

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΤΕΧΝΟΛΟΓΙΑ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Dynamic Scaling of Parallel Stream Joins on the Cloud

Εμμανουήλ Ιωάννη Αγγελογιαννόπουλος

Επιβλέπων: Αλέξης Δελής, Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

Μάιος 2017

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Dynamic Scaling of Parallel Stream Joins on the Cloud

Εμμανουήλ Ι. Αγγελογιαννόπουλος

Α.Μ.: Μ1368

ΕΠΙΒΛΕΠΩΝ: Αλέξης Δελής, Καθηγητής ΕΚΠΑ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Μέμα Ρουσσοπούλου, Αναπληρώτρια Καθηγήτρια

Μάιος 2017

ΠΕΡΙΛΗΨΗ

Οι μεγάλοι όγκοι δεδομένων που παράγονται από πολλές αναδυόμενες εφαρμογές και
συστήματα απαιτούν την πολύπλοκη επεξεργασία ροών δεδομένων υψηλής ταχύτητας
σε πραγματικό χρόνο. Η σύζευξη δεδομένων ροών είναι η αντίστοιχη διαδικασία
σύζευξης των συμβατικών βάσεων δεδομένων και συγκρίνει τις πλειάδες που
προέρχονται από διαφορετικές σχεσιακές ροές. Ο συγκεκριμένος operator
χαρακτηρίζεται ως υπολογιστικά ακριβός και ταυτόχρονα εξαιρετικά σημαντικός για την
ανάλυση δεδομένων σε πραγματικό χρόνο. Η αποτελεσματική και κλιμακούμενη
επεξεργασία των συζεύξεων δεδομένων ροών μπορεί να γίνει εφικτή από τη
διαθεσιμότητα ενός μεγάλου αριθμού κόμβων επεξεργασίας σε ένα παράλληλο και
κατανεμημένο περιβάλλον. Επιπλέον, τα υπολογιστικά νέφη έχουν εξελιχθεί ως μια
ελκυστική πλατφόρμα για την επεξεργασία δεδομένων μεγάλης κλίμακας, κυρίως λόγω
της έννοιας της ελαστικότητας. Με τα υπολογιστικά νέφη δίνεται η δυνατότητα
εκμίσθωσης εικονικής υπολογιστικής υποδομής, η οποία μπορεί να χρησιμοποιηθεί για
όσο χρόνο χρειάζεται με δυναμικό τρόπο. Στη συγκεκριμένη εργασία υιοθετούμε τις
βασικές ιδέες και τα χαρακτηριστικά των Qian Lin et al. από το έργο τους "Scalable
Distributed Stream Join Processing". Η βασική ιδέα που παρουσιάζεται σε αυτό το έργο
είναι το μοντέλο join-biclique το οποίο οργανώνει τις μονάδες επεξεργασίας ενός
υπολογιστικού cluster ως έναν ολοκληρωμένο διμερές γράφο. Με βάση αυτή την ιδέα,
αναπτύξαμε και υλοποιήσαμε ένα σύνολο αλγορίθμων που σχεδιάστηκαν ως
microservices σε περιβάλλον software containers. Οι αλγόριθμοι εκτελούν την
επεξεργασία και σύζευξη ροών δεδομένων και μπορούν να κλιμακωθούν οριζόντια.
Πραγματοποιήσαμε τα πειράματά μας σε περιβάλλον υπολογιστικού νέφους στο
Google Container Engine χρησιμοποιώντας πλατφόρμα Kubernetes και Docker
containers.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κατανεμημένη Επεξεργασία Ροών Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: επεξεργασία ροών δεδομένων, κατανεμημένα συστήματα,

υπολογιστικό νέφος

ABSTRACT

The large and varying volumes of data generated by many emerging applications and
systems demand the sophisticated processing of high speed data streams in a real-time
fashion. Stream joins is the streaming counterpart of conventional database joins and
compares tuples coming from different streaming relations. This operator is
characterized as computationally expensive and also quite important for real-time
analytics. Efficient and scalable processing of stream joins may be enabled by the
availability of a large number of processing nodes in a parallel and distributed
environment. Furthermore, clouds have evolved as an appealing platform for large-
scale data processing mainly due to the concept of elasticity; virtual computing
infrastructure can be leased on demand and used for as much time as needed in a
dynamic manner. For this thesis project, we adopt the main ideas and features of Qian
Lin et al. in their paper “Scalable Distributed Stream Join Processing”. The basic idea
presented in that paper is the join-biclique model which organizes the processing units
of a cluster as a complete bipartite graph. Based on that idea, we developed and carried
out a set of algorithms designed as containerized microservices, which perform stream
join processing and can be scaled horizontally on demand. We performed our
experiments on Google Container Engine using Kubernetes orchestration platform and
Docker containers.

SUBJECT AREA: Distributed Stream Join Processing

KEYWORDS: online stream join processing, distributed systems, cloud computing,

containers

Στην οικογένεια μου.

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να ευχαριστώ τον καθηγητή κ. Αλέξη Δελή για την ευκαιρία που μου έδωσε να
ασχοληθώ με το συγκεκριμένο θέμα. Επίσης τον ευχαριστώ για την καθοδήγηση και τη
γενικότερη υποστήριξη καθ’όλη τη διάρκεια των σπουδών μου. Επιπλέον, θα ήθελα να
ευχαριστήσω τους συναδέλφους κ. Νίκο Φούντα και κ. Δημήτρη Παπαδημητρίου για τις
εποικοδομητικές συζητήσεις σε διάφορα τεχνικής φύσεως θέματα κατά τη διάρκεια της
εργασίας.

Επίσης, ευχαριστώ όλους τους φίλους και συναδέλφους για την υποστήριξή τους.
Ιδιαίτερες ευχαριστίες στη Δήμητρα για την ενθάρρυνση, υποστήριξη και ανοχή της σε
όλη τη διάρκεια της εργασίας. Τέλος, η συγκεκριμένη εργασία δεν θα ήταν εφικτή χωρίς
την έμπρακτη βοήθεια και υποστήριξη της οικογένειάς μου.

TABLE OF CONTENTS

FOREWORD ... 11

1. INTRODUCTION .. 12

1.1 The emergence of streaming .. 12

1.2 Stream Joins .. 12

1.3 Cloud computing ... 12

1.4 Goals of the project ... 13

1.5 Structure of thesis ... 13

2. BACKGROUND ... 15

2.1 Basic Concepts on Data Streams .. 15

2.2 Online Joins over Data Streams... 16

2.3 Related Work on Parallel Stream Joins ... 17

2.4 The join-biclique model ... 18

2.4.1 Comparison with Join-Matrix Model .. 20

3. ELASTIC-BICLIQUE SYSTEM ARCHITECTURE ... 22

3.1 System Design ... 22

3.1.1 Router .. 23

3.1.2 Joiner ... 23

3.1.3 RabbitMQ Broker .. 25

3.2 Dataflow Control .. 28

3.3 Tuple Ordering Protocol ... 29

4. SYSTEM IMPLEMENTATION ... 32

4.1 Spring Boot .. 32

4.2 Spring Cloud Stream ... 32

4.2.1 Main Concepts .. 33

4.3 Implementation Analysis .. 35

4.4 Docker containers.. 37

4.5 Kubernetes ... 38

4.6 Google Container Engine .. 39

5. DEPLOYMENT AND EXPERIMENTS ... 40

5.1 Setup and Deployment .. 40

5.2 Experiments ... 43

6. CONCLUSION ... 49

6.1 Future Work .. 49

ABBREVIATIONS - ACRONYMS ... 50

REFERENCES .. 51

LIST OF FIGURES

Figure 1: Windowed Join [10] .. 16

Figure 2: Complete Bipartite Graph ... 18

Figure 3: Stream Join Models [3] ... 20

Figure 4: Overall architecture of elastic-biclique .. 22

Figure 5: Chained in-memory index [3] .. 24

Figure 6: Message Flow in AMQ model ... 26

Figure 7: AMQP Layers [45] .. 27

Figure 8: Arrival order of tuples r and s. [3].. 29

Figure 9: Spring Cloud Stream abstractions [19] ... 33

Figure 10: Concept of Consumer Group [19] ... 34

Figure 11: Partitioning Concept [19] .. 35

Figure 12: RabbitMQ binder [19] ... 35

Figure 13: VM vs Containers ... 38

Figure 14: Cluster information ... 40

Figure 15: Cluster bootstrap .. 41

Figure 16: Kubernetes Services .. 41

Figure 17: Kubernetes Deployments ... 42

Figure 18: RabbitMQ idle queues .. 43

Figure 19: Horizontal Pod Autoscaler .. 43

Figure 20: Dynamic Scaling based on CPU utilization ... 45

Figure 21: Dynamic Scaling based on Memory Load .. 47

LIST OF TABLES

Table 1: Join-biclique symbols ... 19

FOREWORD

Submitted in part fulfillment of the requirements for the Master’s degree in Computer
System’s Technologies at the National and Kapodistrian University of Athens, May
2017.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 12

1. INTRODUCTION

1.1 The emergence of streaming

Today’s information processing systems face formidable challenges as they are
presented with new data at ever increasing rates. The widespread adoption of the
Internet and the world-wide emergence of large cyber-physical systems and
applications demands for near real-time processing of continuous data streams [1]. A
broad range of applications and other sources may produce data streams, such as
smart grids, enhanced medical systems, telemetry from Internet of Things (IoT) devices,
clickstreams, stock trading and fraud detection algorithms etc. It is increasingly
important to process and provide efficient real-time analytics for such applications and
systems. In this context, the streaming paradigm introduces new semantics and also
raises new operational challenges [2].

1.2 Stream Joins

In the streaming computing paradigm, graphs of stream operators are employed to
process the incoming data in an online fashion. The stream joins are among the most
important and expensive operators [6]. Compared to one-time joins in traditional
DBMS’s, continuous stream joins differ substantially in their semantics. They perform
comparisons between tuples coming from different logical data streams rather than
database relations. Since the size of the stream is potentially unbounded, the state of
the data is not known in advance, so responses depend on the set of stream tuples
available during join evaluation. Normally, streaming tuples are retained in main
memory and not stored on persistent disk and thus it is not feasible to remember the full
history of the rapidly accumulating stream elements due to resource limitations. To this
end, the most common approach to perform joins in the streaming context is to
introduce windows of data. Such constructs focus on the latest arriving data by
exploiting a sense of ordering between them, usually established by a unique timestamp
for each element [10].

Several parallelization techniques of stream joins have been proposed in the literature,
both shared memory and shared nothing approaches. Shared memory techniques allow
for parallel stream joins to scale-up within individual nodes, while shared nothing
techniques allow for scaling-out parallel stream joins in a multi-node cluster. As
emphasized by Gibbons in [8], scaling both out and up is crucial to efficiently address
the challenges in the Big Data context and improve performance by orders of
magnitude. In this thesis project, we seek to scale-out parallel stream joins into a
scalable cluster. The goal is to exploit the elasticity (auto-scaling) of a cloud
environment in order to deal with varying rates of the input streams. We adopt the join-
biclique stream join model as presented in [3].

1.3 Cloud computing

Cloud computing has been one of the most hyped trends of the last few years. Initially
introduced by Amazon [12], now cloud services are offered by numerous providers [13]
[14]. Cloud computing is a broad term that encompasses many different aspects of a
modern paradigm for enabling convenient, on-demand network access to a shared pool
of configurable computing resources (e.g. networks, servers, storage, applications and
services). These resources can be rapidly provisioned and released with minimal
management effort and provider interaction. The cloud computing model promotes the
availability, rapid elasticity and is composed of three service models: SaaS (software as
a service), PaaS (platform as a service) and IaaS (infrastructure as a service) and four

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 13

deployment models: private cloud, public cloud, community cloud and hybrid cloud [15].
IaaS describes a service that provides access to computing resources in a virtualized
environment (e.g., computation, storage, and network) on demand. The administration
of the system lies mostly with the user. PaaS takes some of the administration away
from the user and allows some (limited) programming of the resources. An example for
this is Google’s App Engine. Finally, and probably most exposed to the general public
are SaaS applications. These are offerings such as Slack and Microsoft Office 365
applications. They offer little to no customization but the convenience of storing data off-
site. We are interested in applying IaaS services to the computation of stream joins.

1.4 Goals of the project

In this thesis project we seek to address the problem of the distributed stream join
processing in a cloud environment. In particular, we adopt the main ideas presented in
the paper “Scalable Distributed Stream Join Processing” by Qian Lin et al. appeared on
the 2015 ACM SIGMOD International Conference on Management of Data [3]. We are
interested in providing an alternative implementation of the ideas presented using:

 Cutting-edge technologies and design principles in software engineering, such as
event-driven micro-services and software containers.

 An elastic infrastructure comprising the processing units of the stream join engine,
deployed on an IaaS cloud provider.

These are the basic goals of our project. We want to create a multi-node cluster with
elastic characteristics, which is able to scale in and out on demand, depending on the
stream workload traffic. The auto-scaling decisions should be set by the operator of the
cloud application depending on several performance criteria of the processing units
(e.g. CPU utilization, requests per second etc.).

The main ideas presented in the aforementioned paper include the join-biclique model,
which organizes the stream join processing units of the cluster as a complete bipartite
graph or biclique. The authors claim that this model is scalable and elastic with respect
to the network size and efficient in terms of resource requirements. Their original
attempt to implement a join engine based on that model is termed BiStream [16].
BiStream is based on Apache Storm; a distributed real-time computation framework
[17]. Unfortunately, the current version of Storm does not support auto-scaling of
processing units inside a topology. Thus, we opted for an implementation of the shared-
nothing stream join model on an IaaS cloud provider, which natively offers dynamic
scaling as a service. In order to achieve our goals, we developed a set of algorithms
based on the original ideas of join-biclique and used state-of-the-art tools to achieve our
goals. Such tools include Spring Boot [18], Spring Cloud Stream [19], Docker containers
[20] and Kubernetes [21]. We then deployed the algorithms on Google Cloud platform;
an IaaS cloud offered by Google Inc.

1.5 Structure of thesis

The rest of the thesis is structured as follows: Chapter 2 provides some background on
the problem of streaming joins and discusses related work. Furthermore, it introduces
the idea and model of join-biclique. It also presents a basic comparison with a similar
architecture for shared-nothing stream joins. Chapter 3 presents the chosen
architecture to implement this stream join model and describes our design

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 14

considerations. Chapter 4 describes the implementation of our design and the
technology tools that we used. Chapter 5 presents our deployment, experiments and
results and Chapter 6 concludes the thesis.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 15

2. BACKGROUND

This chapter provides background information on the technologies and concepts
relevant to this thesis. Section 2.1 introduces important definitions and basic concepts
on data streams. Section 2.2 describes the online stream join operator in detail. Section
2.3 provides a relevant literature review on parallel stream joins. Section 2.4 introduces
the join-biclique model for joining data streams in a distributed environment and
provides a basic comparison with the join-matrix model.

2.1 Basic Concepts on Data Streams

We are following the description and semantics of data streams commonly referred in
related literature [27] [28] [29]. Items of a data stream are often represented as
relational tuples. Patroumpas et al. in [10] provide the following definitions relevant to
data streams:

Definition 1 (Tuple Schema): A tuple schema 𝛦 of streaming items is represented as a
set of finite elements 〈𝑒1𝑒2, , … , 𝑒𝑁〉 . Each element 𝑒𝑖 is termed attribute and its values
may originate from a specific data type. Every tuple is an instance of the schema and is
characterized by the values of its attributes.

Normally, a timestamp value may be attached to every streaming tuple to the
corresponding attribute as a way of determining a natural ordering between the items
which flow into a stream processing system. Other ways of defining the order among
tuples may be specified, e.g. a sequence number attribute. Both flavors of ordering may
be covered from the following definition:

Definition 2 (Time Domain T): A time domain 𝛵 is defined as an infinite set of discrete

ordered time constants 𝑡 ∈ 𝑇. A time interval [𝑡1, 𝑡2] ∈ 𝑇 may be specified as a set of all

distinct time instants 𝑡 ∈ 𝑇 for which the following comparison holds: 𝑡1 ≤ 𝑡 ≤ 𝑡2.

In similar spirit, we can now define the concept of a data stream:

Definition 3 (Data Stream): A data stream may be defined as a mapping 𝑆 ∶ 𝑇 → 2𝑅,
where at each instance 𝑡 ∈ 𝑇, the mapping returns a finite subset from the set 𝑅 of

tuples with common schema 𝐸.

A data stream can also be described as an ordered sequence of elements evolving in
time. Its current state may include all tuples accumulated so far. Furthermore, an
instance of the stream at any specific time instant is the finite set of tuples with that
distinct timestamp value. In general, all of the above definitions can be generalized for
multiple streams of data.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 16

2.2 Online Joins over Data Streams

The online stream join operator applies a specified predicate among tuples coming from
two different stream relations. In most cases and due to the unbounded nature of data
streams, this kind of operator is applied over portions of the most recent tuples, referred
to as windows. Nevertheless, this is not necessarily true for several systems, which also
support this operator over full or partial-historical states of the stream [3] [22].

In general, different types of windows [10] may be specified over data streams. The
most common flavor of windows is the time-based sliding window. This kind of window
is defined by means of time units. A time-based window of WS time units contains all

tuples {𝑡|𝑡 ′. 𝑡𝑠 − 𝑡. 𝑡𝑠 ≤ 𝑊𝑆}, where 𝑡′ is the latest received tuple in the respective

stream. In this respect, we may provide a formal definition of the online time-based
windowed join over two streaming relations [10]:

Definition 4 (Online Windowed Join): The online windowed join is a binary operator
that may be applied between two streaming relations. The windows for each relation

may be of the same or different types and scopes. At each time instant 𝑡 ∈ 𝑇, the
windowed join between two streams returns the concatenation of pairs of tuples which
match a predicate condition, taken from either window state.

In particular, we intend to join tuples from two logical stream 𝑆1 and 𝑆2. Whenever the
predicate 𝑃(𝑡𝑠1, 𝑡𝑠2) holds for tuples 𝑡𝑠1 ∈ 𝑆1 and 𝑡𝑠2 ∈ 𝑆2, an output tuple 𝑡𝑜 is produced
combining 𝑡𝑠1 and 𝑡𝑠2 and appropriately setting the timestamp. The predicate condition
involves attributes from both streams (e.g. 𝑆1. 𝐴𝑖 = 𝑆2. 𝐴𝑗). Additionally, several policies

may be adopted for the timestamp of the newly created output tuple. For example, the
most recent timestamp value can be chosen, as a way to preserve ordering in the
derived stream. An alternative solution would be to attach the minimum between the two
original timestamp values, with the interpretation that the output tuple should expire as
soon as one of the original tuple expires.

 Figure 1: Windowed Join [10]

Figure 1 depicts an online join operation between two data streaming relations 𝑆1 and 𝑆2
with different windows specified over each of them. Each incoming tuple in a given
relation is tested for possible matching of the predicate condition with every tuple in the
opposite relation in the designated window. Arrows show potential matches to be
returned [10].

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 17

2.3 Related Work on Parallel Stream Joins

Much research effort has been conducted on parallel stream join processing. These
works can be classified into two main categories as either shared-nothing or shared-
memory models/techniques. Regarding shared-memory models, they focus on joining
infinite data streams in the context of multi-core and main-memory environments. To
name a few shared-memory algorithms, Handshake-Join [6] is one of the earliest
proposals. This model organizes the processing units (threads or processes) as a
doubly-linked list and the incoming streaming relations are directed into the system from
opposite sides. The join predicate is evaluated once the relation tuples meet in some
processing unit. Intuitively, this model reminds the way that football players from
opposite teams exchange handshakes prior to game beginning. However, this model
may be sensitive regarding message loss and node failure when moved to the
distributed environment. The Hells-join has also been proposed recently [33]. This
operator exploits novel properties of state of the art processors. CellJoin [7] algorithm
parallelizes stream joins on multi-core Cell processors. Its effectiveness relies heavily
on the parallelization techniques of the underlying hardware. One of the latest proposals
for shared-memory systems is ScaleJoin [1]. Its architecture relies on the underlying
ScaleGate structure which stores the streaming data in a non-blocking concurrent skip-
list. This technique demonstrates lower latency, better throughput and linear scalability
with respect to the underlying hardware threads when compared with Hand-Shake Join.
This kind of operator is not a good fit for a transition to an elastic distributed
environment, because of the strong data dependencies among its processing units. A
great deal of research work has also been made on shared-nothing parallel joins in a
distributed environment with a cluster of commodity machines. For example, Photon
[11] is designed for joining data streams of web search queries (click-stream analytics)
in Google. This system supports only equi-joins. Chakraborty and Singh [4] present a
technique for parallelizing windowed stream joins over a shared-nothing cluster with
controversial results. D-Streams [31] decomposes continuous streams into discrete
batches and processes them on Apache Spark [30]. This kind join processing may only
provide approximate results, as a few target tuple pairs in different batches may miss
each other for join operation even if they match the join predicate. TimeStream [34] is
another paradigm of distributed stream join processing system. Similar to our approach,
this system offloads the computation to a cloud provider. It exploits the dependencies of
tuples to perform the joins. However, TimeStream incurs high communication overhead
to maintain the dependencies or synchronize the distributed join states. In similar spirit,
Elseidy et al [22] present an adaptive operator for shared-nothing parallel joins, but in a
data flow setting that does not consider sliding windows (our focus in this thesis).
Furthermore, the presented operator adopts the join-matrix stream join model [32]. This
model was presented over a decade ago, but has been recently revisited for some
systems to support distributed join-processing. It organizes the processing units as a
matrix, with each cell holding partitions of both relations. However, this model suffers
from high memory consumption, because it presents high replication requirements.
Each incoming tuple has to be replicated among multiple processing units. Additionally,
scaling operations are not trivial to implement because of the difficult maintenance of
the matrix structure. The join-biclique model has been introduced by Qian Lin et al [3] in
order to overcome both deficiencies and for that purpose we opted to adopt this model
for our project.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 18

2.4 The join-biclique model

The join-biclique stream join model was introduced by Qian Lin et al in the 2015 ACM
SIGMOD International Conference on Management of Data [3]. The key design goals of
join-biclique are:

 The facilitation of scalability in multi-node environments.

 The mitigation of memory requirements in the overall distributed streaming join
system.

Following the above requirements, join-biclique is modeled after the complete bipartite
graph or biclique. Thus, we initially present the formal definition of a biclique from graph
theory [35]:

Definition 5 (Complete bipartite graph): In the mathematical field of graph theory, a
complete bipartite graph or biclique is a special flavor of bipartite graph where every
vertex of the first set is connected to every vertex of the second set.

 Figure 2: Complete Bipartite Graph

Figure 2 depicts a complete bipartite graph or biclique. It is a graph whose vertices are

partitioned into two distinct subsets 𝑽𝟏, 𝑽𝟐, such that no edge has both endpoints
belonging in the same subset. Every possible edge that could connect two vertices in

different subsets is part of the graph. That is, it is a bipartite graph (𝑽𝟏, 𝑽𝟐, 𝑬) for which
the following holds: For every two vertices 𝒗𝟏 ∈ 𝑽𝟏 and 𝒗𝟐 ∈ 𝑽𝟐, there exists a distinct
edge 𝒗𝟏𝒗𝟐 in 𝑬. A complete bipartite graph with partitions of size |𝑽𝟏|=m and |𝑽𝟐|=n, is

termed 𝑲𝒎,𝒏. Every two graphs with the same notation are isomorphic.

The join-biclique model is based on the biclique graph for joining data streams. In order
to proceed with the formal definition of the model, we should firstly present the table
(Table 1) that lists the main symbols along with the corresponding descriptions used in
the definition and throughout the rest of this report. Afterwards, the model definition
follows.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 19

 Table 1: Join-biclique symbols

Definition 6 (Join-Biclique Model): Given a cluster of n+m processing units, the join-
biclique model organizes them as a complete bipartite graph. Supposing there are two
streaming relations R and S, the processing units of relation R belong exclusively to the
first subset of the bipartite graph for storage and similarly the processing units of
relation S belong to the second subset of the graph. That is, each subset of the graph
corresponds to one of the relations for storage. Particularly, tuples from relation R are
partitioned and stored into one subset of the graph with n units and without replication
and tuples from relation S are similarly partitioned and stored into the opposite subset of
the graph with m units. The complete set of partitions that belong to R can be defined as

the universal set of the n processing units holding the relation’s data: 𝑮𝑹 =
{𝑹𝟏,𝑹𝟐, … , 𝑹𝒏}. The same holds for S: 𝑮𝑺 = {𝑺𝟏,𝑺𝟐, … , 𝑺𝒎}. In the biclique graph, for every

two processing units (vertices) 𝑹𝒊 and 𝑺𝒋, there exists a distinct edge 𝒓𝒊𝒔𝒋, where 𝒊 ∈

{𝟏, 𝟐, … , 𝒏} and 𝒋 ∈ {𝟏, 𝟐, … , 𝒎}. Every distinct edge represents a potential join result
produced by 𝑹𝒊 ⋈ 𝑺𝒋.

Each edge of the graph in the join-biclique model represents the join operation between
two units of the opposite relations. This model is capable of generating the Cartesian
product of the joinable tuples and thus it supports any kind of join predicate. By and
large, the basic dataflow setting of the model is the following: Upon receiving an
incoming tuple, join-biclique always stores it on exactly one processing unit without data
replicas, and produces the output by sending the tuple to all the machines that (may)
contain joinable tuples from the opposite relation. One property of the model is that all
processing units are independent of each other. This property is very important for our
system because it also allows us to create a collection of small isolated services (the
processing units), each of which owns their data and is independently isolated, scalable

𝐒𝐲𝐦𝐛𝐨𝐥 𝐃𝐞𝐬𝐜𝐫𝐢𝐩𝐭𝐢𝐨𝐧

𝑅, 𝑆 Streaming Relations

𝑟, 𝑠 Streaming Tuple

𝑅𝑖, 𝑆𝑗 i − th and j − th partition of 𝑅 𝑎𝑛𝑑 𝑆

𝐺𝑅 , 𝐺𝑆 Complete set of partitions of R and S

𝐺𝑅,𝑘 , 𝐺𝑆,𝑙 Subgroup of partitions of R and S

𝑚, 𝑛 Number of partitions of R and S

𝑑, 𝑒 Number of subgroups of R and S

𝑊𝑠 Size of the sliding window

𝑃 Archive period of the chained in − memory index

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 20

and resilient to failure. Thus, we can easily define a microservices-based architecture
from this kind of model, which will be flexible, scalable and elastic [5]. A typical
deployment may not necessarily operate in a distributed setting. That is, one physical
machine may host several processing units (services) and thus the relations R and S
may be only logically separated.

Figure 3(b) presents a possible join-biclique model organization. The relation 𝑅 is split

into two (n = 2) partitions (𝑅1, 𝑅2) and relation 𝑆 is split into three (m = 3) partitions
(𝑆1, 𝑆2, 𝑆3). The result of 𝑅 ⋈ S may be obtained if we join every 𝑅𝑖 ⋈ 𝑆𝑗 with 𝑅𝑖 being the

𝑖 − 𝑡ℎ partition of 𝑅 and 𝑆𝑗 being the 𝑗 − 𝑡ℎ of 𝑆, where 𝑖 ∈ {1,2, … , 𝑛} and 𝑗 ∈ {1,2, … , 𝑚}.

2.4.1 Comparison with Join-Matrix Model

As already mentioned in section 2.3, the join-matrix model [32] has been recently
revisited [22] as an alternative way of organizing the processing units of a distributed
join processing system. In particular, this model organizes the units as a matrix, with
each axis corresponding to one of the two relations. This is the case for the 2-way joins
that we are examining in this project. In a scenario with multi-way joins, the matrix may
be represented as a Hypercube [23]. The join-matrix scheme distributes the incoming
tuples on the axes of the originating relation and replicates on the other axes. For

example, when 𝑟1 𝜖 𝑅 arrives in the system, it may be directed to one partition of 𝑅
(e.g. 𝑅1). This partition may consist of several processing units and the incoming tuple
will be replicated to all of them. In the meantime, it is joined with every partition of 𝑆
stored in these units.

 Figure 3: Stream Join Models [3]

Figure 3(a) depicts how the join-matrix model is organized. This model is able to handle
2-way stream theta-joins in a distributed, parallel and decentralized manner. However, it
is not amenable to scaling because of matrix dependencies and also suffers from high
memory consumption because of the replication requirements. To this end, join-biclique
model was introduced by Qian-Lin et al. in order to address both issues. However, such
advantages may pose specific shortcomings under certain circumstances. For example,
join-biclique poses higher network communication cost than join-matrix when using
random partitioning. If we compare the two models assuming that the relations are of

equal sizes, each relation in join-biclique uses
𝑝

2
 processing units. On the other hand,

the join-matrix model is represented by a √𝑝 × √𝑝 matrix. On the former model, each

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 21

tuple has to be sent to
𝑝

2
 processing units for the joining operation, while on the latter

model each tuple is sent only to √𝑝 processing units.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 22

3. ELASTIC-BICLIQUE SYSTEM ARCHITECTURE

We designed and developed an alternative implementation of a distributed stream join
system based on join-biclique model. Our system is able to scale dynamically on-
demand and is built using novel streaming technologies and tools, such as RabbitMQ
and the Spring Cloud Stream framework [37]. We are focusing on windowed-based
stream joins and specifically time-based sliding windows [10], as in many streaming
scenarios [1] [38] [39].

3.1 System Design

The elastic-biclique system is built using a microservices-based architecture; it is a fully-
fledged distributed system, which comprises from a collection of small, isolated
services, each of which holds a specific role in the environment of operation. Each
service owns its data and is independently isolated from other services as well as
scalable and resilient to failures. Different types of services integrate with other types to
form a flexible and cohesive distributed system.

 Figure 4: Overall architecture of elastic-biclique

Figure 4 presents a high-level overview of the various services and systems involved
along with the interconnections between them. The main functional components of
elastic-biclique consist of the router and joiner microservices along with the RabbitMQ
message broker [41]. We adopted a message-driven microservices architecture. That
is, the microservices rely on asynchronous message passing for inter-communication.
This kind of communication is necessary in order to decouple them, and their
communication flow both in:

 Time: to better facilitate concurrency

 Space: to allow distribution and mobility

Without this decoupling it is impossible to reach the level of compartmentalization and
containment needed for isolation and resilience [5]; properties of great importance for
the elastic-biclique system. The RabbitMQ message broker was employed to implement
this kind of asynchronous intercommunication among the microservices. In summary,
the main services involved in the architecture are the following:

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 23

 stream-service: This service acts as a stream source adapter which emits
streaming relations into the system.

 router-service: This service acts as a dispatcher, which ingests incoming tuples
and routes them to corresponding services.

 joiner-service: This service consists of all the processing units. It is responsible
for join-processing.

 message-broker: This service is responsible for ingesting and retransmitting
streaming tuples to the microservices.

Our system is implemented along the lines of the join-biclique model but tries to reduce
the inter-unit connectivity among its services compared to the original model. The same
idea is implemented by Qian Lin et al. for their system BiStream. Intuitively, each
processing unit in the join-biclique model needs to connect with every unit in the
opposite relation. Fortunately, this kind of inter-communication among the services isn’t
necessary if we separate data routing and data joining procedures between different
services. That is, each joiner service (from each relation) only communicates with the
router service to receive the data to either store or join without directly communicating

with each other. More specifically, imagine an incoming tuple 𝑟 𝜖 𝑅 from an external
source arriving at the system. Initially, it enters a router service which directs it to one of

the services 𝑅𝑖 for storage (in the respective time-based sliding window) and at the
same time is sent to all the units of 𝑆 for join processing. After the join processing, 𝑟 can
be discarded from all the units in 𝑆.

3.1.1 Router

The router service is designed to ingest the incoming tuples from the input streaming
relations and direct them to the corresponding joiner units for further processing. Except
from the ingestion of tuples and routing decision tasks, the router is also responsible for
maintaining statistics related to input data, such as rate of events per second. The
message broker is involved both for ingesting the input tuples and directing them back.
Different channels, exchanges and queues inside the broker are used to achieve the
above functionality. More details about the specific implementation of input/output
channels within the broker may be found in Chapter 4.

3.1.2 Joiner

The joiner service ingests the incoming tuples from the router. It comprises all the
processing units of the distributed join processing system. The joiner services are
separated into the two main subsets of the bipartite graph and they can be viewed as

parallel partitions of the two streaming relations (𝑅, 𝑆). These services serve two main
purposes which translate into two different execution branches. The first branch is
responsible for data storage (of the tuples which are of the same type of relation as the
service and belong to the current time-based sliding window) and the other for join
processing of tuples belonging to the opposite relation. The join processing involves the
join predicate comparison and the stale tuple discarding from the time-based sliding

window. To put it into perspective, imagine a tuple 𝑟 ∈ 𝑅 arriving at its corresponding
joiner service 𝑅𝑖 ∈ 𝐺𝑅 for storage. It will be added in the current time-based sliding

window. If a tuple 𝑠 ∈ 𝑆 arrives in the same 𝑅𝑖 unit, it proceeds with a pairwise

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 24

comparison of the join predicate with all the tuples stored in the designated time-based
sliding window. Furthermore, the invalidation of stale tuples from the window should be
performed. The steps involved in this procedure will be described below. We should
also note that the data discarding operation is important for releasing memory. This
process is implemented following the theorem from [3]:

Theorem 1: The stored tuples 𝑟 ∈ 𝑅𝑖 can be safely removed from the current time-

based sliding window, when 𝑅𝑖 receives an incoming tuple 𝑠 ∈ 𝑆, such that 𝑠. 𝑡𝑠 −
𝑟. 𝑡𝑠 > 𝑊𝑠. In similar spirit, 𝑠 ∈ 𝑆 can be discarded from once 𝑆𝑗 receives one tuple such

that 𝑟. 𝑡𝑠 − 𝑠. 𝑡𝑠 > 𝑊𝑠.

Refer [3] for the corresponding proof of the above theorem. We also need to support
different in-memory indices, in order to index and efficiently join process the tuples from
both relations based on join predicate. We use a HashMap for equi-join and a
BinarySearchTree for non-equi-join predicates. As the authors in [3] point out, it is not
efficient to organize the entire streaming data with one single index, as it will incur high
overhead during the stale tuple discarding operation. In order to overcome this kind of
overhead, we adopt their idea in our implementation, named chained in-memory index.
Figure 5 depicts a schematic structure of this model.

 Figure 5: Chained in-memory index [3]

The main idea of the chained in-memory index model is to partition the streaming tuples
based on the discrete time intervals and construct a sub-index per interval. Each sub-
index is associated with the minimum and maximum timestamps of the tuples that it

holds. This time interval is named the archive period 𝑃. The sub-indices are chained
together as a linked-list ordered by the construction time of each index. The stale tuple
discarding operation can be now performed in the context of the sub-index level rather
than the tuple level and thus we reduce the overhead of the operation, since the valid
sub-indices are not affected when the obsolete sub-indices are discarded. In general,
the following basic operations are performed by the joiner services with respect to the
time-based sliding window constraint and the chained in-memory index model:

 Data Indexing: When an input tuple arrives at a joiner for storage, it will be first
added into the active sub-index and update the min/max timestamps. Next, it will
calculate the difference between min and max timestamps and if this value

exceeds the designated archive period 𝑃, then the current active sub-index will
become inactive and archived into the chain and a new empty active sub-index will
be created. Otherwise, the current active sub-index will remain active.

 Data Discarding: An inactive sub-index may become expired and removed from
memory by dereferencing it. An inactive sub-index becomes expired when a tuple
reaches the joiner service and belongs to the opposite relation. According to

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 25

Theorem 1, if the difference between the timestamp of current tuple and the

maximum timestamp of the sub-index in question is larger than 𝑊𝑠, then the sub-
index will be expired. Thus, we improve efficiency by avoiding the pairwise
comparison between every tuple inside each sub-index.

 Join Processing: After marking the expired sub-indices, an incoming tuple from
the opposite relation needs to join with all the tuples in the remaining sub-indices
(both the current active and archived). A pairwise window comparison is performed
with all tuples belonging in these sub-indices.

3.1.3 RabbitMQ Broker

RabbitMQ is a complete open-source broker implementation of the Advanced Message
Queuing Protocol (AMQP) [42]. It started as a joint project of LShift and CohesiveFT in
2007. It is written in the Erlang programming language and is built using the Open
Telecom Platform (OTP); Erlang’s framework for clustering and failover [43]. In
particular, RabbitMQ is implemented as an extra AMQP layer on top of OTP using
Erlang, thus benefiting from the robustness, reliability and flexibility of a proven platform.
Since 2013, RabbitMQ is part of Pivotal Software. Among the key benefits of RabbitMQ
are the following:

 High reliability

 High availability

 Scalability

 Good throughput and latency performance

 Extensive management and monitoring control

 Debugging facilities

 Implementations of tooling and clients in various programming languages (e.g.
Java, Python etc)

3.1.3.1 AMQP Protocol

In this subsection, we will briefly present some of the basic functionality of the AMQP
protocol as defined in the specification manual [45]. AMQP was initially presented in
2003 by John O'Hara at JPMorgan Chase in London, UK [44]. It is an application layer
protocol (on top of a reliable transport layer protocol e.g. TCP) for message-oriented
middleware. The latter entails software or hardware infrastructure which supports
sending and receiving messages between distributed systems. Particularly, AMQP
creates full functional interoperability between clients and messaging middleware
servers (also termed “brokers”). AMQP provides flow controlled, message-oriented
communication with message-delivery guarantees, along with encryption and
authentication. Both the networking protocol and the server-side semantics are
sufficiently defined through:

 The Advanced Message Queuing Protocol Model (AMQ model), which defines a
set of components that direct and store the messages within the broker, plus a set
of rules for wiring these components together.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 26

 A wire-level protocol (AMQP) which enables clients to directly interact with the
broker. A wire-level protocol refers to a way of moving data from point to point in a
network.

Regarding the AMQ model, it specifies the following main types of components, which
are interconnected in various ways inside a broker service:

 Exchange: This is the main entry point inside the broker from the outside world. It
receives messages from producer applications and routes them to different
messages queues based on prearranged criteria, such as message contents or
properties. The model defines two different types of exchanges:

- Direct: It routes based on a routing key

- Topic: It routes on a routing pattern

 Message queue: This is where incoming messages are stored until one or many
consumer application(s) processes them.

 Binding: This abstraction defines the relationship between a message queue and
an exchange and provides the message routing criteria to different queues.

Figure 6: Message Flow in AMQ model

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 27

Figure 7 depicts a complete message flow in the AMQ model which entails all the
functional components. A typical flow would be the following:

1. The producer application publishes a message to an exchange.

2. The exchange receives the message and is now responsible for the routing of
the message. The exchange takes different types of message attributes into
account, such as routing key or routing pattern.

3. Bindings have to be created from the exchange to queues. In this case we see
two bindings to two different queues from the exchange. The Exchange routes
the message in to the queues depending on message attributes.

4. The messages stay in the queue until they are handled by a consumer.

5. The consumer consumes/processes the message.

Regarding, the wire-level (AMQP) protocol, it is characterized by the following features:
(i) multi-channel, (ii) asynchronous, (iii) secure, (iv) portable and (v) efficient. Figure 6
depicts the two layers in which AMQP is split.

Figure 7: AMQP Layers [45]

The functional layer uses a set of different commands, which are grouped into logical
classes of functionality. These commands perform useful work on behalf of the
application. The transport layer is responsible for the bidirectional transfer of these
methods from the application to the broker (and backwards) [45]. It handles framing,
content encoding, heart-beating, error handling, data representation and channel
multiplexing.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 28

3.2 Dataflow Control

Our main purpose of controlling the dataflow is to balance the load among the different
services of the system and at the same time the efficient join processing of the two data
streams. Tuples from both streams are initially entering the system in the RabbitMQ
broker, where they are direct through a dedicated topic exchange. A single message
queue is bound to that exchange and receives all the incoming tuples. A pool of router
services (consumers) reads the tuples and each tuple goes to one of them (randomly).
In messaging systems, this kind of model is usually termed queuing model. The
strength of this model is that it allows the system to divide up the processing of data
over multiple consumer instances and thus enable effective load balancing. This fact
also lets us scale our processing (related to the router services). For implementation
details of the above strategy, please refer to Chapter 4.

Once, a tuple enters a router service it is segregated into two different streams: the
store stream and the join stream. The store stream routes each tuple to a join service
for storage and similarly the join stream routes each tuple to the proper join services for
join processing. We implemented different routing strategies for these two streams
based on join selectivity.

For high-selectivity predicates that involve anything but equality-joins, a random routing
strategy is adopted. In particular, non-equi-join (high-selectivity) predicates may
generate a large number of results over most of the join processing elements. A random
routing strategy should be preferred for this kind of predicates, because it ensures equal
load balancing among the processing units of a relation and protects from load
imbalance when the data is skew. For example, in a non-equi-join predicate scenario,

let 𝑟 ∈ 𝑅 entering a router service. It is randomly routed to one unit in 𝑅 for storage
without taking into account the contents of 𝑟 via the store stream. In addition, 𝑟 is sent to

all units in 𝑆 for join processing via the join stream. The opposite is true for a tuple 𝑠 ∈ 𝑆.
The store and join streams again involve the RabbitMQ message broker. For the store
stream, a topic exchange with a single message queue is created. All the joiner services
from a single relation are competing for the tuples. This technique ensures load-
balancing among the units of the relation in a round robin fashion. It is implemented in
the same way that was described in the previous paragraph for both streaming relations
that initially enter the system and consumed by the router services. More
implementation details should be found in Chapter 4. For the join stream, a dedicated
topic exchange is created and then a number of queues is bound to that exchange.
Each queue corresponds to a joiner service from a relation, from which the service
consumes the tuples. In this way, we can achieve that all units in the target relation
receive the tuples in the join stream as required from the random routing strategy. This
model for distributing the join stream reminds us of the publish-subscribe model as each
tuple is broadcast to every unit in the relation.

However, the random routing strategy poses high network communication cost along
with extra needless processing cost, because each tuple from the opposite relation has
to be sent to all the units in the current relation for join processing. For low-selectivity
joins such as equi-joins, we can alleviate these costs and achieve more efficient join
processing by implementing a hash-partitioning routing strategy. In particular, a hash-
partitioning routing strategy, routes the tuples based on the hash value of the join
attribute and targets them into a specific unit. Tuples with the same hash value on the
join attribute end into the same unit. This technique helps us to perform efficient join
processing by guaranteeing data locality. We can implement this strategy by hashing of
the join attribute and enforcing the relevant topic exchanges to route tuples to specific

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 29

queues (that match the hash value) for both store and join streams. Implementation
details of this strategy should be found in Chapter 4.

3.3 Tuple Ordering Protocol

We should implement a protocol that ensures the reliability of join results at the level of
the join processing services. Faulty join results may arise if tuples arrive out-of-order
from the store and join streams. This kind of disorder in data streams may arise from
many sources, such as stream items being routed by different paths in a network, or
combining streams that are out of synch [47]. We follow a protocol design along the
lines of the BiStream system as presented in [3].

Before presenting the protocol semantics we should identify the possible scenarios that
may produce error-prone join results. Figure 7 presents all the possible orders that two

tuples 𝑟 and 𝑠 may reach the join processing services 𝑆𝑗 and 𝑅𝑖.

Figure 8: Arrival order of tuples r and s. [3]

In Figure 8(a) the 𝑟 tuple is stored in 𝑅𝑖 before the 𝑠 tuple arrives in the same service for

join processing. Then the 𝑅𝑖 produces a single join result. At the same time, the 𝑟 tuple
arrives in 𝑆𝑗 for join processing earlier than the 𝑠 tuple (for storage) and thus is

discarded and no join result is produced. This case produces a single correct join result

between 𝑟 and 𝑠, because the result is produced exactly once in 𝑅𝑖. Figure 8(b) depicts
a symmetric scenario as in 8(a), where a single join result is produced. Figures 8(c) and
8(d) present faulty scenarios. In 8(c) we can observe that a missed join result occurs,

when no join result is produced in 𝑅𝑖, because 𝑠 arrives for join processing earlier than 𝑟
arrives for storage and thus is discarded. At the same time, no join result is produced in
𝑆𝑗, because 𝑟 arrives out-of-order for join processing earlier than 𝑠 arrives for storage. In

8(d), we can observe that a duplicate join result occurs due to out-of-order arrivals of

tuples. In particular, a join result is produced in 𝑅𝑖, when 𝑟 arrives for storage earlier
than 𝑠 arrives for join processing, thus producing a result. The same join result is
produced in 𝑆𝑗, when when 𝑟 arrives for join processing later than 𝑠 arrives for storage.

In order to avoid these two possible error cases, we should consider implementing a
protocol, which guarantees the join results by processing the tuples in consistent order

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 30

at the joiner service level. Qian Lin et al in [3] present two definitions of an order
consistent protocol along with a pairwise FIFO protocol, which may be the guide for a
possible implementation. This implementation should provide guarantees about
processing the tuples from the store and join streams in consistent order at the joiner
services. The definitions are presented as follows:

Definition 7 (Order-Consistent Protocol): Given a set of router services 𝑌 and a set of

join processing services 𝑈, each router service 𝑦𝑖 ∈ 𝑌 sends a set of tuples 𝑋𝑖 =
{𝑥𝑖1, … , 𝑥𝑖𝑘} as a stream. Each tuple is broadcast to a set of joiner services. A network
protocol is called order-consistent if and only if: There exists a global tuple sequence 𝑍=
{𝑥𝑧1, … , 𝑥𝑧𝑘}, where 𝑍 contains each tuple exactly once. For each unit 𝑢𝑗 ∈ 𝑈, it receives

all the tuples assigned to it (i.e., no loss in the network), and the sequence of tuples it

processes is a subsequence of the global tuple sequence 𝑍.

The above protocol is presented in [3] to ensure that the relative order for any two

joining tuples 𝑟 and 𝑠 only depends on a single global order and is consistent over all
services. The following pairwise FIFO protocol is similarly presented to guarantee that
for every pair of router and joiner services the in-between message passing and
processing is FIFO.

Definition 8 (Pairwise FIFO Protocol): Given a router service 𝑦 and a joiner service 𝑢,
𝑦 sends a set of tuples 𝑋 = {𝑥1, … , 𝑥𝑘 , … } to 𝑢 as a stream. A network protocol is called

pairwise FIFO if and only if: For any two tuples 𝑥𝑎 and 𝑥𝑏, if 𝑥𝑎 is sent by 𝑦 before 𝑥𝑏,

then 𝑥𝑎 is processed at 𝑢 before 𝑥𝑏.

The key idea presented with the above protocol is that every tuple holds a counter or id
that is incremented by one after every sent tuple by the router. The joiner only
processes those tuples with the expected id. When a tuple is delayed or lost, the
processing of the following tuples stops and should be continued only after receiving the
tuple with the expected id or perform some kind of synchronization action. Different
flavors of this protocol may be implemented.

The authors of [3] present an implementation of the order-consistent protocol based on
the pairwise FIFO protocol. We opted to follow this protocol for our implementation in
order to address the two faulty aforementioned scenarios of tuple disorder in the
streams. The protocol is implemented as follows: Each tuple receives a monotonically
increasing counter at each router service. This counter is incremented by one for every
tuple sent by the router. Each joiner service maintains and sorts the incoming tuples
based on the counter in question; the global sequence referenced in Definition 7 is
preserved on the order of the counter. Additionally, the joiner should be aware of the
appropriate timing to proceed with processing the currently maintained and sorted
tuples. The router should somehow signal the joiner that it should proceed with the
sorted tuples. A stream punctuation technique [47] is used to implement this kind of

intervention from the router to the joiner. A punctuation is a pattern 𝑝 inserted into the
data stream with the meaning that no data tuple 𝑡 matching 𝑝 will occur further on in the
stream. In our case, every router service emits a signal tuple with a counter to all the
joiner services periodically (e.g. every 20ms). Recall that message passing between
every router and joiner service is FIFO. Such a signal tuple indicates that all tuples
(from this router) with counter less than the signal counter have been received by the
joiners and thus the joiners should proceed with processing them. The joiners maintain
a priority queue for tuples coming from both the store and join streams and proceed with
processing the tuples that have smaller counter than the latest received signal counter.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 31

The latest counters from all the routers are stored in a table in each joiner service and
get update periodically. With this kind of protocol, we are able to guarantee proper
ordering of the sent tuples at the joiner services and thus ensure join results
completeness.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 32

4. SYSTEM IMPLEMENTATION

In this chapter, we are going to describe various aspects of the implementation of the
elastic-biclique system. As we already mentioned, this system is an alternative
implementation of the join-biclique model presented in [3]. We opted for an
implementation using the concept of message-driven microservices. Our development
was carried out in the Java programming language using the open-source Spring Boot
[18] and Spring Cloud Stream [19] frameworks.

4.1 Spring Boot

The Spring framework is a very popular Java-based framework for building web and
enterprise applications. It exists since around 2003 and its main abstractions are
dependency injection (DI) and inversion of control (IoC). Unlike many other frameworks,
which focus on only one area, Spring framework provides various modern features
addressing the modern business needs via its portfolio projects. At its very core, Spring
framework bases its functionality on the concept of beans; objects that form the
backbone of an application and are managed by the IoC component of Spring [18]. In
other words, a bean is an object that is instantiated, assembled, and otherwise
managed by a Spring IoC container. The framework itself provides the flexibility to
configure beans in multiple ways, e.g. XML, Annotations, and JavaConfig. With the
number of features increased the complexity also gets increased and configuring Spring
applications becomes tedious and error-prone. To this end, the Spring Boot project is
the next-generation attempt at easy Spring setup configuration. This project makes it
easy to create Spring-based stand-alone applications that one can easily deploy and
run with minimum effort on configuration aspects. The primary goals of this project as
stated in [18] are:

 Provide a radically faster and widely accessible getting started experience for all
Spring development.

 Be opinionated out of the box, but get out of the way quickly as requirements
start to diverge from the defaults.

 Provide a range of non-functional features that are common to large classes of
projects (e.g. embedded servers, security, metrics, health checks, externalized
configuration).

 Absolutely no code generation and no requirement for XML configuration.

While Spring Boot provides the foundation for creating DevOps friendly microservice
applications, other libraries in the Spring ecosystem help create Stream based
microservice applications. The most important of these is Spring Cloud Stream.

4.2 Spring Cloud Stream

Spring Cloud Stream builds on Spring Boot to create stand-alone Spring applications. In
particular, it is a framework for building message-driven microservice applications. It
also uses Spring Integration [48] to provide connectivity to message brokers [19]
(including RabbitMQ). Other features and concepts of this framework include:

 Opinionated configuration of several middleware messaging brokers (Kafka,
RabbitMQ, Redis).

 Persistent publish-subscribe concepts.
 Consumer groups

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 33

 Partitions

From this point-of-view, it seems like the perfect framework for our system. It allows us
to easily build stream-based microservice applications without dealing with low-level
complexity and also offers us out-of-the-box integration with the RabbitMQ broker. We
continue this chapter by describing the main concepts of this framework.

4.2.1 Main Concepts

The essence of the Spring Cloud Stream programming model is to provide an easy way
to describe multiple input and output channels of an application that communicate over
a messaging middleware. Specifically for our case, those input and outputs map into
RabbitMQ exchanges and queues. Common application configuration for a Source that
generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

In essence, a Spring Cloud Stream application consists of a neutral middleware core.
The deployed application communicates with the outside world through input and output
channels injected into it by the framework. These channels connect to the external
broker. Figure 9 presents an overview of the above concept.

Figure 9: Spring Cloud Stream abstractions [19]

As of April 2017, the framework provides Binder implementations for RabbitMQ, Kafka
and Redis. It automatically detects and uses a binder found on the classpath.

As we have already described, messaging has two models: queuing and publish-
subscribe. In the queuing model, a pool of consumers may read from a producer and
each data item goes to one of them. On the contrary, in the publish-subscribe model the
data items are broadcast to all of the consumers. Each model has a strength and a
weakness. The strength of queuing is that it allows dividing up the processing of data
over multiple consumer instances, which lets us scale up. Unfortunately, queues aren’t
multisubscriber; once a consumer reads the data item then it’s gone. The strength of

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 34

publish-subscribe is that it allows us to broadcast data to multiple processes, but has no
way of scaling processing since every message goes to every subscriber.

Spring Cloud Stream generalizes the above two concepts. Particularly, the
communication between different microservices follows a publish-subscribe model,
where data is broadcast through shared topics. The publish-subscribe communication
model reduces the complexity of both the producer and the consumer, and allows new
applications to be added to the ecosystem without disrupting the existing flow. Added to
that, the queuing model is achieved through the concept of consumer groups (Inspired
by Apache Kafka consumer groups). All groups which subscribe to a given destination
receive a copy of published data, but only one member of each group receives a given
message from that destination. By default, when a group is not specified, Spring Cloud
Stream assigns the application to an anonymous and independent single-member
consumer group that is in a publish-subscribe relationship with all other consumer
groups. Figure 10 illustrates the concept of the consumer groups in Spring Cloud
Stream.

Figure 10: Concept of Consumer Group [19]

Other important concepts of Spring Cloud Stream are Durability and Partitioning
support. The former allows for consumer groups subscriptions to be durable. This
means that the binder implementation ensures that when a subscription for a group is
created, it automatically becomes durable meaning that the group will receive
messages even if they are sent while all applications in the group are stopped. The
latter feature (partitioning support) enables support for partitioning data between
multiple instances of a given application. In a partitioned scenario, the broker exchange
(in Rabbit) is viewed as being structured into multiple partitions. One or more producer
applications send data items to multiple consumer application instances and ensure that
items presenting common characteristics are processed by the same consumer
instance. Figure 11 illustrates the concept of partitioning. Several producer applications
send via HTTP, data items to the same topic (exchange) which is partitioned. Items with
common characteristics are directed to a specific partition. Only a unique Average
Processor application instance consumes these data and thus we ensure that they are
processed together.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 35

Figure 11: Partitioning Concept [19]

Even though RabbitMQ broker does not support physical exchange partitioning like
Kafka, Spring Cloud Stream offers a common abstraction for implementing partitioning
in a uniform fashion. Partitioning support is very critical for our system, so we could
implement hash partitioning in the joiners for efficient equi-join processing.

4.3 Implementation Analysis

Based on the abstractions of Spring Cloud Stream, we designed and developed the
elastic-biclique system. When using the RabbitMQ binder, each destination is mapped
to a Topic Exchange. Figure 12 depicts the binder.

Figure 12: RabbitMQ binder [19]

For every consumer group, a queue is bound to that topic exchange. Each consumer
instance has a corresponding RabbitMQ consumer instance for its group’s queue. That
is, consumer instances that belong to the same group are competing with each other for
the data tuples. For partitioned producers/consumers the queues are suffixed with the
partition index and use the partition index as the routing key.

Regarding our implementation, the entry point for the tuples of both streaming relations
(𝑅, 𝑆) is a topic exchange named tuple.exchange. A single queue is bound to that
exchange which corresponds to the consumer group of the router instances. Using this
abstraction, the router instances compete with each other for the ingestion of the
incoming tuples from both relations. This way we can also easily scale up or down the
router-services depending on the tuple rate. Each router instance is responsible for

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 36

directing the tuples to the corresponding joiner services for further processing. We will

provide a dataflow example for a tuple from relation 𝑅 in order to demonstrate the

implementation. The corresponding procedure applies for tuples coming from the 𝑆
relation (with S-store and S-join exchanges).

Imagine a tuple coming from 𝑅 relation, it should be directed to the R-joiner services for
storage and at the same time to the S-joiner services for join processing. For that
purpose, tuples from 𝑅 are directed to an R-store topic exchange for storage by R-
joiner instances and to an R-join exchange for join processing by S-joiner instances. If
the random routing strategy is adopted concerning high-selectivity joins (Section 3.2), a
single queue is bound to R-store exchange and all R-joiner instances (the belong to the
same consumer group) compete for the tuple; it ends up to one of them. For the same
routing strategy, multiple queues are bound to the R-join exchange, each corresponding
to one instance of the S-joiners (they don’t belong to a specific consumer group thus
multiple queues are created and bound to the exchange). This way, the tuple is
broadcast to all of them for join processing in a publish-subscribe fashion.

If we adopt the hash partitioning strategy for low-selectivity joins (equi-joins), multiple
queues are bound to the R-store topic exchange, each corresponding to a single R-

joiner instance. A tuple from 𝑅 is directed to a single queue based on the hash value of
the joining attribute and thus a single R-joiner instance consumes and stores the tuple.
Similarly, multiple queues are bound to the R-join topic exchange, each corresponding

to a single S-joiner instance. The same tuple from 𝑅 is directed to a single queue based
on the hash value of the joining attribute and thus a single S-joiner instance consumes
and join-processes the tuple. Using this strategy, we ensure that tuples from both
relations having the same hash values on the joining attribute, will end up in the same
instance.

As we already mentioned, using Spring Cloud Stream we can easily describe the
multiple input and output channels of our microservice instances. These channels are
communication channels to/from the RabbitMQ broker. To better understand the coding
style (using Annotations) of Spring Cloud Stream, we will provide the router service’s
channels implementation interfaces:

public interface TupleSink {
 String CHANNEL_NAME = "tuplesChannel";

 @Input(TupleSink.CHANNEL_NAME)
 SubscribableChannel tuplesChannel();
}

The @Input annotation identifies an input channel, through which received messages
enter the application. It can also take a channel name as a parameter. In our case for
the router service, the channel name is called tuplesChannel and defines the input
communication channel from which the router service receives tuples from both
relations. Similarly, we define an interface for the output channels:

public interface TupleSource {

 String CHANNEL_NAME_R_STORE = "tuplesChannelRstore";
 String CHANNEL_NAME_R_JOIN = "tuplesChannelRjoin";
 String CHANNEL_NAME_S_STORE = "tuplesChannelSstore";
 String CHANNEL_NAME_S_JOIN = "tuplesChannelSjoin";

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 37

 @Output(TupleSource.CHANNEL_NAME_R_STORE)
 MessageChannel tuplesChannelRstore();

 @Output(TupleSource.CHANNEL_NAME_R_JOIN)
 MessageChannel tuplesChannelRjoin();

 @Output(TupleSource.CHANNEL_NAME_S_STORE)
 MessageChannel tuplesChannelSstore();

 @Output(TupleSource.CHANNEL_NAME_S_JOIN)
 MessageChannel tuplesChannelSjoin();
}

The @Output annotation identifies an output channel, through which published
messages leave the application. In our case, we define 4 different output channels in
the router service; two channels with store, join semantics per relation. These channels
have appropriate naming.

4.4 Docker containers

Docker is the world’s leading container platform. In particular, it is a tool designed to
make it easier to create, deploy and run applications by using software containers.
Containers are fundamentally based on a feature of the Linux kernel named
Namespaces. This feature allows the isolation and virtualization of system resources of
a collection of processes. Examples of resources that can be virtualized include process
IDs, hostnames, user IDs, network access, inter-process communication, and
filesystems. Furthermore, containers allow a developer to package up an application
with all of the parts it needs, such as libraries and other dependencies, and ship it all out
as one package. By using containers, resources can be isolated, services restricted,
and processes provisioned to have an almost completely private view of the operating
system with their own process ID space, file system structure, and network interfaces.
Multiple containers share the same kernel, but each container can be constrained to
only use a defined amount of resources such as CPU, memory and I/O [20].

Docker containers rely on docker images to run. In particular, a Docker image is the
template (application plus required binaries and libraries) needed to build a running
Docker Container (the running instance of that image). Each Docker image references a
list of read-only layers that represent filesystem differences. Layers are stacked on top
of each other to form a base for a container’s root filesystem. When we create a new
container, we add a new, thin, writable layer on top of the underlying stack. This layer is
often called the “container layer”. All changes made to the running container - such as
writing new files, modifying existing files, and deleting files - are written to this thin
writable container layer [20].

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 38

Figure 13: VM vs Containers

In a way, Docker is a bit like a virtual machine. But unlike a virtual machine, rather than
creating a whole virtual operating system, Docker allows applications to use the same
Linux kernel as the system that they're running on and only requires applications to be
shipped with things not already running on the host computer. Figure 13 depicts this
kind of model. Using this abstraction we can achieve a significant performance boost
and reduce the size of an application. Using Docker to create and manage containers
may also simplify the creation of highly distributed systems by allowing multiple
applications, worker tasks and other processes to run autonomously on a single
physical machine or across multiple virtual machines. This latter characteristic is very
important for our distributed elastic-biclique system. Additionally, docker containers
allow efficient scaling of an application by spawning new containers of a given service
on demand. The opposite procedure (scale down) is equally easy, thus allowing us to
use the resources only when we need it.

In our container cluster, we are going to use three different Docker images. The first
image corresponds to the RabbitMQ broker, while the second and the third images will
correspond to the router and joiner services respectively. These latter images are based
on alpine-oraclejdk8, which holds the Alpine Linux distribution along with the OracleJDK
8, totaling only ~170MB in size.

4.5 Kubernetes

Container orchestration is one of the hottest topics in industry. Initially, the industry
focused on pushing container adoption. The next step is forward is to put containers in
production at scale. There are many tools in this area. Some examples are Apache
Mesos, Docker Swarm and Amazon’s ECS and Kubernetes. For this thesis, we will
focus on Kubernetes; an open-source container orchestration system meant to be
deployed on Docker-capable clustered environments. Currently, it is one of the fastest-
moving open source projects and seems to be winning the competition. Statistics on
GitHub proove this fact: Kubernetes is in the top 0.01 percent in stars and No. 1 in
terms of activity.

This system was initially developed at Google and its name originates from the greek
word «Κυβερνήτης» meaning governor or commander. It is commonly abbreviated as
“k8s”, which is derived by replacing the 8 letters “ubernete” with 8. Kubernetes’s
technology isn’t precisely new. Behind the open source community uptake hide

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 39

exceptional engineering efforts. That is, 15 years of Google’s active development and
heavy production for a product named Borg; the cluster management tool that powered
the infrastructure behind Gmail, YouTube, Google Search, and other popular Google
services. Kubernetes’s success relies on 15-plus years of Google R&D that goes into
Borg’s code.

Kubernetes provides several features such as grouping, load-balancing, auto-healing,
scaling, autoscaling, container replication, volume management, infrastructure
monitoring, rolling updates, service discovery, identity, authorization etc. The framework
distinguishes the participating nodes between master and worker nodes. The master
provides a unified view into the cluster and, through its publicly-accessible endpoint, is
the doorway for interacting with the cluster. The worker(s) are managed from the
master, and run the services necessary to support Docker containers. Each node runs
the Docker runtime and hosts a Kubelet agent, which manages the Docker containers
scheduled on the host. Each node also runs a simple network proxy. Additionally, the
way Kubernetes functions is by using pods that group into containers, then scheduling
and deploying them at the same time. While most other container management services
use a container as their minimum unit, Kubernetes uses the pods. A pod is a group of
one or more containers, the shared storage for those containers, and options about how
to run the containers. Pods are always co-located and co-scheduled, and run in a
shared context. Generally, a pod contains one or more application containers which are
relatively tightly coupled. These pods are quickly updated, built, or destroyed in real-
time depending on the situation. Kubernetes can be used on private, public, multi-cloud,
and hybrid cloud environments. With all these features and convenient abstractions,
Kubernetes seemed like the perfect orchestration framework for our containerized
distributed system.

4.6 Google Container Engine

Google Container Engine (GKE) is a powerful cluster manager and orchestration
system [13] for running Docker containers. Particularly, it is built on top of Google
Compute Engine, which is a typical public Infrastructure as a Service (IaaS) cloud
platform, similar to Amazon Elastic Compute Cloud [12], Microsoft Azure [14] or
OpenStack [49]. The engine schedules Docker containers into the cluster and manages
them dynamically based on predefined requirements (such as CPU and RAM). The
main benefit of GKE is that it is built on top of Kubernetes, giving us the flexibility to take
advantage of the public cloud infrastructure.

Using GKE, we are able to set up a container cluster along with the orchestration
framework within minutes. We do not have to deal with the strenuous and non-trivial
process of configuring the Kubernetes framework. Thus, we are able to direct our focus
on the elastic-biclique containerized system deployment and execution on the cloud.

Furthermore, GKE offers a flexible auto-scaling feature that helps optimize resource
efficiency. The auto-scaling refers both to containers (pods) within particular VMs
(worker nodes) and also to VM instances. The former feature is offered by Kubernetes,
while the latter feature is offered cluster auto-scaling by Google Compute Engine (IaaS).
Our main focus on this project is to demonstrate elasticity of the distributed stream join
system and as such the Kubernetes pod auto-scaling feature is of great importance.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 40

5. DEPLOYMENT AND EXPERIMENTS

5.1 Setup and Deployment

We deployed our elastic-biclique system on Google Container Engine. Our system
comprises of three core Docker images, namely the rabbitmq-broker, router and joiner
services. RabbitMQ is already available on Docker-Hub and we chose to use the
smallest available image (rabbitmq:alpine) with a size of ~5MB. The other images are
also based on the Alpine Linux distribution along with the OracleJDK 8 with a size of
~170MB each. We pushed these images on the public Docker-Hub registry under the
eangelog/$service-name-service tag. Furthermore, we used single container
Kubernetes pods based on our images. A single container pod has only one container
running inside it. This way, we could ideally run each container on a separate VM
instance.

Google Container Engine (GKE) is a cluster manager and orchestration system based
on the public IaaS cloud of Google (Google Compute Engine). As with every public
cloud provider, GKE comes with specific Service Level Agreement (SLA) constraints
and billing requirements for leasing VM instances. In order to conduct the experiments
required by this thesis project and due to limited monetary resources, we opted to use
the free-tier infrastructure offered by GKE. This tier is free of charge and is offered for a
limited amount of time (12 months) and also with a limited amount of monetary
resources (300 US dollars). Unfortunately, the free-tier comes also with a set of pre-
defined resource quotas per account. For example, a maximum of 8 CPU cores per
zone and a maximum of 100 images are enforced (among others). Due to such
resource limitations (especially the 8 CPU cores quota), our experiments were
significantly limited. We expect to conduct more sophisticated experiments in the future,
when we will have access to different IaaS providers.

Figure 14: Cluster information

We created a cluster in GKE named cluster-biclique with an initial size of 8 VMs. Figure
14 summarizes the cluster information on GKE. Each VM has an Intel Xeon vCPU @
2.5 GHz and 3.75GB of RAM along with 100GB of ephemeral local disk. The total
compute resources are 8vCPUs, 30GB of RAM and 800GB of disk size. The 8 VMs
refer directly to Kubernetes worker nodes, as GKE abstracts away the Kubernetes
master node from the cloud client. The cluster default region is europe-west and the
zone is 1-c. The Kubernetes version is 1.6.1 and we chose to turn off the cluster auto-
scaler, because of our limited resource constraints. This feature is also currently in a

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 41

beta version. Instead, we will focus on the Horizontal Pod Autoscaler (HPA) of
Kubernetes for our experiments.

We initiated the bootstrap of our cluster with the command depicted in Figure 15.

Figure 15: Cluster bootstrap

We have to note here that we chose to deploy the cluster with all the Kubernetes alpha
features enabled. The so-called Alpha cluster is a short-lived cluster that is not covered
by the Container Engine SLA and cannot be upgraded, but has all Kubernetes APIs and
features enabled. This kind of cluster is a way to run stable Kubernetes releases with
Alpha features that may be less stable. These clusters are automatically destroyed after
30 days. We needed the alpha features enabled, so we could be able to use the HPA’s
alpha feature of auto-scaling based on the resource metric of memory. This feature may
be found in the autoscaling/v2alpha1 API.

After our cluster is bootstrapped, it is time to deploy our containers comprising the
elastic-biclique system. Kubernetes offers several abstractions which makes scaling
and managing containers a facile task. We consider the most important of these
abstractions to be: (i) Pods, (ii) Services and (iii) Deployments. We have already given a
brief explanation of Pods in section 4.5. On the other hand, Services is a core
abstraction of Kubernetes, which provides persistent endpoints for Pods. In particular,
Pods aren’t meant to be persistent. They can be stopped or started for many reasons
and this leads to communication problems, because restarted Pods may have different
IP addresses. Finally, Deployments are a declarative way to ensure that the number of
Pods running is equal to the desired number of Pods, specified by the user. The main
benefit of Deployments is in abstracting away the low level details of managing Pods.
Behind the scenes, Deployments use Replica Sets (another core abstraction of K8s) to
manage starting and stopping the Pods. If Pods need to be updated or scaled, the
Deployment will handle that. Deployments also handle restarting Pods if they happen to
go down for some reason. All the above abstractions could be described with YAML
files, which are sent to the Kubernetes API server.

In general, we chose the Deployment abstraction to deploy our images into our biclique-
cluster, in order to benefit from all the handy features offered by this abstraction. The
first step of the deployment procedure of elastic-biclique is the creation of a Deployment
for the RabbitMQ broker, along with two Services; the first Service is used for the
internal communication of other biclique services with the broker at port 5672 and the
second service provides external access to RabbitMQ GUI through port 15672. Figure
16 demonstrates the above Services.

Figure 16: Kubernetes Services

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 42

For the router and joiner services we also created two different Deployments. For that
purpose, we wrote a YAML file per Deployment. For example, the following snippet
describes a possible router-service Deployment:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: biclique-router
spec:
 replicas: 2
 template:
 metadata:
 labels:
 run: biclique-router
 spec:
 containers:
 - name: biclique-router
 image: "eangelog/router-service"
 env:
 - name: SPRING_APPLICATION_JSON
 value: '{"spring.rabbitmq.addresses": "rabbitmq"}'

The above Deployment uses the extensions/v1beta1 API and creates a Replica Set to
bring up 2 router-service Pods using the image eangelog/router-service. We also use an
environment variable named spring.rabbitmq.addresses=rabbitmq, which will be used
by the containerized router Java application to point to our RabbitMQ broker service. A
DNS service is provided by Kubernetes on GKE for discovering registered Services.

Figure 17: Kubernetes Deployments

Figure 17 illustrates the successful deployment of the core services of elastic-biclique
(router, joiner and rabbitmq) as Deployments from the Kubernetes Dashboard, along
with CPU and memory usage. At this particular moment, there is no incoming stream
traffic and the Pods remain idle. We should note that there are two starting Pods per
type of joiner (R, S) and router and one Pod for RabbitMQ (we do not seek High-
Availability for the queues of the broker for these experiments). Figure 18 presents the
various queues involved in the biclique system (section 4.3 for details) from the
RabbitMQ management GUI. For these experiments we adopted the random routing
strategy (section 3.2 for details) and as such the corresponding number/type of queues
are bound to the R, S (store, join) exchanges for the two Pods of each relation.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 43

Figure 18: RabbitMQ idle queues

Now that our elastic-biclique services are deployed into the GKE cluster, we can
proceed with executing the auto-scaling experiments.

5.2 Experiments

We now need to demonstrate the capability of the elastic-biclique system to dynamically
adjust the number of Pods according to stream input rate changes. For that purpose, we
used the Horizontal Pod Autoscaler (HPA) of Kubernetes; a feature which enables
Kubernetes to automatically scale the number of pods in our Deployments based on
observed CPU utilization (or, with alpha support, on some other, application-provided
metrics such as memory). We need to provide a brief description of the technical
aspects of HPA before continuing with the experiments.

 Figure 19: Horizontal Pod Autoscaler

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 44

Figure 19 provides an overview of HPA. The Horizontal Pod Autoscaler is implemented
as a control loop with a predefined period of operation (e.g. 30 seconds). During each
period, the controller manager queries the resource utilization against the metrics
specified in each HPA definition. The controller manager obtains the metrics from either
the resource metrics API (for per-pod resource metrics), or the custom metrics API (for
all other metrics). For these experiments we are interested in per-Pod resource metrics
(CPU and memory). For this kind of metrics, the controller fetches the values from the
resource metrics API for each pod targeted by the HPA. Then, if a target utilization
value is set, the controller calculates the utilization value as a percentage of the
equivalent resource request on the containers in each pod. If a target raw value is set,
the raw metric values are used directly. The controller then takes the mean of the
utilization or the raw value (depending on the type of target specified) across all
targeted pods, and produces a ratio used to scale the number of desired replicas. The
HPA controller can fetch metrics in two different ways: direct Heapster access, and
REST client access. In our case, we use the direct Heapster access as it is the default
way when deploying GKE clusters. Heapster is an open-source project which enables
container cluster monitoring and performance analysis. When using direct Heapster
access, the HPA queries Heapster directly through the API server’s service proxy
subresource. Heapster needs to be deployed on the cluster and running in the kube-
system namespace [50].

We conducted our experiments with HPA based on two different resource metrics,
namely CPU utilization and memory load. Due to resource and time constraints, we only
evaluated a single equi-join query for a 10-minute window join in 60 minutes of duration.
Our cluster resource constraints refer to the small number of vCPU cores available (8),
which limits both the possible tuple input rate and the number of Pods that we are able
to deploy on our cluster.

The autoscaling operation based on the CPU utilization may also be described as a
YAML file which is submitted to the Kubernetes api-server:

apiVersion: autoscaling/v2alpha1
kind: HorizontalPodAutoscaler
metadata:
 name: biclique-joiner-r
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1beta1
 kind: Deployment
 name: biclique-joiner-r
 minReplicas: 1
 maxReplicas: 3
 metrics:
 - type: Resource
 resource:
 name: cpu
 targetAverageUtilization: 80

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 45

Figure 20: Dynamic Scaling based on CPU utilization

Figure 20 presents the varying stream input rates during the 60-minute of our
evaluation. The upper part of Figure 20 shows the stream input rate, while the bottom
part shows how the joiner Pods are dynamically added/released from the system while
the CPU utilization changes. We set the target CPU utilization value at 80% and the
minimum and maximum amount of Pods at 1 and 3 respectively. These values can be
viewed also in the YAML file. We start with a rate of 300 tuples/sec for the first 10
minutes and a single joiner per relation. The initial CPU utilization is far above the
desired target value at ~145%, so a second joiner Pod launches by the autoscaler.
Following this action, the utilization seems to stabilize for the next 10 minutes below the
80% target. At the 10th minute, we increase suddenly the rate to 400 tuples/sec and the
utilization also rises at a constant rate. The autoscaler decides to bootstrap a third joiner
Pod to balance the load. The utilization seems to balance again around the target value,
over the next 30 minutes until the 40th minute of our evaluation. At the 40th minute, we
decrease the input rate at 200 tuples/sec and as such we can observe a decrease in the
utilization below 60% with 3 Joiner Pods. Thus, the autoscaler decides to decrease the
number of Pods to 2 again. At the 50th minute, we increase the input rate again at 300
tuples/sec and as such we can observe a stabilization of the utilization again at around
80%.

Figure 21 presents the auto-scaling experiment based on memory load. Before
describing the results depicted, we consider important to report the technique that we
used for optimal behavior, regarding memory footprint of the Java Virtual Machine
(JVM) in cloud operation. If the JVM is run using the default, parallel GC with no
configuration flags provided, other than the heap maximum (-Xmx), JVM will try to use
all the available heap right up to that maximum. It keeps allocating new data out of the
available address space until it runs out. Only then does it collect all the live data and

0

100

200

300

400

500

0 10 20 30 40 50 60In
p

u
t

R
at

e
 (

tu
p

le
s/

se
c)

Time (Minutes)

Input Rate

0

1

2

3

4

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60

C
P

U
 U

ti
liz

at
io

n
 (

%
)

Time (Minutes)

CPU (%)

of Joiners

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 46

compact it down into the bottom of the heap, before continuing to fill up the free space
and so on. That’s true even when the application would run perfectly happily in much
less space. In cases where a single machine is dedicated to the JVM that’s not
necessarily a problem. But in Cloud deployments like elastic-biclique, many JVMs are
deployed as virtualized guests (containers) sharing the resources of an underlying host
machine. Clearly, when there is competition for memory it is preferable for the JVM to
use as small a memory footprint as is compatible with keeping down memory
management costs. A JVM can easily monitor how much live data an application is
holding on to. If this is much lower than the configured heap maximum, then garbage
collection and compaction can be performed early, before all the heap space is filled.
That allows each JVM to unmap the unused address space at the top end of the heap,
making more physical memory available for other JVMs. The gain is that you can either
run more JVMs on the same physical host or run the same number of JVMs on a similar
host installed with less memory. Both options translate to saved money.

Luckily, we can alleviate the above problem by using proper configuration of the JVM,
as it already implements a memory footprint management policy. Using this policy we
can force our JVM to keep the mapped heap space fairly close to the application’s live
data set size. Using the following JVM flags in our Joiners we can achieve the
aforementioned behavior:

-XX:UseParallelGC

-XX:MinHeapFreeRatio=20

-XX:MaxHeapFreeRatio=40

-XX:GCTimeRatio=4

-XX:AdaptiveSizePolicyWeight=90

At any GC the collector can decide to map more of the available heap pages into the
nursery space or mature space. It can also decide to unmap pages and work in less
space. The footprint control model makes mapping decisions based upon the values of
two parameters, MinHeapFreeRatio and MaxHeapFreeRatio, with default values 40
and 70. These two heap ratios specify what percentage excess memory should be
mapped beyond that occupied by the live set. Let’s assume, for simplicity, that at GC
the live objects occupy 100Mb. The defaults specify that the mapped pages should lie
between 140Mb and 170Mb. If the currently mapped heap space is less than 140Mb it
needs to be extended by mapping more physical pages. If it is more than 170b it needs
to be trimmed by unmapping pages. Obviously, these limits are themselves constrained
by the heap minimum and maximum supplied on the java command line (-Xms and -
Xmx settings).

Our configuration resets the heap ratios to 20 and 40. This makes the GC to trim the
extra heap space much more tightly, keeping it much closer to the live data set size. So,
with 100Mb of live data the heap would be adjusted to lie between 120Mb and 140Mb,
i.e. – there would be about half as much excess space. If the application’s live set size
and allocation rate remain constant then this means that GCs would have to happen
about twice as often with these settings.

The time goal is configured by two parameters, GCTimeRatio and
AdaptiveSizePolicyWeight, with default values 99 and 10. GCTimeRatio specifies the
worst case GC time the collector should target. A value of 99 means no more than 1%
of time should be spent in GC. In practice, that means that the parallel GC has to play
cautious. So, it regularly trades off space for time even when the actual GC time is a
tiny fraction of 1%. When a young GC occurs it tends just to add more heap, ignoring
the MaxFreeHeapRatio value. The result is that the heap size just keeps rising, often up
to the heap maximum. Our configuration resets GCTimeRatio to 4, i.e. a worst case

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 47

goal of 20%. This effectively places most of the weight in the competing footprint
management goals on space rather than time reduction. With this setting the time goal
no longer dominates and the heap stays between the limits defined by
MinFreeHeapRatio and MaxFreeHeapRatio.

The AdaptiveSizePolicyWeight parameter controls how much previous GC times are
taken into account when checking the timing goal. The default setting, 10, bases the
timing goal check 90% on previous GC times and 10% on the current GC time.
Resetting this to 90 means that the timing goal check is mostly based on to the current
GC execution time, i.e. it is more responsive to current rather than historical memory
use. This greater responsiveness also usefully limits the extent to which space gets
traded off against time.

We also have to note that we left a default setting for the minimum and maximum heap
size per JVM constrained by our physical resources per host. That is, the minimum
heap size is 58MBs and the maximum heap size is 926 MBs.

Figure 21: Dynamic Scaling based on Memory Load

We performed the autoscaling experiment based on memory load, using a 10-minute
window with 1 Joiner as the default setting. We set the target memory value as 85% of
total memory. We adjusted the memory consumption at the host, where the target
Joiner Pod resides, so we could hit the target value of 85% at around 520MB of JVM
memory. Initially, the experiment begins with the memory load at 60 MB and an average

0

100

200

300

400

500

0 10 20 30 40 50 60

In
p

u
t

R
at

e
 (

tu
p

le
s/

se
c)

Time (Minutes)

Input Rate

0

1

2

3

4

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

M
e

m
o

ry
 L

o
ad

 (
M

B
)

Time (Minutes)

Memory Load

of Joiners

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 48

input rate at 300 tuples/sec. Normally, the memory load would be bound to the size of
the workload within the time window, since expired tuples are discarded from memory.
We can observe that after a window time, the memory load is bounded via data
discarding until the 15th minute at around 500MB. After the 15th minute the input rate
rises to 400 tuples/sec and thus we can observe a sudden spike in the memory load, as
more and more tuples accumulate inside the time window. Then, the burden of 520MB
is violated, so the autoscaler spawns a second Joiner. The rate of tuple accumulation
inside the time window is now split between the two Joiners. Thus, we can observe a
constant decline in the memory load until the ~30th minute with ~500MB. Then, the
autoscaler decides to release the second Joiner. We can again observe a constant rise
in the memory load until the 40th minute, when the rate declines to 200 tuples/sec.
Then, the memory load declines to almost 420 MB until the 50th minute, when the rate
rises again to 300 tuples/sec. From the 50th to the 60th minute the memory load follows
again a rising route and we expect it to stabilize at almost 500MB. We should note that
during the system scaling, data migration is avoided since the system discards the
expired tuples and controls the storage distribution of the new incoming tuples to
achieve equivalent load balancing among the Joiners.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 49

6. CONCLUSION

In this report we have adopted the main ideas found in [3], which presented a model for
joining streaming data, namely join-biclique. Join-biclique logically models the
processing units as a complete bipartite graph for stream joins with no data replication,
flexible partition scheme and processing units independence designs. On the basis of
join-biclique, we have designed and developed an alternative implementation of the
distributed online stream join processing system using modern technologies and design
principles, such as software containers and event-driven microservices. Such
technologies are best fitted for cloud operation. For our implementation we have used
cutting-edge tools, such as Spring Boot, Spring Cloud Stream, Docker containers and
Kubernetes. We deployed our system on Google Container Engine (GKE) --an
IaaS/PaaS cloud provider-- and demonstrated the feature of dynamic scaling. For our
dynamic scaling experiments we have used the Horizontal Pod Autoscaler (HPA) of
Kubernetes and two different resource metrics, namely CPU and memory. We showed
(at small scale) that the system is able to dynamically adjust the processing units based
on variations of the input stream rate.

6.1 Future Work

Using the GKE free trial, we were able to create a small cluster of 8 VCPUs and 15 GB
of RAM. As a result, our experiments were conducted in a very resource restricted
environment at small scale. In the future, we expect to deploy our system in a larger
cluster at a private or public cloud provider (such as OpenStack or AWS) and conduct
our experiments at much bigger scale. We are also seeking to use an alternative
message broker, such as Apache Kafka. Unlike RabbitMQ, Kafka is able to scale-out
on-demand, thus giving us the opportunity to handle much larger input traffic than with
RabbitMQ.

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 50

ABBREVIATIONS - ACRONYMS

GKE Google Container Engine

IaaS Infrastructure as a Service

PaaS Platform as a Service

IoT Internet of Things

IoC Inversion of Control

HPA Horizontal Pod Autoscaler

AWS Amazon Web Services

DI Dependency Injection

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 51

 REFERENCES

[1] V. Gulisano, Y. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas, ScaleJoin: a
Deterministic, Disjoint-Parallel and Skew-Resilient Stream Join, IEEE Transactions on
Big Data, vol. pp, issue 99, Nov. 2016, pp. 1-14.

[2] D. Wampler, Fast Data Architectures for Streaming Applications, O’Reilly Media,
2016.

[3] Qian Lin, Beng Chin Ooi, Zhengkui Wang and Cui Yu, Scalable Distributed Stream
Join Processing, Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, May 2015, pp. 811-825, Melbourne, Victoria, Australia.

[4] A. Chakraborty and A. Singh, Parallelizing Windowed Stream Joins in a Shared-
Nothing Cluster, IEEE International Conference on Cluster Computing, Sep. 2013.

[5] J. Boner, Reactive Microservices Architecture, O’Reilly Media, 2016.
[6] J. Teubner and R. Mueller, How Soccer Players Would do Stream Joins,
Proceedings of the 2011 ACM SIGMOD International Conference on Management of
data, June 2011, Athens, Greece.
[7] B. Gedik, R. R. Bordawekar, Philip S. Yu, CellJoin: a parallel stream join operator for
the cell processor, The VLDB Journal — The International Journal on Very Large Data
Bases, vol. 18, issue 2, April 2009, pp. 501-519.
[8]P. B. Gibbons, Big Data: Scale Down, Scale Up, Scale Out, IEEE International
Parallel and Distributed Processing Symbosium, May 2015, Hyderabad, India.
[9] J-S Vockler, G. Juve, E. Deelman, M. Rynge and B. Berriman, Experiences Using
Cloud Computing for A Scientific Workflow Application, ACM Proceedings of the 2nd
international workshop on Scientific cloud computing, June 2011, pp. 15-24, San Jose,
California, USA.
[10] K. Patroumpas, T. Sellis, Window Specification over Data Streams, ACM
Proceedings of the 2006 international conference on Current Trends in Database
Technology, March 2006, pp. 445-464, Munich, Germany.
[11] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu, A.
Reznichenko, D. Ryabkov, M. Singh, S. Venkataraman, Photon: fault-tolerant and
scalable joining of continuous data streams, Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, June 2013, pp. 577-588, New York,
New York, USA.
[12] Amazon Web Services; https://aws.amazon.com/. [Accessed Online 26/04/2017]
[13] Google Cloud Services; https://cloud.google.com/. [Accessed Online 26/04/2017]
[14] Microsoft Azure; https://azure.microsoft.com/. [Accessed Online 26/04/2017]

[15] G. Palis, Cloud Computing: The new frontier of Internet Computing, IEEE Internet
Computing, Sep. 2010, pp. 70-73.

[16] BiStream System; https://www.comp.nus.edu.sg/~dbsystem/bistream/index.html
[Accessed Online 26/04/2017]

[17] Apache Storm; http://storm.apache.org/. [Accessed Online 26/04/2017]

[18] Spring Boot; https://projects.spring.io/spring-boot/. [Accessed Online 26/04/2017]

[19] Spring Cloud Stream; https://cloud.spring.io/spring-cloud-stream/. [Accessed Online
26/04/2017]

[20] Docker; https://www.docker.com/. [Accessed Online 26/04/2017]

[21] Kubernetes; https://kubernetes.io/. [Accessed Online 26/04/2017]

https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/
https://www.comp.nus.edu.sg/~dbsystem/bistream/index.html
http://storm.apache.org/
https://projects.spring.io/spring-boot/
https://cloud.spring.io/spring-cloud-stream/
https://www.docker.com/
https://kubernetes.io/

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 52

[22] M. Elseidy, A. Elguindy, A. Vitorovic, C. Koch, Scalable and Adaptive Online Joins,
ACM Proceedings of the VLDB Endowment, vol. 7, issue 6, Feb 2014, pp. 441-452.

[23] A. Vitotovic, M. Elseidy, K. Guliyev, K. V. Minh, D. Espino, M. Dashti, Y. Klonatos,
C. Koch, Squall: Scalable Real-time Analytics, Proceedings of the VLDB Endowment,
vol. 9, issue 13, Sep. 2016, pp. 1553-1556.

[24] V. Stoumpos, A. Delis, Fragment and Replicate Algorithms for Non-Equi-Join
Evaluation on Smart Disks, IEEE International Symposium on Autonomous
Decentralized Systems, March 2009, Athens, Greece.

[25] A. Okcan, M. Riedewald, Processing Theta-Joins using MapReduce, Proceedings
of the 2011 ACM SIGMOD International Conference on Management of data, June
2011, pp. 949-960, Athens, Greece.

[26] J. W. Stamos, H. C. Young, A symmetric fragment and replicate algorithm for
distributed joins, IEEE Transactions on Parallel and Distributed Systems, vol. 4, issue
12, Dec. 1993, pp. 1345-1354.

[27] A. Arasu, S. Babu, and J. Widom, The CQL Continuous Query Language: Semantic
Foundations and Query Execution. VLDB Journal, 2006.
[28] D. Maier, J. Li, P. Tucker, K. Tufte, and V. Papadimos, Semantics of Data Streams
and Operators. In ICDT, pp. 37-52, January 2005
[29] B. Gedik, R. R. Bordawekar, and S. Y. Philip. CellJoin: a parallel stream join
operator for the cell processor. The VLDB journal, 2009.
[30] Apach Spark; http://spark.apache.org/. [Accessed Online 26/04/2017]
[31] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized streams:
fault-tolerant streaming computation at scale. In Proc. of SOSP, pages 423–438, 2013.
[32] J. W. Stamos and H. C. Young. A symmetric fragment and replicate algorithm for
distributed joins. IEEE Transactions on Parallel and Distributed Systems, 4(12):1345–
1354, 1993.
[33] T. Karnagel, D. Habich, B. Schlegel, and W. Lehner. The hells-join: A
heterogeneous stream join for extremely large windows. In Proc. of DaMoN, 2013.
[34] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and Z. Zhang.
Timestream: reliable stream computation in the cloud. In Proc. of EuroSys, pages 1–14,
2013.
[35] Diestel, Reinhard (2005), Graph Theory (3rd ed.), Springer, page 17.
[36] Apache Kafka; https://kafka.apache.org/. [Accessed Online 26/04/2017]

[37] Spring Cloud Stream; https://cloud.spring.io/spring-cloud-stream/. [Accessed Online
26/04/2017]

[38] L. Golab and M. T. ¨Ozsu. Processing sliding window multi-joins in continuous
queries over data streams. In Proc. of VLDB, pp. 500–511, 2003.

[39] U. Srivastava and J. Widom. Memory-limited execution of windowed stream joins.
In Proc. Of VLDB, pages 324–335, 2004.
[40] Reactive Manifesto; http://www.mammatustech.com/reactive-microservices.
[Accessed Online 26/04/2017]
[41] RabbitMQ message broker, https://www.rabbitmq.com/. [Accessed Online
26/04/2017]
[42] S. Vinoski, "Advanced Message Queuing Protocol" (PDF). IEEE Internet
Computing. 10 (6): 87–89, 2006.

[43] M. Logan, E. Merritt, and R. Carlsson, Erlang and OTP in Action, Manning
Publications, November 2010.

http://spark.apache.org/
https://kafka.apache.org/
https://cloud.spring.io/spring-cloud-stream/
http://www.mammatustech.com/reactive-microservices
https://www.rabbitmq.com/
http://steve.vinoski.net/pdf/IEEE-Advanced_Message_Queuing_Protocol.pdf

Dynamic Scaling of Parallel Stream Joins on the Cloud

E. Angelogiannopoulos 53

[44] O'Hara, J. (2007). "Toward a commodity enterprise middleware" (PDF). ACM
Queue. 5 (4): 48–55.

[45] AMQP, Protocol Specification; https://www.rabbitmq.com/resources/specs/amqp0-
9-1.pdf. [Accessed Online 26/04/2017]

[46] Win32 system message queues; "About Messages and Message Queues",
Microsoft Developer Network. [Accessed Online 26/04/2017]

[47] D. Maier, J. Li, P. Tucker, K. Tufte, and V. Papadimos, Semantics of Data Streams
and Operators, ACM Proceedings of the 10th international conference on Database
Theory, Jan 2005, pp. 37-52, Edinburgh, UK.

[48] Spring Integration; https://projects.spring.io/spring-integration/. [Accessed Online
26/04/2017]

[49] Openstack, Open-Source Cloud Computing Software; https://www.openstack.org/.
[Accessed Online 26/04/2017]

[50] Kubernetes Horizontal Pod Autoscaler; https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/ . [Accessed Online 26/04/2017]

http://www.acm.org/acmqueue/digital/Queuevol5no4_May2007.pdf
https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf
https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf
http://msdn.microsoft.com/en-us/library/ms644927%28VS.85%29.aspx
https://projects.spring.io/spring-integration/
https://www.openstack.org/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

