream assigns the application to an anonymous and independent single-member 
consumer group that is in a publish-subscribe relationship with all other consumer 
groups. Figure 10 illustrates the concept of the consumer groups in Spring Cloud 
Stream. 

 

 

Figure 10: Concept of Consumer Group [19]  

Other important concepts of Spring Cloud Stream are Durability and Partitioning 
support. The former allows for consumer groups subscriptions to be durable. This 
means that the binder implementation ensures that when a subscription for a group is 
created, it automatically becomes durable meaning that the group will receive 
messages even if they are sent while all applications in the group are stopped. The 
latter feature (partitioning support) enables support for partitioning data between 
multiple instances of a given application. In a partitioned scenario, the broker exchange 
(in Rabbit) is viewed as being structured into multiple partitions. One or more producer 
applications send data items to multiple consumer application instances and ensure that 
items presenting common characteristics are processed by the same consumer 
instance. Figure 11 illustrates the concept of partitioning. Several producer applications 
send via HTTP, data items to the same topic (exchange) which is partitioned. Items with 
common characteristics are directed to a specific partition. Only a unique Average 
Processor application instance consumes these data and thus we ensure that they are 
processed together. 
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Figure 11: Partitioning Concept [19] 

  

Even though RabbitMQ broker does not support physical exchange partitioning like 
Kafka, Spring Cloud Stream offers a common abstraction for implementing partitioning 
in a uniform fashion. Partitioning support is very critical for our system, so we could 
implement hash partitioning in the joiners for efficient equi-join processing. 

 

4.3 Implementation Analysis 

Based on the abstractions of Spring Cloud Stream, we designed and developed the 
elastic-biclique system. When using the RabbitMQ binder, each destination is mapped 
to a Topic Exchange. Figure 12 depicts the binder. 

 

 

Figure 12: RabbitMQ binder [19] 

For every consumer group, a queue is bound to that topic exchange. Each consumer 
instance has a corresponding RabbitMQ consumer instance for its group’s queue. That 
is, consumer instances that belong to the same group are competing with each other for 
the data tuples. For partitioned producers/consumers the queues are suffixed with the 
partition index and use the partition index as the routing key. 

Regarding our implementation, the entry point for the tuples of both streaming relations 
(𝑅, 𝑆) is a topic exchange named tuple.exchange. A single queue is bound to that 
exchange which corresponds to the consumer group of the router instances. Using this 
abstraction, the router instances compete with each other for the ingestion of the 
incoming tuples from both relations. This way we can also easily scale up or down the 
router-services depending on the tuple rate. Each router instance is responsible for 
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directing the tuples to the corresponding joiner services for further processing. We will 

provide a dataflow example for a tuple from relation 𝑅 in order to demonstrate the 

implementation. The corresponding procedure applies for tuples coming from the 𝑆 
relation (with S-store and S-join exchanges). 

Imagine a tuple coming from 𝑅 relation, it should be directed to the R-joiner services for 
storage and at the same time to the S-joiner services for join processing. For that 
purpose, tuples from  𝑅  are directed to an R-store topic exchange for storage by R-
joiner instances and to an R-join exchange for join processing by S-joiner instances. If 
the random routing strategy is adopted concerning high-selectivity joins (Section 3.2), a 
single queue is bound to R-store exchange and all R-joiner instances (the belong to the 
same consumer group) compete for the tuple; it ends up to one of them. For the same 
routing strategy, multiple queues are bound to the R-join exchange, each corresponding 
to one instance of the S-joiners (they don’t belong to a specific consumer group thus 
multiple queues are created and bound to the exchange). This way, the tuple is 
broadcast to all of them for join processing in a publish-subscribe fashion.  

If we adopt the hash partitioning strategy for low-selectivity joins (equi-joins), multiple 
queues are bound to the R-store topic exchange, each corresponding to a single R-

joiner instance. A tuple from 𝑅 is directed to a single queue based on the hash value of 
the joining attribute and thus a single R-joiner instance consumes and stores the tuple. 
Similarly, multiple queues are bound to the R-join topic exchange, each corresponding 

to a single S-joiner instance. The same tuple from 𝑅 is directed to a single queue based 
on the hash value of the joining attribute and thus a single S-joiner instance consumes 
and join-processes the tuple. Using this strategy, we ensure that tuples from both 
relations having the same hash values on the joining attribute, will end up in the same 
instance. 

As we already mentioned, using Spring Cloud Stream we can easily describe the 
multiple input and output channels of our microservice instances. These channels are 
communication channels to/from the RabbitMQ broker. To better understand the coding 
style (using Annotations) of Spring Cloud Stream, we will provide the router service’s 
channels implementation interfaces: 

 

public interface TupleSink { 
    String CHANNEL_NAME = "tuplesChannel"; 
 
    @Input(TupleSink.CHANNEL_NAME) 
    SubscribableChannel tuplesChannel(); 
} 
 

The @Input annotation identifies an input channel, through which received messages 
enter the application. It can also take a channel name as a parameter. In our case for 
the router service, the channel name is called tuplesChannel and defines the input 
communication channel from which the router service receives tuples from both 
relations.  Similarly, we define an interface for the output channels: 

 

public interface TupleSource { 
 
    String CHANNEL_NAME_R_STORE = "tuplesChannelRstore"; 
    String CHANNEL_NAME_R_JOIN = "tuplesChannelRjoin"; 
    String CHANNEL_NAME_S_STORE = "tuplesChannelSstore"; 
    String CHANNEL_NAME_S_JOIN = "tuplesChannelSjoin"; 
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    @Output(TupleSource.CHANNEL_NAME_R_STORE) 
    MessageChannel tuplesChannelRstore(); 
     
    @Output(TupleSource.CHANNEL_NAME_R_JOIN) 
    MessageChannel tuplesChannelRjoin(); 
     
    @Output(TupleSource.CHANNEL_NAME_S_STORE) 
    MessageChannel tuplesChannelSstore(); 
     
    @Output(TupleSource.CHANNEL_NAME_S_JOIN) 
    MessageChannel tuplesChannelSjoin(); 
} 
 

The @Output annotation identifies an output channel, through which published 
messages leave the application. In our case, we define 4 different output channels in 
the router service; two channels with store, join semantics per relation. These channels 
have appropriate naming. 
 
4.4 Docker containers 

Docker is the world’s leading container platform. In particular, it is a tool designed to 
make it easier to create, deploy and run applications by using software containers. 
Containers are fundamentally based on a feature of the Linux kernel named 
Namespaces. This feature allows the isolation and virtualization of system resources of 
a collection of processes. Examples of resources that can be virtualized include process 
IDs, hostnames, user IDs, network access, inter-process communication, and 
filesystems. Furthermore, containers allow a developer to package up an application 
with all of the parts it needs, such as libraries and other dependencies, and ship it all out 
as one package. By using containers, resources can be isolated, services restricted, 
and processes provisioned to have an almost completely private view of the operating 
system with their own process ID space, file system structure, and network interfaces. 
Multiple containers share the same kernel, but each container can be constrained to 
only use a defined amount of resources such as CPU, memory and I/O [20].  

Docker containers rely on docker images to run. In particular, a Docker image is the 
template (application plus required binaries and libraries) needed to build a running 
Docker Container (the running instance of that image). Each Docker image references a 
list of read-only layers that represent filesystem differences. Layers are stacked on top 
of each other to form a base for a container’s root filesystem. When we create a new 
container, we add a new, thin, writable layer on top of the underlying stack. This layer is 
often called the “container layer”. All changes made to the running container - such as 
writing new files, modifying existing files, and deleting files - are written to this thin 
writable container layer [20]. 
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Figure 13: VM vs Containers 

In a way, Docker is a bit like a virtual machine. But unlike a virtual machine, rather than 
creating a whole virtual operating system, Docker allows applications to use the same 
Linux kernel as the system that they're running on and only requires applications to be 
shipped with things not already running on the host computer. Figure 13 depicts this 
kind of model. Using this abstraction we can achieve a significant performance boost 
and reduce the size of an application. Using Docker to create and manage containers 
may also simplify the creation of highly distributed systems by allowing multiple 
applications, worker tasks and other processes to run autonomously on a single 
physical machine or across multiple virtual machines. This latter characteristic is very 
important for our distributed elastic-biclique system. Additionally, docker containers 
allow efficient scaling of an application by spawning new containers of a given service 
on demand. The opposite procedure (scale down) is equally easy, thus allowing us to 
use the resources only when we need it. 

In our container cluster, we are going to use three different Docker images. The first 
image corresponds to the RabbitMQ broker, while the second and the third images will 
correspond to the router and joiner services respectively. These latter images are based 
on alpine-oraclejdk8, which holds the Alpine Linux distribution along with the OracleJDK 
8, totaling only ~170MB in size. 

 

4.5 Kubernetes 

Container orchestration is one of the hottest topics in industry. Initially, the industry 
focused on pushing container adoption. The next step is forward is to put containers in 
production at scale. There are many tools in this area. Some examples are Apache 
Mesos, Docker Swarm and Amazon’s ECS and Kubernetes. For this thesis, we will 
focus on Kubernetes; an open-source container orchestration system meant to be 
deployed on Docker-capable clustered environments. Currently, it is one of the fastest-
moving open source projects and seems to be winning the competition. Statistics on 
GitHub proove this fact: Kubernetes is in the top 0.01 percent in stars and No. 1 in 
terms of activity.  

This system was initially developed at Google and its name originates from the greek 
word «Κυβερνήτης» meaning governor or commander. It is commonly abbreviated as 
“k8s”, which is derived by replacing the 8 letters “ubernete” with 8. Kubernetes’s 
technology isn’t precisely new. Behind the open source community uptake hide 
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exceptional engineering efforts. That is, 15 years of Google’s active development and 
heavy production for a product named Borg; the cluster management tool that powered 
the infrastructure behind Gmail, YouTube, Google Search, and other popular Google 
services. Kubernetes’s success relies on 15-plus years of Google R&D that goes into 
Borg’s code. 

Kubernetes provides several features such as grouping, load-balancing, auto-healing, 
scaling, autoscaling, container replication, volume management, infrastructure 
monitoring, rolling updates, service discovery, identity, authorization etc. The framework 
distinguishes the participating nodes between master and worker nodes. The master 
provides a unified view into the cluster and, through its publicly-accessible endpoint, is 
the doorway for interacting with the cluster. The worker(s) are managed from the 
master, and run the services necessary to support Docker containers. Each node runs 
the Docker runtime and hosts a Kubelet agent, which manages the Docker containers 
scheduled on the host. Each node also runs a simple network proxy. Additionally, the 
way Kubernetes functions is by using pods that group into containers, then scheduling 
and deploying them at the same time. While most other container management services 
use a container as their minimum unit, Kubernetes uses the pods. A pod is a group of 
one or more containers, the shared storage for those containers, and options about how 
to run the containers. Pods are always co-located and co-scheduled, and run in a 
shared context. Generally, a pod contains one or more application containers which are 
relatively tightly coupled. These pods are quickly updated, built, or destroyed in real-
time depending on the situation. Kubernetes can be used on private, public, multi-cloud, 
and hybrid cloud environments. With all these features and convenient abstractions, 
Kubernetes seemed like the perfect orchestration framework for our containerized 
distributed system. 

 

4.6 Google Container Engine 

Google Container Engine (GKE) is a powerful cluster manager and orchestration 
system [13] for running Docker containers. Particularly, it is built on top of Google 
Compute Engine, which is a typical public Infrastructure as a Service (IaaS) cloud 
platform, similar to Amazon Elastic Compute Cloud [12], Microsoft Azure [14] or 
OpenStack [49]. The engine schedules Docker containers into the cluster and manages 
them dynamically based on predefined requirements (such as CPU and RAM). The 
main benefit of GKE is that it is built on top of Kubernetes, giving us the flexibility to take 
advantage of the public cloud infrastructure.  

Using GKE, we are able to set up a container cluster along with the orchestration 
framework within minutes. We do not have to deal with the strenuous and non-trivial 
process of configuring the Kubernetes framework. Thus, we are able to direct our focus 
on the elastic-biclique containerized system deployment and execution on the cloud. 

Furthermore, GKE offers a flexible auto-scaling feature that helps optimize resource 
efficiency. The auto-scaling refers both to containers (pods) within particular VMs 
(worker nodes) and also to VM instances. The former feature is offered by Kubernetes, 
while the latter feature is offered cluster auto-scaling by Google Compute Engine (IaaS). 
Our main focus on this project is to demonstrate elasticity of the distributed stream join 
system and as such the Kubernetes pod auto-scaling feature is of great importance. 
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5. DEPLOYMENT AND EXPERIMENTS 

5.1 Setup and Deployment 

We deployed our elastic-biclique system on Google Container Engine. Our system 
comprises of three core Docker images, namely the rabbitmq-broker, router and joiner 
services. RabbitMQ is already available on Docker-Hub and we chose to use the 
smallest available image (rabbitmq:alpine) with a size of ~5MB. The other images are 
also based on the Alpine Linux distribution along with the OracleJDK 8 with a size of 
~170MB each. We pushed these images on the public Docker-Hub registry under the 
eangelog/$service-name-service tag. Furthermore, we used single container 
Kubernetes pods based on our images. A single container pod has only one container 
running inside it. This way, we could ideally run each container on a separate VM 
instance. 
 
Google Container Engine (GKE) is a cluster manager and orchestration system based 
on the public IaaS cloud of Google (Google Compute Engine). As with every public 
cloud provider, GKE comes with specific Service Level Agreement (SLA) constraints 
and billing requirements for leasing VM instances. In order to conduct the experiments 
required by this thesis project and due to limited monetary resources, we opted to use 
the free-tier infrastructure offered by GKE. This tier is free of charge and is offered for a 
limited amount of time (12 months) and also with a limited amount of monetary 
resources (300 US dollars). Unfortunately, the free-tier comes also with a set of pre-
defined resource quotas per account. For example, a maximum of 8 CPU cores per 
zone and a maximum of 100 images are enforced (among others). Due to such 
resource limitations (especially the 8 CPU cores quota), our experiments were 
significantly limited. We expect to conduct more sophisticated experiments in the future, 
when we will have access to different IaaS providers. 
 
 

 

Figure 14: Cluster information 

We created a cluster in GKE named cluster-biclique with an initial size of 8 VMs. Figure 
14 summarizes the cluster information on GKE. Each VM has an Intel Xeon vCPU @ 
2.5 GHz and 3.75GB of RAM along with 100GB of ephemeral local disk. The total 
compute resources are 8vCPUs, 30GB of RAM and 800GB of disk size. The 8 VMs 
refer directly to Kubernetes worker nodes, as GKE abstracts away the Kubernetes 
master node from the cloud client. The cluster default region is europe-west and the 
zone is 1-c. The Kubernetes version is 1.6.1 and we chose to turn off the cluster auto-
scaler, because of our limited resource constraints. This feature is also currently in a 
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beta version. Instead, we will focus on the Horizontal Pod Autoscaler (HPA) of 
Kubernetes for our experiments.  
 
We initiated the bootstrap of our cluster with the command depicted in Figure 15. 
 

 

Figure 15: Cluster bootstrap 

We have to note here that we chose to deploy the cluster with all the Kubernetes alpha 
features enabled. The so-called Alpha cluster is a short-lived cluster that is not covered 
by the Container Engine SLA and cannot be upgraded, but has all Kubernetes APIs and 
features enabled. This kind of cluster is a way to run stable Kubernetes releases with 
Alpha features that may be less stable. These clusters are automatically destroyed after 
30 days. We needed the alpha features enabled, so we could be able to use the HPA’s 
alpha feature of auto-scaling based on the resource metric of memory. This feature may 
be found in the autoscaling/v2alpha1 API. 
 
After our cluster is bootstrapped, it is time to deploy our containers comprising the 
elastic-biclique system. Kubernetes offers several abstractions which makes scaling 
and managing containers a facile task. We consider the most important of these 
abstractions to be: (i) Pods, (ii) Services and (iii) Deployments. We have already given a 
brief explanation of Pods in section 4.5. On the other hand, Services is a core 
abstraction of Kubernetes, which provides persistent endpoints for Pods. In particular, 
Pods aren’t meant to be persistent. They can be stopped or started for many reasons 
and this leads to communication problems, because restarted Pods may have different 
IP addresses. Finally, Deployments are a declarative way to ensure that the number of 
Pods running is equal to the desired number of Pods, specified by the user. The main 
benefit of Deployments is in abstracting away the low level details of managing Pods. 
Behind the scenes, Deployments use Replica Sets (another core abstraction of K8s) to 
manage starting and stopping the Pods. If Pods need to be updated or scaled, the 
Deployment will handle that. Deployments also handle restarting Pods if they happen to 
go down for some reason. All the above abstractions could be described with YAML 
files, which are sent to the Kubernetes API server. 
 
In general, we chose the Deployment abstraction to deploy our images into our biclique-
cluster, in order to benefit from all the handy features offered by this abstraction. The 
first step of the deployment procedure of elastic-biclique is the creation of a Deployment 
for the RabbitMQ broker, along with two Services; the first Service is used for the 
internal communication of other biclique services with the broker at port 5672 and the 
second service provides external access to RabbitMQ GUI through port 15672. Figure 
16 demonstrates the above Services. 
 

 

Figure 16: Kubernetes Services  
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For the router and joiner services we also created two different Deployments. For that 
purpose, we wrote a YAML file per Deployment. For example, the following snippet 
describes a possible router-service Deployment: 
 
apiVersion: extensions/v1beta1 
kind: Deployment 
metadata: 
  name: biclique-router 
spec: 
  replicas: 2 
  template: 
    metadata: 
      labels: 
        run: biclique-router 
    spec: 
      containers: 
        - name: biclique-router 
          image: "eangelog/router-service" 
          env: 
           - name: SPRING_APPLICATION_JSON 
             value: '{"spring.rabbitmq.addresses": "rabbitmq"}' 
 

 
The above Deployment uses the extensions/v1beta1 API and creates a Replica Set to 
bring up 2 router-service Pods using the image eangelog/router-service. We also use an 
environment variable named spring.rabbitmq.addresses=rabbitmq, which will be used 
by the containerized router Java application to point to our RabbitMQ broker service. A 
DNS service is provided by Kubernetes on GKE for discovering registered Services. 
 
 

 

Figure 17: Kubernetes Deployments  

 
Figure 17 illustrates the successful deployment of the core services of elastic-biclique 
(router, joiner and rabbitmq) as Deployments from the Kubernetes Dashboard, along 
with CPU and memory usage. At this particular moment, there is no incoming stream 
traffic and the Pods remain idle. We should note that there are two starting Pods per 
type of joiner (R, S) and router and one Pod for RabbitMQ (we do not seek High-
Availability for the queues of the broker for these experiments). Figure 18 presents the 
various queues involved in the biclique system (section 4.3 for details) from the 
RabbitMQ management GUI. For these experiments we adopted the random routing 
strategy (section 3.2 for details) and as such the corresponding number/type of queues 
are bound to the R, S (store, join) exchanges for the two Pods of each relation. 
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Figure 18: RabbitMQ idle queues 

Now that our elastic-biclique services are deployed into the GKE cluster, we can 
proceed with executing the auto-scaling experiments. 
 
5.2 Experiments 

We now need to demonstrate the capability of the elastic-biclique system to dynamically 
adjust the number of Pods according to stream input rate changes. For that purpose, we 
used the Horizontal Pod Autoscaler (HPA) of Kubernetes; a feature which enables 
Kubernetes to automatically scale the number of pods in our Deployments based on 
observed CPU utilization (or, with alpha support, on some other, application-provided 
metrics such as memory). We need to provide a brief description of the technical 
aspects of HPA before continuing with the experiments. 

 

 

   Figure 19: Horizontal Pod Autoscaler 
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Figure 19 provides an overview of HPA. The Horizontal Pod Autoscaler is implemented 
as a control loop with a predefined period of operation (e.g. 30 seconds). During each 
period, the controller manager queries the resource utilization against the metrics 
specified in each HPA definition. The controller manager obtains the metrics from either 
the resource metrics API (for per-pod resource metrics), or the custom metrics API (for 
all other metrics). For these experiments we are interested in per-Pod resource metrics 
(CPU and memory). For this kind of metrics, the controller fetches the values from the 
resource metrics API for each pod targeted by the HPA. Then, if a target utilization 
value is set, the controller calculates the utilization value as a percentage of the 
equivalent resource request on the containers in each pod. If a target raw value is set, 
the raw metric values are used directly. The controller then takes the mean of the 
utilization or the raw value (depending on the type of target specified) across all 
targeted pods, and produces a ratio used to scale the number of desired replicas. The 
HPA controller can fetch metrics in two different ways: direct Heapster access, and 
REST client access. In our case, we use the direct Heapster access as it is the default 
way when deploying GKE clusters. Heapster is an open-source project which enables 
container cluster monitoring and performance analysis. When using direct Heapster 
access, the HPA queries Heapster directly through the API server’s service proxy 
subresource. Heapster needs to be deployed on the cluster and running in the kube-
system namespace [50]. 
 
We conducted our experiments with HPA based on two different resource metrics, 
namely CPU utilization and memory load. Due to resource and time constraints, we only 
evaluated a single equi-join query for a 10-minute window join in 60 minutes of duration. 
Our cluster resource constraints refer to the small number of vCPU cores available (8), 
which limits both the possible tuple input rate and the number of Pods that we are able 
to deploy on our cluster.  
 
The autoscaling operation based on the CPU utilization may also be described as a 
YAML file which is submitted to the Kubernetes api-server:  
 
 
apiVersion: autoscaling/v2alpha1 
kind: HorizontalPodAutoscaler 
metadata: 
  name: biclique-joiner-r 
  namespace: default 
spec: 
  scaleTargetRef: 
    apiVersion: apps/v1beta1 
    kind: Deployment 
    name: biclique-joiner-r 
  minReplicas: 1 
  maxReplicas: 3 
  metrics: 
  - type: Resource 
    resource: 
      name: cpu 
      targetAverageUtilization: 80 
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Figure 20: Dynamic Scaling based on CPU utilization 

 
Figure 20 presents the varying stream input rates during the 60-minute of our 
evaluation. The upper part of Figure 20 shows the stream input rate, while the bottom 
part shows how the joiner Pods are dynamically added/released from the system while 
the CPU utilization changes. We set the target CPU utilization value at 80% and the 
minimum and maximum amount of Pods at 1 and 3 respectively. These values can be 
viewed also in the YAML file. We start with a rate of 300 tuples/sec for the first 10 
minutes and a single joiner per relation. The initial CPU utilization is far above the 
desired target value at ~145%, so a second joiner Pod launches by the autoscaler. 
Following this action, the utilization seems to stabilize for the next 10 minutes below the 
80% target. At the 10th minute, we increase suddenly the rate to 400 tuples/sec and the 
utilization also rises at a constant rate. The autoscaler decides to bootstrap a third joiner 
Pod to balance the load. The utilization seems to balance again around the target value, 
over the next 30 minutes until the 40th minute of our evaluation. At the 40th minute, we 
decrease the input rate at 200 tuples/sec and as such we can observe a decrease in the 
utilization below 60% with 3 Joiner Pods. Thus, the autoscaler decides to decrease the 
number of Pods to 2 again. At the 50th minute, we increase the input rate again at 300 
tuples/sec and as such we can observe a stabilization of the utilization again at around 
80%. 

Figure 21 presents the auto-scaling experiment based on memory load. Before 
describing the results depicted, we consider important to report the technique that we 
used for optimal behavior, regarding memory footprint of the Java Virtual Machine 
(JVM) in cloud operation. If the JVM is run using the default, parallel GC with no 
configuration flags provided, other than the heap maximum (-Xmx), JVM will try to use 
all the available heap right up to that maximum. It keeps allocating new data out of the 
available address space until it runs out. Only then does it collect all the live data and 
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compact it down into the bottom of the heap, before continuing to fill up the free space 
and so on. That’s true even when the application would run perfectly happily in much 
less space. In cases where a single machine is dedicated to the JVM that’s not 
necessarily a problem. But in Cloud deployments like elastic-biclique, many JVMs are 
deployed as virtualized guests (containers) sharing the resources of an underlying host 
machine. Clearly, when there is competition for memory it is preferable for the JVM to 
use as small a memory footprint as is compatible with keeping down memory 
management costs. A JVM can easily monitor how much live data an application is 
holding on to. If this is much lower than  the configured heap maximum, then garbage 
collection and compaction can be performed early, before all the heap space is filled. 
That allows each JVM to unmap the unused address space at the top end of the heap, 
making more physical memory available for other JVMs. The gain is that you can either 
run more JVMs on the same physical host or run the same number of JVMs on a similar 
host installed with less memory. Both options translate to saved money. 

Luckily, we can alleviate the above problem by using proper configuration of the JVM, 
as it already implements a memory footprint management policy. Using this policy we 
can force our JVM to keep the mapped heap space fairly close to the application’s live 
data set size. Using the following JVM flags in our Joiners we can achieve the 
aforementioned behavior:  
 
-XX:UseParallelGC  

-XX:MinHeapFreeRatio=20  

-XX:MaxHeapFreeRatio=40  

-XX:GCTimeRatio=4  

-XX:AdaptiveSizePolicyWeight=90 

At any GC the collector can decide to map more of the available heap pages into the 
nursery space or mature space. It can also decide to unmap pages and work in less 
space. The footprint control model makes mapping decisions based upon the values of 
two parameters, MinHeapFreeRatio and MaxHeapFreeRatio, with  default values 40 
and 70. These two heap ratios specify what percentage excess memory should be 
mapped beyond that occupied by the live set. Let’s assume, for simplicity, that at GC 
the live objects occupy 100Mb. The defaults specify that the mapped pages should lie 
between 140Mb and 170Mb. If the currently mapped heap space is less than 140Mb it 
needs to be extended by mapping more physical pages. If it is more than 170b it needs 
to be trimmed by unmapping pages. Obviously, these limits are themselves constrained 
by the heap minimum and maximum supplied on the java command line (-Xms and -
Xmx settings). 

Our configuration resets the heap ratios to 20 and 40. This makes the GC to trim the 
extra heap space much more tightly, keeping it much closer to the live data set size. So, 
with 100Mb of live data the heap would be adjusted to lie between 120Mb and 140Mb, 
i.e. – there would be about half as much excess space. If the application’s live set size 
and allocation rate remain constant then this means that GCs would have to happen 
about twice as often with these settings. 

The time goal is configured by two parameters, GCTimeRatio and 
AdaptiveSizePolicyWeight, with default values 99 and 10. GCTimeRatio specifies the 
worst case GC time the collector should target. A value of 99 means no more than 1% 
of time should be spent in GC. In practice, that means that the parallel GC has to play 
cautious. So, it regularly trades off space for time even when the actual GC time is a 
tiny fraction of 1%. When a young GC occurs it tends just to add more heap, ignoring 
the MaxFreeHeapRatio value. The result is that the heap size just keeps rising, often up 
to the heap maximum. Our configuration  resets GCTimeRatio to 4, i.e. a worst case 
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goal of 20%. This effectively places most of the weight in the competing footprint 
management goals on space rather than time reduction. With this setting the time goal 
no longer dominates and the heap stays between the limits defined by 
MinFreeHeapRatio and MaxFreeHeapRatio. 

The AdaptiveSizePolicyWeight parameter controls how much previous GC times are 
taken into account when checking the timing goal. The default setting, 10, bases the 
timing goal check 90% on previous GC times and 10% on the current GC time. 
Resetting this to 90 means that the timing goal check is mostly based on to the current 
GC execution time, i.e. it is more responsive to current rather than historical memory 
use. This greater responsiveness also usefully limits the extent to which space gets 
traded off against time. 

We also have to note that we left a default setting for the minimum and maximum heap 
size per JVM constrained by our physical resources per host. That is, the minimum 
heap size is 58MBs and the maximum heap size is 926 MBs.  

  

 

 

Figure 21: Dynamic Scaling based on Memory Load 

 
We performed the autoscaling experiment based on memory load, using a 10-minute 
window with 1 Joiner as the default setting. We set the target memory value as 85% of 
total memory. We adjusted the memory consumption at the host, where the target 
Joiner Pod resides, so we could hit the target value of 85% at around 520MB of JVM 
memory. Initially, the experiment begins with the memory load at 60 MB and an average 
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input rate at 300 tuples/sec. Normally, the memory load would be bound to the size of 
the workload within the time window, since expired tuples are discarded from memory. 
We can observe that after a window time, the memory load is bounded via data 
discarding until the 15th minute at around 500MB. After the 15th minute the input rate 
rises to 400 tuples/sec and thus we can observe a sudden spike in the memory load, as 
more and more tuples accumulate inside the time window. Then, the burden of 520MB 
is violated, so the autoscaler spawns a second Joiner. The rate of tuple accumulation 
inside the time window is now split between the two Joiners. Thus, we can observe a 
constant decline in the memory load until the ~30th minute with ~500MB. Then, the 
autoscaler decides to release the second Joiner. We can again observe a constant rise 
in the memory load until the 40th minute, when the rate declines to 200 tuples/sec. 
Then, the memory load declines to almost 420 MB  until the 50th minute, when the rate 
rises again to 300 tuples/sec. From the 50th to the 60th minute the memory load follows 
again a rising route and we expect it to stabilize at almost 500MB. We should note that 
during the system scaling, data migration is avoided since the system discards the 
expired tuples and controls the storage distribution of the new incoming tuples to 
achieve equivalent load balancing among the Joiners. 
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6. CONCLUSION 

In this report we have adopted the main ideas found in [3], which presented a model for 
joining streaming data, namely join-biclique. Join-biclique logically models the 
processing units as a complete bipartite graph for stream joins with no data replication, 
flexible partition scheme and processing units independence designs. On the basis of 
join-biclique, we have designed and developed an alternative implementation of the 
distributed online stream join processing system using modern technologies and design 
principles, such as software containers and event-driven microservices. Such 
technologies are best fitted for cloud operation. For our implementation we have used 
cutting-edge tools, such as Spring Boot, Spring Cloud Stream, Docker containers and 
Kubernetes. We deployed our system on Google Container Engine (GKE) --an 
IaaS/PaaS cloud provider-- and demonstrated the feature of dynamic scaling. For our 
dynamic scaling experiments we have used the Horizontal Pod Autoscaler (HPA) of 
Kubernetes and two different resource metrics, namely CPU and memory. We showed 
(at small scale) that the system is able to dynamically adjust the processing units based 
on variations of the input stream rate. 
 
6.1 Future Work 

Using the GKE free trial, we were able to create a small cluster of 8 VCPUs and 15 GB 
of RAM. As a result, our experiments were conducted in a very resource restricted 
environment at small scale. In the future, we expect to deploy our system in a larger 
cluster at a private or public cloud provider (such as OpenStack or AWS) and conduct 
our experiments at much bigger scale. We are also seeking to use an alternative 
message broker, such as Apache Kafka. Unlike RabbitMQ, Kafka is able to scale-out 
on-demand, thus giving us the opportunity to handle much larger input traffic than with 
RabbitMQ. 
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ABBREVIATIONS - ACRONYMS 

GKE  Google Container Engine  

IaaS  Infrastructure as a Service  

PaaS  Platform as a Service  

IoT  Internet of Things  

IoC  Inversion of Control  

HPA  Horizontal Pod Autoscaler  

AWS  Amazon Web Services  

DI  Dependency Injection  
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