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ABSTRACT

Graph theory has many applications in modern world. Our study on it crossed paths
with an intresting problem called Prefetching. Prefetching constitutes a valuable tool
toward the goal of effiecient Web Surfing. An important issue in prefetching is the
tradeoff between the amount of network’s resources wasted by the prefetching and the
gain of time. For instance, in the Web, browsers may download documents in advance
while a Web surfer is surfing on the Web. Since the Web surfer follows the hyperlinks in
an unpredictable way, the choice of the Web pages to be prefetched must be computed
online. The question is then to determine the minimum amount of resources used by
prefetching that ensures that all documents accessed by the Web surfer have
previously been loaded in the cache. In this regard, prefetching can be modeled as a
two-player combinatorial game.

Motivated by the above Sigalas et al. considered the following maximization problem to
which they refer to as the Maximum Rooted Connected Expansion (MRCE) problem
which is NP-hard. Given a graph G and arootnode u, , we wish to find a subset of
vertices S suchthat S isconnected, S contains u, andtheratio N[S]/|S|
is maximized, where N[S] denotes the closed neighbourhood of S , that is
N[S] contains all nodesin S and all nodes with at least one neighbourin S

We further discuss their approach on the way of solving this problem through an
approximation algorithm. We studied other significant problems on graph theory like
Connected Dominating Set, Maximum Leaf Spanning Tree and their special case
problems so as to understand the structure and connection between all those and
MRCE. As result of that study we mapped those problems according to their connection
and interaction between them. Our contribution is a greedy algorithm for the MRCE
which we believe through our experimental analysis could eventually lead to a small
approximation, result.

SUBJECT AREA: Algorithms, Graph Theory, Combinatorial Optimization

KEYWORDS: prefetching, connected dominating set, expansion, ratio, maximum leaf



NMEPIAHWYH

H Bewpia ypa@nudtwy £xel TIOAEC EQAPUOYEC OTOV GUYXPOVO KOOUO. H PEAETN pog o€
OUTAV OULVETIECE HE €va €VOIA@EPOV TIPOPANPO TIOL OvopAleTal TIpoavAkinon. H
TIPOOAVAKANGN OTIOTEAEI €va TIOAUTIMO €PYOAEI0 yia TO OTOXO TNG OTIOTEAECHOTIKIC
TIAoynong oto d1oduKTIo. ‘Eva onuavtikd Jtnua otnv TtpoavAkAnon €ival n avtaAiayn
METAED TOL TI000U TWV TIOPWV TOL SIKTVOU TIOL XAVOVTAl OTIO TNV TIPOAVAKANGCH Kal TO
KEPOOC TOL XPOVOU. MNa TapAdElyUa, OTOV 10TO, T TIPOYPAUMATA TIEPIYNONC EVOEXETAI
va KATePAOLVY €K TWV TIPOTEPWV EYyPAPA, VW €vAC OIAdIKTLUAKOC XPNOTNG TTAONyEital
0TO 31adiKTLO. AgdOUEVOL OTI 0 JIOBIKTUOKOC XPHOoTNG OKOAOLBOEI TOUC LTTIEPCLVOECHOUC
HE Evav aTIPOPAETITO TPOTIO, N ETIIAOYN TWV ICTOCEAIDWV TIOV TIPETIEI VA TIPOAVOKANBOULV
TIPETIEL VO LTIOAOYIOTEI NAEKTPOVIKA. TO EPWTNUA €ival TOTE VA TIPOCBIOPIOTEL TO EAAXIOTO
TI00O TWV TIOPWV TIOU XPNOCIKOTIoIoLVTal OTIO TNV TIPOOVAKANGH, TIoU €EAC@OAIlEl OTI
OAO TO €yypa@a TIou €XEl TIPOCBOCN O SIAdIKTLAKOC XPHOTNG, €XOUV TIPONYOUPEVWC
@OPTWOEl otV KpuE pvAun. ATG TNV Aarmoyn outhi, N TIPOAVAKANGN MTIOPED va
OIOUOPPWOEL W CLVALACTIKO TIOIX VIOl SVO TIAIKTWV.

Me yvopova 1o Toportdvw ol AQUTIPOL Kal CUVEPYATEC Bewpnoav 10 aKOAoOLOO
TIPOPANPO PEYIOTOTIOINONG OTO OTIoI0 avagEpovTal w¢ TIPORAnUa Maximum Rooted
Connected Expansion (TIpOPANpa ¢ PEYIOTNC PIJKNAC CLVEKTIKNG eTEKTaonC), MRCE
TIov €ival NP-Hard. Me Bdon éva ypagnua G Kol evav Koo pidag v, BEAoupe va
Bpoupe €va LTTOOVVOAO KOPUPWVY S TIOU VO EIVOI OUVOEDEUEVO, VO TIEPIEXEI TO  V,
Kal va peylotoTtoleital o Adyo¢  N[S)/|S|, émouv 10 N[S] ONnA®VEl TNV KAEIOTH YEITOVIA
TOU S, OnAodK TIEPIEXEI OAOLC TOUC KOUPBOLC TOU S KOl OAOLC TOUC KOUPBOoULC Tou
EKTOCTOL S pE TOLAGXIOTOV €vav YeiTova EVTOC TOU  S.

AVOAVOUPE TIEPAITEPW TNV TIPOCEYYICH TOUC OXETIKA PE TOV TPOTIO ETTIAUCNC OLTOD TOL
TIPOPANMOTOC PECW €EVOC TIPOOEYYIOTIKOD OAYyOpIOuov. MeAeTiooue GAAD GNUAVTIKA
TIPOBAAUOTO OTN Bewpia TV ypa@ENUATWY Kol T €I0IKA TIPORANUATA TOUC Yl va
KOTOVONOOULWE TN O0UN Kal TN oXEan METOEL OAWV auTwv Kal Tov MRCE. Q¢ armotéAeoua
QUTHNC TNE MEAETNC XOPTOYPAPCANE QUTA Ta TIPORBAAUATO CUPPWVO PE TN OUVOEDT] TOUG
Kol TNV aAAnAemtidpacn peta&d Ttoug. H ouvelopopd pag eival €vag AmAnoTtog
oAyopiBuog yio o MRCE Tou mioteouvpe péow TG TIEIPAUATIKAG HOg avaAuong Ba
MTTIOPOUCE EVOEXOUEVWC VO 0ONYIOEl O€ £VO KAAO TIPOCEYYIOTIKO OTIOTEAECUA.

OEMATIKH MNEPIOXH: AA\yopiBuol, Oswpia Ipagnudtwy, ZuvduaaoTiKr) BeATioToToinon

AEZEIZ KAEIAIA: MpoavAdkAnan, Peylotn pIJK OUVEKTIKA ETTEKTOCN, OEVIPO HEYIOTOU
BaBuov AWV
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The Maximum Rooted Connected Expansion

1. INTRODUCTION

1.1 Introduction

Graph Theory is a very important discipline which lies between Computer Science and
Mathematics, and involves the study of graphs, which are mathematical structures used
to model pairwise relations between objects. One of the most important uses of Graph
Theory is the capability to model and give a unified formalism for many very different
looking problems coming from everyday life and a wide variety of sciences. Graph
Theory has many applications, the one with most importance for us is networking.
Networking has real life applications using Graphs i.e. connecting with friends on social
media, using GPS/Google maps, surfing through the internet. In our thesis we studied

the last case in its optimized version called Prefetching [1].

Prefetching is a basic technique in computer science. It exploits the parallelism between
the execution of one task and the transfer of information necessary to the next task, in
order to reduce waiting times. The classical instance of the problem occurs in CPU,
where instructions and data are prefetched from the memory while previous instructions
are executed. The modern instance occurs in the Web, where browsers may download
documents connected to the currently viewed document (Web page, video,etc.) while it
is being read or viewed. Accessing the next document appears to be instantaneous to
the user, and gives the impression of a large navigation speed. For this reason, link
prefetching has been proposed as a draft Internet standard by Mozilla. However,
prefetching all documents that can be accessed in the current state may exceed
networking capacities, or at least, result in a waste of bandwidth since most of the
alternatives will not be used. Hence, it is necessary to balance the gain of time against
the waste of networking resources. Local storage memory is also a potential issue, and
prefetching is classically associated with the question of cache management. However,
memory in modern computers is not scarce anymore, which makes network resources
the critical ones. The models developed so far in the literature to study prefetching
problems are based on the execution digraph where the nodes represent the tasks
(e.g., Web pages) and arcs model the fact that a task can be executed once another
has been done (e.g., arcs represent hyperlinks that can be followed from a Web page).
The execution of the program or the surfing of the Web then corresponds to a path in
the execution digraph. The quantitative optimization of prefetching will then be based on

some cost function defined on paths, reflecting for instance the inconvenience of waiting

N. Theodorou 12



The Maximum Rooted Connected Expansion

for some information while executing the tasks or surfing the Web, and possibly taking
into account the consumption of network or memory resources. The related
dimensioning problem consists in determining how much network bandwidth should be

available so that the prefetching performance stays within some predetermined range.

In chapter 2 we present our study and thoughts on important problems in Graph Theory
as well as giving an idea on how we can utilize the combinatorial optimization property
of some problems. In Chapter 3 we formally present the Maximum Rooted Connected
Expansion problem. We first present Lamprou et al. approach [2], solution and results.
We then explain our thought process and demonstrate our algorithm and results. Finally

we conclude with some ideas and future work directions.

1.2 Preliminaries

In the following two subsections we define and explain some basic notions that are
used in this thesis concerning Graph Theory as well as the Surveillance Game. It is
aimed for helping readers who are not familiar with these notions to have a better
understanding of the text and how the Maximum Rooted Connected Expansion Problem
occurred. In every section we will introduce the preliminaries necessary for each

problem.

1.2.1 Graph Theory

An (undirected) graph G is a defined as a pair of two sets: the set of vertices V
and the set of edges E , denoted G=(V,E). An edge is an unordered pair of two
vertices. Therefore, the set of edges is a subset of the of all possible unordered pairs of
vertices {(u,v):u,veV} and we write e=(u,v) when edge e connects vertices u
and v of V. Unless otherwise stated, all graphs are simple, which means that they

contain neither loops nor parallel edges.
A path in a graph G is a sequence of vertices u,u,...,u, where

ui;éuj‘v’i,je[o,k] . On the contrary If u,=u, then the sequence of vertices is called

acycle.

A graph G is a spanning tree T, if between any two vertices u;,u;eV there

exists exactly one path. In other words, tree-graph is any connected graph, without

cycles.

The degree of a vertex G of a graph, denoted d(u) , is the number of edges incident

to the vertex.

N. Theodorou 13



The Maximum Rooted Connected Expansion

A graph G is connected if each pair of vertices u;,u;,€V s joined by a path. On the

contrary if there exist vertices which cannot be joined by a path the graph is disjoint.

1.2.2 Surveillance Game

The surveillance problem deals with the following two players game in an n-node graph

G=(V,E) with a given starting vertex v,€V. There are two players, fugitive and
observer. The fugitive wants to escape the control of an observer whose purpose is to
keep the fugitive under constant surveillance. Let k>1 be a fixed integer. The game
starts when the fugitive stands at v, which is initially marked. Then, turn by turn, the
observer controls, or marks, at most k vertices and then the fugitive either moves
along an edge to a (out-)neighbor of her current position, or skip her move. In other
words, at every step of the game the observer enlarges observable part of the graph by
adding to it k , not necessarily adjacent, vertices. His task is to ensure that the
fugitive is always in the observable area. Note that, once a vertex has been marked, it
remains marked until the end of the game. The fugitive wins if, at some step, she
reaches an unmarked vertex and the observer wins otherwise. That is, the game ends
when either the fugitive enters an unmarked vertex (and then she wins) or all vertices
have been marked (and then observer wins). More formally, a k-strategy (for the
observer) is a function ¢ that assigns a subset ScV,|S|<k , to any configuration

(M,f) of the game where McV s the set of the vertices that have already
marked before this step of the game, f&€M is the current position of the fugitive, and

S=ao(M,f) isthe set of vertices to be marked at this step. Clearly, we can restrict our
investigation to the case where ¢(M,f)cV\M and |o(M,f)|=k or

o(M,f)=V\M. That is, at each step, the observer has interest to mark as many
unmarked vertices as possible. In particular, a game consists of at most n/k steps. A k-
strategy is winning if it allows the observer to win whatever be the walk followed by the
fugitive. Note that any winning strategy must ensure that N(f)\Mco(M,f) for any

McV ., feM. The surveillance number of G , denoted by sn(G,v,) , is the

least k such that there is a winning k-strategy in G  starting from v,.

Let N[S] stand for the closed neighborhood of S ,i.e., N[S] includes all nodes in

S and all nodes with at least one neighborin S . Fomin et al. prove in [1] (Theorem

IN[S]]-1
S|

N. Theodorou 14
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The Maximum Rooted Connected Expansion

the maximum is taken over all subsets S that induce a connected subgraph of G

containing v,. Moreover, equality holds in case G is a tree. That is, a ratio of the

IN[S]|

form
|S|

(minus one removed for clarity) provides a good lower bound and

possibly in many occasions a good prediction on the prefetching load necessary to

satisfy an impatient Web surfer. Hence, in this paper, we believe it is worth to

IN[S]|

S| where the maximum is

independently study the problem of determining max

taken over all subsets S inducing a connected subgraph of G containing v,.
We refer to this problem as the Maximum Rooted Connected Expansion problem since

we seek to find a connected set S (containing the root v, ) maximizing its

expansion ratio in the form of —“\g‘rﬂ

N. Theodorou 15
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2. STUDY ON GRAPH THEORY

We now proceed to formally define the problems we consider in this paper.

2.1 Connected Dominating Set

We will now formally adress the Connected Dominating Set problem and present some

algorithms for its approximate solution.

2.1.1 Problem Statement

A connected dominating set (CDS) in a graph is a subset of vertices that induces a
connected subgraph, and is also a dominating set at the same time. A dominating set is
a subset of vertices such that every node in the graph, is either in the dominating set, or
adjacent to a node in the dominating set. Finding a minimum connected dominating set

is NP-hard as described by Guha and Khuller [3] .We state the problem as follows :
Problem Statement 2 ( Connected Dominating Set, CDS)
Input : Agraph G=(V,E).

Output : A dominating set S where all vertices of G are either in S or

dominated (connected) from one vertex in S.

2.1.2 Algorithms

We will shortly present some algorithms for the problem as described by Khuller and

Yang in [4]. We will later discuss their importance.
Global Algorithm for CDS

The global algorithm runs in two phases. Initially, all nodes are colored white. In the first
phase, the algorithm iteratively adds a node to the solution, colors it black and all its
adjacent white nodes gray. A piece is defined as a white node or a black connected
component. A new node is chosen to be colored black to get maximum reduction in the
number of pieces. This phase ends when no such node exists that can give non-zero
reductions. At this time, there are no white nodes left. Intuitively speaking, black nodes
are selected nodes, gray nodes are nodes that are dominated, i.e. adjacent to black
nodes. In the second phase, we start with a dominating set that consists of several
black components that we need to connect. The connection is done by recursively
connecting pairs of black components with a chain of vertices, until there is only one

black component, which will be our final solution.

N. Theodorou 16
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Preliminaries for 1-hop Local Information Algorithms

Instead of using information of the entire graph, it only relies on information within 1-hop
to the nodes chosen in the solution. The formal definition of local information is as

follows.

In undirected graph, we denote the distance between u and v in a graph as
d(u,v). Itis the length of shortest path from u to v. d(u,S) is defined to be
min,csd(u,v).

We now define the local neighborhood of some node, or a set of nodes. Given a set of

nodes S ingraph G ,the r—hop neighborhood around S is the induced

subgraph of G containing all nodes v such that d(v,S)<r. We denote the
r—hop neighborhood as N'(S). When there is no confusion, we use the same
notation to denote the set N'(S) = { v | d(v,S)<sr }. We also denote the
dominated set of a node v as the degree of node v. We can find out that N'(S) is

the degree of S. We can seethat N'(S) isthe dominated setof N''(S).

An algorithm with local information uses information only within the local neighborhood
of the nodes it has chosen. To be specific if the set of nodes that an algorithm has
chosenis S and we have r-hop local information, then we know the induced graph of

N'(S). From an arbitrary starting node, nodes are added iteratively. For each loop in
this algorithm, one chooses a node, or a nhode and one of its neighbors. This means we
need knowledge of 1-hop neighborhood to maximize the number of newly covered

nodes, which explains why it uses 1-hop of local information.
1-hop Local Information Algorithm for CDS

This algorithm chooses only one gray node to maximize the number of newly covered
nodes, and in addition selects one of the newly covered nodes uniformly at random. The

maximization process only requires 1-hop neighborhood information. Algorithm 1.
Improved 1-Hop Local Information Algorithm

Instead of using the largest degree in the graph, every time when calculating propability

p , we use the largest degree in the explored graph. In another world, the largest

degreein N'(S). Algorithm 2

N. Theodorou 17
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Algorithm 1: Randomized CDS with 1-hop Local Information

Input: Graph G=(V,E).

Output: A connected dominating set S.

1. s < an arbitrary node

2: S s}

3. while S s nota dominating set do

4: v anodein N'(S) thatmaximizes the number of newly dominated nodes;

5 u — auniformly randomly chosen node from N'(v)-N'(S) , i.e. the newly
dominated nodes

6: S <Su{(u,v)

Algorithm 2: Improved Algorithm for CDS with 1-hop Local Information

Input: Graph G=(V,E).

Output: A connected dominating set  S.
1: s < an arbitrary node

2: S s}

3: while S is not adominating set do
4

d < the largest degreein N'(S)

1
5! p - Wd)
6: v— anodein N'(S) thatmaximizes the number of newly covered nodes;
7 S « Su{u}
8.  if with probability p then
9: u <~ anode from the newly covered nodes uniformly at random

10: S « SU{uj

2.1.3 Results and Discussion

For the first algorithm , Global Algorithm for CDS the approximation ratio for this
algorithmis H(A)+2 ,where H(n) is harmonic function. The refined version of this
greedy algorithms pseudo-coloring is called labeling. Labeling is used widely on greedy
approximation algorithms and also on the MRCE greedy algorithm. On the second
algorithm 1-hop Local Information Algoritm we get an approximation ratio of

2(H(A)+1) . This algorithm, as we will discuss seems very familiar with the 1-LOT
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algorithm used in Maximum Leaf Spanning Tree problem. We now understand the close
connection between those two problems and that sometimes we can approach both of
them with the same techniques. Last is the improved 1-hop algorithm which gives a

H(A)+2VH(A)+1 approximation. One thing we can take from their contribution is
that if we find ways of slightly adjusting our algorithms by making small corrections, then

the difference in approximation ratios can be significant.

2.2 Maximum Leaf Spanning Tree

We will now formally adress the Maximum Leaf Spanning Tree problem and present two

algorithms for its approximate solution.

2.2.1 Problem Statement

Given a simple, undirected graph G=(V,E) , suppose we wish to find a spanning tree
of G with the maximum number of leaves. The maximum-leaf spanning tree problem
is proven to be NP-complete [5]. This suggests that no polynomial time algorithm is
likely. So we seek fast approximation algorithms that provide a good worst case
performance ratio on the quality of the solution. In our thesis, we address two
approximation algorithms for this problem in order to understand their importance. The
first algorithm uses the simple technique of local optimization: perform a series of local-
improvement steps until a local optimum is reached. The other one uses a greedy
approach that is based on the domination degree of nodes in G, combined with some
required properties that induced sub-trees created from those nodes must meet. We

state the problem as follows :

Problem Statement 2 ( Maximum Leaf Spanning Tree, MLST)
Input : An arbitrary spanning tree T,=(V,E,) fromagraph G=(V,E).
Output : A maximum leaf spanning tree  Tpr=(V, Egpr).

We will study the first algorithm by the name of 1-LOT and the second a greedy
algorithm the Leafy Forest. Both of these algorithms have been applied to provide
heuristic solution for a variety of hard problems in combinatorial optimization. Thus on
later chapters we will make a small discussion on combining them with other algorithms

for better results.

2.2.2 Local Optimum Tree

Following a small presentation of the first algorithm the thought process and its results.
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Problem Statement / Idea

The idea of this algorithm as descibed by Lu and Ravi in [6] is performing local changes
that increase the number of leaves in the resulting spanning tree. For the problem at
hand, there is a natural notion of such local change ,namely, a swap. Thus swapping a
tree edge for a non-tree edge. This notion can also be extended to include swapping
many tree edges for an equal number of non-tree edges in a single local-change
operation.The algorithm performs such local changes that increase the number of
leaves until no improvement in the solution is possible and output a locally optimal
solution as the approximate solution. By varying the limit on the number of tree edges
that can participate in a single local-change operation, we derive a series of
approximation algorithms. Increasing this limit corresponds to allowing for more
powerful local-improvement steps. We will address the 1-change algorithm and its

results.
Preliminaries

We use the term degree of a node to refer to its degree in the tree under consideration.
So leaves are just nodes of degree one. A node is internal if it is not a leaf. We call a
node of degree greater than two a high degree node. A leaf is special if it is adjacent to
a high degree node. All other leaves are termed normal. Thus normal leaves are exactly
the leaves that are adjacent to nodes of degree two in the tree. A tree path containing
only nodes of degree two is called a 2-path. Its length is the number of nodes in it. A 2-
path is short if its length is one; otherwise it is long. We shall refer to an edge

e=(u,v) asanedge between u and v.

For a spanningtree T ,weuse L(T) todenotethe number of leavesin T. We

omitthe T where it is understood. We use n. to denote the number of nodes of

1

degree i. Suppose the input graph G has n nodes. We define N, , the
number of nodes with degree at least i. Thus for instance, N, is the number of
high degree nodes. The number of Ilong and short 2-paths are represented by

P, and P, respectively. Let s and n be the number of special and normal

leaves respectively.
Algorithm

Our algorithm starts with an arbitrary spanning tree T of the given graph G. Let
e=(u,v) beanedgein G—T and f be an edge inthe unique tree path of T

connecting u and v. We call making e a tree edge and f a non-tree edge an (edge)
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change (e;f) with respectto T. The spanning tree obtained by applying change

(e;f) on T isdenoted by T(e;f). If T(e;f) has more leaves than T ,then
we call the change (e;f) an improvement. In this case we call that a 1-improvement
due to the fact that we are swapping one edge a time (1-change). The algorithm
terminates when spanning tree T does not admit a 1-improvement. Despite that the
same tree could admit a 2-improvement but we wont address this case of k -

changes in this thesis.
In Figure (1) we see an example of local improvement. In a graph G (a), we take an
arbitrary spanning tree T (b). The swapping, change of e(v,,v,) with e(v,,v,)

iIs a 1-improvementon T resultingin T, (c)with one more leaf as shown in (b).

Figure (1): Example of local improvement
Properties
By definition, a 1-LOT has the following properties :

Pl1inal-LOT T , any cycle formed by adding a non-tree edge between a leaf and
an internal node does not contain two adjacent nodes of degree two.

P2Inal-LOT T , any cycle formed by adding a non-tree edge between two internal

nodes does not contain a node of degree two.
P1 and P2 together are necessary and sufficient conditions for 1-optimality.

We prove the contrapositive and show that if a spanning tree is not a 1-LOT then it
violates either P1 or P2. If a spanning tree is not a 1-LOT then there exists a 1-
improvement for this spanning tree. It is easy to see that any non-tree edge incident on

two leaves cannot be involved in any 1-improvement. So any non-tree edge involved in
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a l-improvement must be an edge between an internal node and a leaf or an edge
between two internal nodes. In the first case, the tree violates property P1 and in the

second case, it violates P2.

In Figure(2) we illustrate the properties P1 and P2 for 1-LOTs. In the figure below, dark
edges represent tree edges and the yellow edge is a non-tree edge violating the

property P1 or P2. In both cases, a 1-improvement by swapping e(v,,v,) with

e(vy,vs) can be identified in P1and e(vs,vs) with e(v,,vy) inP2.

(P1) (P2)
Figure (2): Properties of 1-LOT
Results

The main results of their analysis is that local-improvement algorithms that use 1-
changes and 2-changes have performance ratios of 5 and 3 respectively. Althougth we
didnt address the 2-changes algorithm neither the k -changes which its time
complexity is intolerably high even if k is small, we understand that 3-approximation
of 2-changes is a great result. Thus meaning that the 5-approximation of 1-change
algorithm is very strong considering the simplicity of the algorithm and it might prove

usefull later on for the enhancement of other approximation results.

2.2.3 Maximum Leafy Forest

Following a small presentation of the second greedy algorithm the thought process and

its results.
Problem Statement / Idea

The idea of this algorithm is finding leafy (many leaves) subtrees existing in a graph

G=(V,E) that combined make leafy forests as described by Lu and Ravi in [7]. The
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last part is finding the maximum leafy forest. As a greedy algorithm depends on nodes
of high degree. This algorithm wants to find the best iteration of a tree (maximal leaf

tree) by joining these leafy subtrees into one and get the best approximation possible.
Preliminaries

Let G be a connected undirected graph. We use V(G) to denote the set of nodes
in G. Werefertoanedge uw of G astheedgeincidentto u and w. For
a subset of nodes S subsetof V ,let I'(S) denote the set of edges with exactly
one endpoint in S. We sometimes overload notation and use TI'(H) to denote
r(v(H)) forasubgraph H of G. Thedegreeof v in G isthe number of
edges of G incidentto v. Let V,(G) denote the set of nodes that have degree i
in G. Let V,(G) denote the set of nodes that have degree at least i in G.
Clearly V,(G)=V(G). The leaves of G are the nodes in  V,(G). A subtree of G

Is nonsingleton if it has more than one node.
Let T be asubtreeof G.
Wesay T isleafyif V,(T) isnotempty, and every nodein V,(T) is adjacent

in T to exactly two nodes in V,(T). Aforest F of G isleafyif F s

composed of disjoint leafy subtrees of G. We say F is maximally leafy if F is

not a subgraph of any other leafy forest of G.
Algorithm

We give an approximation algorithm for Maximum Leaf Spanning Tree in this section.
Given a graph G , our algorithm computes a spanning tree T for G by the

following two steps. For obtaining a maximally leafy forest we have Algorithm 3.
1. Obtain a maximally leafy forest F for G.

2.Add edgesto F tomakeitaspanningtree T for G.

Algorithm 3 MaximallyLeafyForest

Input : Agraph G=(V,E).

Output: F asa maximally leafy forestof G.
l:let F=4

2:for VYveG do
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3 S(v)«v

4 d(v) <0

5 for VveG do

6: S'< Q&

7 d' <0

8 for Yu adjacentto veG do
9 If ugS(v) and S(u)gS' then
10: d'<d'+1

11: Insert S(u) into S’

12: If d(v)+d'=3 then

13: for VS(u)es' do

14: Addedge uv to F

15: Union S(v) and S(u)

16: Update d(u)«d(u)+1 and d(v)«<d(v)+1
Properties

Let F be a maximally leafy forest of G. Let T,..T, be the disjoint leafy

subtrees of F. One can verify that F has the following properties. We use the

example in Figure (3) to illustrate each property. The dark lines in the figure are the

edges in the maximally leafy forest F , which is composed of three leafy subtrees
T, , T, ,and T,.

Pl.Let w beanodein V,(T;). Then w cannotbe adjacentin G to any node
notin T,. (Nodes v, and v, aretwoexamplesof w e.g., suppose v, were

adjacent to a node such as v, , then F would not be maximal since the

e(v,,v,) could be addedto F. )

P2.Let w beanodein T, .Let w, and w, Dbe two distinct nodes adjacent to
w in G. If w, isnotin F ,then w, mustbein T, (Nodes v. Iis an

example of w If v, had two neighbors notin F , both these edges could be

added to F contradicting its maximality.)

P3.Let w beanodenotin F. If w isadjacent to two distinct nodes notin F

then the degree of w in G istwo. (Nodes v, and v, are two examples of

w Note that such nodes are notin F. If the degree of say v, were greater than
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two, then v, and its three neighbors not in F could be added as an additional star

in F contradicting its maximality again.)

T

© 0 06 00060000

Figure (3): Properties of Maximally Leafy Forest

Results

Despite being greedy, the proof that by joining those leafy subtrees with their certain
properties gives very good results as shown in Figure (4). The spanning tree T in
dark lines is leafy, since every node in V,(T) is adjacentin T to exactly two nodes
in  V,(T). Letthe gray lines be the edges of G that are notin T. The maximum-leaf
spanning tree of G is composed of all the edges incident to v, in G.

Generalizing the example in a natural way yields examples in which the performance
ratio of the algorithm asymptotically tends to 3. As suggested by the example shown in
Figure (4), the approximation ratio of the algorithm might be improved by growing the
maximally leafy forest by the descending order of the degree of nodes in G. We later

use this suggestion in our algorithm for the MRCE problem with great results.

Figure (4): A Maximally Leafy Forest
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2.3 Special Cases and Results

In this section we will explore some special cases of Connected Dominating Set and

Maximum Leaf Spanning Tree.

2.3.1 Quota Steiner Tree

In this section we will shortly introduce the Quota Steiner Tree (QST) problem as a
preliminary for the rest of the chapter, as it is used as a subroutine in most of the
problems addressed later. Given a graph G=(V,E) , and a profit function p

V - ZuU{0] on the vertices, a cost function ¢ : E - ZuU{0] onthe edges and an

integer g (quota).
The Quota Steiner Tree problem:

Find a subtree T that minimizes Y, c(E) ,subjectto Y, p(v)=Q

ecE(T) vev(T)

Johnson et al. [8] studied the QST problem and showed that an a-approximation
algorithm for the k-MST problem can be adapted to obtain an a-approximation algorithm
for the Quota Steiner Tree problem. Using this result along with the 2-approximation for
k-MST by Garg [9] results in a 2-approximation algorithm and we will consider it as a
default algorithm denoted QST.

2.3.2 Budgeted and Partial Connected Dominating Sets

We now introduce two special cases of connected dominating set problem , their
algorithms and results as presented by Khuller et al. in [10].

Budgeted Connected Dominating Set

In the budgeted connected dominating set problem (BCDS), given an undirected graph
G=(V,E), and an integer (budget) k, find a subset SCV of at most k
vertices such that the graph induced by S is connected, and the number of vertices

dominated by S is maximized. Algorithm 4 .
Partial Connected Dominating Set

In the partial connected dominating set problem (PCDS), given an undirected graph
G=(V,E) and an integer quota n’', find a minimum size subset SCV of
vertices such the graph induced by S is connected, and S dominates at least

n' vertices. Algorithm 5 .

Algorithms
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In broad lines, the algorithmic idea behind those two algorithms is to compute a greedy
dominating set and its corresponding profit function and then obtain a connected
subgraph via an approximation algorithm for the Quota Steiner Tree problem with

different elements as an input. We formally present the algorithms of the previous

problems and the algorithm for finding a greedy dominating set (GDS) Algorithm 4.

Algorithm 4 Greedy Dominating Set

Input: Graph G=(V,E).
Output: Dominating Set D and profit function p : V - Zu{0].

1. D-#&

2. U<V

3: forall vev do

4: p(v) <0

5: end for

6: while U=0 do

7: v < argmax,cy\p|Ny(v))| - Ny(v) isthe set of neighbors of v
including itself, in the set U

8: C, < Ny(v)

9: p(v) <IC\|

10: U < U\Ny(v)

11: D~ DU{v|

Algorithm 5 Greedy Profit Labeling Algorithm for PCDS

Input: Graph G=(V,E) and n'€ZuU{0}.

Output: Tree T withatleast n' Coverage.

1: Compute the greedy dominating set D and the corresponding profit function
p:V = IN using the Algorithm 4

2: Use the 2-approximation for QST problem [9] on the instance (G,p) to obtain

a tree T with profitatleast n'

N. Theodorou
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Algorithm 6 Greedy Profit Labeling Algorithm for BCDS

Input: Graph G=(V,E) and k€.

Output: Tree T with cost at most k.

1: Compute the greedy dominating set D and the corresponding profit function
p:V - N using the Algorithm 4

2. Opt < number of vertices dominated by an optimal solution - Guess using
binary search between k and n

3: Use the 2-approximation for QST problem [9] to obtain a tree T with profit at least
1
(1- E)Opt

4: Use the dynamic program to find T the best subtree of T having at most k
vertices

Results and discussion

As we can see these algorithms give for the Partial Connected Dominating Set problem

a 4InA+2+o(1) - approximation and for Budgeted Connected Dominating Set a

1

E(l—%) - approximation. We can see that those problems are modified to be

reduced in a Quota Steiner Tree problem and be solved that way ,which as we will
discuss later is a very well know approach in those special cases of connected
dominating sets. This reduction into QST will always give good approximation ratios but
our question is how much of an approximation trade off is there due to the transposition
of those problems. The question we ask ourselves is, if we can find improved greedy or
local algorithms for those problems with better approximation.

2.3.3 K-Minumum Spanning Tree and Prize Collecting Steiner Tree

We now introduce two special cases problems of minimum spanning trees, their
connection and results. We will also present the outline of k-MST algorithm. Both of this
algorithms will be addressed for their rooted versions.

Prize Collecting Steiner Tree (Goemans-Williamson Minimization Problem)

Given a graph G=(V,E) , a non-negative edge cost c(e) for each edge ecE
a non-negative vertex prize p(v) for each vertex veV , and a specified root
vertex v,€V. We will now consider the optimization problem based on this scenario

called the Goemans-Williamson Minimization problem :
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Find a subtree T'=(V',E') of G that minimizes the cost of the edges in the tree
plus the prizes of the vertices not in the tree, i.e., that minimizes :

GW(T')= 2, cle)+ 2 p(v)

e€E’ VEV'

In [11], Goemans and Wiliamson present an  O(n’logn) time primal-dual

approximation algorithm for the rooted version of GW-Minimization that is guaranteed to

be within a factor of Z—L of optimal, where n=|V/|.

(n—1)
K-Minumum Spanning Tree

Given an undirected graph G=(V,E) with nonnegative edge costs and an integer
k , the k-MST problem is that of finding a tree of minimum cost that spans k
vertices of G. We refer to a tree that spans k vertices as a k-tree. Note that we
may assume that the edge costs satisfy the triangle inequality without loss of generality.
The k-MST problem was shown to be NP-hard by Ravi et al. in [12]. The rooted version
of the k-MST problem requires inclusion of a specific root node in the k-tree. As
observed in [13], solving the rooted and unrooted versions are essentially equivalent. As
we discussed previously Garg gave a 2-approximation algorithm for the (rooted) k-MST
problem based on the Goemans-Willamson Prize-Collecting Steiner Tree
approximation algorithm. Johnson et al. showed in [8] that any polynomial time a-
approximation algorithm for (rooted) k-MST, which applies GW, yields a polynomial time
a-approximation algorithm for (rooted) QST. Derived from their work we know that there
is a 2-approximation algorithm for Rooted Quota Steiner Tree (RQST) and we will name
it 2-RQST . We present the outline of an algorithm to the rooted version of the problem

for simplicity.

Algorithm

We used the definitions of the GW-minimization problem and Prize Collecting Steiner
Tree (PCTS) as preliminaries because they reduced the k-MST problem to the PCST

and used the GW-minimization algorithm to solve it. We now present the outline

Algorithm 7 for the k-MST problem whilst further definitions our found in [11].

Algorithm 7 Goemans-Williamson minimization for the k-MST rooted problem
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Input: Graph G=(V,E) with edge cost ¢,>0 ,aroot r, thecost L ofan
optimal k-tree containing r , and a fraction a.

Output: Tree F' containing r and atleast ak nodes.

Discussion

As we have previously seen, many problems are being transposed to the Quota Steiner
Tree problem and its different cases. K-MST used a format of a Prize Collecting Steiner
Tree and GW-minimization algorithm that solves a special problem for this format. For
the same reason Sigalas et al. have used the GW-minimization algorithm since they
have reduced the problem of MRCE to a QST problem. As we have seen already
many problems have been reduced to QST problems due to the lack of good quality

approximation local and greedy algorithms derived from the MLST and CDS problems.

2.4 Related Combinatorial Optimization Problems

In the last section of this chapter we will formally present the connection between CDS
and MLST and a hard problem named Max Weight Budgeted Connected Set Cover
(MWBCSC) that uses the knowledge of specialized algorithms used on both of those
problems special cases. We will finally discuss the approach of combining algorithms for

enhanced optimization which is used regurarly in this field of research.

2.4.1 Connected Dominating Set and Maximum Leaf Spanning Tree

In this section we will formally introduce the important connection between those
problems and its proof. We will also re-address to the CDS problem to explain the

significance of the Connected Domination Number as described in [14].
Connected Domination Number

The connected domination number of a graph G is the minimum cardinality of CDS,
denoted by y.(G). A CDS that has size equal to the domination number is called a

minumum CDS. The connected domination number is a classical subject studied in
graph theory for many years. Some interesting results are obtained in those ealier

efforts. The following is one example.

Let A(G) denote the max leaf number of a graph G , which is the maximum

number of leaves in a spanning tree T, of G.

We present next theorem :

For any graph G oforder n , y.(G)=n-A(G).
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We present the proof of the previous theorem :

It is easy to see that for any tree T, , 7vy.(T,)=|V(T,)|-Ar(T,). Moreover, a CDS for
a spanning tree T, of G is also a CDS for G. Therefore, y.(G)<n—\(G).
Now, consider a minimum CDS D of G. Let H be a spanning tree of G|D]
where G|[D] is the subgraph of G induced by D. Connect H to every vertex
in V-D to obtan a spanning tree T, of G. Then, every vertexin V—-D isa
leaf of T, . Conversly, everyleafof T, isin V—D . Otherwise, if T, has a leaf

N N N

x notin T-D ,then D-{x] would be a CDS for T, and hence a CDS for

N

G , contradicting the minimality of D.

2.4.2 Max Weight Budgeted Connected Set Cover

Let us discuss now the approximation algorithm for the maximum weight budgeted

connected set cover (MWBCSC) problem as presented in [15]. Given an element set
X , acollection of sets SC2* , aweight function w on X , a cost function
c on S ,aconnected graph G (called communication graph) on vertex set S

,and a budget L , the MWBCSC problem is to select a subcollection S'CS such

that the cost ¢(S')=). c(S)<L , the subgraph of G, induced by S' is

SES’

connected, and the total weight of elements covered by S’ (that is Z w(x) )is

=
maximized. We present a polynomial time algorithm that its performance ratio is

O((6+1)logn) , where & is the maximum degree of the communication graph

G¢ and n is the number of sets. This ratio can be improved to O(logn) if every
set has a cost at most half of the budget L/2. We will provide the set of algorithms for
the solution of this problem and later we will discuss which was their thought process on
approacing this problem. We omit defining how does profit and cost functions work due
to their relation with another mathematical subject called submodularity.

Algorithm

Here we formally describe the Algorithms 8,9,10 used to solve this problem.

Algorithm 8 Algorithm Defining Profit

Input: An instance (G,c,L).
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Output: A (complete) set cover A and a profit function n on S.
1. A-Q,F<X

2.for SES do

3: n(S)«<0

4:while F#g do

5. Select SE€S\A that maximizes Agw(A)/c(S)

6: n(S)~Asw(A) (marginal profit of S over A)

7 A <« AU[S}|,F <« F\F(S)

Algorithm 9 Selection of B

Input: The collection of sets A , cost function c¢:A - R , profit function n:A - R
and budget L.

Output: A subcollection of sets BC A.
1: R<0,B-H,i-1

2: while R+c<L and A#RQ do
3: if SNF(OPT)#4 then

4: B~ BU(S,] , R<R+c

5. i<i+1,A<A\(S] (removesset S,

1

from A, cause we addeditinto B )
8: Let S,.,=argmax{n(S):S€ES}

9:if n(B)<n(S
10: B <SS,

then

max )

Algorithm 10 Main Algorithm For MWBCSC

Input: An instance (X,S,w,c,Gg,L).

Output: A collection of sets S'CS with cost at most L such that Gg[S'] is
connected.

1. Using Algorithm 8 to assign profit n on the sets of S.
2: Apply an a-approximation algorithm on instance (Gg,c,mn,L) to obtain a budgeted
node weighted Steinertree T .Output S'=V(T).

2.4.3 Thoughts on previous algorithms

In computational complexity theory, a reduction is an algorithm for transforming one
problem into another problem. A sufficiently effiecient reduction from one problem to
another may be used to show that the second problem is at least as difficult as the first.

N. Theodorou 32



The Maximum Rooted Connected Expansion

Intuitively, problem A is reducible to problem B if an algorithm for solving problem B
efficiently (if it existed) could be used as a subroutine to solve problem A efficiently.
When this is true, solving A cannot be harder than sovling B. “Harder’” means having a
higher estimate of the required computational resources. We can also use this property
if problem A does not have efficient approximation algorithms for its solution.

Since we introduced the connection between Connected Dominating Set and Maximum
Leaf Spanning Tree we understand that the algorithms built to solve those problems are
entirely similar or have some steps that may be the same. As we have noticed CDS can
be solved with a local approach 1-hop and MLST with 1-LOT. These approaches are so
closely related to the local optimality that make us think that those problems could be

solved the same way.

As we said in previous discussions in this chapter, we can transpose a part of the
problem A to another B and use the respective algorithm of B as a subroutine to A

Transposing means that we change the structure of a problem A into another B without
changing neither the input nor the output. A great example is the Budgeted and Patrtial
Connected Domiting Sets that use the Quota Steiner Tree algorithm as the second
subroutine and applying it in a greedy dominating set obtained by the first subroutine.
This partial transposition gives more efficient approximation ratio than trying to re-
structure the initial algorithms used for CDS problems i.e 1-hop into solving BCDS. We
further explain that in general when we solve a problem A with its respective algorithm
X there is a propabiliy of improving or restructuring X into giving better results. However
what we presented in this chapter shows that when we divide problem A into B and C
which are solved by the combination of Y and Z respectively then we usually get better
results than X. There is also the inability to solve efficiently special case problems with
the main general algorithms. Suppose we have a newly defined problem D is a special
case of A i.e BCDS of CDS. We can see that restructuring X solving A cannot
effieciently solve BCDS. Since we have this issue we suggest that transposing
problems is a great way of bypassing the general algorithms of all kinds (local, greedy)
into new combinatorial algorithms. Our goal and research is to create a specified
approach into using this tool of transpozing problems and combining different algorithms

S0 as to optimize and solve old and newly defined problems.

Considering the MLST we can see that there is a silver lining between greediness and
local optimality as we have presented previously in this chapter. The results are very

good and unfortunately are not yet being used as subroutine in transposed problems,

N. Theodorou 33



The Maximum Rooted Connected Expansion

but they are used as heuristics on top other algorithms results. Nontheless we later in
chapter 3 are using the idea of greedy leafy forest for our algorithm and we suggest of

using the 1-LOT, as a heuristic. The idea of heuristics is thouroughly analyzed in [16].

Now as the combination or selection of algorithms that solve other cases occurs as an
approach in solving problems with “similar” difficulty , we can see that the k-Minimum
Spanning Tree is broken into parts and solved by other problems : GW-minimization on
a Prize Collecting Steiner Tree. This means that we can bypass the whole internal
approach of solving a problem if we can transpose every part of it into other problems
more effieciently solved. The point is we have to research and have knowledge of the
little intricacies so as to be able to do that without loss of quality in our results due to this
transpositison. Finally we have addressed the Max Weight Budget Connected Set
Cover problem which is the finest approach to solving a problem by considering every
part of it as a different problem. The peek of their research is that in their attempt to
solve it this way they were forced to remodel some of the algorithms and problems. The
explanation of their thought process in their paper is of great significance in studying

and trying to contribute into the domain of graph theory and its problems.
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3. MAXIMUM ROOTED CONNECTED EXPANSION

We now define the Maximum Rooted Connected Expansion problem its related work,

algorithm, ideas and our contribution.

3.1 Maximum Rooted Connected Expansion

We now present the thought process , algorithms and results of Lamprou et al. for the
MRCE problem.

3.1.1 Problem Statement

Given a graph G and a root node u, , we wish to find a subset of vertices S
such that S is connected, S contains u, and the ratio N[S]/|S| is

maximized, where N[S] denotes the closed neighbourhood of S , thatis N[S]
contains all nodes in S and all nodes with at least one neighbour in S.

Problem Statement 3 ( Maximum Rooted Conncected Expansion, MRCE)
Input : Agraph G=(V,E) and aroot v,.

Output : The MRCE number: MRCE(G,v,)= max _|N[S]| ,

Secon(G,v,) |S|

where con(G,v,) < {SSV(G)] where v,eS and S is connected.

3.1.2 Preliminaries

A graph G is denoted as a pair (V(G),E(G)) of the nodes and edges of G.
The graphs considered are simple (neither loops nor multi-edges are allowed),
connected and undirected. Two nodes connected by an edge are called adjacent or
neighboring. The open neighborhood of a node veV(G) is defined as
N(v)={ueV(G):{v,ul€eE(G)] , while the closed neighborhood is defined as
N[v]={vlUN(v). For a subset of nodes ScV(G) , we expand the definitions of
open and closed neighborhood as N(S)=N(v),s\S and N[S]=N(S)uS . The
degree of a node v€EV(G) is defined as d(v)=|N(v)|. The minimum (resp.
maximum) degree of G is denoted by  8(G)=min,,d(v) (resp.

A(G):maxvev(c)d(v)-

3.1.3 Algorithm

Their algorithm closely follow the work in [10] for the BCDS problem. In broad lines,
their algorithmic idea is to compute a greedy dominating set and its corresponding profit

function and then obtain a connected subgraph via an approximation algorithm for the
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QST problem. Evidently, both MRCE and BCDS require finding a connected subset
ScV(G) with many neighbors. Nonetheless, while in BCDS we only care about

maximizing |N[S]| , in MRCE we care about maximizing ST with the additional

IN[S]]
|
demand that v,€S. In order to deal with this extra requirement, they also addressed
the rooted version of QST, namely the Rooted Quota Steiner Tree (shortly RQST)
problem. Algorithm 4, namely the Greedy Dominating Set (shortly GDS) algorithm,
describes a greedy procedure to obtain a dominating set and a corresponding profit
function for the input graph G. At each step, a node dominating the maximum number of
the currently undominated vertices is chosen for addition into the dominating set.
Algorithm 11, namely the Greedy MRCE algorithm, makes use of GDS to obtain a

dominating set for a slightly modified version of G, namely a graph G , which is the
same as G with the addition of n’* leavestonode v,. Then, the algorithm outputs a
connected subset T, (containing v, ) for any possible size i. Finally, the subset
yielding the best MRCE ratio is chosen as the approximate solution. In terms of
notation, we refer to the approximation Algorithm 7 as the 2-RQST (G,v,,p,q)
algorithm with a graph G , a root node v,eV(G) , a profit function
p:V(G)-Nu{0] and a quota g as input. We omit including an edge cost
function, since in our case all edges have the same cost, that is, cost 1. Furthermore, let

(n] < (1,2,3,...,n].

Now, consider a connected set S, of size i (which contains v, ) yielding the

1

maximum number of dominated vertices, i.e. S, €argmax;.sc ... s=IN[SIl . We then
denote OPT,<|N[S]| and use it in the quota parameter of 2-RQST at line 4 of
Greedy MRCE. Yet, in the general case, we do not know OPT, and also such a
quantity may be hard to compute. To overcome this obstacle, notice that OPT.€[i,n]

and therefore we could guess OPT, , e.g., by running a sequential or binary search

within the loop of Greedy MRCE and then keeping the best tree returned by 2-RQST .
Notice that such an extra step requires at most a linear time overhead. Therefore, the
running time of Greedy MRCE remains polynomial and is dominated by the running time

of 2-RQST . For presentation purposes, we omit this extra step and assume OPT, is

known for each i€[n].
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Algorithm 11 Greedy MRCE

Inputx: A graph plus node pair (G, v,).
Output: An MRCE solution S and its corresponding ratio R
where (MRCE solution =set S ,ratio =number R ).

1: Construct G' :sameas G withextra n® leaves attachedto v,
2: (D,p) < GDS(G') {Algorithm 4 Greedy Dominating Set}
3:for Vi€e[n] do

4 T <—2—RQST(G,vo,p,(1—%)OPTi) {Algorithm 7 GW}

. - INIT, ]|
S: Let zs—argmaxie[n]W
IN[T, ]I

6: S<T, , R« T

7:return S , R

3.1.4Results

Lamprou et al. have studied MRCE for several graph cases , interval , split and general.
In this section we only analyzed their algorithm for general graphs. They gave a
constant-factor approximation algorithm by exploring the relation of MRCE with BCDS

[15] which gives a é(l—(%)) -approximation. The major open question is to improve
the approximability of the problem on general graphs without applying BCDS
techniques, but using rather MRCE properties.

3.2 Our Contribution

In this section we explain our thought process on how we constructed the algorithm, our
experimental results and our intuition into providing even better approximation.

3.2.1 Approaching the problem

Since our study on local search approximation algorithms for CDS and MLST, 1-hop
and 1-LOT respectively, we considered applying them to our problem due to their good
approximation ratios. Furthermore, due to the fact that MRCE requires a root node v,

we intuitevely thought that local search will give even better approximation ratio. Our

belief was that since we already have the root node of our set S ,the local search to
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find the best S would be easier by just expanding it step by step into more distant
neighborhoods if they would improve the MRCE number (ratio). Since we have seen
transposing problems into tree problems i.e QST is easily modeled and providing good
results, we decided to apply 1-LOT. However in order to apply 1-LOT we were forced to

find a Maximum Leaf Spanning Tree T,,,, without disconnecting nodes from v,.
Then we should try and find a subset S ofthis T, where v,€S. Unfortunatelly

we have observed that it is not necessary to finda T, in order to find a subset S

opt
with better ratio and we provide a proof of non-existance through a contradiction

example shown in Figure (5) below. Our assumption is that the MRCE,,, is not

necessarily found in  MLST ;.

(G) (T1) (Topt)
Figure (5): Proof of hon-existance
Proof of non-existance
Considering T, an arbitrary spanning tree of G and T,,; a maximum leaf

spanning tree of G. We can easily see that if v, is our root node and the best set

IN[S]]
N

in Ty weget R, =7/2 ,thus R, >R,  proving our assumption.

and with the same S

S=({vy,v,} in T, weget R,.=8/2 ,where R;=

We then considered the greedy approach on trees utilizing the Max Leafy Forest

properties and algorithm. Our thought was to find leafy subtrees and connect them with
the subtree of v, , T,. Although the properties of leafy subtrees were very important
we could prove a good approximation ratio only for a maximum leaf spanning tree,
which for MRCE did not provide an approximation to the  MRCE,,, solution as we

proved previously. However we kept the idea of leafy subtrees in our algorithm as we

are iteratevily searching for high degree nodes that we handle them as stars.
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3.2.2 Algorithm

Since our algorithm had to be tweaked to handle high degree nodes and not leafy
subtrees, we considered labeling as it was modeled in Budgeted problems by a profit
function p and applied on all nodes in G in order to connect highest degree nodes
with v, resulting in a good ratio R. However labeling is pretty costly in
approximation and we managed to bypass it by the iterative property of the algorithm.
We will now present some preliminaries and then formally present our Algorithm 12.
We will finally discuss each step and its respective properties that cumulative improve

our approximate solution.

Preliminaries

Early in our algorithm and in every iteration we create a set which we denote a set of
high degree nodes HSG(V).

We also want to check the MRCE number otherwise ratio denoted by R=—+-—.

Set H is handled as a list. Furthermore , when we denote H not traversed, we

mean that the list iteration of set H has not ended. Also, when we add a node v.

1

back in H it goes on the end of the listof H.

Finally shortest-path function with (v;,S) as input, finds the path between v, and

anode u€E€S with minimum distance.
Algorithm

We will now describe the final version of our algorithm.

Algorithm 12 Greedy Iteration MRCE

Input:A graph and a node pair (G,v,).

Output: An MRCE solution S and its corresponding ratio R.
1. S0 , H- @

2. R <Rs , S<{v,)
3.Find H=[v,,...,v,] ,where d(v)=R,.
4. while H not traversed do

5. shortest-path (v,,S)

6 H< H-{v} (remove v, from H )
7

if R,,,>R then

SUv; max
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8. Ruo = Rsu, » S =SU[v,]

Q. H~ H-—{x} (remove x from H ),where x node with d(x)<R,,,
10. else

11. add v, intheendofthelist H

12. end while

13.if R,<R,, then

R, < R, ,repeatfrom line 2

14. else
15. return S , R

max

We will shortly analyze our algorithm through previous ideas. We kept the leafy subtree
idea by finding in every iteration the high degree nodes. Those high degree nodes are
conceived as leafy singleton subtrees. We connect all those high degree nodes with our
greedy connection function shortest-path. Despite shortest path being greedy and
should generally give us overall worst approximation, it has a great quality. Shortest-
path finds a minimum distance connected dominated set S. Minimizing set S

means that our denominator is as small as possible thus improving R. Our nested

iteration handles H and tries to connect high degreesin H with v,. This alone

is being greedy as if we were only labeling our nodes thus not necessarily giving better
approximation than just labeling. However in combination with the outer iteration we get
a new H that omits reduntant, lower degree nodes, giving better and better
approximation in every iteration. Basically our concept is to continuously increase the
lower bound of what we call high degree nodes until we cannot profitably connect them
to v, in comparison with its previous iteration. Due to shortest-path function we can
see that set S includes previous iterations high degree nodes, despite of not being

neither the source S, nor goal v,€H Vvariables of the function. Our experimental

analysis gave us great examples of what we are currently presenting.

3.2.3 Results and Future Work

We have implemented a program to test our algorithm and make our expiremental
analysis. Our expiremental analysis suggests a 3-approximation algorithm solving the
MRCE problem. We have tested our algorithm in various cases of general graphs
considering high, medium, low density graphs. We then experimented with different size
of datasets where number of nodesin G is n, considering bulk n>1000, medium
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150<n=<400, and small 10<n<50. Considering future work we are currently working
on the theoretical analysis of our algorithm which suggests that our algorithm gives at

least a 3-approximation ratio. The outline of the analysis is that if we could connect
S={v,} denoted S,, with other neighboring nodes of high degree that do not have
common neighbors with eachother then the final set would be optimal thus giving us
optimal ratio R,,;. In reality we have to connect this set with distant high degree
nodes with an appropriate path and then we would gain the optimal ratio R,,;.
However we connect S, with v,eH with shortest-path which is not the appropriate
path. We denote the appropriate path bulkiest-path defined by its set S;. We assume
that the length of bulkiest-path is equal to the length of shortest-path +1, but the nodes
included in S, are of the highest possible degree, meaning they have greater degree
than those in shortest-path set S, resulting in a greater ratio R,,, despite

[ NS ]|

|S=|Ss/+1. Our algorithm gives R,= 5
S

and we assume that the optimal

[NISs]l _ H | hat o
|S | =Rp,r. HOwever we are very close to prove that R—Z Ya.
B B

That means we hope we can prove a 2-approximation algorithm.

solution is  Ry=

We also have an idea of implementing 1-LOT as a heuristic on top of our results of
Greedy Iteration MRCE which as we have tested experimentally might give a small
improvement in this 2-approximation expected algorithm. Generally as we have studied
[16], by adding heuristics in those kind of problems results in small improvements in

approximation.
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4. CONCLUSIONS

The main purpose of this thesis was to conduct a survey on some Graph Theory
problems and analyze them. One of these problems was the newly defined Maximum
Rooted Connected Expansion that is of great practical importance in data prefetching.
Since the other problems have been extensively analyzed by the research community
and have greatly refined algorithms for their approximate solution as we presented
here, we were able to contribute to the MRCE with new ideas and an algorithm.

In the first part of the thesis we presented many important Graph Theory problems by
explaining their idea behind their solution, their algorithms and results. We did that as a
roadmap for the readers so as to understand the basics of the problems and their
connection between them. We formally presented their algorithms in order to explain
how their techiniques can be used into eachother. Despite being presented as a study
of CDS and MLST problems and their special cases, the presentation is unfolded in a
very specific way so that the reader would follow our thought process into creating a
new algorithm for a different problem. Most of the ideas behind their connection are
mentioned at the end of each respective section and others possibly occur while
studying this thesis thoroughly. We also presented the MWCSC problem as an example
of a study that utilizes the structures and algorithms of the aformentioned problems to
solve this.

The second part was a formal presentation of the main subject of the thesis the MRCE
problem. We thoroughly described how the problem was defined and its practical
application. We then describe our algorithm and how it follows a completely different
path than the one Lamprou et al. followed. We lightly compared those two algorithms
suggesting our algorithm gives better approximation, but our main purpose was to
introduce new ways of approaching the problem.

Finally, apart from the theoretical standpoint, which we considered, we must not surpass
the effect of the algorithms on applications. For that reason although we did extensive
theoritical analysis in this thesis, we also implemented the algorithm so as to give some
experimental results. Our purpose was to suggest that we need to formally implement
as many of those problems as possible so as to compare them and their results in a
more practical way. The results could lead to useful conclusions and be of use to the
respective research communities.
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