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ABSTRACT

In this work, we present DAB Join, an adaptive operator that enables scalable processing
of Multiway Windowed Stream Joins using a shared nothing cluster. DAB join (1) sup-
ports any kind of join predicates, (2) minimizes the network cost while at the same time
distributes the load equally to all cluster nodes, and (3) uses only one hop to distribute
the data and execute the join, avoiding the distribution of intermediate results that may
be very large. We have implemented DAB Join on top of an experimental system named
Exastream, which supports the distributed execution of jobs expressed as DAGs of user
defined operators. Based on synthetic streams, Our experimental results show that our al-
gorithm is scalable. Additionally, DAB Join adapts to changes of stream input rates, which
results in better execution times compared to non-adaptive alternatives.

SUBJECT AREA: Computer Science

KEYWORDS: stream processing, distributed join, window join, adaptation,



NEPIAHWYH

2€ auTr) TNV OouA&Id, Ba TTapoucIAcouUE Evav TTPOCAPUOCTIKO aAyOpIBUO yia TTapaBupIKA
€eutn o€ TTOAATTAG peUpaTa OEOOPEVWV XPNOIUOTTOIWVTAG UTTOAOYIOTIKO VEQOG. Ta KUpla
XOPAKTNPIOTIKA TOU aAyopiBuou givail 611 (1) uttooTnpilel OAwV Tov €18WV Ta KATNyopAuaTa,
(2) peiwvel TO KOOTOG PETAPOPAS EVW TNV idIa OTIVUA DIAVEUEI IOOTIMA TOV OPTO 0€ OAOUG
TOUG KOUBOUG TOU UTTOAOYICTIKOU VEQPOUG, (3) XPNOIYOTTOIEl JOVO éva Briua yia va dIaVEilEl
Ta dedopEva Kal va EKTEAECEI TN CEUEN, ATTOPEUYOVTAG TNV OIAVOUI] TWV EVOIAUECWY DEDOE-
VWV TO OTTOIa UTTOPET va gival TEPAOTIA. YAOTTOINOAUE TOV aAyOpIBuo (eUENG o€ Eva TTEIpaua-
TIKG oUuoTNUa Pe 1o Ovopa ExaStream. To ExaStream utrootnpilel Tnv KaTtaveunuévn eKTEAE-
on BOUAEIWV Ol OTTOIEG UTTOPOUV VA EKPPACTOUV O€ AKUKAIKOUG YPAPOUG atTd dIEPYQTieg
TTOU €X0OUV OpIOTEI aTTd TOV XPNROTN. Ta TTEIpAuaTa £yIvav 0€ CUVBETIKA dedouéva Kal deixvouv
OTI 0 aAyOPIBUAOG PHOG KAIMOKWVEL VWD TAUTOXPOVA TTPOCAPUOZETal 08 aAAQYEG TNG PONG
TWV EICEPXOUEVWV PEUPATWV. AGYO TNG TTPOCAPPOCTIKOTNTAG O AAYOPIOUOG HOG CUUTTEPIPE-
peTal KOAUTEPQ KAl Oivel KOAUTEPOUG XPOVOUG EKTEAEDIC O CUYKPION KE YN TIPOCAPUOCTIKEG
EVAANOKTIKEG.
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DAB Join: A Distributed Adaptive and Balanced N-way Stream Window Join for Shared Nothing Clusters

1. INTRODUCTION

A fundamental problem in Distibuted Stream Management Systems (DSMS) is processing
of continuous queries over high-volume and time-varying data streams under resource
constraints. Our research, focuses on multi-way windowed stream join, a core operator
in DSMS systems. The window stream join operator can be used to discover correla-
tions across different streaming sources, which has many important applications in video
surveillance, network intrusion detection, and sensor monitoring.

A typical scenario, requires diagnosing and monitoring of powergenerating turbines. In
the described scenario, several service centres are dedicated to diagnosing of over than
100,000 thermocouple sensors installed in 950 power generating turbines located across
the globe. One typical task of such a centre is to detect in real-time potential faults of a
turbine caused by, e.g., an undesirable pattern in temperature’s behaviour within various
components of the turbine. This task requires to extract and correlate streaming data pro-
duced by up to 2,000 sensors installed in different parts of the turbine. Such kind of tasks
needs to execute expensive multi-way window joins over streams.

This need has triggered the design of scalable approaches that provide low latency an-
swering to queries on high-velocity live streams. In this work, we introduce DAB Join, an
adaptive operator that enables scalable processing of multi-way windowed stream joins,
using a shared nothing cluster. DAB join extends the Symmetric Fragment and Replica-
tion Algorithm [9] to support window-stream joins that adapt to different stream rates. The
main characteristics of a DAB Join is that it (1) supports any kind of join predicates (2) min-
imizes the network cost while at the same time distributing the load equally to all nodes of
the cluster (3) uses only one hop to distribute the data and execute the join, avoiding to
distribute intermediate results that may be huge.

To put our ideas into practice, we have developed ExaStream, an distributed realtime
computation system. Exastream supports the distributed execution of jobs that are ex-
pressed with DAGs of user defined operators. Our experimental results, based on syn-
thetic streams, show that our algorithm is scalable. Additionally DAB Join adapts to changes
of stream input rates. This results to better execution times compared to corresponding
non-adaptive alternatives.

The rest of the thesis is organized as follows. Section P presents the related work, Section
@ shows the problem formulation, Section H presents the Theoretical Model of our algo-
rithm, Section J presents our algorithm, Section B presents the implementation, Section [7
presents our experimental evaluation and final section § presents our conclusions.

Christoforos Svingos 12
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2. RELATED WORK

In [2] introduced Eddies. Eddies are among the first adaptive techniques known for query
processing. Eddies act as a tuple router that is placed at the center of a dataflow, intercept-
ing all incoming and outgoing tuples between operators in the flow. Eddies observe the
rates of all the operators and accordingly makes decisions about the order at which new
tuples visit the operators. In principle, Eddies are able to choose different operator order-
ings for each tuple within the query processing engine to adapt to the current information
about the environment and data.

In [4] proposed two state replication based distributions for generic N-way window join
operators: aligned tuple routing (ATR) and co-ordinated tuple routing (CTR). Both algo-
rithms have make the assumption, that all streams will pass through a Diffusion Operator
that runs on one Server.

ATR picks one input stream as the master stream and partitions the master stream among
the processing nodes. All the other slave input streams are distributed to the processing
nodes with some overlaps, to ensure the semantics of the window constraints. In ATR
the segment length is an important parameter for the load diffusion. However, the ATR
approach works under the condition that the window constraint (W) are much greater than
the size of each part (T). When W is comparable with T, the memory waste and redundant
computation can be significant.

CTR is a multi-hop semantics preserving tuple routing where intermediate join results are
transferred among nodes during each hop. A weighted minimum set covering is utilized to
identify the optimal routing for each tuple to “find” all correlated states. In CTR the number
of redundant state is determined by the minimum set covering at runtime. CTR faces the
following dilemma. The more redundant states, the smaller set covering may exist. Then
the incoming tuples will be stored in fewer nodes, which may make future set covering
large. More seriously, the states in CTR may converge to one (or a small subset of) node
if sometime only one copy of the input tuples is stored in the cluster, since the future set
covering will direct all later tuples to that node. Then no distribution is achieved.

The authors of [11] introduced the Pipelined State Partitioning (PSP) that focuses on dis-
tributed processing of generic N-way window joins with arbitrary join predicates, especially
for use cases with expensive join probing cost over large window constraints. This work
is related to the state-slicing concept presented in [12]. PSP splits the window time into
N disjoint slices, where N is the number of Nodes in a shared nothing cluster. Next PSP
organizes the nodes in a pipelined state-slice join ring. The probing tuple and intermediate
results traveling through the ring. This means that tuples pass through all cluster nodes at
least once. In more detail, the worst case (M-1)N hops of intermediate propagations are
needed for an M-way join.

In [8] the Flux operator is presented. Flux is a general adaptive operator that encloses

Christoforos Svingos 13
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adaptive state partitioning and routing. Although the authors focus on single-input ag-
gregate operators, it can support a restricted class of join predicates, e.g. equi-join. Flux
supports equi-joins under skewed data settings but requires explicit user knowledge about
partitions before execution.

Finally, in [3] the authors use the Symmetric Fragment and Replication Algorithm [9] to
support adaptive online joins in relational static tables. The problem they tried to solve was
finding the optimal replication factor for all relations without having statistics beforehand.

Christoforos Svingos 14
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3. MODEL AND PROBLEM DEFINITION

In this work we tackle the problem of scalable processing of multi-way window joins. We
assume that the timestamps of stream tuples are globally ordered. Windows define the
scope of the otherwise infinite streams for stateful operators. In this section we will provide
some preliminaries on streams.

A data stream S consists of a sequence of tuples s € S, such that each tuple caries a
timestamp s.7 in its header to denote the time when the tuple s arrives at the stream S. For
stream element arrivals we assume a time domain 7. We can slice a stream into infinite
disjoint sets with size T, and map each disjoint set with an unique ordered id. So X;]t;,z,]
defines a set with id = i,i € N, which is responsible for time units ¢ for which 7, <t <t, and
to —ty = T. We define as window WD;[t, — W,te| with duration W and id =i all tuples that
arrives in time ¢ for which ¢, — W <t <t, and ¢, is the time that defines the end of set X;]t;,7,].

So we can say that T defines the frequency and W defines the time duration of a window.
For example we can say that every 10 seconds (T = 10) we will look back 15 seconds
(W = 15). This example defines sliding windows that overlaps for 5 seconds. To define non
overlapping windows we can say that for each 10 seconds we will look back 10 seconds.
Notice that if two streams have the same T then we can give the same id to windows that
reference to the same time durations, simply map this windows with the epoch time of 7.

From the above definition of the window, we can define the window join as a simple equi-
join between window ids. For example, suppose that we have streams S;,S5, that both
have the same T and W. Then we can take the window join of both, simply executing the
constrain S;.wid = S;.wid. Notice, that our model can join a current window of stream S,
with windows that is behind in time from stream S,. For example, the constrain S;.wid =
S,.wid — 3 joins the current window of S| with the window that came 3 windows behind.

Christoforos Svingos 15
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4. SYMETRIC FRAGMENT AND REPLICATION ALGORITHM

A lot of work has been made during the last years towards answering distributed equi-join
queries between two relations [6] [7]. But what happens when we want to execute theta
joins, non-equi joins or equal joins with data skews or N-way joins? The Fragment and
Replicate Algorithm is an algorithm that supports such kind of joins. In this section, we will
make a report of this algorithm, as it is referenced in [9], and we will introduce a different
perspective for the same problem.

4.1 Stamos And Young Perspective

In this section, we will describe the Symmetric Fragment and Replicate Algorithm as de-
scribed by Stamos and Young. Suppose that we have six join sites and we want to join
relations R and S. Relation R is partintioned into two disjoint fragments (RF; and RF>) and
relation S into three disjoint fragments (SF;, SF, and SF3). The rectangle in figure (1| shows
the six join sites. We can take the join of R with S if we replicate each fragment of R across
one row of join sites and each fragment of S across one column of join sites. Each site is
responsible to execute a local join algorithm for his fragments of data.

gite 1 | site 2 | site 3
RF;, | RF; | Ry
SF, SFa | SF3

gite 4 | gite 5 | site 6
RF; | RF; | RF,
SF, SF, SF,

Figure 1: Join Cites for SFR Algorithm and relations S and R

Suppose now that we ignore any initial replication of tuples. Then for the same problem
there are 4 ways to arrange the sites into a rectangle: box(2, 3), box(3, 2), box(6, 1) and
box(1, 6). So now the problem is an optimization problem. We must define the best rect-
angle that minimize the replication cost.

Now that we get a notion about the problem, we can formalize the SFR algorithm for a
N-way join. We use the following notation to simplify our discussion:

Christoforos Svingos 16
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S : the number of join sites

N : the number of relations involved in the join
Ri : The relation i, i belongs to 1, ..N

Li : The length of the box in the ith dimension
Mi : The size of the ith relation

Let box(L;,L,,...,Ly) be an N-dimensional box with volume S. Consider the site located
in cell(py,p2,-..,pn)- This site multicasts its fragment of R, to all sites whose location
is of the form cell(p;,+*™~1)). The site multicasts its fragment of relation R2 to all sites
whose location is of the form cell(x, p2, *N=2)). In general, the site multicasts its fragment
of relation R, to all sites whose location is of the form cell(x=1), p; «™V=9). The degree of
replication of relation R; is S/L;.

So, if we have S sites to perform an N-way join, the problem is to determine the shape
of the N-dimensional box with volume S that minimizes communication. When replicating
relation R;, we make S/L; new copies of R; and send each copy to a different site. The
communication cost of replicating R; is M, xS /L;. Therefore, the total communication cost
of the SFR algorithm for a N-way join is:

N
optimalcost = ZMiS/Li
i=1

Our goal is to minimize the cost subject to the constraints that L;'s are positive integers
and

Y ,Li—S=0

However the authors cannot find a good solution to solve the above equation. In the pa-
per suggesting a heuristic solution that does not find always the optimal solution for the
problem. More specific in the appendix the authors says:

"Our colleague Nimrod Megiddo developed a dynamic programming algo-
rithm that finds the optimal integer solution. Because its running time is expo-
nential, we searched for more efficient ways to find a good integer solution. In
conjunction with Nimrod Megiddo, we developed a simple algorithm that finds
the optimal integer solution when the number of join sites is the power of a
single prime.”

In the next sections we will define the problem in an our perspective and we will give an
algorithm that finds the best integer solution.

Christoforos Svingos 17
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4.2 Our Perspective

Figure 2: SFR Algorithm for relations S and R using map-reduce jobs

Suppose, that we have again 6 join sites and the relations R and S are partitioned in 6
parts each. One solution to take the R, S join is to create two groups for relation R (three
partition each group) and three groups from relation S (two partitions each group) and
then get all combinations for these groups as shown in figure . We define this topology
as mapping(2, 3).

Figure B shows all combinations for mapping(2, 3) in a tree representation. The leafs of
the tree represent the join sites. For the same problem, we can define the mapping(1, 6),
mapping(3, 2), mapping(2, 3), mapping(6,1). All mappings generated from the results of
the equation x*y = 6, where x, y > 0 and x is the number of R groups and y the number
of S groups. Relation R is replicated three times and relation S two times, as it is shown
on Figure [B. This occurs, if we find in how many leafs participate one group of each. For
example for relation R we get 6/2 = 3 replicas and for relation S we get 6/3 = 2 replicas.

O OO OO & O OO OO &

Figure 3: The tree representation of all compinations of groups from relations S and R

In the rest of this section, we define the replication pattern formally extend it to handle
N-way joins. We use the following notation to simplify our discussion:

S : the number of join sites

N : the number of relations involved in the join
Ri : The relation i

Li : Number of groups for relation i

Mi : The size of the ith relation

Christoforos Svingos 18
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The notation here is similar to that defined by Stamos and Young. The difference is that
we define L; as the number of groups of relation i. So, again, the problem is to find the
mapping(Ly,Ls,...,Ly) that minimize the replication cost. The following equations defines
these problem:

N
N
minimize() " M;S/L;)

i=1

These equations are the same as Stamos and Young. The two models are identical. Our
representation is appropriate for map-reduce jobs and will help us in the next sections to
define our adaptive join algorithm.

In listing (1 we describe the algorithm that enumerates all solutions for integer solution
problem. The algorithm first adds to the solutions the mapping(1, 1, ..., S). Then the al-
gorithm executed in N-1 steps. Because we want the ITY | L; = S we initialize the Ly with
all possible d, where d € {set with all divisors of S}, and Ly_; with the quotient of the S/d.
Each distinct mapping added to a set with all solutions (Sol). Then we repeat the above
steps for each mapping € Sol, where S now is equals to mapping[N — 1]. In N-1 step the
algorithm finds all mapping solutions.

Listing 1: Integer Solution Algorithm

getDivisors(_s):
allDivisors := {}

for _d in {2, ..., sqrt(N)}:
if _s% _d==0:
allDivisors .add(_d)
allDivisors .add(_s / _d)

return allDivisors

main ():
solutions := {}
mapping = [1, ..., N]
solutions .add(mapping)

for _x in {N, N-1, ... 2}:
for _map in solutions:
for _d in {getDivisors(_map[_x])}:
mapping[_x] = _d
mapping[_x—1] = _map[_x] / _d
solutions .add(mapping)

For better understanding suppose that we have the equation:

Xkykz=3_8

The first iteration of the algorithm give us the solutions: mapping(1,1,8), mapping(1,2,4),
mapping(1,4,2), mapping(1,8,1). In the next step the algorithm give the solutions: map-
ping(1,1,8) from mapping(1,1,8), the solutions: mapping(2, 1, 4) from mapping(1,2,4) the

Christoforos Svingos 19
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solutions: mapping(2,2,2), mapping(4, 1, 2) from mapping(1,4,2) and the solutions: map-
ping(2,4,1), mapping(4,2,1), mapping(8,1,1) from mapping(1,8,1). And then the algorithm
ends.

Christoforos Svingos 20
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5. DAB JOIN

DAB join uses the Symmetric Fragment and Replication algorithm to distribute the win-
dows to join sites. Because streams arrive with unpredictable input rates our algorithm
dynamically adjusts to the different rates of streams. In this section we will describe our
algorithm and we will give some implementation details of the DAB join algorithm.

5.1 Initial Phase

Suppose that we want to join streams A and B and we have four available CPUS. Figure {4
shows the topology that DAB join uses. The first level of the graph composed of operators
named transponders and the next level with operators named joiners. Each stream has its
own transponders operators. For example, the operators A|,A;,A3,A4 belong to Stream A.
The main work of transponders is to broadcast their data to joiners and the main work of
joiners is to locally execute the join. To simplify our model we assume that transponders
have data distributed to them in a round robin manner.

Stream A Stream B
CeD
S

<7
CrEPIEPACED

Figure 4: DAB Join Topology

In our example, stream A and B consist of 4 transponders each. Additionally, the same
number of operators is occupied from joiners. The distribution of operators is not acciden-
tal. Transponders consume a minimum portion of the CPU because their work is only to
distribute their contents. On the other hand, joiners consume much more CPU because
they must execute the join. So in the corresponding topology we exploit better the available
resources of the cluster.

As mentioned the main work of a transponder operator is to broadcast its content. The
number of broadcasts that a transponder distributes its data to is determined by the Sym-
metric Fragment and Replication algorithm as mentioned in section #.2. The number of
broadcasts for each operator is the number of replicas of the stream that this operator
exists. The mapping at the initial state of the DAB Join is the mapping that occurs if we
assume that the rates of all streams are similar. For example in Figure f we use the map-
ping(2,2). That means that we have split each stream into 2 groups . For this mapping
each transponder operator must make 2 broadcasts.

Christoforos Svingos 21



DAB Join: A Distributed Adaptive and Balanced N-way Stream Window Join for Shared Nothing Clusters

Because, we want the communication to be made asynchronously, each transponder
keeps a buffer for each of its outputs. Each tuple produced from a transponder is writ-
ten to N buffers, where N is the number of outputs for this transponder. So when a joiner
reads from an output, then it reads from a specific buffer. If one of the joiners delays to
read their output this doesn’t delay the other joiners. If the buffer of one output is filled,
then the transponder will block writing tuples to buffers until it finds the appropriate space.

Respectively, the joiners read asynchronously. This means that the tuples that the joiners
read are stored in buffers. When the join algorithm needs more tuples then reads tuples
from the transponders buffers. When the join algorithm is blocked (e.g for an io) then
the joiner reads tuples from transponder and fills their buffer. This architecture design is
necessary for performance reasons and as we see below affects our rebalance algorithm.

5.2 Rebalance Phase

As mentioned before, the rates that streams arrive may vary from one time point to another.
If this change on input rates happens, then the best mapping for this input rates may be
different. For example suppose that the rate of stream A and stream B from previous
example was 10 tuples per second. The mapping for this rates is similar with the one that
is seen in figure f. Suppose now, that after a while the rate of stream A changes to 100
tuples per second. If the mapping topology remains unchanged then 2*100 + 2*10 = 220
tuples per second will be transferred. On the other hand, if stream A is replicate only one
time, stream B 4 times (figure [)), then we transfer 1*100+4*20 = 180 tuples per second.
So if our algorithm adapts to the stream rates in the specific setup we can transfer 20%
less tuples to the network!

Stream A Stream B

Figure 5: DAB Join Topology after Rebalance

As we said, the first constraint of our join is an equality constraint on window ids. This
gives us the ability to change the mapping of DAB Join for the next window that none of
its tuples has been processed yet. For example, suppose that all joiners have processed
tuples for window with id 5 for streams A and B. Additional, joiners have not yet process
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any of the tuples of window 6. In this case, we can rebalance the way that the joiners read
their tuples from transponders without influencing the result of the join.

Our algorithm, exploits the fact that the tuples are partitioned in a round robin manner.
This means that each joiner has the same view of the input rate of streams. Suppose that,
we have windows with duration 1 second and rates of 40 t/sec for stream A and 4 t/sec
for stream B. For mapping(2,2) each joiner will have for some window, 2 tuples for stream
B and 20 tuples from stream A. If the joiners know the mapping they can divide with the
replicas of each stream and calculates the exact rates. This means that each joiner can
decide alone which window must change the mapping and will be sure that all other joiners
will decide to change the mapping in the same window. So all joiners can decide at the
close of each window if a rebalance may occur executing the integer solution algorithm.

However, if the number of total tuples in each window cannot be divided perfectly by the
number of joiners, then some joiners may have one more tuple from others. On the other
hand, if the number of tuples in each window is less than a threshold, some joiners may
take no tuples for some window. To simplify our model, we assume that all joiners have
the same number of tuples for each window. This can maintained, if the operators that
make the round robin reshufle add dummy tuples to preserve this constraint.

Now that we know when a joiner decides to trigger a rebalance, we can describe the re-
balance algorithm. When a joiner decide that a rebalance may occur, sends rebalance
messages to all transponders of stream A and stream B that correspond to the new map-
ping. In our example, DAB join changes for mapping(2,2) to mapping(4,1). So joiner 2 will
send rebalance messages to transponders A;, B}, B>, B3, By.

Table 1: Rebalance Message

State The state is the number of rebalances that have occured

NumberOfBroadcasts || The new number of broadcasts that the transponder must
support

PreviousOutput The number of output that the joiner has read from the pre-
vious mapping

NextOutput The number of output that the joiner will read when the re-
balance occur

The rebalance messages contain the information presented in table [. The State says
how many rebalances have occurred from the beginning of the DAB join execution. This
information is necessary because, in an extreme case we may receive a rebalance before
the previous rebalance has been executed. The State ensures that the new rebalance
doesn’t start its execution before the previous rebalance has finished.

As we say each joiner reads a specific output of a transponder. For example, in figure
4 the joiner J, reads the second output of transponders A; and A, and the first output
of transponders Bz, Bs. The NumberOfBroadcasts determines the new total number of
outputs that a transponder may support. The PreviousOutput determines the number of
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outputs that the joiner has already read and, the NextOutput determines the output that
the joiner will read after the rebalance. Notice, that the NumberOfBroadcasts also deter-
mines the number of messages that this transponder waits to receive for this State. This
is necessary for a transponder to decide when the rebalance has terminated.

Figure 8 shows the actions that take place when joiner J, trigger a rebalance. When a
rebalance message arrives into a transponder then the transponder begin the rebalance
phase. In this phase the transponder creates so many new buffers as the NumberOfBroad-
casts says. More specific the new buffers are replicas of the old ones. The replicated buffer
decided for the first message that the field PreviousOutput is not empty. Notice that joiner
J», as shown in figure B, will send messages to transponders B; and B,, but joiner J, does
not read any of the outputs from these operators. So the field PreviousOutput for these
messages will be empty. The most important is that a message that the field PreviousOut-
put is not empty says that the joiner will not read tuples from this buffer again! We can’t
assume this for the other buffers, because a joiner may not have the chance to read yet
the tuples that will trigger the rebalance.

Stream A Stream B

Figure 6: Actions that take place at rebalance phase

In our algorithm, joiners are blocked until they get a positive answer from all rebalance
messages that have been send. For example, joiner J, will get answers from transpon-
ders A,, B3, B4 when the initialize of new buffers finished. But the answers from B; and B,
will occur when these transponders initialize their own buffers. This will happen, if these
transponders get a rebalance message from another joiner that the field PreviousOutput
is not empty.

When the rebalance terminates the joiner will start to read tuples from the new outputs. In
the next section, we will describe in more detail the transfer phase.

5.3 Transfer Phase

As mentioned, at the rebalance phase the transponder will replicate one of its buffers as
many times as defined in the NumberOfBroadcasts field. The transfer of data becomes
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asynchronously and in batched manner. This means, that a joiner may read tuples from
windows that belong to time after the window that will trigger a rebalance. These tuples are
saved into the joiners buffer and removed from the transponder’s buffer. When a rebalance
occurs, the joiners empty their buffers, and continue to read data from transponders using
the new mapping. This means, that our algorithm as being described, is incomplete.

Stream A Stream B

S

(@) (b)

Figure 8: Buffers state before and after rebalance.

Figures [7], § show an example that describes the aforementioned problem. Figure [ shows
that joiners J;,J, read the first and the second output of transponder A, respectively (map-
ping(2,2)). Figure Bd shows a possible state of the buffers for transponder A, and joiners
J1,J>, where buffer numbers correspond to the number of windows that exist in each buffer.
Suppose, that J, decides to trigger a rebalance, with a (4, 1) mapping, for window with id
1. After the rebalance completes, J, will read data only from transponder A,. As displayed
in figure Bb, joiner J, will empty its buffer and will request for data from transponder A».
This leads to a waste of data and unsound results.

To solve these problem, joiners read data with a semi pull-push model. Each joiner, makes
a request to get the data from the output of a transponder. The transponder responds with
data whose length is equal to the length of the buffer. The joiner adds the data to its own
buffer and continues to read with a new request. If the size of the joiner buffer equals the
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size of the transponder buffer then in any case we have stored data to the buffer which
have been derived from at most the buffers of two requests.

To better understand this, let's study an extreme case. Suppose that the buffer in the
joiner side is full. The latter means that the joiner does not make another request until it
reads all data from the served request and puts them to the buffer. The joiner then reads
a tuple from the buffer and decides that it must trigger a rebalance. Before it triggers the
rebalance the joiner may make another request to the transponder, since there is room to
the buffer.

In this example, we have read tuples equals the size of one buffer and we make another
request to get the rest of tuples with length equal to the transponder buffer length. If we
trigger the rebalance then the data that have been transferred to the joiner and belong to a
window with bigger id from the one that triggers the rebalance, will not be processed. For
this reason, the transponder stores to a “historic” buffer with size equals the size of two
buffers the data that were transferred to the joiner side. So when a rebalance occurs the
transponder re-transfers the data that were stored into the historic buffers. Especially, for
rebalance messages we send as parameter the window id that triggered the rebalance.
So the transponders after the rebalance phase re-transfer only the tuples that are greater
than their window id.

5.4 Rebalance Constraint

As we said, our algorithm works only if the transponders accept at least one rebalance
message that its field PreviousOutput is not empty. That means that after the rebalance
the transponders must transfer data to at least one joiner that transfers data before. For
example, suppose that the two states before and after the rebalance are displayed in figure
M. As shown in the new state the J, joiner requests for data the transponder A3 while joiner
Js requests for data transponder A,. The transponders A, and A3 never accept rebalance
messages with the field PreviousOutput filled. These transponders will never finish the
rebalance phase because they can not close and clone his buffers to the new ones. So
our transition for one rebalance state to another must ensure the above constraint.

Stream A Stream B

Figure 9: Problem at the rebalance phase

Suppose that we have the tree representation of figure [10. This tree represents the com-
binations of all Groups for streams A, B and C. In our example, we have 8 join sites and
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the mapping(2,2,2). Each array in the figure, represents the transponders of a group. The
first level of the tree has the groups of stream A, the second the groups of Stream B and
the third the groups of stream C. Each group has the transponders in sorted order. For
example if we have all transponders of Stream A in an array with 8 cells in sorted order
and split this array then we take the Group 1 that has the transponders 1,2,3,4 and Group
2 that has the transponders 5,6,7,8. Respectively, the same algorithm follows to take the
groups from the other streams. To take the combinations of all groups we can simply run
a 3-way nested loop.

Figure 10: Problem at the rebalance phase

Suppose now that we want to change from mapping(2,2,2) to mapping(1,8,1). Follows the
algorithm that we just describe we get the tree of figure [11]. This tree shows that transpon-
der 3 of stream B will get only one rebalance message from the 3rd joiner. But as we show
from figure [10 joiner 3 didn’t takes data from transponder B3 before! So we must rearrange
the transponders for Stream B before we do the rebalance. One possible redeployment
for stream B is the following:

1,2,5,6,3,4,7,8

Figure 11: Problem at the rebalance phase

Suppose now that we have the notation of table 2. To decide when the transponders of
one group need redeployment we create the following equation:

Sizeo14(Group(X)) /Sizenew(Group(X)) # JoinerSites,q(Group(X)) /JoinerSitespe,, (Group(X))

To understand better what this equation says we will explain it using an example. Suppose
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that we rebalance from mapping(2,2,2) to mapping(1,8,1). For this mappings we have:

Size,14(Group(A

(
Sizenew(Group(A ™)
JoinerSites 14 (Group
(

JoinerSitesye,,(Group

The equation result is false. This is reasonable because in first rebalance State the first
4 transponders of A take part to first 4 joiner sites, and in the next rebalance state all
transponders of A take parts to all sites. So we reduce the number of groups with a factor
of 2 but we duplicate the number of join cites that a group takes place. In the other hand
the equation for stream B is true:

(4/1) # (2/1)

Indeed, the number of transponders in each group reduced at a factor of 4 but the join sites
that the group takes part reduced for a factor of 2. To understand better this, let's see the
path of B3 transponder before and after the mapping change. transponder B3 takes part
to group 1 of stream B and participates to joiners 1, 2 and 5, 6. After the rebalance, the
transponder B3 takes part to group 3 of stream B and participates to joiner 3. This happens,
because, before rebalance we have 4 transponders of Group 1 to participate to 2 joiners,
and now this 4 transponders takes part into 4 Groups and each group participates to 1
joiner site. To be in force the constraint must these 4 groups to participate to the first 2
joiner sites, something like that, however is not possible.

Table 2: Notation for redeploy problem

Group(X) The representation of one Group of Stream X

Sizey1q(Group(X)) The number of transponders for one group of Stream X, for
previous tree representation

Sizenew(Group(X)) The number of transponders for one group of Stream X, for
current tree representation

JoinerSites 4 (Group(X)) In how many sites takes part the one group of Stream X, for
previous tree representation

JoinerSitespe, (Group(X)) In how many sites takes part the one group of Stream X, for
previous tree representation
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6. IMPLEMENTATION

To evaluate our algorithm, we create from scratch a new system named ExaStream. Ex-
aStream implemented into the Go programming language. The choice of the particular
language, was because Go gives the appropriate mechanisms to write easy asynchronous
procedures. ExaStream is similar to other systems [5] [1] [10] in the way that gives to the
users the ability to define and execute their own topologys of user defined code. The de-
cision to implement from scratch our own system is that we want to have the complete
control of how the tuples are transferred to able to get clear conclusions.

Exastream is a system that executes jobs that can expressed as Directed Acyclic Graphs.
The nodes in DAGs, define arbitrary user defined code and edges defines the way the
data are combined. In figure 12 shows an ExaStream’s DAG, that reads data from external
sources and combines them using the DAB Join. The results of DAB Join passes to the

Read External Source

User Defined function to process them further.

Read External Source

DAB Join

Figure 12: ExaStream DAG

ExaStream’s DAGs can be defined from users using a programming API. For example the
code in listing @ shows how we can define a topology similar to the one that we described
before. Specifically, this is the topology that we use to our evaluation. In the first line, we
create the client responsible for executing the user defined computation DAG. The next
two variables (rop1, rop2) initialized with the operators that produce the tuples. These
operators, are user defined functions that produce tuples in a for loop with specific char-
acteristics, as we will explain in Evaluation section. From line 17 to line 19 we construct
our computation DAG. To add a computation node to our DAG we use the AddComputa-
tionNode() function. The first variable of this function, defines the name of the node, the
second the user define operator that this computation node will execute the third variable
defines the way that the node will combine the input data, the fourth defines the input node
names, and the last one the number of parallelism that we want to execute this UDF. The
third variable of nodes "Node1” and "Node2” is the EmptyDT because these nodes do not
accept any input. Node3 is the one that executes the DAB Join.

Exastream consists from three main components, workers, execution engine and clients.
The workers are responsible to accept and execute new tasks. A task is the smallest
unit of a job. An ExaStream task, determines the UDF that the worker must execute as
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well as the tasks that this task will request to get data. Each task is the smallest unit
of parallelism. In our example the "Node1” operator will be partitioned in 16 tasks. The
execution engine is responsible for accepting DAGs and transforming each DAG to a
set of tasks. Afterwards, the execution engine sends these tasks to workers and informs
the client when the execution has finished or when an error has occured. The client is
the simplest component, its main work is to create and send DAGs to execution engines.
Notice that Exastream can support more than one engine that manage the same resources
in the cloud.

Listing 2: Code that defines an ExaStream’s computation DAG

dfl := client.NewDataFlow ()

rop1 := exampleoperators.RangeOP{
NumberOfWindows: 200000,
RebalanceTriggerWindowNumber: 50000,
TuplesPerWindowAfterRebalance: 20,
TuplesPerWindowBeforeRebalance: 1,

rop2 := exampleoperators.RangeOP{
NumberOfWindows: 200000,
RebalanceTriggerWindowNumber: 50000,
TuplesPerWindowAfterRebalance: 1,
TuplesPerWindowBeforeRebalance: 1,

}

dfl . AddComputationNode ("Node1”, rop1, empty.NewEmptyDT(), []string{}, 16)
dfl . AddComputationNode ("Node2”, rop2, empty.NewEmptyDT(), []string{}, 16)
dfl . AddComputationNode (

"Node3”,

exampleoperators .ReadOP{} ,

matrixjoin .NewDABJoinDT(1024, 10, 1),

[1string {"Node1”, ”"Node2”},

16)

dfl .Commit("127.0.0.1”, "6999")
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7. EVALUATION

In this section, we will describe the experimental evaluation of the DAB join. Our main
goal, of the evaluation, is to show how the DAB Join behaves compared to the Symmetric
Fragment and Replication Algorithm (Matrix Join). Our experiments aimed to explore how
DAB Join scales changing the input rates of streams. Also in our evaluation, we take
metrics about the time that joiners are blocked because they wait to finish a rebalance
state and how the size of buffers and the number of cpus that DAB join uses affect these
times.

7.1 Experimental Setup

We deployed our system to the Okeanos Cloud Infrastructure (www.okeanos.grnet.gr/)
and used 8 virtual machines (VMs) each having a 2.100 GHz processor with two cores and
4 GB of main memory. We used synthetic streaming datasets. Specifically we produced
tuples that have 5 columns. The first column was the timestamp and the others were
dummy string values with size 8 characters.

To evaluate DAB joins, we produced finite number of data. More specific transponders
produce 200,000 not overlapped windows in a for loop without latency. The ratio was 1
tuple per window and after the 4 of the total windows number the rate of one stream was
changing. In our experiments we measured the execution time to finish this workload for
DAB and Matrix join.

7.2 DAB Join vs Matrix Join

In this section, we will compare the Matrix Join with DAB Join. In diagram [13, we take the
execution times when both algorithms uses 16 CPUs. As we mentioned, after the V5 of
the total number of windows that are produced in our workload we change the rate of one
stream. In our evaluation, the rate of one stream changed due to be 10, 20, 30, 40 times
faster than the other.

Both algorithms, begin considering that the stream rates will be equals (mapping(4, 4)).
As shown, DAB join adapts to changes of rates. This is the reason, why DAB Join is a lot
faster than simple Matrix Join. Notice that, as the rate of one stream increases the more
fast is the DAB Join compared to the Matrix Join. DAB join is slowest only when the rate
doesn’t change. This happens, because we run the integer equation solver at the end of
each window, something that Matrix Join does not need to solve.

The next diagram (diagram [14)), shows how many tuples transferred from DAB Join and
Matrix join as well the total number of tuples that are produced for the workload of previous
experiment. As shown, the Matrix Join transfers 4 times more tuples than the produced
ones. This happens because, Matrix Join use the mapping(4, 4) for all windows of work-
load. This means that Matrix Join replicates 4 times both streams. DAB join, on the other
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DABJoin vs MatrixJoin
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Figure 13: Evaluation of DAB Join in compare with Matrix Join when the input rates of streams
changes

hand, after the 4 of the workload change the mapping to mapping(16, 1). This means that,
replicates only one time the fastest stream and 16 times the slowest. For this reason, the
Matrix join transfers much less tuples than the Matrix join and not much more than the
total number of tuples that produced.

Notice that, the execution times with the number of tuples that are transferred follow the
same path. This is reasonable because in our experimental setup we measure the times
to transfer the tuples and we do not pay attention to the join algorithm executed in every
joiner.

At the next experiment, (diagram [15) we evaluate how DAB Join and Matrix Join acts if we
change the number of cpus that are available. In this experiment, the rate of one stream
changes to 20 times faster than the other, after the Vs of the workload.

In our evaluation, we use as number of cpus perfect squares (4, 9, 16). This help Matrix
join to choose the mapping that replicates equal both streams. As shown DAB join scales
almost linear. This happens because, the tuples that produced from the stream with high-
est rate is much more for the other tuples that produced. So DAB join, replicated only one
time this load and acts like a simple hash join.
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Dab Join #TuplesTranfered vs Matrix Join #
TuplesTranfered vs #TuplesProduced
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Figure 14: Evaluation of DAB Join in compare with Matrix Join when the input rates of streams
changes
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Figure 15: Evaluation of DAB Join in compare with Matrix Join when the input rates of streams
changes
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7.3 Rebalance Time

In this section, we will evaluate the time that joiners are blocked due to the rebalance
phase. As shown, in the next experiments the factors that affect rebalance times is the
number of CPUs and the size of buffers.

In diagram [16 we show how the number of cpus affects the rebalance times. As the num-
ber of cpus increases, the time of rebalance increases too. As we explain, this happens
because a transponder needs to take a rebalance message that the field PreviousOutput
is not empty. Until then, the transponder does not return a response for the other rebalance
messages. So when we increase the CPUs we increase also and the number of operators.
So the phenomenon of late response, is more often. In addition each transponder must
process a lot more rebalance messages as the number of joiners increases.
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Figure 16: Evaluation of DAB Join in compare with Matrix Join when the input rates of streams
changes

In the next experiment, we evaluate the rebalance time as the size of buffers increased
while the number of cpus that DAB Join uses was 16. As we increase, the buffer size then
the late response problem increases. This happens because some of the streams may
stay behind. As we increase, the buffers it is more possible for a stream to stay behind.
This is the reason that we take rebalance times that are more than 1.5 secs for very big
buffer sizes (diagram [17).
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Figure 17: Evaluation of DAB Join in compare with Matrix Join when the input rates of streams
changes
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8. CONCLUSIONS

In this work we presented Distributed Adaptive & Balanced (DAB) Join. Dab join is a dis-
tributed n-way window join that adapts to the different input stream rates. DAB Join offers
three characteristics that none of the existing distributed n-way window algorithm satisfies
all-together: Specifically DAB Join:

* supports any kind of join predicates;

* minimizes the network cost while at the same time distributing the load equally to all
nodes of the cluster;

+ uses only one hop to distribute the data and execute the join, avoiding to distribute
intermediate results that may be huge.

Our experimental results based on synthetic streams, show that our algorithm is scalable
and adapts to changes on input stream rates. Also the experimental evaluation shows
that the number of CPUs that a DAB join uses as well the buffer sizes affect the rebalance
times. On our future work we intend to examine techniques for minizing rebalance times.
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