
 
 

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS 
 

SCHOOL OF SCIENCE 
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION 

 
 

 
 
 

BSc THESIS 
 
 

Constraint Satisfaction Problems in Hadoop MapReduce 
 
 
 

Emmanouil  N.  Ntoulias 
Kyriakos Vlasios  E. Tharrouniatis 

 
 
 
 
 
 
 
 

Supervisor :  Panagiotis Stamatopoulos,  Assistant Professor 
 

   

  

 
 

 
 
 
 
 
 

ATHENS 
 

OCTOBER 2016 
  



 

 
 

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ 
 

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 

 
 

 
 
 

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ 
 
 

Προβλήματα Ικανοποίησης Περιορισμών στο Hadoop 
MapReduce 

 
 
 

Εμμανουήλ  Ν.  Ντούλιας 
Κυριάκος Βλάσιος  Ε. Θαρρουνιάτης 

 
 
 
 
 
 
 
 

Επιβλέπων : Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής 
 

 
 
 
 
 
 
 
 
 
 

ΑΘΗΝΑ 
 

ΟΚΤΩΒΡΙΟΣ 2016 
 



 
 

BSc THESIS 
 
 

Constraint Satisfaction Problems in Hadoop MapReduce  
 
 

 

Emmanouil  N.  Ntoulias 
S.N.: 1115200900162 

 
Kyriakos Vlasios  E. Tharrouniatis 

S.N.: 1115200500250 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supervisor :  Panagiotis Stamatopoulos,  Assistant Professor 
 
 
 

  
 

 

  



 
 

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ 
 

 
Προβλήματα Ικανοποίησης Περιορισμών στο Hadoop MapReduce 

 
 

 

Εμμανουήλ  Ν.  Ντούλιας 
Α.Μ.: 1115200900162 

 
Κυριάκος Βλάσιος  Ε. Θαρρουνιάτης 

Α.Μ.: 1115200500250 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Επιβλέπων : Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

In this thesis we examine the effectiveness of using Hadoop MapReduce join 

algorithms to solve Constraint Satisfaction Problems. We start by presenting the Map 

Reduce framework and continue by making a brief summary of the CSPs. We take 

advantage of the fact that CSPs and database techniques overlap, by modeling a CSP 

as a database schema. We describe some of the join algorithms and then use the 

aforementioned schema as input to them. Some modification and preprocessing is done 

to these algorithms to support the specifications of CSPs as joins. We finally use them 

to conduct a set of experiments and conclude that it is not effective to use the map 

reduce framework for CSPs. One suggestion is to remake the experiments on a more 

suitable environment, i.e. a better cluster, because the one that was used is proven to 

be inefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUBJECT AREA: Big Data, Artificial Intelligence   

KEYWORDS: Hadoop, MapReduce, join, Constraint Satisfaction Problem (CSP) 

 

 



ΠΕΡΙΛΗΨΗ 

Σκοπός της παρούσας πτυχιακής εργασίας είναι να εξετάσουμε την αποτελεσματικότητα 

των αλγορίθμων ένωσης πινάκων μέσω της τεχνολογίας Hadoop Map Reduce για την 

επίλυση  Προβλημάτων Ικανοποιήσης Περιορισμών (ΠΙΠ). Ξεκινάμε παρουσιάζοντας το 

πλαίσιο Map Reduce και συνεχίζουμε συνοψίζοντας τα ΠΙΠ. Εκμεταλλευόμαστε το 

γεγονός ότι τα ΠΙΠ υπερκαλύπτονται από τις τεχνικές βάσεων δεδομένων, όπως η 

μοντελοποίηση ενός ΠΙΠ ως ένα σχήμα βάσης δεδομένων. Περιγράφουμε μερικούς από 

τους ήδη υπάρχοντες αλγόριθμους ένωσης πινάκων και χρησιμοποιούμε  το 

προαναφερθέν σχήμα ως είσοδο σε αυτούς. Τροποποιούμε τους αλγορίθμους αυτούς 

ώστε να υποστηρίζουν τα ΠΙΠ ως σχήματα βάσεων δεδομένων. Τέλος, 

πραγματοποιούμε μια σειρά από πειράματα και συμπεραίνουμε ότι δεν είναι ιδανικό να 

χρησιμοποιήσουμε το πλαίσιο Map Reduce για επίλυση ΠΙΠ.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μεγάλα Δεδομένα, Τεχνητή Νοημοσύνη   

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Hadoop, Map Reduce, ένωση πινάκων, Προβλήματα Ικανοποίησης 

Περιορισμών 

 



 

 

 

 

 

 

 

 

 

To Hector and Liza 

 

 

 

 

 

 

 

 



AKNOWLEDGMENTS 

 

We would like to thank our supervisor, Dr. Panagiotis Stamatopoulos, for guiding us 
through this project. 

We would also like to thank Ph.D. Candidate, Nikolaos Pothitos, for setting up the 
cluster and assisting us throughout the experiments.         

 

 



CONTENTS 
 

1. INTRODUCTION .......................................................................................................................... 13 

2. MAPREDUCE AND HADOOP .................................................................................................... 14 

2.1 What is MapReduce .................................................................................................................................... 14 

2.2 MapReduce Execution Overview ................................................................................................................. 15 

2.3 MapReduce Example .................................................................................................................................. 16 

2.4 Hadoop and HDFS ....................................................................................................................................... 18 

2.4.1 What is Hadoop........................................................................................................................................ 18 

2.4.2 HDFS ......................................................................................................................................................... 19 

2.4.3 The Hadoop Cluster ................................................................................................................................. 19 

2.4.4 Mapper..................................................................................................................................................... 19 

2.4.5 Reducer .................................................................................................................................................... 20 

2.4.6 Combiner.................................................................................................................................................. 21 

2.4.7 Input Split and Input Format .................................................................................................................... 21 

2.4.8 Shuffle Phase ............................................................................................................................................ 22 

2.4.9 Job ............................................................................................................................................................ 23 

3. CONSTRAINT SATISFACTION PROBLEMS .......................................................................... 24 

3.1 Definition .................................................................................................................................................... 24 

3.2 CSP Example ............................................................................................................................................... 24 

3.3 Solving a CSP ............................................................................................................................................... 25 

3.4 Modeling a Join as a CSP ............................................................................................................................. 26 

4. JOIN ALGORITHMS IN MAPREDUCE ..................................................................................... 29 

4.1 Headers and Join key .................................................................................................................................. 29 

4.2 Repartition Join ........................................................................................................................................... 30 

4.3 Semi Join ..................................................................................................................................................... 33 

4.4 Constructive Join ......................................................................................................................................... 35 

4.4.1 Preprocessing ........................................................................................................................................... 35 



4.4.2 The Algorithm .......................................................................................................................................... 35 

4.4.3 Distributed Cache ..................................................................................................................................... 36 

4.4.4 The Mapper .............................................................................................................................................. 36 

4.4.5 The Reducer ............................................................................................................................................. 37 

4.4.6 An Alternative Approach .......................................................................................................................... 38 

4.5 Map Side Join .............................................................................................................................................. 38 

4.5.1 The Algorithm .......................................................................................................................................... 39 

4.6 Optimizations.............................................................................................................................................. 41 

5. EXPERIMENTS ............................................................................................................................. 44 

5.1 N Queens .................................................................................................................................................... 44 

5.2 Spatially Balance Latin Squares ................................................................................................................... 45 

6. CONCLUSION ................................................................................................................................ 47 

ABBREVIATIONS - ACRONYMS ....................................................................................................... 48 

REFERENCES ......................................................................................................................................... 49 



LIST OF FIGURES 

 

 

Figure 1 - Execution overview ....................................................................................... 15 

Figure 2 - Shuffle Phase ................................................................................................ 22 

Figure 3 - N queens results ........................................................................................... 45 

 

  

 

  



LIST OF TABLES 

Table 1 - Mapper run method ........................................................................................ 20 

Table 2 - Reducer run method ....................................................................................... 21 

Table 3 - Queens 4 solutions ......................................................................................... 24 

Table 4 - 4 Queens Invalid............................................................................................. 25 

Table 5 - Terminologies ................................................................................................. 27 

Table 6 – Repartition join map method .......................................................................... 32 

Table 7 - Repartition Jon Reduce method ..................................................................... 32 

Table 8 - Semi Join ........................................................................................................ 34 

Table 9 - Constructive Join map method ....................................................................... 37 

Table 10 - constructive Join reduce method .................................................................. 38 

Table 11 - Map Join Limitations ..................................................................................... 39 

Table 12 - Map Join sorting map method ...................................................................... 40 

Table 13 - Map Join reduce sorting method .................................................................. 40 

Table 14 - Map join combined values map method ....................................................... 41 

Table 15 - Input files ...................................................................................................... 42 

Table 16 - Cluster Specifications ................................................................................... 44 

Table 17 - N queens results........................................................................................... 45 

Table 18 - SBLS results ................................................................................................. 46 

 

 

 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   13 

1. INTRODUCTION 

Constraint programming is a widely known technique used for solving combinatorial 

search problems in fields such as operations research and artificial intelligence. For 

years multiple strategies have been developed in an effort to optimize the search 

process of constraint programming. A lot of those strategies are programmed for single 

machines. In this thesis we try to develop a CSP solving strategy by using a cluster of 

machines within the Hadoop Map Reduce framework. One of the capabilities of this 

framework is to perform joins between large datasets. So, by modeling a CSP as a join 

we are able to perform such algorithms and solve our problem. The idea might not be 

as sophisticated as the already existing constraint programming systems that solve 

CSPs, but it hopes to take advantage of the magnitude of computer power a cluster 

offers to do the same job. This obviously means that results of this approach vary 

depending on the cluster one uses. 

The structure of this thesis is as follows. In the second chapter we write an extended 

overview of the Hadoop Map Reduce framework and its capabilities. In the third chapter 

we take a glimpse of Constraint Satisfaction Problems and some of the already existing 

solving techniques, which is important to have as a point of comparison. Then we make 

a connection between the CSPs and databases by modelling the CSP as a join. Such 

transformation is important for the next chapter, in which we use such database 

schemas as input to the jobs. A few of the already existing map reduce join algorithms 

[1] are presented in chapter 4, albeit there are some modifications performed on them to 

match the needs of a CSP problem. In our research we first tried to develop algorithms 

such as the one-shot-join that perform the join in only one job. We quickly came to the 

conclusion that no such technique is possible when it comes to CSPs because CSPs 

have every variable as part of the join key. Instead, all of the algorithms that are 

presented here are of cascaded nature. In the fifth chapter we conduct a set of 

experiments based on the algorithms presented before. The conclusions are presented 

in the final chapter, chapter six. 

 

 

 

 

 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   14 

2. MAPREDUCE AND HADOOP 

2.1 What is MapReduce 

 “MapReduce is a programming model and an associated implementation for 

processing and generating large data sets”. [2] 

It is a framework [3] for writing applications that process large amounts of data. The 

term MapReduce refers to two separate and distinct tasks. First comes the map job 

then the reduce job as the sequence of the name - MapReduce implies.  

“As an analogy, you can think of map and reduce tasks as the way a census was 
conducted in Roman times, where the census bureau would dispatch its people to each 
city in the empire. Each census taker in each city would be tasked to count the number 
of people in that city and then return their results to the capital city. There, the results 
from each city would be reduced to a single count (sum of all cities) to determine the 
overall population of the empire. This mapping of people to cities, in parallel, and then 
combining the results (reducing) is much more efficient than sending a single person to 
count every person in the empire in a serial fashion.”  [3] 

 

 Programs written in MapReduce are automatically parallelized: programmers do not 

need to be concerned about the implementation details of parallel processing. They only 

should override map and reduce functions. The map function processes a key/value 

pair to generate a set of intermediate key/value pairs. The reduce function then merges 

all intermediate values associated with the same intermediate key. This model is 

inspired by the map and reduce functions commonly used in functional programming 

[2]. Map’s and reducer’s functions domains and ranges are as shown below:  

map (k1,v1) → list(k2,v2)  

reduce (k2,list(v2)) → list(v2) 

The domain of k2 is usually extracted from v1. The intermediate keys and values are 

from the same domain as the output keys and values. The list(k2, v2) to (k2,list(v2)) 

transformation is part of the shuffle process which takes place in-between the map and 

reduce phase.  

What’s remarkable is the code written inside map and reduce functions as well as the 

Driver code (whatever code is in the main function configuring the MapReduce job) 

doesn’t need to change at all to be migrated and executed from a single machine 

(develop and debug) to a Hadoop (in our case) cluster.  

 

 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   15 

 

 

 

Figure 1 - Execution overview [2] 

 

2.2 MapReduce Execution Overview  

When the user program calls the MapReduce function, the following sequence of 

actions(reproduced here from [2] with a few extensions):  

1. The MapReduce library in the user program first splits the input files into M pieces of 

typically 16 megabytes to 64 megabytes (MB) per piece (controllable by the user via an 

optional parameter). Practically every one of these pieces will be assigned to a mapper. 

It then starts up many copies of the program on a cluster of machines. We noticed, on 

the cluster we were given, that, every time at the beginning of a MapReduce execution 

there was a noticeable delay and that should be the reason why. 

2. One of the copies of the program is special – the master. The rest are workers that 

are assigned work by the master. There are M map tasks and R reduce tasks to assign. 

The master picks idle workers and assigns each one a map task or a reduce task.  

3. A worker who is assigned a map task reads the contents of the corresponding input 

split. It parses key/value pairs out of the input data and passes each pair to the user-



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   16 

defined map function. Hadoop wise, these key/value pairs refer to the offset of the 

current line read from the beginning of the file/the entire line in String form. The 

intermediate key/value pairs produced by the map function are buffered in memory.  

4. Periodically, the buffered pairs are written to local disk, partitioned into R regions by 

the partitioning function. Default Partitioner function can be overridden by the user for 

allowing custom partitioning.The locations of these buffered pairs on the local disk are 

passed back to the master, who is responsible for forwarding these locations to the 

reduce workers.  

5. When a reduce worker is notified by the master about these locations, it uses remote 

procedure calls to read the buffered data from the local disks of the map workers. When 

a reduce worker has read all intermediate data, it sorts it by the intermediate keys so 

that all occurrences of the same key are grouped together. Default Comparator will 

decide how will this grouping be done and once more can be overridden. The sorting is 

needed because typically many different keys map to the same reduce task. If the 

amount of intermediate data is too large to fit in memory, an external sort is used.  

6. The reduce worker iterates over the sorted intermediate data and for each unique 

intermediate key encountered, it passes the key and the corresponding set of 

intermediate values to the user’s Reduce function. The output of the Reduce function is 

appended to a final output file for this reduce partition. 

7. When all map tasks and reduce tasks have been completed, the master wakes up 

the user program. At this point, the MapReduce call in the user program returns back to 

the user code. 

 

2.3 MapReduce Example  

The following example will help in understanding MapReduce further. Consider we have 

numbers in a large collection of documents. Lets try to implement the MapReduce 

framework to solve a somewhat FizzBuzz problem: 

1. If a number is dividable by 5 and 3, list them as FizzBuzz. 

2. If a number is dividable by 5, list them as Fizz. 

3. If a number is dividable by 3, list them as Buzz. 

4. Numbers that do not belong to any of the previous sets, list those as Rest. 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   17 

 

Given below are the map and reduce functions in pseudocode: 

 

map(String key, String values){ 

 //key      : offset from the beginning of the file  

 //values : assume we transform values into a list of integers 

 for each i in values : 

  if (i%5 == 0 && i%3 == 0) 

   EmitIntermediate(“FizzBuzz”, i)   

  else if (i%5 == 0) 

   EmitIntermediate(“Fizz”, i) 

  else if (i%3 == 0) 

   EmitIntermediate(“Buzz”, i) 

  else 

   EmitIntermediate(“Rest”, i)  

} 

 

reduce(String key, Iterator values){ 

 //key      : “FizzBuzz” or “Fizz” or “Buzz”  

 //values : a list of numbers 

 String nums = “” 

for each v in values 

 nums = nums + “,” + v.toString()    

Emit(key, nums) 

} 

Given the list of numbers below: 

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]  



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   18 

The output would be like: 

 FizzBuzz 15 

 Fizz 5,10 

 Buzz 3,6,9,12 

 Rest 2,4,7,8,11,13,14 

 

Lets have a quick look on the nature of the problem. One could run through the array 

forward or backwards and get the same result. What’s more he/she could pick random 

numbers from the list, and still get the same result. In problems like this, doing 

something on some data doesn’t affect the rest of the data and vice versa.In fact if we 

had two CPUs, we could split the input having each CPU process half of the elements 

which means a map phase twice as fast.          

 

2.4 Hadoop and HDFS 

2.4.1 What is Hadoop 

Hadoop (also known as Apache Hadoop) [4] is a framework that allows the distributed 

processing of large data sets across clusters of computers using simple programming 

models. It is designed to scale up from single servers to thousands of machines, each 

offering local computation and storage. 

The core [5] of Hadoop consists of a storage part, known as Hadoop Distributed File 

System (HDFS), and a processing part called MapReduce. Every node inside the 

Hadoop cluster has its own data. The map code is distributed to every node. Thus, 

every node process its own data locally. One problem would be the overhead, sending 

data (pairs of key/values as we saw) across the network to the reducers (shuffle phase). 

However, Hadoop has its solution to reduce this overhead via the Combiner class 

(discussed in chapter 2.4.5).  

The term Hadoop has come to refer not just to the base modules above, but also to 

the ecosystem [5], or collection of additional software packages that can be installed on 

top of or alongside Hadoop like Apache Pig, Apache Hive, Apache Spark and more. (for 

details on the packages see [4], [5]) 

 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   19 

 

2.4.2 HDFS 

Data in a Hadoop cluster is broken down into smaller pieces (called blocks) and 

distributed throughout the cluster.  HDFS is a file system that is designed for 

MapReduce jobs that process those pieces and write their output. Data must be 

available and Hadoop must be reliable in case of a node failure. And that is exactly why 

data is replicated to multiple nodes. As long as at least one replica of a data chunk is 

available, the consumer of that data will not know of storage server failures. [6]  

  

2.4.3 The Hadoop Cluster 

The main components of a Hadoop cluster are: 

 

 ResourceManager : master that arbitrates all the available cluster resources and thus 

helps manage the distributed applications. 

NameNode: It keeps the directory tree of all files in the file system, and tracks where 

across the cluster the file data is kept. It does not store the data of these files 

itself.  Manages the filesystem metadata. 

NodeManagers: take instructions from the ResourceManager and manage resources 

available on a single node. 

DataNode: stores the actual data. More than one DataNodes will have replicated Data 

as we mentioned already. DataNode instances can communicate to each other, which 

is what they do when they are replicating data. 

2.4.4 Mapper 

The mapper class [15] is one of the two classes the user almost always overrides 

in order to execute an MR process. Its job is to map input key/value pairs into a set of 

intermediate key/value pairs. The input pairs don’t have to share the same types with 

the output pairs.  

 When the execution starts the framework spawns one map task for each input split 

the input format has generated. It is important to not confuse the map task with the map 

function of the mapper. The first is a process that executes the whole mapper class, the 

second is a method of the mapper class. The map function is called by the framework 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   20 

as many times as the number of input records of an input split and the one responsible 

for creating the intermediate records. 

 Additionally, there’s the setup method that is called once before the iteration of 

map function, usually to perform some preprocessing. There is also the cleanup method 

that is called after the iteration of the map function. All these function are called within 

the run method of the Mapper, which can also be overridden for more advanced 

handling of the framework.  

public void run(Context context) throws IOException, InterruptedException { 

  setup(context); 

  try { 

    while (context.nextKeyValue()) { 

      map(context.getCurrentKey(), context.getCurrentValue(), context); 

    } 

  } finally { 

    cleanup(context); 

  } 

} 

Table 1 - Mapper run method 

 

2.4.5 Reducer 

The reducer class [15] is the other class the user almost always overrides in order to 

execute an MR process. Reducer receives one or more sets of intermediate records 

which share a key and then reduces those values. The reduction is done by the reduce 

function of the class. 

 As with the mapper, one should not confuse the reduce function with the reducer 

tasks that are spawned. The number of reducers tasks is explicitly stated by the user via 

the Job.setNumReduceTasks(int) method, while the number of times the reduce 

method will be called throughout the whole job is equal to the number of unique keys 

that exists in the intermediate records. Typically, a reducer task will call the reduce 

function one or more times if it has been assigned with at least one key or it may not call 

it at all if the number of Reducer tasks is larger than the number of unique keys. 

Again, there are also the setup and the cleanup methods of the reducer that the user 

can override for his own preferences. These methods are called in the run method of 

the reducer before and after the reduce function similarly to the mapper.  

public void run(Context context) throws IOException, InterruptedException { 

  setup(context); 

  try { 

    while (context.nextKey()) { 

      reduce(context.getCurrentKey(), context.getValues(), context); 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   21 

      // If a back up store is used, reset it 

      Iterator<VALUEIN> iter = context.getValues().iterator(); 

      if(iter instanceof ReduceContext.ValueIterator) { 

        ((ReduceContext.ValueIterator<VALUEIN>)iter).resetBackupStore();         

      } 

    } 

  } finally { 

    cleanup(context); 

  } 

} 

Table 2 - Reducer run method 

 

Each reducer task writes one part file to the output. So, if we have N reducer tasks there 

will be N part files to the output. 

2.4.6 Combiner 

The combiner class is an optional class that the user specifies if he wants to use it. It 

takes place just after the mapper and in the same machine with it. Essentially it is a 

local reducer and hence overrides the reducer implementation. It takes as input the 

intermediate records of a single mapper and reduces them before they are sent across 

the network. For this its key/value input types must match the key/value output types of 

the mapper and its key/value output types the input types of the reducer. The reason 

the combiner class exists is to minimize the records and decrease the load across the 

network. Unfortunately we were not able to utilize this class in our thesis. 

2.4.7 Input Split and Input Format 

An Input split [15] represents the data to be processed by a single mapper. It 

presents a byte-oriented view of the input. The default size of a split is usually 64 MB. 

The user has the option to modify the size depending on his needs. 

Input Format is the class responsible for splitting a file into the input splits described 

above. If some files are too small the input format won’t merge them together and hence 

the number of input splits in a job is even or great to the number of input files. The input 

format is also responsible for providing the RecordReader implementation which is used 

to convert the byte-oriented view of the input split into a record oriented view. 

The default input format is the text input format. For every input split of a file it 

creates records with input key an offset to the start of a line and input value the line 

itself. Text input format is the one we will override in our own algorithms. 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   22 

2.4.8 Shuffle Phase 

With the term shuffle we mean the whole process from the point where a mapper 

produces output to where a reducer consumes input [16]. During this period the 

intermediate key/value pairs are transferred from the mapper to the reducer, but there’s 

more than that happening.  

First, there’s the partitioner class that takes the output pairs of a mapper and 

specifies in which reducer each one is going to end up. This is done by performing a 

hash function on the key of every pair. At the same time a sorting phase takes place on 

these output pairs based on the key. If there’s a combiner specified then the sorted 

output will be processed by the combiner before being sent over to the reducers. 

When the intermediate records reach the reducers, each reducer task receives 

records from multiple mappers because the keys are spread within the input splits. A 

second sort on the key takes place that merges all those records properly. The reduce 

methods can now be safely started. 

Note that during the sorting phases of Hadoop, the comparator class is very 

important since it is the one makes the comparison between two values happen. 

In the image below the whole shuffling process is summarized. 

 

 

Figure 2 - Shuffle Phase 

 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   23 

2.4.9 Job 

The job class [15] is responsible for describing the parameters of a map reduce job 

to the framework so that it can be executed properly. This customization takes place on 

the driver code (the code of the main class of our program). The classes such as input 

format, mapper, reducer, combiner, comparator and partitioner that we described above 

are all defined here by an instance of the job class. After that the mr job starts running in 

the cluster while the code in the main function waits for its completion. 

One of the assets of the job class is that it can, with the help of the configuration 

class, create user defined parameters and pass them to the mappers and the reducers. 

These user defined parameters can be used during the execution of the mr job. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   24 

 

3. CONSTRAINT SATISFACTION PROBLEMS 

3.1 Definition 

According to F Rossi, P Van Beek and T Walsh [9] a Constraint Satisfaction Problem 

(CSP) is defined as follows. A CSP P is a triple (V, D, C), where V is an n-tuple of 

variables V = {v1, v2, …, vn}, D is a corresponding n-tuple of domains D = {D1, D2, …, 

Dn} such that vi ∈ Di and C is a t-tuple of constraints C = {C1, C2, …, Ct}. A constraint Cj 

is a pair {RSj, Sj} where Sj is a subset of V and RSj is a relation on the variables in Sj. In 

other words, Rj is a subset of the Cartesian product of the domains of the variables in 

Sj. A solution to the CSP P is an n-tuple A = {a1, a2, …, an} where ai ∈ Di and each Cj is 

satisfied in that RSj. In a given task one may be required to find the set of all solutions, 

sol(P). 

A simpler way to define a CSP is to describe it as “a problem where one has to find a 

value for a (finite) set of variables satisfying a (finite) set of constraints.” [10] 

 

3.2 CSP Example 

One of the most well-known CSP is the n-queens problem [11]. The problem by itself 

isn’t of major importance but its simplicity makes it a good introduction to constraint 

programming [10].  

Assuming we have n queens, the goal of the problem is to place the queens on an 

n×n chess board so that no queen can attack any other queen on the board. A queen in 

chess can move an infinite amount of squares either vertically, horizontally or 

diagonally. In the 4 queens version of the problems there are 2 solutions as seen in the 

tables below. 

Table 3 - Queens 4 solutions 

 Q1   

   Q2 

Q3    

  Q4  

  Q2  

Q1    

   Q3 

 Q4   



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   25 

 

Any other way of placing the queens results in conflict with the constraints of the 

problem. For example the following board is not a solution to the problem since queens 

2 and 4 can attack each other. 

 

Table 4 - 4 Queens Invalid 

 Q1   

   Q2 

Q3    

   Q4 

 

In order to model the above problem according to our CSP definition we define the 4 

queens as the 4-tuple of the variables V= {Q1, Q2, Q3, Q4} – one queen for every row. 

The 4-tuple of the domains D = {D1, D2, D3, D4} is defined such that all domains are 

equal D1 = D2 = D3 = D4. Each Di consists of values from 1 to 4 and each number 

represents a column that the queen can be placed on. The number of the constraints is 

the number of the unique queen pairs because the values that each queen takes are 

affected by where the other queens are placed. This number is effectively n*(n-1)/2, in 

our case 4*(4-1)/2 = 6 constraints. We hence define a 6-tuple for the constraints C = 

{C1, C2, C3, C4, C5, C6}. Each constraint Cj = {RSj, Sj} has a unique pair of queens Sj = 

{Qx, Qy} and a relation RSj over this pair such that an attack between those two queens 

either vertically, horizontally or diagonally is not possible. 

 

3.3 Solving a CSP 

One of the two classes of strategy for solving constraint satisfaction problems is the 

systematic search strategies [10]. The other is the repair strategies but we will focus on 

the first one on this paper. 

The basic idea of systematic search strategies is to assign values to the variables 

one by one. The values come from the corresponding domain of every variable. If a 

value that we’ve just assigned doesn’t break any of the constraints, we move on to the 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   26 

next variable. If, however it does break one of the constraints we choose another value 

until a valid one is picked. If there aren’t any values left to pick for this variable we 

remove the value that we chose for the previous variable and continue searching for the 

previous variable. This is the simplest form of a process known as backtracking and it 

continues until all possible combinations of values have been picked if we want to find 

all the solutions of the problem. Alternatively, we can stop on the first solution we find, 

unless there are not any. In that case the problem is unsatisfiable. 

In order to improve the above method, we introduce the concept of lookahead [10]. 

Instead of running into a dead end, i.e. all values of a variable that we try to assign go 

against the constraints, we can make extra analysis during previous stages of the 

algorithm to prevent the dead end beforehand. For example, the simplest thing to do is 

whenever we assign a value to a variable we invalidate all the values of all variables 

that are affected by this assignment - because of constraints. If a variable is then left 

with an empty domain, it means that we have already found the dead end and we have 

just saved time that we would have otherwise spent assigning to other variables before 

reaching the dead-end variable. All the above is the basic idea of the forward checking 

strategy [12] which of course can become a lot more complicated. What’s important is to 

maintain a balance between the effort trying to analyze every situation and the potential 

gain from such analysis. 

Another improvement we can make for the backtracking strategy is the first fail principle 

[10] [12]. Up until now we never mentioned the order in which we decide to assign 

variables, which in fact can greatly affect the efficiency of a search. The concept of first 

fail is to first try to assign variables with the smallest domain. Remember that when 

using the forward checking strategy described above we are essentially diminishing the 

domain of a variable during the execution of the algorithm which is why first fail works 

very well with forward checking. For example, assuming there is a variable with only 

one value available and we choose to assign it first, one saves time by automatically 

discarding all the values of all variables that are in conflict with that assignment and in 

case of another assigning order these values would have been assigned first and lead 

us to a dead end. 

3.4 Modeling a Join as a CSP 

Provided that there is a CSP P = {V, D, C}, we can map it into a database schema 

the following way [13]: 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   27 

Each variable in V is represented by an attribute (column). Since however we are 

referring to equi-joins one variable corresponds to all attributes with the same name 

regardless of the relation they belong to. For example if we have relations A, B and 

attributes A.x, B.x, these two attributes represent the same CSP variable. 

Second, the domains Di of the variables Vi are represented by the domains of the 

attributes of the database schema. In equi-joins the domain of an attribute is a subset of 

the domain of the CSP variable it corresponds to and the union of the domains of all 

attributes that correspond to the same CSP variable is equal to that variable’s domain.  

Finally, each constraint Cj = {RSj, Sj} is represented by a database relation. The 

subset Sj of variables V is represented by the attributes of the database relation and the 

relation RSj is essentially the tuples in the relation that are produced by a subset of the 

Cartesian product of the domains of the relation’s attributes. 

Τhe following table maps the CSP terminology to the database terminology we will be 

using from now on. Note that instead of “attribute” we will be mostly using “column 

names” or just “columns” which is usually used for matrixes in general. 

 

CSP Terminology Our Database Terminology 

Constraint Table, relation 

CSP variable Attribute, column name, column 

Value of a CSP variable Value of an attribute 

Domain of a CSP variable Domain of an attribute 

Tuple in a constraint Tuple in a table 

Table 5 - Terminologies 

 

After the connection between a CSP and a database has been made we can 

formulate a join query to solve the CSP. For example in our 4-queens problem the join 

in a database related language would look like this: 

SELECT C1.Q1, C1.Q2, C2.Q3, C3.Q4 

FROM C1, C2, C3, C4, C5, C6 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   28 

WHERE C1.Q1 = C2.Q1 AND C2.Q1 = C3.Q1 AND C1.Q2 = C4.Q2 AND C4.Q2 = 

C5.Q2 AND C2.Q3 = C4.Q3 AND C4.Q3 = C6.Q3 AND C3.Q4 = C5.Q4 AND C5.Q4 

= C6.Q4 

Where {Q1, Q2}, {Q1, Q3}, {Q1, Q4}, {Q2, Q3}, {Q2, Q4}, {Q3, Q4} attributes of C1, C2, 

C3, C4, C5, C6 respectively. Q stands for Queen and C for Constraint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   29 

4. JOIN ALGORITHMS IN MAPREDUCE 

In this section we will briefly describe some of the already existing join algorithms in 

the MapReduce architecture. At the same time we will propose a new join algorithm that 

works specifically for CSPs. 

4.1 Headers and Join key 

One of the things we need to remember before moving to the presentation of the 

algorithms is the fact that when it comes to CSPs as joins every column in our schema 

is part of the join key. For this, some preprocessing regarding the header of each file 

needs to be done. 

To be more specific, whenever we join two files we don’t know in advance on which 

columns these two are going to be joined. What we do is get their headers and compare 

them with each other in order to find which columns exist in both files. The columns that 

do so represent (almost) the join key and from now on will be referenced as common 

columns. 

In order to form the join key from the common columns further processing might be 

needed. The columns in each file aren’t sorted by their names which causes extra 

problems. For example there are occasions where the header of one file is X1 X3 X2 

and the header of the other X2 X3. Simply omitting the values from column X1 would 

leave us with the common columns but in reverse order! 

In the driver code of our program we take care so that along with the position of 

every common column in a file we also pass to the job configuration the position this 

column needs to have in the join key. If the mapper is processing a record from the first 

file, the order of the values of the common columns is remained unchanged. If however 

it is processing the second file, the values of the common columns are reordered to 

match the order of the first file. 

One more obvious thing that we should never forget when forming the join key is to 

always use a separator character between the common columns (usually a tab). In 

cases where the values are more than one character long the key 1 11 would be 

considered the same with the key 11 1 since the separator is missing and both keys 

become 111 instead. 

Finally, we need to find the header file for the output of the job which is also done by 

comparing the two headers of our input files. This header is the first thing we write to the 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   30 

output of the job. We keep the header of the first file unchanged and we concatenate it 

with the unique columns that appear only in the second file. Again, it is imperative that 

this order is kept within the records as well. Whenever we are about to join two records 

we must put the values originating from the unique columns of the second file at the end 

of the concatenation. At the start we put the join key and at the middle the values of the 

unique columns of the first file. 

The preprocessing above takes place in the Repartition, Semi and Map join and 

hence won’t be restated explicitly in those sections. 

4.2 Repartition Join 

Before we jump into the algorithm we need to explain some class extensions of 

the Hadoop framework. 

First, there is the Header Input Format that extends the File Input Format. It’s the 

same as the class it extends with the only difference that whenever a mapper gets the 

first split of a file it tosses the first line because it is the header – it contains the column 

names of the file. 

Second, there is the Tagged Key class [8]. This class is used within the framework 

and hence needs to implement the writable and writable comparable interfaces. Apart 

from the join key that is used for the join this class also has a tag field which tells us 

from which file this key comes from. Tagged Key also has an overridden compare 

method that when join keys are equal it compares the tags. 

Because the Tagged Key is a composite class the partitioner needs to know the 

field of the class that the partition will take place. For this we implement the Joining 

Partitioner that overrides the default one and partitions the Tagged Key by checking the 

join key field of the class [8]. 

Finally, we implement the Joining Grouping Comparator in a similar way [8]. The 

comparator needs to know which field to compare and our class does exactly that by 

again specifying the join key field. 

With the classes above we are able to achieve what is known as secondary 

sorting. Secondary sorting sends each key to a reducer by partitioning the keys on the 

join key field of our Tagged key class then proceeds to again group the keys by 

checking the join key field of the class. However, when all the values of a key are 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   31 

grouped and sorted in a reducer they will be differentiated based on their tags. Those 

with a lexicographically smaller tag will be placed on the top of the reducer’s iterable list. 

 

Repartition join is the most common way of performing joins in Hadoop Map 

Reduce. The framework partitions the two files into multiple smaller splits and each 

mapper takes one as input. In the setup we get can learn which file we are processing 

by getting the name of the file from the input split. 

The map function extracts the join key from the common columns reordering them 

if necessary. We then combine the join key and the name of the file (used as a tag) into 

a Tagged Key object which is written as the output key. The rest of the columns 

represent the output value. An extra byte – the tag byte – is written in front of the value 

in order to know from which file it comes from. The Joining Partitioner proceeds to 

partition the key-value pairs based on the join key. The code of the map function is as 

follows 

@Override 

       protected void map(Object key, Text value, Context context) throws 

IOException, InterruptedException { 

         String key_str = ""; 

         String value_str = ""; 

         int counter=0, i=0, col_counter=0; 

         StringTokenizer itr = new StringTokenizer(value.toString()); 

         String[] key_array = new String[key_length]; 

         if (joinOrder == 0) // specified by the name of the file. 0 for 

first file, 1 for second 

         { 

            for (Integer raw_number: key_raws) 

            { 

               if (raw_number >= 0) 

                  key_array[raw_number] = itr.nextToken(); // order of key 

columns changes to match the order of the other file 

               else 

                  itr.nextToken(); 

            } 

            data.set(reverseOrder + value.toString().trim()); 

         } 

         else 

         { 

            for (Integer raw_number: key_raws) 

            { 

               if (raw_number >= 0) 

                  key_array[col_counter++] = itr.nextToken(); //order of key 

columns remains the same 

               else 

                  value_str += itr.nextToken() + separator; 

            } 

            while (itr.hasMoreTokens()) 

               value_str += itr.nextToken() + separator; 

            data.set(reverseOrder + value_str.trim()); 

         } 

         Out_Key.set(Arrays.toString(key_array).replaceAll(",|\\[|\\]", ""), 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   32 

reverseOrder); 

 

            context.write(Out_Key, data); 

      } 

} 

Table 6 – Repartition join map method 

 

In the reducer all the values of the same join key are grouped together by the 

Joining Grouping Comparator. By using Tagged Key class that we mentioned above we 

achieve a secondary sort in the reducer. We check the values of the iterable one by one 

and add them into a list. While the tag byte in front of every value remains the same it 

means that we read values from the first file since the values are sorted by their tag. 

When that byte changes it means that all the values following the change belong to the 

second file. We join every remaining value of the iterable - values of the second file – 

with the values we have previously added on the list – values of first file – and write 

them on the output of the reducer. Reduce function code is shown below. 

Table 7 - Repartition Jon Reduce method 

    public void reduce(TaggedKey key, Iterable<Text> values, Context context) 

throws IOException, InterruptedException 

   { 

      aList.clear(); 

      char flag = 0; 

      value = values.iterator().next().toString(); 

      file_descriptor = Integer.parseInt(value.substring(0,1)); 

       

      if (file_descriptor == 1) //no entries from first file. descending 

order 

         return; 

      aList.add(new Text(value.substring(1))); 

 

      for (Text val : values) { 

          

         value = val.toString(); 

 

         if (Integer.parseInt(value.substring(0,1)) != file_descriptor)  

         {  flag = 1; //tag byte has changed. records from file 2 from now on 

            break; 

         } 

         aList.add(new Text(value.substring(1))); 

      } 

      if (flag == 1) 

      {  right_val.set(value.substring(1)); 

         for (Text list_val : aList) 

            context.write(right_val, list_val); 

      } 

      for (Text val : values) { 

         right_val.set(val.toString().substring(1)); 

         for (Text list_val : aList) 

         { 

            context.write(right_val, list_val); 

         } 

      } 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   33 

   } 

} 

 

Since the algorithm is cascaded we repeat the process until all files have been 

joined. The input of the next job is the output of the previous one plus a file of our 

choosing. 

4.3 Semi Join 

Semi Join consists of three phases, one map reduce job followed by two map only 

jobs [7]. 

In the first phase we select the smaller out of the two files and use it as input for 

our job. The mapper takes the records of the file one by one and writes to its output the 

values of the key columns as the key and null as the value. The reducer receives those 

pairs and tosses the null values writing to its output only the key. In this way we now 

have the unique values of the key columns that appear in this file. 

In the second job we cache in the distributed cache the output of the previous job 

and use as input the second file. In the mapper we load the cached file in a map 

structure and for every record we encounter we check whether the values of its key 

columns exists in the structure. If they do we write this record in the output. Since it is a 

map only job, no reducer is used. We have now tossed some of the records of the 

second file that for sure can’t be joined with the first file because the values of their key 

columns don’t appear in the first file. 

The third job is also a map only job that is known as broadcast join. Broadcast join 

selects the smallest out of the two files and puts it into the distributed cache. In our case 

the two files are the output of the second phase and the first file (that was used as input 

in the first phase). Normally, the algorithm stores the smaller of the two in the distributed 

cache buts since we have already compared the two files in the first phase we already 

know we need to choose the first file. There is an extreme case where the second file 

becomes smaller than the first after filtering it during the second phase but we did not 

take it into consideration. In the mapper, during the setup method we load the cached 

file on a map structure. The key of the structure are the common columns while the 

value is a collection of the records that are associated with that key. In the map function 

we again formulate the key from the common columns and probe the map structure with 

it. We join every record that the structure returns with the current line of the input file. 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   34 

Because the algorithm is cascaded we redo the whole process by joining the 

output of the previous job with the next file of our choosing until all files are joined. The 

high level code of the three semi join phases is presented below. 

for (int i=0; i < num_of_joins; i++) 

{  String temp_name; 

   boolean swapped = false; 

 

   // CACHE THE SMALLER FILE 

   // swap files 

   if (InputOptimization.compare_files(filename2, out_namefile, fs) == true) 

   {  temp_name = filename2; 

      filename2 = out_namefile; 

      out_namefile = temp_name; 

      swapped = true; 

   } 

 

   String header1 = StringManipulation.get_header(out_namefile, fs); 

   String header2 = StringManipulation.get_header(filename2, fs); 

   //GET THE COMMON COLUMNS OF THE TWO FILES. THEY ARE THE KEY FOR THE JOIN 

   String[] keys = StringManipulation.Intersection(header2, header1, 

separator); 

   String new_header = StringManipulation.new_header(header2, keys[3], 

separator); //the header of the output file 

 

   //1st phase 

   //MR-JOB TO GET THE VALUES OF THE KEY COLUMNS OF FILENAME2 

   hash_semi_join.hash_semi_join(filename2, "./" + i + "-mid-output", 

keys[0], num_of_reducers, separator); 

   //2nd phase 

   //MR-JOB TO KEEP THE RECORDS OF OUT_FILENAME THAT ONLY HAVE THE VALUES 

ABOVE 

   semi_join_phase2.semi_join_phase2(out_namefile, "./" + i + "-mid-output", 

"./" + i + "-mid-output2", header1, keys[1], ",", num_of_reducers, 

separator); 

 

   fs.delete(new Path("./" + i + "-mid-output"), true); 

   if (i != 0 && swapped == false) // if swapped path is still needed. delete 

it later 

      fs.delete(new Path(input_path + current_num_of_files), true); 

 

   //OUTPUT OF 3RD PHASE  

   current_num_of_files++; 

   out_namefile = input_path + current_num_of_files + "/"; 

 

   //3rd phase 

   //MAP ONLY JOB. JOIN THE OUTPUT OF 2ND PHASE WITH FILENAME2 

   broadcast_join.broadcast_join(filename2, "./" + i + "-mid-output2", 

out_namefile, new_header, keys[0], "m", ",", separator); 

    

 

   //FIND WHICH FILE IS BEST TO JOIN WITH THE OUTPUT OF THE LAST JOB 

   filename2 = InputOptimization.Inner(filenames , out_namefile , fs, 

separator); 

    

   fs.delete(new Path("./" + i + "-mid-output2"), true); 

   if (i != 0 && swapped == true) 

      fs.delete(new Path(input_path + (current_num_of_files-1)), true); 

} 

Table 8 - Semi Join 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   35 

4.4 Constructive Join 

Constructive join is the new algorithm proposed by this paper. Its name comes 

from the fact that it constructs the outcome of the join column by column – one column 

per job. This also explains why it only works for CSPs: It is imperative that every column 

in our schema is part of the join key. 

4.4.1 Preprocessing  

Since the algorithm uses every column in our schema the first thing we need to do is 

gather all the column names in a collection. To achieve this we scan through the 

headers of every input file tossing the duplicate names wherever they exist. It is this 

data structure that we iterate through during the execution of the algorithm and get one 

column name per job. Note that the collection must be sorted lexicographically. We will 

explain later why. 

Next, we need another structure where we map every file name to a counter. Each 

counter represents how many columns we have already iterated through in this file. If 

for example we have two files, one with header “X1 X2” and another with “X1 X3” and 

we have iterated through the column names X1 and X2 the counter for the first file is 

currently 2, while the counter for the second file is 1 (because X3 hasn’t been iterated 

yet!). These counters serve as indexes for the mapper – to know where each record of 

a specific file needs to be split. For all this to work it is necessary that the headers of all 

files are ordered lexicographically. 

Finally, we need a third structure to map every column name to all the files it exists 

in. This structure helps us find the input paths of every job, since the input of a job is 

exactly what this structure returns when we probe it with the current column name. 

4.4.2 The Algorithm 

We start by getting the first column name from our ordered collection as we 

described above. Then we probe the column name to our second map structure and get 

the input files for the job. Files that don’t contain this column name don’t add any 

constraints to this column and hence aren’t needed in the current job. After that, we 

probe all the input file names to our first map structure and increase the corresponding 

counters by one. We pass the affected counters to the MR job configuration. The key to 

get them in the mapper is again their corresponding filename. Now, each file split in the 

mapper can use this counter as an index to find the value of the current column name 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   36 

for all of its records. Remember that each file split has access to the name of the 

original file which enables it to collect the proper counter. 

4.4.3 Distributed Cache 

Whenever a job terminates output is stored into the hdfs. The output has as many 

columns as the column names we have already iterated. For example, assuming a 

schema has three unique column names (X1, X2 and X3) after the first job the output 

will have one column – X1. After the second iteration the records of the output will have 

two columns – X1 X2. Finally after the last iteration the output will have three – X1 X2 

X3 – and at this point we have found the solutions of our CSP problem. For this, those 

intermediate files are named solution files and they are cached in the distributed cache 

of the hdfs every time a mr job takes place. 

Apart from the position of the current column in an input file we also need to know the 

columns of the solution file that also exist in an input file – the common columns. To 

achieve this, we just cycle through the header of the solution file and the header of the 

input file. The comparison is done linearly because both headers are sorted 

lexicographically. We pass the result to the job configuration by using again the input 

filename as a key – albeit a bit statically changed to differentiate the two values.  

Last but not least we overwrite the HeaderInputFormat so that input files are not 

splitable. We will see later why. 

4.4.4 The Mapper 

We start with the setup method where we get the name of the input file from the input 

split. We use this to get the index of the current column name in this input file. We also 

read our cached files and populate a map structure. We again use the filename to get 

the common columns. For each record in the cached file we use the values of the 

common columns as a key to our structure and the whole record as a value. 

In the map function of the mapper we split each line on the current column by using 

its index. Every column before the current column consists the common columns. Every 

column after the current column is not needed and left to be analyzed by the next jobs. 

We use the columns prior the current one as a key to the map structure that we 

populated in the setup method. We concatenate every record of the solution file that the 

structure returns with the value of the current column and write the result of the 

concatenation –only if we haven’t already- to the mapper output as the key. We write 

null to the output value. The code of the map method can be viewed below. 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   37 

 

@Override 

protected void map(Object keyin, Text valuein, Context context) throws 

IOException, InterruptedException 

{ 

   StringTokenizer itr = new StringTokenizer(valuein.toString(), separator); 

   String build_str = ""; // the common columns 

   int i; 

   for (i=0; i<index_of_var-1; i++) 

   { 

      build_str += itr.nextToken() + separator; 

   } 

   if (i == index_of_var - 1) 

      build_str += itr.nextToken(); 

 

   String last_token = itr.nextToken(); //current column 

    

   if ((a_sol = current_sls.get(build_str)) != null) //true when build_str == 

"" 

   {  if (a_sol.size() != 0) 

      { 

         if (already_constructed.contains(a_sol.get(0) + separator + 

last_token)) //remove duplicates 

            return; 

         else 

            already_constructed.add(a_sol.get(0) + separator + last_token); 

         for (i=0; i< a_sol.size(); i++) { 

            key_out.set(a_sol.get(i) + separator + last_token); 

            context.write(key_out, null_value); 

         } 

      } 

      else // enter here when current key column is the first column on this 

file, i.e no common columns 

      {  if (!already_constructed.contains(last_token)) 

         {  already_constructed.add(last_token); 

            key_out.set(last_token); 

            context.write(key_out, null_value); 

         }         

      }      

   } 

} 

Table 9 - Constructive Join map method 

4.4.5 The Reducer  

We leave the Hadoop framework to do its shuffling, grouping and sorting stages. If 

the size of the iterable in a reducer is equal to the number of the input files then the key 

of the reducer is an -up until now- valid solution and is written to the reducer output – 

the solution file for the next job. We repeat the same procedure for the next column 

name until all of the unique column names have been iterated. The code of the reduce 

functions  can be viewed below. 

 

@Override 

protected void reduce(Text keyin, Iterable<NullWritable> values, Context 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   38 

context) throws IOException, InterruptedException 

{  int count = Iterables.size(values); 

   if (count == num_of_files) 

   {   

      context.write(keyin, null_value); 

   } 

} 

Table 10 - constructive Join reduce method 

 

The reason why this works is because each mapper gets a whole input file (files are 

not splitable). Then in the map function if an output key is already written to the output it 

won’t be duplicated. This means that each file produces unique keys which are 

transferred to the reducers. Assuming we have N input files which equals to N mappers, 

if a reducers receives N times a certain key, it means all N files produced this key and 

that this key/solution complies with the constraints of all the input files. 

By this time, it is easier to explain why both our collection of column names and the 

headers of the input files are sorted lexicographically. It is done this way to have less 

complicated structures in our driver code. In this way we only need to keep one counter 

per file in order to find the position of the current column in a record. Otherwise we 

would need to keep the location of every column in every file. Most importantly it allows 

us to find the common columns of the input file in linear time since all of them are before 

the current column.  

4.4.6 An Alternative Approach 

Whenever the input files are larger than the solution file our algorithm choses to 

cache the input files instead and use the solution file as the input to the job. In this case, 

the two files are processed in the same way but since the solution file is cached, it is the 

one that will be loaded to the map structure in the setup method. 

The main difference this time is that we have as many map structures as there are 

input files – each one for each input file. In order of a line from the solution file to be 

considered valid the values of its common columns must exist in every one of those 

structures. Note that the common columns differ for every map structure. 

4.5 Map Side Join 

In contrast to reduce side joins, map side join is an algorithm that evaluates the join 

during the map phase of the framework [6]. However, there are a few extra constraints 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   39 

that the input files must follow in order to execute it. The following table summarizes 

these constraints. 

 

Limitation Why 

All datasets must be sorted using the 

same comparator. 

The sort ordering of the data in each 

dataset must be identical for datasets to 

be joined. 

All datasets must be partitioned using the 

same partitioner. 

A given key has to be in the same partition 

in each dataset so that all partitions that 

can hold a key are joined together. 

The number of partitions in the datasets 

must be identical. 

A given key has to be in the same partition 

in each dataset so that all partitions that 

can hold a key are joined together. 

Table 11 - Map Join Limitations 

 

Luckily, all these constraints are satisfied by a Hadoop MapReduce job. So, in order 

to execute a map join we first run an extra MR job to sort the datasets by the same 

partitioner and comparator. 

4.5.1 The Algorithm 

Our version of the map side join is cascaded and us such it takes two constraint files 

as input each time, until all files have been processed. One of the two files is always the 

output of the previous map join job. 

Normally, one can use one sorting job for each one of the input files. Instead we 

decided to sort the two files in a single job. For this, all the classes that were used in 

previous algorithms for tagging each file are also used here. The way the join key is 

extracted from the common columns is also the same. The difference is that we don’t 

want our sorting reducer to mix the two files. 

 

    @Override 

   protected void map(LongWritable key, Text value, Context context) throws 

IOException, InterruptedException { 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   40 

      List<String> values = 

Lists.newArrayList(splitter.split(value.toString())); 

      String joinKey ; 

      builder.setLength(0); 

      for(String keyIndex : indexList){ 

         builder.append(values.get(Integer.parseInt(keyIndex))+"\t"); 

         values.set(Integer.parseInt(keyIndex),""); 

      } 

      builder.setLength(builder.length() - 1); 

      joinKey = builder.toString(); 

      values.removeAll(emptyList); 

      String valuesWithOutKey = joiner.join(values); 

 

      taggedKey.set(joinKey, joinOrder); 

      fatValue.set(valuesWithOutKey,joinOrder); 

      context.write(taggedKey, fatValue); 

   } 

} 

Table 12 - Map Join sorting map method 

 

The Multiple Output Format Class is a built in Hadoop class that helps us differentiate 

the reducer output based on the file a record belongs to. That is records with the same 

join key will still end up in the same reducer but each reducer has two different output 

paths – one for each file – so that the records are kept separated. 

 

@Override 

protected void reduce(TaggedKey key, Iterable<FatValue> values, Context 

context) throws IOException, InterruptedException { 

   Iterator<FatValue> iter = values.iterator() ; 

   while(iter.hasNext()){ 

      fatvalue = iter.next(); 

      combinedText.set(fatvalue.toString()); 

      if( fatvalue.getJoinOrder() == 1  ){ 

         keyOut.set(key.getJoinKey()); 

         context.write(keyOut,combinedText); 

      }else{ 

         keyOut.set(key.getJoinKey()); 

         mos.write("file2",keyOut,combinedText); 

      } 

 

   } 

} 

Table 13 - Map Join reduce sorting method 

 

Notice that the two first criteria for the Map join are met by the fact that both files are 

sorted in the same job and hence use the same partitioner and comparator. They are 

also sorted by the same key via the reordering of their common columns. The third 

criterion is also met by the fact that the sorting job uses a set number of reducers. 

Remember that the number of output partitions is the number of the reducers used and 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   41 

since each reducer writes two separate files if we have N reducers we will get N 

partitions for the one files and N for the other. 

Now that the two files are sorted properly and obey the map join constraints we can 

move on to the second part of the algorithm which is the actual join [14]. Fortunately, 

Hadoop provides us with a built in implementation for performing map side joins. All we 

need to do is specify the type of join we want –in our case the inner join- and then let 

the Composite Input Format class do the work for us. This class gets as input the type 

of join that will be executed and then proceeds to join the records of the two files before 

they reach the mapper. For this, the mapper that we specify is a simple one. We just 

make sure the values of the already joined records are properly formatted and that there 

is a match between the order of the columns in the header and the order of their values 

in the records just as with our other algorithms. 

 

@Override 

protected void map(Text key, TupleWritable value, Context context) throws 

IOException, InterruptedException { 

   valueBuilder.append(key).append(separator); 

 

 

   for (Writable writable : value) { 

      String test1 = writable.toString(); 

      if(!test1.equals("")) 

         valueBuilder.append(writable.toString()).append(separator); 

   } 

   valueBuilder.setLength(valueBuilder.length() - 1); 

   outValue.set(valueBuilder.toString()); 

   context.write(nullKey, outValue); 

   valueBuilder.setLength(0); 

} 

Table 14 - Map join combined values map method 

 

We repeat the process (sorting and joining) until all files have been joined.  

4.6 Optimizations 

 We can improve all of the above cascaded two-way algorithms by joining first the 

pair of files with the least output cardinality [1], which is the number of output records of 

a join. In order to find the output cardinality of a join we need to sum the products of 

tuples from file A with tuples from file B that have the same join key. The problem with 

CSPs is that every pair of files has different columns as join keys, which means that 

each time we want to count a record we need first to rearrange these columns to form 

the key and get the proper value. Something like that might not be cost-efficient 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   42 

especially when it comes to the first join pair that is chosen among all pair possibilities 

(O(n^2) where n is the number of input files). 

 Instead we decided to do something simpler that is not optimal but makes an 

educated guess of the output cardinality with less effort. Assume we have two files 

represented by the two tables below. 

 

A B C 

1 2 3 

1 4 6 

1 7 8 

2 3 6 

2 4 8 

 

Table 15 - Input files 

 

In this case the join key is A and the output cardinality of the join is: 

3*2 + 2*2 = 10 records 

However if the header of the second file was A B E (instead of A D E) then the join key 

would be A B and the cardinality would be: 

1*1 + 1*0 + 1*0 + 0*1 + 1*1 + 1*0 + 0*1 = 2 records 

The idea is that the more common columns there are between two files the less 

likely it is to have larger output cardinality. Note that if two files have 0 common columns 

between them, then we are guaranteed to have a*b output records where a, b are the 

number of records of the two files, which is the largest output cardinality we can have. 

So instead of processing all the records of the files we just check their headers and pick 

the pair that has the most common columns. If some pairs have the same number of 

common columns we just pick the smaller files among them. Implementing this 

A D E 

1 2 6 

1 5 9 

2 3 7 

2 1 8 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   43 

optimization, instead of choosing random files, has helped us not run out of memory for 

size of problems that previously resulted so. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   44 

5. EXPERIMENTS 

Experiments we conducted on a single virtual machine cluster. Its specifications are 

as follows: 

 

No. of virtual machines 8 

CPU 2 GH 

Memory 8 GB 

Disk Space 340 GB 

OS Ubuntu 14.04.3 LTS 

Linux Kernel 3.13.0.62-generic 

Table 16 - Cluster Specifications 

 

The virtual machine was running hadoop’s 2.7.2 version. However, programs were 

compiled using the 2.7.1 version 

5.1 N Queens 

The table below shows the execution time of our algorithms. Time is calculated in 

minutes. 

 

 

 N_Queens_12         N_Queens_13         N_Queens_14         N_Queens_15         N_Queens_16         

Repartition 
Join 

 

  44.5 56 102 (2) (2) 

Constructive 
Join 

 

9.4 17 72.8 (3) (3) 

Semi Join  

 
104 (2) (2) (2) (2) 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   45 

Map Join  

 
75.3 93.4 158.8 (2) (2) 

Using 
ECLiPSe CPS 0.07                 0.37 2.2   

Table 17 - N queens results 

 

(0): Error: DiskErrorException: Could not find any valid local directory for map output 

(1): Error: GC overhead limit exceeded 

(2): Error: Java heap space 

(3): Unknown Error 

 

Figure 3 - N queens results 

5.2 Spatially Balance Latin Squares 

0

20

40

60

80

100

120

140

160

180

N_Queens_12 N_Queens_13 N_Queens_14 N_Queens_15

N Queens

Repartition Join Constructive Join Semi Join Map Join ECLiPSe CPS

 SBLS_8         SBLS_9         

Repartition 
Join 

 

28 (0) 

Constructive 
Join 

 

52 (1),(2) 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   46 

 

 

 

 

Table 18 - SBLS results 

(0): Error: DiskErrorException: Could not find any valid local directory for map output 

(1): Error: GC overhead limit exceeded 

(2): Error: Java heap space 

(3): Unknown Error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Semi Join  

 
45.2 (2) 

Map Join  

 
38.8 (0) 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   47 

 

6. CONCLUSION 

Unfortunately, as seen by the experiment section we were not able to provide 

sufficient results to support the case of using the Hadoop MapReduce framework as a 

way of efficiently solving Constraint Satisfaction Problems. The main problem we faced 

is the lack of memory in the cluster we used which resulted in our programs terminating 

abruptly with the java heap space exception. We would suggest reperforming the 

experiments in a more optimal environment – a more scalable cluster. 

 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   48 

ABBREVIATIONS - ACRONYMS 

CSP Constraint Satisfaction Problem 

MR MapReduce 

HDFS Hadoop Distributed File System 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Constraint Satisfaction Problems in Hadoop MapReduce 
 

E. Ntoulias  K. Tharrouniatis   49 

REFERENCES 

[1] Chandar, J. Join Algorithms using Map/Reduce, Magisterarb. University of Edinburgh, 2010 
[2] Jefrey, D., and S. Ghemawat. "MapReduce: simplified data processing on large clusters." 

Communications of the ACM (2008). 
[3] IBM - https://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/ 6-10-2016 
[4] Apache Hadoop - http://hadoop.apache.org. 
[5] Wikipedia - https://en.wikipedia.org/wiki/Apache_Hadoop 6-10-206 
[6] J. Venner. Pro Hadoop. Apress, 1 edition, June 2009. 
[7] Blanas, S. A comparison of join algorithms for log processing in MapReduce. Proceedings of the 

2010 ACM SIGMOD International Conference on Management of data, ACM. 
[8] http://codingjunkie.net/mapreduce-reduce-joins/ 2-10-2016 
[9] Rossi, Francesca, Peter Van Beek, and Toby Walsh, eds. Handbook of constraint programming. 

Elsevier, 2006. 
[10] Tsang, Edward. "A glimpse of constraint satisfaction." Artificial Intelligence Review 13.3 (1999): 215-

227. 
[11] E. J. Hoffman et al., "Construction for the Solutions of the m Queens Problem". Mathematics 

Magazine, Vol. XX (1969), pp. 66–72 
[12] Haralick, R.M. & Elliott, G.L., Increasing tree search efficiency for constraint satisfaction problems, 

Artificial Intelligence, Vol.14, 1980, 263-313 
[13] Lal, Anagh, and Berthe Y. Choueiry. "Constraint Processing Techniques for Improving Join 

Computation: A Proof of Concept." International Symposium on Constraint Databases and 
Applications. Springer Berlin Heidelberg, 2004. 

[14] http://codingjunkie.net/mapside-joins/ 6-10-2016 
[15] MapReduce tutorial - https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-

mapreduce-client-core/MapReduceTutorial.html 7-10-2016 
[16] T. White. Hadoop: The Definitive Guide. O’Reilly Media, 1 edition, October 2010. 

 


