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ABSTRACT

Static analysis aims to achieve an understanding of program behavior, by means of au-
tomatic reasoning that requires only the program’s source code and not any actual exe-
cution. To reach a truly broad level of program understanding, static analysis techniques
need to create an abstraction of memory that covers all possible executions. Such ab-
stract models may quickly degenerate after losing essential structural information about
the memory objects they describe, due to the use of specific programming idioms and lan-
guage features, or because of practical analysis limitations. In many cases, some of the
lost memory structure may be retrieved, though it requires complex inference that takes
advantage of indirect uses of types. Such recovered structural information may, then,
greatly benefit static analysis.

This dissertation shows how we can recover structural information, first (i) in the context of
C/C++, and next, in the context of higher-level languages without direct memory access,
like Java, where we identify two primary causes of losing memory structure: (ii) the use of
reflection, and (iii) analysis of partial programs. We show that, in all cases, the recovered
structural information greatly benefits static analysis on the program.

For C/C++, we introduce a structure-sensitive pointer analysis that refines its abstraction
based on type information that it discovers on-they-fly. This analysis is implemented in
cclyzer, a static analysis tool for LLVM bitcode. Next, we present techniques that extend
a standard Java pointer analysis by building on top of state-of-the-art handling of reflection.
The principle is similar to that of our structure-sensitive analysis for C/C++: track the use
of reflective objects, during pointer analysis, to gain important insights on their structure,
which can be used to “patch” the handling of reflective operations on the running analysis,
in a mutually recursive fashion. Finally, to address the challenge of analyzing partial Java
programs in full generality, we define the problem of “program complementation”: given a
partial programwe seek to provide definitions for its missing parts so that the “complement”
satisfies all static and dynamic typing requirements induced by the code under analysis.
Essentially, complementation aims to recover the structure of phantom types. Apart from
discovering missing class members (i.e., fields and methods), satisfying the subtyping
constraints leads to the formulation of a novel typing problem in the OO context, regarding
type hierarchy complementation. We offer algorithms to solve this problem in various
inheritance settings, and implement them in JPhantom, a practical tool for Java bytecode
complementation.

SUBJECT AREA: Programming Languages, Static Analysis

KEYWORDS: Pointer Analysis; Object-Oriented Programming; Type Hierarchy; Reflec-
tion





ΠΕΡΙΛΗΨΗ

Ηστατική ανάλυση στοχεύει στην κατανόηση της συμπεριφοράς του προγράμματος, μέσω
αυτοματοποιημένων τεχνικών συμπερασμού που βασίζονται καθαρά στον πηγαίο κώδικα
του προγράμματος, αλλά δεν προϋποθέτουν την εκτέλεσή του. Για να πετύχουν αυτές οι
τεχνικές μία ευρεία κατανόηση του κώδικα, καταφεύγουν στη δημιουργία ενός αφηρημένου
μοντέλου της μνήμης, το οποίο καλύπτει όλες τις πιθανές εκτελέσεις. Αφηρημένα μοντέλα
τέτοιου τύπου μπορεί γρήγορα να εκφυλιστούν, αν χάσουν σημαντική δομική πληροφορία
των αντικειμένων στη μνήμη που περιγράφουν. Αυτό συνήθως συμβαίνει λόγω χρήσης
συγκεκριμένων προγραμματιστικών ιδιωμάτων και χαρακτηριστικών της γλώσσας προ-
γραμματισμού, ή λόγω πρακτικών περιορισμών της ανάλυσης. Σε αρκετές περιπτώσεις,
ένα σημαντικό μέρος της χαμένης αυτής δομικής πληροφορίας μπορεί να ανακτηθεί μέσω
σύνθετης λογικής, η οποία παρακολουθεί την έμμεση χρήση τύπων, και να χρησιμοποιηθεί
προς όφελος της στατικής ανάλυσης του προγράμματος.

Στη διατριβή αυτή παρουσιάζουμε διάφορους τρόπους ανάκτησης δομικής πληροφορίας,
πρώτα (1) σε προγράμματα C/C++, κι έπειτα, σε προγράμματα γλωσσών υψηλότερου
επιπέδου που δεν προσφέρουν άμεση πρόσβαση μνήμης, όπως η Java, όπου αναγνω-
ρίζουμε δύο βασικές πηγές απώλειας δομικής πληροφορίας: (2) χρήση ανάκλασης και
(3) ανάλυση μερικών προγραμμάτων. Δείχνουμε πως, σε όλες τις παραπάνω περιπτώ-
σεις, η ανάκτηση τέτοιας δομικής πληροφορίας βελτιώνει άμεσα τη στατική ανάλυση του
προγράμματος.

Παρουσιάζουμε μία ανάλυση δεικτών για C/C++, η οποία βελτιώνει το επίπεδο της αφαίρε-
σης, βασιζόμενη σε πληροφορία τύπου που ανακαλύπτει κατά τη διάρκεια της ανάλυσης.
Παρέχουμε μία υλοποίηση της ανάλυσης αυτής, στο cclyzer, ένα εργαλείο στατικής ανά-
λυσης για LLVMbitcode. Έπειτα, παρουσιάζουμε επεκτάσεις σε ανάλυση δεικτών για Java,
κτίζοντας πάνω σε σύγχρονες τεχνικές χειρισμού μηχανισμών ανάκλασης. Η βασική αρχή
είναι παραπλήσια με την περίπτωση της C/C++: καταγράφουμε τη χρήση των ανακλαστι-
κών αντικειμένων, κατά τη διάρκεια της ανάλυσης δεικτών, ώστε να ανακαλύψουμε βασικά
δομικά τους στοιχεία, τα οποία μπορούμε να χρησιμοποιήσουμε έπειτα για να βελτιώσουμε
τον χειρισμό των εντολών ανάκλασης στην τρέχουσα ανάλυση, με αμοιβαία αναδρομικό
τρόπο. Τέλος, ως προς την ανάλυση μερικών προγραμμάτων Java, ορίζουμε το γενικό
πρόβλημα της ((συμπλήρωσης προγράμματος)): δοθέντος ενός μερικού προγράμματος,
πως να εφεύρουμε ένα υποκατάστατο του κώδικα που λείπει, έτσι ώστε αυτό να ικανοποιεί
τους περιορισμούς των στατικών και δυναμικών τύπων που υπονοούνται από τον υπάρ-
χοντα κώδικα. Ή διαφορετικά, πως να ανακτήσουμε τη δομή των τύπων που λείπουν.
Πέραν της ανακάλυψης των μελών (πεδίων και μεθόδων) των κλάσεων που λείπουν, η
ικανοποίηση των περιορισμών υποτυπισμού μας οδηγεί στον ορισμό ενός πρωτότυπου
αλγοριθμικού προβλήματος: τη συμπλήρωση ιεραρχίας τύπων. Παρέχουμε αλγορίθμους
που λύνουν το πρόβλημα αυτό σε διάφορα είδη κληρονομικότητας (μονής, πολλαπλής,
μεικτής) και τους υλοποιούμε στο JPhantom, ένα νέο εργαλείο συμπλήρωσης Java byte-
code κώδικα.
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ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Η διατριβή αυτή αφορά τον ευρύτερο τομέα της στατικής ανάλυσης προγραμμάτων, η
οποία αποσκοπεί στην αυτόματη κατανόηση του προγράμματος με βάση την εξέταση του
πηγαίου του κώδικα, αλλά δίχως να προϋποθέτει την εκτέλεσή του. Σκοπός της συγκεκρι-
μένης διατριβής είναι η διερεύνηση μεθόδων βελτίωσης της ποιότητας της πληροφορίας
στατικών αναλύσεων, μέσω της ανάκτησης πληροφορίας περί της δομής των αντικειμέ-
νων που δημιουργούνται στη μνήμη. Οι ισχυρότερες εκ των στατικών αναλύσεων για αντι-
κειμενοστεφείς γλώσσες προγραμματισμού χρειάζεται να κατασκευάσουν ένα αφηρημένο
μοντέλο της μνήμης, όπου εικονικά αντικείμενα αναπαριστούν (μία ή περισσότερες) δια-
κριτές δεσμεύσεις αντικειμένων. Έτσι, μπορούν να υπολογίσουν μία εκτίμηση της συμπε-
ριφοράς του προγράμματος με σκοπό είτε τη μηχανικά υποβοηθούμενη κατανόηση, είτε
την εύρεση σφαλμάτων, ή τη βελτιστοποίηση της απόδοσης του προγράμματος.

Η γνώση της δομής των αντικειμένων αυτών, η οποία συνήθως συνοψίζεται στον τύπο του
αντικειμένου, μπορεί να χαθεί μερικώς (1) λόγω χρήσης συγκεκριμένων προγραμματιστι-
κών ιδιωμάτων, (2) όταν η γλώσσα είναι αρκετά χαμηλού επιπέδου (π.χ., C/C++) δίνοντας
άμεση πρόσβαση στη μνήμη (π.χ., μέσω αριθμητικής δεικτών), (3) κατά την ανάλυση μερι-
κών προγραμμάτων (δηλαδή, προγραμμάτων για τα οποία δεν διαθέτουμε ολόκληρο τον
κώδικα), ή (4) κατά τη χρήση μηχανισμών ανάκλασης (reflection).

Η απώλεια δομικής πληροφορίας σε αρκετές περιπτώσεις μειώνει σημαντικά την αξία της
πληροφορίας που παράγει η στατική ανάλυση. Η κύρια θέση της διατριβής είναι η εξής:

Υπάρχει υπονοούμενη δομική πληροφορία στο πρόγραμμα, όσον αφορά τη
μνήμη που αυτό δεσμεύει, η οποία μπορεί να βελτιώσει τη ποιότητα του αφη-
ρημένου μοντέλου της μνήμης, όπως αυτό κατασκευάζεται από στατική ανά-
λυση του προγράμματος. Η δομική αυτή πληροφορία δεν είναι άμεσα διαθέ-
σιμη, αλλά μπορεί να ανακτηθεί μέσω σύνθετου συμπερασμού, κυρίως βάσει
της ανίχνευσης έμμεσης χρήσης τύπων στο πρόγραμμα.

Οι τεχνικές που προτείνονται για την ανάκτηση δομικής πληροφορίας είναι οι εξής:

• Για προγράμματα C/C++ (ως τυπικό παράδειγμα γλώσσας με άμεση πρόσβαση στη
μνήμη):

Προτείνουμε την επέκταση του αφηρημένου μοντέλου μνήμης, ώστε αυτό να διέπε-
ται από μεγαλύτερη διακριτότητα των αντικειμένων που δημιουργεί, αναδεικνύοντας
βασικά στοιχεία της εσωτερικής τους δομής. Συγκεκριμένα, αυτό περιλαμβάνει τη
δημιουργία διακριτών αντικειμένων που αναπαριστούν πεδία, θέσεις πινάκων, κα-
θώς και πολλαπλούς τύπους του ίδιου αντικειμένου, και το κατάλληλο χειρισμό τους
ώστε να προσθέσουν στην ακρίβεια της ανάλυσης.



Όσον αφορά τους τύπους κάθε αντικειμένου, αυτοί ανιχνεύονται δυναμικά κατά την
διάρκεια της ανάλυσης, παρακολουθώντας την κανονική ροή των αρχικών αντικει-
μένων εφόσον αυτά έχουν άγνωστο τύπο. Οι δυναμικές αυτές τεχνικές καταλήγουν
σε έναν αμοιβαία αναδρομικό υπολογισμό, όμοιο με αυτό της δυναμικής κατασκευής
του γράφου κλήσεων (on-the-fly call-graph construction).
Με την επέκταση αυτή του μοντέλου της μνήμης, η ανάλυση μπορεί να διατηρή-
σει πλήρη ακρίβεια κατά την εικονική κλήση μεθόδων σε αντικειμενοστρεφή κώδικα,
ακόμα κι αν αυτές έχουν μεταφραστεί σε πολλαπλές χαμηλού επιπέδου εντολές, το
οποίο είναι αναμενόμενο στην περίπτωση μίας χαμηλού επιπέδου γλώσσας όπως
η C/C++.

• Για προγράμματα Java (ως τυπικό παράδειγμα γλώσσας υψηλότερου επιπέδου):
Η βασική απώλεια δομικής πληροφορίας στην περίπτωση της Java, ως υψηλού επι-
πέδου γλώσσα που δεν παρέχει απευθείας πρόσβαση στην μνήμη, είναι η ανάλυση
μερικών προγραμμάτων, δηλαδή προγραμμάτων τα οποία έχουν αναφορές σε κλά-
σεις/μεθόδους οι οποίες λείπουν από το πρόγραμμα προς ανάλυση. Σε αυτή την
περίπτωση, μπορούμε να ανακτήσουμε τουλάχιστον κάποια πληροφορία τύπου και
σχέσεων κληρονομικότητας των κλάσεων που απουσιάζουν, καθώς και ένα ελάχιστο
υποσύνολο των μελών τους, με βάση τη χρήση τους στο υπάρχον μέρος του προ-
γράμματος. Έτσι, μπορεί να κατασκευαστεί ένα πλήρες πρόγραμμα που να πληρεί
τις εγγυήσεις ορθότητας του Java Verifier.
Η βασική δυσκολία σε αυτή την κατασκευή έγκειται στην συμπλήρωση της ιεραρχίας
των κλάσεων. Οι υπάρχουσες σχέσεις υποτυπισμού θα πρέπει να συμπληρωθούν
έτσι ώστε να σχηματίσουμε μία πλήρη ιεραρχία που να μην εισάγει κυκλικές εξαρ-
τήσεις και να ικανοποιεί λοιπούς περιορισμούς (π.χ., μία κλάση στη Java μπορεί να
κληρονομήσει μόνο μία κλάση, ενώ δεν ισχύει το ίδιο για ένα interface). Το πρόβλημα
αυτό ανάγεται σε θεμελιώδη αλγοριθμικά προβλήματα θεωρίας γράφων με πιθανώς
ευρύτερο ενδιαφέρον. Παρουσιάζονται αλγόριθμοι προς επίλυση αυτών των προ-
βλημάτων.
Μία δεύτερη περίπτωση απώλειας δομικής πληροφορίας προγραμμάτων Java είναι
η χρήση του μηχανισμού ανάκλασης (reflection), ο οποίος δίνει τη δυνατότητα σε
ένα πρόγραμμα να παρατηρεί δυναμικά τη δομή των κλάσεων και των αντικειμένων
στη μνήμη κι επιτρέπει ακόμα και την τροποποίησή τους, χωρίς να προϋποθέτει κά-
ποια στατική γνώση των τύπων ή της γενικότερης μορφής τους. Παρότι κώδικας που
χρησιμοποιεί ανάκλαση μπορεί να είναι εντελώς αγνωστικός ως προς τα αντικείμενα
που χειρίζεται, μία στατική ανάλυση θα πρέπει να εκτιμήσει σωστά τη μορφή τους,
ώστε να είναι σε θέση να προσεγγίσει τη δυναμική συμπεριφορά του προγράμμα-
τος. Προτείνουμε μία σειρά τεχνικών για τη δυναμική ανίχνευση των τύπων και της
δομής αυτών των αντικειμένων.

Το περιεχόμενο της διατριβής αποτελείται από επτά κεφάλαια. Το πρώτο κεφάλαιο περιέχει
μία σύντομη εισαγωγή περί του αφηρημένου μοντέλου μνήμης των στατικών αναλύσεων
και των περιπτώσεων όπου χάνεται βασική δομική πληροφορία των αντικειμένων. Επίσης,
παρουσιάζεται η ερευνητική αλλά και η πρακτική συνεισφορά της διατριβής.



Στατική ανάλυση και ανάκτηση δομικής πληροφορίας για C/C++. Το δεύτερο κεφά-
λαιο μελετά τις τεχνικές ανάκτησης δομικής πληροφορίας σε χαμηλού επιπέδου γλώσσες
με άμεση πρόσβαση στη μνήμη, όπως η C/C++. Τα βασικά χαρακτηριστικά της C/C++
που προκαλούν απώλεια δομικής πληροφορίας είναι:

– η δυνατότητα αποθήκευσης της διεύθυνσης μνήμης ενός πεδίου (ή θέσης πίνακα) κά-
ποιου αντικειμένου

– οι χαμηλού επιπέδου ρουτίνες δέσμευσης μνήμης (π.χ., malloc()) που αγνοούν τους
τύπους των αντικειμένων που κατασκευάζουν

– τα εμφωλευμένα αντικείμενα.

Παρουσιάζεται ένα ανανεωμένο αφηρημένο μοντέλο, με βασικό χαρακτηριστικό τη μεγα-
λύτερη διακριτότητα των αντικειμένων που κατασκευάζει, το οποίο επιτρέπει την ανεμπό-
διστη καταγραφή των τύπων σε αρκετές περιπτώσεις όπου κάτι τέτοιο δεν θα ήταν δυνατόν
με τις καθιερωμένες τεχνικές. Για να εξασφαλίσουμε κάτι τέτοιο, βασιζόμαστε σε δυναμικές
τεχνικές διασύνδεσης αντικειμένων με υπάρχοντες τύπους, των οποίων η ισχύς έγκειται
στο ότι δρουν ταυτόχρονα ως καταναλωτές αλλά και παρασκευαστές της πληροφορίας
περιεχομένων των δεικτών που υπολογίζει η βασική ανάλυση. Συγκεκριμένα, όταν η ανά-
λυση ανιχνεύει ότι η ίδια οδηγία δέσμευσης μνήμης, για την οποία δεν γνωρίζουμε τον
τύπο του αντικειμένου που κατασκευάζει, χρησιμοποιεί τη μνήμη αυτή με πολλούς διαφο-
ρετικούς τύπους, τότε για κάθε έναν από τους τύπους αυτούς, η ανάλυση κατασκευάζει
δυναμικά ένα νέο αφηρημένο αντικείμενο και το συσχετίζει με την αρχική οδηγία. Γνω-
ρίζοντας πλέον τον τύπο των αντικειμένων αυτών, η ανάλυση είναι σε θέση να χειριστεί
με ακρίβεια τη διευθυνσιοδότηση εσωτερικών πεδίων και θέσεων πινάκων τους, τα οποία
επίσης αναπαρίστανται ως διακριτά αντικείμενα με πλήρη γνώση του τύπου τους.

Παρουσιάζουμε επίσης επεκτάσεις της ανάλυσης για (1) αριθμητική δεικτών, (2) αναγνώ-
ριση ταυτοτικών διευθύνσεων μνήμης, (3) δομική συμβατότητα τύπων και (4) χειρισμό
λειτουργιών αντιγραφής μνήμης. Χρησιμοποιούμε κανόνες συμπερασμού για να παρου-
σιάσουμε το σύνολο των τεχνικών μας.

Παρέχουμε το εργαλείο cclyzer1 για στατική ανάλυση προγραμμάτων LLVM bitcode (μία
ενδιάμεση γλώσσα για C/C++ που χρησιμοποιείται από τον μεταγλωττιστή clang), το οποίο
περιλαμβάνει υλοποιήσεις των τεχνικών μας στη γλώσσα Datalog. Για την αξιολόγηση του
συνόλου των τεχνικών που παρουσιάστηκαν, συγκρίνουμε με μία από τις πιο διαδεδομέ-
νες αναλύσεις για C/C++ με δυνατότητα διάκρισης πεδίων [104, 105] και δείχνουμε πως
οι τεχνικές μας αυξάνουν σημαντικά την ακρίβεια της ανάλυσης.

Χειρισμός ανάκλασης για στατική ανάλυση Java. Το τρίτο κεφάλαιο μελετά τις τεχνι-
κές ανάκτησης δομικής πληροφορίας σε πρόγραμματα Java, τα οποία κάνουν χρήση του
μηχανισμού ανάκλασης (reflection). Ο μηχανισμός αυτός επιτρέπει σε προγράμματα Java

1Το cclyzer είναι λογισμικό ανοικτού κώδικα, προσβάσιμο στη διεύθυνση: https://github.com/
plast-lab/cclyzer

https://github.com/plast-lab/cclyzer
https://github.com/plast-lab/cclyzer


να προσομοιώσουν τη συμπεριφορά δυναμικών γλωσσών κι επιτρέπουν τη συγγραφή
πλήρως πολυμορφικού κώδικα που δεν χρειάζεται να γνωρίζει τίποτα για τους στατικούς
τύπους του προγράμματος. Η απουσία των στατικών τύπων, ωστόσο, θέτει αρκετές δυ-
σκολίες στη στατική ανάλυση του προγράμματος.

Ένα παράδειγμα χρήσης ανάκλασης είναι το παρακάτω:

1 String className = ... ;
2 Class c = Class.forName(className);
3 Object o = c.newInstance();
4 String methodName = ... ;
5 Method m = c.getMethod(methodName, ...);
6 m.invoke(o, ...);

Σε αυτές τις περιπτώσεις, μία στατική ανάλυση αδυνατεί να προβλέψει με ακρίβεια τη
μορφή των αντικειμένων που θα δημιουργηθούν και τις μεθόδους που θα κληθούν δυνα-
μικά, καθώς αυτό θα χρειαζόταν γνώση των τιμών των συμβολοσειρών (π.χ., της className)
που χρησιμοποιούνται για την ανάκτηση κλάσεων, πεδίων, ή και μεθόδων.

Οι τεχνικές που παρουσιάζουμε για την ανάκτηση δομικής πληροφορίας αντικειμένων που
σχετίζονται με κώδικα ανάκλασης είναι οι εξής:

• Μερική ανάλυση των συμβολοσειρών που χρησιμοποιούνται για ανάκτηση κλάσεων,
πεδίων και μεθόδων με χρήση ανάκλασης. Οι τεχνικές μας αποσκοπούν στην εύ-
ρεση υπο-συμβολοσειρών αυτών των ονομάτων (οι οποίες, σε αντίθεση με τις συμ-
βολοσειρές του πλήρους ονόματος, εμφανίζονται αυτούσιες στο πρόγραμμα) και να
παρακολουθήσουν τη ροή τους ακόμα κι όταν αυτή ξεπερνάει τα όρια συναρτήσεων
και περιλαμβάνει αποθήκευση σε άλλα αντικείμενα.

• Τεχνικές όμοιες με αυτές που προτείνουμε για C/C++ βασίζονται στη παρακολού-
θηση της χρήσης των αφηρημένων αντικειμένων, ως προς τους τύπους με τους
οποίους χρησιμοποιούνται (και τα πεδία ή μεθόδους που προσπελαύνουν) και την
αξιοποίηση της πληροφορίας αυτής για να καθορίσουν ποια ήταν τελικά τα ονόματα
(τύπων, μεθόδων, κ.ά.) που χρησιμοποιήθηκαν για τη δημιουργία αυτών των αντικει-
μένων, αλλά η ανάλυση προηγουμένως δεν ήταν σε θέση να γνωρίζει. Με τη γνώση
αυτή, η ανάλυση είναι πλέον σε θέση να διορθώσει τον προηγούμενο χειρισμό της
ανάκλασης και να κατασκευάσει αντικείμενα με ακριβέστερη γνώση της δομής τους.

• Αντίστοιχη τεχνική που προτείνουμε παρατηρεί επίσης την χρήση των αφηρημένων
αντικειμένων αλλά δεν διορθώνει προηγούμενο χειρισμό, παρά μόνο επεμβαίνει το-
πικά (στο σημείο που η ανάλυση αποκτά σαφέστερη γνώση για τη δομή και το τύπο
τους).

Επίσης, γίνεται μία σύγκριση της πραγματικής δυναμικής συμπεριφοράς των προγραμ-
μάτων αναφοράς DaCapo 9.12-Bach, με το αποτέλεσμα στατικής ανάλυσης που χρησι-
μοποιεί τις τεχνικές που παρουσιάζουμε. Η σύγκριση μεταξύ του δυναμικού και των στα-
τικών γράφων κλήσεων αποτυπώνει τη βελτίωση στην ορθότητα της στατικής ανάλυσης
που επιφέρουν οι τεχνικές μας.



Συμπλήρωση μερικών προγραμμάτων και ιεραρχίας τύπων. Το τέταρτο κεφάλαιο
μελετά το πρόβλημα της συμπλήρωσης ιεραρχίας κλάσεων. Η συμπλήρωση ιεραρχίας
προκύπτει κατά το γενικότερο πρόβλημα συμπλήρωσης μερικών προγραμμάτων Java,
το οποίο προτείνουμε ως μία γενική λύση στην ανάγκη ανάλυσης μερικών προγραμμά-
των. Η ανάγκη αυτή προκύπτει από τη δυνατότητα που προσφέρει η Java για εκτέλεση
μερικών προγραμμάτων (μέσω της δυναμικής φόρτωσης κλάσεων), εφόσον τα μέρη του
προγράμματος που λείπουν δεν είναι αναγκαία κατά την εκτέλεση. Η δυνατότητα αυτή έχει
δημιουργήσει τη τάση ευρείας χρήσης βιβλιοθηκών που συχνά καθιστούν μη πρακτική, αν
όχι ανέφικτη, την ανάλυση του πλήρους προγράμματος. Κατά μία έννοια, η συμπλήρωση
μερικού προγράμματους ισοδυναμεί με την ανάκτηση της χαμένης δομικής πληροφορίας
για τους τύπους που απουσιάζουν και ανακατασκευάζονται ως μέρος του ((συμπληρώμα-
τος)).

Η συμπλήρωση ιεραρχίας αφορά την ικανοποίηση ενός συγκεκριμένου υποσυνόλου πε-
ριορισμών που προκύπτουν κατά τη συμπλήρωση προγράμματος: των περιορισμών υπο-
τυπισμού (του τύπου, η κλάση 𝐴 πρέπει να είναι υποτύπος της κλάσης 𝐵). Το πρόβλημα
της συμπλήρωσης ιεραρχίας εξετάζεται σε περιβάλλοντα μονής, πολλαπλής, και μεικτής
κληρονομικότητας. Σε κάθε περίπτωση, προσφέρουμε μία γραφοθεωρητική μοντελοποί-
ηση του προβλήματος, καθώς και αλγόριθμο που το επιλύει.

Το Σχήμα 1 παρουσιάζει ένα παράδειγμα του προβλήματος για μεικτή κληρονομικότητα.
Στα αριστερά έχουμε την είσοδο του προβλήματος που περιλαμβάνει την υπάρχουσα με-
ρική ιεραρχία καθώς και τους περιορισμούς υποτυπισμού ως διακεκομμένες ακμές. Στα
δεξιά έχουμε μία πιθανή λύση του προβλήματος: μία πλήρη ιεραρχία, η οποία ικανοποιεί
όλους τους περιορισμούς υποτυπισμού στα αριστερά (δηλαδή για κάθε διακεκομμένη
ακμή στα αριστερά, υπάρχει ένα αντίστοιχο μονοπάτι στην πλήρη ιεραρχία που παρου-
σιάζεται δεξιά). Αυτοί οι περιορισμοί θα πρέπει να ικανοποιηθούν δίχως να αλλάξουν οι
εξερχόμενες ακμές των διαθέσιμων τύπων (αφού αυτοί αντιστοιχούν σε κώδικα που ήδη
διαθέτουμε). Το μαύρο μέρος της πλήρης ιεραρχίας (το οποίο αντιστοιχεί στα interfaces)
θα πρέπει τελικά να σχηματίζει έναν κατευθυνόμενο ακυκλικό γράφο (λόγω πολλαπλής
κληρονομικότητας), ενώ το λευκό μέρος (το οποίο αντιστοιχεί στις κλάσεις) θα πρέπει να
είναι ένα δέντρο (λόγω μονής κληρονομικότητας). Παρουσιάζουμε αρκετά παραδείγματα
που δείχνουν πως η συμπλήρωση ιεραρχίας κλάσεων είναι σαφώς το δυσκολότερο βήμα
στο γενικότερο πρόβλημα της συμπλήρωσης μερικών προγραμμάτων.

Για την αξιολόγηση των τεχνικών μας, υλοποιήσαμε το εργαλείο JPhantom2, για συμπλή-
ρωση μερικών προγραμμάτων Java, το οποίο παρέχει υλοποιήσεις όλων των αλγορίθμων
συμπλήρωσης ιεραρχίας τύπων που παρουσιάζουμε. Το JPhantom δέχεται ως είσοδο
Java bytecode, στη μορφή ενός JAR αρχείου. Αφού επεξεργαστεί το αρχείο αυτό και ανι-
χνεύσει όλους τους υπάρχοντες περιορισμούς για τους τύπους που λείπουν, υπολογίζει
μία πλήρη ιεραρχία τύπων κι έπειτα κατασκευάζει το συμπλήρωμα του προγράμματος με
βάση τα προηγούμενα.

Τέλος, δείχνουμε αποτελέσματα της εφαρμογής του JPhantom σε σύνθετα και ρεαλιστικά

2Το JPhantom είναι λογισμικό ανοικτού κώδικα, προσβάσιμο στη διεύθυνση: https://github.com/
gbalats/jphantom

https://github.com/gbalats/jphantom
https://github.com/gbalats/jphantom
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Σχήμα 1: Παράδειγμα ενός γράφου περιορισμών ιεραρχίας τύπων για την πλήρη Java. Οι διπλοί
κύκλοι αντιστιχούν σε υπάρχοντες τύπους (classes/interfaces), των οποίων οι εξερχόμενες ακμές
στη λύση είναι προκαθορισμένες και αναπαρίστανται ως κανονικές ακμές στον αρχικό γράφο. Οι
διακεκομμένες ακμές εκφράζουν τους υπάρχοντες περιορισμούς υποτυπισμού. Οι λευκοί κόμβοι
αναπαριστούν κλάσεις, οι μαύροι κόμβοι αναπαριστούν intefaces, και οι γκρίζοι κόμβοι αναπαρι-
στούν τύπους οι οποίοι αρχικά είναι αγνώστου είδους.

προγράμματα. Το JPhantom είναι σε θέση να διεκπεραιώσει τη συμπλήρωση των περισ-
σότερων προγραμμάτων με αρκετά χαμηλό χρόνο εκτέλεσης. Ενδεικτικά, αναφέρουμε ότι:

• η συμπλήρωση της βιβλιοθήκης logback-classic ολοκληρώνεται σε λιγότερο από 2
δευτερόλεπτα, ενώ παράγει 148 κλάσεις συμπληρώματος και ικανοποιεί 212 διαφο-
ρετικούς περιορισμούς υποτυπισμού

• η συμπλήρωση της βιβλιοθήκης jruby (μεγέθους 19MB) απαιτεί 14 δευτερόλεπτα και
αποτελεί τον μεγαλύτερο χρόνο εκτέλεσης που έχουμε δει στη πράξη.

Δείχνουμε επίσης πως η συμπλήρωση μερικού προγράμματος (δηλαδή, η ανάκτηση της
χαμένης δομικής πληροφορίας για τους τύπους που απουσιάζουν) βελτιώνει τη στατική
ανάλυση του προγράμματος, όπως αυτή πραγματοποιείται από το εργαλείο Doop. Συγκε-
κριμένα, συγκρίνουμε τρεις αναλύσεις:

• αυτή του αρχικού (πλήρους) προγράμματος,



• την ανάλυση του μερικού προγράμματος (χωρίς συμπλήρωση), και

• την ανάλυση του μερικού προγράμματος με συμπλήρωση.

Μετρώντας τις προσβάσιμες μεθόδους (δηλαδή αυτές που η εκάστοτε ανάλυση υπολογίζει
πως είναι δυνατόν να φθάσει κάποια πιθανή εκτέλεση) βλέπουμε ότι, δίχως συμπλήρωση,
η ανάλυση του μερικού προγράμματος αποκλίνει εξαιρετικά από την ανάλυση του πλήρους
προγράμματος (λόγω ελλιπούς χειρισμού). Από την άλλη, η συμπλήρωση αντιμετωπίζει
σε μεγάλο βαθμό αυτό το πρόβλημα και καταφέρνει να προσεγγίσει σημαντικά τη πλήρη
εικόνα.

Στο πέμπτο κεφάλαιο διερευνούμε σχετική ερευνητική δουλειά, για τα τρία βασικά μέρη
του συνόλου των τεχνικών που παρουσιάσαμε. Έπειτα, αναφέρουμε πηγές σχετικές με
τον ευρύτερο τομέα της στατικής ανάλυσης προγραμμάτων και παρουσιάζουμε διαφορε-
τικές μεθοδολογίες με ιδιαίτερο ενδιαφέρον. Κλείνοντας, στο έκτο και τελευταίο κεφάλαιο
παρουσιάζονται μελλοντικές ερευνητικές κατευθύνσεις και τελική εκτίμηση της διατριβής.
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Recovering Structural Information for Better Static Analysis

1. INTRODUCTION

Smokey, my friend, you are entering a
world of pain.

Walter Sobchak

Static program analysis is a vast field with broad uses; an umbrella term for many different
methodologies (Hoare logic [41, 59, 102, 110], model checking [25, 26, 37, 106], symbolic
execution [19, 60, 70, 103], abstract interpretation [27–29], data-flow analysis [64, 68, 69,
96, 108, 117], and so on) that aim to automatically obtain an understanding of a program’s
behavior, without running it. Nowadays, one form or another of static analysis can be
found in many different contexts: compilers, IDEs, editors, linters, or even dedicated bug
finders and security analyzers. The ends of a static analysis tool are equally diversified,
ranging from bug finding and program verification to optimization, or even aided program
comprehension.

Along with static analysis tools, programming languages have evolved as well, becoming
more high-level throughout the years, introducing many layers of abstraction, before even-
tually translating the program to the machine’s native opcodes. High-level languages are
appealing because they are easier to program in, and maintain. Less programming effort
(e.g., in terms of lines of code) is needed to express some computation. Virtual machines
have even abstracted away the platform where the code will run. Instead, programs of
managed languages are translated to machine code for some virtual machine, and hence
may run on any platform that provides a backend that emulates this virtual machine.

Software has evolved too. Complex design patterns, immense libraries, frameworks im-
plementing inversion of control, over-involved build tools, and many other complicacies
pose significant challenges to program understanding.

As one would expect, static analyses have struggled to keep up with the ever-increasing
complexity of software and the programming languages it is written in; the very task of
automated program understanding has become daunting, yet even more valuable.

The most promising and powerful of existing static analysis techniques rely on the creation
of some abstract memory model of the program. What objects will the memory contain,
at some state of execution? What will their structure be like? A faithful abstract represen-
tation of the actual memory is, however, a demanding task; its precision often decisive
for the value of whatever the static analysis is aiming to eventually compute (be it the
identification of complex bug patterns or the opportunities for effective optimizations).

Thesis.

There is implicit structural information in the program, about the memory it
will allocate, that can improve the quality of the abstract memory model con-
structed by static analysis. This structural information is not readily available,
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but may be recovered via inference, primarily by tracking the use of types in
the program.

We provide a number of techniques that recover such lost memory structure, in two differ-
ent settings: (1) in C/C++ programs, as a typical case of low-level code with direct memory
access, where the program’s memory structure is often lost due to specific programming
idioms and the inherent low-level nature of the language, and (2) in Java programs, where,
despite the high-level nature of the language, structural information may be lost (a) for par-
tial programs (i.e., libraries or any programs that lack some of their parts), which, in the
form of Java Archives (JARs), constitute the main distributable code entity of this managed
language, or (b) due to Java’s reflection mechanism, which allows runtime inspection of
classes, interfaces, fields and methods, and can be used to instantiate new objects, in-
voke methods, get/set field values, and so on, without exact static type information (e.g.,
the name of the method to be invoked can be created dynamically using plain string op-
erations).

1.1 Impact

In this section, we will briefly explain the main contributions of this dissertation, from both
a scientific and a practical perspective.

1.1.1 Scientific Contributions

A weakly-typed language, such as C or C++, exposes pointers as numeric values and
allows the programmer to perform arbitrary arithmetic on them. These pointer arithmetic
capabilities can be used to bypass the language’s type system. Objects may be allocated
in memory without any local information about their intended type, at the allocation site. In
fact, the norm for most heap-allocating routines (e.g., malloc()) is to return just an array
of bytes. These allocations, while in this untyped state, flow to various other instructions
and may be even stored to type-agnostic raw pointer variables. Normally, when such
an allocation was intended to create an object of type 𝑇 , a cast instruction or an implicit
conversion will be used prior to any other instruction that expected an object of this specific
type.

Pointer analysis is a static program analysis that determines the values of pointer variables
or expressions. For each pointer, it computes a set of memory allocations that the pointer
may point to. We refer to this as the points-to set of a variable. Since computing an
exact model of memory is undecidable, a static analysis needs to sacrifice precision for
computability. Thus, the memory allocations of pointer analysis are mere abstractions; a
single allocation may represent many concrete objects during some program execution.
One such popular abstraction represents memory objects by their allocation sites. Hence,
any number of concrete objects allocated at the same instruction correspond to a single
abstract object.
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In the case of C/C++ programs, the first scientific contribution is a revised abstract memory
model that differs from the classic allocation-site abstraction approach, by introducing
many more abstract objects (not just one per allocation site). Such a finer granularity,
in terms of memory abstraction, is a key step for the analysis to maintain strong type
information for its abstract objects. After all, the same allocation site can be used in C to
create allocations of more than one distinct type. Also, as will be explained later, C allows a
pointer variable to point to some field of an allocated object. We tackle this by representing
fields and array indices of abstract objects as separate abstract (sub-)objects with their
own points-to sets. Hence, the pointer analysis can differentiate between pointing to some
abstract object, and pointing to one of its fields (or array indices). This is commonly known
as field sensitivity. Due to C’s exposure of pointers, a field-sensitive pointer analysis is
much harder to implement than in a language that does not provide direct memory access
(e.g., Java). Our revised memory model aims to extend the domain of abstract objects to
naturally express field sensitivity for C and C++.

The second scientific contribution in the C/C++ setting is a technique to enhance pointer
analysis precision by on-the-fly associating and maintaining type information for all ab-
stract objects in memory. By the term “on-the-fly”, we mean that any object-type associ-
ation is performed simultaneously with the pointer analysis itself (in a manner similar to
on-the-fly call-graph construction). The pointer analysis uses the inferred types of abstract
objects to produce new points-to facts or filter spurious inferences due to type incompat-
ibility. The points-to sets, on the other hand, drive the creation of new object-type asso-
ciations that may again alter the produced points-to sets, and so on—all partaking in an
interdependent recursive cycle of computation.

We use this technique to collect type hints—indications that some abstract object has type
𝑇—and for each type discovered we (on-the-fly again) create a new (typed) variant of
the original abstract object. Thus, the same allocation site may produce multiple abstract
objects for different types, while those types will be determined through the pointer analysis
itself. The plethora of abstract objects generated by this technique is in line with the fine-
grained property of our revised abstract memory model.

As an example of a type hint, which demonstrates how these two techniques interact,
consider a field access ((P*) p)->f. Due to analysis imprecision, the analysis may be
unable to reason about the type of the abstract object(s) that p points to (as it could have
been allocated via a generic malloc() call with no type indication). Or, it may even have
computed that p points to objects of incompatible type (that do not contain any f field,
whatsoever). However, given the present static type information, the analysis will mark P
as one of the possible types of the base abstract object 𝑜𝑏𝑗 (for any 𝑜𝑏𝑗 that p may point
to), if the type of the latter is yet unknown. Other objects with known yet incompatible
types will be filtered out. Thus, the analysis will create a new typed abstract object 𝑜𝑏𝑗𝑃
of type P, which will also flow to the points-to set of variable p. This object will now be
eligible as the base address for accessing field f (type compatibility is guaranteed by the
compiler). Finally, the analysis will compute that the expression p->f points to the (typed)
abstract subobject that represents field f of 𝑜𝑏𝑗𝑃 . Hence, at field accesses the analysis
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will always be able to recover potentially lost structural information.

In the realm of Java, the challenges are quite different. Java is a statically and strongly
typed language that does not expose pointers. All objects (except those of primitive types)
are allocated on the heap, and accessed via references (allocated on the stack). Refer-
ences are the disciplined equivalent of a C pointer, and allow no pointer arithmetic at all.
All heap allocations of Java have a single (dynamic) type, declared at the allocation site.
Objects of composite types can only contain references to other objects and there is no
way to store a reference to an object’s field. Hence, pointer analysis can be expressed
via a much simpler memory model, based on the allocation-site abstraction.

However, Java has another crucial difference from C/C++: it is a managed language.
All Java code is translated to a platform-independent IR, which is Java bytecode, to be
executed by a Java Virtual Machine (JVM). Using just-in-time (JIT) compilation, the JVM
will translate the bytecode to machine code—more precisely, the JVMwill jit-compile some
parts of the bytecode, specifically, the most frequently called methods or methods with
long-running loops (also known as hot spots), and interpret the rest of it [71].

Java also introduces the concept of a Java Archive (JAR), which is a bundle of class files
(compilation units in bytecode format), and possibly other files as well, using a ZIP file
format. Since JARs contain essentially bytecode, they are platform-independent as well.
Build tools, such as Apache Maven [9], Gradle [45], and Apache Ant [8] have been de-
veloped that provide dependency management for Java projects, by automatically down-
loading Java libraries (in the form of JARs) from online repositories. A Java project needs
only provide a list of dependencies, in the form of a well-defined library name and a ver-
sion number, and its build tool will handle the rest (such as resolving the libraries, and
downloading the relevant JARs, including any transitive dependencies they might have).

Aside from the fact that C/C++ is not intended to run on a virtual machine, there are many
other reasons why such automatic dependency management and distribution of compiled
artifacts is not as common as in Java. To list a few complications:

– A C/C++ library would also need to distribute its header files, so that one would be able
to compile against it. There are no header files in Java.

– Aside from providing several versions of a library for different platforms, one would have
to provide many versions for different binary compatibility standards as well (Itanium,
MSVC8, MSVC9, etc).

– Due to ABI changes, even different versions of the language (e.g., C++98 vs C++11)
can break binary compatibility in some cases, for code compiled by different compilers
or even from different versions of the same compiler.

– By design, Java class files tend to be quite small in size (a few kilobytes at most). For
instance, size is one of the main reasons why Java bytecode is a stack-based represen-
tation (i.e., it uses a stack instead of variables to contain the operands of each instruc-
tion). C++ object files are considerably less compact. An alternative IR, specifically
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designed to reduce code size, could be a necessity, to be able to maintain repositories
that contain vast collections of precompiled libraries.

– Java has no explicit link phase that combines compilation units to form an executable
program. All classes are linked dynamically in Java (via class loaders), when they are
loaded into the JVM. Classes are loaded on demand and the runtime system does not
need to know about specific filesystem paths, at all. One could even compile a class
against one version of a library, but provide another version at runtime, as long as the
relevant signatures match. In C++, compilation involves linking as well.
The only practice that remotely resembles Java’s dynamic class loading is shared li-
braries (or dynamic-link libraries (DLLs), in Windows). However, those have their own
pitfalls. For instance, a single unresolved symbol (missing DLL) will forbid the program
from executing at all. Due to complex dependency chains, even identifying the missing
DLL is often a difficult task.

All these limitations would make distributing compiled artifacts of C/C++ only marginally
better than distributing the code itself.

Now that we have established some of the reasons that account for the prevalence of
JARs, we can switch our focus to static analysis again. As far as static analysis is con-
cerned, JARs can be thought of as partial programs, since they only contain a subset of
the program’s classes. In the Java world, where JARs are the most easily obtainable ar-
tifact (for the aforementioned reasons), it would be too restrictive from the part of a static
analysis to require a whole program to analyze.

Moreover, requiring the whole program (which could comprise a multitude of libraries due
to transitive dependencies) could be inconsequential as well. A program often uses an
external library 𝐴, which in turn depends on another library 𝐵, but only needs a subset of
𝐴’s functionality that does not touch𝐵 in any way. Library𝐵 is a transitive dependency but
may be entirely redundant in any possible execution of the program. (As we have already
noted, a C/C++ program cannot even execute in case of undefined symbols, even those
due to missing transitive dependencies.)

The analysis of partial Java programs is, thus, meaningful as some missing
parts of code are neither required nor needed for a program to run.

This raises the question:

What are the challenges of statically analyzing partial Java programs, as in the
form of JAR files, or any non-complete (w.r.t. the whole program) collection of
class files?

One of the main challenges is that any partial programmay fail to satisfy even basic sound-
ness guarantees, as those presumed by the Java verifier itself. Static analysis tools are
rarely robust enough to analyze such programs without risking disruptive effects to their
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results—that is, if they succeed at running at all. Handling phantom types (e.g., classes
referenced in the partial program, with missing definitions), for which no structural infor-
mation exists, can throw off even basic assumptions or invariants of a static analyzer.

Themost vital aspect of themissing structural information is the class hierarchy, the knowl-
edge of subtyping relationships among the various types defined in the program. A partial
program provides only a part of the complete class hierarchy; however, many more sub-
typing relationships are implied in the code itself. For instance, calling a known method
that expects a parameter of type A, with an argument of type AImpl, implies that AImpl is
a (transitive) subtype of A, even in the case that any of the definitions of these two class
types are missing. The (complete) original class hierarchy is guaranteed to satisfy this
constraint.

Hence, we outline the problem of class hierarchy complementation of partial Java pro-
grams:

Given a partial program, how to compute a complete class hierarchy that sat-
isfies any implied type constraint, as expressed in the Java bytecode specifi-
cation [83].

To compute such a complete class hierarchy is far from trivial. If not done correctly, we
could easily end up introducing cyclic dependencies between types (e.g., A is a subtype of
B and B is a subtype of A), which would violate the language semantics. We can express
this problem in pure graph-theoretic terms. The result is two interesting, if not fundamental,
graph-theoretic problems that could as well arise in completely different settings due to
their generality:

Multiple Inheritance. Given a directed acyclic graph, with a subset of “fixed” nodes (which
correspond to our known non-phantom classes), and a set of binary path constraints
among the nodes (of the form𝑌 reachable from𝑋), how can we extend the graph by
adding new edges that do not originate from the “fixed” nodes, so that (i) the graph
remains acyclic, and (ii) all path constraints are satisfied (i.e., for each constraint
between nodes 𝑋 and 𝑌 , there exists a path from 𝑋 to 𝑌 in the final graph).

Single Inheritance. The problem statement is the same as in the previous setting, with
one more constraint: the output graph should be a directed tree (instead of a DAG).

As to the solution of the class hierarchy complementation problem, we provide algorithms
to solve it in both the multiple and single inheritance cases. More specifically, (1) we
present a polynomial-time algorithm that solves any instance of the problem in the multi-
ple inheritance setting, as well as a proof of correctness. For the single inheritance setting,
(2) we provide a polynomial-time algorithm for a slightly simplified setting (yet practically
quite common): when no phantom supertypes for fixed (i.e., non-phantom) nodes are al-
lowed. For the general (single inheritance) case, (3) we provide an algorithm that may
perform an exponential search in the worst case, but with many heuristics to improve its
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performance. Also, for languages such as Java, with single inheritance but multiple sub-
typing and distinguished class vs. interface types, (4) we demonstrate how the problem
can be decomposed into separate single- and multiple-subtyping instances.

Finally, another ubiquitous feature of Java programs that accounts for leaked structural
information in most kinds of static analyses is Java’s reflection. Reflection allows pro-
grammers to dynamically inspect objects and classes, find out what methods and fields
they declare, and access or modify them in whatever way possible. Given that a Java
program can reflectively obtain a member of a class object given just run-time strings, for
a static analysis to determine what objects are involved in reflective operations it would
need some form of sophisticated string value analysis at least. Even that could prove in-
sufficient in cases where the strings involved come from external sources (e.g., properties
files) or are constructed using such low level operations that cannot be modeled precisely
enough by the value analysis at hand.

A technique that can be used to recover missing types in reflective operations, without any
need for string analysis, is similar to the one we use in the C/C++ setting to discover the
types of untyped abstract objects on-the-fly by inspecting their normal flow in the pointer
analysis itself. Specifically, we can treat casts (that reflectively generated objects flow to)
as type hints for their respective class objects, if we lack more precise type information.
The principle is the same: to interleave, into the main points-to analysis, logic that asso-
ciates types to statically untyped abstract objects, so that these two analysis components
can profit from their symbiotic relationship (one being both consumer and producer of the
other).

In conclusion, we briefly list the main scientific contributions of this dissertation in both the
C/C++ and Java settings:

– a revised abstract memory model for field-sensitive points-to analysis of C/C++ pro-
grams

– a technique to recover missing structural information and enhance C/C++ pointer analy-
sis precision by on-the-fly associating and inferring missing type information for abstract
objects in memory

– a technique to recover missing structural information in Java programs that use reflec-
tion that is based on the same principle as in the C/C++ analysis but targets objects
involved in reflective operations

– the graph-theoretic modeling of the class hierarchy complementation problem for partial
Java programs

– algorithms that solve the class hierarchy complementation problem for both single and
multiple inheritance, as well as Java’s mixed inheritance (i.e., single inheritance/multiple
subtyping) setting.
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1.1.2 Practical Contributions

Aside from the scientific contributions of this work, there are significant practical aspects
as well. Our techniques are reified in two tools offering immediate real-world benefits.
Before we go into these tools and consider their respective gains, we first discuss an
important point in the design space of static analyzers, in general, and in that of our tools
in particular.

A crucial engineering choice of any static analysis framework is to determine its interaction
with the language’s build system(s), if any, and the exact point when the analyzer can
intervene in the software’s build cycle in order to analyze it. This will also have direct
repercussions on the nature of the analysis inputs.

For instance, a static analysis tool may choose to completely ignore the compilation and
build process, and directly analyze source code—this is an approach most often followed
by tools performing superficial (mostly syntactic) analysis, such as linters. Being able
to analyze software by requiring (only) its source code, can be a blessing or a curse.
From a technical standpoint, source code is often very difficult to analyze, given that a
language is most often designed to be expressive and may contain a large number of
(possibly redundant) syntactic constructs; plain syntactic sugar. A much more minimal
core, with the same expressiveness, yet easier to analyze, can often be obtained by some
transformation. In fact, the technique of lowering the source language, in a series of
steps, to a more fundamental form with simpler syntax each time is a standard strategy
of compilers, before they finally transform the end result (which, near the end, should
be a very simple IR) to machine code. Thus, a static analysis tool that directly analyzes
source code could benefit greatly by hooking to the compiler or performing analysis post
compilation. On the other hand, being close to the source code can be valuable for the tool
if it needs to report its findings to the end user. The identification of a bug can have little to
no value, if the programmer is not able to easily understand how and where it canmanifest.
Thus, reporting a bug by identifying it in some low-level IR (that the programmer knows
nothing about) is meaningless, unless the problem can be traced back to the original
source code. Apart from technical matters, another factor to consider is the availability of
the source code. A programmer that uses a static analysis tool may not be able, or willing,
to provide source code in the first place.

A diametrically opposed alternative is to analyze the final product of the build process:
an executable binary. There are more advantages to such an approach, other than code
(un)availability. First, the WYSINWYX phenomenon (i.e., “What You See Is Not What You
eXecute”) may account for many missed bugs and vulnerabilities, when the analysis is
performed on source code [12]. The main reasons for such discrepancies, are:

⋅ platform-specific compiler choices
⋅ post-compilation modifications to programs
⋅ (strictly) undefined behavior that is, however, allowed by the compiler
⋅ dynamically linked libraries (DLLs), which are typically not available in source-code form
⋅ inlined assembly code.
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Also, analyzing binaries has, in general, wider applicability, since the same analysis can
handle any number of compiled language(s).

Finally, there is a range of options depending on the language being analyzed, that lie
between analyzing source code and binaries. That is, a static analyzer may opt to target
an intermediate representation (IR), such as Java Bytecode for languages running on the
JVM [83]. The advantages of analyzing Java bytecode, for instance, are the following:

⋅ Java bytecode is, syntactically, much simpler than Java and hence easier to analyze
⋅ most libraries are available in bytecode format; thus, the analysis does not need to
provide stubs that model library behavior

⋅ the analysis may, in principle, support any language that runs on the JVM (since it will
be compiled to bytecode).

However, analyzing bytecode shares many of the downsides of both the source-code and
binary approaches. The WYSINWYX phenomenon may still arise, and requiring to have
a working build for a project may be too optimistic in some cases. Hence, all three ap-
proaches have their respective benefits and limitations; none is clearly superior to another.

The first major practical contribution of this work is an implementation of our techniques
for analyzing C/C++ programs in cclyzer,1 a static analysis tool for LLVM bitcode. LLVM
bitcode is a low-level RISC-like intermediate representation, used by the LLVM compiler
infrastructure [72] that wewill thoroughly present in Chapter 2. Hence, instead of analyzing
source or binaries, we chose this IR as our analysis target for reasons similar to those
presented for preferring Java bytecode. LLVM bitcode is already being used by a number
of tools for many different types of static analysis [50, 55, 75, 76, 78, 129].

Besides field sensitivity and our revised abstract memory model to fully support it, Chap-
ter 2 introduces a limited form of array sensitivity, so that the analysis can differentiate
between different array indices in some cases. The combination of these techniques,
all implemented in cclyzer, are powerful enough to allow analyzing C/C++ programs as
though written in a higher-level language, while maintaining a good level of precision. Con-
sider the invocation of a virtual method in C++. In LLVM bitcode, or in any object layout that
adheres to the Itanium C++ ABI [62] for that matter, virtual tables are represented as con-
stant arrays of function pointers. Also, an object (i.e., class instance) contains a v-pointer
field to its respective v-table. Thus, a virtual call is translated to a series of instructions:

⋅ a load instruction that dereferences the object’s v-pointer to get its v-table
⋅ an instruction that adds a relative offset to the start of the v-table, to go to the v-table
slot that corresponds to the declared method of the call

⋅ a second load instruction that dereferences this specific v-table slot to get the actual
(possibly overriden) method that will be called.

A virtual call in Java bytecode would instead by translated to an invokevirtual instruction,
without exposing the object layout internals or the implementation of dynamic dispatch.
However, due to the low-level nature of C/C++, this is not an option for any IR generic
enough to support the full language. Therefore, a practical contribution of cclyzer is that

1cclyzer is publicly available at https://github.com/plast-lab/cclyzer
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the analysis it performs is able to precisely resolve the method being called, given such
translations, as long as it can determine the dynamic type of the receiver object. This is
the same level of precision as one would expect from a typical points-to analysis targeting
Java.

Regarding the Java setting and the class hierarchy complementation problem, we have
implemented JPhantom,2 a tool that accepts any partial Java program in the form of a
JAR file, and generates a complete program containing skeletal versions of any refer-
enced missing classes and interfaces so that the combined result constitutes verifiable
Java bytecode with a complete class hierarchy. This tool does not depend on a specific
analysis being run. Rather, it can be used as a preprocessing step for any static analysis
tool, to allow the analysis of any partial Java program without having to provide custom
solutions for the class hierarchy complementation problem or deal with missing references
at all.

1.2 Outline

The rest of this dissertation is organized as follows:

– Chapter 2 presents a structure-sensitive pointer analysis for C/C++ programs that em-
ploys a fine-grained object abstraction, in order to preserve and be able to recover
missing structural information.

This chapter is based on research already presented in “Structure-Sensitive Points-To
Analysis for C and C++” [14], but also includes extensions.

– Chapter 3 examines how the reflection capabilities of Java can hinder traditional pointer
analyses, and then presents techniques for analyzing reflection (interwoven into the
main pointer analysis) to overcome such limitations.

This chapter drawsmaterial from “More Sound Static Handling of Java Reflection” [121].

– Chapter 4 introduces the class hierarchy complementation problem and presents al-
gorithms to solve it, in various inheritance settings. It discusses the design and im-
plementation of JPhantom, a tool that employs such algorithms to perform the actual
complementation, and evaluates its performance.

This chapter presents research previously published in “Class Hierarchy Complemen-
tation: Soundly Completing a Partial Type Graph” [13].

– Chapter 5 first discusses related work that is specific to the previous chapters, and then
expands to various other interesting subjects in the broader realm of static analysis.

Some parts of this chapter are based on the aforementioned papers [13, 14, 121], and
some on the survey “Pointer Analysis” [120].
2JPhantom is publicly available at https://github.com/gbalats/jphantom
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– Chapter 6 concludes this dissertation by assessing our initial thesis and discussing fu-
ture work.
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2. STRUCTURE-SENSITIVE POINTS-TO ANALYSIS
FOR C AND C++

Smokey, this is not ’Nam. This is
bowling. There are rules.

Walter Sobchak

In the first chapter, we discussed how a static analysis needs to compute an abstract model
of memory, but often fails to provide the right abstractions to handle certain aspects of the
language being analyzed. This, in turn, leads to a memory model that lacks essential
structural information about objects allocated in memory. In C/C++, as a typical example
of a language that provides direct memory access, field-insensitive analyses (providing
crude abstractions that even fail to distinguish an object from its fields) have long been
the favorite approach of most pointer analyses in the literature, due to their simplicity and
speed. Such imprecision is prohibitive for a meaningful analysis of C++ programs, where
one must extend beyond field sensitivity to be able to reason about v-tables and virtual
calls precisely enough.

This chapter presents a points-to analysis for C/C++ that recovers much of the available
high-level structure information of types and objects, by applying two key techniques: (1) It
records the type of each abstract object and, in caseswhen the type is not readily available,
the analysis uses an allocation-site plus type abstraction to create multiple abstract objects
per allocation site, so that each one is associated with a single type. (2) It creates separate
abstract objects that represent (a) the fields of objects of either struct or class type, and
(b) the (statically present) constant indices of arrays, resulting in a limited form of array-
sensitivity.

We apply our approach to the full LLVM bitcode intermediate language and show that it
yields much higher precision than past analyses, allowing accurate distinctions between
subobjects, v-table entries, array components, and more. Especially for C++ programs,
this precision is invaluable for a realistic analysis. Compared to the state-of-the-art past
approach, our techniques exhibit substantially better precision along multiple metrics and
realistic benchmarks (e.g., 40+% more variables with a single points-to target).

2.1 Overview of Techniques Towards Structure Sensitivity

Points-to analysis computes an abstract model of the memory that is used to answer the
following query: What can a pointer variable point-to, i.e., what can its value be when
dereferenced during program execution? This query serves as the cornerstone of many
other static analyses aiming to enhance program understanding or assist in bug discovery
(e.g., deadlock detection), by computing higher-level relations that derive from the com-
puted points-to sets. In the literature, one can find a multitude of points-to analyses with
varying degrees of precision and speed.
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One of the most popular families of pointer analysis algorithms, inclusion-based analy-
ses (or Andersen-style analyses [7]), originally targeted the C language, but has been
extended over time and successfully applied to higher-level object-oriented languages,
such as Java [16, 20, 92, 113, 132]. Surprisingly, precision-enhancing features that are
common practice in the analysis of Java programs, such as field sensitivity or online call-
graph construction are absent in many analyses of C/C++ [32, 49, 52, 53, 56, 138].

In the case of field sensitivity, the reason behind its frequent omission when analyzing C is
that it is much harder to implement correctly than in Java. As noted by Pearce et al. [105],
the crucial difference is that, in C/C++, it is possible to have the address of a field taken,
stored to some pointer, and then dereferenced later, at an arbitrarily distant program point.
In contrast, Java does not permit taking the address of a field; one can only load or store to
some field directly. Hence, load/store instructions in Java bytecode (or any equivalent IR)
need an extra field specifier, whereas in C/C++ intermediate representations (e.g., LLVM
bitcode) load/store requires only a single address operand. The precise field affected is
not explicit, but only possibly computed by the analysis itself.

The effect of such difference in the underlying IRs, as far as pointer analysis is concerned,
is far from trivial. In C, the computed points-to sets have an expanded domain, since now
the analysis must be able to express that a variable p at some offset imay point-to another
variable q at some offset j, with these offsets corresponding to either field components or
array elements.

The best-documented approach on how to incorporate field sensitivity in a C/C++ points-
to analysis is that of Pearce et al. [104, 105]. The authors extend the constraint-graph
of the analysis by adding (positive) weights to edges; the weights correspond to the re-
spective field indices. For instance, the instruction “q = &(p->fi)” would be encoded as
a constraint 𝑞 ⊇ 𝑝 + 𝑖. However, this approach does not take types into account. In fact,
types are not even statically available at all allocation sites, since most standard C allo-
cation routines are type-agnostic and return byte arrays that are cast to the correct type
at a later point (e.g., malloc(), realloc(), calloc()). Thus, field 𝑖 is represented with
no regard to the type of its base object, even when this base object abstracts a number
of concrete objects of different types. As we shall see, the lack of type information for
abstract objects is a great source of imprecision, since it results in a prohibitive number of
spurious points-to inferences.

We argue that type information is an essential part in increasing analysis precision, even
when it is not readily available. The abstract object types should be rigorously recorded in
all cases, especially when indexing fields, and used to filter the points-to sets. In this spirit,
we present a structure-sensitive analysis for C/C++ that employs a number of techniques
in this direction, aiming to retrieve high-level structure information for abstract objects in
order to increase analysis precision:

1. First, the analysis records the type of an abstract object when this type is available
at the allocation site. This is the case with stack allocations, global variables, and
calls to C++’s new() heap allocation routine.
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2. In cases where the type is not available (as in a call to malloc()), the analysis de-
viates from the allocation-site abstraction and creates multiple abstract objects per
allocation site: one for every type that the object could have. Thus, each abstract
object of type T now represents the set of all concrete objects of type T allocated
at this site. To determine the possible types for a given allocation site, the analysis
creates a special type-less object and records the cast instructions it flows to (i.e.,
the types it is cast to), using the existing points-to analysis. This is similar to the use-
based back-propagation technique used in past work [80, 85, 124], in a completely
different context—handling Java reflection. We will examine this technique in detail,
in Chapter 3.

3. The field components of abstract objects are represented as abstract objects them-
selves, as long as their type can be determined. That is, an abstract object SO of
struct type S will trigger the creation of abstract object SO.fi, for each field fi in S.
(The aforementioned special objects trigger no such field component creation, since
they are typeless.) Thus, the recursive creation of subobjects is bounded by the type
system, which does not allow the declaration of types of infinite size.

4. Finally, the analysis treats array elements similarly to field components (i.e., by rep-
resenting them as distinct abstract objects, if we can determine their type), as long
as their respective indices statically appear in the source code. That is, an abstract
object AO of array type [T×N] will trigger the creation of abstract object AO[c], if the
constant c is used to index into type [T×N]. The object AO[*] is also created, to
account for indexing at unknown (variable) indices.

As we shall see, the last point offers some form of array-sensitivity as well and is crucial
for analyzing C++ code, lowered to an intermediate representation such as LLVM bitcode,
in which all the object-oriented features have been translated away. To be able to resolve
virtual calls, an analysis must precisely reason about the exact v-table index that a variable
may point to, and the method that such an index may itself point-to. That is, a precise
analysis should not merge the points-to sets of distinct indices of v-tables.

In summary, the work presented in this chapter makes the following contributions:

• It presents a structure-sensitive pointer analysis that employs key techniques, es-
sential in retrieving high-level structure information of heap objects, thus significantly
increasing the precision of the analysis.

• The analysis is implemented and evaluated in cclyzer1, a new pointer analysis
framework that operates on LLVM Bitcode. The pointer analysis is expressed in
a fully declarative manner, using Datalog.

• We evaluate the precision of our structure-sensitive analysis by comparing to a re-
implementation of the Pearce et al. [104, 105] analysis, also operating over the full

1cclyzer is publicly available at https://github.com/plast-lab/cclyzer
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LLVM bitcode language. We show that our techniques provide a major precision
enhancement for realistic programs.

2.2 C/C++ Pointer Analysis Background and Limitations of Past Approaches

We next discuss essential aspects of precise pointer analysis for C and C++, as well as
the key features of the LLVM bitcode intermediate language.

2.2.1 Language Level Intricacies and Issues

Research on pointer analysis in the last decade has shifted much of its focus from the low-
level C language to higher-level object-oriented (OO) languages, such as Java [16, 20,
92, 113, 132]. To a large extent, the industry’s paradigm shift to object oriented program-
ming and Java’s rising popularity naturally ignited a similar interest shift in the research
community.

In points-to analysis, however, one could argue that object-oriented languages in general,
and Java, in particular, are better targets than C, for a number of reasons. First, the points-
to abstraction [36] is more suited to OO programming, where dynamic object allocations
are more common. Furthermore, Java offers a clear distinction: only variable references
are allocated on the stack, whereas the allocated objects themselves are stored on the
heap. Also, class fields can only contain references to other objects, not entire subobjects.
Thus, variables point to (heap) objects and objects can only point to each other through
their fields. This leads to a clear memory abstraction as well, where objects are commonly
represented by their allocation site. A points-to analysis in Java has to compute two sets
of edges: (i) a set of unlabeled edges from variables to abstract heap objects, and (ii) a
set of field-labeled edges between abstract objects.

This is not the case for C/C++, where:

1. Objects can be allocated both on the stack and on the heap.
2. An object can contain another subobject as a field component. In fact, a field may

even contain a fixed-size array of subobjects.
3. Any such subobject can have its address taken and stored to some variable, which

can be dereferenced later (as can any normal pointer variable) to return the subob-
ject’s exact address (i.e., the address of the base object plus the relative byte offset
of the given subobject).

Figure 2.1 illustrates the above points. The Outer struct type contains a 3-element array of
Inner subobjects via its field in. Unlike in Java, all these subobjects are stored inside the
Outer instance’s allocation; no dereference is needed to access them. On Figure 2.1b,
variable ptr will hold the address of some subobject of variable (or stack-allocated object)
obj of the Outer type. Variable ptr is then used later to store to this field of obj. (Note that
the two instructions, the store instruction at line 4 and the instruction that returns the field
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1 typedef struct Inner {
2 int **x;
3 int *y;
4 } Inner;
5

6 typedef struct Outer {
7 void *x;
8 Inner in[3];
9 } Outer;

(a) Nested struct declaration

1 Outer obj; // alloc: 𝑜1
2 int *g = malloc(...); // alloc: 𝑜2
3 int ***ptr = &(obj.in[1].x); ...
4 *ptr = &g;
5 void *q = obj.x;

(b) Complex Field Access

1 Inner i;
2 Inner *ip = &i;
3 ip = (Inner *) &ip->y;

(c) Positive Weight Cycles

Figure 2.1: C example with nested struct types

address at line 3, can even reside in different functions.) In a precise analysis, this should
establish that the in[1].x field of abstract object 𝑜1 (representing the stack allocation for
obj at line 1), may point to abstract object 𝑜2 (representing the heap allocation of line 2).

In contrast, a field-insensitive approach (which is common among C/C++ analyses [32,
49, 52, 53, 56, 138]) is to not record offsets at all. This affords simplicity, at the expense
of significant loss of precision. A field-insensitive analysis would disregard any offsets of
any field or array accesses it encounters and simply compute that 𝑜1 points-to (some-
where inside) 𝑜2. Any subsequent instruction that accesses any field of 𝑜1 would have to
consider 𝑜2 as a possible target. In the case of line 5, the field-insensitive analysis would
(over-)conservatively infer that variable q may point to 𝑜2.

The line of work by Pearce et al. [104, 105] introduces a form of field sensitivity, such that
the analysis differentiates between different fields of an object by representing them with
distinct symbolic offsets. For instance, the 𝑖-th field of p is encoded as 𝑝 + 𝑖. Thus, the
effect of an address-of-field instruction such as “q = &(p->fi)”— fi being the name of the𝑖-th field of p—would add the edge (𝑝, 𝑞) labeled with 𝑖 to a constraint graph, to encode
that 𝑞 ⊇ 𝑝 + 𝑖: the points-to set of variable 𝑞 is a superset of that of the 𝑖-th field of any
object pointed-to by 𝑝.
There are several issues with this approach:

1. First, it is not clear how the approach generalizes to nested structures, as in Fig-
ure 2.1a. Had a heap allocation ̂𝑜 (of unknown type) flowed to the points-to set of
variable p, how could an expression like 𝑝+𝑖 differentiate between the 𝑖-th field of ̂𝑜
and the 𝑖-th field of ̂𝑜 ’s first subobject? (Note that the two fields could be of entirely
incompatible types.)

2. As Pearce et al. note, imprecision in the analysis may introduce positive weight
cycles that lead to infinite derivations, if no other action is taken. For instance, in
Figure 2.1c:
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i. Due to the instruction “ip = &i;”, the points-to set of ip should include at least
i: 𝑖𝑝 ⊇ {𝑖}.

ii. Due to instruction “ip = (Inner *) &ip->y;”, the corresponding constraint, 𝑖𝑝 ⊇
𝑖𝑝 + 1, would induce: 𝑖𝑝 ⊇ {𝑖, 𝑖.𝑦, 𝑖.𝑦.𝑦, 𝑖.𝑦.𝑦.𝑦, …}. Of course, an object
like 𝑖.𝑦.𝑦 would make no sense given that no such field exists.

As a way to overcome this, Pearce et al. assign unique indices to all (local) program
variables and their fields, and also record their symbolic ranges (that is, the index
where the enclosing lexical scope of each variable ends). Then, they ensure that
field accesses only reference memory locations within the same enclosing scope.
However, this does not prohibit all redundant derivations: 𝑖𝑝 + 1 may still add to the
points-to set irrelevant variables or fields that happen to be in the same enclosing
scope.
Also, this does not work well for heap allocations, since their type, and hence the
number of their fields, is unknown. Instead, they are assumed to define as many
fields as the largest struct in the program, which will also lead to many redundant
derivations.

3. This approach greatly decreases the analysis precision in the presence of factory
methods or wrapper functions for allocation routines. Consider the xmalloc() func-
tion of GNU Coreutils in Figure 2.2, which is consistently used instead of malloc()
to check if the allocation succeeded and abort the program otherwise. The alloca-
tion site it contains will represent the union of all struct types, dynamically allocated
via xmalloc(), by the same abstract object. The 𝑖-th field of this abstract object will
then represent the 𝑖-th field of this union type, losing essential type information by
merging unrelated fields (whose types we statically know to be completely different).

1 /* Allocate N bytes of memory dynamically, with error checking. */
2 void * xmalloc (size_t n) {
3 void *p = malloc (n);
4 if (!p && n != 0) xalloc_die ();
5 return p;
6 }

Figure 2.2: Generic malloc() wrapper with error checking that aborts the program when allocation
fails

The common denominator of all these limitations is that they lose any association between
abstract objects and their types, due to cases in which type information is not readily
available (as in heap allocations). What we propose instead is that the analysis strictly
record types for all abstract objects (any abstract object must have a single type) and use
this type information to filter redundant derivations that arise from analysis imprecision.
For heap allocations specifically, where a single allocation site could be used to allocate
objects of many different types, we propose a deviation from the standard allocation-site
abstraction that creates multiple abstract objects per allocation site (one for each different
type allocated there).
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2.2.2 The LLVM IR

Our analysis targets C/C++ programs translated to LLVM bitcode. LLVM bitcode is a low-
level intermediate representation, similar to an abstract assembly language, and forms the
core of the LLVM umbrella project. It defines an extensive strongly-typed RISC instruction
set, and has the following distinguishing features:

• Instead of a fixed set of registers, it uses an infinite set of temporaries, called vir-
tual registers. At the register allocation phase, some of the virtual registers will be
replaced by physical registers while the rest will be spilled to memory. All virtual
registers are kept in SSA form.

• Program variables are divided into two categories:

i. variables whose address is taken and can be referenced by pointers
ii. variables that can never be referenced by pointers.

The latter are converted to SSA, whereas the former are kept in memory by using:
(i) alloca instructions to allocate the required space on stack, and (ii) load/store
instructions to access or update, respectively, the variable contents, at any point
(hence escaping SSA form). This technique has been termed “partial SSA” [50].

• Like address-taken variables, global variables are also kept in memory and are al-
ways represented by a pointer to their “content” type. However, their space is allo-
cated using a global initializer instead of an alloca instruction.

The example of Figure 2.3 illustrates these points regarding the LLVM translation. Fig-
ure 2.3a shows the original source code, while Figure 2.3b shows the corresponding LLVM
bitcode. Local variable p is stored in memory (since its address is taken) and virtual regis-
ter %p holds its address. %p’s value can be updatedmultiple times, using store instructions.
Likewise, global variable gv (of type int*) is also kept in memory and pointer @gv (of type
int**) is used to access it. As will be clear later, our analysis follows the variable repre-
sentation conventions of LLVM and decouples memory allocations from virtual registers
(or global variable references). Figure 2.3c depicts the relevant points-to relationships,
which capture that gv points to p. Dashed edges are used to represent variable points-
to edges (whose source is a virtual register), while solid edges are dereference edges
between abstract objects.

2.3 Structure-Sensitive Approach

Our analysis approach addsmore detail to object abstractions, which serve both as sources
and as targets of points-to edges, allowing a more detailed representation of the heap.
Although our approach is applicable to C/C++ analysis in general, it is best to see it in
conjunction with the LLVM bitcode intermediate language. Just as LLVM bitcode is a
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int *gv;

void f()
{
int p = 3;
gv = &p;

}

(a) C source

i32** @gv = global i32* null

define void @f() {
i32* %p = alloca i32
store i32 3, i32* %p
store %p, i32** @gv

}

(b) LLVM translation

Variables %p

i32* %p = alloca i32

@gv

i32** @gv = global i32* null

Abstract Objects

(c) Points-to graph

Figure 2.3: Partial SSA Example

strongly-typed intermediate language, we assign types and offsets to every abstract ob-
ject value and its points-to relationships. The challenge is that, unlike in the LLVM bitcode
type system, such information is not readily available by local inspection of the code—it
needs to be propagated by the analysis reasoning itself.

We next discuss the various abstractions of our analysis, in representing its input and
output relations. Then, we express the main aspects of our analysis as a set of inference
rules.

2.3.1 Abstractions

Figure 2.4 presents the input and output domains of our analysis. We represent functions
as a subset of global entities. Thus, 𝐺 contains all symbols referencing global entities—
everything starting with symbol “@” in LLVM bitcode. Set 𝑉 holds temporaries only (i.e.,
virtual registers), and not global variables. We represent the union of these two sets with
𝑃 , which stands for pointer variables (i.e., any entity whose value may hold some memory
address). Our analysis only introduces the set of abstract objects 𝑂, that correspond to
memory locations.

𝑇 set of program types
𝐿 set of instruction labels
𝐶 program (integer) constants
𝑉 set of virtual registers
𝐺 set of global variables
𝐹 ⊆ 𝐺 program functions
𝑃 = 𝑉 ∪ 𝐺 pointer variables

𝑂 set of abstract objects

Figure 2.4: Analysis Domains
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LLVM Instruction Operand Types Description

p = alloca T, 𝑛𝑏𝑦𝑡𝑒𝑠 𝑉 ×𝑇 ×𝐶 Stack Allocations
p = malloc 𝑛𝑏𝑦𝑡𝑒𝑠 𝑉 ×(𝑉 ∪ 𝐶) Heap Allocations
p = (T ) q 𝑉 ×𝑇 ×(𝑃 ∪ 𝐶) (No-op) Casts
p = phi(𝑙1 ∶ 𝑎1, 𝑙2 ∶ 𝑎2) 𝑉 ×(𝐿 ↦ (𝑃 ∪ 𝐶))2 SSA Phi Node
p = ∗ q 𝑉 ×𝑃 Load from Address
∗ p = q 𝑃 ×(𝑃 ∪ 𝐶) Store to Address
p = &q->𝑓 𝑉 ×𝑃 ×𝐶 Address-of-field
p = &q [𝑖𝑑𝑥] 𝑉 ×𝑃 ×(𝑉 ∪ 𝐶) Address-of-array-index
p = 𝑎0(𝑎1, 𝑎2, … , 𝑎𝑛) 𝑉 ×(𝐹 ∪ 𝑉 )×(𝑃 ∪ 𝐶)𝑛 Function Call
return p 𝑃 ∪ 𝐶 Function Return

Figure 2.5: LLVM IR Instruction Set. We also prepend a label 𝑙 ∈ 𝐿 to each instruction (that we omit
in this figure). Each such label can be used to uniquely identify its instruction.

The LLVM IR defines an extensive instruction set. However, only a small subset is rel-
evant for the purposes of pointer analysis. Figure 2.5 presents a simplified version of
these relevant instructions. The first two instructions are used to allocate memory on the
stack and on the heap, respectively. As previously discussed, alloca instructions are
used for address-taken variables. They accept an extra type argument (absent in malloc
instructions), which specifies the exact type of the allocation (virtual registers are strongly
typed), and the allocation size is a constant. Next, we have cast instructions, used solely
to satisfy LLVM’s type checker since they do not change any memory contents, and phi
instructions that choose a value depending on the instruction’s predecessor. Apart from
the standard load/store instructions, we have two more instructions that, given a mem-
ory address operand, return a new address by adding a relative offset that corresponds to
either a field or an array element. (Only load instructions dereference memory, however.)
Finally, we have call and return instructions. Call instructions may also accept a variable
(function pointer), as their first argument.

Abstract Objects. Our analysis defines several different kinds of abstract objects that
express the exact nature of the allocation. Any abstract object must fall into one of the
following categories:
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– 𝑜𝑖 A stack or heap allocation for instruction (allocation site) 𝑖 ∈ 𝐿.

– 𝑜𝑖,T A (heap) allocation for instruction 𝑖 ∈ 𝐿, specialized for type T ∈ 𝑇 .

– 𝑜𝑔 A global allocation for global variable or function 𝑔 ∈ 𝐺.

– 𝑜.𝑓𝑙𝑑 A field subobject that corresponds to field “𝑓𝑙𝑑 ” of base object ̂𝑜 ∈ 𝑂.

– 𝑜[𝑐] An array subobject that corresponds to the element at constant index 𝑐 ∈ 𝐶
of base object ̂𝑜 ∈ 𝑂.

– 𝑜[∗] An array subobject that corresponds to any elements at unknown indices of
base object ̂𝑜 ∈ 𝑂.

When not using any special notation, we shall refer to a generic abstract object that could
be of any of the above forms. This also applies to the base object of the last three cate-
gories (which, thus, serve as recursive definitions), allowing us to define arbitrarily complex
subobjects such as ̂𝑜.𝑓[4].𝑔[∗].
By representing field and array subobjects as separate abstract objects themselves, the
handling of instructions that return addresses anywhere but at the beginning of some
allocation becomes straightforward. As we shall see at Section 2.3.2, all our analysis has
to do is return the relevant abstract object that represents the given subobject of its base
allocation. This abstract subobject will have its own distinct points-to set, which will be
tracked separately from that of its base allocation or any of the rest of its fields. Thus,
it will allow the analysis to retain a certain degree of precision that would be otherwise
impossible.

Our analysis computes four main relations:

Variable points-to edges. Edge p ↦ ̂𝑜 ∈ 𝑃 × 𝑂 records that pointer variable (either
virtual register or global variable) p may point to abstract object ̂𝑜. Note that virtual
registers that correspond to source variables will always point to a single object: the
corresponding stack allocation. Temporaries introduced by LLVM bitcode, though,
may point to many abstract objects.

Dereference edges. Edge 𝑝𝑜 ; ̂𝑜 ∈ 𝑂 × 𝑂 records that abstract object 𝑝𝑜 may point
to abstract object ̂𝑜. Any object that has a non-empty points-to set (i.e., the object
has outgoing dereference edges) may represent a pointer. Dereference edges can
only be established by store instructions.

Abstract object types. The partial function type ∶ 𝑂 ↛ 𝑇 records the type of an ab-
stract object. An abstract object can be associated with one type at most, or none
at all. Since our analysis uses types to filter redundant derivations, the more types
it establishes for abstract objects, the more points-to edges it will compute. Fig-
ure 2.6 establishes some basic type relations between the subobjects created by
the analysis.
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Struct Type
type( ̂𝑜) = S type(S.𝑓) = F

type(𝑜.𝑓) = F
Array Type

type( ̂𝑜) = [T] 𝑐 ∈ 𝐶
type(𝑜[∗]) = T type(𝑜[𝑐]) = T

Figure 2.6: Basic Type Inferences for Abstract Objects.

Call-graph edges. Edge 𝑖 𝑐𝑎𝑙𝑙𝑠−−→ 𝑓 ∈ 𝐿 × 𝐹 records that invocation site 𝑖 may call
function 𝑓 . This also accounts for indirect calls that use function pointers.

2.3.2 Techniques - Rules

Figure 2.7 presents the main aspects of the analysis as a set of inference rules. The
first two rules handle stack and heap allocation instructions. All they do is create a new
abstract object representing the given allocation site, and assign it to the target variable.
In the case of stack allocation, we also record the type of the object, since it is available
at the allocation site. The next pair of rules handle global allocations for global variables
and functions, respectively, in a similar way. In contrast to the previous rules, we create
abstract objects for all global entities, regardless of any instructions (since their allocation
in LLVM bitcode is implicit), and record their types.

For cast instructions, we copy any object that flows in the points-to set of the source
variable to the points-to set of the target variable. Phi instructions are treated similarly, but
we have to consider both of the instruction’s operands, regardless of their corresponding
labels, since our result must be an over-approximation.

Store instructions are the only way in which the analysis establishes dereference edges.
For a store instruction, ∗ p = q, we have to perform the following:

1. First, find the corresponding abstract objects that the two instruction operands point
to, by following their outgoing variable points-to edges. Namely: (i) the memory
allocation of the value to be stored (abstract object ̂𝑜), and (ii) the memory allocation
that ̂𝑜 is going to be stored into (abstract object 𝑝𝑜).

2. Then, establish a dereference edge between any two such abstract objects returned,
expressing that object 𝑝𝑜 may point to object ̂𝑜.

The first step simply bypasses the indirection introduced by LLVMbitcode, where operands
are represented as virtual registers that point to memory locations. Load instructions per-
form the opposite operation, and thus are treated symmetrically. For instruction p = ∗ q,
we first (i) find the corresponding abstract object that the address operand may point to
(abstract object 𝑝𝑜), (ii) then follow any outgoing dereference edge of object 𝑝𝑜 to get
any memory location 𝑝𝑜 may point to (object ̂𝑜), and finally (iii) establish a new variable
points-to edge for target variable p, recording that p may now also point to object ̂𝑜.
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Stack
𝑖 ∶ p = alloca T, 𝑛𝑏𝑦𝑡𝑒𝑠
p ↦ 𝑜𝑖 type(𝑜𝑖) = T

Heap
𝑖 ∶ p = malloc 𝑛𝑏𝑦𝑡𝑒𝑠

p ↦ 𝑜𝑖

Global
𝑓 ∈ 𝐹

𝑓 ↦ 𝑜𝑓 type(𝑜𝑓) = type(𝑓)
g ∈ (𝐺 𝐹) type(g) = T *

g ↦ 𝑜𝑔 type(𝑜𝑔) = T

Cast
𝑖 ∶ p = (T ) q q ↦ ̂𝑜

p ↦ ̂𝑜 Phi
𝑖 ∶ p = phi(𝑙1 ∶ 𝑎1, 𝑙2 ∶ 𝑎2)
∀𝑗 ∶ 𝑎𝑗 ↦ ̂𝑜 ⇒ 𝑝 ↦ ̂𝑜

Load
𝑖 ∶ p = ∗ q q ↦ 𝑝𝑜 𝑝𝑜 ; ̂𝑜

p ↦ ̂𝑜 Store
𝑖 ∶ ∗ p = q p ↦ 𝑝𝑜 q ↦ ̂𝑜

𝑝𝑜 ; ̂𝑜

Field
𝑖 ∶ p = &q->𝑓 q ↦ ̂𝑜 type( ̂𝑜) = S type(q) = S *

p ↦ 𝑜.𝑓

Array – Const
𝑖 ∶ p = &q [𝑐] q ↦ ̂𝑜 type( ̂𝑜) = [T] type(q) = [T] *

p ↦ 𝑜[𝑐]

Array – Var
𝑖 ∶ p = &q [j] q ↦ ̂𝑜 type( ̂𝑜) = [T] type(q) = [T] *

p ↦ 𝑜[∗]

Call
𝑖 ∶ p = 𝑎0(𝑎1, 𝑎2, … , 𝑎𝑛) 𝑎0 ↦ 𝑜𝑓 𝑓 ∈ 𝐹

𝑖 𝑐𝑎𝑙𝑙𝑠−−→ 𝑓(𝑝1, 𝑝2, … , 𝑝𝑛) ∀𝑗 ∶ 𝑎𝑗 ↦ ̂𝑜 ⇒ 𝑝𝑗 ↦ ̂𝑜

Ret
𝑖 ∶ p = 𝑎0(…) 𝑖 𝑐𝑎𝑙𝑙𝑠−−→ 𝑓(…) 𝑗 ∶ return q 𝑗 ∈ body(𝑓) q ↦ ̂𝑜

p ↦ ̂𝑜

Heap-bp
𝑖 ∶ p = malloc 𝑛𝑏𝑦𝑡𝑒𝑠 𝑗 ∶ w = (T * ) q q ↦ 𝑜𝑖

p ↦ 𝑜𝑖,T type(𝑜𝑖,T) = T

Figure 2.7: Inference Rules

The next three rules (Field, Array–Const, Array–Var) model field sensitivity. The rule han-
dling field accesses, such as p = &q->𝑓 , finds any object ̂𝑜 that base variable qmay point
to, and returns ̂𝑜 ’s relevant field subobject 𝑜.𝑓 . However, a key element is that ̂𝑜 is only
considered as a base object if its type matches the declared (struct) type of q (recall that
LLVM bitcode is strongly typed). This precludes any untyped heap allocations as possible
base objects. Otherwise, the analysis would end up creating untyped field subobjects too,
further fueling imprecision. Thus, we are able to maintain an important invariant of our
structure-sensitive analysis: only create field (or array) subobjects whose types we are
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able to determine. Effectively, LLVM bitcode imposes strong typing on variables, while
our analysis extends the treatment to abstract objects.

Array element accesses are treated similarly and they, too, maintain this invariant. How-
ever, we distinguish array accesses using a constant index from those using a variable
(i.e., unknown) index. In the former case, we return the array subobject 𝑜[𝑐], which rep-
resents the subobject at index 𝑐. In the latter case, we return 𝑜[∗], which represents the
unknown index. Essentially, this treatment allows our analysis to track independently the
points-to sets of array indices that are statically known to be different, yielding a form of
array-sensitivity.

Call and return instructions as modeled as assignments: (i) from any actual argument
𝑎𝑗 to its respective formal parameter 𝑓𝑗, and (ii) from any returned value q to the target
variable of the call instruction p. Like cast instructions, they simply copy the points-to sets
from the assignment’s source to its target. However, the rule that handles call instructions
also records call-graph edges. When the function operand 𝑎0 may point to abstract object𝑜𝑓 , representing function 𝑓 , we record an edge from the given call site to function 𝑓 . This
handles both direct and indirect calls (i.e., via function pointers).

How to produce type information for unknown objects. Our analysis only allows tak-
ing the address of fields of objects whose type is known. This prevents loading and storing
from/to fields of objects without types. Such objects can only be used as identity markers.
Yet C and C++ allow the creation of untyped objects. Their handling is a key element of
the analysis.

The Heap-bp rule implements the use-based back-propagation technique [80, 85, 124],
which creates multiple abstract objects per (untyped) allocation site. The rule states that
when an (untyped) heap object 𝑜𝑖 (allocated at instruction 𝑖) flows to some cast instruction
𝑗, where it is cast to type T, we augment the points-to set of 𝑖’s target variable p with a new
abstract object 𝑜𝑖,T, specialized for the given type. The insight behind this rule is that, even
when the program performs an allocation via a type-agnostic routine like malloc(), the
allocation will be later cast to its intended type before being used. By using this technique,
the original untyped allocation will be prevented from creating any untyped subobjects,
but as soon as the possible type of the allocation is discovered, the new abstract typed
object will succeed where the untyped one has failed. Note that instructions 𝑖 and 𝑗 could
occur in distant parts of the program, as long as the analysis can establish that the object
allocated at instruction 𝑖 flows to 𝑗.
This treatment successfully deals with generic allocation wrappers or factory methods. In
this case, the wrapped allocation will flow to multiple cast instructions, and thus create
multiple typed variations of the original object. However, in each case, only the object
with the correct matching type will be used as a base for any subsequent address-of-field
instructions. The rest of the objects will be filtered, since they are indeed irrelevant.
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2.3.3 Partial Order of Abstract Objects

As the observant reader may have noticed, the rules of Figure 2.7 about accesses or array
elements are not sound. Consider the example of Figure 2.8. Variable p points to a heap
allocation. Three different store instructions take place: (i) one that stores &i to index 1,
(ii) one that stores &j to index 3, and (iii) one that stores &k to some variable index. When
loading from index 1, the analysis has to return both &i and &k (since the value of variable
idx may be equal to 1), but not &j, which is stored to a different index. Conversely, when
loading from a variable index, the analysis has to return all three addresses, since the
index could be equal to any constant.

int i, j, k, idx;
...
int **p = malloc(...);
p[1] = &i;
p[3] = &j;
p[idx] = &k;
int *x = p[1]; // yields {𝑖, 𝑘}
int *y = p[2]; // yields {𝑘}
int *z = p[j]; // yields {𝑖, 𝑗, 𝑘}

Figure 2.8: Accessing array elements.

Using our array-sensitive approach, we ensure that indices 1, 3, and “∗” (unknown) are
associated with separate points-to sets that are not merged. To handle loads correctly,
though, we have to be able to reason about implicit associations of abstract objects, due
to possible index aliases. Thus, we say that object 𝑜[∗] “generalizes” object 𝑜[𝑐] (for
the same base object ̂𝑜), since loading from 𝑜[∗] must always return a superset of the
objects returned by loading from 𝑜[𝑐], for any constant 𝑐. This concept extends even to
deeply nested subobjects. For instance, an object ̂𝑜.𝑓1[∗][2].𝑓2[∗] generalizes object

̂𝑜.𝑓1[4][2].𝑓2[∗].
We can think of this binary relation between abstract objects as a partial order over domain
𝑂 and define it appropriately.

Definition 2.1. Abstract Object Generalization Order. An abstract object ̂𝑦 ∈ 𝑂 general-
izes an abstract object ̂𝑥, denoted ̂𝑥 ⊑ ̂𝑦, if and only if:
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̂𝑥 = ̂𝑦
∨

( ̂𝑥 = 𝑝[∗] ∨ ̂𝑥 = 𝑝[𝑐] ) ∧ ̂𝑦 = 𝑞[∗] ∧ ̂𝑝 ⊑ ̂𝑞
∨

( ̂𝑥 = 𝑝.𝑓 ∧ ̂𝑦 = 𝑞.𝑓 ∧ ̂𝑝 ⊑ ̂𝑞)
∨

( ̂𝑥 = 𝑝[𝑐] ∧ ̂𝑦 = 𝑞[𝑐] ∧ ̂𝑝 ⊑ ̂𝑞)

Intuitively, 𝑜1 ⊑ 𝑜2 holds when 𝑜1 can be turned to 𝑜2 by substituting any of its constant
array indices with “∗”. Figure 2.9 gives an example of such ordering. The direction of the
edges is from the less to the more general object.

x[0][3].f[*];

x[0][*].f[*];

x[0][*].f[4];

x[0][3].f[6]; x[0][3].f[4]; x[0][2].f[4];

x[*][*].f[*];

Figure 2.9: Abstract Object Ordering – Example: Nodes are abstract objects. An edge ( ̂𝑠, ̂𝑡 ) de-
notes that object ̂𝑠 is generalized by object ̂𝑡 (i.e., ̂𝑠 ⊑ ̂𝑡 ).

Given this partial order, it suffices to add the two rules of Figure 2.10 to account for possible
index aliases. The first rule states that the points-to set of a (less general) object, such as
𝑜[𝑐], is a superset of the points-to set of any object that generalizes it, such as 𝑜[∗]. The
second rule modifies the treatment of load instructions, so that they may return anything
in the points-to set of not just the object we load from (such as ̂𝑜[∗]), but also of objects
that it generalizes (such as 𝑜[𝑐]). In this way, the general and specific points-to sets are
kept distinct, while their subset relationship is maintained.
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Match
𝑜1 ⊑ 𝑜2 𝑜2 ; ̂𝑜

𝑜1 ; ̂𝑜 Load II
𝑖 ∶ p = ∗ q q ↦ 𝑜2 𝑜1 ⊑ 𝑜2 𝑜1 ; ̂𝑜

p ↦ ̂𝑜

Figure 2.10: Associating array subobjects via their partial order.

2.3.4 Soundness

As stated by Avots et al. [10]: “A C pointer alias analysis cannot be strictly sound, or else
it would conclude that most locations in memory may point to any memory location.” As
in the PCP points-to analysis [10], our approach tries to maintain precision at all times,
even if this means that the analysis is not sound in some cases. Instead of trying to be
as conservative as possible, we choose to opt for precision and increase soundness by
selectively supporting well-established code patterns or idioms (such as using malloc()
to allocate many objects of different types).

The soundness assumptions of our analysis are that: (i) objects are allocated in sepa-
rate memory spaces [10], and (ii) every (concrete) object has a single type throughout its
lifetime. Hence, our analysis would be unsound when a union type is used to modify the
same concrete object using two different types, since this violates the second assumption.
However, our analysis would be a good fit for programs that use discriminated unions (e.g.,
unions that depend on a separate tag field to determine the exact type of the object), since
it would create a different abstract object for every type of the union, so that each such
abstract object would represent the subset of concrete objects with the same tag value.

In general, the single-type-per-lifetime assumption is reasonable for most objects, but
would be prohibitive in some cases—especially so when the code relies on low-level as-
sumptions about the byte layout of the objects. For instance, our base approach would
not be able to meaningfully analyze code that uses a custom memory allocator. Instead,
the analysis would need to be extended so that it models calls to the allocator by creating
new abstract objects.

Finally, the analysis must be able to discover all associated types for any given object, to
retain its soundness. For simplicity, we have only considered cast instructions as places
where the analysis discovers new types, but it is easy to supply additional type hints by
considering more candidates. For instance, an exception object of unknown type may be
allocated and then thrown, by calling the cxa::throw() function in the C++ exception han-
dling ABI, without any intervening cast. However, we can use the accompanying typeinfo
object (always supplied as the second argument to cxa::throw()) to recover its true type
and hence create a typed abstract exception object. To the best of our knowledge, such
special treatment is needed only in rare cases, and the analysis can be easily extended
to handle them.
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2.4 Analyzing C++

LLVM bitcode is a representation well-suited for C. However, for OO languages such as
C++, high-level features are translated to low-level constructs. A classic example is dy-
namic dispatch, through virtual methods. Virtual-tables are represented as constant arrays
of function pointers, and virtual calls are, in turn, translated to a series of indirect access
instructions.

%class.B = type { i32 (...)**, ...}

;; translation of bp->foo(), for
;; B *bp;
%1 = bitcast %bp to i32 (%class.B*)***
%2 = load i32 (%class.B*)** %1
%3 = getelementptr i32 (%class.B*)** %2, 1
%4 = load i32 (%class.B*)* %3
call i32 %4 (%class.B* %bp)

(a) C++ virtual call compiled to LLVM bitcode

%bp

B b;

%1

int (...)** 
b.vptr;

B::foo()

B::VTable

B::VTable[1]

%2

%3

%4

(b) Points-to graph

Figure 2.11: C++ Virtual Call Example

Figure 2.11a presents (a simplified version of) the LLVM bitcode for such a translation. A
virtual call has to (i) load the v-pointer of the class instance (at offset 0), (ii) index into the
returned v-table (at the corresponding offset of the function being called), (iii) then load the
returned function pointer to get the exact address of the function, and (iv) finally call the
function. By employing the techniques we have described so far, our structure-sensitive
analysis is well-equipped to deal with such an involved pattern, and precisely resolve the
function to be called.

Figure 2.11b shows what our analysis computes (assuming %bp points to variable b). Only
a minor addition is required: anything that points to an object should also point to its first
field (at byte offset 0). Hence, both %bp and %1 (after the cast) will point both to (stack-
allocated) object ̂𝑏, and to its v-pointer field subobject 𝑏.𝑣𝑝𝑡𝑟. The first load instruction
will return the v-table. Indexing into the v-table will return the corresponding array element
subobject, which will maintain its own independent (singleton) points-to set, due to array-
sensitivity. Finally, the second load instruction will return the exact function that the v-table
points to, at the given offset.
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2.5 Enhancements

Section 2.3 presented only the essential parts of a structure-sensitive points-to analysis,
but there can be many enhancements worth discussing at this point. In this section, we
will list a few of the most valuable ones for a practical implementation.

2.5.1 Pointer Arithmetic

In C/C++, given a pointer “P *ptr”, expressions such as (i) “(*ptr).fld”, (ii) “ptr->fld”,
and (iii) “ptr[0].fld” are equivalent (and will be translated to the same LLVM bitcode
instruction). Hence, a pointer analysis must be able to reason about such code patterns
and map them to the same abstract (sub)object. In LLVM IR, all such field accesses
would be canonicalized to the third form. In fact, all pointers in LLVM bitcode are treated
as pointers to arrays of objects (even when they point to a single one).2 Regarding the
possible choices of analysis inputs (discussed in Chapter 1), such translations are certainly
a point in favor of choosing an intermediate representation such as LLVM bitcode, so that
the analysis need not concern itself with superfluous syntactic constructs.

However, we have not so far delved into the various pointer arithmetic idioms that are
supported by C/C++ and that we would like for our structure-sensitive analysis to support
as well. A pointer in C is a memory address, which is a numeric value. One can perform
arithmetic operations on a pointer just as with other numeric values. For instance, the
expression “ptr+3” is equivalent to “&ptr[3]” (which corresponds to the aforementioned
3rd form, as per LLVM’s canonicalization). Again LLVM’s translation can be very helpful in
narrowing the complexity of the input language. To see how our analysis can be extended
to support pointer arithmetic, we first have to briefly present LLVM’s GEP instruction, since
this is what all types of element accesses (and pointer arithmetic operations) are normally
translated to.

The GEP Instruction. The actual LLVM bitcode instruction that is responsible for all
types of element accesses is getelementptr (GEP). The GEP instruction accepts a base
pointer argument and one or more index arguments. It can be used to retrieve any inner
element of an arbitrarily nested structure. Its general form is:

%ptr = getelementptr %base, %idx1, %idx2, %idx3,…
Assuming that %base may point to an array of objects (in the general case), the first index
selects an element of this array. (Expressions such as “ptr->fld”—being equivalent to
“ptr[0].fld”—implicitly refer to the first element and thus produce a zero first index.)
Any index after the first corresponds to a field or array element access. Even though the

2This is exactly the reason for the first (frequently zero) index of the often misunderstood getelementptr
LLVM bitcode instruction (see http://llvm.org/docs/GetElementPtr.html).
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generic form of GEPmay contain multiple indices to be able to return the address of deeply
nested elements, in practice, such complex GEP instructions are split into multiple chained
GEPs with at most 2 indices. Each one will descend in a single field or array index, roughly
corresponding to the address-of-field and address-of-array-index instructions that we have
previously shown. Returning the address corresponding to a complex access path such
as “ptr->f[4].g[k]” will require as many GEPs as the depth of the access path: two
field and two array accesses, four in total. Note that GEP instructions do not perform any
memory dereference (as the load instruction does), but only compute a relative offset.

So far we have not examined GEP instructions whose first index is non-zero (thus retriev-
ing the address of an element other than the first, given a base pointer array). Fortunately,
we can further decompose such instructions to a GEP instruction with a single non-zero
index and a second GEP instruction of 2 indices, whose first index is always zero.

%ptr = getelementptr %b, 7, %v1, 8

(a) Complex GEP instruction

%t1 = getelementptr %b, 7
%t2 = getelementptr %t1, 0, %v1
%ptr = getelementptr %t2, 0, 8

(b) Decomposed GEP instruction

Figure 2.12: Decomposition of GEP instructions

Figure 2.12 demonstrates such a decomposition that breaks a complex GEP instruction
into multiple simpler ones. The last two instructions of the decomposed version of Fig-
ure 2.12b correspond to our familiar notions of address-of-array-index and address-of-
field instructions. Thus, we can dispense with GEP’s overloaded behavior and keep our
inference rules almost intact. However, we have to augment the analysis to support a
single-index GEP, just like the first instruction of Figure 2.12b. Essentially, such instruc-
tions perform a pointer increment operation and are of special interest, since they alone
should suffice for most translations of dynamically allocated arrays and pointer arithmetic
operations that we are interested in.

Figure 2.13 presents an extension of our analysis to handle such pointer increment op-
erations. The first two rules replace the previous ones (for base allocations) by slightly
changing the objects we allocate to resemble the first elements of potential array alloca-
tions. In cases where an instruction allocates a single object, such zero offsets may be
redundant but facilitate the increment operations of the following rules. The next two rules
handle pointer increment operations that use a variable index j. In both cases, the result
should disregard any prior index of the object pointed by q, and replace it with the “∗” in-
dex. The last three rules handle pointer increment operations that add a constant 𝑐. The
first of them states that adding a constant index to an already unknown index makes no
difference and simply propagates the same special object (𝑜[∗]). In the last two rules, q
points to an object with a constant index instead (𝑜[𝑘]), whereupon the analysis tries to
compute a new constant index 𝑘+𝑐 and point to the relevant object ( ̂𝑜[𝑘 + 𝑐]). However,
such general treatment could potentially lead to the creation of infinite objects. To avoid
this, we only point to ̂𝑜[𝑘 + 𝑐] if the new index 𝑘 +𝑐 statically appears in the source code
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Stack
𝑖 ∶ p = alloca T, 𝑛𝑏𝑦𝑡𝑒𝑠

p ↦ 𝑜𝑖[0] type(𝑜𝑖[0]) = T
Heap

𝑖 ∶ p = malloc 𝑛𝑏𝑦𝑡𝑒𝑠
p ↦ 𝑜𝑖[0]

Pointer – Var I
𝑖 ∶ p = q + j type(𝑞) = T * q ↦ 𝑜[𝑘] type(𝑜[𝑘]) = T

p ↦ 𝑜[∗]

Pointer – Var II
𝑖 ∶ p = q + j type(𝑞) = T * q ↦ 𝑜[∗] type(𝑜[∗]) = T

p ↦ 𝑜[∗]

Pointer – Const I
𝑖 ∶ p = q + 𝑐 type(𝑞) = T * q ↦ 𝑜[∗] type(𝑜[∗]) = T

p ↦ 𝑜[∗]

Pointer – Const II

𝑖 ∶ p = q + 𝑐 type(𝑞) = T * q ↦ 𝑜[𝑘] type(𝑜[𝑘]) = T
𝑘 + 𝑐 ∈ indices(T)

p ↦ ̂𝑜[𝑘 + 𝑐]

Pointer – Const III

𝑖 ∶ p = q + 𝑐 type(𝑞) = T * q ↦ 𝑜[𝑘] type(𝑜[𝑘]) = T
𝑘 + 𝑐 ∉ indices(T)

p ↦ 𝑜[∗]
Figure 2.13: Dealing with pointer arithmetic

(and is associated with type T). Otherwise, the analysis falls back to using 𝑜[∗].
To identify what static indices are associated with each type we define the function indices
as follows:

indices(T) = {0} ∪ {𝑐 ∶ ∃ p = q + 𝑐 ∧ type(𝑞) = T *}
∪ {𝑐 ∶ ∃ p = &q [𝑐] ∧ type(𝑞) = [T]}

2.5.2 Abstract Object Aliases

There are cases where two abstract objects, such as ̂𝑜 and 𝑜[0] may coincide (i.e., map
to the same memory address). This applies to both zero indices of arrays and the first
fields of structs. Ignoring such object aliases could lead to unsound results, e.g., when
dereferencing an object without taking the points-to sets of its aliases into account.

To handle such cases, the analysis should treat aliased abstract objects as an equivalence
class.

Definition 2.2. Abstract Object Aliases. We define the alias equivalence relation∼ on the
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set of abstract objects 𝑂 as the transitive, symmetric, and reflexive closure of the binary
relation , so that given two abstract objects ̂𝑥, ̂𝑦 ∈ 𝑂, ̂𝑥 ̂𝑦, if and only if:

̂𝑦 = 𝑥[0]
∨

̂𝑦 = 𝑥.𝑓 ∧ offsetof(𝑓) = 0
where offsetof(𝑓) returns the byte offset of a struct field 𝑓 .

Deref+
𝑜1 ∼ 𝑜2 ̂𝑜 ; 𝑜1

̂𝑜 ; 𝑜2
InvDeref+

𝑜1 ∼ 𝑜2 𝑜1 ; ̂𝑜
𝑜2 ; ̂𝑜

Vpt+
𝑜1 ∼ 𝑜2 v ↦ 𝑜1

v ↦ 𝑜2
Figure 2.14: Extending the analysis with aliased objects.

Figure 2.14 extends the dereference and variable points-to edges computed by the anal-
ysis due to object aliases. The first rule states that whenever an object points to another,
it should also point to any aliases of the latter. The second rule inverses this notion: when
an object is pointed by another, it should also be pointed by its aliases. The third rule is
analogous to the first one, but extends variable points-to edges instead.

2.5.3 Type Compatibility

We have used type equality as a filter for redundant derivations in the inference rules we
have presented so far. In practice, however, this could prove too restrictive and lead to the
exclusion of perfectly valid derivations. For instance, consider the trailing padding that C
compilers append to struct types for proper alignment. The structure type of Figure 2.15a
would be transformed to that of Figure 2.15b, as most compilers would append a padding
field of 7 bytes so that the total size becomes 16—a multiple of the largest alignment of
any of its members (in this case, a multiple of 8 due to field p).

struct s1 {
char *p; /* 8 bytes */
char c; /* 1 byte */

};

(a) Unpadded Structure Type

struct s1 {
char *p; /* 8 bytes */
char c; /* 1 byte */
char pad[7];

};

(b) Padded Structure Type

Figure 2.15: Structure Alignment and Padding

However, had a padded struct (or class) type been inherited by another, then the compiler
could in some cases use the unpadded version as the base type, since the padding could
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be redundant if new fields were considered.3 If strict type equality was required by the
analysis, then this could prohibit objects of a derived type to be used as the receiver
arguments of inherited methods at places where the analysis employed its type filters
(such as in address-of-field instructions).

1 struct s1 {
2 char *p;
3 char c;
4

5 void meth() {
6 char *c1 = this->p;
7 ...
8 }
9 };
10

11 struct s2 : s1 {
12 char b;
13 };

(a) C++ Source

1 ; Types
2

3 %struct.s1 = type { i8*, i8, [7 x i8] }
4 %struct.s1.base = type { i8*, i8 }
5 %struct.s2 = type { %struct.s1.base, i8, [6 x i8] }
6

7 ; Methods
8

9 define void @s1_meth(%struct.s1* %this) {
10 ; the second 0 offset is that of field p
11 %1 = getelementptr %struct.s1* %this, i64 0, i32 0
12 ...
13 }

(b) LLVM Bitcode

Figure 2.16: Padding, Inheritance, and Type Incompatibility

Figure 2.16 illustrates this case. The generated LLVM bitcode uses the unpadded version
of s1 as its first field (inherited objects are always translated to normal fields, in bitcode),
to reduce its overall padding to just 6 bytes. Had an object ̂𝑜 of type s2 flowed to the
points-to set of s1::meth()’s this argument, it would be filtered out in the getelementptr
instruction due to type inequality of s1 and s2, per our Field inference rule of Section 2.3.

Note that, had the %struct.s1.base type not existed for padding reasons, our object alias
rules of Figure 2.14 alone would suffice in this case:

⋅ the 𝑜.𝑓𝑠1 subobject, representing the first field of ̂𝑜 (i.e., its s1 base object), would be
considered an alias of ̂𝑜, since its byte offset is zero

⋅ %this would, hence, also point to 𝑜.𝑓𝑠1 besides ̂𝑜
⋅ getelementptr would not filter out 𝑜.𝑓𝑠1, since its type would be equal to the expected
declared type s1

⋅ %1 would finally point to the ̂𝑜.𝑓𝑠1.𝑝 subobject.

Such reasoning can be encoded in the following complex derivation:

Field

Vpt+
𝑜.𝑓𝑠1 ∼ ̂𝑜 this ↦ ̂𝑜

this ↦ 𝑜.𝑓𝑠1 11 ∶ %1 = &this->𝑝 type(𝑜.𝑓𝑠1) = type(this) = s1

%1 ↦ ̂𝑜.𝑓𝑠1.𝑝 type( ̂𝑜.𝑓𝑠1.𝑝) = char *

3In LLVM IR, the name of the unpadded version of the type would contain a .base suffix to distinguish it
from the original padded version.
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We can relax our type equality constraints by introducing a notion of type compatibility.
We list the following cases of compatible types:

– a type is type compatible with itself (making the relation reflexive)

– an array type T[] is type compatible with another array type U[], if (i) its component
type T is type compatible with U, and (ii) they are either of the same size (e.g., T[5],
U[5]), or at least one of them does not specify a size (e.g., T[7], U[])

– a function type R(T1, T2, T3, ..., T𝑛) is type compatible with function type S(U1, U2, U3, ..., T𝑛)
if (i) their return types R and S are type compatible, and (ii) so are their arguments types
(i.e., T𝑖 is type compatible with U𝑖 for every 𝑖 ∈ 1, … , 𝑛)

– a function type R(T1, T2, T3, … , T𝑛) is also type compatible with the variadic function
type S(U1, U2, U3, … , U𝑚, …) if (i) 𝑚 < 𝑛, (ii) their return types R and S are type com-
patible, and (iii) so is the common subset of their arguments types (i.e., T𝑖 is type com-
patible with U𝑖 for every 𝑖 ∈ 1, … , 𝑚)

– a struct type S1 (consisting of fields F1, F2, F3, … , F𝑛, in that order), is type compatible
up to field 𝑘 with struct type S2 (consisting of fields Q1, Q2, Q3, … , Q𝑚), if field type F𝑖 is
type compatible with Q𝑖 for every 𝑖 ∈ 1, … , 𝑘; moreover, S1 and S2 are type compatible,
if they are type compatible up to field 𝑚 and 𝑚 equals 𝑛

– a struct type S1 is an eligible base of type S2, if the first field of S2, F1, is type compatible
with S1 up to field 𝑛—where 𝑛 is the number of fields of F1

– a pointer type T* is type compatible with another pointer type U*, if

(1) its component type T is type compatible with U,
(2) either T or U is char, or
(3) U is (transitively) an eligible base of T.

Our type compatibility rules are deliberately geared towards structural compatibility (as is
our overall structure-sensitive approach). Restricting the type compatibility rules to comply
with some specific C/C++ standard would not work, since by the time the compiler has
transformed the code to LLVM bitcode, the various transformations and optimizations up
to this point would almost certainly violate such rules.

Henceforth, we will use the notation “typecompat(T, U)” to signify that type T is type com-
patible with U, according to the previous rules. Even though we will forgo rewriting any
previous inference rules of our analysis to make use of the type compatibility relation,
the reader should assume that any strict type equality premise clauses therein, such as
“type( ̂𝑜) = T ”, should be replaced with the more generic “typecompat(type( ̂𝑜), T)”.
As a final note, every struct type can be viewed as an array of bytes (as hinted by our type
compatibility rules). A field could be accessed in such a way, via its byte offset. Figure 2.17
identifies such accesses and treats them accordingly.
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Byte Offset

𝑖 ∶ p = q + 𝑐 type(𝑞) = char * q ↦ ̂𝑜 type( ̂𝑜) = T
offsetof(T.𝑓) = 𝑐

p ↦ 𝑜.𝑓
Figure 2.17: Accessing field via byte offset.

2.5.4 Copying Memory Areas

There are various functions in C that copymemory from a pointer to another (e.g., memcpy(),
memmove(), bcopy(), etc). Such operations have an obvious effect on the points-to sets
of objects: an object that is copied to another location should have its points-to set copied
as well.

Memcpy Base

𝑖 ∶ p = 𝑎0(𝑎1, 𝑎2, …)
𝑖 𝑐𝑎𝑙𝑙𝑠−−→ memcpy (…) 𝑎1 ↦ 𝑜𝑡𝑜 𝑎2 ↦ 𝑜𝑓𝑟𝑜𝑚

type(𝑜𝑓𝑟𝑜𝑚) = T type(𝑜𝑡𝑜) = U typecompat(T, U)
copy (𝑜𝑓𝑟𝑜𝑚, 𝑜𝑡𝑜)

Memcpy Rec I

copy (𝑜1, 𝑜2)
type(𝑜1[∗]) = T type(𝑜2[∗]) = U typecompat(T, U)

copy (𝑜1[∗], 𝑜2[∗])

Memcpy Rec II

copy (𝑜1, 𝑜2)
type(𝑜1[𝑐]) = T type(𝑜2[𝑐]) = U typecompat(T, U)

copy (𝑜1[𝑐], 𝑜2[𝑐])

Memcpy Rec III

copy (𝑜1, 𝑜2)
type(𝑜1.𝑓) = T type(𝑜2.𝑓) = U typecompat(T, U)

copy (𝑜1.𝑓, 𝑜2.𝑓)

Memcpy Deref+
copy (𝑜𝑓𝑟𝑜𝑚, 𝑜𝑡𝑜) 𝑜𝑓𝑟𝑜𝑚 ; ̂𝑜

𝑜𝑡𝑜 ; ̂𝑜
Figure 2.18: Handling memory copying.

To support memory copying, we first identify copied objects. The first rule of Figure 2.18
marks that an abstract object 𝑜𝑓𝑟𝑜𝑚 was copied to another object 𝑜𝑡𝑜, if a (direct or
indirect) call to the memcpy() routine was made and these were the objects pointed by
memcpy()’s operands. (Note that we use the objects pointed by the actual and not the
formal arguments, to avoid associating objects of unrelated memcpy calls. This could also
be achieved with context-sensitivity based on call-sites.) Additionally, we require that the
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objects are of compatible types, to filter imprecision. The next three rules of Figure 2.18
extend our notion of copied objects recursively, by marking subobjects as well (as long as
they remain type compatible with each other). The last rule performs the propagation of
the points-to set of an object that was copied to another.

2.6 Evaluation

We compare our structure-sensitive analysis to a re-implementation of the Pearce et al.
[104, 105] analysis in cclyzer, that also operates over the full LLVM bitcode language.
We will refer to this analysis as Pearce𝑐. Both analyses were implemented using Datalog,
and include the enhancements of Section 2.5 and a few more to deal with various features
(hidden copies of struct instances due to pass-by-value semantics, constant expressions,
etc.) that arise in practice.

For our benchmark suite, we use the 8 largest programs (in terms of bitcode size) in
GNU Coreutils,4 and 14 executables from PostgreSQL. We use a 64-bit machine with two
octa-core Intel Xeon E5-2667 (v2) CPUs at 3.30GHz and 256GB of RAM. The analysis is
single-threaded and occupies a small portion of the RAM. We use the LogicBlox Datalog
engine (v.3.10.14) and LLVM v.3.7.0.

Figure 2.19 presents some general metrics on the input and output of each analysis:
(i) number of call-graph edges (allocation site to function), (ii) number of abstract objects
created by the analysis, and (iii) running time (excluding constant overhead that bootstrap
both analyses).

Figure 2.20 compares the two analyses in terms of the degree of resolving variable points-
to targets. The first column of each analysis lists the percentage of fully resolved variables
(virtual registers): how many point to a single abstract object. This is the main metric of
interest for most analysis clients. The next two columns list the percentage of variables
that point to two/three objects.

It is evident that our structure-sensitive analysis fares consistently better in fully resolving
variable targets. Our analysis resolves many more variables than Pearce𝑐 does, for any
of the available benchmarks, with an average increase of 36% across all coreutil bench-
marks and 58% in the PostgreSQL benchmarks. This is despite using a finer-grained
object abstraction than Pearce𝑐: The “abstract objects” column of Figure 2.19 shows that
our analysis abstraction has one to two orders of magnitude more abstract objects than
Pearce𝑐. Yet it succeeds at resolving many more variables to a single (and much finer-
grained) abstract object. (The only benchmark instance in which Pearce𝑐 somewhat ben-
efits from its coarse abstract object granularity is ecpg: a full 42.64% of variables point to
3, much coarser than ours, abstract objects.) Note also that the Pearce𝑐 analysis appears
much better than it actually is for meaningful cases, due to large amounts of low-hanging
fruit—e.g., global or address-taken variables, which are the single target of some virtual

4Our original selection included the 10 largest coreutils, but dir and vdir turned out to be identical to ls
and are maintained mostly for backwards-compatibility reasons.
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Structure-sensitive Pearce𝑐

Benchmark Size call-graph abstract running abstract running
edges objects time objects time

cp 720K 3205 68166 29.25s 3380 13.62s
df 456K 1812 38919 20.68s 2236 11.09s
du 608K 2424 49592 29.77s 3008 21.96s
ginstall 692K 3185 59893 25.12s 3207 14.32s
ls 604K 2654 66469 22.43s 2783 13.35s
mkdir 384K 1466 21900 17.35s 1641 11.43s
mv 648K 2932 55619 25.50s 3015 12.20s
sort 608K 2480 75360 34.25s 2955 21.40s

clusterdb 528K 1390 167605 33.90s 4461 11.89s
createdb 528K 1412 168068 30.58s 4480 11.07s
createlang 572K 1928 133869 25.67s 4275 12.68s
createuser 532K 1435 171115 31.07s 4569 9.31s
dropdb 524K 1361 165966 31.26s 4399 12.72s
droplang 572K 1936 133912 24.38s 4278 12.55s
dropuser 524K 1356 165615 30.45s 4386 12.15s
ecpg 1.2M 5713 59252 38.47s 5219 29.11s
pg-ctl 488K 1615 118689 23.36s 3655 9.14s
pg-dumpall 572K 2110 184276 32.18s 5153 11.95s
pg-isready 464K 1302 108622 21.54s 3343 11.25s
pg-rewind 556K 1943 136915 25.56s 4301 11.48s
pg-upgrade 604K 2501 151967 26.49s 4965 11.80s
psql 1.4M 5925 460522 67.76s 14025 25.28s

Figure 2.19: Input and Output Metrics. The first column is benchmark bitcode size (in bytes). The
second column is the number of call-graph edges (as computed by our analysis). The third (resp.
fifth) column is the number of abstract objects created. The fourth (resp. sixth) column is the anal-
ysis running time.

register, due to the SSA representation.

2.7 Summary

We began this chapter by introducing the needs for a revised abstract memory model
for points-to analysis when analyzing C/C++, which can fully support field sensitivity and
maintain maximal structural information for its abstract objects. We accomplish this by in-
creasing object granularity to force the creation of typed objects and by fully distinguishing
subobjects as well. We give a brief overview of our techniques in Section 2.1, and present
some limited background about the peculiarities of C/C++ and LLVM IR in Section 2.2,
regarding the complications they pose to the problem of pointer analysis. We describe
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our structure-sensitive points-to analysis in depth in Section 2.3, and discuss how the
techniques it employs make it suitable for analyzing C++ programs in Section 2.4. In
Section 2.5 we present various enhancements, essential for a realistic implementation.
Finally, we evaluate our approach by comparing it to a standard field-sensitive analysis in
Section 2.6.
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Structure-sensitive Pearce𝑐

Benchmark (%) |𝑝𝑡(𝑣)| → 1 2 3 (%) |𝑝𝑡(𝑣)| → 1 2 3
cp 35.42 11.56 9.03 24.02 2.91 3.51
df 35.98 13.15 8.37 26.28 1.98 4.38
du 37.06 10.51 7.54 25.60 2.00 2.95
ginstall 36.31 14.24 8.28 27.15 7.44 3.14
ls 33.23 6.09 8.81 26.90 3.57 2.67
mkdir 36.11 8.43 9.65 23.02 2.00 4.35
mv 35.09 13.71 8.97 24.58 6.78 3.04
sort 29.20 5.25 9.65 22.37 1.47 2.53

average 34.49 9.51 8.79 25.37 3.53 3.19

clusterdb 40.86 8.42 7.93 24.46 2.79 3.85
createdb 40.82 9.11 7.95 24.54 2.83 4.31
createlang 42.72 8.87 11.89 25.62 4.10 4.78
createuser 40.33 8.85 8.75 24.07 3.18 4.44
dropdb 40.59 8.69 7.96 23.97 2.91 4.00
droplang 42.68 8.86 11.88 25.67 4.10 4.75
dropuser 40.36 8.72 8.01 23.86 2.86 4.02
ecpg 16.72 1.22 0.52 15.14 0.30 42.64
pg-ctl 41.31 8.46 8.50 25.31 3.31 4.05
pg-dumpall 40.52 7.10 7.21 27.74 3.10 4.61
pg-isready 39.89 8.12 7.87 23.59 2.92 4.03
pg-rewind 44.74 7.55 8.56 31.39 2.75 3.76
pg-upgrade 41.12 8.35 9.34 27.73 2.95 3.70
psql 38.62 5.81 9.33 25.61 2.31 3.20

average 39.38 7.72 4.55 24.91 2.89 6.87

Figure 2.20: Variable points-to sets. Proportion of resolved variables (that point to one abstract
object), as well as variables with two or three points-to targets.
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3. MORE SOUND STATIC HANDLING OF JAVA REFLECTION

There are ways, Dude. You don’t
wanna know about it, believe me.

Walter Sobchak

In Chapter 2, we targeted the problem of lost structural information in C/C++ programs
by employing a pointer analysis that recovers lost memory structure via a variety of tech-
niques. In this chapter and the next, we shift our focus to Java: a higher-level, strongly-
typed language with no capabilities for direct memory access. Still, essential structural
information is often lost in Java programs too, yet for different reasons. As stated in
Chapter 1, a source of analysis imprecision, especially in determining the types of ab-
stract objects constructed by the analysis, lies in the use of Java’s reflection mechanism:
the ability to inspect and dynamically retrieve classes, methods, attributes, etc. at runtime.

By using the Reflection API, Java programs can encompass dynamic behavior. However,
statically reasoning about the behavior of software that uses reflection can be especially
cumbersome. Unfortunately, reflection is ubiquitous in large Java programs. Any handling
of reflection will be approximate, and overestimating its reach in a large codebase can be
catastrophic for precision and scalability. In this chapter, we present an approach for han-
dling reflection with improved empirical soundness (asmeasured against prior approaches
and dynamic information), again, in the context of a points-to analysis. Our approach is
based on the combination of string-flow and points-to analysis from past literature aug-
mented with (a) substring analysis and modeling of partial string flow through string builder
classes; (b) new techniques for analyzing reflective entities based on information available
at their use-sites (similar to those presented in Chapter 2). In experimental comparisons
with prior approaches, we demonstrate a combination of both improved soundness (re-
covering the majority of missing call-graph edges) and increased performance.

3.1 Intro: Static Analysis and Java Reflection

Whole-program static analysis is the engine behind several modern programming facilities
for program development and understanding. Compilers, bug detectors, security check-
ers, modern development environments (with automated refactorings, slicing facilities,
and auto-complete functionality), and a myriad other tools routinely employ static analysis
machinery. Even the seemingly simple effort of computing a program’s call-graph (i.e.,
which program function can call which other) requires sophisticated analysis in order to
achieve precision in a modern language.

Yet, static whole-program analysis suffers in the presence of common dynamic features,
especially reflection. When a Java program accesses a class by supplying its name as a
run-time string, via the Class.forName library call, the static analysis has very few avail-
able courses of action: It needs to either conservatively over-approximate (e.g., assume
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that any class can be accessed, possibly limiting the set later, after the returned object is
used), or to perform a string analysis that will allow it to infer the contents of the forName
string argument. Both options can be detrimental to the scalability of the analysis: the
conservative over-approximation may never become constrained enough by further in-
structions to be feasible in practice; precise string analysis is impractical for programs of
realistic size. It is telling that no practical Java program analysis framework in existence
handles reflection soundly [86], although other language features are modeled soundly.1

Full soundness is not practically achievable, but it can still be approximated for the well-
behaved reflection patterns encountered in regular, non-adversarial programs. Therefore,
it makes sense to treat soundness as a continuous quantity: something to improve on,
even though we cannot perfectly reach. To avoid confusion, we use the term empirical
soundness for the quantification of how much of the dynamic behavior the static analysis
covers. Computable metrics of empirical soundness can help quantify how close an anal-
ysis is to the fully sound result. Based on such metrics, one can make comparisons (e.g.,
“more sound”) to describe soundness improvements.

The second challenge of handling reflection in a static analysis is scalability. The online
documentation of the IBM Wala library [40] concisely summarizes the current state of the
practice, for points-to analysis in the Java setting.

Reflection usage and the size of modern libraries/frameworks make it very dif-
ficult to scale flow-insensitive points-to analysis to modern Java programs. For
example, with default settings,Wala’s pointer analyses cannot handle any pro-
gram linked against the Java 6 standard libraries, due to extensive reflection
in the libraries.

The same caveats routinely appear in the research literature. Multiple published points-to
analysis papers analyze well-known benchmarks with reflection disabled [2, 3, 66, 123].

A representative quote [123] illustrates:

Hsqldb and jython could not be analyzedwith reflection analysis enabled [...] —
hsqldb cannot even be analyzed context-insensitively and jython cannot even
be analyzed with the 1obj analysis. This is due to vast imprecision introduced
when reflection methods are not filtered in any way by constant strings (for
classes, fields, or methods) and the analysis infers a large number of reflec-
tion objects to flow to several variables. [...] For these two applications, our
analysis has reflection reasoning disabled. Since hsqldb in the DaCapo bench-
mark code has its main functionality called via reflection, we had to configure
its entry point manually.

In this chapter, we describe an approach to analyzing reflection in the Java points-to anal-
ysis setting. Our approach requires no manual configuration and achieves significantly

1In our context, sound = over-approximate, i.e., guaranteeing that all possible behaviors of reflection
operations are modeled.
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higher empirical soundness without sacrificing scalability, for realistic benchmarks and
libraries (DaCapo Bach and Java 7). In experimental comparisons with the recent Elf
system [80] (itself improving over the reflection analysis of the Doop framework [20]), our
algorithm discovers most of the call-graph edges missing (relative to a dynamic analysis)
from Elf’s reflection analysis. This improvement in empirical soundness is accompanied
by increased performance relative to Elf, demonstrating that near-sound handling of re-
flection is often practically possible. Concretely, our work in this chapter:

⋅ introduces key techniques in static reflection handling that contribute greatly to empirical
soundness. The techniques generalize past work from an intra-procedural to an inter-
procedural setting and combine it with a string analysis;

⋅ shows how scalability can be addressed with appropriate tuning of the above general-
ized techniques;

⋅ thoroughly quantifies the empirical soundness of a static points-to analysis, compared
to past approaches and to a dynamic analysis;

⋅ is implemented and evaluated on top of an existing open framework (Doop [20]).

3.2 Points-to Analysis in Java

In Chapter 2, we presented a points-to analysis for C/C++ that includes various enhance-
ments to make it structure-sensitive. Before presenting our enhancements towards better
handling of Java’s reflection, we first present a typical points-to analysis for Java and dis-
cuss its fundamental differences from analyzing C/C++.

The domains of the analysis include:

⋅ variables, 𝑉
⋅ (class) types, 𝑇
⋅ fields, 𝐹
⋅ methods, 𝑀
⋅ abstract (heap) objects, 𝐻
⋅ instruction labels, 𝐿
⋅ and strings.

Figure 3.1 lists the basic Java instructions, relevant to a points-to analysis. We note some
key differences from the C/C++ setting:

– there are no pointer types, or any way to directly operate on memory addresses

– there is a clear distinction between variables (allocated on the stack) and objects (allo-
cated on the heap)

– loads and stores need a field operand
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Java Instruction Operand Types Description

p = new C () 𝑉 ×𝑇 Heap Allocations
p = (T ) q 𝑉 ×𝑇 ×𝑉 Casts
p = q 𝑉 ×𝑉 Assignments
p = q . f 𝑉 ×𝑉 ×𝐹 Field Loads
p . f = q 𝑉 ×𝐹 ×𝑉 Field Stores
p = v . meth(…) 𝑉 ×𝑉 ×𝑀 ×𝑉 𝑛 Virtual Calls
p = C . meth(…) 𝑉 ×𝑇 ×𝑀 ×𝑉 𝑛 Static Calls
return p 𝑉 Method Returns

Figure 3.1: Java Instruction Set. We also prepend a label 𝑙 ∈ 𝐿 to each instruction (that we omit in
this figure). Each such label can be used to uniquely identify its instruction.

– there are two types of method call instructions: (i) virtual calls (that perform dynamic
dispatch based on the dynamic type of the receiver), and (ii) static calls.

Figure 3.2 presents a standard Java points-to analysis [47, 66, 133], expressed in infer-
ence rules (such as those of Chapter 2). The main relations it computes are:

Variable points-to edges. Edge v ↦ ̂𝑜 ∈ 𝑉 × 𝐻 records that variable v may point to
abstract object ̂𝑜.

Field points-to edges. Edge 𝑜𝑏
fld−→ ̂𝑜 ∈ 𝐻 × 𝐹 × 𝐻 records that abstract object

𝑜𝑏 may point to abstract object ̂𝑜, via field fld. Field points-to edges can only be
established by field store instructions.

Abstract object types. The partial function type ∶ 𝐻 ↛ 𝑇 records the type of an ab-
stract object. Reflection aside, each abstract object will be associated with a single
type that will be readily available at the allocation site.

Call-graph edges. Edge 𝑖 𝑐𝑎𝑙𝑙𝑠−−→ 𝑚 ∈ 𝐿 × 𝑀 records that invocation site 𝑖 may call
method 𝑚 (after the dynamic dispatch has been resolved).

Note that, without reflection, a points-to analysis needs only create a single kind of abstract
objects that represents heap allocations based on the allocation site. There is no need
for abstract subobjects, as in the C/C++ setting, since (i) heap objects can only contain
references to other objects but cannot embed the actual allocations; complex structures
need to be dispersed through the heap and accessed via multiple field loads (ii) a variable
can only point to the start of a heap allocation. However, more types of abstract objects
that serve our reflection-related enhancements will be introduced later.

The first rule of Figure 3.2 creates a typed abstract object that represents the given alloca-
tion site, and assigns it to the target variable. The next two rules, handling cast and move
instructions, simply copy the points-to set of the source to that of the target variable. For
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Alloc
𝑖 ∶ p = new T ()

p ↦ 𝑜𝑖 type(𝑜𝑖) = T

Cast
𝑖 ∶ p = (T ) q q ↦ 𝑜𝑖 type(𝑜𝑖) = T' T'<:T

p ↦ 𝑜𝑖

Move
𝑖 ∶ p = q q ↦ 𝑜𝑖

p ↦ 𝑜𝑖

Load
𝑖 ∶ p = q . f q ↦ 𝑜𝑏 𝑜𝑏

f−→ ̂𝑜
p ↦ ̂𝑜

Store
𝑖 ∶ p . f = q p ↦ 𝑜𝑏 q ↦ ̂𝑜

𝑜𝑏
f−→ ̂𝑜

VCall
𝑖 ∶ p = v . meth(…) v ↦ ̂𝑜 type( ̂𝑜) = T lookup(T, meth) = meth′

𝑖 𝑐𝑎𝑙𝑙𝑠−−→ meth′ (…) this meth′ ↦ ̂𝑜

SCall
𝑖 ∶ p = C . meth(…)
𝑖 𝑐𝑎𝑙𝑙𝑠−−→ C . meth (…)

Args
𝑖 ∶ p = 𝑥 . meth(a1, a2, … , a𝑛) 𝑖 𝑐𝑎𝑙𝑙𝑠−−→ meth′ (v1, v2, … , v𝑛)

∀𝑗 ∶ a𝑗 ↦ ̂𝑜 ⇒ v𝑗 ↦ ̂𝑜

Ret

𝑖 ∶ p = 𝑥 . meth(…)
𝑖 𝑐𝑎𝑙𝑙𝑠−−→ meth′ (…) 𝑗 ∶ return q 𝑗 ∈ body(meth′)

q ↦ ̂𝑜
p ↦ ̂𝑜

Figure 3.2: Inference Rules for Java Points-to Analysis

cast instructions, however, we also perform a type check to filter objects of incompatible
types (by checking if the type of the allocation is a subtype of the type of the variable).
Since Java is strongly-typed, this is the only place where we can benefit from such a type
check; any other points-to edges established by the rest of the rules are guaranteed to be
type-compatible.

The next two rules handle load and store instructions. To load from a field, we have to
follow the relevant field points-to edge of any base object that wemay load from. Inversely,
storing to a field establishes such field points-to edges between any heap objects that the
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base and source variable may point to.

For virtual calls, we first have to determine the type(s) of the receiver object(s), and de-
termine the actual method that will be called after method resolution. (For this purpose,
we assume the existence of a lookup function ∶ 𝑇 × 𝑀 → 𝑀 that performs the actual
resolution.) Then, we can establish a call-graph edge for the given allocation site, as well
as a points-to edge for variable this of the resolved method. Static calls are simpler,
since they require no method resolution and have no receivers. The last two rules apply
to both virtual and static calls, and model call and return instructions as (interprocedural)
assignments (similarly to the C/C++ setting), regarding method arguments and returned
values.

3.3 Joint Reflection and Points-To Analysis

Next, we extend our abstracted model of the points-to analysis with an inter-related re-
flection analysis. The model is a light reformulation of the analysis introduced by Livshits
et al. [84, 85]. The main insight of the Livshits et al. approach is that reflection analysis
relies on points-to information, because the different key elements of a reflective activity
may be dispersed throughout the program. A typical pattern of reflection usage is with
code such as:

1 String className = ... ;
2 Class c = Class.forName(className);
3 Object o = c.newInstance();
4 String methodName = ... ;
5 Method m = c.getMethod(methodName, ...);
6 m.invoke(o, ...);

All of the above statements can occur in distant program locations, across different meth-
ods, invoked through virtual calls from multiple sites, etc. Thus, a whole-program analysis
with an understanding of heap objects is required to track reflection with any amount of
precision. This suggest the idea that reflection analysis can leverage points-to analysis—it
is a client for points-to information. At the same time, points-to analysis needs the results
of reflection analysis—e.g., to determine which method gets invoked in the last line of the
above example, or what objects each of the example’s local variables point to. Thus, under
the Livshits et al. approach, reflection analysis and points-to analysis become mutually
recursive, or effectively a single analysis.

Recall that, in the C/C++ setting of Chapter 2, we used the same insight to associate un-
typed abstract objects with their possible types. The points-to analysis is used as both a
producer and consumer of type information: new type-object associations drive the cre-
ation of new abstract objects, altering the points-to results that may, again, produce new
type information, and so on.

We consider the core of the analysis algorithm, which is representative and handles the
most common features, illustrated in our above example: creating a reflective object rep-
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Class.forName
𝑖 ∶ c = Class.forName (s) s ↦ 𝑠𝑡𝑟 fqn( T ) = 𝑠𝑡𝑟 T ∈ 𝑇

c ↦ 𝑐𝑙𝑠 T

Class.newInstance
𝑖 ∶ p = c.newInstance () c ↦ 𝑐𝑙𝑠 T

p ↦ 𝑜𝑖,T

Class.getMethod

𝑖 ∶ m = c.getMethod (s) s ↦ 𝑠𝑡𝑟 fqn( meth ) = 𝑠𝑡𝑟
c ↦ 𝑐𝑙𝑠 T lookup(T, meth) = _

m ↦ 𝑚𝑡ℎ meth

Method.invoke

𝑖 ∶ p = m . invoke(r, a1, a2, …) m ↦ 𝑚𝑡ℎ meth r ↦ 𝑜𝑏
type(𝑜𝑏) = T lookup(T, meth) = meth′

𝑖 𝑐𝑎𝑙𝑙𝑠−−→ meth′(v1, v2, …) this meth′ ↦ 𝑜𝑏∀𝑗 ∶ a𝑗 ↦ ̂𝑜 ⇒ v𝑗 ↦ ̂𝑜
Figure 3.3: Handling Java Reflection. We assume the existence of an overloaded function fqn ∶
(𝑇 ∪ 𝐹 ∪ 𝑀) → 𝐻, that, given a class, field, or method, returns the string constant containing its
fully qualified name. E.g. fqn( Object ) = "java.lang.Object".

resenting a class (a class object) given a name string (library method Class.forName),
creating a new object given a class object (library method Class.newInstance), retrieving
a reflective method object given a class object and a signature (library method Class.
getMethod), and reflectively calling a virtual method on an object (library method Method.
invoke). This treatment ignores several other APIs, which are handled similarly. These in-
clude, for instance, fields, constructors, other kinds of method invocations (static, special),
reflective access to arrays, other ways to get class objects, and more.

The Livshits et al. reflection analysis can be expressed as a four-rule addition to the points-
to analysis of Section 3.2. However, we first have to extend our domain of abstract heap
objects with some special kinds of reflective objects. These new kinds of objects consist
of the following:

– 𝑐𝑙𝑠 T Represents the reflective class object for class type T ∈ 𝑇 .

– 𝑚𝑡ℎ m Represents the reflective object for method m ∈ 𝑀 .

– 𝑜𝑖,T Represents objects of type T ∈ 𝑇 that are allocated with a newInstance() call
at invocation site 𝑖 ∈ 𝐿.

The first rule of Figure 3.3 models a forName call, which returns a class object given a
string representing the class name. It states that if the argument of a forName call points
to an object that is a string constant containing the name of class type T, then the target
variable of the forName call is inferred to point to the respective reflection object for class
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type T.

The second rule reads: if the receiver object of a newInstance call is a class object for
class type T, and the newInstance call is assigned to variable p, then make p point to the
special (i.e., invented) abstract object 𝑜𝑖,T that designates objects of type T allocated at the
newInstance call site. Note the analogy between this kind of abstract objects, 𝑜𝑖,T , and
the abstract objects of Chapter 2, representing the various typed variants of a seemingly
untyped allocation (e.g, malloc()). In both cases, the same allocation site may produce
multiple abstract objects, one per each type associated with this site, as computed by the
pointer analysis itself.

The third rule gives semantics to getMethod calls. It states that if such a call is made
with receiver c (for “base”) and first argument s (the string encoding the desired method’s
signature), and if the analysis has already determined the objects that c and s may point
to, then, assuming c points to a string constant encoding the signature of some method,
meth, that exists inside the type that c points to (“_” stands for “any” value), the variable
m holding the result of the getMethod call points to the reflective object, 𝑚𝑡ℎ meth, for this
method signature.

Finally, all reflection information can contribute to inferring more call-graph edges. The last
rule encodes that a new edge can be inferred from the invocation site, 𝑖, of a reflective
invoke call to a method meth′, if the receiver, m, of the invoke points to a reflective object
encoding method meth, and the argument, r, of the invoke points to an object, 𝑜𝑏, of a
class in which the lookup of meth’s signature produces the method meth′. Method param-
eters are handled similarly to ordinary method calls (i.e., as interprocedural assignments).

The four rules of Figure 3.3 are a small part of a realistic implementation of reflection
handling, but they offer a faithful model of the core of the analysis—other additions handle
more reflective calls and more language types (e.g., arrays) but represent engineering,
rather than conceptual handling.

3.4 Techniques for Empirical Soundness

We next present our main techniques for higher empirical soundness.

3.4.1 Generalizing Reflection Inference via Substring Analysis

An important way of enhancing the empirical soundness of our analysis is via richer string
flow. The logic discussed in Section 3.3 only captures the case of entire string constants
used as parameters to a forName call. The parameter of forName could be any string
expression, however. It is interesting to attempt to deduce whether such an expression
can refer to a class name. Similarly, strings representing field and method names are
used in reflective calls—we already encountered the getMethod call in Section 3.3.
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boolean setAttrVal(..., ElemTemplateElement el) {
String setterString = getSetterMethodName();
Object val = processValue(..., el);

Object[] args = new Object[]{ val };
Class[] argTypes = new Class[]{ val.getClass() };

Method meth = el.getClass().getMethod(setterString, argTypes);
meth.invoke(el, args);

}

public String getSetterMethodName() {
StringBuffer outBuf = new StringBuffer();
outBuf.append("set");

for (int i = 0; i < m_name.length(); i++) {
char c = m_name.charAt(i);
if ('-' == c) {

i++;
c = m_name.charAt(i);
c = Character.toUpperCase(c);

}
else if (0 == i) {

c = Character.toUpperCase(c);
}
outBuf.append(c);

}
return outBuf.toString();

}

Figure 3.4: Example of reflection leveraging partial strings.

Reflection Usage Example. The (simplified) code excerpt shown in Figure 3.4, found
in the xalan DaCapo benchmark, demonstrates the need for substring analysis in order to
resolve reflective method invocations. The methods shown belong to class org.apache
.xalan.processor.XSLTAttributeDef, which represents an attribute for an element in
an XSLT stylesheet. The method setAttrVal() computes and sets the value of this at-
tribute, for a given element (of type ElemTemplateElement), via reflection (calls getClass,
getMethod, invoke). In order to achieve this, it first has to determine the exact name of
the setter method of the element, by calling getSetterMethodName(). The attribute con-
tains a field m_name, which holds the local name of the attribute without any prefix. The
method simply transforms this local name to a setter method by adding a “set” prefix, re-
moving dashes, and changing it to camel case. (Reflective calls have to be generic, which
explains why patterns such as this, relying on naming conventions and employing some
basic string transformation, are common in practice.)

Note that, in order to resolve the setter method, one needs to track the flow of the “set”
prefix through the StringBuffer object and use it to match against any possible setter
methods of ElemTemplateElement. Ideally, we would like to narrow down the setter meth-
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String Builder

𝑖 ∶ b1.append (s)
𝑗 ∶ r = b2.toString () b1 ↦ 𝑜𝑏 b2 ↦ 𝑜𝑏

type(𝑜𝑏) = StringBuilder s ↦ 𝑜𝑟 matches( 𝑜𝑟, _ )
r ↦ 𝑜𝑟

Class Substr
𝑖 ∶ c = Class.forName (s) s ↦ 𝑜𝑟 matches( 𝑜𝑟, T ) T ∈ 𝑇

c ↦ 𝑐𝑙𝑠 T

Figure 3.5: Extending reflection handling with substring matching

ods to be called to just one, but this would require sophisticated reasoning about the
computation performed inside getSetterMethodName(). Such reasoning is outside the
scope of this dissertation and fairly foreign to scalable over-approximate techniques, such
as pointer analysis. Furthermore, the exact value of m_name could be missing or merged
with many other (irrelevant) string constants.

Substring matching approach. In order to estimate what classes, fields, or methods a
string expression may represent, we implement substring matching: all string constants
in the program text are tested for prefix and suffix matching against known class, method,
and field names. (We use tunable thresholds to limit the matches: e.g., member prefixes,
resp. suffixes, need to be at least 3, resp. 5, characters long. These settings reflect a
balance between expected usage and spurious matches.)

The strings that may refer to such entities are handled with more precision than others dur-
ing analysis. For instance, a points-to analysis (e.g., in the Doop or Wala frameworks) will
typically merge most strings into a single abstract object—otherwise the analysis will incur
an overwhelmingly high cost because of tracking numerous string constants. Strings that
may represent class/interface, method, or field names are prevented from such merging.
Furthermore, the flow of such strings through factory objects is tracked.

String concatenation in Java is typically done through StringBuffer or StringBuilder
objects. The common concatenation operator, +, reduces to calls over such factory ob-
jects. To evaluate whether reflection-related substrings may flow into factory objects, we
leverage the points-to analysis itself, pretending that an object flow into an appendmethod
and out of a toString method is tantamount to an assignment.

Figure 3.5 contains a simplified version of the logic. It assumes that we have already
computed the following:

matches ∶ 𝐻 × 𝑇 → { 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 } a predicate that is true if a heap object is a
string constant that matches a class type (as described above), or false otherwise.

The first rule of Figure 3.5 states: if a call to append and a call to toString are over
the same string builder object, 𝑜𝑏, (accessed by different vars, b1 and b2, at possibly
disparate parts of the program) then all the potentially reflection-related objects that are

G. Balatsouras 78



Recovering Structural Information for Better Static Analysis

pointed to by the parameter, s, of append are inferred to be pointed by the variable r
that accepts the result of the toString call. The second rule augments the treatment of
forName instructions to relax the association between string constants and class types, by
also allowing partial strings to map to their matching types.

In this way, the flow of partial string expressions through the program is tracked. By appro-
priately adjusting the matches predicate, we can estimate which reflective entities can be
returned at the site of a forName call. (Calls to getMethod call can be similarly extended.)
In this way, the joint points-to and reflection analysis is enhanced with substring reason-
ing without requiring any changes to the base logic of Section 3.3. String flow through
buffers becomes just an enhancement of the points-to logic, which is already leveraged
by reflection analysis.

An interesting aspect of the above approach is that it is easily configurable, in commonly
desirable ways. Our above rule for handling partial string flow through string factory ob-
jects does not concern itself with how string factory objects (ℎ𝑓 ) are represented inside
the analysis. Indeed, string factory objects are often as numerous as strings themselves,
since they are implicitly allocated on every use of the + operator over strings in a Java
program. Therefore, a pointer analysis will often merge string factory objects, with the
appropriate user-selectable flag.2 The rule for string flow through factories is unaffected
by this treatment. Although precision is lost if all string factory objects are merged into
one abstract object, the joint points-to and reflection analysis still computes a fairly pre-
cise outcome: “does a partial string that matches some class/method/field name flow into
some string factory’s append method, and does some string factory’s toString result flow
into a reflection operation?” If both conditions are satisfied, the class/method/field name
matched by the partial string is considered to flow into the reflection operation.

3.4.2 Use-Based Reflection Analysis

Our second technique for statically analyzing reflection calls leverages the way objects
returned by reflective calls are later used in the program. We call the approach use-based
reflection analysis and it integrates two sub-techniques: a back-propagation mechanism
and a (forward) object invention mechanism. We discuss these next.

3.4.2.1 Inter-procedural Back-Propagation

An important observation regarding reflection handling is that it is one of the few parts
of a static analysis that are typically under-approximate rather than over-approximate. A
static points-to analysis is primarily a may analysis: it computes a conservative over-
approximation of the analyzed program’s behavior. This is usually impossible to do in the
presence of reflection: the analysis cannot know all the values that a string expression

2E.g., For instance, this is enabled with the flag SMUSH_STRINGS in Wala [40] and MERGE_STRING_BUFFERS
in Doop. Both flags are on by default for precise (i.e., costly) analyses.
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can assume. Of course, the analysis could over-approximate such values (e.g., assume
that any string is possible) but such treatment is catastrophic for precision and scalability:
a single reflective call would lead to vast imprecision propagating through the program.
No actual, implemented whole-program analysis attempts such over-approximation [86].
Instead, analyses choose to purposely treat reflective calls under-approximately: when
the arguments of the reflection call are possible to infer, they are taken into account; other
potential values are ignored.

Our first use-based reflection analysis technique back-propagates information from the
use-site of a reflective result to the original reflection call that got under-approximated.
Such an under-approximated call can be a:

– Class.forName call, as seen earlier: returns a dynamic representation of a class, given
a string.

– Class.get[Declared]Method call, as seen earlier: returns a dynamic representation of
a method, given a class and a string.

– Class.get[Declared]Field call: returns a dynamic representation of a field, given a
class and a string.

The example below, which we will refer to repeatedly in later sections, shows how the use
of a non-reflection object can inform a reflection call’s analysis:

1 Class c1 = Class.forName(className);
2 ... // c2 aliases c1
3 Object o1 = c2.newInstance();
4 ... // o2 aliases o1
5 e = (Event) o2;

Typically (e.g., when className does not point to a known constant) the forName call will be
under-approximated (rather than, e.g., assuming it will return any class in the system). The
idea is to then treat the cast as a hint: it suggests that the earlier forName call should have
returned a class object for Event. This reasoning, however, should be inter-procedural
with an understanding of heap behavior. The above statements could be in distant parts
of the program (separate methods) and aliasing is part of the conditions in the above
pattern. Further, note that the related objects are twice-removed: we see a cast on an
instance object and need to infer something about the forName site that may have been
used to create the class that got used to allocate that object. This propagation should be
as precise as possible: lack of precision will lead to too many class objects returned at the
forName call site, affecting scalability.

Therefore, we see again the need to employ points-to analysis, this time in order to detect
the relationship between cast sites and forName sites, so that the latter can be better
resolved and we can improve the points-to analysis itself—a mutual recursion pattern.
The high-level structure of our technique (for this pattern) is as follows:

• At the site of a forName call, create a marker object (of type java.lang.Class), to
stand for all unknown objects that the invocation may return.
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Mark Class
𝑖 ∶ c = Class.forName (p)

c ↦ 𝑐𝑙𝑠 i,*

Mark Object
𝑗 ∶ p = c.newInstance () c ↦ 𝑐𝑙𝑠 i,*

p ↦ 𝑜𝑖,*

Back Prop
𝑖 ∶ c = Class.forName (x) 𝑗 ∶ p = (T ) q T'<:T q ↦ 𝑜𝑖,*

c ↦ 𝑐𝑙𝑠 T'

Figure 3.6: Extending reflection handling with back propagation

• The special object flows freely through the points-to analysis, taking full advantage
of inter-procedural reasoning facilities.

• At the site of a newInstance invocation, if the receiver is our special object, the
result of newInstance is also a special object (of type java.lang.Object this time)
that remembers its forName origins.

• This second special object also flows freely through the points-to analysis, taking full
advantage of inter-procedural reasoning facilities.

• If the second special object (of type java.lang.Object) reaches the site of a cast,
then the original forName invocation is retrieved and augmented to return the cast
type or its subtypes as class objects.

The algorithm for the above treatment can be elegantly expressed via rules that are mutu-
ally recursive with the base points-to analysis. The rules for the forName-newInstance-cast
pattern are representative.

As before, we have to introduce new kinds of abstract objects to implement this technique:

– 𝑐𝑙𝑠 i,* A marker class object (of no specific type) that is produced by calling forName
at an allocation site 𝑖 ∈ 𝐿.

– 𝑜𝑖,* Represents all objects (again, of no specific type) returned by a newInstance
call, which was, in turn, performed on the special (marker) object returned by
a forName call, at invocation site 𝑖 ∈ 𝐿.

Figure 3.6 contains the rules that we have to add. The first rule makes the variable that
was assigned the result of a forName invocation point to the special object representing all
missing objects from this invocation site. In this way, the special object can then propagate
through the points-to analysis.

The second rule reads: when analyzing a newInstance call, if the receiver is a special
object that was produced by a forName invocation, 𝑖, then the result of the newInstance
will be another special object that will identify the forName call.
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The final rule ties the logic together: if a cast to type T is found, where the cast variable
points to a special object, 𝑜𝑖,* , then retrieve the object’s forName invocation site, i, and
infer that this invocation site returns a class object of type T', where T' is a subtype of
T. Using casts as type hints is exactly what we resorted to in Chapter 2, as well, to deal
with untyped heap allocations. The logic here is fairly similar, but instead of patching prior
malloc instructions, it is used to patch forName calls.

Other use-cases. As seen above, the back-propagation logic involves the result of sev-
eral inter-procedural queries (e.g., points-to information at possibly distant call sites). In
fact, there are use-based back-propagation patterns with even longer chains of reasoning.
In the case below, the cast of o2 informs the return value of forName, three reflection calls
back!

1 Class c1 = Class.forName(className);
2 ... // c2 aliases c1
3 Constructor[] cons1 = c2.getConstructors(types);
4 ... // cons2 aliases cons1
5 Object o1 = cons2[i].newInstance(args);
6 ... // o2 aliases o1
7 e = (Event) o2;

Interestingly, the back-propagation analysis can exploit not just cast information but also
strings (including partial strings, transparently, per our substring/string-flow analysis of
Section 3.4.1). When retrieving a member from a reflectively discovered class, the string
name supplied may contain enough information to disambiguate what this class may be.
Consider the pattern:

1 Class c1 = Class.forName(className);
2 ... // c2 aliases c1
3 Field f = c2.getField(fieldName);

In this case, the value of the fieldName string can inform the analysis result for the ear-
lier forName call. We apply this idea to the 4 API calls Class.get[Declared]Method and
Class.get[Declared]Field.

Contrasting approaches. Our back-propagating reflection analysis (Section 3.4.2.1)
has some close relatives in the literature. Livshits et al. [84, 85] also examined using
future casts as hints for forName calls, as an alternative to regular string inference. Li et
al. [80] generalize the Livshits approach tomanymore reflection calls. There are, however,
important ways in which our techniques differ:

• Our analysis generalizes the pattern significantly. In our earlier example, from the
beginning of this section, both the Li et al. and the Livshits et al. approaches require
for the cast to not only occur in the same method as the newInstance call but also to
post-dominate it! This restricts the pattern to an intra-procedural and fairly specific
setting, reducing its generality:
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1 Class c1 = Class.forName(className);
2 ... // c2 aliases c1
3 e = (Event) c2.newInstance();

The result of such a restriction is that the potential for imprecision is diminished,
yet the ability to achieve empirical soundness is also scaled back. There are sev-
eral cases where the cast will not post-dominate the intermediate reflection call, yet
could yield useful information. This is precisely what Livshits et al. encountered
experimentally—a direct quote illustrates:

The high number of unresolved calls in the JDK is due to the fact that
reflection use in libraries tends to be highly generic and it is common to
have ’Class.newInstance wrappers’—methods that accept a class name
as a string and return an object of that class, which is later cast to an
appropriate type in the caller method. Since we rely on intraprocedural
post-dominance, resolving these calls is beyond our scope. [85]

• We generalize back-propagation to string information and not just cast information
(i.e., we exploit the use of get[Declared]{Method,Field} calls to resolve earlier
forName calls). This feature also benefits from other elements of our overall analysis,
namely substring matching and substring flow analysis (Section 3.4.1). For instance,
by having more information on what are the possible strings passed to a getMethod
call, we are more likely to determine the return value of a getClass, on which the
getMethod was called.

3.4.2.2 Inventing Objects

Our approach introduces an alternative use-based reflection analysis technique, which
works as a forward propagation technique (in contrast to the earlier back-propagation). It
consists of inventing objects of the appropriate type at the point of a cast operation that has
received the result of a reflection call. Consider again our usual forName-newInstance-cast
example:

1 Class c1 = Class.forName(className);
2 ... // c2 aliases c1
3 Object o1 = c2.newInstance();
4 ... // o2 aliases o1
5 e = (Event) o2;

A major issue with our earlier back-propagation technique is that its results may adversely
affect precision. The information will flow back to the site of the forName call, and from
there to multiple other program points—not just to the point of the cast operation (line 5),
or even to the point of the newInstance operation (line 3) in the example.

The object invention technique offers the converse compromise. Whenever a special,
unknown reflective object flows to the point of a cast, instead of informing the result of
forName, the technique invents a new, regular object of the right type (Event, in this case)
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Class.newInstance+ 𝑖 ∶ p = c.newInstance ()
p ↦ 𝑜+

𝑖,*
Invent

𝑗 ∶ p = (T ) q q ↦ 𝑜+
𝑖,*

p ↦ 𝑜+
𝑖,T

Figure 3.7: Extending reflection handling with object invention

that starts its existence at the cast site. The “invented” object does not necessarily abstract
actual run-time objects. Instead, it exploits the fact that a points-to analysis is fundamen-
tally a may-analysis: it is designed to possibly yield over-approximate results, in addition
to those arising in real executions. Thus, an invented value does not impact the correct-
ness of the analysis (since having extra values in points-to sets is acceptable), yet it will
enable it to explore possibilities that might not exist without the invented value. These
possibilities are, however, strongly hinted by the existence of a cast in the code, over an
object derived from reflection operations.

The algorithm for object invention in the analysis is again recursive with the main points-to
logic. We illustrate for the case of Class.newInstance, although similar logic applies to
reflection calls such as Constructor.newInstance, as well as Method.invoke and Field.
get.

As in the back-propagating analysis, we use special marker objects.

– 𝑜+
𝑖,* An invented object of unknown type for a given newInstance invocation site,

𝑖 ∈ 𝐿.

– 𝑜+
𝑖,T An invented object of type T ∈ 𝑇 for a given newInstance invocation site,

𝑖 ∈ 𝐿.

The algorithm is captured in the two rules of Figure 3.7. The first one states that the
variable assigned the result of a newInstance invocation points to a special object marking
that it was produced by a reflection call. The marker object can then propagate through
the points-to analysis.

The key part of the algorithm is to then invent an object at a cast site. This happens in
the second rule: if a variable, q, is cast to a type T and points to a marker object that was
produced by a newInstance call, then the variable, p, storing the result of the cast, points
to a newly invented object, with the right type, T.

Note that in terms of empirical soundness the object invention approach is weaker, in
most cases,3 than the back-propagation analysis: if a type is inferred to be produced by
an earlier forName call, it will flow down to the point of the cast, removing the need for
object invention. (Conversely, inventing objects at the cast site will not catch all cases
covered by back-propagation, since the special object of the back-propagation analysis
may never flow to a cast.) Nevertheless, back-propagation is often less scalable. Thus,
the benefit of object invention is that it allows to selectively turn off back-propagation while

3Although it is not weaker when (due to other unsoundness, e.g., dynamic loading or unrelated reflection)
the value returned by a forName call is not detected to flow to the appropriate newInstance.
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still taking advantage of information from a cast.

3.4.3 Balancing for Scalability

Consider again our inter-procedural back-propagating analysis technique relative to prior,
intra-procedural techniques. Our approach explicitly aims for empirical soundness (i.e., to
infer all potential results of a reflection call). At the same time, however, the technique may
suffer in precision, since the result of a reflection call is deduced from far-away information,
whichmay be highly over-approximate. Conversely, our object invention technique ismore
precise (since the invented object only starts existing at the point of the cast) but may suffer
in terms of soundness. Thus, it can be used to supplement back-propagation when the
latter is applied selectively.

To balance the soundness/precision tradeoff of the back-propagating analysis, we em-
ploy precision thresholds. Namely, back-propagation is applied only when it is reasonably
precise in terms of type information. For instance, if a cast is found, it is used to back-
propagate reflective information only when there are up to a constant, 𝑐, class types that
can satisfy the cast (i.e., at most 𝑐 subtypes of the cast type). Intuitively, a cast of the form
“(Event)” is much more informative when Event is a class with only a few subclasses,
rather than when Event is an interface that many tens of classes implement. Similarly, if
string information (e.g., a method name) is used to determine what class object could have
been returned by a Class.forName, the back-propagation takes place only when the string
name matches methods of at most 𝑑 different types. This threshold approach minimizes
the potential for noise back-propagating and polluting all subsequent program paths that
depend on the original reflection call.

A second technique for employing back-propagation without sacrificing precision and scal-
ability adjusts the flow of special abstract objects that we introduced with our extensions.
Although we want such objects to flow inter-procedurally, we can disallow their tracking
through the heap (i.e., through objects or arrays), allowing only their flow through local
variables. This is consistent with expected inter-procedural usage patterns of reflection
results: although such results will likely be returned from methods (cf. the quote from [85]
in Section 3.4.2.1), they are less likely to be stored in heap objects.

We employ both of the above techniques by default in our analysis (with 𝑐 = 𝑑 = 5). The
user can configure their application through input options.

3.5 Evaluation

We implemented our techniques in the Doop framework [20], together with numerous
improvements (i.e., complete API support) to Doop’s reflection handling. Following the
Elf study [80], we perform the default joint points-to and call-graph analysis of Doop,
which is an Andersen-style context-insensitive analysis, with full support for complex Java
language features, such as class initialization, exceptions, etc. Our techniques are or-
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thogonal to the context-sensitivity used, and can be applied to all analyses in the Doop
framework. In general, nothing in our modeling of reflection limits either context- or flow-
sensitivity.

The evaluation of our techniques aims to answer three research questions:

RQ1: Can these techniques improve the soundness of a points-to analysis?

RQ2: Do the presented techniques have reasonable running times?

RQ3: Does an increase in soundness incur a significant loss in precision?

Experimental Setup. Our evaluation setting uses the LogicBlox Datalog engine, v.3.9.0,
on a Xeon X5650 2.67GHz machine with only one thread running at a time and 24GB of
RAM. We have used a JVMTI agent to construct a dynamic call-graph for each analyzed
program, by instrumenting its execution.

We analyze 10 benchmark programs from the DaCapo 9.12-Bach suite [17], with their
default inputs (for the purposes of the dynamic analysis). Other benchmarks could not be
executed or analyzed: tradebeans/tradesoap from 9.12-Bach do not run with our instru-
mentation agent, hence no dynamic call-graphs can be extracted for comparison. This is
a known, independently documented, issue (see http://sourceforge.net/p/dacapobench/
bugs/70/). We have been unable to meaningfully analyze fop and tomcat—significant en-
try points were missed. This suggests either a packaging error at determining what makes
up the application and library code of each benchmark (manual repackaging is necessary
since no application-library boundaries are provided by the DaCapo suite), or the exten-
sive use of dynamic loading, which needs further special handling.

We use Oracle JDK 1.7.0_25 for the analysis. (For comparison, consider that the quote
from [40] in the first section of this chapter, refers to the smaller JDK 1.6.)

Empirical soundnessmetric. Wequantify the empirical unsoundness of the static anal-
ysis in terms of missing call-graph edges, compared to the dynamic call-graph. Call-graph
construction is one of the best-known clients of points-to analysis [2, 3, 80] and has the
added benefit of quantifying how much code the analysis truly reaches. We compare the
call-graph edges found by our static analysis to a dynamic call-graph—a comparison also
found in other recent work [126]. For a sound static analysis, no edge should occur dy-
namically but not predicted statically. However, this is not the case in practice, due to the
unsound handling of dynamic features, as discussed in Section 3.1.

Results. Figure 3.8 plots the results of our experiments, combining both analysis time
and empirical unsoundness (in call-graph edges). Missing bars labeled “n/a” correspond
to analyses that did not terminate in 90mins (5400sec). Each chart plots the missing
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Figure 3.8: Unsoundness metrics (two bars: missing call-graph edges app-to-app and app-to-lib)
and analysis time (line) over the DaCapo benchmarks. Lower is better for all. For missing bars
(“n/a”), the analysis did not terminate in 90mins.
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Figure 3.8: Unsoundness metrics (cont.)

Total Edges Settings

Benchmark dynamic elf no substring substring +invent +backwards

avrora 4165 19355 19379 20591 26586 20677
batik 8329 31602 31708 35314 47303 37013
eclipse 40026 10191 9032 115967 116635 117576
h2 4901 38252 35538 38107 38162 43952
jython 13583 19709 20537 n/a n/a n/a
luindex 3027 4547 4676 4682 5773 6115
lusearch 1845 4209 4352 4362 5266 5587
pmd 4874 8544 8592 9533 9557 9577
sunflow 2215 4223 4251 4285 4319 4407
xalan 6128 35918 35221 45160 45343 63746

Figure 3.9: Total static and dynamic call-graph edges for the DaCapo 9.12-Bach benchmarks. These
include only application-to-application and application-to-library edges.

dynamic call-graph edges that are not discovered by the corresponding static analysis.
We use separate bars for the application-to-application and application-to-library edges.

We consider only call-graph edges originating from application code, since library classes
contain a fair amount of non-analyzable native methods.4 We also filter out some missing
edges (i.e., consider them implicitly covered), which involve the following methods:

• Class Initializers. Doop only models which subset of classes get initialized (without
any information about where the initializer gets called from). We filter out edges to
class initializer methods (i.e., <clinit>), if static analysis indicates that the class has
been initialized.

4Call-graph edges from the library are still fully statically analyzed, thus our experiments demonstrate
scalability relative to large libraries. We just do not report library-originating edges (though they are com-
puted within the time reported) since these only cloud the picture, due to native code. There is no easy
way to compare library-to-library results to dynamic edges without manual filtering, which raises validity
questions.
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• Native. Native code cannot be analyzed. However, some library reflection calls
are wrappers for native methods (e.g., forName() and forName0()). Edges to these
methods are, thus, completely extraneous due to our special modeling of their effect.

• Class Loader. Method loadClass() is invoked by the VM when a class needs to be
loaded and checkPackageAccess() is invoked right after loading.

• Synthetic. Edges involving dynamically generated classes are impossible to obtain
by reflection analysis alone, so we eliminate such instances.

We show five techniques:

1. Elf. This is the Elf reflection analysis [80], which also attempts to improve reflection
analysis for Java.

2. No substring. Our reflection analysis, with engineering enhancements over the original
Doop framework, but no analysis of partial strings or their flow.

3. Substring. The analysis integrates the substring and substring flow analysis of Sec-
tion 3.4.1.

4. +Invent. This analysis integrates substring analysis as well as the object invention
technique of Section 3.4.2.2.

5. +Backwards.5 This analysis integrates substring analysis as well as the back-propagation
technique of Section 3.4.2.1.

It is important to note that, by design, our techniques do not enhance the precision of
an analysis, only its empirical soundness. Thus, the techniques only find more edges:
they cover more of the program. This improvement appears as a reduction in the figures
(“lower is better”) only because the number plotted is the difference in the missing edges
compared to the dynamic analysis.

Our research questions can now be answered:

RQ1: Do our techniques impact soundness? As can be seen, our techniques substan-
tially increase the soundness of the analysis. In most benchmarks, more than half (to
nearly all) of the missing application-to-application edges are recovered by at least
one technique. The application-to-library missing edges also decreased, although
not as much. In fact, the eclipse benchmark was hardly being analyzed in the past,
since most of the dynamic call-graph was missing.

RQ2: Do the techniques have reasonable running times? Furthermore, although our
approach emphasizes empirical soundness, it does not sacrifice scalability. All four
of our settings are faster than Elf for almost all benchmarks. Aside from jython, for
which only the Elf and no substring techniques are able to terminate before timeout,

5The +Backwards and +Invent techniques are both additions to the substring analysis, but neither in-
cludes the other.
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in all other cases substring and at least one of +invent or +backwards outperformed
Elf, while in 7-of-10 benchmarks all our techniques outperformed Elf. This is due to
achieving scalability using the threshold techniques of Section 3.4.3 instead of by
sacrificing some empirical soundness, as Elf does. (A major design feature of Elf
is that it explicitly avoids inferring reflection call targets when it cannot fully disam-
biguate them.)

RQ3: Do the techniques sacrifice precision? For completeness, we also show a sanity-
checking metric over our analyses. Empirical soundness could increase by comput-
ing a vastly imprecise call-graph. This is not the case for our techniques. Figure 3.9
lists the total static and dynamic edges being computed. On average, +backwards
computes the most static edges (about 4.5 times the number of dynamic edges).
On the lower end of the spectrum lies no substring, with a minimum of 3.4 times the
number of dynamic edges being computed.

In pragmatic terms, a user of our analysis should use flags to pick the technique that
yields more soundness without sacrificing scalability, for the given input program. This is
a familiar approach—e.g., it also applies to picking the exact flavor and depth of context-
sensitivity.

As a final note, the improved soundness due to the techniques presented in this chapter
supports our thesis statement: the abstract model of memory is, indeed, improved by
recovering implicit structural information via inference, primarily by tracking the use of
types in the program. The use-based techniques leverage the way objects (returned by
reflective calls) are later used in the program: i.e., what types they are cast to, what fields
they access, and so on. By inspecting the use of reflective objects, these techniques are
able to infer and partly recover the objects’ structure, which is not evident at the site of
their allocation, since the declared types involved in reflective operations are too generic
to accurately describe them. Recovering such implicit structural information leads to a
better memory model; one that more faithfully abstracts the memory that will be allocated
by any actual execution.

3.6 Summary

In this chapter, we considered the problem of recovering structural information for static
analysis of Java. Structural information can be lost due to inadequate reasoning of prior
approaches about common reflection patterns. Such reasoning often fails to identify the
true types of many memory allocations and leads to unsoundness. We introduced the
notion of empirical soundness, a metric that quantifies how much of the actual dynamic
behavior the static analysis covers.

Section 3.1 discusses the need for better reflection handling in static analysis of Java
programs and the complications it poses to pointer analysis, specifically. We give a sim-
ple model of a standard points-to analysis for Java, in Section 3.2. In Section 3.3, we
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add an inter-related reflection analysis to this model, and then present the extensions
that constitute our approach in Section 3.4. Intuitively, the traditional points-to part of the
joint analysis (Section 3.2) is responsible for computing how heap objects flow intra- and
inter-procedurally through the program, while the added rules (of Sections 3.3 and 3.4)
contribute only the reflection handling. Finally, we evaluate our approach on the DaCapo
9.12-Bach suite, in Section 3.5, in terms of empirical soundness, by comparing against
dynamic call-graphs.
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4. CLASS HIERARCHY COMPLEMENTATION:
SOUNDLY COMPLETING A PARTIAL TYPE GRAPH

What in God’s holy name are you
blathering about?

The Big Lebowski

In the previous chapter, we examined the problems caused by Java’s reflection and pre-
sented a reflection analysis, integrated into a standard points-to analysis, that recovers
structural information for reflective objects. In this chapter, we will continue to examine
the problem of lost memory structure in Java, yet in a completely different context: that of
partial Java programs.

As stated in Chapter 1, analyzing partial programs is crucial for Java, whose dynamic class
loading allows JAR files to depend on an abundance of external libraries, even though only
a subset of them will be required at runtime—in any possible execution. The primary chal-
lenge in analyzing partial Java programs concerns the implied type constraints in existing
code, and their repercussions on the type hierarchy.

This leads to the more generic problem of class hierarchy complementation: given a par-
tially known hierarchy of classes together with subtyping constraints (“A has to be a tran-
sitive subtype of B”) complete the hierarchy so that it satisfies all constraints.

The problem has immediate practical application to the analysis of partial programs—e.g.,
it arises in the process of providing a sound handling of “phantom classes” in the Soot pro-
gram analysis framework. We provide algorithms to solve the hierarchy complementation
problem in the single inheritance and multiple inheritance settings. We also show that
the problem in a language such as Java, with single inheritance but multiple subtyping
and distinguished class vs. interface types, can be decomposed into separate single- and
multiple-subtyping instances. We implement our algorithms in a tool, JPhantom, which
complements partial Java bytecode programs so that the result is guaranteed to satisfy
the Java verifier requirements. In a sense, JPhantom aims to recover structural informa-
tion for phantom classes, via inference, by tracking their use in existing code. JPhantom
is highly scalable and runs in mere seconds even for large input applications and complex
constraints (with a maximum of 14s for a 19MB binary).

4.1 Program Complementation and Partial Type Hierarchies

Whole-program static analysis is essential for clients that require high-precision and a
deeper understanding of program behavior. Modern applications of program analysis,
such as large scale refactoring tools [35], race and deadlock detectors [97], and security
vulnerability detectors [47, 88], are virtually inconceivable without whole-program analysis.
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For whole-program analysis to become truly practical, however, it needs to overcome
several real-world challenges. One of the somewhat surprising real-world observations
is that whole-program analysis requires the availability of much more than the “whole
program”. The analysis needs an overapproximation of what constitutes the program.
Furthermore, this overapproximation is not merely what the analysis computes to be the
“whole program” after it has completed executing. Instead, the overapproximation needs
to be as conservative as required by any intermediate step of the analysis, which has not
yet been able to tell, for instance, that some method is never called.

Consider the example of trying to analyze a program 𝑃 that uses a third-party library 𝐿.
Program 𝑃 will likely only need small parts of 𝐿. However, other, entirely separate, parts
of 𝐿 may make use of a second library, 𝐿′. It is typically not possible to analyze 𝑃 with
a whole program analysis framework without also supplying the code not just for 𝐿 but
also for𝐿′, which is an unreasonable burden. In modern languages and runtime systems,
𝐿′ is usually not necessary in order to either compile 𝑃 or run it under any input. The
problem is exacerbated in the current era of large-scale library reuse. In fact, it is often
the case that the user is not even aware of the existence of 𝐿′ until trying to analyze 𝑃 .

Unsurprisingly, the issue has arisen before, in different guises. The FAQ document1 of
the well-known Soot framework for Java analysis [130, 131] contains the question:

How do I modify the code in order to enable soot to continue loading a class
even if it doesn’t find some of it[s] references? Can I create a dummy soot
class so it can continue with the load? How?

This frequently asked question does not lead to a solution. The answer provided is:

You can try -use-phantom-refs but often that does not work because not all
analyses can cope with such references. The best way to cope with the prob-
lem is to find the missing code and provide it to Soot.

The “phantom refs” facility of Soot, referenced in the above answer, attempts to model
missing classes (phantom classes) by providing dummy implementations of their meth-
ods referenced in the program under analysis. However, there is no guarantee that the
modeling is in any way sound, i.e., that it satisfies the well-formedness requirements that
the rest of the program imposes on the phantom class.

Our research consists precisely of addressing the above need in full generality. Given
a set of Java class and interface definitions, in bytecode form, we compute a “program
complement”, i.e., skeletal versions of any referenced missing classes and interfaces so
that the combined result constitutes verifiable Java bytecode. Our solution to this practical
problem has two parts:

⋅ A program analysis part, requiring analysis of bytecode and techniques similar to those
employed by the Java verifier and Java decompilers. This analysis computes constraints

1http://www.sable.mcgill.ca/soot/faq.html
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involving themissing types. For instance, if a variable of a certain type𝐶 is direct-assigned
to a variable of a type 𝑆, then 𝐶 must be a subtype of 𝑆.
⋅ An algorithmic part, solving a novel typing problem, which we call the class hierarchy
complementation, or simply hierarchy complementation, problem. The problem consists
of computing a type hierarchy that satisfies a set of subtyping constraintswithout changing
the direct parents of known types.

The algorithmic part of our solution, i.e., solving the hierarchy complementation problem,
constitutes the main novelty of our approach. The problem appears to be fundamental,
and even of a certain interest in purely graph-theoretic terms. For a representative special
case, consider an object-oriented language with multiple inheritance (or, equivalently, an
interface-only hierarchy in Java or C#).2 A partial hierarchy, augmented with constraints,
can be represented as a graph, as shown in Figure 4.1a. The known part of the hierarchy
is shown as double circles and solid edges. Unknown (i.e., missing) classes are shown
as single circles. Dashed edges represent subtyping constraints, i.e., indirect subtyping
relations that have to hold in the resulting hierarchy. In graph-theoretic terms, a dashed
edge means that there is a path in the solution between the two endpoints. For instance,
the dashed edge from 𝐶 to 𝐷 in Figure 4.1a means that the unknown part of the class
hierarchy has a path from 𝐶 to 𝐷. This path cannot be a direct edge from 𝐶 to 𝐷,
however: 𝐶 is a known class, so the set of its supertypes is fixed.

In order to solve the above problem instance, we need to compute a directed acyclic graph
(DAG) over the same nodes,3 so that it preserves all known nodes and edges, and adds
edges only to unknown nodes so that all dashed-edge constraints are satisfied. That is, the
solution will not contain dashed edges (indirect subtyping relationships), but every dashed
edge in the input will have a matching directed path in the solution graph. Figure 4.1b
shows one such possible solution. As can be seen, solving the constraints (or determining
that they are unsatisfiable) is not trivial. In this example, any solution has to include an
edge from 𝐵 to 𝐸, for reasons that are not immediately apparent. Accordingly, if we
change the input of Figure 4.1a to include an edge from 𝐸 to 𝐵, then the constraints are
not satisfiable—any attempted solution introduces a cycle. The essence of the algorithmic
difficulty of the problem (compared to, say, a simple topological sort) is that we cannot add
extra direct parents to known classes 𝐴 and 𝐶—any subtyping constraints over these
types have to be satisfied via existing parent types. This corresponds directly to our high-
level program requirement: we want to compute definitions for the missing types only,
without changing existing code.

For a language with single inheritance, the problem is similar, with one difference: the
solution needs to be a tree instead of a DAG. (Of course, the input in Figure 4.1a already

2We avoid the terms “subclassing” or “inheritance” as synonyms for “direct subtyping” to prevent confu-
sion with other connotations of these terms. In our context, we only care about the concept of subtyping,
i.e., of a (monomorphic) type as a special case of another. Subtyping can be direct (e.g., when a Java class
is declared to “extend” another or “implement” an interface) or indirect, i.e., transitive. We do, however,
use the compound terms “single inheritance” and “multiple inheritance” as they are more common in the
classification of languages than “single subtyping” and “multiple subtyping”.

3Inventing extra nodes does not contribute to a solution in this problem.
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Figure 4.1: Example of constraints in a multiple inheritance setting. Double-circles signify known
classes, single circles signify unknown classes. Solid edges (“known edges”) signify direct sub-
typing, dashed edges signify transitive subtyping.

violates the tree property since it contains known nodes with multiple known parents.) We
offer an algorithm that solves the problem by either detecting unsatisfiability or always
ordering the nodes in a tree that respects all constraints.

The practical version of the hierarchy complementation problem is more complex. Main-
stream OO languages often distinguish between classes and interfaces and only allow
single direct subtyping among classes and multiple direct subtyping from a class/interface
to an interface—a combination often called “single-inheritance, multiple subtyping”. In this
case, the graph representation of the problem is less intuitive. Consider Figure 4.2a that
gives a problem instance. (A possible solution for these constraints is in Figure 4.2b, but
is given purely for reference, as it is not central to our discussion.) There are now sev-
eral node types: classes, interfaces (both known and unknown), as well as undetermined
nodes. There are also more implicit constraints on them: classes can only have an edge to
one other class, interfaces can only have edges to other interfaces. The latter constraint,
for instance, forces 𝐷 to be an interface and 𝐻 to be a class. Thus, we see that the full
version of the problem requires additional reasoning. We show that such reasoning can
be performed as a pre-processing step. The problem can be subsequently broken up into
two separate instances of the aforementioned single- and multiple-inheritance versions of
hierarchy complementation.

In brief, the contributions of our work are as follows:

– We introduce a new typing problem, motivated by real-world needs for whole program
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Figure 4.2: Example of full-Java constraint graph. Double circles denote known classes/interfaces,
whose outgoing edges in the solution are already determined (solid input edges). White nodes are
classes, black nodes are interfaces, grey nodes are unknown types that are initially undetermined
(i.e., the input does not explicitly identify them as classes or interfaces, although constraint reason-
ing may do so later).

analysis. To our knowledge, the hierarchy complementation problem has not been stud-
ied before, in any context.

– We produce algorithms that solve the problem in three different settings: single inheri-
tance, multiple inheritance, and mixture of the two, as in Java or C#.

– We implement our algorithms in JPhantom: a practical tool for Java program com-
plementation that addresses the soundness shortcomings of previous Java “phantom
class” approaches. We show that JPhantom scales well and takes only a few seconds
to process even large benchmarks with complex constraints—e.g., less than 6sec for a
3.2MB binary that induces more than 100 constraints.

– We discuss the problem of hierarchy complementation in more general settings. The
simplicity of our approach is a result of only assuming (for the input) and satisfying (for
the output) the fairly weak Java bytecode requirements. We show that the problem
becomes harder at the level of the type system for the source language.
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4.2 Motivation and Practical Setting

We next discuss the practical setting that gives rise to the hierarchy complementation
problem.

Our interest in hierarchy complementation arose from efforts to complement existing Java
bytecode in a way that satisfies the soundness guarantees of the Java verifier. Consider
a small fragment of known Java bytecode and the constraints it induces over unknown
types. (We present bytecode in a slightly condensed form, to make clear what method
names or type names are referenced in every instruction.) In this code, classes A and B
are available, while types X, Y, and Z are phantom, i.e., their definition is missing.

public void foo(X, Y)
0: aload_2 // load on stack 2nd argument (of type Y)
1: aload_1 // load on stack 1st argument (of type X)
2: invokevirtual X.bar:(LA;)LZ; // method 'Z bar(A)' in X
3: invokevirtual B.baz:()V; // method 'void baz()' in B
...

The instructions of this fragment induce several constraints for our phantom types. For
instance:

– X has to be a class (and not an interface) since it contains a method called via the
invokevirtual bytecode instruction.

– X has to support a method bar accepting an argument of type A and returning a value
of type Z.

– Y has to be a subtype of A, since an actual argument of declared type Y is passed to bar,
which has a formal parameter of type A. This constraint also means that if A is known to
be a class (and not an interface) then Y is also a class.

– Z has to be a subtype of B, since a method of B is invoked on an object of declared type
Z (returned on top of the stack by the earlier invocation).

The goal of our JPhantom tool is to satisfy all such constraints and generate definitions
of phantom types X, Y, and Z that are compatible with the bytecode that is available to
the tool (i.e., exists in known classes). Compatibility with existing bytecode is defined as
satisfying the requirements of the Java verifier, which concern type well-formedness.

Note that such definitions will contain essential parts of missing structural information for
the phantom types: method and field members, as well as supertypes. Any subsequent
static analysis that will operate on the types produced by JPhantom will create abstract
objects that are much closer, in structure, to reality.

Of these constraints, the hardest to satisfy are those involving subtyping. Constraints on
members (e.g., X has to contain a “Z bar(A)”) are easy to satisfy by just adding type-
correct dummy members to the generated classes. This means that the problem in the
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core of JPhantom is solving the class hierarchy complementation problem, as presented
in the introduction and defined rigorously in later sections. The binding of the problem to
practical circumstances deserves some discussion, however.

First, note that, in our setting of the problem, we explicitly disallow modification of known
code, e.g., in order to remove dependencies, or to add a supertype or a member to it.
Such modifications would have a cascading effect and make it hard to argue about what
properties are really preserved. Additionally, we do not assume any restrictions on the
input, other than the well-formedness condition of being legal Java bytecode (according
to the verifier). Strictly speaking, our well-formedness condition for the input is defined as
follows: a legal input is bytecode that can be complemented (by only adding extra class
and interface definitions) so that it passes the Java verifier. Note that this well-formedness
condition does not depend on the program complement that our approach produces: an
input is legal if there is some complement for it, not necessarily the one that JPhantom
computes.

A final interesting point concerns the practical impact of the JPhantom soundness condi-
tion. For most program analyses, omitting parts of the code introduces unsoundness, if we
make no other assumptions about the program or the omitted part. E.g., it is impossible
to always soundly compute points-to information, or may-happen-in-parallel information
when part of the program is missing. Therefore, guaranteed soundness for all clients is
inherently unachievable for any partial program analysis approach. The practical reality
is that there is a large need for facilities for handling partial programs. For instance, the
Soot phantom class machinery has been one of the most common sources of discussion
and questions on the Soot support lists, and it has been a central part of several Soot
revisions.4 The only “correctness condition” that Soot phantom class support is trying to
achieve, however, is the low-level “the analyzer should not crash”.

Given the practical interest for the solution of a worst-case unsolvable problem, we be-
lieve that our soundness guarantee makes a valuable contribution: it is much better to
analyze a partial program in a way such that the Java verifier requirements (for type-level
well-formedness) are satisfied than to ignore any correctness considerations, as past ap-
proaches do.

4.3 Hierarchy Complementation for Multiple Inheritance

We begin with a modeling of the hierarchy complementation problem in the setting of
multiple inheritance. This means that every class in our output can have multiple parents.

We can model our problem as a graph problem. Our input is a directed graph 𝐺 =
(𝑉 , 𝐸), with two disjoint sets of nodes 𝑉 = 𝑉𝑘𝑛𝑜𝑤𝑛 ∪̇ 𝑉𝑝ℎ𝑎𝑛𝑡𝑜𝑚 and two disjoint sets
of edges𝐸 = 𝐸𝑑𝑖𝑟𝑒𝑐𝑡∪̇𝐸𝑝𝑎𝑡ℎ, where𝐸𝑑𝑖𝑟𝑒𝑐𝑡 ⊆ 𝑉𝑘𝑛𝑜𝑤𝑛×𝑉 (i.e., direct edges have to
originate from known nodes—the converse is not true, as known nodes can be inferred to

4Even the most recent Soot release, 2.5.0, lists improved support for phantom classes and excluding
methods from an analysis as one of the major changes in the release notes.
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subtype unknown ones due to assignment instructions in the bytecode). The set of nodes
𝑉 is a set of types, while the set of edges 𝐸 corresponds to our subtyping constraints.
That is, an edge (𝑣𝑠, 𝑣𝑡) encodes the constraint 𝑣𝑠 <∶ 𝑣𝑡. The 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 subset encodes
the direct-subtype constraints. The output of our algorithm should be a DAG (with edges
from children to their parents), 𝐺𝐷 = (𝑉 , 𝐸′), such that:

1. ∀𝑣𝑠 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛 ∶ (𝑣𝑠, 𝑣𝑡) ∈ 𝐸′ ⇔ (𝑣𝑠, 𝑣𝑡) ∈ 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 (i.e., all direct edges from
known nodes are preserved and no new ones are added to such nodes)

2. (𝑣𝑠, 𝑣𝑡) ∈ 𝐸𝑝𝑎𝑡ℎ ⇒ there is a path from 𝑣𝑠 to 𝑣𝑡 in 𝐺𝐷

Note that our only limiting constraint here is that we cannot have cycles in the resulting
hierarchy. Moreover, since each type may have multiple supertypes in this setting, a di-
rected acyclic graph is fitting as our intended output.

In contrast to the general case, the problem is trivial if we have a phantom-only input, i.e., if
we ignore 𝑉𝑘𝑛𝑜𝑤𝑛 and 𝐸𝑑𝑖𝑟𝑒𝑐𝑡. It suffices to employ a cycle-detection algorithm, and—if
no cycles are present—return the input constraint graph as our solution: all path edges
can become direct subtyping edges. If our input graph contains a cycle, then our problem
is unsolvable. If not, our solution would probably contain some redundant edges (i.e.,
edges connecting nodes that are already connected by another path) that we could prune
to minimize our output. In either case, our solution would be valid w.r.t. our constraints.

The problem becomes much more interesting when we take 𝑉𝑘𝑛𝑜𝑤𝑛 into account. The
source of the difficulty is the combination of cycle detection with nodes whose outgoing
edge set cannot be extended. Consider first the pattern of Figure 4.3.

B C D

E

A

Figure 4.3: In any solution of these constraints, either 𝐵 or 𝐶 or 𝐷 have to be ordered below 𝐸,
since no new outgoing edges can be added to 𝐴 and the path constraint to 𝐸 needs to be satisfied.

This pattern is a basic instance of interesting reasoning in the case of multiple inheritance.
We have 𝐴 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛 such that (𝐴, 𝐵), (𝐴, 𝐶), (𝐴, 𝐷) ∈ 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 and (𝐴, 𝐸) ∈
𝐸𝑝𝑎𝑡ℎ. We cannot, however, satisfy the path ordering constraint by adding edges to the
known node 𝐴. Therefore the output must have one of 𝐵, 𝐶, 𝐷 ordered below 𝐸. We
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Figure 4.4: The phantom projection set of 𝐴 is {𝐶, 𝐸, 𝐻}. In order to satisfy path-edge (𝐴, 𝐵)
we can either add a path-edge (𝐶, 𝐵), (𝐸, 𝐵), or (𝐻, 𝐵). The last one creates a cycle.

refer to the set of {𝐵, 𝐶, 𝐷} as the projection set of node 𝐴, which is a more generally
useful concept.

Definition 4.1. Projection Set. A node 𝑡 ∈ 𝑉𝑝ℎ𝑎𝑛𝑡𝑜𝑚 belongs to the projection set of a
node 𝑠 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛 iff 𝑡 is reachable from 𝑠 through a path of direct edges.

proj(𝑠) ≡ {𝑡 ∈ 𝑉𝑝ℎ𝑎𝑛𝑡𝑜𝑚 ∶ (𝑠, 𝑡) ∈ 𝐸𝑑𝑖𝑟𝑒𝑐𝑡
+}

with the + symbol denoting transitive closure.

That is, for each known node we can follow its outgoing direct-edges recursively, ending
each path when we reach a phantom node. For instance, in Figure 4.4, the phantom
projection set for node 𝐴 is {𝐶, 𝐸, 𝐻}.
Referring again to Figure 4.4, we can see that if 𝐻 is chosen from the projection set of 𝐴
in order to satisfy the path-edge (𝐴, 𝐵), and therefore edge (𝐻, 𝐵) is added, then this
would immediately create a cycle because of the existing (𝐵, 𝐻) edge. Our algorithm
should prevent such a cycle by making the correct choice from the relevant projection set.

Combining this projection set choice with cycle detection leads to interesting search out-
comes. Figure 4.5a shows an example of unsatisfiable input. The path edge (𝐵, 𝐷)
makes either 𝐸 or 𝐹 be subtypes of 𝐷, and similarly the path edge (𝐴, 𝐶) makes either
𝐸 or 𝐹 be subtypes of 𝐶 . Nevertheless, any choice leads to cycles. In contrast, Fig-
ure 4.5b shows an input for which a solution is possible, and which we use to illustrate our
algorithm.

Algorithm 4.1 solves in polynomial time (an easy bound is 𝑂(|𝑉 | ⋅ |𝐸|)) any instance of
the hierarchy complementation problem in the multiple inheritance setting. The main part
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Figure 4.5: Multiple Inheritance Examples

of the algorithm is function stratify(), which computes a stratification with the property that
any constraint edge is facing upwards (i.e., from a lower to a higher stratum). Moreover,
this stratification ensures that, for any path-edge (𝑠, 𝑡) originating from a known node,
there will exist a phantom node 𝑝 in the projection set of 𝑠 that is placed lower than 𝑡.
Given this stratification, it is easy to compute the final solution (as in function solve()). To
satisfy any such path-edge (𝑠, 𝑡), we add a direct-edge from 𝑝 to 𝑡. This respects our
invariant of all edges facing upwards, thus ensuring that no cycles will be present in our
solution.

Function stratify() starts from a single stratum, and then computes on each iteration a new
stratification, 𝑆𝑖+1, by building on the stratification of the previous step, 𝑆𝑖, and advancing
some nodes to a higher stratum in order to satisfy constraints. This process is repeated
until we converge to the final stratification, which will respect all of our constraints (line 21).
If no new node converges at some step (i.e., all nodes that reached a certain stratum
advance to the next), then we can be certain that we are dealing with unsatisfiable input,
and terminate, thus avoiding infinite recursion (line 23). The nodes to be advanced at
each step are determined at line 18, which captures the essence of the algorithm. The
new stratum of a node 𝑡 will be either (i) its current stratum, (ii) the stratum right above
the source of an edge (𝑠, 𝑡), or (iii) the one right above the lowest projection node of
the source of a path-edge (𝑠, 𝑡) originating from a known node—whichever is higher.
These conditions raise the stratum of a node to the minimum required to satisfy the natural
constraints of the problem, per our above discussion: edges in the solution should be from
lower to higher strata.

Figure 4.6 presents an illustration of the algorithm’s application to the example of Fig-
ure 4.5b. The sets {𝐶, 𝐷} and {𝐸, 𝐹} are the projection sets of nodes 𝐴 and 𝐵 re-
spectively. At the first step, all nodes will be placed in the lowest stratum. Note that, at this
point, all nodes could be placed in topological order: Figure 4.6a is perfectly valid as the
output of a topological sort. However, this is not a solution by our standards, since node
𝐴 cannot satisfy the edge to𝐺 because both of its projection nodes, 𝐷 and𝐶 , are placed
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Algorithm 4.1 Multiple-inheritance solver

1: function solve(𝐺 = (𝑉 , 𝐸))
2: 𝑆 ← stratify(𝐺)
3: 𝑈 ← {(𝑠, 𝑡) ∈ 𝐸𝑝𝑎𝑡ℎ ∶ 𝑠 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛}
4: 𝐸𝑆 ← 𝐸 𝑈
5: for all (𝑠, 𝑡) ∈ 𝑈 do
6: let 𝑝 ∈ proj(𝑠) ∶ 𝑆[𝑝] < 𝑆[𝑡] � such 𝑝 always exists
7: 𝐸𝑆 ← 𝐸𝑆 ∪ {(𝑝, 𝑡)}
8: end for
9: return 𝐸𝑆
10: end function
11: function stratify(𝐺 = (𝑉 , 𝐸))
12: 𝑈 ← {(𝑠, 𝑡) ∈ 𝐸𝑝𝑎𝑡ℎ ∶ 𝑠 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛}
13: for all 𝑡 ∈ 𝑉 do
14: 𝑆0[𝑡] ← 0
15: end for
16: for 𝑖 = 0 → |𝑉 | − 1 do
17: for all 𝑡 ∈ 𝑉 do

18: 𝑆𝑖+1[𝑡] ← max
⎧{
⎨{⎩

𝑆𝑖[𝑡]
max

(𝑠,𝑡)∈𝐸
{1 + 𝑆𝑖[𝑠]}

max
(𝑠,𝑡)∈𝑈

{1 + min
𝑝∈proj(𝑠)

{𝑆𝑖[𝑝]}}

⎫}
⎬}⎭

19: end for
20: if ∀𝑣 ∈ 𝑉 ∶ 𝑆𝑖+1[𝑣] = 𝑆𝑖[𝑣] then
21: return 𝑆𝑖 � reached a fixpoint
22: else if ∀𝑣 ∈ 𝑉 ∶ 𝑆𝑖+1[𝑣] = 𝑆𝑖[𝑣] ⇒ 𝑆𝑖[𝑣] = 𝑆𝑖−1[𝑣] then
23: break � no progress made on this step
24: end if
25: end for
26: return error � unsolvable constraint graph
27: end function

after 𝐺. Adding an edge from either one would be subject to creating cycles. At the next
step, our algorithm advances every node except 𝐴 and 𝐵, since all are edge targets. At
step 3, things become more interesting. Nodes 𝐷, 𝐶 have to be advanced by the same
criterion, since node 𝐻 contains edges to both, and they all reside in the same stratum
at step 2. However, nodes 𝐻 and 𝐺 have to be advanced for a different reason, since
they are targets of path-edges originating from known nodes, namely 𝐴 and 𝐵, whose
projections ({𝐷, 𝐶} and {𝐸, 𝐹} respectively) were on the second stratum during the
previous step. At step 4, this condition ceases to exist for node 𝐻 , since nodes 𝐸, 𝐹
have “stabilized” at a lower stratum. This in turn causes node 𝐷 to stabilize at step 5.
At step 6, 𝐺 can also stay put, since it is in a higher stratum than the lowest projection
of 𝐴, namely 𝐷. No nodes are advanced at step 7 (which is omitted in Figure 4.6), thus
signifying that our stratification has successfully converged to its final form. It is therefore
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Figure 4.6: An example of the stratification produced by the multiple-inheritance solver for Exam-
ple 4.5b.

simple to compute a solution, by adding edges (𝐻, 𝐷), (𝐻, 𝐶), (𝐺, 𝐶), (𝐷, 𝐺) and
either (𝐹 , 𝐻) or (𝐸, 𝐻) to the direct-edges (𝐴, 𝐶), (𝐴, 𝐷), (𝐵, 𝐸), (𝐵, 𝐹). This set
of edges will constitute our final solution.

It is also easy to see that our algorithm would soundly detect that the example of Fig-
ure 4.5a is unsatisfiable. At the first step, only known nodes 𝐴, 𝐵 would remain in the
lowest stratum, but on the next iteration all remaining nodes would advance again, thus
triggering the condition of failure (line 23), since an iteration passed with no progress
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made.

A detailed proof of the correctness of our algorithm can be found in Appendix A.1.

4.4 Hierarchy Complementation for Single Inheritance

The problem for a single inheritance setting has a very similar statement as in the earlier
case of multiple inheritance, but markedly different reasoning intricacies and solution ap-
proaches, due to a newly arising constraint: every class in this setting can only have a
single parent.

Formally, our problem is modeled in much the same way as before. Our input is again a
directed graph 𝐺 = (𝑉 , 𝐸), with two disjoint sets of nodes 𝑉 = 𝑉𝑘𝑛𝑜𝑤𝑛 ∪̇ 𝑉𝑝ℎ𝑎𝑛𝑡𝑜𝑚
and two disjoint sets of edges 𝐸 = 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 ∪̇ 𝐸𝑝𝑎𝑡ℎ, where 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 ⊆ 𝑉𝑘𝑛𝑜𝑤𝑛 × 𝑉 .
The difference is that the output of our algorithm should be a directed tree (instead of a
DAG), 𝐺𝑇 = (𝑉 , 𝐸′), such that the same conditions as in the earlier case are satisfied:

1. ∀𝑣𝑠 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛 ∶ (𝑣𝑠, 𝑣𝑡) ∈ 𝐸′ ⇔ (𝑣𝑠, 𝑣𝑡) ∈ 𝐸𝑑𝑖𝑟𝑒𝑐𝑡

2. (𝑣𝑠, 𝑣𝑡) ∈ 𝐸𝑝𝑎𝑡ℎ ⇒ there is a path from 𝑣𝑠 to 𝑣𝑡 in 𝐺𝑇

Without loss of generality, we assume that there exists a “root” node 𝑛𝑟 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛 that is
a common supertype for all of our types. If no such type exists, we can create an artificial
one, by adding extra constraint edges. In this way, we can be certain that computing a
graph with a single outgoing edge for all nodes (but one) will form a tree instead of a forest.

The problem is quite hard in its general setting. There are several patterns that necessi-
tate a complex search in the space of possibilities. Figures 4.7a-4.7d show some basic
patterns that induce complex constraints. All nodes reachable from a single one need to
be linearly ordered (Figure 4.7a shows the simplest case). This requires computing an or-
dering (i.e., guessing a permutation) of these nodes. Other constraints can render some of
the permutations invalid. The basic pattern behind such restrictions is that of Figure 4.7b:
there are hierarchies that cannot be related. Combining the two patterns suggests that
there needs to be a search in the space of permutations for a valid one: Figures 4.7c and
4.7d show some simple cases.

Composing such constraints into more complex hierarchies gives an idea of the difficulty of
the search involved. Figure 4.8 shows an example where it is hard to see without complex
reasoning which of the 𝐸, 𝐹 , 𝐺 nodes have to be placed above 𝐴 and which cannot.

Clearly the problem can be modeled as a constraint satisfaction problem instance, where
𝑉𝑝ℎ𝑎𝑛𝑡𝑜𝑚 is our set of variables and𝑉 is the domain of values (representing the variable’s
direct supertype). The path-edges and the absence of cycles constitute our constraints.
This requires an exponential search in the worst case. Indeed, our implementation per-
forms precisely such an exhaustive search, but with a heuristic choice of nodes so that
the search tries to satisfy the constraints introduced by the patterns in Figures 4.7a and
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Figure 4.7: Single Inheritance Basic Patterns

4.7b—i.e., the pattern of Figure 4.7a is identified, all induced permutations are tried, and
the pattern of Figure 4.7b is used to prune them eagerly, instead of waiting to detect failure
later.

Most importantly, our approach provides special handling for a simple but practically quite
common case. In this special case, there is a polynomial algorithm for solving the problem
and exhaustive search is avoided.

Simplified setting: No direct-edges to phantomnodes. It is easy to solve the problem
in the case that there are no direct edges from known nodes to phantom nodes. Since
we are in a single-inheritance setting, this means that no class in the known part of the
program has a superclass in the complement that we are trying to produce. In this case,
we have that 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 ⊆ 𝑉𝑘𝑛𝑜𝑤𝑛 × 𝑉𝑘𝑛𝑜𝑤𝑛. The extra condition allows us to employ
a fast polynomial time algorithm. This interesting case of our problem is very common in
practice. Intuitively, the ease of dealing with this case stems from avoiding the search in
the space of permutations when the input contains patterns such as those in Figure 4.7c:
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Figure 4.8: Harder composite example of single-inheritance constraints. The (undirected) path from
𝐵 to 𝐶 through 𝐸, 𝐹, 𝐺 implies that (𝐴 <∶ 𝐸) ∨ (𝐴 <∶ 𝐹) ∨ (𝐴 <∶ 𝐺). However, since 𝐹 is
the first common known supertype of 𝑀 and 𝑁 , and 𝐴 just a supertype of both, 𝐹 <∶ 𝐴, and thus
(𝐴 <∶ 𝐸) ∨ (𝐴 <∶ 𝐺).

if two permutations have elements in common (e.g., the permutation of 𝐵 and 𝐹 , and that
of 𝐹 and 𝐶 in Figure 4.7c) they cannot include nodes that are guaranteed to be subtype-
unrelated (such as 𝐵 and 𝐶 in this example) and all unknown nodes have to be below
the known ones in any solution.

Algorithm 4.2 first removes path-edges originating from known-nodes, after verifying that
the corresponding paths indeed exist. It then uses union/find data structures to com-
pute connected components of phantom nodes, while treating path-edges as undirected
edges: anything connected through such edges can safely end up in a single linear or-
dering. Then, for each phantom undirected connected component, it computes the lowest
known-node to serve as the first-common-supertype of all of this component’s phantom
nodes. Note that when two known-nodes are reachable by two phantom nodes of the
same connected component (in the phantom subgraph), then one of them ought to be a
supertype of the other, or else no solution can exist in a single inheritance setting. This
condition is captured in line 24. After the first common (known) supertype for every con-
nected component has been computed, a mere topological sort, i.e. placing all relevant
nodes in a total order, is enough to satisfy all of this component’s constraints. This may in-
troduce many superfluous edges in the solution: these edges are not actually required by
our constraints (since a topological order is a total order). In practice, we produce a partial
order by using a variant of topological sort that generates a tree instead of a list as its re-
sult, but a full topological sort also satisfies the correctness requirements of the algorithm.
(We return to the topic of why we actually want a weaker ordering in Section 4.5.)
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Algorithm 4.2 Single-inheritance solver for strictly known direct-supertypes

1: function solve(𝐺 = (𝑉 , 𝐸))
2: let 𝑅 be the “root” node of 𝑉
3: let 𝑆 be the tree of known nodes (𝑉𝑘𝑛𝑜𝑤𝑛, 𝐸𝑑𝑖𝑟𝑒𝑐𝑡)
4: for all (𝑠, 𝑡) ∈ 𝐸𝑝𝑎𝑡ℎ ∶ 𝑠 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛 do
5: if ∄ path 𝑠 ; 𝑡 in 𝑆 then
6: return error (unsatisfiable constraint)
7: end if
8: 𝐸𝑝𝑎𝑡ℎ ← 𝐸𝑝𝑎𝑡ℎ {(𝑠, 𝑡)} � remove already satisfied edge
9: end for
10: for all 𝑣 ∈ 𝑉𝑝ℎ𝑎𝑛𝑡𝑜𝑚 do
11: makeSet(𝑣) � create single-element disjoint sets
12: end for
13: for all (𝑠, 𝑡) ∈ 𝐸𝑝𝑎𝑡ℎ ∶ 𝑡 ∈ 𝑉𝑝ℎ𝑎𝑛𝑡𝑜𝑚 do
14: union(𝑠, 𝑡) � merge two connected (phantom) components
15: end for � result: undirected connected components (UCCs)
16: for all 𝑣 ∈ 𝑉𝑝ℎ𝑎𝑛𝑡𝑜𝑚 do
17: 𝑘 ← find(𝑣)
18: top[𝑘] ← 𝑅 � initially “root”
19: end for � init UCC’s lowest common known superclass (LCS)
20: for all (𝑠, 𝑡) ∈ 𝐸𝑝𝑎𝑡ℎ ∶ 𝑡 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛 do � must be 𝑠 ∈ 𝑉𝑝ℎ𝑎𝑛𝑡𝑜𝑚
21: 𝑘 ← find(𝑠)
22: if ∃ path 𝑡 ; top[𝑘] in 𝑆 then
23: top[𝑘] ← 𝑡 � lower superclass found, update LCS
24: else if ∄ path top[𝑘] ; 𝑡 in 𝑆 then
25: return error (unsatisfiable constraint)
26: end if
27: end for
28: for all 𝑘 ↦ 𝑣 in top do � for each UCC and its LCS
29: 𝑈 ← {(𝑠, 𝑡) ∈ 𝐸𝑝𝑎𝑡ℎ ∶ 𝑡 ∈ 𝑉𝑝ℎ𝑎𝑛𝑡𝑜𝑚 ∧ find(𝑠) = 𝑘}

� directed subgraph of original over nodes of this UCC
30: 𝐿 ← a topological order of 𝑈 � linearize subgraph
31: ℎ𝑑 ← the top node of 𝐿
32: 𝑆 ← 𝑆 ∪ 𝐿 ∪ {(ℎ𝑑, 𝑣)}
33: end for
34: return 𝑆
35: end function

In the example of Figure 4.9, Algorithm 4.2 first checks and removes the (𝐹 , 𝐴) path-
edge. Then the phantom nodes are divided in the following phantom connected compo-
nents: {𝐺, 𝐻, 𝐼}, {𝐽, 𝐾, 𝐿}, and {𝑀}. The first common known supertype for each
component is𝐵, 𝐹 , and𝐹 respectively. Each component is then linearized, which gener-
ates the following complete orders that are appended to the output: 𝐼 <∶ 𝐻 <∶ 𝐺 <∶ 𝐵,
𝐾 <∶ 𝐽 <∶ 𝐿 <∶ 𝐹 , and 𝑀 <∶ 𝐹 .
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Figure 4.9: Algorithm 4.2 - Example.

4.5 Single Inheritance, Multiple Subtyping: Classes and Interfaces

It is easy to combine the single- and multiple-inheritance approaches of the last two sec-
tions in the context of a language that has single inheritance but multiple subtyping. It is a
common case for strongly-typed languages to allow multiple inheritance only for a subset
of types. Java and C# interfaces [44, 54], and Scala traits [100] are such examples.

In order to support such a separation, we have to introduce a new dimension to our prob-
lem that can be simulated as a graph coloring variant. Each node in 𝑉 can be assigned
a color denoting its inheritance type. A black node can have many direct supertypes (i.e.,
multiple inheritance), while a white node can only have one (i.e., single inheritance). We
will use the terms “white node” (resp. “black node”) and “class” (resp. “interface”) inter-
changeably.

Note that, initially, our input may not fully determine the final color for each of its types.
Thus, we have to introduce a new color (grey) to refer to the subset of nodes whose color
is yet undetermined. In the end, our solution should soundly determine a safe color (black
or white) for each of the (grey) input nodes, so that no constraints of the verifier will be
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violated.

Therefore, our solution in this new setting is a synthesis of a single inheritance and a
multiple inheritance solution. That is, the output of our algorithm should be a DAG that
satisfies the same conditions as those in the multiple inheritance setting, 𝐺𝑆 = (𝑉 , 𝐸′),
and a function 𝑓𝑐 ∶ 𝑉 → {𝑏𝑙𝑎𝑐𝑘, 𝑤ℎ𝑖𝑡𝑒}, such that the restriction of 𝐺𝑆 to {𝑣 ∈ 𝑉 ∶
𝑓𝑐(𝑣) = 𝑤ℎ𝑖𝑡𝑒} (i.e., white nodes) is a tree.

To safely decompose our problem into two different subproblems (one for single and one
for multiple inheritance), we assign colors to all nodes as a preprocessing step. There are
two kinds of constraints that lead to restricting the colors of a node. First, we have local
constraints: we may get a node color from the initial input—i.e., an observed bytecode
instruction (such as invokeinterface) may directly restrict the color of a phantom type.
(More constraints of this form are discussed in Section 4.6.) Second, we may get transi-
tive constraints, due to restrictions on subtyping. Interfaces can only subtype interfaces
(except for the Object class in Java). This leads to two types of transitive constraints: If a
black node 𝑠 has a path to node 𝑡, then 𝑡 must also be black (interfaces can only extend
interfaces). Symmetrically, if a node 𝑠 has a path to a white node 𝑡, then 𝑠 must also be
white (classes can only be extended by other classes).

Furthermore, phantom nodes with no color constraints can be safely assumed to be in-
terfaces (black), for maximum flexibility in solving other constraints. It is always easier
to satisfy a given set of constraints in a multiple inheritance setting instead of a single
inheritance setting, since the conditions of single inheritance are stricter (a tree is a DAG).

As a result of the above observations, we can color all nodes by applying local or transitive
constraints to the original input before solving a single and a multiple inheritance hierarchy
complementation problem separately. That is, we can follow every possible path from
any node whose color has already been set and mark the nodes we find along the way
accordingly. The color of our source node determines the direction of movement (i.e.,
from white source nodes, we have to go backwards). When this process is over, we
can assign the color black to all remaining undetermined (in terms of color) nodes. An
example of this process can be seen in our earlier Figure 4.2. Once we have assigned a
black-or-white color to every node, we can split our constraint graph into two subgraphs
by isolating white-to-white edges (and feeding them to a single inheritance solver). After
we have determined our class hierarchy, we can proceed with satisfying the rest of the
edges using multiple inheritance rules.

The key to this approach is that the single inheritance solver does not need the output
of the multiple inheritance solver to compute a solution, and vice versa. All we need to
ensure (for the multiple inheritance solver) is that we take into account class supertypes
that are reachable through direct edges of a known class when determining the class’s
projection set. Thus, the class/interface decomposition indeed produces two independent
subproblems that can be solved separately. The composition of the two solutions will
certainly not create any cycles, if its two subparts do not contain any. If that was not the
case, then there would be a cycle that contained at least one class and one interface,
which is impossible since no interface can be a subtype of a class (other than Object) in
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Java.

As for our arbitrary choice of defaulting undetermined nodes to interfaces, suppose that
a solution exists if a subset 𝑈 of those undetermined nodes were treated as classes.
We could then transform this solution to another one where these nodes were interfaces
instead. The single inheritance solution could be produced by replacing each node in
𝑈 with its parent (in the former single inheritance solution), w.r.t. its incoming edges,
and then removing it, until no nodes in 𝑈 were present. This process would still satisfy
all constraints on the remaining class nodes. A multiple inheritance solution also exists.
Consider the union of the former multiple plus single inheritance solution. The result is
a DAG that respects all of the multiple inheritance setting constraints. Again, we can
erase any edges to class-determined nodes (i.e., all class nodes that are not in 𝑈 ) in a
way that all subtype relations involving the rest of the nodes remain unaltered, i.e., by
iteratively replacing an edge to a class-determined node with edges to all of its direct
supertypes, until no edges to class-determined nodes are left. This process would yield a
valid multiple inheritance solution that can be safely combined with the single inheritance
one. Therefore, marking undetermined nodes as interfaces does not affect the outcome
of our algorithm, i.e., no solution will be found if and only if no solution existed.

4.6 Implementation and Practical Evaluation

We next discuss practical aspects of our implementation. First, we consider the program
analysis part of our work, which solves the problem of producing complements of a partial
Java program by appealing to the solver of the class hierarchy complementation problem.
Subsequently, we present experiments applying our JPhantom tool to real programs.

4.6.1 JPhantom Implementation

JPhantom is a practical and scalable tool for program complementation, based on the
algorithms we have presented in this chapter.5 JPhantom uses the ASM library [21] to read
and trasform Java bytecode. Given a jar file that contains phantom references, it produces
a new jar file with dummy implementations for each phantom class. The resulting jar file
satisfies all formal constraints of the JVM Specification [83]. We give a brief explanation
of the different stages of computation for the analysis of an input jar file by JPhantom.

JPhantom execution consists of the following steps. It (1) performs a first pass over the jar
contents in order to recreate the existing class hierarchy (type signatures only) and store
the field and method declarations of the contained classes, then (2) makes a second pass
to extract all phantom references and store the full class representations. A third pass
(3) extracts all relevant type constraints, before (4) they are fed to JPhantom’s hierarchy
complementation solver, which computes a valid solution, if such a solution is possible.
At this point, we can proceed to (5) bytecode generation, where we create new class files

5JPhantom is available online at https://github.com/gbalats/jphantom.
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Opcode Types Stack Types Constraints
AASTORE 𝑎 ∶ 𝐸[] 𝑖 ∶ 𝑖𝑛𝑡 𝑣 ∶ 𝑉 𝑉 <∶ 𝐸
ARETURN obj ∶ 𝑆 𝑆 <∶ 𝑅𝑚
ASTORE 𝑇 obj ∶ 𝑆 𝑆 <∶ 𝑇
ATHROW obj ∶ 𝑆 𝑆 <∶ “java.lang.Throwable”
GETFIELD 𝑇 .𝐹 obj ∶ 𝑆 isClass(𝑇 ) ∧ 𝑆 <∶ 𝑇
PUTFIELD 𝑇 .𝐹 obj ∶ 𝑆 𝑣 ∶ 𝑈 isClass(𝑇 ) ∧ 𝑆 <∶ 𝑇 ∧ 𝑈 <∶ 𝐹
PUTSTATIC 𝑇 .𝐹 𝑣 ∶ 𝑈 isClass(𝑇 ) ∧ 𝑈 <∶ 𝐹
INVOKEINTERFACE 𝑇 .(𝐴)𝑅 arg0 ∶ 𝑆0 arg1 ∶ 𝑆1 … isIface(𝑇 ) ∧ 𝑆0 <∶ 𝑇
INVOKEVIRTUAL 𝑇 .(𝐴)𝑅 arg0 ∶ 𝑆0 arg1 ∶ 𝑆1 … isClass(𝑇 ) ∧ 𝑆0 <∶ 𝑇
INVOKESPECIAL 𝑇 .(𝐴)𝑅 arg0 ∶ 𝑆0 arg1 ∶ 𝑆1 … name = “<init>” ⇒ isClass(𝑇 ) ∧ 𝑆0 <∶ 𝑇
INVOKESTATIC 𝑇 .(𝐴)𝑅 arg1 ∶ 𝑆1 … isClass(𝑇 )
INVOKE* 𝑇 .(𝐴)𝑅 (arg0 ∶ 𝑆0) arg1 ∶ 𝑆1 … 𝑆𝑖 <∶ 𝐴𝑖, ∀𝑖 = 1, ...

Figure 4.10: Generated Bytecode Constraints. At this point, our analyzer has already computed the
(sets of) types for every stack and local variable at every point of execution (bytecode in method).
For simplicity, we assume that each set of reference types contains a single element (3rd column).
Each bytecode may involve some declared types (2nd column) by references in the constant pool
or by entries in the local variable table (if such exists). Also, let 𝑅𝑚 be the containing method’s
return type.

for our missing (phantom) types. Finally, we compute method bodies to add to each type.
For instance, when the solver determines that a phantom-class type 𝑋 must implement
an interface type 𝑌 , all missing methods of 𝑌 should be added to 𝑋, so that the resulting
bytecode is valid. After all such methods have been computed, they are added in the last
(6) step of execution.

Phantom references include references to missing classes, as well as references to miss-
ing fields and methods. Note that both phantom and existing classes may have references
to missing members, since there are cases of existing classes calling a method or refer-
encing a field declared in one of their phantom supertypes. JPhantom detects all such
references and adds the relevant missing declarations to its output. If a member is miss-
ing from a phantom class, we add it directly to that class as part of JPhantom’s output.
Otherwise, if a member is missing from an existing class, we add it to an appropriate phan-
tom supertype in its projection set instead. We encode these declarations as additional
constraints over the missing classes, generated in the second step of JPhantom’s exe-
cution. It suffices to use the existing class hierarchy and declared members (step 1), to
perform member lookup for the purpose of determining if a member is missing and where
it should be added.

The most interesting aspects of the above steps have to do with analyzing the bytecode
to produce the constraints (step 3) used as input to the hierarchy complementation algo-
rithm. In order to extract type constraints, we have to simulate a symbolic execution of
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Java bytecode by following every possible execution path, while computing the types of
stack and local variables. This is necessary because, in general, bytecodes receive some
untyped arguments whose types we need to infer, in order to extract our constraints. This
process is analogous to Pass 3 [83, Section 4.9.2] of the bytecode verification process.

When computing such type information for stack and local variables, there are points
where we have to merge two different paths of execution. That is, the two paths may
map the same variable to different types, in which case we have to merge two different
types into a new one. Typically, when merging two types𝐴, 𝐵 the resulting type is the first
common superclass of 𝐴 and 𝐵. In Java, there always exists such a common superclass
since every reference type (interfaces included) is a subtype of java.lang.Object.

In our case, however, since we do not have the complete type hierarchy at the time of
constraint extraction, we cannot compute the first common superclass for any two nodes.
This is why we apply the alternative technique of storing sets of reference types, as pre-
sented in alternative verifier designs [127]. I.e., our bytecode analyzer stores not a single
type, but a set of types for each variable at every point of execution. Figure 4.10 lists
the constraints that may be generated by the analyzer for certain bytecodes. Since our
analyzer generates constraints due to widening reference conversions, it is easy to see
that storing a set of reference types fits our needs well. Consider the following case:

class Test {
A foo(B b, C c) {

return (b == null) ?
c : b;

}
}

A foo(B, C);
Code:
0: aload_1
1: ifnonnull 8
4: aload_2
5: goto 9
8: aload_1
9: areturn

Our analyzer will compute that the stack contains a single item with type {𝐵, 𝐶}, before
position 9, which is the outcome of merging the two different execution paths. Let us also
assume that𝐴 and𝐵 are phantom classes. This toy example demonstrates why we have
chosen to store sets of types, since we cannot compute the first common superclass of
𝐵, 𝐶 . After our tool has completed the analysis of method foo(), it will generate (because
of the areturn instruction) the constraint 𝐵 <∶ 𝐴 ∧ 𝐶 <∶ 𝐴.

4.6.2 JPhantom in Practice

We next detail a typical usage scenario of JPhantom, together with the complications that
would arise in its absence.

Consider performing a static analysis of a large Java program. For instance, the Doop
framework [20, 66] integrates points-to analysis with call-graph construction, computa-
tion of heap object points-to information, and various client analyses (escape analysis,
virtual call elimination, class cast elimination). Doop uses Soot as a front-end and post-
processes the facts generated by Soot. When faced with an incomplete program, the
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user of the analysis is faced with various issues. To illustrate and quantify them we cre-
ated a synthetic incomplete program, antlr-minus, by artificially subtracting parts of the
antlr parser generator jar. (We also use antlr-minus as a performance benchmark in the
next section.)

A user that tries to analyze antlr-minus will encounter the following issues:

– Crash in Soot. Earlier versions of Soot, e.g., Soot 2.3.0, will often crash when trying to
analyze a program that contains phantom references. Soot provides the -allow-phantom
flag, as a command-line option that the user can set to inform Soot that its input contains
phantom references, and that Soot should try to handle them instead of terminating with
an error. However, for several Soot versions the flag is not sufficient to prevent Soot
from crashing in some cases.

– Need to handle phantom references in the client of Soot. Although the latest version
of Soot (2.5) has increased its tolerance of phantom references to the point where it
no longer crashes, this only prevents against crashes in Soot itself and does not yield
any meaningful handling of phantom references. The problem is propagated to the
client of Soot. The client analysis (any external tool that uses Soot) now needs to have
special-case code for handling phantom classes, in whichever way makes sense to
the client. There is no evident general-purpose solution to fixing the Soot output for
any client without adding code to deal with phantom references, essentially duplicating
what JPhantom does already. In our case, if the Doop front-end that reads Soot infor-
mation tried to just handle phantom references as regular references, it would crash (as
we have confirmed experimentally), since it needs to encode for every variable its full
type information (e.g., member methods). (The Doop front-end does not crash in prac-
tice because it handles phantom references specially, by merely ignoring them, as we
discuss next.) In contrast, JPhantom allows any tool completely unaware of phantom
references, such as the Doop front-end, to be able to run without unexpected behavior,
as long as its input is first transformed by JPhantom.

– Incompleteness when analyzing with Doop. The Doop front-end is coded so that it
avoids crashes but only at the cost of completely ignoring any reference to a phantom
class. A method that takes phantom types as arguments is just skipped. This handling
has been the default for Doop since its original version. Unfortunately, this leads to
incompleteness in the resulting analysis performed by Doop.
Figure 4.11 presents a Venn diagram over the sets of reachable methods as computed
by Doop for three different inputs: (i) the original antlr jar, (ii) our synthetic benchmark,
antlr-minus, and (iii) the output of JPhantom after analyzing antlr-minus, that is, a trans-
formed version of the antlr-minus jar with no phantom references. The original jar yields
52, 357 reachable methods, out of which only 42, 337 are detected in the presence
of phantom references (antlr-minus), without using JPhantom. Additionally, phantom
references introduce 500 false positives that correspond to non-existing methods.6 Af-
ter employing JPhantom to alleviate the effect of phantom references, Doop manages
6It may seem surprising that eliminating code can introduce new (falsely) reachable methods. The rea-
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Figure 4.11: A Venn diagram that shows how three different sets of reachable methods relate to
each other. These three sets—(i) Original, (ii) Minus, and (iii) Minus+JPhantom—correspond to the
outcomes of analyzing (i) the antlr jar (original), (ii) the antlr-minus jar (subset of the original jar), and
(iii) the antlr-minus jar after being transformed by JPhantom, respectively. The sets are not drawn
to scale: the size of each subset is indicated only by the number in it.

to find 7, 392 of the 10, 020 missing reachable methods, resulting in 73.77% recall
(over the missing methods alone, or 95% over all methods). The false positives of di-
rectly analyzing antlr-minus disappear but 681 new ones emerge, yielding a precision of
98.65%. Even so, this allows us to discover almost 3 out of every 4 missing reachable
methods, which originally constituted 19.14% of the total reachable methods, dropping
this percentage to just 5.02%.
It is notable that this high recall is achieved although recall could, in principle, be ar-
bitrarily low. JPhantom is trying to guess the structure of missing code with as much
information as remains in existing code—but this could be a tiny fraction of the missing
information. The missing code could be hiding a huge portion of the application, and
expose only a handful of phantom types on the unknown/known code boundary.
This finding supports our thesis statement: static analysis is improved (in terms of com-
pleteness7), by recovering missing structural information of phantom classes, via infer-
ence, by tracking the use of types in the program.

In summary, JPhantom avoids problems with crashes when encountering phantom ref-
erences as well as incompleteness when phantom references are merely ignored. In
practice, it is effective in discovering large parts of the interface for missing methods and

son is that a non-existent method 𝑚 in class 𝐶 may be reported reachable, based on method signature
information on the call-site alone, whereas in the original code the true reachable method 𝑚 was defined
in a, now missing, superclass 𝑆 of 𝐶, and not in 𝐶.

7Improving completeness essentially means improving empirical soundness, which is the metric we used
in Chapter 3, where we compared the statically computed call-graphs against dynamic call-graphs of actual
executions.
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the produced complement respects the requirements of the Java VM verifier, i.e., the most
fundamental Java well-formedness rules for types.

4.6.3 Performance Experiments

We use a 64-bit machine with a quad-core Intel i7 2.8GHz CPU. The machine has 8GB
of RAM. We ran our experiments using JDK 1.7 (64-bit).

Our benchmarks consist of (1) antlr, a parser generator, (2) antlrworks, the GUI Devel-
opment Environment for antlr, (3) c3p0, a library that provides extensions to traditional
JDBC drivers, (4) jruby and (5) jython, implementations of Ruby and Python programming
languages respectively that run on top of the JVM, (6) logback-classic and (7) logback-
core, two modules of the logback logging framework, (8) pmd, a Java source code ana-
lyzer, (9) postgres, the PosgreSQL JDBC driver, (10) sablecc, a compiler generator, and
(11) antlr-minus, a synthetic benchmark described in the previous section. Every bench-
mark is just a jar file that serves as JPhantom’s input, which then detects all phantom
references and generates the complemented jar.

We encountered most of these benchmarks while working on static program analysis with
the Doop framework [20, 66]. (As already mentioned, Doop has been the vehicle for our
reflection analysis of the previous chapter, as well.) For many of the benchmarks it was,
upon original encounter, an unexpected discovery that they could not be analyzed due to
dependencies to unknown classes in other libraries.

Figure 4.12 presents input features and the running time of JPhantom for each of our
benchmarks. The first column is the name of the benchmark. The second column is
the size of the output, i.e., the complemented jar, divided into the original size of the input
(benchmark) and the size of the complement itself (i.e., the size of the generated phantom
classes). The third and fourth columns are the number of phantom classes and constraints
detected respectively. The last column is the running time of JPhantom, including the time
to analyze the input, compute a type hierarchy that respects all of the constraints detected,
create the phantom classes with the required members and supertypes, augment the input
jar and flush its contents to disk.

Even the largest benchmark (jruby) takes seconds to complete. Moreover, the size of the
input is highly correlated with the running time of JPhantom and much less correlated with
the number of constraints. This suggests that most of the time is spent on reading and
analyzing the input, rather than on the type hierarchy solver. The only slight exception is
the logback-classic benchmark, which requires about 1.8 seconds to complete despite its
small size. This is due to the large number of phantom classes and constraints this bench-
mark produces, which is to be expected since it is built on top of logback-core (which is
not supplied as part of the input). This practice of creating such a strong dependency
is probably justified by logback’s design. The framework implements the SLF4J (Simple
Logging Facade for Java) protocol, which acts as a common interface for a variety of log-
ging frameworks, and hides the actual framework (called binding) to be used underneath.
From both logback-classic and antlr-minus we can see that JPhantom scales well as the
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Input jar Size Phantom Constraints Time

antlr 3.3M + 0.7K 1 2 4.82𝑠
antlrworks 3.5M + 2.2K 5 7 6.11𝑠
c3p0 597K + 1.8K 4 2 2.05𝑠
jruby 19M + 5.9K 16 20 13.70𝑠
jython 2.5M + 4.0K 8 9 3.26𝑠
logback-classic 247K + 55K 148 212 1.76𝑠
logback-core 358K + 7.9K 22 22 1.61𝑠
pmd 1.2M + 11K 28 36 2.62𝑠
postgres 499K + 0 0 0 1.95𝑠
sablecc 306K + 2.3K 5 8 1.59𝑠
antlr-minus 3.2M + 17K 37 103 5.82𝑠

Figure 4.12: Results of experiments.

number of constraints increases.

To see the constraints and their solution for a benchmark instance, consider the list below,
which is the actual execution output of a JPhantom run on the jruby benchmark:

Phantom Classes Detected: [constraint]

org.apache.tools.ant.BuildException must be a class
org.apache.tools.ant.Task must be a class
org.apache.tools.ant.Project
org.apache.bsf.util.BSFFunctions must be a class
org.apache.bsf.util.BSFEngineImpl must be a class
org.apache.bsf.BSFException must be a class
org.apache.bsf.BSFManager must be a class
org.apache.bsf.BSFDeclaredBean must be a class
org.apache.bsf.BSFEngine
org.osgi.framework.Bundle must be an interface
org.osgi.framework.BundleReference
org.osgi.framework.FrameworkUtil must be a class
org.osgi.framework.BundleException
org.osgi.framework.BundleContext must be an interface
java.dyn.Coroutine must be a class
java.dyn.CoroutineBase

Constraints:

org.apache.bsf.BSFException <: Throwable
org.apache.tools.ant.BuildException <: Throwable
org.osgi.framework.BundleException <: Throwable
org.jruby.embed.bsf.JRubyEngine <: org.apache.bsf.util.BSFEngineImpl
org.jruby.embed.bsf.JRubyEngine <: org.apache.bsf.BSFEngine
org.jruby.ant.RakeTaskBase <: org.apache.tools.ant.Task
org.jruby.javasupport.bsf.JRubyEngine <: org.apache.bsf.BSFEngine
org.jruby.ext.fiber.CoroutineFiber$1 <: java.dyn.Coroutine
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org.jruby.javasupport.bsf.JRubyEngine <: org.apache.bsf.util.BSFEngineImpl

Class Hierarchy
* class java.lang.Object
* class org.apache.bsf.BSFManager
* class org.osgi.framework.FrameworkUtil
* class Throwable (implements java.io.Serializable)
* class org.osgi.framework.BundleException
* class org.apache.tools.ant.BuildException
* class org.apache.bsf.BSFException

* class org.apache.bsf.BSFDeclaredBean
* class org.apache.bsf.util.BSFFunctions
* class org.apache.tools.ant.Task
* class org.jruby.ant.RakeTaskBase

* class java.dyn.Coroutine
* class org.jruby.ext.fiber.CoroutineFiber$1

* class org.apache.bsf.util.BSFEngineImpl (implements
org.apache.bsf.BSFEngine)

* class org.jruby.javasupport.bsf.JRubyEngine
* class org.jruby.embed.bsf.JRubyEngine

Interface Hierarchy
* interface org.osgi.framework.Bundle
* interface org.apache.bsf.BSFEngine
* interface java.io.Serializable
* interface org.osgi.framework.BundleContext

It is evident that the final hierarchy respects all of the reported constraints. Some inter-
esting points are that: (i) org.apache.bsf.BSFEngine defaults to interface since no con-
straint determines whether it is actually an interface or a class, (ii) org.osgi.framework.
BundleException is inferred to be a class since it is a subtype of the class Throwable,
and (iii) two known classes, org.jruby.javasupport.bsf.JRubyEngine and org.jruby.
embed.bsf.JRubyEngine, used as subtypes of interface org.apache.bsf.BSFEngine, add
the latter to the supertypes of their phantom projection, org.apache.bsf.util.BSFEngineImpl.

4.7 Discussion

We next discuss the problem of hierarchy complementation speculatively, in settings dif-
ferent from ours. The general problem is that of complementing programs so that they
respect static well-formedness requirements. Thus, the problem applies to language-level
type systems, static analyses (e.g., “complement this program so that it passes this anal-
ysis, defined a priori”) and other settings more general than our Java bytecode domain.
Indeed, much of our ability to solve the problem effectively has to do with the simple
type checking performed by the Java bytecode verifier. The verifier effectively checks
monomorphic types, i.e., that a reference to an object is statically guaranteed to refer to
memory with the expected layout.

If we were to transpose the problem to the domain of Java source code, the constraints
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to be derived are richer and more complex than the ones we encountered. The Java
language-level type system has intricate requirements relative to overriding, casts, ex-
ceptions, and more. By way of example, we discuss some of these complications below.

– Exception handling at the Java language level immediately introduces very powerful
constraints for types. The Java language requires that a method that overrides another
may throw an exception only if it was already declared to be thrown. Consider two
methods:

class S {
void foo() throws A, B {...}

}

class C extends S {
void foo() throws X, Y, Z {...}

}

The requirement in this case is hard to reason about without an exhaustive search. It
can be stated as: “for C.foo to be a valid overriding of S.foo, X, Y and Z have to be
subtypes of either A or B.” Consider how this rich constraint would affect our ability to
solve the hierarchy complementation problem at the source level. Imagine that S is a
known class while C, X, Y, and Z are phantom classes. If the language allowed us to infer
through observation of other code that C is a subtype of S and that it provides a method
“void foo() throws X, Y, Z” then in order to generate a complement we would need
to satisfy the following: C <∶ S ⇒ ∀𝑡 ∈ {X,Y,Z} ∶ (𝑡 <∶ A ∨ 𝑡 <∶ B).
In contrast, the bytecode verifier only ensures a much simpler constraint: that a type
declared to be thrown by a method is a subtype of Throwable.

– A similar kind of constraint at the Java language level is also produced by the overriding
rule for return types. Java (5 and above) allows overriding methods to have a covariant
return type. That is, the overriding method can declare to return a subtype of the over-
ridden method’s return type. Much as in the case of exceptions, this induces complex
constraints, especially when combined with search to examine whether a type can be
a subtype of another. Consider the following case:

interface S {
R foo();

}
// R,X,Y phantom types
// we know X contains method "Y foo()"

For phantom types R and X, if some other constraint (e.g., of the kind induced in the
case of multiple inheritance in Section 4.3) can be satisfied by making X a sybtype of
S, then we get the additional constraint: “if X becomes a subtype of S then Y must be a
subtype of R”. This is again a very expressive constraint kind and, consequently, hard
to reason about. For instance, the above constraint allows us to determine that two
phantom types cannot be subtype-related. If two types declare methods with identical
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argument types but guaranteed-incompatible return types (e.g., void and Object), then
the types are guaranteed to not be ordered by the subtyping relation, in either direction.

At the bytecode level, subtyping together with signature conformance does not imply
other subtyping relationships, in the above manner. By merely having a method with the
same argument types, we are not guaranteed that it overrides the respective superclass
method. Instead, overloading is perfectly legal among methods that differ only in their
return types. The bytecodemethod call resolution procedure does not rely on name/type
lookup but on direct identifiers of methods.

– Casts yield no constraints at the bytecode level although they do at the source level. The
reason is that the bytecode elides all unnecessary casts (i.e., upcasts). For instance,
at the source level, upon seeing in code that passes the type checker a statement of
the form “(X) new C()” we can be certain that (assuming X and C are both classes)
the classes X and C are subtype-related: the cast can be either an upcast or a down-
cast, otherwise it would fail statically. At the bytecode level, however, a corresponding
“checkcast X” instruction, when the object at the top of the argument stack is of static
type C, allows no inference. The corresponding source code could well have been
“(X)((Object) c)”, with the intervening upcast elided during compilation to bytecode.

– Constraints can be induced not just by varying the requirements for the output but also
by varying the assumptions for the input. In our setting, we only assumed that the
input is legal Java bytecode when complemented with some extra definitions. This is
distinctly different from assuming that the input has been produced by the translation
of Java source code. (Bytecode could well have been produced via compilers for other
high-level languages or via bytecode generators.) For instance, the Java language
maintains types for all local variables. At the source level, if we call methods on the
outcome of a conditional expression, we are guaranteed to be able to assign a type to
it. Consider:

A a;
B b;
x = (foo()? a : b);
x.meth(); // I::meth()
x.meth2(); // J::meth2()

In Java source, the above code means that there exists some type X (the type given to
variable x) such that X is a subtype of I and X is a subtype of J, while also A and B are
subtypes of X. An equivalent conditional in bytecode form does not need to assign a
type to X. The constraints will be merely: A and B are subtypes of both I and J, without
allowing us to infer the existence of such an unknown type X. Our constraint solving
process is significantly simplified by the fact that we never need to infer the existence
of more types.

The above is just a sampling of complications that arise if the hierarchy complementa-
tion problem is transposed to other domains, requiring the satisfaction of different static
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requirements. The effectiveness and efficiency of our approach is largely due to the sim-
plicity of the Java bytecode verification requirements. However, other domains give rise to
challenging problems, with a wealth of different constraints, possibly appropriate for future
work.

4.8 Summary

In this chapter, we introduced the class hierarchy complementation problem. The problem
consists of finding definitions to complement an existing partial class hierarchy together
with extra subtyping constraints, so that the resulting hierarchy satisfies all constraints. In
the context of Java bytecode and the constraints of the bytecode verifier, our problem is
the core challenge of complementing partial programs soundly, i.e., so that they pass the
checks of the verifier when loaded together with the generated complement.

We discuss the need for analyzing partial programs and introduce hierarchy complemen-
tation in Section 4.1, and show how the problem arises in practice in Section 4.2. We
offer algorithms for the hierarchy complementation problem in both the multiple and the
single inheritance setting (in Sections 4.3 and 4.4, respectively). In Section 4.5, we show
how to decompose the problem in the mixed single-inheritance multiple-subtyping setting
of Java, into separate single- and multiple-subtyping instances, and link it to practice with
our JPhantom bytecode complementation tool (in Section 4.6). Finally, we discuss how
the problem of hierarchy complementation changes when we transpose it to the domain
of Java source code (instead of bytecode), in Section 4.7.
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5. RELATED WORK

Obviously, you’re not a golfer.

The Dude

This chapter includes related work of previous chapters (in Sections 5.1 – 5.3) and then
considers more generic directions in static analysis literature (in Section 5.4). Specifically,
(a) Section 5.1 contains related work for Chapter 2; (b) Section 5.2 contains related work
for Chapter 3; and (c) Section 5.3 for Chapter 4.

5.1 Field-Sensitive C/C++ Pointer Analysis

Regarding our structure-sensitive pointer analysis, we discussed some closely related
work throughout Chapter 2 (most importantly [104, 105]). More generally, most C and
C++ analyses in the past have focused on scalability, at the expense of precision. Several
(e.g., [52, 75, 138]) do not model more than a small fraction of the functionality of modern
intermediate languages.

One important addition is the DSA work of Lattner et al. [73], which was the original points-
to analysis in LLVM. The analysis is no longer maintained, so comparing experimentally is
not possible. In terms of a qualitative comparison, the DSA analysis is a sophisticated but
ad hoc mix of techniques, some of which add precision, while others sacrifice it for scal-
ability. For instance, the analysis is field-sensitive using byte offsets, at both the source
and the target of points-to edges. However, when a single abstract object is found to be
used with two different types, the analysis reverts to collapsing all its fields. (Our analysis
would instead create two abstract objects for the two different types.) Furthermore, the
DSA analysis is unification-based (a Steensgaard analysis), keeping coarser abstract ob-
ject sets and points-to sets than our inclusion-based analysis. Finally, the DSA analysis
uses deep context-sensitivity, yet discards it inside a strongly connected component of
methods.

The field-sensitive inclusion-based analysis of Avots et al. [10] uses type information to
improve its precision. As in this work, they explicitly track the types of objects and their
fields, and filter out field accesses whose base object has an incompatible type (which
may arise due to analysis imprecision). However, their approach is array-insensitive and
does not employ any kind of type back-propagation to create more (fine-grained) abstract
objects for polymorphic allocation sites. Instead, they consider objects used with multiple
types as possible type violations. Finally, they extend type compatibility with a form of
structural equivalence to mark types with identical physical layouts as compatible. The
implementation of cclyzer applies a more general form of type compatibility, presented
in Section 2.5.

Miné [94] presents a highly precise analysis, expressed in the abstract interpretation
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framework, that translates any field and array accesses to pointer arithmetic. By rely-
ing on an external numerical interval analysis, this technique is able to handle arbitrary
integer computations, and, thus, any kind of pointer arithmetic. However, the precision
comes with scalability and applicability limitations: the technique can only analyze pro-
grams without dynamic memory allocation or recursion.

There are similarly other C/C++-based analyses that claim field sensitivity [50, 51], but it
is unclear at what granularity this is implemented. Existing descriptions in the literature
do not match the precision of our structure-sensitive approach, which maintains maximal
structure information (with typed abstract objects and full distinction of subobjects), at both
sources and targets of points-to relationships. Nystrom et al. [99] have a fine-grained heap
abstraction that corresponds to standard use of “heap cloning” (a.k.a. “context-sensitive
heap”).

5.2 Static Analysis and Reflection

The traditional handling of reflection in static analysis has been through integration of user
input or dynamic information. The Tamiflex tool [18] exemplifies the state of the art. The
tool observes the reflective calls in an actual execution of the program and rewrites the
original code to produce a version without reflection calls. Instead, all original reflection
calls become calls that perform identically to the observed execution. This is a practical
approach, but results in a blend of dynamic and static analysis. It is unrealistic to expect
that uses of reflection will always yield the same results in different dynamic executions—
or there would be little reason to have the reflection (as opposed to static code) in the first
place. Our approach attempts to restore the benefits of static analysis, with reasonable
empirical soundness.

An alternative approach is that of Hirzel et al. [57, 58], where an online pointer analysis is
used to deal with reflection and dynamic loading by monitoring their run-time occurrence,
recording their results, and running the analysis again, incrementally. This approach is
quite interesting when applicable. However, it is not applicable in many static analysis
settings. Maintaining and running a precise static analysis during program run time is often
not realistic (e.g., for expensive context-sensitive analyses). Furthermore, the approach
does not offer the off-line soundness guarantees one may expect from static analysis: it is
not possible to ask questions regarding all methods that may ever be called via reflection,
only the ones that have been called so far.

Interesting work on static treatments of reflection is often in the context of dynamic lan-
guages, where resolving reflective invocations is a necessity. Furr et al. [42] offer an
analysis of how dynamic features are used in the Ruby language. Their observations are
similar to ours: dynamic features (reflection in our case) are often used either with sets
of constant arguments (in order to avoid writing verbose, formulaic code), or with known
prefixes/suffixes (e.g., to re-locate within the file system).

Madsen et al. [88] employ a use-based analysis technique in the context of Javascript.
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When objects are retrieved from unknown code (typically libraries) the analysis infers the
object’s properties from the way it is used in the client. In principle, this is a similar ap-
proach to our use-based techniques of Section 3.4.2 (both object invention and back-
propagation) although the technical specifics differ. The conceptual precursor to both
approaches is the work on reflection by Livshits et al. [84, 85], which has been extensively
discussed and contrasted throughout Chapter 3 (see Sections 3.3, and 3.4.2).

Advanced techniques for string analysis have been presented by Christensen et al. [24].
They analyze complex string expressions and abstract them via a context-free grammar
that is then widened to a regular language. The regular approximations produced by this
approach are richer than the prefix and suffix matching of our substring analysis, and can
thus better approximate the possible values of arbitrary string expressions. Reflection is
one of their examples but they only apply it to small benchmarks.

Ali and Lhoták [2, 3] offer comparisons of dynamic and static call-graph edgemetrics. They
discover hundreds of missing edges in several of the DaCapo 2006-10-MR2 benchmarks.
However, their experiments do not integrate the vastly improved support for reflection
(e.g., modeling of Object.getClass) offered by Elf or our current work.

Stancu et al. [126] empirically compare profiling data with a points-to static analysis. How-
ever, they target only the most reflection-light benchmarks of the DaCapo 9.12-Bach suite
(avrora, luindex, and lusearch), and patch the code to avoid reflection entirely.

5.3 Class Hierarchy Complementation and Static Analysis on Partial Programs

The hierarchy complementation problem, which we presented in Chapter 4, is in principle
new, although indirectly related to various other pieces of work in the literature.

From a theory standpoint, our problem is an attempt to more fully determine the structure
of a partially ordered set. There is no exact counterpart of our algorithms in the literature.
However, there has been work on sorting a poset, i.e., completely determining the partial
order [33]. The challenge in such algorithmic research, however, is to perform the sorting
with a minimal number of queries. None of the interesting devices of our algorithms are
present. Specifically, the device of the single inheritance case (if a node can reach two
others, they have to be ordered relative to each other) does not apply, and neither does
the interesting constraint of the multiple inheritance case (we cannot add direct supertypes
to a known node).

Complementing a program so that the result respects static properties is analogous to
analyzing only parts of a program but giving guarantees on the result. There are few ex-
amples of program analyses of this nature. Notably, Ali and Lhoták introduce a technique
[2] for analyzing an application separately from a library, while keeping enough informa-
tion (from the library analysis) to guarantee that the application-level call-graph is correct.
Furthermore, the Averroes system [3] uses the assumption that the missing code is inde-
pendently developed in order to produce a worst-case skeletal library. That is, Averroes
takes an existing library and strips away the implementation, keeping only the interface
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between the library and the application. The implementation is replaced with code (at
the bytecode level) that performs worst-case actions on the arguments passed into the
library, for the purposes of call-graph construction (i.e., the generated code calls all meth-
ods the eliminated original code could ever call). Averroes is related to JPhantom but at
rather opposite ends of the spectrum: Averroes produces worst-case skeletal implemen-
tations, while JPhantom produces minimal, best-case implementations that still respect
well-formedness at the type level. At the same time, Averroes assumes the library inter-
face is available and just tries to avoid analyzing library implementations, while JPhantom
applies precisely when the library is completely missing. Thus, JPhantom truly applies to
the case of partial programs, whereas Averroes analyzes a partial program but under the
assumption that the whole program was available to begin with. It would be interesting
to treat a partial program first with JPhantom and then apply Averroes to the JPhantom-
produced program complement to obtain the worst-case behavior of a plausible interface
for the missing code.

Analyzing partial programs at the level of source code has been studied by Dagenais
and Hendren [31]. Apart from the elaborate type constraints that may arise from missing
source code, as discussed in Section 4.7, another important challenge is syntactic ambi-
guities (e.g., is it a package or a class name?). The goal of Dagenais and Hendren is to
be able to deal with both typing problems and syntactic ambiguities in any given partial
Java program and produce a typed IR (although it may contain placeholders representing
unknown types and packages). Their approach is primarily based on heuristics that make
arbitrary choices on various occasions (with no form of backtracking) that may eventu-
ally lead to wrong results. Even though they, too, identify similar subtype constraints and
record missing class members to be added in the typed IR, they do not define any simi-
lar type hierarchy complementation problem or come up with algorithms to systematically
construct a valid solution in such a setting.

Our hierarchy complementation problem bears a superficial resemblance to the principal
typings problem [4–6]. The principal typings problem consists of computing types for a
Java module in complete isolation from every other module it references. I.e., principal
typings aim to achieve a more aggressive form of separate compilation, by computing
the minimal type information on other classes that a class needs in order to typecheck
and compile. Thus, the motivation is fairly similar to ours, but the technical problem is
quite different. First, in our setting we already have the result of compilation in the form of
bytecode, and bytecode only. Second, our emphasis is on satisfying constraints instead
of capturing them as a rich type. Finally, our constraints are of a very different nature from
any in the principal typings literature. As discussed in Section 4.7, the input and output
language assumptions crucially determine the essence of an incomplete program analysis
problem.
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5.4 Other Directions in Static Analysis

In this section, we will extend our focus and examine more generic directions and different
methodologies in static analysis literature.

CFL reachability formulation. In Chapters 2 and 3, we formulated pointer analysis al-
gorithms in inference rules that can be straightforwardly expressed in Datalog. Employing
a restricted language not only offers guarantees of termination and complexity bounds,
but also permits more aggressive optimization of the language features.

Along these lines, pointer analysis and other related analyses have been formulated as
a context-free language (CFL) reachability problem. The idea is that we may encode an
input program as a labeled graph, and a specific analysis corresponds to the definition of
a context-free grammar, 𝐺. The relation being computed holds for two nodes of the graph
if and only if there exists a path from one node to the other, such that the concatenation
of the labels of edges along the path belongs in the language 𝐿(𝐺) defined by 𝐺.

Specifically, the input graph normally consists of nodes representing program elements
such as variables, types, methods, statements, and so on. Edges represent relations be-
tween those program elements. For instance, an edge (𝑠, 𝑡) may represent that there
exists an assignment from variable 𝑠 to variable 𝑡. Moreover, edges may encode field ac-
cesses (load/store), method invocations, pointer dereferences, etc, and hence may even
connect different kinds of program elements. The exact choice of domains depends on the
specific analysis being run and the problem it addresses. Since we want to express many
input relations, we need many types of edges, represented as labels (e.g., we can label a
field access edge by some symbol denoting field access plus the name of the field). For a
given analysis, a context-free grammar 𝐺 encodes the desired computed relations (e.g.,
which pointers are memory aliases) as non-terminal symbols, and supplies production
rules that express how they relate to the simpler relations represented by graph edges
(terminals). The CFL reachability answer is then commonly computed by employing a
dynamic programming algorithm.

The first application of such a framework in program analysis was designed to solve vari-
ous interprocedural dataflow-analysis problems [108], but CFL reachability has since been
used in a wide range of problems, such as: (i) the computation of points-to relations
[107], (ii) the (demand-driven) computation of may-alias pairs for a C-like language [138],
(iii) Andersen-style pointer analysis for Java [125].

Any CFL reachability problem can be converted to a Datalog program [107], but the inverse
is not true (i.e., CFL reachability corresponds to a restricted class of Datalog programs,
the so-called “chain programs”). Thus, the primary advantage of CFL reachability is that
it permits more efficient implementations.

A chain program consists of rules of the form:

𝑝(𝑋, 𝑌 ) ← 𝑞0(𝑋, 𝑍1), 𝑞1(𝑍1, 𝑍2), … , 𝑞𝑘(𝑍𝑘, 𝑌 ).
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We can express a CFL reachability problem in Datalog by using such a chain rule to
represent the following production of grammar 𝐺:

𝑝 → 𝑞0 𝑞1 … 𝑞𝑘

where a Datalog fact 𝑒(𝑚, 𝑛) represents an edge (𝑚, 𝑛) labeled 𝑒 in the graph.

An even more restrictive variant, Dyck-CFL reachability, can be obtained by restricting
the underlying CFL to a Dyck language, i.e., one that generates balanced-parentheses
expressions. Although restrictive, this approach still suffices for some simple pointer anal-
ysis algorithms, while allowing very aggressive optimization, often with impressive perfor-
mance gains [135].

Constraint graph approaches and optimizations. Several optimization techniques
have appeared in the pointer analysis literature, based on the concept of the constraint
graph: a graph whose nodes denote pointer expressions and whose edges denote flow
between these pointer expressions.

Such an edge may arise either: (i) before points-to computation—due to an explicit as-
signment instruction “𝑞 = 𝑝”, for example, that the input program contains—or (ii) during
points-to computation, by also taking field accesses (i.e., load/store instructions) into ac-
count in order to infer additional flow. These techniques have typically targeted the C
language.

A variety of constraint graph optimization techniques have been presented that can be
applied either offline (i.e., before points-to computation) [49, 112], or online (i.e., during
points-to computation) [38]. Hybrid approaches also exist [52]. The essence of most of
these techniques lies in identifying nodes with guaranteed-equivalent points-to sets and
collapsing them into a single representative node. Such equivalence classes may arise,
for instance, when nodes participate in a cycle of the constraint graph [38, 53], or even
if they share a common dominator [98]. The set-based pre-processing technique [122]
generalizes such approaches by also allowing the removal of edges (and not just merging
of nodes) from the constraint graph. It also restricts the application of optimizations to an
intra-procedural setting, so that they can be applied in conjunction with nearly any pointer
analysis algorithm, together with on-the-fly call-graph construction.

Shape Analysis. So far, allocation sites is the primary source that drives abstract object
creation, in the techniques we have presented for pointer analysis. Despite our deviation
from the standard allocation-site abstraction, where a single abstract object will be created
per allocation site, even our own techniques, described in Chapter 2, will use the allocation
site as the basis of abstraction (but may create multiple objects per site, nonetheless). A
different approach altogether is that of the techniques termed as shape analysis [39, 74,
89, 114–116]. The primary goal of standard shape analysis is to be able to infer the shapes
of objects in memory. E.g., to be able to detect if some objects form a list or a tree, if some
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list may contain cycles, if a subtree or a portion of a list may be shared (i.e., be reachable
from multiple objects), and so on.1

To achieve such a feat, shape analysis associates a list of properties to each abstract
memory object (e.g., pointed by variable v, transitively reachable by variable r, and so on)
and uses Kleene’s three-valued logic to differentiate between must and may information.
For instance, if the “pointed by variable v” property of an abstract object 𝑜𝑏𝑗 has the value
1 at some memory state, it means that variable v must point to this object (at the given
state), whereas the value 1

2 would represent our familiar may notion of points-to. Hence,
shape analysis performs an amalgam of must and may analysis simultaneously.

At each memory state the analysis has computed, it tries to collapse 1
2 values of properties

to either 0 or 1, via the so called focus operation. Inconsistent states are then discarded
at the coerce operation. Thus, the analysis dynamically tries to eliminate uncertainty by
focusing on the values of some core predicates (and statement-specific formulas), at the
expense of possible memory state explosion—the abstract interpretation of each program
statement tends to create multiple output states for each one of its input states. As for
abstract objects, they are defined only by the values they have for some basic properties
(called abstraction properties) of the particular analysis. Therefore, the upper bound for
the number of abstract objects in memory is exponential to the number of abstraction
predicates defined. (The latter will almost certainly include a predicate per each program
variable.)

By applying these techniques, and choosing the right abstraction predicates, the analysis
will be able to carve out the shapes of objects in memory. For instance, given an input
memory state where variable v points to the head of some list 𝑙 with at least two elements,
the abstract interpretation of instruction “v = v->next” will create multiple output memory
states where either: (i) v points to a new head of a list with a non-empty tail (correspond-
ing to the case where 𝑙 contained at least three elements), or (ii) v points to the single
element of a list with no tail at all (corresponding to the case where 𝑙 contained exactly
two elements). In both output memory states, the analysis will compute values of 1 for
the predicate “pointed by variable v”; hence, it will know exactly where v points to and
maintain precision, at the expense of increasing the possible memory states by 1.

Sagiv, Reps, andWilhelm initiated the field of parametric shape analysis via 3-valued logic
[114–116], and Lev-Ami and Sagiv presented the TVLA framework for shape analysis [74].
Since then, there has been work on various extensions such as amore economic heap ab-
straction [89], better support for recursive programs [111] and programs with highly nested
data structures [15], and the incorporation of a value analysis into the shape analysis al-
gorithm [39], among others.

1The term shape analysis is quite generic (i.e., any analysis designed to infer the shapes of objects)
and has been examined in many different contexts [43]. Here, we focus on parametric shape analysis via
3-valued logic, as one of the most notable methodologies in that area.
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Separation Logic. Points-to analysis provides a model of the heap (or memory, in gen-
eral, for a language such as C). Other approaches for heap analysis that can be used
to prove pointer safety are based on the field of separation logic. Separation logic, in
turn, can be viewed as an extension of Hoare logic [41, 59, 102, 110]. Hoare logic is a
formal system for reasoning about the correctness of programs, by encoding the program-
ming language’s semantics in Hoare tiples. A Hoare triple has the form {𝑃} 𝐶 {𝑄} and
describes how the execution of a command changes the state of the computation. Specif-
ically, it states that whenever the assertion 𝑃 holds, before executing command 𝐶 , then
assertion 𝑄 will hold afterwards (if 𝐶 terminates). The 𝑃 , 𝑄 assertions can express con-
ditions on program variables, written by using standard mathematical notations together
with logical operators (or, in general, some form of calculus like first-order logic).

Hoare logic provides two ways to generate verification conditions: (i) either forwards, by
starting from a precondition and generating formulas to prove a postcondition (ii) or back-
wards, by starting from a postcondition and trying to prove a precondition. Either way, in
the general case, it cannot provide fully automated reasoning; building a proof may require
human guidance.

Separation logic [61, 102, 109, 110] extends Hoare logic by introducing additional oper-
ators in the syntax of assertions, that facilitate local reasoning. Namely, the separating
conjunction 𝑃 ∗ 𝑄 asserts that 𝑃 and 𝑄 hold for separate portions of memory, and thus
can be used on program-proof rules to provide modular reasoning about programs. Addi-
tional operators include the separating implication,𝑃 −*𝑄, which asserts that if the current
heap is extended with a disjoint part in which 𝑃 holds, then 𝑄 will hold in the extended
heap, and more. Note that, these operators do not increase the “completeness” of Hoare
logic—what can be proven in separation logic can also be proven in Hoare logic. Rather,
they merely simplify the specifications and proofs.

Calcagno et al. present a compositional shape analysis [22] to be used in (lightweight) pro-
gram verification that builds on these concepts of separation logic (instead of the TVLA
approach of Sagiv, Reps, and Wilhelm). In classical logic, abduction stands for the infer-
ence of “missing” assumptions 𝑀 , such that, given another assumption 𝐴 and a goal 𝐺,
one can prove 𝐺 by synthesizing 𝐴 and 𝑀 :

𝐴 ∧ 𝑀 ⊢ 𝐺
A similar problem can be phrased by using separating conjunction instead of classical
conjunction, which also partitions the premises:

𝐴 ∗ 𝑀 ⊢ 𝐺
This finally leads to the more general problem of bi-abduction, if we allow for leftover
portions of state (the frame):

𝐴 ∗ ?anti-frame ⊢ 𝐺 ∗ ?frame

The notion of bi-abduction is used as the basis of a new compositional interprocedural
shape analysis algorithm, which synthesizes pre- and post-conditions for each program
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function, by performing a symbolic execution that presumes existing specifications. When
symbolically executing a method call with a given specification, in the form of a pre- and
a post-condition (which correspond to 𝐴 and 𝐺), the analysis infers a frame and an anti-
frame. Such inferred frames and anti-frames will eventually lead to the computation of
the final pre- and post-conditions for the enclosing function, when all of its instructions are
processed.

Abstraction Strategies. In Chapter 2, we used an abstraction policy for memory objects
that may produce more than one abstract objects per allocation site. The exact strategy
by which memory objects are represented by a static analysis is a crucial design choice.

Using the allocation site as a means of abstraction dates at least back to the work of Jones
and Muchnick [63], who use graphs to summarize heap data structures. An allocation site
(i.e., cons instruction) is handled by creating a new graph node that may represent multiple
concrete allocations for a given execution. The same principle for abstracting cons cells
is used later in the work of Chase et al. [23].

Previously, we also talked about shape analysis [114–116] as another means of abstract-
ing memory that goes far beyond allocation sites, by introducing the concept of arbitrary
abstraction predicates. The recency-abstraction approach of Balakrishnan and Reps [11]
lies somewhere in between. For each allocation site, their analysis creates two abstract
objects: (i) the first one represents the most-recently-allocated object (for the given site),
while (ii) the second one summarizes all the other (least recent) objects for the same site.
Note that the first object represents just a single concrete object and, hence, can be used
to perform strong updates, which is an essential technique to improve the precision and
scalability of a flow-sensitive analysis. In contrast, shape analysis would instead record
a summary abstraction predicate for each abstract object that captures whether it repre-
sents more than one concrete objects. This would naturally lead to the specialization of
non-summary nodes that exhibit interesting shape properties (such as the head of some
list structure) according to the rest of the abstraction criteria. Kanvar and Khedker present
a thorough taxonomy of various other strategies in heap abstractions [65].

Context Sensitivity. A pointer analysis attempts to compute an abstract yet reasonably
precise model of the program’s memory for all possible executions. Recall the basic query
that such a model needs to answer, from Chapter 2:

What can a pointer variable point to, i.e., what can its value be when derefer-
enced during program execution?

Of course, if the same question is phrased in the Java setting—in Java, variable references
point to heap allocations—instead of C/C++, it becomes:

What heap objects can each reference variable point to, during program exe-
cution?
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As discussed in the previous paragraph, there are many different approaches on how to
abstract memory objects. Simpler approaches, like the allocation-site abstraction, lead to
more efficiently computable memory models, whereas on the opposite end we can have
models with complex abstractions, such as shape analysis, that do not scale well with
program size.

A generic approach that increases the granularity of the analysis abstractions and yields
greater precision is that of context sensitivity. The idea is to qualify variables and abstract
objects with context information. Thus, a points-to edge (𝑣, 𝑐1, ̂𝑜, 𝑐2) now captures that
variable 𝑣, under context 𝑐1, points to abstract object ̂𝑜, allocated under context 𝑐2. Es-
sentially, this means that we have refined our abstractions: the same variable 𝑣 is rep-
resented by multiple variable-context tuples, (𝑣, 𝑐1), each one corresponding to some
different execution path, and having an independent points-to set. Similarly, the same
allocation site (given that we have used the allocation-site abstraction as a basis for our
object abstraction) of ̂𝑜 is now represented by multiple object-context tuples, ( ̂𝑜, 𝑐2), each
one corresponding to a different execution context under which the allocation was made.

There are many flavors of context sensitivity in existing literature, which use different
strategies for creating contexts. To name a few:

– Call-site sensitivity (or k-CFA in the context of functional languages, even though there
are important differences in applying it to functional versus object-oriented settings [90])
that uses method call sites as context elements [118, 119]

– Object sensitivity, where object allocation sites are used as context elements [91, 92]

– Type sensitivity, which is similar to object sensitivity but instead collapses the objects
to their types to achieve better scalability [123]

– Hybrid context-sensitivity that selectively combines call-site and object sensitivity [66].

Each approach has its relative merits and unique performance characteristics; none is
clearly superior to all others. The exact choice of context has to consider the specific
characteristics of the program being analyzed. Generally, it is a matter of experimenta-
tion but automated machine-learning techniques can also be used to adapt the degree of
context sensitivity [46, 81, 82, 101]. Other approaches such as counter-example-guided
abstraction refinements, use the feedback from failed analysis runs to pick a new abstrac-
tion which is less likely to fail [48, 136, 137].
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6. CONCLUSIONS AND FUTURE WORK

That rug really tied the room together.

The Dude

In the final chapter, we shall assess our initial thesis and conclude, while also considering
interesting directions for future work.

Our thesis states that there exists implicit structural information in the program, about the
memory it will allocate, which we can recover via inference and use it to improve the quality
of a static analysis (by coming up with a better abstract memory model). In Chapter 2,
we examined the problem of pointer analysis in C/C++, as a typical example of a low-
level language with direct memory access. We identified particular causes of analysis
imprecision, in untyped allocations (via generic malloc-like allocation routines) and in the
language’s capability of allowing pointers to point inside an object (i.e., to point to one of
its fields or array elements), which further complicates the modeling of field sensitivity.

We presented a structure-sensitive pointer analysis that may achieve better precision by
changing its abstraction strategy: when the same allocation site is used to create objects
of many different types, the analysis comes up with many different strongly-typed abstract
objects to represent the same instruction. Also, each different field and array element of
each such strongly-typed object (of a complex type) will be represented by a unique ab-
stract subobject itself, having its own separate points-to set, while also maintaining strong
type information. The final outcome is a much finer-grained allocation abstraction (than
that of the typical C/C++ points-to analysis) that is guided primarily by the flow of types.
The key to this technique is that tracking the flow of types that will determine what objects
will be created is not determined before the analysis has run, but simultaneously (“on-
the-fly”), thus yielding better results due to the recursive nature of the computation. We
describe the analysis in precise terms and show that its approach succeeds in maintaining
precision when analyzing realistic programs.

This is a prime example of how complex inference (in this case, the relations computed
by the pointer analysis itself) that tracks the use of types in the program can be used to
recover structural information, namely, the various structures that may be used to access
or modify any untyped heap allocation in memory. The recovered structural information, in
turn, improves the quality of the analysis, in terms of precision, as shown in the evaluation
section of Chapter 2. In our experience, the techniques we described are essential for
analyzing C/C++ programs at the same level of precision as programs in higher-level
languages.

In Chapter 3, we shift our focus to higher-level languages like Java, with no pointer arith-
metic or direct memory access capabilities. However, even in such a setting, our thesis
applies: we can improve the quality of a pointer analysis (now, in terms of empirical sound-
ness) by recovering structural information for objects involved in reflective operations. By
using reflection, Java programs can encompass dynamic behavior, and as such, are dif-
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ficult to statically analyze.

The challenges with reflection idioms are quite similar to those of analyzing C/C++ that
we have already encountered:

⋅ the same (reflective) allocation site can be used to allocate objects of many different
types

⋅ no local type information exists for reflective objects; instead, the types are determined
by run-time strings that are passed on as arguments to the reflective operations involved

⋅ apart from normal object allocations, there are also reflective calls that return special
objects representing program classes, fields, and methods; a reflective call on a method
object is much like a C/C++ call via a function pointer.

To tackle the limitations of existing pointer analyses, induced by reflection, we presented a
static reflection analysis (which also runs simultaneously with the core points-to analysis)
that employs similar techniques to those of Chapter 2: by inspecting the use of reflec-
tive objects (i.e., what types they are cast to, what fields they access, and so on), the
analysis is able to recover essential parts of the objects’ structure. Our techniques build
on top of state-of-the-art handling of reflection in Java, by elegantly extending declarative
reasoning over reflection calls and inter-procedural object flow. Our main emphasis has
been in achieving higher empirical soundness, i.e., in having the static analysis truly model
observed dynamic behaviors.

By comparing the statically computed call-graphs against dynamically computed ones
from actual executions, we find that these techniques, indeed, improve empirical sound-
ness (i.e., the static analysis is now able to cover more of the actual dynamic behavior
of the program than before). Although full soundness is infeasible for a realistic analysis,
it is possible to produce general techniques that enhance the ability to analyze reflection
calls.

As already noted, reflection is but one of the possible causes of lost memory structure,
when statically analyzing Java programs. In Chapter 4, we examine how to recover lost
structural information for partial Java programs.

Regarding such need, dynamic class loading allows programs to depend on an abun-
dance of external libraries, without actually requiring all of them to execute. Transitive
dependencies (i.e., the dependencies of the libraries directly used by the program) make
things even worse, from the perspective of a static analyzer, since such dependencies are
much more numerous and less likely to be actually used. Hence, whole programs might
be both prohibitively difficult to obtain and unnecessary at the same time; if some parts of
the program were missing, they would make no difference in any actual execution, had
these parts been truly redundant. In such cases, missing these parts should also make
no difference in analyzing the program, which explains why there is a strong incentive for
static analysis tools to be able to analyze partial programs. Despite such incentive, static
analysis tools are rarely well-equipped or error-tolerant enough to be able to cope with
partial programs. When they do so, they risk a great deterioration of their results.
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To this end, we have presented a generic complementation approach, in Chapter 4, that
transforms a partial program to a whole one, while also seeking to provide definitions for
its missing parts so that the “complement” satisfies all static and dynamic typing require-
ments induced by the code under analysis. This requires satisfying constraints relative to
methods and fields of themissing classes, as well as subtyping constraints and constraints
on whether a missing type has to be a class or interface. To identify such constraints, we
analyze the program and track uses of any phantom types therein (i.e., types being used
but not defined in the code that is available), so that we can recover their lost structure.
Inferring missing members of phantom types is straightforward. The primary challenge,
however, lies in computing the missing parts of the type hierarchy, in a way that satisfies
all the implied subtyping constraints.

We have defined the type hierarchy complementation problem as follows: given a partially
known hierarchy of classes together with subtyping constraints (“A has to be a transitive
subtype of B”) complete the hierarchy so that it satisfies all constraints. We formulate the
problem systematically and offer algorithms to solve it in various inheritance settings. The
result is the articulation of a novel typing problem in the OO context.

The entire complementation approach, including the algorithms to solve the type hierarchy
complementation problem are implemented in JPhantom, a program complementation
tool of practical interest for Java bytecode. We evaluated JPhantom on both synthetic
and real-world benchmarks to show that we produce practical complements of significant
size in a few seconds and, in this way, allow the analysis of previously un-analyzable
partial programs.

Lastly, we used the synthetic benchmark (based on the antlr parser generator) to evaluate
the difference between analyzing a partial program as is, and analyzing it after being com-
plemented by JPhantom. The comparison demonstrated that the latter is much closer to
analyzing the original whole program: analyzing the partial program without complemen-
tation fails to find a great number of reachable methods (which will not be analyzed at
all). Therefore, recovering the structural information of phantom types, via our program
complementation technique, has improved the static analysis on the partial program, thus
reinforcing our thesis.

We believe that the hierarchy complementation problem is fundamental and is likely to
arise in different settings in the future, hopefully aided by our modeling of the problem and
some of its solution avenues.

To summarize, we advocate that there are many opportunities of recovering implicit struc-
tural information about memory that can improve the static analysis of programs, but re-
quire complex inference that takes advantage of indirect uses of types. We have exam-
ined three different scenarios to test and evaluate our thesis, regarding generic C/C++
programs, and Java programs that either use reflection or are missing parts of their code.
In all cases, we where able to improve static analysis, by recovering memory structure
that was not previously evident.
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6.1 Future Work

Finally, we will discuss some interesting future directions to tackle existing limitations of
our approaches.

6.1.1 Flow-Sensitivity and Strong Updates

To begin with, our structure-sensitive points-to analysis for C/C++ lacks flow sensitivity,
which is a useful feature for C-like languages. Flow sensitivity takes the order of program
instructions into account, to increase analysis precision. The results it computes are now
specialized to a specific program point, at which they hold. Thus, different program points
will be associated with different points-to results, by the end of an analysis run.

We have already discussed, in Chapter 2, the SSA transformation built in the LLVM bit-
code format. SSA can be viewed as a limited form of flow sensitivity, since it ensures
that a variable is only assigned once; a variable with multiple assignments will be split
into multiple different variables, one per assignment. However, SSA is far from adequate,
especially in LLVM bitcode, where address-taken variables bypass SSA, by being trans-
formed to pointers whose contents can be changed by multiple store instructions. This
is not specific to analysis of C/C++ or LLVM bitcode. In a Java pointer analysis, like the
one we have briefly presented in Chapter 3, despite SSA, fields of objects can be, again,
updated multiple times.

To take advantage of flow sensitivity and be able to substantially affect precision, an anal-
ysis has to perform strong updates. A store instruction strongly updates the results of
an over-approximate pointer analysis, when it overwrites the previous points-to contents
for the given address. A weak update only extends points-to contents without removing
any prior results. However, it is not generally sound for a flow-sensitive pointer analysis
to perform a strong update without additional reasoning. The reason is that an abstract
object summarizes multiple concrete objects; to strongly update it, we have to ensure that
the update applies to all concrete objects that it represents.

We previously discussed how the recency-abstraction of Balakrishnan and Reps [11] al-
lows us to perform strong updates. Another approach is that of Lhoták and Chung, who
perform strong updates only on singleton points-to sets [75]. However, even with strong
updates, the cost of flow-sensitivity could be prohibitive. Improving the efficiency of flow-
sensitive analyses has been studied extensively in the literature [34, 77, 79, 128]. Khedker
et al. perform a context-sensitive and flow-sensitive analysis but limit the points-to informa-
tion they compute based on a liveness analysis about pointer ranges [67]. Ye et al. limit
flow-sensitivity by partitioning the program into regions and maintaining flow-sensitivity
only between the regions but not inside [134]. Incorporating such approaches and pos-
sibly devising other methods that enable strong updates in limited cases would be a key
step in further improving the precision and overall value of our structure-sensitive analysis.
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6.1.2 Integer and String Value Analysis

Our structure sensitive analysis for C/C++ takes array indices into account, to introduce
a form of array-sensitivity by which it can statically differentiate distinct array elements.
Array indices are not the only case where our analysis could benefit from integer values.
The number of bytes specified in an allocation instruction (e.g., via the single parameter
of a malloc() call) could help us filter some invalid object-type associations.

Such cases, however, are only the tip of the iceberg in how a static analysis can find use
in reasoning about the domains of integer values. Our analysis could incorporate more
sophisticated approaches in tracking integer-valued quantities and numerical properties of
program variables. For a language like C, which allows pointers to be treated as integers,
even aliasing information could be tied to the computation of integer value domains. The
standard use case of numeric domains, however, is for answering queries about integer
overflows and array bounds checking. One of the most precise approaches in the com-
putation of numeric abstract domains is analysis based on the polyhedral domain [30].
Cheaper variants include the Octagons abstract domain [95], the Pentagons domain [87],
and difference-bound matrices (or Zones) [93].

For similar reasons, we can employ more sophisticated string analyses to upgrade our
reflection handling of Chapter 3, such as that of Christensen et al. [24], which we discussed
in the previous chapter.

6.1.3 Context Sensitivity

We have already discussed context sensitivity in the previous section, and the various
strategies in specifying what program elements will constitute the context.

For the analysis of LLVM bitcode—or any other format that has been lowered to a C-like
language for that purpose, where the OO features have been translated away to more
basic constructs—it is not evident when and how to use object sensitivity in a generic
and parameterized way. An obvious generalization would be to leverage the values of
every parameter (and not just the receiver object) for the purposes of building context at
method calls, as in the cartesian product algorithm [1]. Such an approach, however, would
certainly impede the scalability of the analysis. Generalizing past approaches on context-
sensitivity to work well both in the presence and absence of object-oriented features, e.g.,
by identifying what parameters could be used as objects, per method call, is a direction
worth investigating.
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ABBREVIATIONS - ACRONYMS

ABI Application Binary Interface

API Application Programming Interface

CFL Context-Free Language

DAG Directed Acyclic Graph

DLL Dynamic-link Library

GEP LLVM Bitcode’s getelementptr instruction

GUI Graphical User Interface

DSA Data Structure Analysis

IDE Integrated Development Environment

IR Intermediate Representation

JAR Java Archive

JDK Java Development Kit

JIT Just-in-time

JVM Java Virtual Machine

JVMTI JVM Tool Interface

OO Object-oriented

RISC Reduced Instruction Set Computing

SSA Static Single Assignment

SQL Structured Query Language

TVLA Three-Valued Logic Analysis Engine

WYSINWYX What You See Is Not What You Execute

XSLT Extensible Stylesheet Language Transformations
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APPENDIX A. APPENDIX TO CHAPTER 4

A.1 Multiple Inheritance Correctness Proof

We shall call the path-edges originating from known-nodes kp-edges. We will also use
the symbols 𝑆0, 𝑆1, … , 𝑆∞ to denote the various stratifications computed at each step
of Algorithm 4.1. Note that our algorithm will actually produce a finite number of strat-
ifications (at most |𝑉 |) but we can disregard both the upper limit of the main loop and
the early-failure condition (line 23) for proving correctness. Instead we focus on the main
computation (line 18) and the infinite sequence of stratifications that would be produced if
it was allowed to run forever (even after reaching a fixpoint).

Lemma 1. For all 𝑣 ∈ 𝑉 , the sequence {𝑆0[𝑣], 𝑆1[𝑣], …} is non-decreasing.

Proof. Direct consequence of line 18 of the algorithm.

Lemma 2. For all 𝑖 ∈ ℕ, 0 ≤ 𝑆𝑖[𝑣] ≤ 𝑖, ∀𝑣 ∈ 𝑉 .

Proof. Induction on step 𝑖.

1. Base: For 𝑖 = 0, we have that 𝑆𝑖[𝑣] = 𝑆0[𝑣] = 0, ∀𝑣 ∈ 𝑉 .

2. Inductive Step: Assume that 0 ≤ 𝑆𝑛[𝑣] ≤ 𝑛, ∀𝑣 ∈ 𝑉 for some value of 𝑛. We
must show that 0 ≤ 𝑆𝑛+1[𝑣] ≤ 𝑛 + 1, ∀𝑣 ∈ 𝑉 . Let 𝑘 be a node in 𝑉 . Either
𝑆𝑛+1[𝑘] = 𝑆𝑛[𝑘], and therefore 0 ≤ 𝑆𝑛+1[𝑘] ≤ 𝑛, or there will exist a node 𝑠,
s.t. 𝑆𝑛+1[𝑘] = 𝑆𝑛[𝑠] + 1, in which case 1 ≤ 𝑆𝑛+1[𝑘] ≤ 𝑛 + 1.

Definition A.1. A node 𝑣 ∈ 𝑉 is 𝑖-stabilized if and only if 𝑆𝑖[𝑣] = 𝑆𝑖+1[𝑣] and either
𝑖 = 0 or 𝑆𝑖−1[𝑣] < 𝑆𝑖[𝑣].
Theorem 1. (Once a node’s stratum does not change, it will not change again.) If 𝑆𝑖[𝑣] =
𝑆𝑖+1[𝑣] for some node 𝑣 ∈ 𝑉 and a value 𝑖 ∈ ℕ, then 𝑆𝑗[𝑣] = 𝑆𝑖[𝑣], ∀𝑗 ∈ ℕ such
that 𝑗 ≥ 𝑖.

Proof. Induction on step 𝑖.

1. Base: For 𝑖 = 0, let 𝑣 be a node in𝑉 , such that𝑆0[𝑣] = 𝑆1[𝑣]. From Lemma 2, we
have that 𝑆0[𝑣] = 𝑆1[𝑣] = 0, which can happen if and only if 𝑣 has no incoming
edges (otherwise an edge would cause the node to move to a higher stratum on
iteration 1). It is therefore impossible for 𝑣 to change in the following iterations since
it has no constraining edges.
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2. Inductive Step: Assume that the theorem holds for all 𝑖 < 𝑛 for some value of 𝑛 ∈
ℕ. Let 𝑡 ∈ 𝑉 be a node, such that 𝑆𝑛[𝑡] = 𝑆𝑛+1[𝑡]. We will show that 𝑡’s stratum
will not change in the future. It suffices to prove that, for each of 𝑡’s constraining
edges, there will be a node 𝑠 that has already been stabilized at a lower stratum than
𝑡, and can be used to satisfy the constraint at this point. Therefore, the constraint will
remain satisfied in future iterations due to 𝑠, which will remain in the same stratum
from now on (induction hypothesis). For ordinary path-edges, node 𝑠 is no other than
the source of the edge itself, while for kp-edges, it is the lower phantom projection
of the edge’s source at step 𝑛 that we may use instead. Let us consider ordinary
path-edges first, in more detail. From Lemma 2, we have that 0 ≤ 𝑆𝑛[𝑡] ≤ 𝑛, and
thus 0 ≤ 𝑆𝑛+1[𝑡] ≤ 𝑛. Let (𝑠, 𝑡) ∈ 𝐸 be an incoming edge of 𝑡. We have that
0 ≤ 𝑆𝑛[𝑠] < 𝑆𝑛+1[𝑡] ≤ 𝑛 which entails that 0 ≤ 𝑆𝑛[𝑠] ≤ 𝑛 − 1. Therefore,
according to Lemma 2, we have that 0 ≤ 𝑆𝑖[𝑠] ≤ 𝑛 − 1, ∀𝑖 ∈ {0, … , 𝑛}. By the
pigeonhole principle, and due to Lemma 1, there must surely exist two consecutive
values 𝑖, 𝑖 + 1, s.t. 𝑆𝑖[𝑠] = 𝑆𝑖+1[𝑠] and 𝑖 < 𝑛. From the induction hypothesis,
we know that 𝑠 will therefore not change and its constraint on 𝑡 will be irrelevant in
future iterations. We proceed similarly, for a kp-edge (𝑠, 𝑡) (where we use the lowest
phantom projection of 𝑠 at this point, instead of 𝑠 itself). Thus, 𝑡 will not change in
the future, since every constraint of 𝑡 will remain satisfied after this iteration.

Corollary 1. For all 𝑣 ∈ 𝑉 and 𝑛 ∈ ℕ+, 𝑆𝑛−1[𝑣] ≠ 𝑆𝑛[𝑣] ⇒ 𝑆𝑛[𝑣] = 𝑛.
Theorem 2. The stratification sequence 𝑆0, 𝑆1, … will diverge (i.e., not reach a fixpoint)
if and only if at some computation step, 𝑛, no new nodes stabilize and not all nodes have
already stabilized—that is, ∃𝑛 ∈ ℕ+, such that: for some 𝑣 ∈ 𝑉 , 𝑆𝑛+1[𝑣] ≠ 𝑆𝑛[𝑣] and
for all 𝑣 ∈ 𝑉 , 𝑆𝑛+1[𝑣] = 𝑆𝑛[𝑣] ⇒ 𝑆𝑛[𝑣] = 𝑆𝑛−1[𝑣].

Proof.

1. (If ) Let 𝑛 be a computation step, such that (∀𝑣 ∈ 𝑉 ) (𝑆𝑛−1[𝑣] ≠ 𝑆𝑛[𝑣] ⇒
𝑆𝑛[𝑣] ≠ 𝑆𝑛+1[𝑣]). We can disregard any node 𝑢 such that 𝑆𝑛−1[𝑢] = 𝑆𝑛[𝑢],
and observe that for each remaining node, there must exist at least a constraining
edge that cannot be satisfied with a node that has already been “stabilized”. That
said, due to Corollary 1, each remaining node 𝑣 ∈ 𝑉 , s.t. 𝑆𝑛−1[𝑣] ≠ 𝑆𝑛[𝑣], will be
placed at a higher (by 1) stratum at this point, i.e., 𝑆𝑖[𝑣] = 𝑖, ∀𝑖 ∈ {0, … , 𝑛 + 1}.
Since the relative positions of all the remaining nodes will be the same at step 𝑛+1
as they had been at step 𝑛, there is no way for a node to be stabilized at this last
iteration. In other words, there is a cyclic dependency between the remaining nodes
that will remain unaltered, thus eliminating the possibility of reaching a fixpoint.

2. (Only If ) Due to Theorem 1, we know that we need at most |𝑉 | computation steps,
in order to reach a fixpoint, if at each computation step there exists at least a new
node that gets stabilized. In other words, we need a finite number of steps to reach

G. Balatsouras 142



Recovering Structural Information for Better Static Analysis

a fixpoint, if each step results in some progress. Thus, failure to reach a fixpoint
requires an iteration where no progress has been made, i.e., no new nodes get
stabilized.

Therefore, the optimization in Algorithm 4.1 of detecting this exact condition (line 23) and
terminating would be triggered if and only if no fixpoint would be reached whatsoever, had
the algorithm continued its execution.

Soundness. We need to show that, if our algorithm computes a solution, this solution
will be sound. Firstly, our algorithm maintains the invariant that ∀(𝑠, 𝑡) ∈ 𝐸, node 𝑠
will eventually—i.e., once we reach a fixpoint—be placed somewhere lower than node 𝑡
(otherwise this condition would trigger yet another iteration). Therefore, our solution will
contain no cycles since all of its edges will be facing upwards, i.e., from a lower to a higher
stratum. Furthermore, it is evident that, for each kp-edge (𝑠, 𝑡), there will always exist a
node 𝑝 ∈ proj(𝑠), such that 𝑝 will be placed at a lower stratum than 𝑡 in our final solution.
Thus, we can add the edge (𝑝, 𝑡) without introducing any cycles if none existed so far.
This process will therefore generate a valid solution.

Completeness. We need to show that, if a solution exists for a given constraint graph,
then our algorithm will also be able to compute a solution, or equivalently (according to
Theorem 2) that the stratification sequence being computed will reach a fixpoint. Consider
such a (posited but unknown) solution. For such a solution wemay generate a stratification
(since the solution may contain no cycles), such that each of its edges is facing upwards
and no empty strata exist, that is, ∀(𝑠, 𝑡) ∈ 𝐸𝑠𝑜𝑙 ∶ 𝑆𝑠𝑜𝑙[𝑠] < 𝑆𝑠𝑜𝑙[𝑡], where 𝐸𝑠𝑜𝑙 are
the edges that form the solution, and 𝑆𝑠𝑜𝑙 is its stratification. We first show an important
lemma.

Lemma 3. Let 𝑆𝑠𝑜𝑙 denote the stratification of a valid solution of the problem instance.
We have that: ∀𝑖 ∈ ℕ, ∀𝑣 ∈ 𝑉 ∶ 𝑆𝑖[𝑣] ≤ 𝑆𝑠𝑜𝑙[𝑣].

Proof. Suppose that there is a step 𝑘 ∈ ℕ, such that it contains at least one node 𝑢 ∈ 𝑉
with 𝑆𝑘[𝑢] > 𝑆𝑠𝑜𝑙[𝑢], and without loss of generality, suppose that 𝑘 is the smallest
such integer, i.e., that before that point our stratification was upper bounded by that of the
unknown solution: ∀𝑗 ∈ {𝑛 ∈ ℕ | 0 ≤ 𝑛 < 𝑘}, ∀𝑣 ∈ 𝑉 ∶ 𝑆𝑗[𝑣] ≤ 𝑆𝑠𝑜𝑙[𝑣]. For 𝑢
to be placed at a higher stratum by our algorithm there must exist an edge (𝑠, 𝑢) ∈ 𝐸
such that either (i) (𝑠, 𝑢) was a constraining ordinary path-edge: 𝑆𝑘[𝑢] = 𝑆𝑘−1[𝑠] + 1,
or (ii) (𝑠, 𝑢) was a kp-edge and ∀𝑝 ∈ proj(𝑠) ∶ 𝑆𝑘[𝑢] = 𝑆𝑘−1[𝑝] + 1. In the first
case, we have that: 𝑆𝑠𝑜𝑙[𝑢] ≤ 𝑆𝑘−1[𝑠] ≤ 𝑆𝑠𝑜𝑙[𝑠], and since (𝑠, 𝑢) must also be
present in the solution, this violates the single-direction edge property. In the second case,
𝑆𝑠𝑜𝑙[𝑢] ≤ 𝑆𝑘−1[𝑝] ≤ 𝑆𝑠𝑜𝑙[𝑝], ∀𝑝 ∈ proj(𝑠), which leads to another contradiction,
since there must exist a node 𝑝 ∈ proj(𝑠), such that a path exists from 𝑝 to 𝑢 in the
solution, which can only happen if 𝑝 was placed at a strictly lower stratum than 𝑢. Thus,
since all possible cases lead to a contradiction, we have proved our initial proposition: our

143 G. Balatsouras



Recovering Structural Information for Better Static Analysis

algorithm always assigns to every node a stratum that is lower than, or equal to, that of
any true solution of the problem instance.

Let 𝑠𝑠𝑜𝑙 = ∑𝑣∈𝑉 𝑆𝑠𝑜𝑙[𝑣] and 𝑠𝑖 = ∑𝑣∈𝑉 𝑆𝑖[𝑣], ∀𝑖 ∈ ℕ. It follows that 𝑠𝑖 ≤
𝑠𝑠𝑜𝑙, ∀𝑖 ∈ ℕ, for any such possible solution. Additionally, because of Lemma 1 and
our two theorems, we know that each step but the last will strictly increase the sum of all
strata values over all nodes. E.g., if our algorithm ended its execution at step 𝑛, then we
would have: 𝑠0 < 𝑠1 < … < 𝑠𝑛−1 = 𝑠𝑛.

Suppose there is a solution but our algorithm fails to compute one (i.e., no fixpoint will
ever be reached). Since 𝑠𝑖 strictly increases at each step of our algorithm, and the only
way to return is by finding a valid solution, we know that there will exist a step 𝑛, such that
𝑠𝑛 > 𝑠𝑠𝑜𝑙. However, this contradicts our proven proposition that 𝑠𝑖 ≤ 𝑠𝑠𝑜𝑙, ∀𝑖 ∈ ℕ.
Therefore, we conclude that if valid a solution exists, our algorithm will also be able to
compute one.

Theorem 3 (Principality). Any solution produced by Algorithm 4.1 will have a minimum
number of strata. That is, for any possible solution of the problem instance, with 𝑡 denoting
the solution’s total strata, we have that 𝑛 ≤ 𝑡, where 𝑛 is the total number of strata
produced by Algorithm 4.1.

Proof. Let 𝑆𝑠𝑜𝑙 denote the stratification of a valid solution of the problem instance, and 𝑡
its total number of strata. Without loss of generality we assume that strata are denoted as
consecutive integers starting from 0, beginning from the lowest stratum. Thus, ∀𝑣 ∈ 𝑉 ∶
𝑆𝑠𝑜𝑙[𝑣] < 𝑡.
Since a solution exists and completeness has been proved, we know that Algorithm 4.1 will
also be able to terminate successfully at some step 𝑛 ∈ ℕ, yielding its own solution. Let
𝑛𝑠 be the total number of strata, and𝑥 ∈ 𝑉 be a node at the highest stratum of the solution
computed by our algorithm. That is, ∀𝑣 ∈ 𝑉 ∶ 𝑆𝑛[𝑣] ≤ 𝑆𝑛[𝑥]. Node 𝑥 will also be the
node that was changed last, which is at step 𝑛 − 1, i.e., 𝑆𝑛[𝑥] = 𝑆𝑛−1[𝑥] ≠ 𝑆𝑛−2[𝑥].
Therefore, from Corollary 1, we have: 𝑆𝑛[𝑥] = 𝑆𝑛−1[𝑥] = 𝑛 − 1. Since strata are
consecutive integers starting from 0, we have that: 𝑛𝑠 = 𝑆𝑛[𝑥] + 1 = 𝑛.
According to Lemma 3, we have: 𝑛 = 𝑛𝑠 = 𝑆𝑛[𝑥] + 1 ≤ 𝑆𝑠𝑜𝑙[𝑥] + 1 ≤ 𝑡 <
𝑡 + 1. Thus, we have shown that our algorithm minimizes the total number of strata it
produces.
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