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ABSTRACT

The dataflow computational model is an alternative to the von-Neumann model. Its most
significant aspects are, that it is based on asynchronous instructions scheduling and ex-
poses massive parallelism. This thesis is a review of the dataflow computational model,
as well as of some hybrid models, which lie between the pure dataflow and the von Neu-
mann model. Additionally, there are some references to dataflow principles, that are or
are being adopted by conventional machines, programming languages and distributed
computing systems.

SUBJECT AREA: Dataflow Model

KEYWORDS: dataflow computational model, dataflow programming, dataflow architec-
ture, control-flow, semantics, data driven, demand driven, asynchronous scheduling, von
Neumann, distributed computing, programming languages, coordination languages, par-
allel programming, implicit parallelism



ΠΕΡΙΛΗΨΗ

Το υπολογιστικό μοντέλο dataflow είναι ένα εναλλακτικό του von-Neumann. Τα κυριότερα
χαρακτηριστικά του είναι ο ασύγχρονος προγραμματισμός εργασιών και το ότι επιτρέπει
μαζική παραλληλία. Αυτή η πτυχιακή είναι μία μελέτη αυτού του μοντέλου, καθώς και με-
ρικών υβριδικών μοντέλων, που βρίσκονται ανάμεσα στο αρχικό μοντέλο dataflow και στο
von-Neumann. Τέλος, υπάρχουν αναφορές σε μερικές αρχές του dataflow, οι οποίες έχουν
υιοθετηθεί σε συμβατικές μηχανές, γλώσσες προγραμματισμού και συστήματα κατανεμη-
μένων υπολογισμών.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μοντέλο Dataflow

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: υπολογιστικό μοντέλο dataflow, προγραμματισμός σε dataflow, αρχιτεκτονικές
dataflow, control-flow, σημασιολογία, data driven, demand driven, ασύγχρονος προγραμματισμός,
vonNeumann, κατανεμημένα συστήματα, γλώσσες προγραμματισμού, γλώσσες συντονισμού,
παράλληλος προγραμματιμός, παραλληλία
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PREFACE

In recent years, research on dataflow has been diminished Lately however, interest in the
dataflow principles and in how they can be used in other areas, has spiked, especially in
the field of big data.

The aim of this thesis is, to serve as a handbook of the most important research on the
dataflow model and its variants. In particular, it provides an introduction of dataflow to
individuals unfamiliar with this model - something new, since all the surveys on dataflow
presuppose a certain familiarity. Lastly, some examples are given, of how dataflow prin-
ciples have influenced and how they could influence other fields.



The Dataflow Computational Model And Its Evolution

1. INTRODUCTION

The dataflow computational model is an alternative to the von-Neumann model. In the
von Neumann model a program is represented as a sequence of instructions, and at each
step of the execution, the program counter determines which instruction will be executed
next. In dataflow, a program is represented as a directed graph, and there does not exist
a complete order in the execution of the instructions. Many instructions could be executed
simultaneously. As such, there are fundamentally different evaluation methods.

The aim of this survey is to provide insight into all these novelties of dataflow, without
presupposing any knowledge on behalf of the reader. This is the structure of the thesis:

In the second chapter, the reader is introduced to the notion of computational models and
to how each of these models defines a unique program representation and computation
organization.

In the third chapter, dataflow graphs are presented. There are several ways to define
a dataflow program, and each definition comes with its own architecture and evaluation
method. However, all these evaluation methods have one principle in common; they are
data driven, i.e. all instructions that can be executed, are executed.

In the fourth chapter, operator nets are presented. Operator nets are a special type of data-
flow graphs, with their own semantics. They are evaluated in a demand driven manner,
that is to say, no redundant computations are made. This allows for more expressiveness
than in data driven dataflow.

In the fifth chapter, a comparison is made between dataflow and von Neumann style. Each
model has its own strengths and weaknesses; in dataflow massive parallelism is exposed,
while in von Neumann sequential code is executed very efficiently. There have been many
attempts to combine these two models, and some of these hybrids are presented.

In the sixth chapter, some dataflow languages are presented, as well as some influences
of dataflow in conventional procedural languages.

In the seventh and last chapter, we see how dataflow can provide a formal framework for
distributed computing systems. Some of the newest ones, that have adopted many of the
dataflow principles, are briefly mentioned.

P. Repouskos 13
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2. COMPUTATIONAL MODELS

In this thesis, we describe a different approach to computing and computer architecture;
the dataflow approach. Before we start examining this model, in which parallelism is
naturally and implicitly expressed, it would be useful to juxtapose it and the von Neumann
style and focus on how different ways to evaluate programs can affect our approach to
architecture and program organization [73].

2.1 Synopsis of Computational Models

2.1.1 Control Flow

The control flow is a model familiar to all, especially the traditional von Neumann control
flow, with a single thread of control.

A program is represented as a series of instructions, each one consisting of an operator
and operands, which are either literals or references. After an instruction has been ex-
ecuted, the result is stored in memory and control is passed implicitly in the next instruction
in sequence. There are of course ways to explicit transfer control to a specific instruction,
e.g. with the GOTO command.

There are also parallel flow models, with more than one thread of control, as for example
in Unix through the fork system call. The system must also provide ways to synchronize
these control threads, e.g. semaphores. But even in parallel control flow, the flow of
control is implicitly sequential.

2.1.2 Data Flow

In data flow, the programs are represented as directed graphs. Vertices denote instruc-
tions and arcs represent data dependencies. An instruction is executed when it becomes
enabled, that is when all arguments are known, or more concretely when it has sufficient
data on all its input arcs. Several instructions can be executed at any time.

There are three key differences from the control flow model:

1. Flows of control are tied to the flow of data; data availability determines which in-
struction(s) will be executed next.

2. Partial results are directly passed from one instruction to its successors as data
tokens.

3. There is no concept of shared memory. When a token is consumed by a node, it
is removed from the input arc, and its value is no longer available as input for any
other instruction.

2.1.3 Reduction

In reduction, programs are built from nested expressions and are mathematically equival-
ent to their result. For example, consider the following definition:

P. Repouskos 14
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a = (5 · b ) + 9

A demand for the result of ”a” is a demand for ”a” to be written in a simpler form. Concep-
tually, we can view this evaluation as function application, i.e. calling the definition of ”a”.
To avoid unwanted indeterminacy, we allow only one definition for ”a” (single assignment
rule), so every demand for it yields the same result (referential transparency). Each in-
struction, when being executed, can manipulate a separate copy of the definition (string
reduction), or all instructions accessing a particular definition, can manipulate references
to that definition (graph reduction).

As an example, lets examine the string reduction program for the previous definition. To
make it more apparent that the definition is built from nested expressions, let’s rewrite it
at an instruction level, in prefix notation:

a = (+ x 9)
x = ( · 5 b )

and assume that b holds the value 4. When a demand for the value of ”a” arrives, we
overwrite the reference of ”a” with its definition:

a ⇒ (+ x 9)

Now, we need to create a demand for the value of x:

(+ x 9) ⇒ (+ ( · 5 b ) 9)

And one more step for the value of b:

(+ ( · 5 b ) 9) ⇒ (+ ( · 5 4) 9) ⇒ 29

Essentially, when we want to compute a function, we create demands for its missing ar-
guments. The key points to note are:

1. A program is built from nested expressions (instructions, arguments, etc. are con-
sidered expressions).

2. There is no notion of an update operation.

3. The sequencing constraints are those implied by demands.

4. A demand does not necessarily return a value; it may as well return a complex ar-
gument, e.g. a function as input to a higher order function.

P. Repouskos 15
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2.2 Computation Organization

After describing some basic principles of these three major computing models, we should
examine how the computation itself progresses, i.e. how the sequencing and execution
of instructions affect and define the computation, organizing it in a series of successive
states.

The phases we are interested in are the selection phase, where the set of instructions for
possible execution is determined, the examination phase, in which it is determined if an
instruction can be executed (firing rule in the terminology of dataflow, as in Chapter 3),
and the actual execution phase.

2.2.1 Control Driven

This computation organization belongs in the control flow model. At every stage, the pro-
gram counter selects, which instruction will be executed next and it happens automatically.
The results are communicated through shared memory and the stages of the computation
are represented by the contents of this shared memory.

2.2.2 Data Driven

Data driven or availability driven denotes computation organizations, such as those de-
scribed in Chapter 3.

Conceptually, we can imagine that every instruction (node) has a dedicated PE. The ex-
amination phase consists of a firing rule; we will examine some variations, but all of them
have the following principle in common:

An instruction can be executed, if all its arguments are available. Otherwise, it re-
mains dormant.

The result is not stored in memory, but is passed directly to the instruction’s successors.

The advantage of data driven computation is the parallelism it exposes. Two disadvant-
ages are the overhead due to the asynchronous parallelism [26] and the computation of
perhaps unneeded arguments.

2.2.3 Demand Driven

Demand driven denotes the computation organization, in which an expression is evalu-
ated, only if a demand has been created for the value it produces. If the instruction can
be executed, it is. If some argument is missing, then the system creates a demand for it.

The advantage in demand driven computation is that only what is needed to be computed
to produce the final result, is computed [43]. Unneeded instructions are not executed. A
disadvantage is that the propagation of demands can be expensive.

P. Repouskos 16
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3. DATA DRIVEN DATAFLOW

3.1 Abstract Dataflow

3.1.1 Acyclic Dataflow Graphs

In the pure dataflow execution model, a program is represented by a directed graph [4, 31],
where the nodes (also known as actors) denote primitive instructions, e.g. arithmetic
or comparison operations, and the edges (or arcs) denote data dependencies between
operations. As an example, Figure 3.1 shows the acyclic dataflow program graph for the
following expression. The program is written following the syntax of the dataflow language
Lucid [75].

( x + y ) / c
where

x = a − b ;
y = 4 ∗ c ;

end

Conceptually, arcs behave as unbounded first-in, first-out (FIFO) queues, along which
data travels as tokens. Input arcs are those flowing towards a node, while those flowing
away, are called output arcs. A node executes (or fires) when a token is available in each
input arc (firing set). Upon firing, a token is consumed from each input arc, a result is
computed and a token containing this result is produced on each output arc. After firing,
the actor waits till tokens are once again available in all input arcs. When an arc forks,
the token is copied and sent to both directions. A program terminates, when there is no
longer an actor that can fire.

a b

s1 : s2 :

s3 :

s4 :

c

+

×4−

÷

Figure 3.1: An Acyclic Dataflow Graph

P. Repouskos 17
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Notice that by scheduling instructions for execution based on the availability of operands
(data-driven evaluation), unless implied by data dependencies, there is no strict order to
their execution; one may fire before an other or they may fire simultaneously. For instance,
in Figure 3.1 the nodes s1 and s2 have no data dependency between them, so they can
fire simultaneously. However, since s3 is data dependent on s1 and s2, it must wait for
their execution to end. This stands in contrast to the classic von Neumann model, where
the scheduling of instructions for execution is decreed by the program counter, leading to
prescribing a specific execution order, inherent to assignment based programs.

Thus, the first key property of the dataflow approach comes to light: massive parallelism.
The implied parallelism by using data dependencies as a scheduling mechanism, can
clearly provide a substantial speed improvement; two nodes, unless there is an explicit
data dependency between them, may fire simultaneously (spatial parallelism or structural
parallelism). Furthermore, if we provided many sets of input (e.g. many values for a, b, c
in Figure 3.1), computations for the second evaluation of the program could begin before
those for the first evaluation finished. This is known as temporal parallelism or pipelined
dataflow.

Another key point is determinacy; the results are independent from the order in which
potentially parallel nodes fire, or more concretely, for a given set of inputs, a program will
always produce the same set of outputs [4, 31, 50]. What leads to this property is that data
tokens travel in ordered queues and that the operation of every actor is functional - a result
of an operation is purely a function of its input values. This is because data is never mod-
ified (new data tokens are created as output of a firing), so the nodes are side-effect free
and because of the absence of a global data store there is locality of effect. In concurrent
execution, determinacy leads to further speed improvements, since concurrency-reducing
synchronization to avoid time dependent errors is not required. However, determinacy,
although a desired property, is in itself a restriction [31]. For instance, a rooms booking
service, can give the last room to only one customer, even if many apply for it at the same
time. Some research done on nondeterminate behavior will be presented later.

3.1.2 Conditional and Loop Dataflow Graphs

In order to build conditional and loop program graphs, we need to introduce two control op-
erators: switch and merge. Their usage is demonstrated through the following examples,
found in [4]. First, consider the following expression and its equivalent program graph in
Figure 3.2:

if x < y then x + y else x − y

The initial input tokens provide data input to the switches and to the predicate operator.
In turn, the predicate operator yields a boolean value which serves as control input to all
switches and merges. The switch operator routes its data input to the appropriate arc,
according to its control input’s value. The merge operator, has two data input arcs labeled
True and False and a control input. According to the control input’s value, it reproduces
the data input token from the True or False side to its output arc.

To realize iterations, we must introduce cycles in the program graphs. The program in Fig-

ure 3.3 computes the sum
N∑
i=1

F (i). The dotted lines represent the output of the predicate

operator and the ”blob” with F is a black box that computes the function. The initial values

P. Repouskos 18
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merge

switch

F T F

T F

−+

T

x y

switch

<

Figure 3.2: A Conditional Graph

of i and sum are given as input to the program. While the predicate evaluates to True, the
data tokens are routed back to the loop body.

Note that if the function F requires a lot of time for computation, the tokens with the index
variable iwill continue circulating, possibly causing more computations of F to be initiated.
In other words, unrelated iterations of the same loop body can be executed simultaneously.
This behavior is also known as dynamic unfolding of a loop.

3.1.3 Data Structures

So far, we have only examined tokens that denote simple values and not complex data
structures. Although fully general in computational expressivity [45], this lack in storage
expressivity limits its practical use.

In principle, we may think of tokens as denoting arbitrarily large data structures and define
nodes that consume and produce such tokens. However, we can think of data structures in
this way only in the abstract model. Practically this approach is infeasible. As we examine
more approaches to dataflow, we will introduce new ways to handle data structures.

We should emphasize that data structures in dataflow languages must not be treated
as those in conventional assignment languages, such as C or Java. In a dataflow pro-
gram, structures are initialized, read and modified in a distributed fashion. Some points
we should take into account for our approach to data structures:

• Suppose that a structure modification capability was present in the dataflow lan-
guage and two tokens carried pointers to the same structure and initiated a modifica-
tion and a read operation respectively. A time synchronization problem will emerge,
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Figure 3.3: A Loop Graph

as the order of their execution is merely prescribed by data dependencies. This
would eliminate the determinacy of the model.

• Themost attractive characteristic of dataflow is parallelism. The capability to perform
operations in parallel to a structure is important. For example, consider the following
program:

for i=1 To n Do {
A [ i ] = f ( i ) ;

}

Assuming that f denotes a functional operation, all the updates can occur concur-
rently. A one-operation-at-a-time restriction on the array, eliminates the parallelism
that can be exploited. Furthermore, we would like to be able to read the value of the
first cell it has been produced, even if the thousandth cell has yet to be computed.
Actually, building on the previous point, since different parts of the program may be
active at a time, a request for a read operation at the first cell may arrive, before the
computation of the first cell itself has even begun.

• In the dataflow computational model, the meaning of update is not present. This
would imply, that when we want to update a part of an array, we have to recreate the
whole array. Such a memory-hungry approach has obvious drawbacks.
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3.1.4 Discussion

The dataflow computing model examined so far, was done so solely from a theoretical
viewpoint. When we try to implement it, we find out that no implementation can exactly
mirror it. First, it assumes unbounded FIFO queues on the arcs. Perhaps, it is not as
intuitive as in the von Neumann model, where the notion of assignment exists, but tokens
imply storage. So, to support this model we require unbounded memory, which is im-
possible. Second, the pure dataflow model assumes that any number of actors can fire
in parallel, while clearly in any hardware implementation the PEs (processing elements)
will be finite. Concretely, the system may deadlock while the dataflow model predicts no
deadlock. Last, difficulties were also presented in trying to implement the FIFO behavior
of the nodes.

3.2 Static Dataflow

To remedy the aforementioned problems, two different approaches were researched. The
static dataflow architecture was introduced by Dennis and Misunas [32].

As described in Subchapter 3.1.1, the decision, of when an actor is ready to fire, is based
on the following simple rule:

An actor can be executed when tokens are present on each of its input arcs.

In the static dataflow model, a one-token-per-arc restriction and a non strict operator be-
havior are incorporated by extending the firing rule as such:

1. An actor ready to fire, can actually fire, if its output arcs have no token on them.

2. Certain actors can fire, even when some input tokens are missing. For example, the
merge operator in Figure 3.2, if the boolean value of its control token is True, can
fire if there is a token on the data input arc at the True side, even if at the False side
there is none.

3.2.1 Data Structures as DAGs

In [31], in order to deal with complex data structures, Dennis introduced a heap, which is
a directed acyclic graph (DAG), or simply a tree. The motivation behind this approach,
was to avoid excessive copying by sharing common substructures between structures.
Tokens carry a pointer to nodes of the tree and not the whole tree itself. Associated with
every node, there is a reference count indicating how many tokens point to that node.

The domain of values for the dataflow programs will include elementary and structured
values. The set of elementary values will be boolean

∪
integers

∪
reals

∪
strings. The

set of structured values contains all finite sets of selector-value pairs such as:

[< s1 : v1 >, ..., < sk : vk >]

where si are distinct elements in integers
∪

strings and vi are either elementary or struc-
tured values.
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The tree may have many roots and is structured in such a way, that there is a directed path
to every node from at least one root. The edges of the tree are labeled as selectors, with
the restriction that two edges branching out of a node, cannot have the same selector.

The nodes are either elementary nodes or structured nodes. As suggested by its name,
an elementary node represents an elementary value and has no emanating edges. A
structured node represents a structured value, where each selector si is the label of one
of the emanating edges and vi is the value of the node, to which that edge leads. A root
can be of either type.

For example, consider this representation of the following 3× 3 array:

1 2 3
4 5 6
7 8 9


As a structured value it will be represented as such:

[< s1 : [< s11 : 1 >,< s12 : 2 >,< s13 : 3 >] >,
< s2 : [< s21 : 4 >,< s22 : 5 >,< s23 : 6 >] >,
< s3 : [< s31 : 7 >,< s32 : 8 >,< s33 : 9 >] >]

Its DAG representation, as shown in Figure 3.4, would be a two-level tree, whose interior
vertices have 3 children and its leaves store the values of the array.

987521 63 4

Figure 3.4: The Heap Of An Array

Copying the array is straightforward. We can create a copy actor, which creates a token
pointing to the same node of the heap (in this case the root of the tree) as the input token.
The reference count of the root is incremented to reflect the additional reference to it.

While this approach deals with the problems discussed in the previous chapter, it has the
major drawback, that only one modification can occur at a time. Thus, for example, the
modification of different cells of an array, which could be done in parallel, is sequentialized.

3.2.2 An Architecture for Static Dataflow

To provide further insight on the dataflow model, it is useful to understand how hardware,
that can support this computational model, could be designed and its differences from the
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conventional von Neumann machines. In this chapter, we discuss, how the architecture
Dennis presented for the static dataflow model [32], deals with the problems, faced when
trying to implement the exact abstract model.

Initially, the dataflow schema to be executed is stored in memory. Also, with the one-
token-per-arc restriction, storage for tokens can be allocated prior to execution, since the
number of edges is fixed for any program graph. The memory is organized into Instruction
Cells, each one corresponding to an operator of the program graph. A cell is an expansion
of the basic instruction, which includes the operands (data packets) for the execution of
the instruction. An instruction specifies the operation to be performed and the addresses
of the registers, to which the result must be directed (Figure 3.5).

operand 1

operand 2

operation code

Instruction Cell

Instruction

destination 1 destination 2

instruction

Operation Packet

Figure 3.5: Basic Instruction Format For A Static Dataflow Architecture

The cells have presence flags to indicate the existence of a stored value, so it is straight-
forward to determine if the inputs for an operation are present. Addresses of enabled
instructions (instructions ready for execution) are stored in an instruction queue. A fetch
unit removes the first entry, collects the corresponding data, forms an operation packet
and sends it to an available operation unit. The operation units operate concurrently. Each
one computes a result and generates a result package for each destination.

The one-token-per-arc restriction cannot be implemented at the hardware level. Rather,
the program graph is transformed to contain acknowledgement arcs. A token in an ac-
knowledgement arc indicates that the corresponding data arc is empty. A node can fire if
it has tokens on all data and acknowledgement arcs.

3.2.3 Discussion

The static dataflow architecture’s main strength lies in its simplicity. It is easy to determine
if the input tokens are present and since an arc can hold at most one token, memory can
be allocated at compile-time, thus eliminating the need of creating complex hardware to
manage the tokens.

However, this model has some severe problems. The additional acknowledgement arcs
can substantially increase the token traffic by a factor of 1.5 to 2 [4]. Moreover, while it
can exploit structural and pipelined parallelism, it can’t benefit from dynamic forms of par-
allelism, such as loop parallelism, i.e. dynamic unfolding of loops. For instance, consider
the program graph in Figure 3.2, being used in a loop. To abide by the one-token-per-arc
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restriction, only one evaluation of this graph could be carried out at a time, since the input
arc for c would have a token, till the division operator at the end consumed it.

3.3 Dynamic Dataflow

The dynamic or tagged-token dataflow model is an alternative approach, proposed in-
dependently by Watson and Gurd [76] and Arvind and Culler [4]. In this model, a tag is
associated with each token, uniquely labeling it as it is dynamically generated during ex-
ecution, specifying its conceptual order within a stream of tokens on an arc. This enables
us to maintain a logical FIFO order, freeing us from the limitations of the actual physical
arrival order of the tokens.

3.3.1 Motivation

Let’s remember the program graph of Figure 3.3, which computes the sum
N∑
i=1

F (i). Also,

let’s suppose that the ”blob” representing the function F , is a complex graph, which needs
a long time to execute, relative to +.

The static dataflow model implements a one-token-per-arc restriction, which substantially
limits the parallelism that can be exploited in the program. Assuming a capacity of one
token on an arc, F will soon block the switch operator, which won’t be able to fire, after
having already produced a token on its arc directed to F . In turn, the switch operator will
block the merge operator and so on. Clearly, while F is executing, not much will happen
in the rest program.

Now assume an unbounded token capacity on arcs, greatly improving the parallelism
exploited and the performance of the program. Incrementing the index variable i and
evaluating the predicate ≤ N , do not depend on F . If F executes much slower than the
rest operators, tokens will pile up on its input arc, waiting to initiate a new execution. In the
tagged dataflow model, as soon as a token reaches F , it can initiate a new computational
activity.

Note that a subtle problem arises. Will the result be the same, if the second invocation of
F completes before the first? In our example, since addition is an associative operation,
it is obvious. We will see, that the dynamic dataflow model maintains determinacy.

3.3.2 Tags

We will describe the classic dynamic model, using the constructs and notations of Arvind
and Gostelow [8], also presented in [4].

First, we will need the meanings of activities and code blocks. An activity is a single
execution of an operator. A code-block is a graph, that is either acyclic or a single loop. A
program can be viewed as a collection of code-blocks, where each node is identified by a
pair <code-block, instruction address>.

We prescribe a unique name to each activity generated and each token carries the name
of its destination activity (tag). A tag consists of four fields, u, c, s and i:
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• u is the context field, which identifies the context in which a code-block is invoked.
Concretely, it distinguishes between between different invocations of a code-block.
Note that the definition is recursive and the context field is itself a tag.

• c is the code-block name. Every code-block has a unique name.

• s is the instruction address within the code-block. Remember that the instruction
address and code-block name identify a node.

• i is the initiation number, which distinguishes between different iterations of the same
invocation of a loop code-block. If the activity occurs outside a loop, this field is 1.

So a token is represented as such: <u.c.s.i, data>. In case the destination operator
requires more than one input, the token is represented as <u.c.s.i, data>p, where p is the
port number (i.e. it specifies to which input arc it belongs).

3.3.3 Tagging Rules

The way these unique activity names are generated (tagging rules) must allow for user
defined functions, conditional, loop and recursive constructs. Moreover, it is obvious that
this mechanism should create the names in a distributed manner.

Functions and Predicates. Assume an instruction s in a code-block c (identifying the
node <c, s>), that performs a binary function f , receives a token with data x on its first input
arc, a token with data y on its second input arc and the result’s destination is instruction t.
The tagging rule is:

<u.c.s.i, x>1 × <u.c.s.i, y>2 ⇒ <u.c.t.i, f(x, y)>p

Conditionals. Assume a switch operator receives a token with data x on its data input
arc and a control token with boolean value b. The tagging rule is:

<u.c.s.i, x>data × <u.c.s.i, b>control ⇒


<u.c.sT .i, x>, if b = true

<u.c.sF .i, x>, if b = false

undefined, otherwise

No two waves of input tokens carry the same u and i and for any given tag, exactly one
of the successor instructions sT , sF will receive a token carrying it. Also, since we can
maintain a logical FIFO order and ignore the actual physical one, there is no longer a
need for themerge operator ; the token streams produced at each output arc of the switch
operator can be merged in an arbitrary fashion.

Thus, continuing the example from [4], the conditional graph from Figure 3.2 transforms
into the one in Figure 3.6, where the black circle is not an operator; it denotes the conver-
gence of two arcs on one.

Loops. Lets remember the loop graph in Figure 3.3. To implement the loop, a switch
operator was used, which routed the tokens back into the body of the loop, while the
boolean value of the control token was true. To implement loops in the dynamic model,
we require four more operators: D and D−1, L and L−1. These operators only affect the
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Figure 3.6: A Conditional Graph In Tagged Dataflow

tag of the token passing through, and not the data itself, so they can be viewed as control
operators.

The L operator creates a new context u′ = (u.c.s.i) and a new code-block name c′ for
every new instantiation of a loop. This is necessary in case of nested loops, where there
can be many active invocations of the inner loop. The tagging rule for L:

<u.c.s.i, x> ⇒ <u′.c′.t′.1, x>

The D operator increments the initiation number after each iteration:

<u′.c′.t.j, x> ⇒ <u′.c′.t′.j + 1, x>

When the switch operator sends a token with boolean value false and ends the iterations,
the D−1 operator sets the initiation number to 1:

<u′.c′.w.n, x> ⇒ <u′.c′.w′.1, x>

The L−1 operator can be considered the reverse of L. It unstacks the context stacked by the
corresponding L and restores the initial context, code-block name and initiation number:

<u′.c′.w′.1, x> ⇒ <u.c.s′.i, x>

The loop graph from Figure 3.3 transforms into the one in Figure 3.7.

Procedure Application. To implement procedure application we make use of two oper-
ators, A and A−1. Moreover, each procedure is prefixed by a BEGIN operator and suffixed
by an END operator.

The operator A takes two inputs, the code-block name q of the procedure to be applied,
an argument a to pass to the procedure and creates a new context for the new procedure:
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Figure 3.7: A Loop Graph In Tagged Dataflow

<u.c.sA.i, q>proc × <u.c.sA.i, a>arg ⇒ <u′.cq.begin.1, a>

where u′ = (u.c.sT .i) and sT the address of the A−1 operator corresponding to the A in sA.

The BEGIN operator replicates the token for all its emanating arcs. The END operator
restores the initial context stacked by the A operator and returns the result:

<u′.cq.end.1, b> ⇒ <u.c.sT .i, b>

where u′ = (u.c.sT .i). The A−1, like the BEGIN operator, merely replicates the result for
all its successors.

3.3.4 Incremental Data Structures

The discussion for complex data structures in dataflow till now, indicates that parallel data
structures are an awkward and anything but trivial matter. A common approach in the
dynamic model is the use of I-structures (for incremental structures) [7, 6, 4]. As the name
suggests, the structures are constructed incrementally, in amonotonic fashion. Semantic-
ally, we can view I-structures as a logic variable abstraction [67].
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From the programmer’s viewpoint, an I-structure is an array of slots. It’s a non-strict data
structure, meaning we can use and modify it, before it is fully defined. To achieve this, we
implement a policy of deferred reads; if a read request, for a slot not yet defined, arrives,
the system defers the request, till the time it can be satisfied. With some ad hoc hardware
for the implementation of queues of deferred reads, associated with every cell, deferred
reads can be processed quickly. Thus, we don’t lose any parallelism, as pointed out in
Subchapter 3.1.3.

As in the approach to structures in the static dataflow model, the token carries a pointer to
the structure. All I-structures reside in global memory and read/write operations are handle
by an abstraction module, the I-structure store. Conceptually, all I-structures belong to it.

Selection. Every ”read token” contains in its tag the address of the component of the
I-structure to be selected (or read). When it arrives, it creates an I-fetch request to the I-
structures store. If the component specified in its tag is present, it is returned. Otherwise,
the request is deferred, or more concretely, the tag is queued in an deferred read requests
area.

Assignment. A request for an assignment to an I-structure becomes an I-store request
to the I-structures store. If the corresponding location is empty, the value is stored and the
location is marked as present. If there are any deferred reads, now they can be satisfied.
If there already was a value at that location, a runtime error is generated, since a single-
assignment rule is imposed; we can write to a location only one time.

3.3.5 Overhead and Excessive Parallelism

In Subchapter 3.3.1, we got a glimpse of the order of parallelism, which can be exploited
even in a seemingly simple and sequential problem. Consider the following program, with
nested loops:

for i=1 To n Do {
for j=1 To m Do {
A [ i ] [ j ] = f ( i+ j ) ;

}
}

As usual, supposing a functional f, we can have m · n active computations of f, at least in
theory. Now consider a program with even more levels of nested loops. It is unlikely, that
an architecture will have enough PEs to run all these function invocations simultaneously.

Instead of the expected speed improvement thanks to the parallelism exposed, the piling
of waiting tokens will slow down the execution and consume all memory. It is not hard,
to even imagine scenarios, in which the system will deadlock; if tokens with unmatching
tags flood the arcs, not leaving space for new tokens, the node will never find two tokens
with matching tags, so as to compute a result.

Moreover, this model of asynchronous parallel execution incurs severe overhead [26].
When partitioning the instructions executed into basic work and overhead, such as in-
structions for manipulating tags, empirical data suggests that the overhead is comparable
to the basic work. This overhead could diminish, if the parallelism exploited was limited.

Hence, we develop the notion of useless parallelism, in the sense that it cannot possibly be
exploited. It is a trade-off for giving the programmer a powerful tool, to exploit parallelism
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in an implicit manner, without reference to the actual hardware. It is necessary to limit this
useless parallelism and save resources, without of course sacrificing performance.

One solution, is to limit the maximum number of concurrent iterations [27], through loop
bounding. The way this is implemented at the MIT tagged dataflow machine [6], is based
on the observation, that a new iteration begins after a token carrying a boolean value
reaches the switch operator, which routes tokens in and eventually out of the loop body.
By delaying those tokens, we can essentially hold back the iterations, imposing a ceiling.
The number of allowed concurrent iterations can be specified either at compile-time, or
dynamically, based on the load of the system.

3.3.6 Discussion

Everything about the dynamic model summarized till now, reflects the work of Arvind and
his team. The tagging rules and I-structures as presented above, are the foundations of
the MIT Tagged-Token Dataflow project. The interested reader can look at [6] to delve into
an architecture for the dynamic model.

3.4 Synchronous Dataflow

Synchronous dataflow (SDF) is a subset of the pure dataflow model, not fully general as
the latter. Despite the restrictions imposed to it, the optimizations that can be made and
the decrease in overhead (due to the asynchronous nature of classic dataflow), make up
for the sacrifice in expressivity. SDF is extensively used for digital signal processing and
is generally a more appropriate candidate for real-time and reactive systems, than pure
dataflow [14].

3.4.1 Synchronous Dataflow Graphs

In synchronous dataflow graphs, the number of tokens an actor consumes or produces
when firing, is fixed and known at compile time. For example, the program at Figure 3.1
is a synchronous dataflow graph. In Figure 3.8, next to its emanating or incoming arc,
there is the literal ”1”, indicating the number of tokens each actor consumes/produces
upon each execution.

Since the number of tokens that are consumed/produced by an actor must be known at
compile time, it is obvious that certain programs cannot be represented. Notice that the
switch andmerge operators are asynchronous. Depending on the control token’s boolean
value, a switch node can produce zero or one token on its output arcs, and a merge node
can consume zero or one token from its input arcs. Consequently, conditional graphs (eg.
in Figure 3.3), are not SDF graphs. Moreover, if all nodes are restricted to be SDF, only
loops with a known (at compile-time) number of cycles of the iteration, can be specified.

3.4.2 The Trade-Off for Expressiveness

Yet these limitations offer considerable advantages, such as compile time predictability.
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Figure 3.8: A Synchronous Dataflow Graph

The advantage of SDF is, that it can be statically scheduled [20, 53, 54]. Intuitively, we
can form a periodic schedule and know howmany times a node should be invoked at each
cycle, so instead of a general dataflow graph, we can have an acyclic precedence graph.

By turning the graph into a sequential program (on one or multiple processors) and avoid-
ing the dynamic scheduling, the runtime overhead evaporates. This addresses a major
requirement of real-time systems; response-time.

It is worth mentioning, that even dataflow graphs which are not SDF, may contain sub-
graphs that are, and allow for partial static scheduling.
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4. DEMAND DRIVEN DATAFLOW

In this chapter we will examine how dataflow programs, as described in Chapter 3, and
particularly in the tagged dataflow model, can be computed in a demand driven manner,
as described in Chapter 2.

The basic idea behind demand driven dataflow is as follows:

A node will fire, if there are sufficient tokens on its input arcs and there is a demand
for its output.

Conceptually, the demands can be visualized as special tokens (questons), going against
the flow; they go from the end of an edge to its beginning. When a node receives a demand
for its output, it will itself generate demands for the input it requires and so on.

We can imagine this process as a branching tree. The root at the top, is the node that will
yield the result of the program. The root generates demands for input tokens, which reach
its children. Those children in their turn, will create more demands, further expanding
the tree, as these demands travel downwards. Hopefully, this process will terminate and
values will begin flowing back, up the tree. When they reach the root, we will have the
final result.

This process was termed by Wadge eduction. Eduction’s definition in the Oxford English
Dictionary is:

The action of drawing forth, eliciting, or developing from a state of latent, rudimentary,
or potential existence; the action of educing (principles, results of calculations) from the
data.

We will first mention some problems or difficulties with data driven evaluation of dataflow
graphs, which are better addressed with demand driven evaluation, and then introduce
operator nets; dataflow networks, which are not evaluated using ”dataflow”, along with
changed syntax and a bit more complicated semantics.

4.1 Motivation

4.1.1 Pointwise Nonstrict Operators

In Chapter 3, all the operators we examined had exactly one output arc, except for switch.
We introduce another operator, which can give us the effect of switch, the whenever op-
erator [10], or wvr for short.

The wvr operator has two input and one output arcs. One input arc is for the control token
and the other for a data token. If the control token’s boolean value is true, the data token
is passed to the output arc, otherwise it is discarded. Notice that it is possible, that a
wvr node may produce less results than the number of its input sets. The behavior of the
switch operator can be mimicked, as shown in Figure 4.1.

An operator or function is pointwise if its i-th output depends at most on its i-th set of
inputs. For example, simple addition is a pointwise operation, while the wvr node is not,
since its first output may depend on its second set of inputs.

An operator or function is pointwise strict, if it is pointwise and if, in order to produce its
i-th result, the i-th set of inputs must be fully defined. For example, the merge node in the
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Figure 4.1: Breaking Down switch To wvr

static dataflow model is not pointwise strict, since if the control token’s value is true and
there is a token only on the data arc at the true side, the node will still fire.

Now lets turn our attention to the following simple expression:

if B then E1 else E2

There are two ways to evaluate it, as in Figure 4.2. In the left network, first we evaluate
the boolean expression B and then compute either E1 or E2. In the second, we compute
both E1 and E2 first, and then after evaluating B, we produce as result the appropriate
value. The half bottom part of the second network, can be viewed as a ternary pointwise
nonstrict if-then-else operator. At most two of its input arcs will have input; the control arc
and either the true or false data arc.

Clearly, the approach taken in the second network, should be avoided, since redundant
computations are performed. In this example, it appears simple to reform the program, so
it takes the form of the left one, and avoids the redundant computations. However, a gen-
eral automatic transformation scheme to transform programs, so as to rid the unneeded
computations, has not been found.

In languages, where we allow pointwise nonstrict operators, it is not clear how to efficiently
compute the programs, using data driven computation.

4.1.2 Nonstrict Functions

Operationally, a nonstrict function is one, which may not evaluate all its arguments. The
motivation is the same as in the previous subchapter, but the difficulties in implementing
such behavior in a data driven organization, are not.

In data driven dataflow, defined functions are eagerly evaluated. Eager evaluationmeans,
that the arguments are evaluated prior to the function call. And indeed, for a function to
be called, there must be tokens on all its input arcs.
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Figure 4.2: Two Evaluations Of if-then-else

Lazy evaluation or call by need entails that an argument will be evaluated only when it is
needed. We saw, that a simple transformation of the program, can solve the problem of
redundant operations in the case of an if-then-else, implicitly imposing a lazy evaluation.
The difference to when trying to apply the same logic to function calls, is that an operator,
upon receiving a token, knows if it can fire, even if some tokens are missing. This does
not stand for a function call.

Without actually evaluating the function, we cannot know if we will need a particular ar-
gument. The only solution is to call the function, but delay the evaluation of arguments
until they are needed. When a request for one is met, the argument can be evaluated. Of
course, there would potentially be a need for further tag manipulation operators, to send
its argument to the right invocation of the function, introducing further overhead.

The consensus is, that although these problems are in theory solvable, it is not worth it.

4.1.3 Nonstrict Data Structures

This is not the place to dwell in the importance of nonstrict structures; let’s assumewewant
that functionality! The following example, entailing I-structures [7] and eager evaluation,
demonstrates the awkwardness of nonstrictness in a data driven computation organiza-
tion.

When a read request for a particular component of an array arrives, if that component is not
yet computed, the read request is deferred, till the time it can be serviced. This behavior is
unnaturally implemented in the data driven evaluation paradigm; dynamic synchronization
techniques and extra storage for the deferred requests are needed.

In lazy evaluation, this synchronization problem can be solved in a more subtle way. Upon
allocation, each component could hold a suspension for its computation, and a read re-
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quest upon arriving, would force its evaluation. The testing of a reference to check if it is a
suspension or a value in graph reduction, naturally translates into a synchronization test
in dataflow’s context.

Moreover, using lazy evaluation, we can handle infinite structures. An example taken from
[75]:

X = 1 : : X

X is a list whose head is the number 1, and its tail is itself. Anyone unfamiliar with de-
clarative programming and lazy evaluation, would be quick to dismiss this program as
nonsense. X ’s meaning could be either ⊥ (operationally thought of as non termination),
or the infinite list [1,1,1,1,1,1,...]. In the case of the latter, the eager evaluation approach
crambles; it makes no sense to try to eagerly compute an infinite list. However, in demand
driven evaluation, it is possible to compute a partial list - exactly the part that is actually
needed.

4.1.4 Management Of Resources

In tagged dataflow, the excessive asynchronous parallelism can quickly lead to satura-
tion of resources [27, 26]. Although perhaps a by-product, a demand-driven evaluation,
can implicitly restrain this need for resources, further from the obvious gain from avoiding
redundant computations.

Consider the computation of
n∑

i=0

[f(x) + g(x)], and suppose that f takes much less time

to compute than g. What will happen in the data driven evaluation, is that the tokens
generated by f will flood the system, piling on one arc of the + operator, while the tokens
from g will arrive infrequently. This not only puts unnecessary strain on the system in
regard to storage, but it also keeps the PEs busy with more invocations of f , while they
could compute something else.

In demand driven evaluation, demands would implicitly prioritize computations, helping
compute what is immediately needed and avoiding the piling of packets with premature
values.

4.2 Operator Nets

The language of operator nets is a simple graphical language, which is mainly uninter-
preted; different (continuous) data algebras and sets of input provide mathematical se-
mantics to it [10], giving birth to new particular languages, of different degrees of express-
ibility. Consequently, the search for a dataflow language, roughly translates to the choice,
of which sequence algebra will interpret the operator nets.

Operator nets can be viewed as a generalization of the ”simple language for parallel pro-
cessing” defined by Kahn [50], and denotational semantics can be given in a similar way.

The main differences from dataflow graphs presented so far are:

1. Operator nets can be evaluated either in a data driven, or in a demand driven fashion.
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2. Every operator net denotes a function - a net is a composition of functions, corres-
ponding to its subnets.

4.2.1 Syntax

An operator net is a main directed graph, possibly with named subsidiary operator nets,
which are used as function definitions. Moreover, a node can be a subcomputation node,
which corresponds to a particular subsidiary net.

All nonfork nodes have one output edge. Function and subcomputation nodes have the
same number of input edges as their arity, which is the number of input ports of the corres-
ponding net. Note that the recursive definition of operator nets, allows functions definitions
within function definitions, thus recursive function definitions.

As an example, consider the following program that sums the squares of two numbers,
written in Lucid [75], which is itself based on operator nets. The corresponding net is
depicted in Figure 4.3. The square node, is a subcomputation node, corresponding to the
subsidiary net named ”square”.

square ( x ) + square ( y )
where

square ( x ) = x * x ;
end

square square

+

×

square:

Figure 4.3: A Simple Operator Net
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4.2.2 Denotational Semantics

Arvind and Gostelow provided both denotational and operational semantics. Data driven
and demand driven evaluation can be considered two different operational ways of achiev-
ing the same mathematical meaning. Dwelling into semantics is outside the scope of this
thesis - only some properties will bementioned, in order to understand some functionalities
of operator nets.

An operator net can be reduced to a set of equations, with every subcomputation node
containing the equations of the corresponding subsidiary net. For example, in Figure 4.4
the net of Figure 4.3 is depicted with the edges labeled, and these are its corresponding
equations:

r = +(d, e)

d = square(x)

e = square(y)

square(a) = h

[ h = ∗(a1, a2)
a1 = a

a2 = a ]

Although the rules for creating these equations are omitted, the reader should intuitively
be convinced that they ”represent” the operator net in question.

square square

+

×

square:

y

e

a2

x

d

a

a1

r

h

Figure 4.4: A Simple Operator Net With Labeled Edges

Themeaning of the net is the solution of these equations, using standard fixedpoint theory,
as in the work of Kahn [50]. Note that such a set of equations, can itself be considered a
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language; for a particular setting of E(A), the language is essentially Lucid(A) [75], which
is the member of the Lucid family corresponding to the data algebra A.

Algebras. Assume an algebra of elementary objects (data algebra) A. For example, the
universe ofA can contain integers, booleans, etc. In addition, we add in its universe a least
element, denoted by ⊥ (bottom). The operational meaning of bottom is nontermination.

A function or operator f is called strict, if f(⊥) = ⊥. The operators of A can be nonstrict,
that is, not all its arguments need be defined (⊥) for its output to be defined. An example
is the ternary nonstrict if-then-else operator, we discussed about in 4.1.1.

I(A) is defined as the algebra of infinite sequences of elements of the universe of A.
For example, the new least element will be the infinite sequence ⊥,⊥,⊥, ... and 3 will be
3, 3, 3, ... . Notice that a sequence of I(A) can be intermittent; ⊥ elements can precede
non ⊥ elements, e.g. 1, 2, 3,⊥, 4, ... . The operators of I(A) are pointwise extensions of
the operators of A.

The algebra E(A) is an enlargement of I(A), in which special nonpointwise operators are
added, such as first, next, followed-by (fby), whenever (wvr), and others. These oper-
ators, are not pointwise strict; for a specific point i, they don’t require all their arguments
to be defined at that i point. But most of them are strict, with exceptions such as merge.
Concretely, if an operator’s argument is formed only by ⊥’s, so will be its result.

4.2.3 Operational Semantics and Eduction

To give operational semantics, we assume operator nets behave as usual dataflow graphs
(although there is no one to one correspondence); tokens flow through edges and into
nodes. When a result is computed, it is pushed to the output edge. We restrict that the
history of tokens passing through an edge, corresponds to the sequence, that is the value
of the variable associated with that edge, when creating the equations of the net.

For different algebras, the mathematical meaning corresponds to piped or tagged evalu-
ation. In Chapter 3, tags were introduced, as a means for increased parallelism. Another
gain is, that tagged evaluation produces more results than piped evaluation. That is be-
cause, intuitively, in tagged evaluation we can ”look ahead” in a stream. Moreover, using
tags, copies of subsidiary nets need not be made; the tags distinguish between different
invocations.

In data driven evaluation, operator nets behave essentially the same as dataflow graphs.
What is of interest, is the (tagged) demand driven evaluation, and particularly the way
these demands are propagated.

In the beginning of this chapter, we talked about how demands can be visualized as que-
stons traveling back the network, from the end of an edge to its beginning.

The queston propagation for pointwise nonstrict and nonpointwise operators, does not
follow some general rules; it depends on the operator itself. For example, for the ternary
pointwise nonstrict if-the-else operator, the propagation of demands is as follows: When
a demand for its value, arrives at the if-then-else operator, it creates a queston with the
same tag as the one it received, and sends it back to its test edge. When the answer
arrives, according to its boolean value, it creates yet another queston with the same tag,
and sends it to the then or else edge respectively.

Lazy evaluation of functions, corresponds to the way questons propagate through sub-
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computation nodes. When a demand for the output of such a node arrives, the node is
replaced by the corresponding net. A queston, which keeps in its tag the ”time” this sub-
computation was invoked, is used as a demand for the output of this net. If the net creates
any demands for its input (the function’s arguments), the tags help match the values to
the corresponding activation.

4.3 Combining Data Driven and Demand Driven

We have seen how demand driven evaluation rids the execution of redundant computa-
tions, potentially improving the execution time, as well as offering more results, by lazy
function calling. However it is not without drawbacks of its own.

There have been attempts to combine the benefits of data driven and demand driven
evaluation.

4.3.1 Problems with Demand Driven Evaluation

First, the propagation of demands is expensive. There are cases, in which this additional
cost is a good trade-off, for avoiding a large quantity of superfluous computations. But in
other cases, eg. when computing the product of twomatrices, where no (or few) redundant
computations would be made in data driven evaluation, the additional work of demands
propagation will only delay the execution.

Moreover, the demand driven evaluation could be said to ”beat the purpose” of dataflow.
Dataflow’s main appeal is, that it does not overspecify the sequence of computations,
allowing massive parallelism to be naturally and implicitly expressed. By altering the firing
rule, so nodes have to wait not only for sufficient input, but for a queston as well, the
exposed parallelism is restrained.

For example, consider the producer - consumer relationship. Normally, in dataflow, the
producer would begin producing before the consumer demanded so. By waiting for a
demand to begin, potential parallelism is lost. One countermeasure for such pathological
situations, would be anticipatory evaluation [46]. Since we expect that the consumer will
eventually demand values for the producer, the producer can produce some results in
advance.

Yet another technique, which offers good empirical results, is speculative evaluation [46].
That is, values that may or may not be needed, can also be computed in advance, in an
eager manner. However, a plafond should be imposed on these eager computations, so
as to minimize the potential superfluous work.

4.3.2 Eazyflow

Eazyflow is a hybrid model of evaluation [10], combining demand driven and data driven
evaluation. The name comes from ”EAger and laZY dataFLOW”.

This model essentially divides the edges of an operator net, between lazy and eager
edges. Conceptually, it creates a coloring of edges; edges on which the flowing values
are generated eagerly (data driven) are colored green, while the rest are colored red.
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The color of the edges determine the evaluation style. If the output edge of a node is
green, that node will be data driven - it can fire if there are sufficient tokens on its input
arcs. If its red, the node will be demand driven - it will need both sufficient input and a
demand for its result, in order to fire.

In this model, both speculative and anticipatory evaluation are employed to increase effi-
ciency. To avoid excessive superfluous computations, a bound to the results an node can
eagerly produces is imposed. Moreover, care must be taken, to avoid the piling of waiting
tokens; if an eager node produces many tokens and sends them on the input arc of a lazy
node, those tokens will idly wait, till a demand arrives.

4.3.3 From Demand Driven to Data Driven

Another approach to efficient demand driven evaluation, surges from a doctrine advocat-
ing, that data driven can subsume demand driven evaluation.

The idea is, given a programP , transform it toLP , withLP having the property that, its data
driven evaluation will perform no more computations, than the demand driven evaluation
of program P . Pingali and Arvind introduced such a scheme [66], in which the original
graph is augmented with ”demand propagation code”, which mimics demand propagation.
However, this scheme is not general enough; eg, it does not support recursive functions.
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5. HYBRID DATAFLOW

5.1 Introduction

5.1.1 Problems with Von Neumann Architectures

The von Neumann organization is widely spread, since its sequential nature makes it
easy to understand and implement, and there have been many optimizations, at hard-
ware level, to address some of its shortcomings [12], such as latencies due to memory re-
quests. However these optimizations concern the case of uniprocessors. When it comes
to multiprocessing, these problems, intrinsic to control-flow, change qualitatively.

There are two major difficulties in multiprocessing in control-flow [5]:

• Latency. Latency is the elapsed time, between making a request and receiving the
associated response, during which the processor waits idly. A common strategy to
remedy this situation, is to take advantage of spatial locality. For example, compilers
can deduce which variables will be used more frequently and store their values in
registers. However, this strategy collapses, if such a variable is shared between two
processes, and the other process does not have access to its latest value. It appears
that such optimizations cannot be readily transfered to multiprocessing.

• Synchronization. Exploiting parallelism in a program, essentially amounts to de-
composing it to fragments, which communicate amongst them, transferring to each
other the necessary data. Thus emerges the problem, of a potential read-write race.
It is the programmer’s duty to circumvent this problem; eg. all reads can commence
after the last write. Moreover, the programmer should be mindful of the granularity of
the tasks; making them too coarse, will probably restrain parallelism, while making
them too fine-grained, will incur a significant cost in the form of context-switching, ie.
assigning a different process to the processor and storing/loading the appropriate
values.

5.1.2 Problems with Pure Dataflow Architectures

The fine-grained (or pure) dataflow architectures we have examined this far, although
quite promising and despite extensive theoretical research, failed to prove themselves
competitive with contemporary von Neumann architectures.

One glaring problem with both the static and dynamic dataflow, is the poor perform-
ance with sequential code. This is because, an instruction can be issued to the dataflow
pipeline, only after the completion of its predecessor. Consequently, if there is not enough
parallelism to exploit, the processor will be underutilized.

A further drawback in the tagged token architecture, is the overhead associated with token
management. The overhead in space consists of the waiting tokens piling on the input
arcs of operators (see 3.3.5). The overhead in time is due to context-switching after each
instruction. Concretely, the intra-procedure communication is excessive; matching tokens
are created for all instructions of the body, which is unlikely necessary. Moreover, since the
synchronization occurs at the instruction level, the use of registers to benefit from locality
is impossible.
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5.2 Combining Control-Flow with Dataflow

Realizing that dataflow and von Neumann are not orthogonal, there have been many at-
tempts to incorporate the benefits of both control-flow and data-flow into a new model.
The intuition is to handle parallelism as in dataflow and to deploy control-flow techniques
to handle sequential code and optimizations .

Imagine a spectrum, with dataflow at one end and von Neumann at the other. Closest
to pure dataflow is threaded dataflow, large-grain dataflow and moving closer to the von
Neumann style, RISC dataflow. There are more hybrid models, but mentioning them or
explaining in detail the aforementioned, requires a lot of focus to the underlying hardware,
which is outside the scope of this thesis. The interested reader, can look up more inform-
ation here [3, 45, 52, 71, 74].

5.2.1 Threaded Dataflow

This approach confronts the problem of sequential code. In particular, subgraphs with low
degree of parallelism are identified and transformed into a sequential thread of instruc-
tions. Such a stream of instructions is processed in succeeding machine cycles, without
matching tokens (with the exception of the first instruction of the thread). Moreover, when
executing instructions of a thread, registers are used to store intermediate results, effect-
ively taking us away from pure dataflow.

5.2.2 Large-grain Dataflow

Large-grain dataflow or (coarse grain dataflow) moves yet another step further from pure
dataflow. This approach is reminiscent of Kahn networks.

The idea is, to increase the granularity of subcomputations from a single operand to a chain
of operations [16, 42, 55]. So, for example, two nodes which are connected by an arc,
namely they have a data dependency between them and cannot operate simultaneously,
can be assigned on the same PE, on the same sequential code segment.

There aremacro dataflow actors, behaving as normal nodes do in pure dataflow, but each
of these actors represents a sequence of instructions, executed in von Neumann style.
An actor fires when all data dependencies for its first instruction are met.

5.2.3 RISC Dataflow

RISC dataflow is another hybrid model, which was intended to ease the transition from
imperative to dataflow programming languages and allowed the execution of software
written for von Neumann processors.

The main characteristics are a RISC like instruction set, modification of the architecture
to allow multithreaded computations, addition of instructions to manage multiple threads
and implementation of the global storage as I-Structures [63].
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6. DATAFLOW AND PROGRAMMING LANGUAGES

6.1 Introduction

Programming languages can be seen as mappings between algorithms and computing
models. A language that would map algorithms to the dataflow model, should be able to
implicitly express all the possible parallelism of the algorithm and abide by the dataflow
principles.

The languages of the imperative class, are not commonly thought suitable for the dataflow
model [36]. Conventional imperative languages, are too tightly connected to the under-
lying von Neumann model. The explicit total order of computations, inherent to them,
is obviously not suited to expose massive parallelism, or instructions scheduling based
on data dependencies. Moreover, the von Neumann languages lack useful mathematic
properties and simple semantics [12], such as reduction semantics, with no or very simple
states, while denotational semantics for a dataflow language can be given with fixedpoint
theory [30].

Earlier dataflow languages fitted the class of simple operational models [12], but later
adopted a more applicative programming style, were given denotational semantics and
useful mathematical properties (eg. for programs transformation and verification [11, 75]).

One cannot readily provide a definition, for what constitutes a dataflow language, since
it overlaps with other classes of languages, especially with applicative languages. For
example, Lucid at first was described as a functional language, and only later as a dataflow
language. However, there is a consensus on some characteristics, or requirements of
dataflow languages, initially posed by Ackerman [2]:

• freedom from side effects,

• locality of effects,

• equivalence between data dependencies and scheduling,

• single assignment rule,

• an unusual notation for iteration.

Many of these characteristics, intuitively, have the same purpose; tie the sequencing con-
straints to data dependencies.

Freedom from side effects. Even before the advent of dataflow languages, it was clear
that any language meant for concurrent processing, should abide by this rule [72]. It is a
necessary property, to ensure that sequencing constraints correspond to data dependen-
cies. It can be broken in many ways, such as the use of global variables or procedures
that alter their arguments. The dataflow model employs a strict solution; the use of call-
by-value. A call-by-value procedure copies its arguments, rather than modify them.

Locality of effects. This means that instructions don’t have unnecessary, far reaching
dependencies. For example, assume a variable temp in a large program, playing the role
of a temporary variable. Also assume that it is once again used, in a different, unrelated
segment of the code. While the logic of the problem may have allowed for concurrent
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execution of these two segments, this variable introduces an unnecessary, false data-
dependency. This problem can be simplified, by introducing the sense of scope, ie. define
for a variable the area of the program, in which it is active.

Equivalence between data dependencies and scheduling. Concretely, all the inform-
ation necessary for running the program (eg. sequence constraints), are available in the
dataflow graph of the program.

Single assignment rule. Within the area of the program, in which a variable is active, it
can be on the left side of an assignment expression only once. This rule offers clarity of
code and ease of program verification. In addition, notice that when a variable is assigned
a value only once, the order of instructions is not important.

An unusual notation for iteration. Iteration in dataflow languages can be tricky. There
is a camp claiming that the principle of iteration is foreign to purely definitional languages,
since the values of variables cannot be modified. Moreover, it becomes even more difficult
when taking into account the single assignment rule. This dogma was brought down by a
very elegant solution; using temporal operators to realize iteration [75].

6.2 Dataflow Languages

6.2.1 Lucid

Lucid, developed by Ashcroft and Wedge, initially was regarded as a functional language,
meant to allow for formal proofs. However, through the choices of design and mathemat-
ical semantics, it became apparent that it was more suited to be classified as a dataflow
language [75, 9].

Lucid is a definitional language, namely every statement is an equation. It comes with
static, denotational semantics, but its creators advise programmers to think operationally
or as if specifying a dataflow network. To see the depiction of a program written in Lucid
as a dataflow graph, one can read the chapter 4.2 on operator nets. In essence, a Lu-
cid program is an operator net, both in semantics and in behavior (it is evaluated as in
Eduction).

Iteration in Lucid. Iteration in Lucid is realized through temporal operators (fby and next).
The programmer can regard a set of statements (equations) as an iterative algorithm and
the nullary variables as dynamic objects that denote different values at different times, or
more simply as a stream. For instance, consider the following statement:

i = 1 fby i + 1;

The variable i can be regarded as a stream, with 1 at its beginning, followed by (fby) an
infinite number of values, each one being the sum of its previous one plus 1, ie. 1, 2, 3,
4, ... .

Increasing the dimensions. We saw that by regarding nullary variables as streams and
through the use of temporal operators, iteration was realized. The question is, why only
one dimension? Why not augment Lucid with any number of dimensions? Work on that
path led eventually to the conception of Multidimensional Lucid, [11, 68, 13], an intentional
language [69], which provides a most elegant and concise way to describe problems,
express algorithms and write programs [35].
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6.2.2 LUSTRE

LUSTRE is a synchronous dataflow language [22, 41]. Like Lucid, it is declarative, but
much more similar to functional languages. It was mainly designed for programming re-
active systems, since thinking as in the dataflow context could help programmers write
programs, while easily visualizing them reacting instantaneously to external stimuli. Se-
mantics were also given, and work has been done to provide a basis for program verific-
ation methodology.

6.2.3 GLU

GLU, standing for Granular Lucid, is a hybrid language based on Lucid and C [48]. To
battle the inefficiencies of the pure dataflow model, as well as the difficulty of implement-
ing Lucid effectively on conventional machines, GLU is better described as a large-grain
dataflow language.

It maintains some of the intentionality of Lucid, but here the basic subcomputation unit is
a user defined function and not a single instruction. These functions are written in C and
are sequential code fragments. The parallelism between functions is implicitly expressed,
as in Lucid.

6.3 Dataflow in Conventional Languages

The simple and intuitive way, to describe the parallel structure of a program and deal with
continuous incoming data (streams), provided by the dataflow framework, did not escape
the attention of even those unconvinced of the practicality of dataflow. There have been
attempts to integrate or simulate some of its aspects in conventional languages, at least at
a high, abstract level. Two glaring obstacles in efficiently implementing dataflow behavior
in conventional languages, are the contrast between dataflow graphs and sequential code,
as well as the practical issues of simulating dataflow in conventional machines.

6.3.1 Process Networks

An early attempt of integrating dataflow characteristics in conventional programming, was
the implementation of process networks in Java [65]. As in Kahn networks, the commu-
nication between processes, which could run in parallel, was achieved through simulated
streams, implemented as FIFO queues.

6.3.2 Streams

Trying to create an easy way for programmers to deal with continuously streaming data,
Java 8 introduced streams and lambda expressions. The programmer can now write a
segment of functional-style code, which can be run in parallel. The connection to dataflow
languages is apparent: a stream can be perceived as a nullary variable in Lucid, and in
order to safely run tasks in parallel, functionality is enforced.

There has been work to make Java Streams mainstream [57], as it appears to be a prom-
ising approach to various fields, as big data [23] and data mining [18]. Among the benefits
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are the ability to scale and parallelize, the ease to deal with changing data and the easy
programming style, which does not require the programmer to have particular knowledge
on how to parallelize the code.

However, much work is still required, to deal with inefficient implementations, as for ex-
ample in poor memory handling. But of course, the question of whether some problems
are pathological and cannot be amended is always present, since we essentially try to mix
dataflow principles and ideas with conventional languages and machines.
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7. DATAFLOW AND DISTRIBUTED COMPUTING

7.1 Programming Distributed Applications

There are countless applications, with massive data sets (or big data) as input, that ex-
ecution on clusters is a one-way street. However, programming such applications with
conventional means, can be very expensive. Programmers must have specialized know-
ledge on developing parallel applications and on the hardware. Moreover, the programs
themselves will most likely be very complex and hard to maintain or scale for different
cluster.

There is a need for a framework, that will allow even programmers with little or no ex-
perience in developing parallel software to create applications what will be executed in a
distributed manner. Moreover, the application should be scalable, meaning that running
the software for a different number of computers, should not amount to rewriting most of
the code. Also, the programmer should not have to take into account the capabilities of
each computer. A good framework, would allow the separation of the computations them-
selves and the description of the parallel structure of the problem [38]. The system itself
should decide how to run those computations and share the workload among workers.

There are many commercial systems for distributed computing. Watching their evolution,
from the earliest ones, that with today’s standards can only be thought as crude, to the
newest ones, which come ever closer to an efficient ”good system”, it becomes apparent
that they have started to abide by the doctrines pertaining to dataflow. Unfortunately, up
to a point, these doctrines were being reinvented - it took some time till it was understood,
that distributed computing could benefit from the already existent research on dataflow.

7.2 The Evolution of Distributed Computing Frameworks

MapReduce [29] was one of the earliest frameworks. Each computation is expressed as a
series of jobs, consisted of two stages. The programmer merely needed to specify these
stages, that is to write a map and a reduce function. Map took a pair of key/value and
produced new ones, while reduce merged together values to produce a smaller set of
values. The system itself was responsible for executing the jobs in parallel, but lacked
expressivity.

Next step, was MapReduce Online [25], which allowed pipelining between jobs. This
led to the support of continuous queries and to better performance and response time,
something important as many applications dealt with real time data. In addition, it was
possible to get some early estimates of the final result (online aggregation).

A milestone was the handling of iteration. In the original MapReduce, there could not be
overlapping iterations; for the second round to begin, all jobs of the first round had to be
finished. New systems like Twister [33], HaLoop [19] and iMapReduce [77] added caching
mechanisms for data between loops and made the scheduler loop aware. iMapReduce
also added persistent tasks, to avoid the overhead of creating new ones and increased
the asynchronicity of Map tasks.

Another important step was towards the direction of incremental computations, needed in
evolving datasets. This is a particular problem in database systems, which need to adapt
to changes, without re-evaluating everything from scratch [40]. Similarly, frameworks to
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deal with more efficient updates were devised. Two notable are REX [58] and Incoop [15].

However, all these systems use ad hoc solutions and strategies - there is no general
framework in which to work and formalize the requirements and behavior.

7.3 Introducing Dataflow in Distributed Computing

There were early indications that dataflow could provide a generalized framework for dis-
tributed computing. In the dataflow model, parallelism is implicit, with the constant flow
of data through the arcs, it would be easier to get partial results and research on dis-
tributed data structures, on iteration-level parallelism [17] and on recursion [39] already
exists. In addition dataflow languages are suitable for distributed environments. For ex-
ample, GLU or another large-grain dataflow language appears to be well suited for the job.
The programmer does not go into details about parallelism, which is implicitly expressed
and software written in such a language is obviously scalable. A model like eduction (in
operator nets), could also provide a base for a task scheduler.

Even when looking at the early distributed computing frameworks, notions reminiscent of
dataflow appear. For instance, one can find an analogy between the tasks and the vertices
of a dataflow graph and among intraprocess messages and tokens traveling on the arcs.
In particular, in some systems, like Dryad [44], an application is a dataflow graph and the
task scheduling was based on it.

In [24], it was proposed that dynamic dataflow could serve as a formal framework for dis-
tributed computing systems. In the dataflow context, concepts such as streams and asyn-
chronism are naturally perceived as data tokens flowing in channels and the firing rule, that
a function is executed when its input is ready. Moreover, iteration in a distributed manner
could be achieved as in the old dataflow systems, where tags carried information about
the context, such as round of iteration. Additionally, an idea on integrating iteration with
dataflow, as well as achieving incremental iteration, which is useful in many applications,
was presented in [34].

7.4 Distributed Computing Systems Based on Dataflow

7.4.1 Ciel

Ciel [62] is an execution engine for distributed dataflow programs. It supports both iterative
and recursive algorithms. It uses lazy evaluation and comes with its own language for
expressing task-level parallelism, Skywriting [59].

7.4.2 Naiad

Naiad [60], is based on what is described as timely dataflow [61], where the vertices are
stateful and the messages are logically timestamped, to differentiate through contexts.
One can easily regard this as as a variation of the classic dynamic dataflowmodel. Instead
of writing programs using directly the low level primitives of the timely dataflow abstraction,
programmers can also use higher-level interfaces, such as SQL or MapReduce.
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7.4.3 Differential Dataflow

Differential dataflow [56] is a model for incremental computations, which allows arbitrarily
nested iteration and describes how incremented computations can be efficiently imple-
mented in the context of a declarative dataflow-like language. This project was built on
Naiad.

7.4.4 TensorFlow

TensorFlow [1] is amachine learning system that uses a single dataflow graph to represent
all possible computations in an application. It spreads the vertices across a variety of
machines in a cluster, while all data dependencies are expressed explicitly in the graph.

7.5 Coordination Languages and Distributed Computing

Until now, we focused on the need for powerful systems, which can cope with big data
in a distributed manner, but we omitted the need for appropriate languages to express
algorithms for such frameworks. It is the author’s opinion, that attempts to develop such
languages lag behind and that many ideas could be derived from macro dataflow lan-
guages, par excellence suitable for distributed environments.

There is a consensus about splitting the computations of the algorithm and the actual
description of the parallel structure of the application, a principle by which all distributed
computing frameworks abide. Moreover, a coordination language [38], which should be
a part of every framework for distributed applications, need not offer more capabilities
than the system itself can offer. So in the past, simple libraries on top of conventional
languages, like C, sufficed. However, with the advent of the newer systems, we need
more expressive tools.

A first step would be to shed the fear of declarative programming becoming a main-
stream programming paradigm. In the declarative paradigm, since the programmermerely
provides the declarations, separating the computations themselves from the scheduling is
done automatically. Moreover, procedural languages, fail to provide a natural framework
to deal with parallelism - the writing of code becomes too messy. For example, Skywriting
[59], while better than some previous coordination languages, still lacks the naturalness
a declarative language could provide. Languages such as Pig Latin [64, 37] obviously
move towards that direction, but still try to keep the appearances of conventional lan-
guages. Distributed SociaLite [70] which is used for graph analysis programs, is a good
example of where we should head.
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8. CONCLUSIONS

The dataflow computational model has been the focus of extensive research the past
decades. Even though, the von Neumann model dominated the market, it does not mean
that dataflow cannot claim its own share in the future, as dataflow machines are still used.
So, even more research on it, is required.

Furthermore, the von Neumann style does not seem to cope with distributed computing
and is very awkward with parallel software. So, nowadays, that applications are becoming
ever more complex and are called to deal with big data, the dataflow model can provide
an elegant framework for distributed computing systems. And indeed, more and more
systems are adopting its principles, both as an execution model and as an abstraction for
programming languages. It is undoubtful, that in future, dataflow will pervade the field of
big data even further.
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ABBREVIATIONS - ACRONYMS

FIFO First in, First out

DAG Directed Acyclic Graph

PE Processing Element

SDF Synchronous Dataflow
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