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ABSTRACT

In this thesis we examine and optimize execution traces of binaries. We focus on the po-
tential for optimization of machine code by making assumptions about memory accesses
and control flow. Based on our assumptions, we use symbolic execution to (a) find opti-
mization opportunities in the trace scope and (b) perform these optimizations. We show
that optimization opportunities exist in traces found in real programs, and we suggest how
our assumptions can be adapted to the needs of a dynamic environment.

SUBJECT AREA: Dynamic Symbolic Execution

KEYWORDS: symbolic execution, x86 architecture, dynamorio, optimization, com-
mon subexpression elimination



ΠΕΡΙΛΗΨΗ

Σε αυτή τη διπλωματική εργασία εξετάζουμε ίχνη εκτέλεσης διεργασιών και εκτελούμε βελ-
τιστοποιήσεις πάνω σε αυτά. Εστιάζουμε στην πιθανότητα βελτιστοποίησης του κώδικα
έχοντας κάνει υποθέσεις για την πρόσβαση στη μνήμη και τον έλεγχο ροής. Με βάση
τις υποθέσεις μας, χρησιμοποιούμε συμβολική εκτέλεση ώστε (α) να βρούμε ευκαιρίες
βελτιστοποίησης στο εύρος του ίχνους και (β) να εκτελέσουμε τις βελτιστοποιήσεις αυτές.
Δείχνουμε ότι ευκαιρίες βελτιστοποίησης υπάρχουν σε ίχνη πραγματικών προγραμμάτων
και θεωρούμε τρόπους για το πώς οι υποθέσεις μας μπορούν να προσαρμοστούν στις
προϋποθέσεις ενός δυναμικού περιβάλλοντος.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Δυναμική Συμβολική Εκτέλεση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: συμβολική εκτέλεση, αρχιτεκτονική x86, dynamorio, βελτιστοποίη-
ση, αφαίρεση κοινών υποεκφράσεων
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PREFACE

The work for this thesis started in September 2014 in Athens and finished in October 2016.
It was developed on an Intel Haswell architecture CPU and tested in various AMD64 ma-
chines running 64-bit operating systems. The outcome was a library for machine code
manipulation, which is available for 64-bit versions of Linux, for the AMD64/Intel64 archi-
tecture.
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1. INTRODUCTION

Virtual machines are programs that abstract the underlying operating system from client
programs they execute. Language virtual machines are virtual machines that execute
programs written in specific programming languages, or a language-specific byte repre-
sentation of them [1]. Dynamically compiled languages such as Java [2] have arisen
and matured in Computer Science. In the last two decades, programs written in these
dynamically compiled languages are getting increasingly closer in performance to stati-
cally compiled alternatives. These languages provide unique features, such as dynamic
loading of code during runtime and eliminating the need for memory management for the
programmer. The user of these programs may, depending on the language implementa-
tion, enjoy cross-system compatibility since the target architecture for the virtual machines
of these languages is independent of the language specification.

The reduction in the performance gap is achieved in part by dynamically compiling the, oth-
erwise interpreted, code of a running programwhen a piece of code exceeds an execution-
frequency threshold — the selection of the piece of code is dependent on implementa-
tion. One of the two methods of selecting code for compilation is the method/function
scope: whenever an internal procedure with some inputs and some outputs surpasses
an execution-frequency threshold, it is replaced by a compiled version of itself. The other
method is by discovering frequently used execution traces: specific execution paths taken
by the program through the control flow. The trace scope is unhindered by limitations pre-
sented by the control flow and function calls. The control flow constructs limit the range
of some optimizations to the basic block — in layman’s terms the code between control
flow.

1.1 Goals

The goal of this thesis is to create a basis for a dynamic tracing reoptimizer for machine
code. The reoptimizer will select an execution trace and discover optimization opportu-
nities within it, while guarding the validity of the trace with several mechanisms. As the
software will run dynamically, several sub-goals arise:

1. Performance: The software should have a linear complexity in regards to the amount
of instructions. A viable optimizing solution will need to recognize traces consisting
of large amounts of instructions.

2. Modularity: The software should be able to handle corner cases during development
without introducing extra strain to the entire execution. A developer of the software
should also be able to replace key parts of it without having to reinvent its core
engine.

3. Expandability: As it aims to provide a basis for a completely dynamic tool, the soft-
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ware must be designed in a way that allows for further development of the dynamic
engine and any future goals.

4. Simplicity: The software should adhere to a design that can handle instructions while
preferably not having to delve into the specifics of the target architecture, x86, which
is a CISC architecture with more than 1000 instructions.

In the thesis we attempt and achieve to satisfy all the sub-goals.

1.2 libreopt.so

The software has been developed as a dynamic library for DynamoRIO [3], a runtime
code manipulation system. DynamoRIO’s input is a client program, which is executed on
top of it, and a library, which contains executable code for instrumenting and monitoring
client programs. DynamoRIO provides an API for instrumentation of the executing code,
allowing for observation of the execution and injection of code in the executing code. This
is accomplished by executing various hook functions whenever specific criteria are met.
Such criteria can be the creation of a basic block (or better, what DynamoRIO considers
a basic block), or an execution trace. The library takes advantage of the hooks to read
and process instructions as they are executed. DynamoRIO will be further discussed in
Chapter 2.

The library is contains two implementations, differing on trace selection:

• General. This implementation expects a user input of a starting instruction, and a
span on the amount of instructions to process.

• Guided. The guided implementation recognizes marks in the execution of the pro-
cess. These marks are be inserted in the source code of the client program, in the
form of a pair of specific assembly instructions which define the boundaries of instruc-
tion processing. Thus, the main input of the library is a set amount of instructions,
and its output is those instructions in a assembly-like form, annotated as removed
or modified, along with a few added instructions necessary to preserve the proper
execution of the trace.

The library employs a flyweight object module developed specifically for its operation – but
generic enough to be usable in any other project. This module is a custom implementation
of the flyweight object pattern [4]. It provides the feature of matching intricate immutable
objects with the same structure and data inO(logn) time complexity (in practice a constant
cost). Objects of the same structure and data are manifested uniquely while the program
is running. This reduces the equality checks between these flyweight objects to simple
pointer equality checks. The module will also be further discussed in Chapter 2.

Whichever of the two implementations of the library the user decides to execute, the pro-
cessing starts at some point during execution and stops at some other point during exe-
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cution. The library processes one instruction in one step. By “step” we define the required
restructuring of the library state to include that instruction as part of the library state. The
processing of an instruction is independent of the actual execution. In fact, the granularity
under which the library processes instructions lies at the level of the basic block.

The state of execution is defined as the set of symbolic expression→symbolic expres-
sion mappings, along with some required metadata. As far as the mappings are con-
cerned, the key (left-hand side) defines a register or location in memory while the value
(right-hand side) defines the symbolic value of that register or memory location. The value
of the instruction pointer1 is not recorded. The metadata bind instructions to symbolic ex-
pressions. We will discuss the Symbolic Execution engine in Chapter 3.

During each step, libreopt.so processes an instruction by manipulating a symbolic execu-
tion state. After a step is completed, the set of mappings describes the state of themachine
from the point when the processing started to the point after the instruction. Libreopt.so
follows the execution through any kind of control flow (i.e. backward or forward jumps,
direct or indirect calls). It should be stressed that this thesis focuses on optimizing large
traces of straight-line machine code, and not on providing a general solution to dynamic
reoptimization.

After the processing is finished, the library iterates over the mappings. All instructions that
are irrelevant to the final state are removed. All repeated calculations with the same data
are merged. Their results are stored in special memory and loaded to the appropriate
locations (registers or memory) instead of being recalculated.

Finally, the amount of the resulting modifications is printed in a separate file. The sym-
bolic expressions may optionally be printed in dot notation and processed by visualization
tools that understand this script, such as graphviz [5], resulting in an image with a visual
representation of the symbolic expressions. The modifications may also be printed as
annotations over a printed form of the instructions.

1.3 Contributions

This work makes the contribution of offering insight as to how traces of instructions of real
programs can be optimized by symbolically executing them.

1The instruction pointer is the register that holds the position in memory of the next instruction to be
executed.
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2. TOOLS USED FOR DEVELOPMENT

This section describes the tools that we used in the development of our symbolic execution
engine and optimization framework. These are the DynamoRIO framework for manipulat-
ing binaries (Section 2.1), a custom hash-consing mechanism for efficient representation
of symbolic expressions (Section 2.2), and a visualization front-end (Section 2.3).

2.1 Code Manipulation Engine

We based our prototype on DynamoRIO [3], a state-of-the-art runtime code manipulator
for binary code. DynamoRIO offers utilities such as a mature disassembler for the x86-64
architecture and an efficient instruction representation engine with modification and injec-
tion capabilities. DynamoRIO is the successor of the Dynamo [6] project developed at the
Hewlett Packard Labs, was developed as part of Derek L. Bruening’s PhD thesis at MIT,
and is an active project at the time of writing of this thesis. Its main purpose is to enable in-
strumentation and monitoring of a process at runtime, while preserving performance close
to the performance of a native execution of the binary.

DynamoRIO intercepts the entry and every exit (i.e. system call) of the instrumented
application to maintain control of its execution. Every basic block of the client program
requested for execution is passed through its code cache, which manipulates its branch
instructions to valid cache or pre-existing basic block targets. The code cache keeps coun-
ters on all basic block targets of backwards jumps (referred to as trace heads). Whenever
an execution amount threshold is surpassed on a trace head it traces the next path taken
from that trace head to the first trace head encountered. Its trace algorithm is the Next
Execution Tail algorithm [7], with the modification that backwards indirect branch targets
are not considered trace heads; this reduces the amount of trace heads, resulting in a big-
ger mean size of traces. DynamoRIO provides runtime hooks for its client libraries which
it calls at various points during its execution.

For the purposes of our project, we take advantage of the hook DynamoRIO provides when
a new block is formed in its code cache. We copy the disassembled list of instructions
in the block to a new space in memory. We instrument the basic block to call an entry
point to the library, parameterized with the fresh copy of instructions. Thus, whenever this
basic block is executed it calls the entry point function, and processes the backup list of
instructions anew, based on the state at that point of the execution.

Our implementation also exploits the instruction manipulation interface of DynamoRIO.
Such features as determining the instruction, determining an operand type and identity,
and retrieving the flags usage of an instruction are crucial to the functionality of our library.
They enable it to retrieve information about the instructions without having to execute per-
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opcode behavior, other than some corner-cases.2

Programming Language. The available programming language spectrum was defi-
nitely narrow, as DynamoRIO provides its API for the C programming language only.
Hence, the available options were C and C++. We chose C++ as its object-oriented
features can express the symbolic execution nodes as classes, offering good balance
between performance and memory use for our prototype. Various features of C++ were
employed for the development, such as single and multiple inheritance, templated types,
and object-oriented programming patterns (the Visitor, Factory Method and Curiously Re-
curring Template patterns).

2.2 FlyWeight Module

When performing symbolic execution and during each step, the project must check if the
newly produced symbolic expression(s) are structurally equal to any other already existing
symbolic expression. In the context of this project we define two objects as structurally
equal if their respective primitive-type data are equal and their respective sub-objects are
structurally equal. The objects may also define shadow data, including some sub-objects.
Shadow data are allowed to differ between the two objects, i.e. they have no impact on
determining structural equality.

We created a custom module based loosely on the flyweight pattern [4] to take advantage
of these characteristics. There are two invariants that prompted the creation of themodule:

1. The symbolic expressions themselves are not mutable, but can only be used as part
of another symbolic expression after their creation.

2. Differing data for symbolic expressions of otherwise the same structural form need
to be taken in account for all such symbolic expressions, i.e. the instructions for
which the expressions were formed.

Suppose objects were checked for structural equality to any other existing object in the
program on creation, and then only one was kept. In that case we could enforce that two
objects are structurally equal if and only if the pointers that point to them have the same
value, i.e. they are the same object.

The flyweight module has all objects created through a type-specific pseudo-factory using
the factory pattern. The factory class maintains a hash table that maps all discrete objects.
The production of the hashes is type-specific and must be implemented by classes that
want to be supported by the flyweight functionality. Shadow data must not be included in

2An example of a corner-case is the move instruction (mov), which loads, stores, or copies (“moves”)
data between registers and memory. The program should recognize that this instruction is not an operation,
since it simply copies data, without any other modifications or secondary destinations such as the rflags
register.
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the calculation of the hash; only data that take part in the structural equality check should.

Following an initial construction, where shadow data may be inserted, the object’s hash
is calculated and the hash table is checked for an equal-hash object. If one is found,
structural equality is checked. At this point, if the outcome is positive, shadow data for the
two objects are possibly merged.

The hash-cons feature of some functional language implementations is in essence a very
similar technique [8, 9].

2.3 Visualization

The symbolic expressions have two out-of-memory forms. The first one is a simple textual
representation aiming at the representation of simple expressions. The second one is the
representation of the symbolic expressions DAG in dot notation, as input to the graphviz
tool. The tool outputs graphical images as described in its input. This visual representation
facilitates the comprehension of simple symbolic expressions.
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3. METHODOLOGY

This Chapter provides an in-depth view on the mechanisms and decisions taken behind
the implementation of the library, along with relevant tools and data. We present our sym-
bolic execution engine for machine code (Section 3.1) and how it works with our memory
model (Section 3.2). We then show how to combine our symbolic information with instru-
mentation to guide the dynamic analysis along certain execution paths (Section 3.3). We
finish by demonstrating two optimizations possible in our framework: dead code elimina-
tion and common sub-expression elimination (Section 3.4).

3.1 Symbolic Execution

As was mentioned before, the input of the library is an off-line trace of instructions that a
program executed. Therefore, these instructions include the control flow of the program,
but following any branch instruction, the trace only includes the path taken by the exe-
cution. The hypothetical state of the machine, i.e. registers and memory, before any of
the instructions in the off-line trace would execute will be referred to as the initial state.
Accordingly, the phrase final state will be used to refer to the state of the machine after all
the instructions in the off-line trace would have been executed.

The scope of the trace trascends function calls and control flow. Optimizations infeasible
by the static compiler, e.g. due to segmentation of the optimization window by function
calls, or instructions in a rare path of a branch disabling the compiler from optimizing the
other path, are opportunities that the library should take advantage of.

The library forms relationships between the final state of the machine and the inputs of the
initial state, aiming to discover recurring patterns. To achieve this, it symbolically executes
the program [10] to form the final state of registers and memory as functions over the
inputs. Since any instructions that don’t contribute to the final state are not included in the
symbolic expressions, dead code can automatically be eliminated. Thanks to the flyweight
module described in Section 2.2, all different symbolic expressions appear in the memory
of the library just once.

The implementation of the flyweight module in the library takes significant liberties as far
as the similarity of the objects goes. It disregards the size of operands 3, and conceals
instructions of the mov family along with other shadow data.

To better understand the concept of symbolically executing machine code, let’s briefly
examine the assembly code in Figure 1.

3Disregarding size of operands is a significant assumption. We assume that the full values of the desti-
nation registers/memory are fully determined by the instruction writing it, regardless of the destination size
being possibly smaller. I.e. there are no previous instructions determining part of its value afterwards.
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1 movq %rax, %rbx
2 addq %rcx, %rbx
3 addq $256, %rcx

Figure 1: Sample x86 instructions in AT&T Assembly syntax.

The instructions in this figure would make the following changes:

1. Copy the value of the RAX register to the RBX register.

2. Add the value of the RCX and RBX registers, and then store the result in RBX.

3. Subtract 256 from the value of the RCX register, and then store the result in RCX.

To symbolically execute the instructions of Figure 1 would result in the symbolic expres-
sions in Figure 2. Root nodes containing RBX and RCX symbolize registers and memory
references that have been modified during execution. Root nodes containing xF symbol-
ize bits of the flags register. These nodes will always have an edge to another symbolic
expression, which will signify their value at the final state. Each one of those symbolic
expressions has the instructions it executes as intermediate operation nodes. The di-
rect descendants of a node represent the symbolic expressions they execute on. The leaf
nodes can only be immediate values, or the initial values of registers, flags bits, or memory
locations.

Figure 2: Symbolic expressions in visual form expressing the symbolic execution of the
instructions in Figure 1.

The rectangle nodes between the symbolic execution nodes are part of the edges. They
correspond to serial numbers of the off-line trace instructions, beginning with 1 for the first
instruction in the trace. These nodes indicate that the link between two symbolic nodes
is yielded after the corresponding instruction executes. We added them as part of the
optimization engine — they do not take part in the symbolic execution.

Efthymios Chr. Hadjimichael 21



Optimizing Dynamic Traces using Symbolic Execution

One of the main features of the x86 architecture is the rflags register. This register holds
a number of bits — these bits may have significance to some instructions depending on
whether their preceding instructions set them or not. Table 1 lists the flags descriptions
based on data provided by Intel in their Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual [11].

CF Carry flag Set iff an arithmetic operation generates a carry or bor-
row out of the most-significant bit of the result.

PF Parity flag Set iff the least significant byte of the result contains
an even amount of set bits.

AF Adjust/Auxiliary flag Set iff an arithmetic operation generates a carry or bor-
row out of bit 3 of the result; used in BCD arithmetic.

ZF Zero flag Set iff the result is zero.
SF Sign flag Set equal to the most-significant bit of the result.
DF Direction flag Controls the processing direction of string processing

instructions (movs, cmps, scas, lods, stos).
OF Overflow flag Set iff the result cannot be expressed in the destination

operand due to size limitations.
TF Trap flag Enables single-step mode for debugging when set.
IF Interrupt enable flag Controls the response of the processor to maskable

interrupt requests.
NT Nested task flag If set, the current task is linked to the previously exe-

cuted task.
RF Resume flag Controls the processor’s response to debug excep-

tions.
Table 1: List of flags registers the library takes into account.

Different instructions set different flags of Table 1, clear others, while the value of some
flags may also be undefined after an instruction executes. If an instruction does not leave
a flag as is, the flag is set to be produced by the instruction. In Figure 2 an add operation
produces the flags CF, PF, AF, ZF, SF, and OF. This add is executed as third and final
instruction of Figure 1.

The Trap, Interrupt enable, Nested Task and Resume flags are system flags — they are
not modified by application programs and therefore should keep their initial values in the
scope of a trace.

1 movq %rax, %rbx
2 movq $0, %rdx
3 addq %rbx, %rcx
4 adcq $256, %rdx

Figure 3: Sample x86 instructions with flags manipulation.

A similar example in Figure 3 has one extra instruction: adc — add with carry. The adc
instruction executes after the add instruction, reading the carry flag the add produced. The
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result of the symbolic execution of the instructions is shown in 4.

Figure 4: Symbolic expressions in visual form expressing the symbolic execution of the
instructions in Figure 3.

The symbolic representation shows the read of CF by adc as an extra source operand
to the adc operation; this source operaand is a destination of the add instruction that
executed just before. Also take note that all the flags in this example are produced by the
adc instruction. This happens because after add executes and sets them, adc executes,
reads CF and sets the same flags. Hence their value is derived by adc.

3.2 Memory

Memory use is a fundamental feature of x86 machine code: programs frequently compute
pointers to memory and use them to read and write memory contents, while most instruc-
tions can directly access memory. Thus, symbolic execution cannot find many interesting
facts about a machine code fragment without having a specific model of memory.

This section describes two aspects of how our symbolic execution views memory: how
much memory aliasing is permitted in our model (Section 3.2.1) and how to use dynamic
memory allocation information (Section 3.2.2)
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3.2.1 Memory Aliasing

Memory references in x86 are formed in three ways: (a) as absolute addresses, (b) as
offsets relative to the program counter, or (c) as offsets calculated using the value of
register sub-operands and immediates — the base register(Breg), the index register(Ireg),
the displacement(D) and the scale(S):

Breg + D+ S ∗ Ireg

This presents a significant complication to the evaluation of the symbolic expressions.
While PC-relative addresses are decoded and handled as absolute offsets—DynamoRIO
provides them as such —, memory references with register sub-operands will correlate to
symbolic expressions. This means that we are not able to provide a unique representation
of memory addresses. We instead have to reference them using symbolic expressions.
Referencing memory in this manner introduces memory aliasing.

Memory aliasing occurs when one memory location can have multiple representations —
as opposed to an instruction set where each memory location may be referenced solely as
a direct address. This situation is present in any pragmatic instruction set. Not enabling
indirectly addressed memory means that a most basic language structure, the pointer,
would not be implementable. Memory aliasing voids the correctness of the symbolic exe-
cution, since multiple symbolic expressions describing memory may evaluate to the same
memory location. One approach to this would be the usage of a special path-branch node
(called an “If-Then-Else” or “ITE” node). The most naive solution would have the ITE
node inserted on all existing memory-referencing expressions each time a new memory
reference is written to as follows:

Value at existing = IF existing aliases new THEN symbolic expression for
new ELSE symbolic expression for existing

Something like this is not viable — the amount of paths with even a small amount of
memory writes gets out of hand quickly. Furthermore, the x86 instruction set supports
writing different sizes of data in memory. The check would have to be for overlaps of
memory locations.

To give an example of how this can grow out of proportion quite rapidly, let’s suppose a
point during symbolic execution of the instructions where the state has five discrete writ-
ten memory locations. For this to have happened, the symbolic execution has produced
ITE nodes on the final symbols to cover the possibility of one or more aliased memory
locations, in order of execution: For each final symbol/node corresponding to a memory
write, the creation of a new final memory write symbol must wrap it under an ITE node.
The ITE node asserts evaluated equality between the symbolic expression for the new
memory write node and the current symbolic expression calculating the address of that
node. After the fifth memory write is symbolically executed the first node will have a depth
of four ITE nodes, the second three, and so on. Each time a read with a different repre-
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sentation happens after these symbolic expressions will have been formed, the symbolic
expression to be chosen as a source will have to compare to all the symbolic expressions
for the writes through ITE nodes.

To mitigate the aliasing problem, we introduced a single assumption the symbolic exe-
cution would adhere to: all memory references refer to unique addresses. The trace will
then be optimized under this assumption. This means that in a supposed dynamic envi-
ronment and before the trace executes, a series of guards will assert inequality between
all memory addresses with more intelligent structures. If aliases are found then the trace
does not execute, since its output will most probably be incorrect.

3.2.2 Custom Memory Management

When allocating memory from the heap using the *alloc family of functions, the C/C++
programmer will request sizes that either fit one object of a type of the program, or multiple
objects of a specific type. These objects are then referenced by either their start address,
or, if they are objects of composite types, then both their start address and offsets in them.

Ideally, an engine which attempts to assert inequality dynamically will have information
on these types and then be able to discern aliasing based on where the variables in the
program refer to. This is not something that is feasible at the machine code level. At this
level, only addresses are available. However, if the instrumenting library could intercept
the memory allocation call site and replace the target with a memory allocator of its own,
it would gain information on discrete objects and arrays.

As part of a proof of concept for the realization of an on-line trace, we designed and
implemented a memory allocator. This memory allocator segregates allocations based
on the allocation size of requests. It uses internal structures which assign sizes to pages.
It exposes the structures to functions which, by reading an address inside an object, can
derive the start of the object and the size of the object. Since O(logn) structures (hash
tables) can be used to map the addresses to pages, and the pages to sizes, the functions
can derive aliases and potential aliases very quickly. The memory allocator itself is not
part of this thesis.

3.3 Instrumentation

The library instruments the client program at the basic block level. As described in Chap-
ter 2, DynamoRIO provides the ability to instrument, i.e. modify the execution, when pro-
cessing the basic block. Whenever a basic block is the target of a jump by the client
program, DynamoRIO passes it through its code cache and performs callbacks the library
may have inserted. The library gains access to the instruction list of the basic block, and
the ability to modify it before it’s released in the pool of processed executable code.

The library only modifies the executable code when it is active. This can be set to skip a
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specific amount of instructions from the start of the program execution and then instrument
for a number of instructions. It can alternatively be set to start when encountering a specific
instruction expected by the library, and stop when encountering another such specific
instruction. For this purpose we selected the multibyte version of the nop instruction. This
version of the encoding has a different opcode. Rather than having no operands like its
single-byte counterpart, the multi-byte nop accepts an address operand. The operand
remains unused, yet it enables us to recognize marks in the source code — assuming
no other nop instruction with the specific operand exists somewhere else in the program.
For the purposes of our library we used the two instructions shown in Figure 5. When
the first instruction is encountered, the instrumentation begins. When the second one is
encountered, the instrumentation ceases.

1 nopl $0x11111111
2 nopl $0x22222222

Figure 5: Nop instructions used for enabling and disabling instrumentation.

These instructions must pre-exist: they must have been inserted in the source code of
the program to be executed. The template for insertion of these instructions in a small C
program is shown in Figure 6.

1 #include <stdio.h>
2
3 int main(void) {
4 //code outside the instrumentation scope of the library
5
6 asm volatile ("nopl $0x11111111\n\t");
7
8 //instrumentable code
9

10 asm volatile ("nopl $0x22222222\n\t");
11
12 //code outside the instrumentation scope of the library
13 }

Figure 6: Template for using instrumentation enabling and disabling instructions in source code.

At initialization, the library creates some basic internal structures. These structures are
then set to be pointed to by DynamoRIO’s thread local storage through its API. This en-
ables the structures to be accessed at any point during execution, given any executing
context — be it DynamoRIO control flow or program control flow.

As soon as instrumentation is enabled, the library instruments newly created basic blocks:

• At the beginning of each basic block, the instructions are modified so that the register
state is saved in special memory provided by DynamoRIO; this memory is inacces-
sible by the client program.
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• The original instruction list is cloned to another identical list.

• A function call is placed after the register state save. This function call jumps to library
code. The parameters for this function call are the cloned list and the DynamoRIO
dr_context, an opaque structure that can be used to extract the library state (i.e., its
internal structures) and use them in the function.

• The instructions for the new basic block are passed on to the client program, which
executes it whenever it is encountered, along with the instrumented code.

3.3.1 General Symbolic Execution Step Processing

The library function called by the client program retrieves the library environment through
the DynamoRIO API and calls the symbolic execution function over each of the instruc-
tions. The symbolic execution function uses the DynamoRIO API to discern the amount
and type of source and destination operands, reading and writing of flags and opcode for
the instruction. It then produces a symbolic execution node, which is linked to its desti-
nation operands (registers, memory locations, and flags bits). If an instruction has zero
destination operands it is not linked and is therefore discarded. Exceptions to the rule are
described in Section 3.3.2.

Textual Representation for the Symbolic Execution. The text form for Symbolic Exe-
cution is a series of statements. The statements are of the form X := Y, where X is either
a register or a Symbolic Expression for a memory address, and Y is the Symbolic Ex-
pression for the value of said register or the memory with address evaluated by Symbolic
Expression X.

The syntax of Symbolic Expressions SE and Memory Addresses ME follows:

SE ::= OPER(SE1, . . ., SEn), n ≥ 1 operator application
| $C constant
| REG register
| FL flag
| ME memory address
| MEMME dereference

ME ::= [C], C ≥ 0 absolute address
| [SEb + C + SEi * D], D ∈ {1,2,4, 8} general address

where C, REG, and FL range over integer constants, register names, and flags bit names
respectively. OPER ranges over the operation names — e.g. add, adc, lea, sub. General
memory addresses have the form (base + constant displacement + index ∗ scale). (cf.
Section 3.2.1). The other form, absolute addressing, is listed separately. Alternatively,
absolute addresses could also be represented by the general address form, when SEb =

SEi = $0.
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In Figure 7 we see the textual representation for the result of the symbolic execution in
Figure 2. Expressions involving the flags have not been printed for the sake of clarity. The
meaning of the first statement in Figure 7 would be: “The value of the register RBX in the
final state is the result of performing the add operation to the initial values of RAX and
RCX.” The meaning of the second statement would be: “The value of the register RCX in
the final state is the result of performing the add operation on the constant 256 and the
initial value of RCX.”

1 RBX := add(RAX, RCX)
2 RCX := add($256, RCX)

Figure 7: Textual representation for the result in Figure 2.

Consider a modification to the previous example, with the results in Figure 8.

1 RBX := add(RAX, RCX)
2 [RBX] := add($256, [RBX])

Figure 8: Memory address example for the textual representation of Symbolic Expressions.

In the example of Figure 8 a symbolic expression replaces the RCX register. The second
statement now reads: “The value in the final state of the memory location pointed to by
the initial value of RBX is the result of performing the add operation on the constant 256
and the initial value of the memory location pointed to by the initial value of RBX.”

Symbolic Expressions for memory locations are wrapped in brackets ([ ]). For example,
[add(1, 2)] is the symbolic value of the memory at the location add(1, 2), i.e. 3. In
statements, final memory location symbolic expressions (X) are always bracketed.

3.3.2 Exceptions to the General Symbolic Execution Step Processing

Six total instructions require unique handling. The first four instructions are: push, pop,
add, and sub. The first two are heavily evident in results from symbolic executions as
references to memory; by modifying the stack pointer they create constant (immediate)
offsets from a base memory location. We merge codependent instructions of integer ad-
ditions and subtractions of constant values in one, assuming arbitrary sizes of operands,
practically ignoring the overflowing of values.

The add and sub instructions are otherwise handled as the general case for step process-
ing.

The push instruction of the x86 architecture performs two operations and yields values in
two destinations; it first increases the size of the stack by decrementing the stack pointer
according to the size of its single source operand. It then stores the value of the source
operand at the new top of the stack: the address of the new stack pointer.
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The pop instruction of the x86 architecture also performs two operations. It loads the
value on the top of the stack to its single destination operand and then increments the
stack pointer by the size of the operand.

The final two instructions that require special handling are call and ret. These instructions
set theRIP register, save or load theRIP register to or from the stack, but more importantly
change the value of the stack pointer to account for the size of the RSP register pushed
or popped. While RIP values are discarded as part of the control flow, the change of the
RSP register must be represented by symbolic expressions.

1 #include <stdio.h>
2
3 int fn(int a) {
4 return 0;
5 }
6
7 int main(void) {
8
9 asm volatile ("nopl 0x11111111\n\t");

10 int x = 6;
11 fn(4);
12 x = 3;
13 asm volatile ("nopl 0x22222222\n\t");
14
15 return 0;
16 }

Figure 9: C program from which the instructions in Figure 10 derive.

To understand the need for the transformation of the operations of these instructions, let’s
briefly consider Figure 10. This is executed code, disassembled by DynamoRIO in some
notation closely matching the AT&T assembly. Figure 9 presents the corresponding C
code, i.e. the code between the multi-byte nop instructions.

1 movl $0x00000006, 0xfffffffc(%rbp) # set x = 6
2 mov $0x00000004, %edi # arg1 for function-call to fn
3 call $0x0000000000400756 # perform the function-call
4 push %rbp # create the stack frame
5 mov %rsp, %rbp
6 mov %edi, 0xfffffffc(%rbp)
7 mov $0x00000000, %eax # set the return value
8 pop %rbp # destroy the stack frame
9 ret # return to caller

10 movl $0x00000003, 0xfffffffc(%rbp) # set x = 3

Figure 10: DynamoRIO output assembly for symbolic execution between function calls.

The x variable corresponds to -4 from the base pointer (0xfffffffc is the two’s com-
plement representation of -4 for a four-byte operand). It is written to twice: once before
the function call, and once after the function call.
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1 RAX := 0
2 RDI := 4
3 RSP := RSP
4 RBP := RBP
5 [RBP + $-4] := 3
6 [RSP + $-8] := call([40000]) # RIP value at call site
7 [RSP + $-16] := RBP
8 [RSP + $-20] := 4

Figure 11: Result of symbolically executing the instructions of Figure 10: named registers are
followed by memory locations (in brackets).

Any omitted symbols in Figure 11 remain unchanged between the initial and the final state.

On the other hand, the symbolic execution algorithm without special handling of the in-
structions, calculates the result presented in Figure 12 (captured by the debug output
mode of our library).

1 RAX := $0
2 RDI := $4
3 [RBP + $-4] := $6
4 [RSP + $-8] := call([400756], RSP)
5 RBP := pop(push(RBP, call([400756], RSP)), [push(RBP, call([400756], RSP))])
6 RSP := ret(pop(push(RBP, call([400756], RSP)), [push(RBP, call([400756], RSP))

]), [pop(push(RBP, call([400756], RSP)), [push(RBP, call([400756], RSP))])
])

7 [push(RBP, call([400756], RSP)) + $-4] := $4
8 [call([400756], RSP) + $-8] := push(RBP, call([400756], RSP))
9 [pop(push(RBP, call([400756], RSP)), [push(RBP, call([400756], RSP))]) + $-4]

:= $3

Figure 12: Debug output of library symbolically executing the instructions of Figure 10. The library
is set to omit handling of the push and pop instructions, instead treating them as black boxes.

Consider these two observations:

1. The symbolic value of symbolic expressions containing pop, push, or call is not ap-
parent intuitively. The destination operands are saved in the memory representation
of the symbolic expressions, therefore the information to evaluate those is correct,
even though it is not being printed in this debug output.

2. The size of the operands is ignored in the symbolic operation. Since it is saved in
memory, it is assumed that the operation is defined by the size of its operands and
acts accordingly to set the value of the destination. In practice, it is irrelevant.4

Memory guards. The debug result of Figure 12 itself is not correct. One specific exam-
ple would be

[pop(push(RBP, call([400756], RSP)),
4This is expanded upon in Section 3.4.
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[push(RBP, call([400756], RSP))]) + $-4]

and

[RBP + $-4].

Both describe the same offset from theRBP register’s initial value, yet the algorithm cannot
know that.

Thus immediate values must be merged using some form of partially evaluated symbolic
expressions. Inevitably, some final symbols with different representations will end up hav-
ing the same concrete value under some cases. In those specific cases the benefit of
being able to assert inequality between used memory addresses comes into play, since
it functions as a set of guards against aliasing to the optimized trace. This set of guards
protects the validity of the trace by verifying on-line the assumption that all symbolic ex-
pressions write to different final memory locations — as well as the possibility that aliased
intermediate memory locations are not falsely considered different.

This is where having a custom memory allocator comes into play, as mentioned in Sec-
tion 3.2.2. The memory allocator can assert these cases and answer whether the to-be-
executed trace is valid or not.

3.4 Optimization

Along with selecting a trace of code and symbolically executing it, we perform the following
book-keeping:

1. We save the instructions constituting this initial trace.

2. We number the instructions uniquely in increasing order (order of appearance in the
trace).

3. We assign the instruction numbers to symbolic execution nodes. The reasoning for
this is that a symbolic execution node is assigned number X if the expression this
node forms with its subtrees is formed after instruction numbered X is executed.

The data is stored in such form so that the instruction number itself is linked to the in-
struction numbers of its source operands, in the same manner as the symbolic execution
nodes are.

After having picked a trace and symbolically executed it, the library performs two optimiza-
tions over the symbolic expressions: dead code elimination (Section 3.4.1) and common
sub-expression elimination (Section 3.4.2).

3.4.1 Dead Code Elimination

Our algorithm traverses the roots of symbolic expressions that are directly linked to fi-
nal symbols; it traverses both symbolic expressions used to calculate addresses for final
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symbols that are memory locations, along with symbolic expressions which correspond to
their value at the final state. When encountering a symbolic expression with more than
one corresponding instructions it links all numbers to the number of the first instruction.

Having done that, the algorithm traverses the final symbols in the same manner a second
time. At this point the algorithm marks the instructions that correspond to expressions
reachable from final symbols; this automatically performs dead code elimination.

3.4.2 Common Sub-Expression Elimination

When marking alive nodes, our algorithm also checks if more than one instructions corre-
spond to a specific node. In that case, the algorithm marks the first corresponding instruc-
tion as saved, and the other instructions with a link to the first one. A “saved” instruction is
an instruction whose destination operands may be needed to be stored in special mem-
ory (inaccessible by the original program). The operands are loaded replacing recurring
calculations. If the rest of the usages are unneeded to form the final state, the instruction
results will not be stored.

To finalize common sub-expression elimination the algorithm traverses the instructions
and replaces re-evaluated subexpressions with loads to registers from a specific offset
from the special memory. The special memory is written after the first calculation occur-
rence in the execution trace, using the common sub-expression as a guide. This happens
under the condition that the number of instructions removed after performing the modifi-
cation is above a given threshold 5.

We should note here that the amount of instructions removed can be fewer than the
amount of instructions needed for the calculation of a symbolic expression. This is the
case when a subset of those instructions may be required for calculating the value of
another final symbol.

An example of this can be seen in Section 4, where in Figure 16 and Figure 17 the in-
structions involving the value of the RAX register are not removed, since they determine
the value of RAX in the final state.

5At the time of writing the threshold is a numeric constant.
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4. EXPERIMENTAL RESULTS

This chapter shows how our prototype finds code that can be optimized away in a set of
actual programs.

The experimental results are split in two categories: The first set contains the results of
running the library in a controlled environment (Section 4.1). This set, the test cases set,
presents the reduction in code the library can perform over a trace of execution. The
second set contains iterations on loops of real-world programs, for increasing iterations of
the loops (Section 4.2).

4.1 Test Cases

The test cases presented are part of the test suite used to verify the validity of the symbolic
expressions and the produced instruction modifications for the library.

We consider the instructions produced as the results of the test cases; these instructions
are modifications over the source trace. The modifications are per instruction and can
be one of the modifications described in Table 2. A pedantic reader will realise that no
information about the source trace is lost and can be recreated for a juxtaposition with the
final trace.

none Source instruction executed as is. It remains in the
final trace.

-- Source instruction removed. This instruction belonged
in the source trace, but is not needed for valid execu-
tion of the final trace.

++ Final trace pseudo-instruction. This instruction can ei-
ther be a load or a save to a safe pseudo-memory
operand, used exclusively by the library for spilling and
restoring data to the state of the machine.

+- Source instruction replaced by pseudo-instruction. As
above, but this pseudo-instruction has replaced an in-
struction of the source trace. The removed instruction
is listed after in a comment (signified by #).

Table 2: List of possible instruction modifications and how they appear in the library output.
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1 -- mov $0x00000000, %rax
2 -- mov $0x00000001, %rbx
3 -- mov $0x00000002, %rcx
4 -- mov $0x00000003, %rdx
5 -- add $0x04, %rax
6 -- add $0x08, %rbx
7 -- add $0x0c, %rcx
8 -- add $0x10, %rcx
9 -- add %rax, %rcx

10 -- add %rbx, %rcx
11 -- add %rcx, %rdx
12 -- add %rcx, %rax
13 mov $0x00000000, %rax
14 mov $0x00000001, %rbx
15 mov $0x00000002, %rcx
16 mov $0x00000003, %rdx
17 add $0x04, %rax
18 add $0x08, %rbx
19 add $0x0c, %rcx
20 add $0x10, %rcx
21 add %rax, %rcx
22 add %rbx, %rcx
23 add %rcx, %rdx
24 add %rcx, %rax

Figure 13: Execution results of the ts_doubled test-case program.

Figure 13 presents a very simple case, where repeating code occurs. The first half of the
instructions are found to not contribute to the final state by the library and are removed.

1 push %rax
2 -- mov %rbx, %rax
3 pop %rax

Figure 14: Execution results of the ts_pushpop test-case program.

The very simple test case in Figure 14 shows an example of the special handling of the
push and pop instructions. The mov instruction is removed because the value of rax is
overwritten by the next instruction. More importantly, the push and pop instructions are
not removed since they form a symbolic expression for the memory location where the
stack pointer points. This symbolic expression contributes to the final state.
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1 add $0x04, %rdi
2 -- mov (%rdi), %ecx
3 -- mov 0x00000308(%rax), %r8
4 -- mov %ecx, %edx
5 -- lea (%r8,%rdx,4), %r8
6 -- lea (%rdx,%rdx,2), %rdx
7 -- lea (%rbx,%rdx,8), %rdx
8 -- movzx 0x06(%rdx), %r10d
9 -- movzx 0x04(%rdx), %r9d

10 -- and $0x0f, %r9d
11 -- mov 0x08(%rdx), %r11
12 -- mov %r11, %r9
13 -- add (%rax), %r9
14 -- add $0x04, %r8
15 -- add $0x01, %ecx
16 add $0x04, %rdi
17 mov (%rdi), %ecx
18 mov 0x00000308(%rax), %r8
19 mov %ecx, %edx
20 lea (%r8,%rdx,4), %r8
21 lea (%rdx,%rdx,2), %rdx
22 lea (%rbx,%rdx,8), %rdx
23 movzx 0x06(%rdx), %r10d
24 -- movzx 0x04(%rdx), %r9d
25 -- and $0x0f, %r9d
26 mov 0x08(%rdx), %r11
27 mov %r11, %r9
28 add (%rax), %r9
29 add $0x04, %r8
30 add $0x01, %ecx
31 mov %ecx, %edx

Figure 15: Execution results of the ts_leatest test-case program.

Figure 15 is again a case for dead code elimination, yet slightly more complex. The lea
instruction (Load Effective Address) stores the value calculated as an address by the first
operand to the second operand, without accessing the memory at that location. The other
instruction used, movzx moves the first, smaller in size, operand to the second operand
by zero-extending the value to cover the second operand’s size.

In this case we can observe that where the values of registers are needed as sub-operands
the library preserves the dependency and does not remove contributing instructions.
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1 mov $0x00000000, %r11
2 mov $0x00000001, %r12
3 mov $0x00000002, %r13
4 mov $0x00000003, %r14
5 add $0x04, %r11
6 add $0x08, %r12
7 add $0x0c, %r13
8 add $0x10, %r13
9 add %r11, %r13

10 add %r12, %r13
11 ++ mov %r13, $((temp10 + 0))
12 add %r13, %r14
13 add %r13, %r11
14 mov $0x00000000, %rdx
15 mov $0x00000001, %rax
16 -- mov $0x00000002, %rbx
17 mov $0x00000003, %rcx
18 add $0x04, %rdx
19 add $0x08, %rax
20 -- add $0x0c, %rbx
21 -- add $0x10, %rbx
22 -- add %rdx, %rbx
23 +- mov $((temp10 + 0)), %rbx # -- add %rax, %rbx
24 add %rbx, %rcx
25 add %rbx, %rdx

Figure 16: Execution results of the ts_sameexpr_ad test-case program.

Figure 16 shows the removal of common sub-expressions. The instruction threshold for
common subexpressions for this execution was set to 3: By loading the value of a calcu-
lation the algorithm may remove a certain amount of instructions. The threshold makes
sure that the algorithm will not perform common sub-expression elimination for a specific
expression if less than 3 instructions can be removed.

In the case of Figure 16, the final value of the RBX register is a recalculation of the value
of the R13 register after instruction 10. Hence, the library inserts a store to the pseudo-
memory location and uses this value at instruction 23 to replace the final instruction for
the calculation of the value for RBX. Notice that the previous 3 instructions, now irrelevant
to the final state, are also removed. No other recalculations are handled in this manner,
since the instructions removed would be fewer than the threshold.
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1 mov $0x00000000, %r11
2 mov $0x00000001, %r12
3 mov $0x00000002, %r13
4 -- mov $0x00000003, %rdx
5 add $0x04, %r11
6 add $0x08, %r12
7 add $0x0c, %r13
8 add $0x10, %r13
9 add %r11, %r13

10 add %r12, %r13
11 ++ mov %r13, $((temp10 + 0))
12 -- add %r13, %rdx
13 add %r13, %r11
14 mov $0x00000000, %rdx
15 mov $0x00000001, %rax
16 -- mov $0x00000002, %rbx
17 mov $0x00000003, %rcx
18 add $0x04, %rdx
19 add $0x08, %rax
20 -- add $0x0c, %rbx
21 -- add $0x10, %rbx
22 -- add %rdx, %rbx
23 +- mov $((temp10 + 0)), %rbx # -- add %rax, %rbx
24 add %rbx, %rcx
25 add %rbx, %rdx

Figure 17: Execution results of the ts_sameexpr_dr test-case program.

Figure 17 is a copy of Figure 16 where the R14 register is replaced by the RDX register.
A case for dead code elimination in the context of common sub-expression elimination.

1 sub $0x08, %rsp
2 mov %rdx, (%rsp)
3 mov (%rsp), %rax
4 add $0x08, %rax
5 add $0x09, %rax
6 ++ mov %rax, $((temp5 + 0))
7 -- mov %rdx, %rbx
8 -- add $0x08, %rbx
9 +- mov $((temp5 + 0)), %rbx # -- add $0x09, %rbx

10 add $0x08, %rbp

Figure 18: Execution results of the ts_simplemem test-case program.

Concluding with the test cases, we present in Figure 18 the possible need for linear in-
struction passes on the code. While the library recognizes and handles the removal of
repeated calculations, it is not able to recognize that all instructions between the store
and the load have been removed. A better solution would be replacing both instructions
numbered 6 and 9 with mov %rax, %rbx.
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4.2 Real-world Benchmarks

Running the library over arbitrary programs at arbitrary points of execution is supported
but would not give productive results. Since the library simply parses the execution path
and considers it as a trace of code, rather than optimizing actual hot code, the results
would vary depending on the point at which the library would have started the parsing.
This point could change depending on environment factors, such as the libraries loaded
by the program or the amount of instructions executed before the main() function is
called. Rather than presenting results skewed by such a volatile environment we present
results for the execution of programs with large controlled loops, where the source code
has been marked for the library as described in Section 3.3. These programs are a BASIC
interpreter (Section 4.2.1), the Lua language interpreter (Section 4.2.2), and a custommini
interpreter for a very basic language created by us for this purpose (Section 4.2.3).

To facilitate the understanding of the results since the output instructions would be much
greater in size than the test-cases, we show the amount of symbolic nodes created per
trace.

The benchmarks are visualized on 2D-plane graphs, where the X-axis signifies the number
of times the program passed through the checkpoint marker before stopping. Five sets of
data are visualized. These sets of data, as shown on the legends of the graphs, are:

1. Instrs: The amount of instructions executed in total.

2. OperExpr : The amount of Symbolic Expression Nodes that signify operations pro-
duced.

3. AccMov: The amount of reachable mov-family instructions (loads and stores) where
these instructions are links between the instructions forming Symbolic Nodes and
are hence required by the Symbolic Expressions.

4. OperExprBr : The amount of Symbolic Expression Nodes that signify operations pro-
duced, considering branch targets as actual memory destinations.

5. AccMovBr : The amount of reachable mov-family instructions required by the Sym-
bolic Expressions, when considering branch targets as actual memory destinations.

Reiterating, each point on the X-axis signifies an execution of x iterations, where x is the
offset from zero on the X-axis. The word iterations in this context means the number of
times the process executed the checkpoint instruction. The points on the Y-axis signify the
amount of instructions executed in total, the amount of Symbolic Expressions, mov-family
instructions, Symbolic Expressions including control flow destinations and mov-family in-
structions reached when including control flow destinations, for that specific execution with
x instructions.
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4.2.1 BASIC Interpreter

For the BASIC interpreter, we used an implementation in C by Adam Dunkels, uBA-
SIC [12]. We modified this version by adding an initialization and checkpoint marker at
the function parsing and executing each line.

We used two BASIC programs as benchmarks, a program computing the factorial of 20
(Figure 19) and a simple program that loops forever involving just a constant value (Fig-
ure 21).

1 10 x = 1
2 20 for i = 2 to 20
3 30 y = x
4 40 for j = 2 to i
5 50 x = x + y
6 60 next j
7 70 next i
8 80 print x
9 90 end

Figure 19: Factorial source code used in benchmarks for the BASIC interpreter.

Figure 20: uBASIC interpreter results for the factorial program.

Starting with the factorial program, we can see the measurements from its execution in
Figure 20. We can observe the following:

• The mov-family instructions attached to the operations amount to a significant per-
centage of the total operations. This is consistent with the findings of Huang and
Peng [13] for DOS and Windows 95 applications.
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• When branch targets are considered memory state, the operations required to de-
scribe the final state are more than doubled.

• Interestingly, the slope between lower amounts of iterations to higher amounts of
iterations is negative between some. After carefully examining the execution traces
between executions for the same amount of iterations, we found that the control
flow differs. As the instructions executed are often not present in the binaries of the
programs tested, they must appear in the execution trace as the result of library calls,
and the non-determinism of the execution stems from code during the execution of
library functions.

Yet, a result of operations increasing linearly is not something we would expect. What
we would expect is a decline in the deltas between points as the amount of iterations
increased. This would be consistant with the library recognizing repeated interpreter code.

1 10 x = 1
2 20 goto 10

Figure 21: Simple program used in the benchmarks for the BASIC interpreter.

The unexpected results from the previous program can be further investigated by observ-
ing the symbolic execution of the simpler program of Figure 21. This program, although
tiny and only using constant values and a single loop without a condition, also demon-
strates too many symbolic values, as seen in Figure 22.

Figure 22: uBASIC interpreter results for the simple program.

Compared to the previous BASIC example, we observe minor differences in the measured
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data; however, we would expect a constant number of symbolic values.

In the next section, we will investigate similar behavior of the Lua interpreter, to see how
the same issues arise in a more mature interpreter.

4.2.2 Lua Interpreter

Before moving on to our own interpreter, we will compare the BASIC results with results
from using the official Lua interpreter [14]. We instrumented the Lua interpreter by placing
the instrumentation initialization and checkpoint marker at the beginning of the main inter-
preter loop. This loop processes instructions, hence the instrumentation is parallel to the
one for the BASIC interpreter.

Since we used the factorial algorithm to present results for BASIC, we are using the same
algorithm for the Lua interpreter. The Lua version is shown in Figure 23.

1 function factorial(n)
2 local x = 1
3 for i = 2, n do
4 x = x * i
5 end
6 return x
7 end
8
9 print (factorial(30))

Figure 23: Factorial source code used in benchmarks for the Lua interpreter.

The results, presented in Figure 24, are very similar to the uBASIC results.

Figure 24: Lua interpreter results for the factorial program.
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The results of our Lua experiments above (and the BASIC ones of Section 4.2.1) prompted
us to create our own interpreter in the next section to measure the generation of symbolic
values in a more controlled environment.

4.2.3 Custom Mini-Language Interpreter

Our own interpreter implements a BASIC-like language that supports (a) integer variables,
(b) the assignment operator (which can perform addition, subtraction, multiplication, and
division), and (c) the instructions PRINT (prints to output), EXIT (halts interpretation),
GOTO (moves the program counter to a specific line number), and BZERO (moves the
program counter to a specific line number when the variable argument has a value of
zero).

To control the cost of variable access, only single-letter variables are permitted. Their
values are stored in a 26-element array, ensuring a constant read/write cost. Each inter-
preter loop interprets exactly one line of source code.

We tested a very simple program to verify the problem persists on our interpreter and to
explore the solution (Figure 25). Our program sets x to 1, performs the addition of x and
1, stores the result in y, and then sets the program counter of the interpreter to the first
line, therefore repeating indefinitely.

1 x = 1
2 y = x + 1
3 GOTO 1

Figure 25: Source code used in benchmarks for the Mini-Language interpreter.

The results from the execution of our test program are shown in Figure 26.

As a side-effect, we observe that since our interpreter does not use external libraries,
the amount of instructions per iteration is much more obvious. We can also deduce that
when the difference between two consecutive points is large, one of the more complex
instructions is executed in that iteration, while when it is small, the GOTO instruction is
executed.

More importantly, we observe that the problem persists. Since our interpreter is very
simple, and the program it executes even simpler, the problem definitely lies in memory
addressing: the library keeps producing different symbolic expressions for the same data.

The problem is not difficult to understand. Each time the GOTO instruction is executed, the
PC is set to the numeral conversion of the characters of the string directly after GOTO. We,
however, know that all source code is referenced as an offset from the program counter.
That means, that the symbolic value about to be assigned to the Program Counter will
contain a subexpression with the previous symbolic value of the Program Counter. Each
time the constant 1 of line 3 in Figure 25 is read, the ProgramCounter Expression will reset
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Figure 26: Mini-Language interpreter results for the simple loop program.

to a value that includes the previous symbolic value, thus never recognising a pattern.
The problem thus is that GOTO introduces a level of indirection that makes the generated
symbolic expressions for the PC to constantly grow instead of taking a finite number of
different symbolic values.

We verified this assumption by creating a new command for our Mini-Language which
does not have this extra level of indirection but has direct semantics: RESET. This com-
mand simply sets the value of the PC to 1. We modified the program of Figure 25 by
replacing GOTO 1 with RESET.

The results, presented in Figure 27, show a constant value of operations, with and without
including control flow, since operations that decide the control flow are also referencing
offsets from the PC.
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Figure 27: Mini-Language interpreter results for the simple loop program, when using RESET
instead of GOTO.

A final, minor observation is that the amount of mov-family instructions attached to op-
erations increases. Nodes are merged on creation, yet they retain the instructions they
are linked to. Since the number of nodes remains the same, an increase of the amount
of mov-family instructions signifies that the amount of these instructions per node has in-
creased. So, the essence of the computation (the symbolic expressions) stays the same
but each loop adds more mov-family instructions on the (same) symbolic nodes.
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5. CONCLUSION

In this section we describe related work (Section 5.1) and conclude (Section 5.2).

5.1 Related Work

The following are related works on the dynamic tracing and optimization of interpreters:

Optimizing interpreters with DynamoRIO. Sullivan et al. presented a modification
to DynamoRIO that allowed for passing of information regarding to the control flow of
an interpreter, using API calls in the source code of the interpreter [15]. Their work also
inserts API calls to pass information about the memory; that information can be immutable
regions of memory, immutable targets of calls for the abstract program counter of the
interpreter, and locations of stack variables. The information is exploited by the modified
DynamoRIO to allow for the creation of traces based on the logical control flow and the
folding of constant processing overhead to constants. The optimizations performed are
constant propagation, call-return matching and dead code elimination.

This approach is relevant only to the optimization of interpreters. It presents a complete
solution with dynamic tracing that, with the help of information by the interpreter creator,
offers speedups of up to 2x over native execution.

Our approach of symbolically executing a trace is unaware of the physical or logical control
flow and logical variables, hence it cannot perform constant propagation in the context of
the interpreter. It is aware of addresses that, as a sum of expressions and constant can be
found similar, if different subexpressions or combinations of additions and subtractions of
different subexpressions do not produce the same results (assumes no aliases), and the
constant propagation it can perform is limited to this. The approach of symbolically execut-
ing the instructions reveals patterns in the trace code allowing for common subexpression
elimination where it occurs with the same inputs, while it can also be further improved in
the future to recognize broader patterns.

The meta-tracing approach. When applying our prototype to interpreters (compiled
to binary form), our work is also related to the meta-tracing approach of Carl Friedrich
Bolz [16]. As with the previous approach, meta-tracing requires markers inserted in the
sources of the interpreter. This work is similar to that of Sullivan et al. in regards to plac-
ing markers in the source code of the interpreter to expose information to the optimizing
layer. This work provides a separate language, RPython, to the interpreter creator, and
transforms the interpreter to a Just-In-Time compiler by using the markers embedded in
the language.
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Program slicing. Our dead code elimination via symbolic execution is similar to dead
code detection via program slicing [17, §14.2.6]: our approach can be seen as an imple-
mentation of dynamic backwards executable slicing [18]. Dynamic because it happens at
runtime and the trace is assumed to have followed certain execution paths. Backwards
because it starts from the symbolic expressions in the final state. Executable because
the slice that is produced must be an executable machine code fragment. Our approach
can also be seen as conditional slicing using a symbolic executor, where the runtime path
condition of the control flow is the input condition and the produced program is the condi-
tioned program [19, 20]. Since we do not evaluate symbolically branch instructions, our
symbolic trees offer information equivalent to flow dependence graphs used for program
slicing [17, §14.3.1.2].

5.2 Remarks

In conclusion, we have shown that following the execution path of real world programs
we can use symbolic execution to discern patterns and optimize the executed code, and
in specific cases remove major redundant, repeating computations. We have shown that
extra information is needed to discover patterns when memory is referenced in non-trivial
ways, either via analysis or via information provided by the developer of the instrumented
program.

We have also shown that the processing of the instructions can be done in O(n) com-
plexity where n is the amount of instructions, assuming O(1) complexity of our mapping
structures.

We have found that tracing a binary that implements an interpreter poses a special prob-
lem: the “program counter” of the interpreted language and the ways it is manipulated will
have been compiled to some pieces of machine code that may be difficult to recognize.
Unless the interpreter can inform us what values correspond to the program counter (what
Sullivan et al. call the “Logical PC” [15]), we cannot know what piece of memory contains
the bytecode instructions of the interpreted program. If we knew that memory, we could
assume that it is read-only (few interpreters permit self-modifying bytecode) and proceed
to read the instructions and their operands, which would then be guaranteed to be con-
stants. This would permit us to eliminate the level of indirection created by the interpreter
and let us work directly on traces of bytecode.

As future work, we aim to find means for retrieving data information, such as read-only
sections; we aim to further optimize the processing time of instructions by simplifying the
structures used; to provide a means of recognizing logical control flow in programs (control
flow decided by indirect branching) and to dynamically handle the execution flow so that
the traces created can actually replace the originals in real time.
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ACRONYMS AND ABBREVIATIONS

JIT Just-In-Time
CISC Complex Instruction Set Computing
API Application Programming Interface
DAG Directed Acyclic Graph
AT&T American Telephone & Telegraph Com-

pany
BCD Byte-Coded Decimal
PC Program Counter

Efthymios Chr. Hadjimichael 47



Optimizing Dynamic Traces using Symbolic Execution

REFERENCES

[1] R. Wilhelm and H. Seidl, Compiler Design: Virtual Machines. Springer Publishing
Company, Incorporated, 1st ed., 2010.

[2] “Learn About Java Technology.” http://java.com/en/about. [accessed
30/8/2016].

[3] D. L. Bruening, Efficient, Transparent, and Comprehensive Runtime Code Manip-
ulation. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2004. AAI0807735.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[5] “Graphviz - Graph Visualization Software.” http://www.graphviz.org/. [ac-
cessed 25/10/2016].

[6] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent dynamic opti-
mization system,” in Proceedings of the ACM SIGPLAN 2000 Conference on Pro-
gramming Language Design and Implementation, PLDI ’00, (New York, NY, USA),
pp. 1–12, ACM, 2000.

[7] E. Duesterwald and V. Bala, “Software profiling for hot path prediction: Less is more,”
pp. 202–211, 2000.

[8] J. Allen, Anatomy of LISP. New York, NY, USA: McGraw-Hill, Inc., 1978.
[9] J.-C. Filliâtre and S. Conchon, “Type-safe modular hash-consing,” in Proceedings of

the 2006 Workshop on ML, ML ’06, (New York, NY, USA), pp. 12–19, ACM, 2006.
[10] J. C. King, “Symbolic execution and program testing,” Communications of the ACM,

vol. 19, pp. 385–394, July 1976.
[11] “Intel® 64 and IA-32 Architectures Software Developer’s Man-

ual.” http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html. [accessed
19/6/2016].

[12] “The uBASIC interpreter.” http://dunkels.com/adam/ubasic/. [accessed
24/7/2016].

[13] J. Huang and P. Tzu-Chin, “Analysis of x86 instruction set usage for DOS/Windows
applications and its implication on superscalar design,” IEICE Transactions on Infor-
mation and Systems, vol. 85, no. 6, pp. 929–939, 2002.

[14] “The Programming Language Lua.” https://www.lua.org/. [accessed
21/10/2016].

[15] G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and S. Amarasinghe, “Dynamic
native optimization of interpreters,” in Proceedings of the 2003 Workshop on Inter-
preters, Virtual Machines and Emulators, IVME ’03, (New York, NY, USA), pp. 50–57,
ACM, 2003.

Efthymios Chr. Hadjimichael 48

http://java.com/en/about
http://www.graphviz.org/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://dunkels.com/adam/ubasic/
https://www.lua.org/


Optimizing Dynamic Traces using Symbolic Execution

[16] J. Laval, A. Kellens, C. F. Bolz, and L. Tratt, “The impact of meta-tracing on VM
design and implementation,” Science of Computer Programming, vol. 98, pp. 408 –
421, 2015.

[17] Y. N. Srikant and P. Shankar, The Compiler Design Handbook: Optimizations and
Machine Code Generation, Second Edition. Boca Raton, FL, USA: CRC Press, Inc.,
2nd ed., 2007.

[18] D. W. Binkley and K. B. Gallagher, “Program slicing,” vol. 43 of Advances in Com-
puters, pp. 1 – 50, Elsevier, 1996.

[19] G. Canfora, A. Cimitile, and A. D. Lucia, “Conditioned program slicing,” Information
and Software Technology, vol. 40, no. 11–12, pp. 595 – 607, 1998.

[20] A. D. Lucia, “Program slicing: methods and applications,” in Proceedings of the First
IEEE International Workshop on Source Code Analysis and Manipulation, pp. 142–
149, 2001.

Efthymios Chr. Hadjimichael 49


	Preface
	Introduction
	Goals
	libreopt.so
	Contributions

	Tools used for development
	Code Manipulation Engine
	FlyWeight Module
	Visualization

	Methodology
	Symbolic Execution
	Memory
	Memory Aliasing
	Custom Memory Management

	Instrumentation
	General Symbolic Execution Step Processing
	Exceptions to the General Symbolic Execution Step Processing

	Optimization
	Dead Code Elimination
	Common Sub-Expression Elimination


	Experimental Results
	Test Cases
	Real-world Benchmarks
	BASIC Interpreter
	Lua Interpreter
	Custom Mini-Language Interpreter


	Conclusion
	Related Work
	Remarks

	Acronyms and Abbreviations

