
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

UNDERGRADUATE THESIS

The Maximum Rooted Connected Expansion problem

Nikolaos P. Theodorou

Supervisor : Vassilis Zissimopoulos, Professor NKUA

ATHENS

SEPTEMBER 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Το πρόβλημα της μέγιστης ριζικής συνεκτικής επέκτασης.

Νικόλαος Π. Θεοδώρου

Επιβλέπων : Βασίλης Ζησιμόπουλος, Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2019

UNDERGRADUATE THESIS

 Maximum Rooted Connected Expansion

Nikolaos P. Theodorou

S.N.: 1115201000030

SUPERVISOR: Vassilis Zissimopoulos , Professor NKUA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μια έρευνα πάνω στο ελάχιστο συνδεδεμένο σύνολο κυριαρχίας, στα δέντρα
επικάλυψης με μέγιστο πλήθος φύλλων και το πρόβλημα της μέγιστης ριζικής

συνεκτικής επέκτασης.

Νικόλαος Π. Θεοδώρου

Α.Μ.: 11152001000030

ΕΠΙΒΛΕΠΟΝΤΕΣ: Βασίλης Ζησιμόπουλος , Καθηγητής ΕΚΠΑ

ABSTRACT

Graph theory has many applications in modern world. Our study on it crossed paths
with an intresting problem called Prefetching. Prefetching constitutes a valuable tool
toward the goal of effiecient Web Surfing. An important issue in prefetching is the
tradeoff between the amount of network’s resources wasted by the prefetching and the
gain of time. For instance, in the Web, browsers may download documents in advance
while a Web surfer is surfing on the Web. Since the Web surfer follows the hyperlinks in
an unpredictable way, the choice of the Web pages to be prefetched must be computed
online. The question is then to determine the minimum amount of resources used by
prefetching that ensures that all documents accessed by the Web surfer have
previously been loaded in the cache. In this regard, prefetching can be modeled as a
two-player combinatorial game.

Motivated by the above Sigalas et al. considered the following maximization problem to
which they refer to as the Maximum Rooted Connected Expansion (MRCE) problem
which is NP-hard. Given a graph G and a root node u0 , we wish to find a subset of
vertices S such that S is connected, S contains u0 and the ratio N [S]/|S|
is maximized, where N [S] denotes the closed neighbourhood of S , that is
N [S] contains all nodes in S and all nodes with at least one neighbour in S .

We further discuss their approach on the way of solving this problem through an
approximation algorithm. We studied other significant problems on graph theory like
Connected Dominating Set, Maximum Leaf Spanning Tree and their special case
problems so as to understand the structure and connection between all those and
MRCE. As result of that study we mapped those problems according to their connection
and interaction between them. Our contribution is a greedy algorithm for the MRCE
which we believe through our experimental analysis could eventually lead to a small
approximation, result.

SUBJECT AREA: Algorithms, Graph Theory, Combinatorial Optimization

KEYWORDS: prefetching, connected dominating set, expansion, ratio, maximum leaf

ΠΕΡΙΛΗΨΗ

Η θεωρία γραφημάτων έχει πολλές εφαρμογές στον σύγχρονο κόσμο. Η μελέτη μας σε
αυτήν συνέπεσε με ένα ενδιαφέρον πρόβλημα που ονομάζεται προανάκληση. Η
προανάκληση αποτελεί ένα πολύτιμο εργαλείο για το στόχο της αποτελεσματικής
πλοήγησης στο διαδύκτιο. Ένα σημαντικό ζήτημα στην προανάκληση είναι η ανταλλαγή
μεταξύ του ποσού των πόρων του δικτύου που χάνονται από την προανάκληση και το
κέρδος του χρόνου. Για παράδειγμα, στον ιστό, τα προγράμματα περιήγησης ενδέχεται
να κατεβάζουν εκ των προτέρων έγγραφα, ενώ ένας διαδικτυακός χρήστης πλοηγείται
στο διαδίκτυο. Δεδομένου ότι ο διαδικτυακός χρήστης ακολουθεί τους υπερσυνδέσμους
με έναν απρόβλεπτο τρόπο, η επιλογή των ιστοσελίδων που πρέπει να προανακλήθουν
πρέπει να υπολογιστεί ηλεκτρονικά. Το ερώτημα είναι τότε να προσδιοριστεί το ελάχιστο
ποσό των πόρων που χρησιμοποιούνται από την προανάκληση, που εξασφαλίζει ότι
όλα τα έγγραφα που έχει πρόσβαση ο διαδικτυακός χρήστης, έχουν προηγουμένως
φορτωθεί στην κρυφή μνήμη. Από την άποψη αυτή, η προανάκληση μπορεί να
διαμορφωθεί ως συνδυαστικό παιχνίδι δύο παικτών.

Με γνώμονα τα παραπάνω οι Λάμπρου και συνεργάτες θεώρησαν το ακόλουθο
πρόβλημα μεγιστοποίησης στο οποίο αναφέρονται ως πρόβλημα Maximum Rooted
Connected Expansion (πρόβλημα της μέγιστης ριζικής συνεκτικής επέκτασης), MRCE
που είναι NP-Hard. Με βάση ένα γράφημα G και έναν κόμβο ρίζας v0 , θέλουμε να
βρούμε ένα υποσύνολο κορυφών S που να ειναι συνδεδεμένο, να περιέχει το v0
και να μεγιστοποιείται ο λόγος N [S]/|S|, όπου το N [S] δηλώνει την κλειστή γειτονιά
του S , δηλαδή περιέχει όλους τους κόμβους του S και όλους τους κόμβους του
εκτός του S με τουλάχιστον έναν γείτονα εντός του S .

Αναλύουμε περαιτέρω την προσέγγισή τους σχετικά με τον τρόπο επίλυσης αυτού του
προβλήματος μέσω ενός προσεγγιστικού αλγόριθμου. Μελετήσαμε άλλα σημαντικά
προβλήματα στη θεωρία των γραφημάτων και τα ειδικά προβλήματά τους για να
κατανοήσουμε τη δομή και τη σχέση μεταξύ όλων αυτών και του MRCE. Ως αποτέλεσμα
αυτής της μελέτης χαρτογραφήσαμε αυτά τα προβλήματα σύμφωνα με τη σύνδεσή τους
και την αλληλεπίδραση μεταξύ τους. Η συνεισφορά μας είναι ένας άπληστος
αλγόριθμος για το MRCE που πιστεύουμε μέσω της πειραματικής μας ανάλυσης θα
μπορούσε ενδεχομένως να οδηγήσει σε ένα καλό προσεγγιστικό αποτέλεσμα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αλγόριθμοι, Θεωρία Γραφημάτων, Συνδυαστική Βελτιστοποίηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Προανάκληση, μεγιστη ριζική συνεκτική επέκταση, δέντρο μέγιστου

βαθμού φύλλων

ΕΥΧΑΡΙΣΤΙΕΣ (ή AKNOWLEDGMENTS)

Για την εκπόνηση της παρούσας Πτυχιακής Εργασίας για την οποία εργάστηκα με
κάποιες μεγάλες παύσεις τα τελευταία 2 χρόνια, θα ηθέλα να ευχαριστήσω την
οικογένεια μου, την κόπελα μου και τους φίλους μου που μου δώσαν κουράγιο και
ηρεμία κάνοντας υπομονή όλη αυτήν την περίοδο. Επίσης θα ήθελα να ευχαριστήσω
τον διδάκτωρα Ιωάννη Σιγάλα για την χρήσιμη συνεισφορά του και την άμεση
ανταπόκριση του ανεξαρτήτως των πιο σημαντικών του υποχρεώσεων του. Τέλος θα
ήθελα να ευχαριστήστω θερμά τον επιβλέποντα καθηγητή μου κ.Ζησιμόπουλο. Ο
κ.Ζησιμόπουλος αρχικά με εμπιστεύτηκε και μου έδωσε τα κατάλληλα ερεθίσματα και
κίνητρα για να ασχοληθώ με πάθος και αγάπη για αυτήν την εργασία ανεξάρτητα απο το
αν οι ιδέες μας ήταν επιτυχημένες ή όχι. Με το πέρας αυτής της εργασίας πήρα πόλλα
μαθήματα αλλά το πιο σημαντικό ήταν ότι μια ιδέα – προσπάθεια πρέπει πάντα να την
ολοκληρώνουμε με σωστό και δομημένο τρόπο, καθώς μέσα απο αυτήν την διαδικασία
θα βγαίνουμε πάντα κερδισμένοι ανεξαρτήτως του αποτελέσματος.

TABLE OF CONTENTS

1. INTRODUCTION..12

1.1 Introduction... 12

1.2 Preliminaries.. 13

1.2.1 Graph Theory... 13

1.2.2 Surveillance Game... 14

2. STUDY ON GRAPH THEORY...16

2.1 Connected Dominating Set..16

2.1.1 Problem Statement... 16

2.1.2 Algorithms.. 16

2.1.3 Results and Discussion..18

2.2 Maximum Leaf Spanning Tree...19

2.2.1 Problem Statement... 19

2.2.2 Local Optimum Tree... 19

2.2.3 Maximum Leafy Forest...22

2.3 Special Cases and Results ..26

2.3.1 Quota Steiner Tree... 26

2.3.2 Budgeted and Partial Connected Dominating Sets..26

2.3.3 K-Minimum Spanning Tree and Prize Collecting Steiner Tree..28

2.4 Related Combinatorial Optimization Problems ...30

2.4.1 Connected Dominating Set and Maximum Leaf Spanning Tree...30

2.4.2 Max Weight Budgeted Connected Set Cover...31

2.4.3 Thoughts on previous algorithms...32

3. MAXIMUM ROOTED CONNECTED EXPANSION...35

3.1 Maximum Rooted Connected Expansion..35

3.1.1 Problem Statement .. 35

3.1.2 Preliminaries .. 35

3.1.3 Algorithms.. 35

3.1.4 Results... 37

3.2 Our Contribution... 37

3.2.1 Approaching the problem...37

3.2.2 Algorithm ... 39

3.2.3 Results and Future Work ...40

4. CONCLUSIONS...42

REFERENCES..43

LIST OF FIGURES

Figure 1: Example of local 1-improvement..pg. 21

Figure 2: Properties of 1-LOT..pg. 22

Figure 3: Properties of Maximum Leafy Forest...pg. 25

Figure 4: A Maximally Leafy spanning tree...pg. 25

Figure 5: Proof on non-existance..pg. 38

LIST OF ALGORITHMS

Algorithm 1: Randomized CDS with 1-hop Local Information...................................pg. 18

Algorithm 2: Improved Algorithm for CDS with 1-hop Local Information...................pg. 18

Algorithm 3: Maximally Leafy Forest...pg. 23

Algorithm 4: Greedy Dominating Set...pg. 27

Algorithm 5: Greedy Profit Labeling Algorithm for BCDS..pg. 27

Algorithm 6: Greedy Profit Labeling Algorithm for PCDS..pg. 28

Algorithm 7: Goemans-Williamson minimization for the k-MST rooted problem......pg. 29

Algorithm 8: Algorithm Defining Profit MWBCSC..pg. 31

Algorithm 9: Selection of B MWBCSC...pg. 32

Algorithm 10: Main Algorithm MWBCSC...pg. 32

Algorithm 11: Greedy MRCE...pg. 37

Algorithm 12: Greedy Iteration MRCE...pg. 39

Τhe Maximum Rooted Connected Expansion

1. INTRODUCTION

1.1 Introduction

Graph Theory is a very important discipline which lies between Computer Science and

Mathematics, and involves the study of graphs, which are mathematical structures used

to model pairwise relations between objects. One of the most important uses of Graph

Theory is the capability to model and give a unified formalism for many very different

looking problems coming from everyday life and a wide variety of sciences. Graph

Theory has many applications, the one with most importance for us is networking.

Networking has real life applications using Graphs i.e. connecting with friends on social

media, using GPS/Google maps, surfing through the internet. In our thesis we studied

the last case in its optimized version called Prefetching [1].

Prefetching is a basic technique in computer science. It exploits the parallelism between

the execution of one task and the transfer of information necessary to the next task, in

order to reduce waiting times. The classical instance of the problem occurs in CPU,

where instructions and data are prefetched from the memory while previous instructions

are executed. The modern instance occurs in the Web, where browsers may download

documents connected to the currently viewed document (Web page, video,etc.) while it

is being read or viewed. Accessing the next document appears to be instantaneous to

the user, and gives the impression of a large navigation speed. For this reason, link

prefetching has been proposed as a draft Internet standard by Mozilla. However,

prefetching all documents that can be accessed in the current state may exceed

networking capacities, or at least, result in a waste of bandwidth since most of the

alternatives will not be used. Hence, it is necessary to balance the gain of time against

the waste of networking resources. Local storage memory is also a potential issue, and

prefetching is classically associated with the question of cache management. However,

memory in modern computers is not scarce anymore, which makes network resources

the critical ones. The models developed so far in the literature to study prefetching

problems are based on the execution digraph where the nodes represent the tasks

(e.g., Web pages) and arcs model the fact that a task can be executed once another

has been done (e.g., arcs represent hyperlinks that can be followed from a Web page).

The execution of the program or the surfing of the Web then corresponds to a path in

the execution digraph. The quantitative optimization of prefetching will then be based on

some cost function defined on paths, reflecting for instance the inconvenience of waiting

N. Theodorou 12

Τhe Maximum Rooted Connected Expansion

for some information while executing the tasks or surfing the Web, and possibly taking

into account the consumption of network or memory resources. The related

dimensioning problem consists in determining how much network bandwidth should be

available so that the prefetching performance stays within some predetermined range.

In chapter 2 we present our study and thoughts on important problems in Graph Theory

as well as giving an idea on how we can utilize the combinatorial optimization property

of some problems. In Chapter 3 we formally present the Maximum Rooted Connected

Expansion problem. We first present Lamprou et al. approach [2], solution and results.

We then explain our thought process and demonstrate our algorithm and results. Finally

we conclude with some ideas and future work directions.

1.2 Preliminaries

In the following two subsections we define and explain some basic notions that are

used in this thesis concerning Graph Theory as well as the Surveillance Game. It is

aimed for helping readers who are not familiar with these notions to have a better

understanding of the text and how the Maximum Rooted Connected Expansion Problem

occurred. In every section we will introduce the preliminaries necessary for each

problem.

1.2.1 Graph Theory

An (undirected) graph G is a defined as a pair of two sets: the set of vertices V

and the set of edges E , denoted G=(V ,E) . An edge is an unordered pair of two

vertices. Therefore, the set of edges is a subset of the of all possible unordered pairs of

vertices {(u , v):u , v∈V } and we write e=(u , v) when edge e connects vertices u

and v of V . Unless otherwise stated, all graphs are simple, which means that they

contain neither loops nor parallel edges.

A path in a graph G is a sequence of vertices u0,u1,…,uk where

ui≠u j∀ i , j∈[0,k] . On the contrary If u0=uk then the sequence of vertices is called

a cycle.

A graph G is a spanning tree T s if between any two vertices ui ,u j∈V there

exists exactly one path. In other words, tree-graph is any connected graph, without

cycles.

The degree of a vertex G of a graph, denoted d (u) , is the number of edges incident

to the vertex.

N. Theodorou 13

Τhe Maximum Rooted Connected Expansion

A graph G is connected if each pair of vertices ui ,u j∈V is joined by a path. On the

contrary if there exist vertices which cannot be joined by a path the graph is disjoint.

1.2.2 Surveillance Game

The surveillance problem deals with the following two players game in an n-node graph

G=(V ,E) with a given starting vertex v0∈V . There are two players, fugitive and

observer. The fugitive wants to escape the control of an observer whose purpose is to

keep the fugitive under constant surveillance. Let k ≥1 be a fixed integer. The game

starts when the fugitive stands at v0 which is initially marked. Then, turn by turn, the

observer controls, or marks, at most k vertices and then the fugitive either moves

along an edge to a (out-)neighbor of her current position, or skip her move. In other

words, at every step of the game the observer enlarges observable part of the graph by

adding to it k , not necessarily adjacent, vertices. His task is to ensure that the

fugitive is always in the observable area. Note that, once a vertex has been marked, it

remains marked until the end of the game. The fugitive wins if, at some step, she

reaches an unmarked vertex and the observer wins otherwise. That is, the game ends

when either the fugitive enters an unmarked vertex (and then she wins) or all vertices

have been marked (and then observer wins). More formally, a k-strategy (for the

observer) is a function σ that assigns a subset S⊆V ,|S|≤k , to any configuration

(M , f) of the game where M⊆V is the set of the vertices that have already

marked before this step of the game, f ∈M is the current position of the fugitive, and

S=σ (M , f) is the set of vertices to be marked at this step. Clearly, we can restrict our

investigation to the case where σ (M , f)⊂V ∖M and |σ (M , f)|=k or

σ (M , f)=V ∖M . That is, at each step, the observer has interest to mark as many

unmarked vertices as possible. In particular, a game consists of at most n/k steps. A k-

strategy is winning if it allows the observer to win whatever be the walk followed by the

fugitive. Note that any winning strategy must ensure that N (f)∖M⊆σ (M , f) for any

M⊆V , f ∈M . The surveillance number of G , denoted by sn (G ,v0) , is the

least k such that there is a winning k-strategy in G starting from v0 .

Let N [S] stand for the closed neighborhood of S , i.e., N [S] includes all nodes in

S and all nodes with at least one neighbor in S . Fomin et al. prove in [1] (Theorem

20) that, for any graph G and root v0 , it holds sn (G ,v0)≥max
|N [S]|−1

|S|
, where

N. Theodorou 14

Τhe Maximum Rooted Connected Expansion

the maximum is taken over all subsets S that induce a connected subgraph of G

containing v0 . Moreover, equality holds in case G is a tree. That is, a ratio of the

form
|N [S]|
|S|

 (minus one removed for clarity) provides a good lower bound and

possibly in many occasions a good prediction on the prefetching load necessary to

satisfy an impatient Web surfer. Hence, in this paper, we believe it is worth to

independently study the problem of determining max
|N [S]|
|S|

 where the maximum is

taken over all subsets S inducing a connected subgraph of G containing v0 .

We refer to this problem as the Maximum Rooted Connected Expansion problem since

we seek to find a connected set S (containing the root v0) maximizing its

expansion ratio in the form of
|N [S]|
|S|

.

N. Theodorou 15

Τhe Maximum Rooted Connected Expansion

2. STUDY ON GRAPH THEORY

We now proceed to formally define the problems we consider in this paper.

2.1 Connected Dominating Set

We will now formally adress the Connected Dominating Set problem and present some

algorithms for its approximate solution.

2.1.1Problem Statement

A connected dominating set (CDS) in a graph is a subset of vertices that induces a

connected subgraph, and is also a dominating set at the same time. A dominating set is

a subset of vertices such that every node in the graph, is either in the dominating set, or

adjacent to a node in the dominating set. Finding a minimum connected dominating set

is NP-hard as described by Guha and Khuller [3] .We state the problem as follows :

Problem Statement 2 (Connected Dominating Set, CDS)

Input : A graph G=(V ,E) .

 Output : A dominating set S where all vertices of G are either in S or

dominated (connected) from one vertex in S .

2.1.2 Algorithms

We will shortly present some algorithms for the problem as described by Khuller and

Yang in [4]. We will later discuss their importance.

Global Algorithm for CDS

The global algorithm runs in two phases. Initially, all nodes are colored white. In the first

phase, the algorithm iteratively adds a node to the solution, colors it black and all its

adjacent white nodes gray. A piece is defined as a white node or a black connected

component. A new node is chosen to be colored black to get maximum reduction in the

number of pieces. This phase ends when no such node exists that can give non-zero

reductions. At this time, there are no white nodes left. Intuitively speaking, black nodes

are selected nodes, gray nodes are nodes that are dominated, i.e. adjacent to black

nodes. In the second phase, we start with a dominating set that consists of several

black components that we need to connect. The connection is done by recursively

connecting pairs of black components with a chain of vertices, until there is only one

black component, which will be our final solution.

N. Theodorou 16

Τhe Maximum Rooted Connected Expansion

Preliminaries for 1-hop Local Information Algorithms

Instead of using information of the entire graph, it only relies on information within 1-hop

to the nodes chosen in the solution. The formal definition of local information is as

follows.

In undirected graph, we denote the distance between u and v in a graph as

d (u , v) . It is the length of shortest path from u to v . d (u ,S) is defined to be

minv∈Sd (u , v) .

We now define the local neighborhood of some node, or a set of nodes. Given a set of

nodes S in graph G , the r−hop neighborhood around S is the induced

subgraph of G containing all nodes v such that d (v , S)≤ r . We denote the

r−hop neighborhood as N r(S) . When there is no confusion, we use the same

notation to denote the set N r(S) = { v | d (v , S)≤ r }. We also denote the

dominated set of a node v as the degree of node v . We can find out that N 1
(S) is

the degree of S . We can see that N r(S) is the dominated set of N r−1
(S) .

An algorithm with local information uses information only within the local neighborhood

of the nodes it has chosen. To be specific if the set of nodes that an algorithm has

chosen is S and we have r-hop local information, then we know the induced graph of

N r(S) . From an arbitrary starting node, nodes are added iteratively. For each loop in

this algorithm, one chooses a node, or a node and one of its neighbors. This means we

need knowledge of 1-hop neighborhood to maximize the number of newly covered

nodes, which explains why it uses 1-hop of local information.

1-hop Local Information Algorithm for CDS

This algorithm chooses only one gray node to maximize the number of newly covered

nodes, and in addition selects one of the newly covered nodes uniformly at random. The

maximization process only requires 1-hop neighborhood information. Algorithm 1.

Improved 1-Hop Local Information Algorithm

Instead of using the largest degree in the graph, every time when calculating propability

p , we use the largest degree in the explored graph. In another world, the largest

degree in N1
(S). Algorithm 2

N. Theodorou 17

Τhe Maximum Rooted Connected Expansion

Algorithm 1: Randomized CDS with 1-hop Local Information

Input: Graph G=(V ,E) .

Output: A connected dominating set S .

1: s← an arbitrary node

2: S←{s}

3: while S is not a dominating set do

4: v← a node in N1
(S) that maximizes the number of newly dominated nodes;

5: u← a uniformly randomly chosen node from N1
(v)−N1

(S) , i.e. the newly

 dominated nodes

6: S←S∪{(u , v)}

Algorithm 2: Improved Algorithm for CDS with 1-hop Local Information

Input: Graph G=(V ,E) .

Output: A connected dominating set S .

1: s← an arbitrary node

2: S←{s}

3: while S is not a dominating set do

4: d← the largest degree in N1
(S)

5: p←
1

√H (d)

6: v← a node in N1
(S) that maximizes the number of newly covered nodes;

7: S←S∪{u}

8: if with probability p then

9: u← a node from the newly covered nodes uniformly at random

10: S←S∪{u}

2.1.3 Results and Discussion

For the first algorithm , Global Algorithm for CDS the approximation ratio for this

algorithm is H (∆)+2 , where H (n) is harmonic function. The refined version of this

greedy algorithms pseudo-coloring is called labeling. Labeling is used widely on greedy

approximation algorithms and also on the MRCE greedy algorithm. On the second

algorithm 1-hop Local Information Algoritm we get an approximation ratio of

2(H (∆)+1) . This algorithm, as we will discuss seems very familiar with the 1-LOT

N. Theodorou 18

Τhe Maximum Rooted Connected Expansion

algorithm used in Maximum Leaf Spanning Tree problem. We now understand the close

connection between those two problems and that sometimes we can approach both of

them with the same techniques. Last is the improved 1-hop algorithm which gives a

H (∆)+2√H (∆)+1 approximation. One thing we can take from their contribution is

that if we find ways of slightly adjusting our algorithms by making small corrections, then

the difference in approximation ratios can be significant.

2.2 Maximum Leaf Spanning Tree

We will now formally adress the Maximum Leaf Spanning Tree problem and present two

algorithms for its approximate solution.

2.2.1 Problem Statement

Given a simple, undirected graph G=(V ,E) , suppose we wish to find a spanning tree

of G with the maximum number of leaves. The maximum-leaf spanning tree problem

is proven to be NP-complete [5]. This suggests that no polynomial time algorithm is

likely. So we seek fast approximation algorithms that provide a good worst case

performance ratio on the quality of the solution. In our thesis, we address two

approximation algorithms for this problem in order to understand their importance. The

first algorithm uses the simple technique of local optimization: perform a series of local-

improvement steps until a local optimum is reached. The other one uses a greedy

approach that is based on the domination degree of nodes in G , combined with some

required properties that induced sub-trees created from those nodes must meet. We

state the problem as follows :

Problem Statement 2 (Maximum Leaf Spanning Tree, MLST)

Input : An arbitrary spanning tree T s=(V ,E s) from a graph G=(V ,E) .

Output : A maximum leaf spanning tree TOPT=(V , EOPT) .

We will study the first algorithm by the name of 1-LOT and the second a greedy

algorithm the Leafy Forest. Both of these algorithms have been applied to provide

heuristic solution for a variety of hard problems in combinatorial optimization. Thus on

later chapters we will make a small discussion on combining them with other algorithms

for better results.

2.2.2 Local Optimum Tree

Following a small presentation of the first algorithm the thought process and its results.

N. Theodorou 19

Τhe Maximum Rooted Connected Expansion

Problem Statement / Idea

The idea of this algorithm as descibed by Lu and Ravi in [6] is performing local changes

that increase the number of leaves in the resulting spanning tree. For the problem at

hand, there is a natural notion of such local change ,namely, a swap. Thus swapping a

tree edge for a non-tree edge. This notion can also be extended to include swapping

many tree edges for an equal number of non-tree edges in a single local-change

operation.The algorithm performs such local changes that increase the number of

leaves until no improvement in the solution is possible and output a locally optimal

solution as the approximate solution. By varying the limit on the number of tree edges

that can participate in a single local-change operation, we derive a series of

approximation algorithms. Increasing this limit corresponds to allowing for more

powerful local-improvement steps. We will address the 1-change algorithm and its

results.

Preliminaries

We use the term degree of a node to refer to its degree in the tree under consideration.

So leaves are just nodes of degree one. A node is internal if it is not a leaf. We call a

node of degree greater than two a high degree node. A leaf is special if it is adjacent to

a high degree node. All other leaves are termed normal. Thus normal leaves are exactly

the leaves that are adjacent to nodes of degree two in the tree. A tree path containing

only nodes of degree two is called a 2-path. Its length is the number of nodes in it. A 2-

path is short if its length is one; otherwise it is long. We shall refer to an edge

e=(u , v) as an edge between u and v .

For a spanning tree T , we use L(T) to denote the number of leaves in T . We

omit the T where it is understood. We use ni to denote the number of nodes of

degree i . Suppose the input graph G has n nodes. We define N i , the

number of nodes with degree at least i . Thus for instance, N 3 is the number of

high degree nodes. The number of long and short 2-paths are represented by

Pl and Ps respectively. Let s and n be the number of special and normal

leaves respectively.

Algorithm

Our algorithm starts with an arbitrary spanning tree T of the given graph G . Let

e=(u , v) be an edge in G−T and f be an edge in the unique tree path of T

connecting u and v . We call making e a tree edge and f a non-tree edge an (edge)

N. Theodorou 20

Τhe Maximum Rooted Connected Expansion

change (e ; f) with respect to T . The spanning tree obtained by applying change

(e; f) on T is denoted by T (e; f) . If T (e ; f) has more leaves than T ,then

we call the change (e ; f) an improvement. In this case we call that a 1-improvement

due to the fact that we are swapping one edge a time (1-change). The algorithm

terminates when spanning tree T does not admit a 1-improvement. Despite that the

same tree could admit a 2-improvement but we wont address this case of k -

changes in this thesis.

In Figure (1) we see an example of local improvement. In a graph G (a), we take an

arbitrary spanning tree T (b). The swapping, change of e (v0 , v1) with e (v0 , v2)

is a 1-improvement on T resulting in T1 (c) with one more leaf as shown in (b).

 (a) (b) (c)

Figure (1): Example of local improvement

Properties

By definition, a 1-LOT has the following properties :

P1 In a 1-LOT T , any cycle formed by adding a non-tree edge between a leaf and

an internal node does not contain two adjacent nodes of degree two.

P2 In a 1-LOT T , any cycle formed by adding a non-tree edge between two internal

nodes does not contain a node of degree two.

P1 and P2 together are necessary and sufficient conditions for 1-optimality.

We prove the contrapositive and show that if a spanning tree is not a 1-LOT then it

violates either P1 or P2. If a spanning tree is not a 1-LOT then there exists a 1-

improvement for this spanning tree. It is easy to see that any non-tree edge incident on

two leaves cannot be involved in any 1-improvement. So any non-tree edge involved in

N. Theodorou 21

Τhe Maximum Rooted Connected Expansion

a 1-improvement must be an edge between an internal node and a leaf or an edge

between two internal nodes. In the first case, the tree violates property P1 and in the

second case, it violates P2.

In Figure(2) we illustrate the properties P1 and P2 for 1-LOTs. In the figure below, dark

edges represent tree edges and the yellow edge is a non-tree edge violating the

property P1 or P2. In both cases, a 1-improvement by swapping e (v3 , v4) with

e (v0 , v5) can be identified in P1 and e (v5 , v6) with e (v1 , v9) in P2.

 (P1) (P2)

 Figure (2): Properties of 1-LOT

Results

The main results of their analysis is that local-improvement algorithms that use 1-

changes and 2-changes have performance ratios of 5 and 3 respectively. Althougth we

didnt address the 2-changes algorithm neither the k -changes which its time

complexity is intolerably high even if k is small, we understand that 3-approximation

of 2-changes is a great result. Thus meaning that the 5-approximation of 1-change

algorithm is very strong considering the simplicity of the algorithm and it might prove

usefull later on for the enhancement of other approximation results.

2.2.3 Maximum Leafy Forest

Following a small presentation of the second greedy algorithm the thought process and

its results.

Problem Statement / Idea

The idea of this algorithm is finding leafy (many leaves) subtrees existing in a graph

G=(V ,E) that combined make leafy forests as described by Lu and Ravi in [7]. The

N. Theodorou 22

Τhe Maximum Rooted Connected Expansion

last part is finding the maximum leafy forest. As a greedy algorithm depends on nodes

of high degree. This algorithm wants to find the best iteration of a tree (maximal leaf

tree) by joining these leafy subtrees into one and get the best approximation possible.

Preliminaries

Let G be a connected undirected graph. We use V (G) to denote the set of nodes

in G . We refer to an edge uw of G as the edge incident to u and w . For

a subset of nodes S subset of V , let Γ (S) denote the set of edges with exactly

one endpoint in S . We sometimes overload notation and use Γ (H) to denote

Γ (V (H)) for a subgraph H of G . The degree of v in G is the number of

edges of G incident to v . Let V i(G) denote the set of nodes that have degree i

in G . Let V̄ i(G) denote the set of nodes that have degree at least i in G .

Clearly V̄ 0(G)=V (G) . The leaves of G are the nodes in V 1(G). A subtree of G

is nonsingleton if it has more than one node.

Let T be a subtree of G .

We say T is leafy if V̄ 3(T) is not empty, and every node in V 2(T) is adjacent

in T to exactly two nodes in V̄ 3(T) . A forest F of G is leafy if F is

composed of disjoint leafy subtrees of G . We say F is maximally leafy if F is

not a subgraph of any other leafy forest of G .

Algorithm

We give an approximation algorithm for Maximum Leaf Spanning Tree in this section.

Given a graph G , our algorithm computes a spanning tree T for G by the

following two steps. For obtaining a maximally leafy forest we have Algorithm 3.

1. Obtain a maximally leafy forest F for G .

2. Add edges to F to make it a spanning tree T for G .

Algorithm 3 MaximallyLeafyForest

Input : A graph G=(V ,E) .

Output : F as a maximally leafy forest of G .

1: Let F=∅ .

2: for ∀ v∈G do

N. Theodorou 23

Τhe Maximum Rooted Connected Expansion

3: S (v)←v

4: d (v)←0

5: for ∀ v∈G do

6: S '←∅

7: d '←0

8: for ∀u adjacent to v∈G do

9: If u∉S (v) and S (u)∉S ' then

10: d '←d '+1

11: Insert S (u) into S '

12: If d (v)+d '≥3 then

13: for ∀ S(u)∈S ' do

14: Add edge uv to F

15: Union S (v) and S (u)

16: Update d (u)←d (u)+1 and d (v)←d(v)+1

Properties

Let F be a maximally leafy forest of G . Let T1 ...T k be the disjoint leafy

subtrees of F . One can verify that F has the following properties. We use the

example in Figure (3) to illustrate each property. The dark lines in the figure are the

edges in the maximally leafy forest F , which is composed of three leafy subtrees

T1 , T2 , and T3 .

P1. Let w be a node in V̄ 2(T i) . Then w cannot be adjacent in G to any node

not in T i . (Nodes v1 and v27 are two examples of w e.g., suppose v1 were

adjacent to a node such as v9 , then F would not be maximal since the

e (v1 , v9) could be added to F .)

P2. Let w be a node in T i . Let w1 and w2 be two distinct nodes adjacent to

w in G . If w1 is not in F , then w2 must be in T i . (Nodes v5 is an

example of w If v5 had two neighbors not in F , both these edges could be

added to F contradicting its maximality.)

P3. Let w be a node not in F . If w is adjacent to two distinct nodes not in F

then the degree of w in G is two. (Nodes v9 and v15 are two examples of

w Note that such nodes are not in F . If the degree of say v5 were greater than

N. Theodorou 24

Τhe Maximum Rooted Connected Expansion

two, then v5 and its three neighbors not in F could be added as an additional star

in F contradicting its maximality again.)

Figure (3): Properties of Maximally Leafy Forest

Results

Despite being greedy, the proof that by joining those leafy subtrees with their certain

properties gives very good results as shown in Figure (4). The spanning tree T in

dark lines is leafy, since every node in V 2(T) is adjacent in T to exactly two nodes

in V̄ 3(T) . Let the gray lines be the edges of G that are not in T . The maximum-leaf

spanning tree of G is composed of all the edges incident to v0 in G .

Generalizing the example in a natural way yields examples in which the performance

ratio of the algorithm asymptotically tends to 3. As suggested by the example shown in

Figure (4), the approximation ratio of the algorithm might be improved by growing the

maximally leafy forest by the descending order of the degree of nodes in G . We later

use this suggestion in our algorithm for the MRCE problem with great results.

 Figure (4): A Maximally Leafy Forest

N. Theodorou 25

Τhe Maximum Rooted Connected Expansion

2.3 Special Cases and Results

In this section we will explore some special cases of Connected Dominating Set and

Maximum Leaf Spanning Tree.

2.3.1 Quota Steiner Tree

In this section we will shortly introduce the Quota Steiner Tree (QST) problem as a

preliminary for the rest of the chapter, as it is used as a subroutine in most of the

problems addressed later. Given a graph G=(V ,E) , and a profit function p :

V→ℤ∪{0} on the vertices , a cost function c : E→ℤ∪{0} on the edges and an

integer q (quota).

The Quota Steiner Tree problem:

Find a subtree T that minimizes ∑
e∈E(T)

c (E) , subject to ∑
v∈V (T)

p(v)≥Q .

Johnson et al. [8] studied the QST problem and showed that an α-approximation

algorithm for the k-MST problem can be adapted to obtain an α-approximation algorithm

for the Quota Steiner Tree problem. Using this result along with the 2-approximation for

k-MST by Garg [9] results in a 2-approximation algorithm and we will consider it as a

default algorithm denoted QST.

2.3.2 Budgeted and Partial Connected Dominating Sets

We now introduce two special cases of connected dominating set problem , their

algorithms and results as presented by Khuller et al. in [10].

Budgeted Connected Dominating Set

In the budgeted connected dominating set problem (BCDS), given an undirected graph

G=(V ,E) , and an integer (budget) k , find a subset S⊆V of at most k

vertices such that the graph induced by S is connected, and the number of vertices

dominated by S is maximized. Algorithm 4 .

Partial Connected Dominating Set

In the partial connected dominating set problem (PCDS), given an undirected graph

G=(V ,E) and an integer quota n ' , find a minimum size subset S⊆V of

vertices such the graph induced by S is connected, and S dominates at least

n ' vertices. Algorithm 5 .

Algorithms

N. Theodorou 26

Τhe Maximum Rooted Connected Expansion

In broad lines, the algorithmic idea behind those two algorithms is to compute a greedy

dominating set and its corresponding profit function and then obtain a connected

subgraph via an approximation algorithm for the Quota Steiner Tree problem with

different elements as an input. We formally present the algorithms of the previous

problems and the algorithm for finding a greedy dominating set (GDS) Algorithm 4.

Algorithm 4 Greedy Dominating Set

Input: Graph G=(V ,E) .

Output: Dominating Set D and profit function p : V→ℤ∪{0}.

1: D←∅

2: U←V

3: for all v∈V do

4: p(v)←0

5: end for

6: while U=∅ do

7: v←argmaxv∈V ∖D|N U (v)| → NU (v) is the set of neighbors of v ,

 including itself, in the set U

8: C v←NU (v)

9: p(v)←|C v|

10: U←U ∖NU (v)

11: D←D∪{v }

Algorithm 5 Greedy Profit Labeling Algorithm for PCDS

Input: Graph G=(V ,E) and n '∈ℤ∪{0}.

Output: Tree T with at least n ' Coverage.

1: Compute the greedy dominating set D and the corresponding profit function

 p:V→ℕ using the Algorithm 4

2: Use the 2-approximation for QST problem [9] on the instance (G , p) to obtain

 a tree T with profit at least n '

N. Theodorou 27

Τhe Maximum Rooted Connected Expansion

Algorithm 6 Greedy Profit Labeling Algorithm for BCDS

Input: Graph G=(V ,E) and k∈ℕ .

Output: Tree ~
T with cost at most k .

1: Compute the greedy dominating set D and the corresponding profit function

 p:V→ℕ using the Algorithm 4

2: Opt← number of vertices dominated by an optimal solution → Guess using
binary search between k and n

3: Use the 2-approximation for QST problem [9] to obtain a tree T with profit at least

(1−
1
e
)Opt

4: Use the dynamic program to find ~
T ,the best subtree of T having at most k

vertices

Results and discussion

As we can see these algorithms give for the Partial Connected Dominating Set problem

a 4 ln∆+2+o(1) - approximation and for Budgeted Connected Dominating Set a

1
13
(1−

1
e
) - approximation. We can see that those problems are modified to be

reduced in a Quota Steiner Tree problem and be solved that way ,which as we will

discuss later is a very well know approach in those special cases of connected

dominating sets. This reduction into QST will always give good approximation ratios but

our question is how much of an approximation trade off is there due to the transposition

of those problems. The question we ask ourselves is, if we can find improved greedy or

local algorithms for those problems with better approximation.

2.3.3 K-Minumum Spanning Tree and Prize Collecting Steiner Tree

We now introduce two special cases problems of minimum spanning trees, their

connection and results. We will also present the outline of k-MST algorithm. Both of this

algorithms will be addressed for their rooted versions.

Prize Collecting Steiner Tree (Goemans-Williamson Minimization Problem)

Given a graph G=(V ,E) , a non-negative edge cost c (e) for each edge e∈E ,

a non-negative vertex prize p(v) for each vertex v∈V , and a specified root

vertex v0∈V . We will now consider the optimization problem based on this scenario

called the Goemans-Williamson Minimization problem :

N. Theodorou 28

Τhe Maximum Rooted Connected Expansion

Find a subtree T '=(V ' , E ') of G that minimizes the cost of the edges in the tree

plus the prizes of the vertices not in the tree, i.e., that minimizes :

GW (T ')=∑
e∈E'

c(e)+∑
v∉V '

p (v)

In [11], Goemans and Williamson present an O(n2 log n) time primal-dual

approximation algorithm for the rooted version of GW-Minimization that is guaranteed to

be within a factor of 2−
1

(n−1)
of optimal, where n=|V|.

K-Minumum Spanning Tree

Given an undirected graph G=(V ,E) with nonnegative edge costs and an integer

k , the k-MST problem is that of finding a tree of minimum cost that spans k

vertices of G . We refer to a tree that spans k vertices as a k-tree. Note that we

may assume that the edge costs satisfy the triangle inequality without loss of generality.

The k-MST problem was shown to be NP-hard by Ravi et al. in [12]. The rooted version

of the k-MST problem requires inclusion of a specific root node in the k-tree. As

observed in [13], solving the rooted and unrooted versions are essentially equivalent. As

we discussed previously Garg gave a 2-approximation algorithm for the (rooted) k-MST

problem based on the Goemans-Williamson Prize-Collecting Steiner Tree

approximation algorithm. Johnson et al. showed in [8] that any polynomial time α-

approximation algorithm for (rooted) k-MST, which applies GW, yields a polynomial time

α-approximation algorithm for (rooted) QST. Derived from their work we know that there

is a 2-approximation algorithm for Rooted Quota Steiner Tree (RQST) and we will name

it 2-RQST . We present the outline of an algorithm to the rooted version of the problem

for simplicity.

Algorithm

We used the definitions of the GW-minimization problem and Prize Collecting Steiner

Tree (PCTS) as preliminaries because they reduced the k-MST problem to the PCST

and used the GW-minimization algorithm to solve it. We now present the outline

Algorithm 7 for the k-MST problem whilst further definitions our found in [11].

Algorithm 7 Goemans-Williamson minimization for the k-MST rooted problem

N. Theodorou 29

Τhe Maximum Rooted Connected Expansion

Input: Graph G=(V ,E) with edge cost ce≥0 , a root r , the cost L of an
 optimal k-tree containing r , and a fraction a .

Output: Tree F ' containing r and at least ak nodes.

Discussion

As we have previously seen, many problems are being transposed to the Quota Steiner

Tree problem and its different cases. K-MST used a format of a Prize Collecting Steiner

Tree and GW-minimization algorithm that solves a special problem for this format. For

the same reason Sigalas et al. have used the GW-minimization algorithm since they

have reduced the problem of MRCE to a QST problem. As we have seen already

many problems have been reduced to QST problems due to the lack of good quality

approximation local and greedy algorithms derived from the MLST and CDS problems.

2.4 Related Combinatorial Optimization Problems

In the last section of this chapter we will formally present the connection between CDS

and MLST and a hard problem named Max Weight Budgeted Connected Set Cover

(MWBCSC) that uses the knowledge of specialized algorithms used on both of those

problems special cases. We will finally discuss the approach of combining algorithms for

enhanced optimization which is used regurarly in this field of research.

2.4.1 Connected Dominating Set and Maximum Leaf Spanning Tree

In this section we will formally introduce the important connection between those

problems and its proof. We will also re-address to the CDS problem to explain the

significance of the Connected Domination Number as described in [14].

Connected Domination Number

The connected domination number of a graph G is the minimum cardinality of CDS,

denoted by γc (G) . A CDS that has size equal to the domination number is called a

minumum CDS. The connected domination number is a classical subject studied in

graph theory for many years. Some interesting results are obtained in those ealier

efforts. The following is one example.

Let λ (G) denote the max leaf number of a graph G , which is the maximum

number of leaves in a spanning tree T s of G .

We present next theorem :

For any graph G of order n , γc (G)=n – λ (G) .

N. Theodorou 30

Τhe Maximum Rooted Connected Expansion

We present the proof of the previous theorem :

It is easy to see that for any tree T s , γc (T s)=|V (T s)|−λ(T s) . Moreover, a CDS for

a spanning tree T s of G is also a CDS for G . Therefore, γc (G)≤n−λ(G).

Now, consider a minimum CDS D of G . Let H be a spanning tree of G [D]

where G [D] is the subgraph of G induced by D . Connect H to every vertex

in V – D to obtan a spanning tree T s of G . Then, every vertex in V−D is a

leaf of T s . Conversly, every leaf of T s is in V−D . Otherwise, if T s has a leaf

x not in T –D , then D−{x} would be a CDS for T s and hence a CDS for

G , contradicting the minimality of D .

2.4.2 Max Weight Budgeted Connected Set Cover

Let us discuss now the approximation algorithm for the maximum weight budgeted

connected set cover (MWBCSC) problem as presented in [15]. Given an element set

X , a collection of sets S⊆2X , a weight function w on X , a cost function

c on S , a connected graph GS (called communication graph) on vertex set S

,and a budget L , the MWBCSC problem is to select a subcollection S ′⊆ S such

that the cost c (S ′)=∑
S∈S ′

c (S)≤ L , the subgraph of GS induced by S ′ is

connected, and the total weight of elements covered by S ' (that is ∑
x∈SS∈S ′

w(x)) is

maximized. We present a polynomial time algorithm that its performance ratio is

O((δ+1) log n) , where δ is the maximum degree of the communication graph

GS and n is the number of sets. This ratio can be improved to O(log n) if every

set has a cost at most half of the budget L/2. We will provide the set of algorithms for

the solution of this problem and later we will discuss which was their thought process on

approacing this problem. We omit defining how does profit and cost functions work due

to their relation with another mathematical subject called submodularity.

Algorithm

Here we formally describe the Algorithms 8,9,10 used to solve this problem.

Algorithm 8 Algorithm Defining Profit

Input: An instance (G ,c , L) .

N. Theodorou 31

Τhe Maximum Rooted Connected Expansion

Output: A (complete) set cover A and a profit function π on S .

1: A←∅ , F←X

2: for S∈S do

3: π (S)←0

4: while F≠∅ do

5: Select S∈S∖ A that maximizes ΔSw(A)/c (S)

6: π (S)←ΔSw(A) (marginal profit of S over A)

7: A←A∪{S }, F←F ∖F(S)

Algorithm 9 Selection of B

Input: The collection of sets A , cost function c : A→R , profit function π : A→ℝ
and budget L.

Output: A subcollection of sets B⊆ A .

1: R←0, B←∅ ,i←1

2: while R+c i≤ L and A≠∅ do

3: if S i∩F (OPT)≠∅ then

4: B←B∪{S i} , R←R+ci

5: i←i+1, A←A ∖{Si} (removes set S i from A , cause we added it into B)

8: Let Smax=argmax {π (S) : S∈S}

9: if π (B)<π (Smax) then

10: B←Smax

Algorithm 10 Main Algorithm For MWBCSC

Input: An instance (X ,S ,w , c ,GS , L).

Output: A collection of sets S ′⊆ S with cost at most L such that GS [S ′] is
connected.

1: Using Algorithm 8 to assign profit π on the sets of S .

2: Apply an α-approximation algorithm on instance (GS , c , π , L) to obtain a budgeted
node weighted Steiner tree T . Output S ′=V (T) .

2.4.3 Thoughts on previous algorithms

In computational complexity theory, a reduction is an algorithm for transforming one

problem into another problem. A sufficiently effiecient reduction from one problem to

another may be used to show that the second problem is at least as difficult as the first.

N. Theodorou 32

Τhe Maximum Rooted Connected Expansion

Intuitively, problem A is reducible to problem B if an algorithm for solving problem B

efficiently (if it existed) could be used as a subroutine to solve problem A efficiently.

When this is true, solving A cannot be harder than sovling B. “Harder” means having a

higher estimate of the required computational resources. We can also use this property

if problem A does not have efficient approximation algorithms for its solution.

Since we introduced the connection between Connected Dominating Set and Maximum

Leaf Spanning Tree we understand that the algorithms built to solve those problems are

entirely similar or have some steps that may be the same. As we have noticed CDS can

be solved with a local approach 1-hop and MLST with 1-LOT. These approaches are so

closely related to the local optimality that make us think that those problems could be

solved the same way.

As we said in previous discussions in this chapter, we can transpose a part of the

problem A to another B and use the respective algorithm of B as a subroutine to A .

Transposing means that we change the structure of a problem A into another B without

changing neither the input nor the output. A great example is the Budgeted and Partial

Connected Domiting Sets that use the Quota Steiner Tree algorithm as the second

subroutine and applying it in a greedy dominating set obtained by the first subroutine.

This partial transposition gives more efficient approximation ratio than trying to re-

structure the initial algorithms used for CDS problems i.e 1-hop into solving BCDS. We

further explain that in general when we solve a problem A with its respective algorithm

X there is a propabiliy of improving or restructuring X into giving better results. However

what we presented in this chapter shows that when we divide problem A into B and C

which are solved by the combination of Y and Z respectively then we usually get better

results than X. There is also the inability to solve efficiently special case problems with

the main general algorithms. Suppose we have a newly defined problem D is a special

case of A i.e BCDS of CDS. We can see that restructuring X solving A cannot

effieciently solve BCDS. Since we have this issue we suggest that transposing

problems is a great way of bypassing the general algorithms of all kinds (local, greedy)

into new combinatorial algorithms. Our goal and research is to create a specified

approach into using this tool of transpozing problems and combining different algorithms

so as to optimize and solve old and newly defined problems.

Considering the MLST we can see that there is a silver lining between greediness and

local optimality as we have presented previously in this chapter. The results are very

good and unfortunately are not yet being used as subroutine in transposed problems,

N. Theodorou 33

Τhe Maximum Rooted Connected Expansion

but they are used as heuristics on top other algorithms results. Nontheless we later in

chapter 3 are using the idea of greedy leafy forest for our algorithm and we suggest of

using the 1-LOT, as a heuristic. The idea of heuristics is thouroughly analyzed in [16].

Now as the combination or selection of algorithms that solve other cases occurs as an

approach in solving problems with “similar” difficulty , we can see that the k-Minimum

Spanning Tree is broken into parts and solved by other problems : GW-minimization on

a Prize Collecting Steiner Tree. This means that we can bypass the whole internal

approach of solving a problem if we can transpose every part of it into other problems

more effieciently solved. The point is we have to research and have knowledge of the

little intricacies so as to be able to do that without loss of quality in our results due to this

transpositison. Finally we have addressed the Max Weight Budget Connected Set

Cover problem which is the finest approach to solving a problem by considering every

part of it as a different problem. The peek of their research is that in their attempt to

solve it this way they were forced to remodel some of the algorithms and problems. The

explanation of their thought process in their paper is of great significance in studying

and trying to contribute into the domain of graph theory and its problems.

N. Theodorou 34

Τhe Maximum Rooted Connected Expansion

3. MAXIMUM ROOTED CONNECTED EXPANSION

We now define the Maximum Rooted Connected Expansion problem its related work,

algorithm, ideas and our contribution.

3.1 Maximum Rooted Connected Expansion

We now present the thought process , algorithms and results of Lamprou et al. for the

MRCE problem.

3.1.1 Problem Statement

Given a graph G and a root node u0 , we wish to find a subset of vertices S
such that S is connected, S contains u0 and the ratio N [S]/|S| is
maximized, where N [S] denotes the closed neighbourhood of S , that is N [S]
contains all nodes in S and all nodes with at least one neighbour in S .

Problem Statement 3 (Maximum Rooted Conncected Expansion, MRCE)

Input : A graph G=(V ,E) and a root v0 .

Output : The MRCE number : MRCE (G ,v0)= max
S∈con(G, v0)

|N [S]|
|S|

,

where con(G, v0)←{S⊆V (G)} where v0∈S and S is connected.

3.1.2 Preliminaries

A graph G is denoted as a pair (V (G) ,E(G)) of the nodes and edges of G .

The graphs considered are simple (neither loops nor multi-edges are allowed),

connected and undirected. Two nodes connected by an edge are called adjacent or

neighboring. The open neighborhood of a node v∈V (G) is defined as

N (v)={u∈V (G): {v ,u}∈E (G)} , while the closed neighborhood is defined as

N [v]={v }∪N (v) . For a subset of nodes S⊆V (G) , we expand the definitions of

open and closed neighborhood as N (S)=N (v)v∈S∖ S and N [S]=N (S)∪S . The

degree of a node v∈V (G) is defined as d (v)=|N (v)|. The minimum (resp.

maximum) degree of G is denoted by δ(G)=minv∈V (G)d (v) (resp.

Δ(G)=max v∈V (G)d (v) .

3.1.3Algorithm

Their algorithm closely follow the work in [10] for the BCDS problem. In broad lines,

their algorithmic idea is to compute a greedy dominating set and its corresponding profit

function and then obtain a connected subgraph via an approximation algorithm for the

N. Theodorou 35

Τhe Maximum Rooted Connected Expansion

QST problem. Evidently, both MRCE and BCDS require finding a connected subset

S⊆V (G) with many neighbors. Nonetheless, while in BCDS we only care about

maximizing |N [S]| , in MRCE we care about maximizing
|N [S]|
|S|

 with the additional

demand that v0∈S . In order to deal with this extra requirement, they also addressed

the rooted version of QST, namely the Rooted Quota Steiner Tree (shortly RQST)

problem. Algorithm 4, namely the Greedy Dominating Set (shortly GDS) algorithm,

describes a greedy procedure to obtain a dominating set and a corresponding profit

function for the input graph G. At each step, a node dominating the maximum number of

the currently undominated vertices is chosen for addition into the dominating set.

Algorithm 11, namely the Greedy MRCE algorithm, makes use of GDS to obtain a

dominating set for a slightly modified version of G, namely a graph G , which is the

same as G with the addition of n2 leaves to node v0 . Then, the algorithm outputs a

connected subset T i (containing v0) for any possible size i . Finally, the subset

yielding the best MRCE ratio is chosen as the approximate solution. In terms of

notation, we refer to the approximation Algorithm 7 as the 2-RQST (G ,v0 , p , q)

algorithm with a graph G , a root node v0∈V (G) , a profit function

p:V (G)→N∪{0} and a quota q as input. We omit including an edge cost

function, since in our case all edges have the same cost, that is, cost 1. Furthermore, let

[n]← {1,2,3, .. . , n}.

Now, consider a connected set S i of size i (which contains v0) yielding the

maximum number of dominated vertices, i.e. S i∈argmaxS :S∈con(G, v0) ,|S|=i
|N [S]| . We then

denote OPT i←|N [Si]| and use it in the quota parameter of 2-RQST at line 4 of

Greedy MRCE. Yet, in the general case, we do not know OPT i and also such a

quantity may be hard to compute. To overcome this obstacle, notice that OPT i∈[i , n]

and therefore we could guess OPT i , e.g., by running a sequential or binary search

within the loop of Greedy MRCE and then keeping the best tree returned by 2-RQST .

Notice that such an extra step requires at most a linear time overhead. Therefore, the

running time of Greedy MRCE remains polynomial and is dominated by the running time

of 2-RQST . For presentation purposes, we omit this extra step and assume OPT i is

known for each i∈[n] .

N. Theodorou 36

Τhe Maximum Rooted Connected Expansion

Algorithm 11 Greedy MRCE

Inputx: A graph plus node pair (G ,v0).

Output: An MRCE solution S and its corresponding ratio R ,

where (MRCE solution = set S , ratio = number R).

1: Construct G' : same as G with extra n2 leaves attached to v0

2: (D, p)←GDS (G ') {Algorithm 4 Greedy Dominating Set}

3: for ∀ i∈[n] do

4: T i←2−RQST (G ,v0 , p ,(1−
1
e
)OPT i) {Algorithm 7 GW}

5: Let is=argmaxi∈[n]
|N [T i]|

|T i|

6: S←T is , R←
|N [T is]|

|T is|

7: return S , R

3.1.4Results

Lamprou et al. have studied MRCE for several graph cases , interval , split and general.

In this section we only analyzed their algorithm for general graphs. They gave a

constant-factor approximation algorithm by exploring the relation of MRCE with BCDS

[15] which gives a
1
6
(1−(

1
e
)) -approximation. The major open question is to improve

the approximability of the problem on general graphs without applying BCDS

techniques, but using rather MRCE properties.

3.2 Our Contribution

In this section we explain our thought process on how we constructed the algorithm, our

experimental results and our intuition into providing even better approximation.

3.2.1 Approaching the problem

Since our study on local search approximation algorithms for CDS and MLST, 1-hop

and 1-LOT respectively, we considered applying them to our problem due to their good

approximation ratios. Furthermore, due to the fact that MRCE requires a root node v0

we intuitevely thought that local search will give even better approximation ratio. Our

belief was that since we already have the root node of our set S ,the local search to

N. Theodorou 37

Τhe Maximum Rooted Connected Expansion

find the best S would be easier by just expanding it step by step into more distant

neighborhoods if they would improve the MRCE number (ratio). Since we have seen

transposing problems into tree problems i.e QST is easily modeled and providing good

results, we decided to apply 1-LOT. However in order to apply 1-LOT we were forced to

find a Maximum Leaf Spanning Tree TOPT , without disconnecting nodes from v0 .

Then we should try and find a subset S of this T opt where v0∈S . Unfortunatelly

we have observed that it is not necessary to find a T opt in order to find a subset S

with better ratio and we provide a proof of non-existance through a contradiction

example shown in Figure (5) below. Our assumption is that the MRCEOPT is not

necessarily found in MLSTOPT .

 (G) (T1) (Topt)

Figure (5): Proof of non-existance

Proof of non-existance

Considering T1 an arbitrary spanning tree of G and TOPT a maximum leaf

spanning tree of G . We can easily see that if v0 is our root node and the best set

S={v0 , v2} in T1 we get RT1
=8/2 , where RT1

=
|N [S]|
|S|

and with the same S

in TOPT we get RTOPT=7 /2 , thus RT1
>RT OPT proving our assumption.

We then considered the greedy approach on trees utilizing the Max Leafy Forest

properties and algorithm. Our thought was to find leafy subtrees and connect them with

the subtree of v0 , T v0
. Although the properties of leafy subtrees were very important

we could prove a good approximation ratio only for a maximum leaf spanning tree,

which for MRCE did not provide an approximation to the MRCEOPT solution as we

proved previously. However we kept the idea of leafy subtrees in our algorithm as we

are iteratevily searching for high degree nodes that we handle them as stars.

N. Theodorou 38

Τhe Maximum Rooted Connected Expansion

3.2.2 Algorithm

Since our algorithm had to be tweaked to handle high degree nodes and not leafy

subtrees, we considered labeling as it was modeled in Budgeted problems by a profit

function p and applied on all nodes in G in order to connect highest degree nodes

with v0 resulting in a good ratio R . However labeling is pretty costly in

approximation and we managed to bypass it by the iterative property of the algorithm.

We will now present some preliminaries and then formally present our Algorithm 12.

We will finally discuss each step and its respective properties that cumulative improve

our approximate solution.

Preliminaries

Early in our algorithm and in every iteration we create a set which we denote a set of

high degree nodes H⊆G(V) .

We also want to check the MRCE number otherwise ratio denoted by R=
|R [S]|
|S|
.

Set H is handled as a list. Furthermore , when we denote H not traversed, we

mean that the list iteration of set H has not ended. Also, when we add a node v i

back in H it goes on the end of the list of H .

Finally shortest-path function with (v i , S) as input, finds the path between v i and

a node ui∈S with minimum distance.

Algorithm

We will now describe the final version of our algorithm.

Algorithm 12 Greedy Iteration MRCE

Input:A graph and a node pair (G ,v0).

Output: An MRCE solution S and its corresponding ratio R .

1. S←∅ , H←∅

2. Rmax←RS , S←{v0}

3. Find H={v i ,…,vk} , where d (v i)≥Rmax

4. while H not traversed do

5. shortest-path (v i , S)

6. H←H−{vi} (remove v i from H)

7. if RS∪v i>Rmax then

N. Theodorou 39

Τhe Maximum Rooted Connected Expansion

8. Rmax←RS∪vi , S←S∪{v i}

9. H←H−{x } (remove x from H) , where x node with d (x)<Rmax

10. else

11. add v i in the end of the list H

12. end while

13. if Rs<Rmax then

 RS←Rmax , repeat from line 2

14. else

15. return S , Rmax

We will shortly analyze our algorithm through previous ideas. We kept the leafy subtree

idea by finding in every iteration the high degree nodes. Those high degree nodes are

conceived as leafy singleton subtrees. We connect all those high degree nodes with our

greedy connection function shortest-path. Despite shortest path being greedy and

should generally give us overall worst approximation, it has a great quality. Shortest-

path finds a minimum distance connected dominated set S . Minimizing set S

means that our denominator is as small as possible thus improving R . Our nested

iteration handles H and tries to connect high degrees in H with v0 . This alone

is being greedy as if we were only labeling our nodes thus not necessarily giving better

approximation than just labeling. However in combination with the outer iteration we get

a new H that omits reduntant, lower degree nodes, giving better and better

approximation in every iteration. Basically our concept is to continuously increase the

lower bound of what we call high degree nodes until we cannot profitably connect them

to v0 in comparison with its previous iteration. Due to shortest-path function we can

see that set S includes previous iterations high degree nodes, despite of not being

neither the source Sv0
 nor goal v i∈H variables of the function. Our experimental

analysis gave us great examples of what we are currently presenting.

3.2.3 Results and Future Work

We have implemented a program to test our algorithm and make our expiremental

analysis. Our expiremental analysis suggests a 3-approximation algorithm solving the

MRCE problem. We have tested our algorithm in various cases of general graphs

considering high, medium, low density graphs. We then experimented with different size

of datasets where number of nodes in G is n , considering bulk n≥1000, medium

N. Theodorou 40

Τhe Maximum Rooted Connected Expansion

150<n≤400, and small 10<n<50. Considering future work we are currently working

on the theoretical analysis of our algorithm which suggests that our algorithm gives at

least a 3-approximation ratio. The outline of the analysis is that if we could connect

S={v0} denoted Sv0 with other neighboring nodes of high degree that do not have

common neighbors with eachother then the final set would be optimal thus giving us

optimal ratio ROPT . In reality we have to connect this set with distant high degree

nodes with an appropriate path and then we would gain the optimal ratio ROPT .

However we connect Sv0
 with v i∈H with shortest-path which is not the appropriate

path. We denote the appropriate path bulkiest-path defined by its set SB . We assume

that the length of bulkiest-path is equal to the length of shortest-path +1, but the nodes

included in SB are of the highest possible degree, meaning they have greater degree

than those in shortest-path set SS resulting in a greater ratio ROPT despite

|SB|=|SS|+1. Our algorithm gives RS=
|N [SS]|

|SS|
and we assume that the optimal

solution is RB=
|N [SB]|

|SB|
=ROPT . However we are very close to prove that

RS
RB
≥½.

That means we hope we can prove a 2-approximation algorithm.

We also have an idea of implementing 1-LOT as a heuristic on top of our results of

Greedy Iteration MRCE which as we have tested experimentally might give a small

improvement in this 2-approximation expected algorithm. Generally as we have studied

[16], by adding heuristics in those kind of problems results in small improvements in

approximation.

N. Theodorou 41

Τhe Maximum Rooted Connected Expansion

4. CONCLUSIONS

The main purpose of this thesis was to conduct a survey on some Graph Theory
problems and analyze them. One of these problems was the newly defined Maximum
Rooted Connected Expansion that is of great practical importance in data prefetching.
Since the other problems have been extensively analyzed by the research community
and have greatly refined algorithms for their approximate solution as we presented
here, we were able to contribute to the MRCE with new ideas and an algorithm.

In the first part of the thesis we presented many important Graph Theory problems by
explaining their idea behind their solution, their algorithms and results. We did that as a
roadmap for the readers so as to understand the basics of the problems and their
connection between them. We formally presented their algorithms in order to explain
how their techiniques can be used into eachother. Despite being presented as a study
of CDS and MLST problems and their special cases, the presentation is unfolded in a
very specific way so that the reader would follow our thought process into creating a
new algorithm for a different problem. Most of the ideas behind their connection are
mentioned at the end of each respective section and others possibly occur while
studying this thesis thoroughly. We also presented the MWCSC problem as an example
of a study that utilizes the structures and algorithms of the aformentioned problems to
solve this.

The second part was a formal presentation of the main subject of the thesis the MRCE
problem. We thoroughly described how the problem was defined and its practical
application. We then describe our algorithm and how it follows a completely different
path than the one Lamprou et al. followed. We lightly compared those two algorithms
suggesting our algorithm gives better approximation, but our main purpose was to
introduce new ways of approaching the problem.

Finally, apart from the theoretical standpoint, which we considered, we must not surpass
the effect of the algorithms on applications. For that reason although we did extensive
theoritical analysis in this thesis, we also implemented the algorithm so as to give some
experimental results. Our purpose was to suggest that we need to formally implement
as many of those problems as possible so as to compare them and their results in a
more practical way. The results could lead to useful conclusions and be of use to the
respective research communities.

N. Theodorou 42

Τhe Maximum Rooted Connected Expansion

REFERENCES

[1] F.V.Fomin, F.Giroire, A. Jean-Marie, D.Mazauric, N.Nisse, To Satisfy Impatient Web surfers is Hard,

2012.

[2] I.Lamprou, R.Martin, S.Schewe, I.Sigalas, V.Zissimopoulos, Maximum Rooted Connected

Expansion, 2018.

[3] S.Guha and S.Khuller, Approximation algorithms for connected dominating sets. Algorithmica, 374–

387, 1998.

[4] S.Khuller and Yong, Revisiting Connected Dominating Sets:An Optimal Local Algorithm, 2001.

[5] M.R.Garey, D.S.Johnson, Computers and Intractability: A guide to the theory of NP-completeness,

1979.

[6] R.Ravi and H.-I.Lu, The Power of Local optimization, 1996.

[7] R.Ravi and H.-I.Lu, Approximating Maximum Leaf Spanning Trees in almost linear time, 1998.

[8] D.S.Johnson, M.Minkoff and S.Phillips, The prize collecting Steiner tree problem: theory and practice,

SODA, 760–769, 2000.

[9] N.Garg, Saving an epsilon: a 2-approximation for the k-MST problem in graphs, STOC, 396–402,

2005.

[10] S.Khuller, M.Purohit and K.K.Sarpatwar, Analyzing the Optimal Neighborhood: Algorithms for

Budgeted and Partial Connected Dominating Set Problems, 2013.

[11] M.X.Goemans and D.P.Williamson. The primal-dual method for approximation algorithms and its

application to network design problems, 1997.

[12] R.Ravi, R.Sundaram, M.V.Marathe, D.J.Rosenkrantz, and S.S.Ravi, Spanning trees short and small,

1994.

[13] B.Awerbuch, Y.Azar, A.Blum, and S.Vempala, Improved approximation guarantees for minimum-

weight k-trees and prize-collecting salesmen, 1995.

[14] D.-Z.Du and P.-J. Wan, Connected Dominating Set, Theory and Applications, Springer.

[15] Y.Ran, Z.Zhang, K-I. Ko and J.Liang, An approximation algorithm for maximum weight budgeted

connected set cover, 2015.

[16] Y.Wang, S.Cai, and M.Yin, Two Efficient Local Search Algorithms for Maximum Weight Clique

Problem , 2016.

N. Theodorou 43

	1. INTRODUCTION
	1.1 Introduction
	1.2 Preliminaries
	1.2.1 Graph Theory
	1.2.2 Surveillance Game

	2. STUDY ON GRAPH THEORY
	2.1 Connected Dominating Set
	2.1.1 Problem Statement
	2.1.2 Algorithms
	2.1.3 Results and Discussion

	2.2 Maximum Leaf Spanning Tree
	2.2.1 Problem Statement
	2.2.2 Local Optimum Tree
	2.2.3 Maximum Leafy Forest

	2.3 Special Cases and Results
	2.3.1 Quota Steiner Tree
	2.3.2 Budgeted and Partial Connected Dominating Sets
	2.3.3 K-Minumum Spanning Tree and Prize Collecting Steiner Tree

	2.4 Related Combinatorial Optimization Problems
	2.4.1 Connected Dominating Set and Maximum Leaf Spanning Tree
	2.4.2 Max Weight Budgeted Connected Set Cover
	2.4.3 Thoughts on previous algorithms

	3. MAXIMUM ROOTED CONNECTED EXPANSION
	3.1 Maximum Rooted Connected Expansion
	3.1.1 Problem Statement
	3.1.2 Preliminaries
	3.1.3 Algorithm
	3.1.4 Results

	3.2 Our Contribution
	3.2.1 Approaching the problem
	3.2.2 Algorithm
	3.2.3 Results and Future Work

	4. CONCLUSIONS
	REFERENCES

