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ΠΕΡΙΛΗΨΗ

Ένα μεγάλο μέρος των σύγχρονών εταιρικών εφαρμογών λογισμικού και των
διαδικτυακών εφαρμογών συμπεριλαμβάνει τη χρήση κάποιας μόνιμης μνήμης, για την
αποθήκευση των δεδομένων τους. Τις περισσότερες φορές αυτή η μόνιμη αποθήκευση
των δεδομένων αλλά και η προσβασιμότητα σε αυτά εξασφαλίζεται μέσα από μία
σχεσιακή βάση δεδομένων. Πολλές σύγχρονες εφαρμογές, πολλαπλών χρηστών,
όπως ERPs, CRMs, CMSs, BPMs υποβάλλουν ροές από σχεσιακά ερωτήματα άμεσα
σε βάσεις δεδομένων ή σε ενδιάμεσα μεσισμικά. Στη συντριπτική πλειοψηφία των
εφαρμογών χρησιμοποιείται κάποια API βιβλιοθήκη που υποστηρίζει κάποιο ευρέως
αποδεκτό πρωτόκολλο, όπως τα ODBC και JDBC. Οι επερωτήσεις συνθέτονται με τη
μορφή αλφαριθμητικών και αφού συγκεκριμενοποιηθούν οι εκάστοτε πιθανές παράμετροι
εισόδου, αποστέλλονται στη βάση δεδομένων.

Οι περισσότερες από αυτές τις εφαρμογές υποφέρουν από μειωμένη διέλευση και
υψηλές καθυστερήσεις. Υψηλά φορτία επερωτήσεων δοκιμάζουν τις αντοχές τόσο των
μηχανών αποθήκευσης στον πυρήνα των σχεσιακών βάσεων όσο και τους αντίστοιχους
διαχειριστές ταυτοχρονισμού. Τα τελευταία χρόνια έχουμε γίνει μάρτυρες μία εντατικής
έρευνας τόσο σε σχεσιακές όσο και σε αντικειμενοστραφείς βάσεις δεδομέμων. Για
πολλά χρόνια η ερευνητική κοινότητα έχει επικεντρώσει την προσοχή της στην ανάπτυξη
εκλεπτυσμένων αποθηκευτικών μηχανών, πιο αποδοτικών επεξεργαστών ερωτημάτων,
κλιμακούμενων συστοιχιών από βάσεις δεδομένων, εξυπηρετητών αποθήκευσης
κλειδιών-τιμών στην κύρια μνήμη με απώτερο σκοπό να απαλείψουν προβλήματα
μειωμένης διέλευσης και να επιτρέψουν περισσότερο ταυτοχρονισμό. Αυτές οι
βελτιστοποιήσεις έχουν ως στόχο την αποδοτική ανάκτηση πληροφορίας, τη γρήγορη
εγγραφή νέων δεδομένων, την ταχύτατη σύγκλιση στο βέλτιστο πλάνο εκτέλεσης και την
βέλτιση εκτέλεση του με βάση τα χαρακτηριστικά του χρησιμοποιούμενου υλικού. Οι
κατασκευαστές υλικού έχουν βελτιώσει σημαντικά την ταχύτητα και τη διέλευση των πολύ-
πύρηνων επεξεργαστών, της κύριας μνήμης, της ιεραρχικής δευτερεύουσας μνήμης, των
σκληρών δίσκων (π.χ. δίσκοι στερεάς κατάστασης), των επίγειων (π.χ. LAN, MAN) και
ασύρματων δικτύων (π.χ. Wifi).

Όλα αυτά τα βελτιωμένα τμήματα του υλικού, είναι ευρέως διαθέσιμα και αρκετά φθηνά,
ώστε να χρησιμοποιηθούν από επιτραπέζια συστήματα, μέχρι κέντρα υπολογιστών
επιτρέποντας τους να διαχειριστούν αποδοτικά και αξιόπιστα ροές σχεσιακών
επερωτήσεων που προέρχονται από ένα μεγάλο αριθμό χρηστών. Οι αναμφίβολα
σημαντικές πρόοδοι στο υλικό, έχουν αντιμετωπίσει πολλά προβλήματα διέλευσης, αλλά
φαίνεται ότι δεν ισχύει το ίδιο για τη παρατηρούμενη καθυστέρηση και ότι δε θα είναι
εύκολο να βελτιωθεί η κατάσταση για αυτό στο εγγύς μέλλον. Η διέλευση αυξάνεται
συνεχώς με τον ερχομό νέων επίγειων και ασύρματων τεχνολογιών, αλλά δε φαίνεται να
συμβαίνει κάτι ανάλογο με την καθυστέρηση (latency) στο δίκτυο. Οι προσπάθειες στη



βελτίωσης της αντιληπτής καθυστέρησης από τον τελικό χρήστη φαίνεται να έχουν μείνει
πίσω σε σχέση με τις εξελίξεις στην αποδοτική χρησιμοποίηση του διαθέσιμου εύρους
ζώνης.

Για την απαλοιφή των προβλημάτων μειωμένης διέλευσης η ερευνητική κοινότητα
στο χώρο των βάσεων δεδομένων έχει επικεντρώσει τις προσπαθειές της σε δύο
τεχνικές, στην προσωρινή αποθήκευση και στην προανάκληση των επιστρεφόμενων
αποτελεσμάτων των υποβληθέντων σχεσιακών ερωτημάτων. Υψηλά φορτία ροών
σχεσιακών ερωτημάτων έχουν γίνει προσπάθειες να αντιμετωπιστούν με αποθήκευση
των επιστρεφόμενων αποτελεσμάτων, για κάθε ξεχωριστό στιγμιότυπο ερωτήματος,
στην κύρια μνήμη. Βέβαια αυτή η τεχνική δεν είναι και πολύ αποτελεσματική, εκτός
και αν υποβάλεται συχνά ακριβώς το ίδιο ερώτημα. Οπότε παρόλο που αυτή η
τεχνική μπορεί να αποδειχθεί αποτελεσματική για συγκεκριμένα φορτία δεν είναι γενικά
αποδοτική. Η προανάκληση προϋποθέτει ότι το σύστημα μπορεί να προβλέψει
μελλοντικά ερωτήματα, τα οποία ενδεχομένως να συσχετίζονται με ερωτήματα που έχουν
προηγηθεί. Η πρόβλεψη μελλοντικών ερωτημάτων σε μία σχεσιακή ροή είναι αρκετά
περισσότερο περίπλοκη διαδικασία συγκρινόμενη με άλλα εκλεπτυσμένα πληροφοριακά
συστήματα, όπως για παράδειγμα ένα κατανεμημένο σύστημα αρχείων. Αυτό οφείλεται
στο γεγονός ότι οι σχεσιακές επερωτήσεις χαρακτηρίζονται από παραμέτρους εισόδου
(που ενδεχομένως διαφοροποιούνται σε κάθε εκτέλεση) και αποτελέσματα εξόδου (που
πιθανότατα διαφοροποιούνται σε κάθε ανάκληση πλειάδας). Οποιαδήποτε συσχέτιση
ανάμεσα σε δύο διαφορετικές επερωτήσεις είναι περισσότερο δύσκολο να εντοπιστεί, μια
και απαιτεί εκτεταμένες συγκρίσεις μεταξύ όλων των πιθανών παραμέτρων εισόδου και
τιμών εξόδου.

Πρόσφατες προόδοι στο υλικό και στο λογισμικό των τηλεπικοινωνιακών δικτύων όσον
αφορά τη διέλευση δεν έχουν συνοδευτεί από αντίστοιχη πρόοδο στη μείωση της
καθυστέρησης που γίνεται αντιλήπτή στον τελικό χρήστη. Σε αυτή τη διπλωματική εργασία
επιχειρούμε να αντιμετωπίσουμε αποτελεσματικά το πρόβλημα της καθυστέρησης που
γίνεται αντιληπτή από τον τελικό χρήστη. Μελετήσαμε ενα συγκεκριμένο πρότυπο ροών
σχεσιακών επερωτήσεων που συναντάται αρκετά συχνά στις περισσότερες εφαρμογές
και χαρακτηρίζεται απο έντονο συσχετισμό των ερωτημάτων και σημαντικό βαθμό
εμφωλιασμού. Επιβεβαιώσαμε ότι αυτοί οι δύο παράγοντες έχουν ως αποτέλεσμα ένα
μεγάλο αριθμό από round-trips, το αποία μπορούν να αποφευχθούν είτε με αλλαγές
μέσα στον κώδικα των ίδιων των εφαρμογών, είτε με κάποια δυναμική τροποποίηση
και συνδυασμό των επερωτήσεων, στον αέρα, καθώς η ροή στέλνεται για εκτέλεση στη
βάση δεδομένων. Παρόλο που η χειροκίνητη αλλαγή του κώδικα μπορεί να είναι πολύ
αποδοτική, μια και θα συνδυάζονται 2 ή περισσότερες επερωτήσεις σε μία, δεν ενδείκνυται,
γιατί τις περισσότερες φορές ακυρώνει καλές τεχνικές ανάπτυξης λογισμικού. Επιπλεόν,
μία εξειδικευμένη βελτιστοποίση μπορεί να μην είναι το ίδιο αποδοτική για μία διαφορετική
ρύθμιση του λογισμικού ή για μία διαφορετική κατανομή δεδομένων στη βάση.



Έχουμε αναπτύξει μία βιβλιοθήκη σε Java που επιτρέπει αποδοτικούς συνδυασμούς
δύο ή περισσότερων επερωτήσεων σε μία, η οποία υποβάλλεται εναλλακτικά στη βάση
δεδομένων. Ουσιαστικά αυτή η βιβλιοθήκη λειτουργεί σαν ένας wrapper γύρω από
την εκάστοτε JDBC βιβλιοθήκη του κατασκευαστή της σχεσιακής βάσης δεδομένων.
Η βιβλιοθήκη αυτή λειτουργεί σε δύο καταστάσεις. Στην πρώτη φάση, λειτουργεί σε
κατάσταση "εκπαίδευσης", δηλαδή παρατηρεί τις αρχικές επερωτήσεις και τις καταγράφει
μαζί με επιπρόσθετη μετά-πληροφορία σε ένα n-ary δένδρο, το οποίο ονομάζουμε "con-
text tree". Η πρώτη φάση, κατά προσέγγιση αντιπροσωπεύει το 10% του συνολικού
χρόνου της λειτουργίας της επιχειρησιακής εφαρμογής. Μετά το τέλος της πρώτης
φάσης, αυτή η βιβλιοθήκη αποφασίζει ποιες αρχικές επερωτήσεις μπορούν και αξίζει
(με κριτήριο τη μείωση της καθυστέρησης) να συνδυαστούν μεταξύ τους. Στη δεύτερη
φάση που ονομάζεται κατάσταση "κανονικής" λειτουργίας και που συνήθως είναι το 90%
του χρόνου, αυτή η βιβλιοθήκη χρησιμοποιεί τις εναλλακτικές, συνδυαστικές επερωτήσεις
που παρήγαγε η προηγούμενη φάση για να τις υποβάλλει στη βάση δεδομένων στη θέση
των αρχικών απλών επερωτήσεων. Η επανεγγραφή πραγματοποιείται στον αέρα καθώς
το σύστημα είναι σε κανονική λειτουργία. Παρόλο, που οι παραγόμενες επερωτήσεις
είναι πιο πολύπλοκες, αποκαλύπτουν στον επεξεργαστή επερωτήσεων της σχεσιακής
βάσης δεδομένων περισσότερες ευκαιρίες για βελτιστοποίηση. Διαφορετικά αυτές οι
βελτιστοποιήσεις θα παρέμεναν κρυμμένες και ανευκμετάλλευτες μέσα στην εφαρμογή.
Επιπλέον, έχουμε αναπτύξει ένα μοντέλο για τη κοστολόγηση όλων των προτεινόμενων
τεχνικών επανεγγραφής που μας επιτρέπει να τις συγκρίνουμε μεταξύ τους και να
λαμβάνουμε υπόψιν συστημικές παραμέτρους, όπως τη μέση καθυστέρηση του δικτύου.
Η διαδικασία της κοστολόγησης των διαθέσιμων εναλλακτικών και της επιλογής του
βέλτιστου σχήματος για την επανεγγραφή μίας ροής επερωτήσεων, πραγματοποιείται
μετά το πέρας της "εκπαιδευτικής" φάσης και πριν την έναρξη της "κανονικής"
λειτουργίας. Τέλος, εφαρμόσαμε μία εκτεταμένη σειρά από ελέγχους απόδοσης, ώστε
να καταγράψουμε τις βελτιώσεις στο πρόβλημα της δικτυακής καθυστέρησης, που
γίνεται αντιληπτή στον τελικό χρήστη. Όλες οι εναλλακτικές στρατηγικές επανεγγραφής
αποδείχθηκαν πιο αποδοτικές από το αρχικό σχήμα επερωτήσεων από 2 έως και 4
φορές! Παρόλαυτά, οι προτεινόμενες στρατηγικές δεν είναι σε όλες τις περιπτώσεις
πιο αποδοτικές. Διαπιστώσαμε, ότι σε ορισμένα δίκτυα που η μέση καθυστέρηση του
δικτύου είναι πολύ μικρή, οι εναλλακτικές επερωτήσεις μπορούν να είναι πιο αργές από
τις αρχικές! Αυτή η διαπίστωση μαζί με πλήθος άλλων συμπερασμάτων παρατίθενται και
ερμηνεύονται αναλυτικά στο αντίστοιχο κεφάλαιο των πειραματικών ελέγχων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Σχεσιακές Βάσεις Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: σημασιολογική ανάλυση σχεσιακών επερωτήσεων, σημασιολογική
βελτιστοποίηση σχεσιακών επερωτήσεων, επανεγγραφή
σχεσιακών επερωτήσεων, ροές σχεσιακών επερωτήσεων,
επεξεργασία σχεσιακών επερωτήσεων



ABSTRACT

Current multi user applications submit streams of relational queries against a back end
database server. For many years the research community has focused its attention in de-
veloping sophisticated storage engines, more efficient query processors, scalable cluster-
ing systems, in main memory key-value caching servers that would alleviate any through-
put bottlenecks and could allow for more concurrency. Query streams initiated by individ-
ual users have received some attention in the form of result set caching. However, unless
the same query is resubmitted, this remedy has not proved very efficient on minimizing
the latency perceived by the end user. In addition, improvements in network latency have
lagged developments in bandwidth usage. In this thesis, we attempt to tackle the la-
tency experienced by the end users, which in contrary to the throughput remains a big
issue and there does not seem that any networking hardware improvements will alleviate
it in the future. We have studied a specific pattern of query streams that is quite often
found in most applications and is characterized by a number of query correlations and
deep nesting. We verified that these two factors result in excessive numbers of round-
trips, which could be avoided with either manual rewriting of the queries or whith some
form of runtime rewritings on the fly. Although, the manual rewriting of these applications
could result in much more efficient queries, it is not recommended as it is not always
clear for which system configuration or application instance we should optimize. Further-
more, good sofware engineering practices promote code modularity and encapsulation,
with more simple queries. We have developed a prototype software library, which allows
for run time optimization of these query streams. We have implemented a number of alter-
native query rewritings that are applied during run time and essentially submit at the back
end RDBMS a combined query. This combined query although more complex, reveals
to the RDBMS query processor more scope for optimization, which otherwise would have
remained hidden within the client application code. In addition, we developed an analytic
cost model that allows us to compare different alternatives and at the same time take into
account any critical system properties like network communication latency. We performed
comprehensive benchmarking so as to measure any improvements, on the total latency,
seen by the end user. Finally, we present experimental results where all the alternative
strategies outperform the orignal queries by 2 to 4 times.

SUBJECT AREA: Relational Database Management Systems

KEYWORDS: semantic analysis of relational queries, semantic optimization of rela-
tional queries, relational query rewriting, streams of relational queries,
query processing of relational queries
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ΠΡΟΛΟΓΟΣ
Η παρούσα διπλωματική εκπονήθηκε στο Τμήμα Πληροφορικής και Τηλεπικοινωνιών,
του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών (ΕΚΠΑ). Σε αυτό το σημείο θα
ήθελα να ευχαριστήσω τον επιβλέποντα Καθηγητή κ. Αλέξανδρο Δελή για την ειλικρινή
υποστήριξη του κατά τη διάρκεια των μεταπτυχιακών μου σπουδών στο τμήμα. Κατά
τη διάρκεια των σπουδών μου υπήρξε πολύτιμος σύμβουλος, μέντορας και φίλος. Η
καθοδήγηση του δεν περιορίστηκε μόνο στη διπλωματική μου εργασία αλλά υπήρχε και
ήταν καθοριστική σε όλες τις προγραμματιστικές και μελετητικές εργασίες των μαθημάτων
του. Ως σύμβουλος Καθηγητής της 3 κατεύθυνσης, στην "Τεχνολογία Συστημάτων
Υπολογιστών", έπαιξε καταλυτικό ρόλο στην επιλογή μαθημάτων που με βοηθήσανε να
διευρύνω τόσο τους επαγγελματικούς όσο και τους ερευνητικούς μου ορίζοντες. Θα
είμαι πάντα ευγνώμων για την αμέριστη υποστήριξη, την υπομονή, την υπευθυνότητα
και την αφοσίωση του. Πολλές φορές αυτά τα στοιχεία ήταν που μου έδωσαν το
κίνητρο να ερευνήσω και να μελετήσω σε βάθος δύσκολα προβλήματα. Η ενθάρρυνση,
οι παρατηρήσεις και τα σχολιά του κατά τη διάρκεια των συζητήσεών μας έπαιξαν
καθοριστικό ρόλο στην ολοκλήρωση αυτής της διπλωματικής εργασίας με επιτυχία.

Επίσης, θα ήθελα να ευχαριστήσω την πολυαγαπημένη μου μητέρα Ευτυχία Σύρμα,
φιλόλογο, που με έχει υποστηρίξει όλα αυτά τα χρόνια με πολύ αγάπη, υπομονή και
επιμονή. Είναι βέβαιο ότι χωρίς την υποστήριξη και την καθοδήγηση της δεν θα είχα
επιτύχει πολλούς από τους στόχους μου σήμερα. Έχει θυσιάσει αναρίθμητα προσωπικά
πράγματα για να με υποστηρίξει αποτελεσματικά κατά τη διάρκεια της ζωής μου. Έχει
θέσει ένα μοντέλο συμπεριφοράς στο οποίο προσπαθώ να ανταποκριθώ. Η μητέρα μου
είναι που με έμαθε να εργάζομαι σκληρά και ήταν εκεί κάθε φορά που τη χρειάστηκα για
να με ενθαρρύνει. Η επιμονή, η δέσμευση και η αφοσίωση είναι μόνο μερικές από τις
πολύτιμες προσωπικές της αρετές που έχει εμφυσήσει και σε εμένα. Θα της είμαι για
πάντα ευγνώμων για την προστασία, την υποστήριξη και την αγάπη της.

Επιπλέον, θα ήθελα να ευχαριστήσω ολόψυχα την αρραβωνιαστικιά μου Αγγελική Νίκα
για την υπομονή, την υποστήριξη και την αγάπη που μου πρόσφερε γενναιόδωρα κατά τη
διάρκεια αυτής της κοπιαστικής περιόδου των μεταπτυχιακών μου σπουδών. Η Αγγελική
αποτελεί πηγή δύναμης και σταθερότητας στη ζωή μου. Υπομονετικά άντεξε υπερωρίες,
σαββατοκύριακα και διακοπές γεμάτα με αγχωτική και κοπιαστική δουλειά. Ήταν η
υποστήριξη της και η αγάπη της που με ενθάρρυναν να συνεχίσω να δουλεύω σκληρά
με υπευθυνότητα και αφοσίωση.
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1. INTRODUCTION
A large part of the current enterprise and web applications involve the use of persistent
storage. Most of the times this data persistency and accessibility is ensured by aRelational
Database Management System (RDBMS). Current database driven web applications and
enterprise grade solutions (e.g. ERPs, CRMs, CMSs, BPMs) submit streams of relational
queries against a back-end DBMS either directly through some database library API (e.g.
ODBC, JDBC) or indirectly through some middleware (e.g. an application server). Most
of these applications suffer from both throughput throttling and high latencies. High ex-
ecution loads stress both the underlying storage engines and any existing concurrency
managers as well. The last decades have witnessed an overwhelming research on both
relational and object storage systems. For many years researchers have been developing
sophisticated algorithms so as to boost the performance of database kernels in various
aspects. These optimizations have targeted efficient read, write access and query plan
enumeration, evaluation. Hardware manufacturers have significantly improved the speed
and throughput of CPUs, hard disks and both terrestrial and wireless networks. Multi-core
CPUs, cheap and large main memories, SSD disks, deeper memory hierarchies, larger
caches available even in commodity hardware have enabled many business to handle
heavy query loads and avoid significant throughput bottlenecks. All these continuously
improved hardware components when deployed in data centers have allowed for the effi-
cient execution of query streams, initiated by a large population of users. Although, hard-
ware advancements have alleviated many of these problems, it seems that the latency
issue remains and it will not be easy to manage it efficiently. The network throughput is
increasing all the time with the advent of new wired and wireless technologies, however
this is not the case for network latencies. Improvements in network latency have lagged
developments in network bandwidth usage and throughput. In this thesis we attempt to
tackle the latency issue which in contrary to the throughput issue remains and there does
not seem that any networking hardware improvements will alleviate it effectively.

The database research community has employed techniques based on either caching or
prefetching so as to speed up certain types of queries. Caching presumes that the very
same queries will be resubmitted in the near future. Although, this solution may work
for some specific workloads it is not generally effective on all the observed workloads.
Prefetching assumes that the system can predict future requests that may be possibly
correlated with previous queries. Predicting future queries in a relational stream is more
complicated compared with other software systems, like prefetching disk blocks in a dis-
tributed file system. This is because queries are consisted of input parameter bindings
and output attributes. Any possible correlation between two different queries is more diffi-
cult to be tracked as it requires extensive comparisons between all the possible correlation
sources.

Our study is heavily based on the work conducted by Ivan Bowman and Kenneth Salem
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at [3], [4], [5], [6], [7]. Their research focused on observing various query streams and
the source code that produced them. They identified repetitive patterns that occur in a
variety of data base driven applications. In this thesis we chose to address one of those
patterns, which they called "Nested Request Patterns". We implemented from scratch a
prototype, in Java, that loosely resembles their prototype and through comprehensive and
exhaustive benchmarks we tried to verify their findings. Our prototype is called Sqlprefetch
and it is a wrapper around JDBC that is provided as a library to any Java application that
makes use of some RDBMS vendor's JDBC library.

Sqlprefetch is a library that sits between the client application and the RDBMS specific
database access API library. It intercepts all the submitted queries and tracks all input
and output values. This way it can identify possible correlations and optimize a number of
queries during runtime. A key concept of this mechanism is that of the context. It is very
important for Sqlprefetch to be able to recognise and distinguish uses of the same query
under different situations. Knowing the specific context under which a query is submitted
it is of major importance if we are to either alter it or combine it with another query so as
to speed up the execution of the entire stream.

Since, Sqlprefetch must understand the submitted queries and distinguish the different
contexts that they may occur, the aforementioned researchers have chosen to call this
technique "Semantic Prefetching of Relational Query Streams". This technique is mainly
based on the combining of individual queries into larger ones, that return clustered re-
sults sets to the Sqlprefetch library. Then, these clustered result sets are appropriately
traversed so as to return the expected result set values to the corresponding individual
requests. A number of alternative techniques are proposed and their corresponding costs
are evaluated during a training mode. The developed cost model takes into account var-
ious information that spans from selectivity predicates to more dynamic parameters like
the experienced network latency of the specific application instance. This way Sqlprefetch
takes the current network configuration into account. For example, the optimizations that
Sqlprefetch may suggest could differ between a LAN and a WAN. This critical feature
consists Sqlprefetch appropriate for a variety of different configurations.

Most database driven applications issue fine grained SQL queries on the back endRDBMS.
A simplified time modeling of a database request is given at figure 1 on page 16. A fine
grained query will spend most of its time on the communication round-trip rather than on
the server itself. The communication latency depends on the deployed network setting,
i.e. for a WAN it will be significantly increased compared to a LAN. If a large number
of queries is issued against a database then this communication overhead becomes an
important performance bottleneck.

We attempt to address these query streams with a number of runtime optimizations that
function completely transparently to the application programmer. Additionally, we perform
a number of tests that have helped us to identify the advantages and disadvantages of
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Figure 1: A Sample Communication Trace

the proposed solution. At figure 2 on page 16 a simplified pseudo-code example is given,
that exhibits a commonly found characteristic in many database driven applications. As
can be seen the code is written in a modular fashion where each method performs a very
specific task. Each method issues a fine-grained SQL query that possibly accesses a
relatively small number of tuples on a single relation. If each outer tuple results in more
that one fetched inner tuples, then a query stream of the form Q1, Q2, ..., Q2 is submitted
to the database. Such a query stream pattern involves many unnecessary round-trips
that consist the overwhelming majority of the stream's cost. Especially, when the base
relations have been cached into main memory.

method1(value)
sql = "select column1, column2

from table1
where column1=" + value;

conn = connect(db);
cursor = conn.execute(sql);
while(cursor.next())
if(column1 <> some_value &&
global_conf_param <> some_runtime_param)
method2(cursor.getValue("column2"));

cursor.close();
conn.close();

method2(value)
sql = "select attr1, attr2, attr3

from table2
where attr1=" + value;

conn = connect(db);
cursor = conn.execute(sql);
while(cursor.next())
# Process the returned result set.

cursor.close();
conn.close();

Figure 2: Nested Query Pattern Example

A query stream pattern of the form Q1, Q2, ..., Q2 could be addressed with an aggressive
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code refactoring where the two very specific methods could be integrated into one where
a combined query is issued, like the one at figure 3 on page 17. If necessary we could
keep the initial methods and just add the 3 integrated method.

method3(value)
sql = "select column1, column2

from table1 left inner join table2
on table1.column1 = table2.attr1
where column1=" + value;

conn = connect(db);
cursor = conn.execute(sql);
while(cursor.next())
# Process the returned result set.

cursor.close();
conn.close();

Figure 3: Optimized Nested Query Pattern Example

Δημήτρης Ι. Φωτόπουλος 17
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The addition of the combined method breaks the already established functional encapsu-
lation. The code is cluttered into function overlapping methods and the unit testing suite is
complicated with more unintelligible tests. Thus, the code becomes more unmaintainable
and inextensible.

Another point that we observed was the "predicates" that control whether the nested
method is executed or not. The "if" boolean clause consists of two branches glued to-
gether with an "and" logical operator. The first branch may exhibit different results for
each fetched outer tuple, while the outer method's result set is traversed. In contrast, the
second branch should probably return the same result for a specific installed instance of
the application. Thus, our application's behavior, i.e. whether the nested method (query)
is executed all the times, some times or not at all depends on the aforementioned selec-
tivity predicates. For different data value distributions of table "table1" and for different
installed instances these selectivity predicates may vary greatly. If the nested method is
not executed most of the times then the initial modular design is preferable. However, if
the nested query is executed most of the times then a method like "method3" would be
more efficient. For which of these two cases should we develop our application? The an-
swer is that "we do not know". Therefore, any manual optimizations like "method3" do not
justify the cluttering of the code. This is where a runtime optimization comes in. If we could
track this nested query pattern and record not only the actual predicate selectivities but
also the available memory, CPU, network latencies we could apply runtime optimizations,
like issuing a combined query on-the-fly, fully transparently to the application developer.

Furthermore, if the nested query is submitted for execution most of the times, then the
application essentially performs a nested loops join, on the client side. For the aforemen-
tioned reasons this is most of the times inefficient and hides from the back end database
server the actual join. Thus, the selection of a runtime optimization, like the combined
query, may reveal to the database server more scope amenable to further optimizations.
The database optimizer may be able to choose a more efficient plan than a nested loops
join. For example, the query optimizer may use common subexpressions like [1] or a
query plan that makes extensive use of pipelining and parallelization. This more efficient
execution may allow for more efficient usage of the server resources and increase the
throughput of concurrently executed queries.

In the rest of the thesis we have explored techniques that allow effective and efficient
runtime optimizations. The proposed techniques have been evaluated experimentally
through a common benchmarking suite. This suite has been developed with all the al-
ternative methods in mind. All the proposed methods are applicable on this suite and their
benchmarking has allowed as to compare them and draw very useful conclusions.

All the aforementioned optimization techniques along with various other features have
been implemented as a library like engine. This engine is called Sqlprefetch. Although out
prototype is inspired by the work of [4], [5] it is implemented from scartch and bears some
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major differences with their implementation. Sqlprefetch is written in Java. In addition,
a number of synthetic benchmarks have been added that allowed as to observe critical
performance features of the proposed solution. A number of technical details regarding
Sqlprefetch have been given at chapters 6, 7 on pages 46, 49.
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2. NESTED PATTERN DETECTOR
Sqlprefetch operates in two modes, a so called "training" mode and a so called "running"
mode. Initially, Sqlprefetch is set to function in the training mode. Under the training mode
Sqlprefetch identifies the various nesting patterns that exist in the monitored application
and materializes them in a data structure called context tree. This context tree is essen-
tially an n-ary tree where the nodes represent the contexts and the edges represent the
queries that result to any child contexts. Each context tree node is accompanied by a
large number of attributes that serve either operational or cost related operations. The
context tree and its associated metadata are described in detail in the rest of this chapter.

2.1 Context Tree

While operating under the trainingmode each JDBC application request is intercepted with
the help of the corresponding JDBC training API wrapper. The currently submitted SQL
query is parsed, analyzed and stored in a custom data structure. Each context contains
an attribute that points to this data structure. Along with the context tree, Sqlprefetch
maintains a simple linked list of the queries that have been intercepted so far. If a query
is resubmitted in another context then it is not duplicated in this globally visible query list.
In this case there may be two or more contexts that point to the same internal object that
represents the query. Once a query is encountered for the very first time, a new context is
created as a child of the current context tree node. If at some point this query is resubmitted
in the same parent context, then the already existing corresponding context is revisited so
as to update any necessary bookkeeping information. If a previously submitted query is
resubmitted under a different parent context then a new context tree node is created so
as to distinguish between its multiple uses. Each context tree node is uniquely identified.
The goal is to allow Sqlprefetch to accurately follow any query requests during the running
mode and act as prescribed in its query plan. In essence, a context tree node can be
uniquely identified by the ordered list of queries that are open when a request is submitted.
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Figure 4: Example of a Context tree

An example of a context tree is given at figure 4 on page 21. Each function in the figure
represents a method in the application code, that submits a query to the back end RDBMS.
Each function, loops over the returned result set of its submitted query and for each fetched
tuple, invokes its child method which in its turn follows the same nested pattern. In many
cases, there is an "if" applciation predicate between each "fetch tuple" request and the
invocation of inner function.

2.2 Tracking Parameter Correlations

During the training mode, Sqlprefetch tracks, for each context-query pair, both the lastly
fetched tuple in an object attribute called "lastoutput" and the lastly used input parameter
values in an object attribute called "lastinput". Each time a context tree node is created
its possible correlation sources are recorded so as to be monitored each time this con-
text is revisited. For example, if a context is at depth 3, i.e. it has two ancestor contexts,
then upon its instantiation these two ancestor contexts are included in the possible con-
texts correlation list. This list defines the correlation scope of the current context. The
"lastinput" attribute of the current context at depth 3 is compared with the "lastoutput" and
"lastinput" attributes of its ancestor contexts. This comparison will result in any initially
holding correlations. Subsequent revisits to the same context will allow Sqlprefetch to
verify these correlations and discard any of them that do not hold anymore.

2.2.1 Correlation Detection Overhead

Unfortunately, the previously correlation detection algorith is featured by a polynomial cost
function, regarding the necessary number of comparisons, as can be seen by equation 1.

O(D2P (C + P )) (1)
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The following list describes each term of equation 1 in detail.

• D is the average context tree depth.

• C is the average number of projected columns.

• P is the average number of input parameters.

However, for all the benchmarks that we have run, the correlation detection overhead
was not prohibitive. As is also noted by [4], [5] this overhead remains affordable for the
vast majority of the real world applications. In a production system, where resources are
limited and there is a demand for speed, a more sophisticated algorithm could be used
that eliminates the polynomial nature of this overhead.

2.3 Application Predicates Selectivity

In the code example of figure 2 at page 16 we notice an if statement that acts as a filtering
predicate for the inner query. This so called "application predicate" is a boolean expression
that consists of two parts glued together with and "AND" logical operator. The first part of
this boolean expression depends on the currently fetched tuple's specified attribute. This
implies that the execution or not of the inner query depends on the fetched values of each
outer tuple. This kind of predicate selectivity is accounted for in our cost model that is
explained in greater detail at chapter 5 on page 37. Essentially, what we need to consider
for this predicate is its selectivity, i.e. the ratio of the times that the inner query is submitted
divided by the number of tuples fetched by the parent query. This fraction is the probability
that the inner query will be submitted. In order for this probability to range between zero
and one, we have made the assumption that each inner query is opend at most once for
each outer row. This probability plays an important role in our cost model. For example,
if this probability is close to one, then for each outerly fetched tuple it is almost certain
that the inner query will be submitted. In this case, our query optimizer may consider as
a possible rewriting the combination of the two queries. On the other hand, if this ratio is
close to zero, then the optimizer is informed that the inner query is not submitted most of
the times and it may consider the initial nested strategy as the most appropriate one for
the runtime mode.

Another ratio that is being tracked during the training mode is the times that the inner query
is opened for each open of the parent query. For example, if the inner query opens for
each outer query open (not fetch) then the resulted ratio will be 1. If the inner query is
opened for half of the times of the outer query opens, then this ratio is 0.5. This probability
depends strongly on the second part of the boolean expression. The second part of the
boolean expression represents either different application instances or different applica-
tion configurations. This ratio is used by the optimizer for one the proposed rewritings so
as to estimate its efficiency. For example, if this ratio is close to zero, then this means
that the inner query is generally not submitted at all, regardless of the values of the outerly
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fetched tuples. In this case, one of the proposed strategies (client hash join) will save
Sqlprefetch from submitting a combined query that will do more unnecessary work. Sub-
mitting a combined query is more expensive regarding both the client and the server side.
The less round trips (decreased communication latency) is the benefit of the combined
query. But if the inner query is not submitted most of the times then avoiding the submis-
sion of a combined query at the parent will save the overhead of prefetching unneeded
result sets. A combined query is more complex to execute and involves more CPU usage
at the back end RDBMS. In addition, it involves more CPU usage at the client side, for
the interpretation of the combined result set. Thus, if an inner query is only rarely submit-
ted, then the optimum strategy is to use the initial fine-grained pattern, than to employ a
combined query that will cause more CPU overhead at both the client and the server side.

The above probabilities play a crucial role during the query plan optimization phase. Their
importance will be more clear at chapter 3 on page 24, where the alternative query rewrit-
ing strategies are discussed in great detail.
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3. QUERY REWRITING STRATEGIES

3.1 Nested Execution

By the term "nested execution" it is meant the submission of the application queries with-
out any itervention and modification, i.e. as they were originally written in the application
source code. Each resubmission of the same query is characterized by the same cost
as the very first time. It is apparent that the number of inner query opens is proportional
to the tuples fetched by their immediate ancestor query. The proportional relationship of
the outer query's number of fetched rows and the inner query's openings entails that this
proportionality accounts for the corresponding round trips. The more the outerly fetched
tuples, the more the inner query openings and finally the more the round trips that will oc-
cur. However, in application parts where any predicates prevent the execution of the inner
queries most of the times, the nested execution strategy is possibly the optimimum one.
This is because the inner query will be submitted very few times and the cost model has
concluded that the overhead of the combined query is larger than the cost of the original
nested operation. However, in the case where the inner queries are submitted most of the
times then an alternative strategy is possibly the best one to employ. These, alternative
strategies are comprehensively discussed and presented in the following sections.

3.2 Unified Strategies

The most simple way of combining a parent query with a child query is to unnest their
relationship and either "inner" or "outer" join them, like the example at figure 5 on page 25.
Even with this simple join rewriting the application may benefit from the fact that a single
query will be submitted and therefore less round-trips will occur. This way the application
client join is moved to the backend RDBMS server, where its excution will be likely more
efficient. All, the following SQL queries have been colorized so as to facilitate the effective
understanding of their semantics. In a parent-child relationship the parent (outer) query
has been colorized with the blue color. The child (inner) query has been colorized with the
red color. The parts of the combined query that have been colorized with the cyan color
represent the correlated parts of the parent query with its children queries. A correlation
is identified as an "output correlation" when some projection list attribute of the parent
query is used as an input parameter value by a child query. Furthermore, a correlation is
identified as an "input correlation" when some input parameter value of the outer query
is also used as an input parameter value by a child query. Finally, a correlation is identified
as a "constant correlation"when some input parameter binding of a child query is always
fed with the same value.
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SELECT t1.column1, t1.column2, t2.column1, t2.column2
FROM
t1 LEFT [INNER|OUTER] JOIN t2
ON t2.column1 = t1.column1
WHERE t1.column1 = 1 AND t2.column2 <= 10;

Figure 5: Flattened Example Query

However, a simple join like this is still hiding from the database server the nesting relation-
ship of the initial queries. Here we could add the fact the many times this nesting includes
some form of value correlation. Correlated queries have been studied exhaustively by
the database academic community. In our case, we could benefit even more if we could
submit to the backend database server a combined join query that keeps the nested cor-
relation relationship of the parent-child queries. Conveying to the database server intact
the application semantics we provide to its query optimizer more scope. Modern query
optimizers are equipped to understand nested correlated queries and optimize them as
much as possible.

An alternative way of combining the parent-child queries and keeping the nested corre-
lation semantics is that of figure 6 on page 25. Unfortunately, this query is not legal, as
it includes an outer reference (p.column1) inside the inner query and outside the outer
query's scope.

SELECT p.column1, p.column2, c.column1, c.column2
FROM
(

SELECT column1, column2
FROM t1
WHERE column1 = 1

) AS p
(

SELECT column1, column2
FROM t2
WHERE column2 <= 10 AND
column2 = p.column1

) AS c
Figure 6: Non Legal Example Query

Shanmugasundaram [8] proposed a combined rewriting that keeps the nested, correlated
information. An example of his proposal is given at figure 7 on page 26. However, this
suggestion works only for cases where the correlation value is used inside the ON clause.
If the correlation, is used inside some other, possibly more complicated expression, it does
not work at all.
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WITH p AS
(

SELECT column1, column2
FROM t1
WHERE column1 = 1

) p,
c AS
(

SELECT column1, column2
FROM t2
WHERE column2 <= 10

) AS c
SELECT p.column1, p.column2, c.column1, c.column2
FROM p LEFT JOIN c ON (c.column2 = p.column1)

Figure 7: Shanmugasundaram's suggestion, used outer (correlated) references within the ON
condition

SQL99 [9] introduced a new concept called lateral derived tables. The new LATERAL
keyword allows the use of an outer reference inside the inner query which is now consid-
ered a derived relation. A very abstract example of the lateral derived tables is given at
figure 8 on page 26.

The initial use of this new feature in SQL was not only to allow for the use of outer refences
inside a nested correlated query but at the same time to provide to the RDBMS query
optimizer more scope for optimization. We could say that the LATERAL keyword acts
as a query optimization hint that instructs the optimizer on how it should consider the
execution of the query. An example of a lateral inner join is given at figure 9 on page 27.

The use of the LATERAL keyword informs the RDBMS optimizer that the inner query, se-
mantically, needs to be re-evaluated for each fetched tuple of the outer query. Sqlprefetch
employes the lateral derived tables so as to generate a single combined SQL query that
submits to the back end RDBMS instead of two or even more queries (this is the case
where a parent query has more than 1 children queries). This way, Sqlprefetch conveys
to the database optimizer the application semantics. For this thesis we have considered
3 commercial RDBMS. One of them implements the LATERAL concept as specififed by
the ISO organization. The other two have implemeted the same concept with distinct syn-
tax. The final prototype has been completed with ONLY one of these RDBMSs and some
representative benchmarking results have been presented on chapter 7.

The SQL standard has not catered for the quite common case where the outer query's

SELECT <parent.proj-list>, <child.proj-list>
FROM
<parent-query> LATERAL <child-query>
ORDER BY <parent-order-by>

Figure 8: Lateral Derived Relations
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SELECT c1.column1, c1.column2, c2.column1, c2.column2
FROM
(
SELECT t1.column1, t1.column2
FROM table1 as t1
WHERE
t1.column1 >= 1 AND t1.column1 <= 5

) c1 lateral
(
SELECT t2.column1, t2.column2
FROM table2 as t2
WHERE t2.column2 <= 10 AND t2.column1 = c1.column1

) c2
ORDER BY c1.column1;

Figure 9: Unified Lateral Inner Join

tuples that do not match with an inner tuple must be preserved. This case corresponds
to an outer join. Tow of the three RDBMSs, that use distinct product specific syntax,
have foreseen this need and have implemented a small variation that can handle the case
where the outer query's tuples must be preserved. As expected, the outer tuples that
have not been joined with 1 or more inner tuples are accompanied by NULL values in the
corresponding attributes of the combined result set. The third RDBMS does not directly
support the LEFTOUTER LATERAL concept, but even in this product we can workaround
this limitation by using the lateral combined query into a standards compliant SQL, like a
union for example.

When a unified execution strategy is used, a LATERAL combined query is submitted only
by the parent context tree node and returns a combined result set. The combined result
set contains the expected result set of the outer query, appropriately clustered with the
result sets of the participating child queries. It is important to mention that a unified query
is always submitted when the parent context issues an open request. Any participating
child queries do not issue an actual query when they submit an open request. All these
are performed transparently to the client application code. On the next sections we will
present two rewriting strategies that we have considered and the conditions that must be
held, so as to consist them applicable.

3.2.1 The Outer Join Strategy

Sqlprefetch produces a combined query by using the "LEFT OUTER LATERAL" concept.
This is done so as to ensure that all the rows of the original outer query are included in
the result. The rewriting procedure appends any initial "ORDER BY" clause of the outer
query to the rewritten one. A generalized form of the outer join rewiting is given at figure
10 on page 28.
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SELECT <parent.proj-list>, <child.proj-list>
FROM
<parent-query> OUTER LATERAL <child-query>
ORDER BY <parent-order-by>

Figure 10: General Lateral Outer Join Example

At figure 11 on page 28 a more specific example is given that may clarify some obscure
details of this rewriting strategy.

SELECT c1.column1, c1.column2, c2.column1, c2.column2
FROM
(
SELECT column1, column2
FROM table1
WHERE column1 >= 1 AND column1 <= 5

) c1 OUTER LATERAL
(
SELECT column1, column2
FROM table2
WHERE column1 = c1.column1

) c2
ORDER BY c1.column1;

Figure 11: Lateral Outer Join Example

The function that produces the combined query (i.e. performs the rewriting) operates
on a single node in the context tree at a time. Before the rewriting phase is launched
the context tree is traversed and an Sqlprefetch pre-optimization function, chooses the
most appropriate correlation (if more that one correlations have held). For the purposes
of the current thesis, we considered that because the most interesting correlation was
the output correlation, if there were more than one correlations and one of them was
an output correlation, we chose that one. This way we could stress the usage of the
LATERAL derived tables to themaximum. One of the objectives of this thesis is to evaluate
the usefulness of the LATERAL derived tables and conclude whether its usage is mere
syntactic sugar or it serves a more essential purpose when it comes to query optimization.
Afterwards, the context tree is traversed and each node is rewritten, if applicable.

Sqlprefetch applies the join strategy when it has inferred that the inner query (or queries)
will return at most one tuple for each tuple of the outer query (parent context). Sqlprefetch
uses a specifically constructed method that concludes whether the aforementioned cri-
terion holds. Although, this method can produce false negatives (i.e. that the at most
one tuple requirement does not hold when it is) it will never produce false positives. For
example, if an outer fetched attribute, that is correlated with an input binding of the inner
query, is a candidate key for the inner relation and the inner query's "WHERE CLAUSE" is
consisted of a single equality predicate, where this candidate key is used, then the at most
one criterion is held. Any false negatives will miss the opportunity to use a join strategy
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that would otherwise be possible, but they do not cause any inconsistencies.

Furthermore, the at most once criterion, along with the use of the LEFTOUTER LATERAL,
ensures that the combined query produces a result set with the same cardinality as the
result set of the original unmodified query. In addition, the use of any original ORDER BY
clause ensures that the combined result set will keep the same ordering with the result set
of the original outer query. The interpretation of the combined result set is done as follows.
Each fetch request of the parent query advances the combined result set cursor to the next
row. If a NULL object reference is returned then there are no more rows for the parent
query and the children queries. If a non NULL row was returned then any subsequent get
value request will retrieve a column attribute that corresponds to the outer query. When an
inner query is opened there is no actual query submission to the backend database server.
Each fetch request by any immediate inner query is essentially a NOP API mehtod call (i.e.
No Operation), since there is nothing to do. Finally, each get value request retrieves from
the current tuple (of the parent context tree node) the correspondigly specified attributes.
Therefore, the decoding procedure of the combined result set is straightforward.

3.2.2 The Outer Union Strategy

In the outer union strategy the returned combined result set is characterized by clustering
at both the attribute and the tuple level. This is quite obvious from the general and specific
examples given at figures 12, 13 on pages 29, 30. Each participating query is represented
by distinct columns in the combined result set. Each tuple of the combined result set would
have been fetched by a single participating query. Each tuple is actually populated with
column values ONLY for the query to which it corresponds. The rest of the columns are
populated with NULLS. For conveniece reasons, so as to facilitate the decoding phase an
extra column has been used that takes integer values and helps to specify to which query
a tuple corresponds. This metadata attribute is called "type".

SELECT type, <parent.proj-list>, <child.proj-list>
FROM
( <parent-query> )
LATERAL
(

SELECT 0,
<parent-proj-list>,
NULLS<child-proj-list> UNION ALL
SELECT 1,
NULLS<parent-proj-list>,
<child-proj-list>
<remaining-child-query>

)
ORDER BY <parent-order-by>,
type, <child-order-by>

Figure 12: General Lateral Outer Union Example
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SELECT type, c1_column1, c1_column2, c2_column1, c2_column2
FROM
(
SELECT column1, column2
FROM table1 WHERE column1 >= 1 and column1 <= 5

) c1 LATERAL
(
SELECT 0, c1.column1, c1.column2, NULL, NULL
UNION ALL
SELECT 1, NULL, NULL, column1, column2
FROM table2 WHERE column1 = c1.column1

) AS inner_contexts
(
type, c1_column1, c1_column2, c2_column1, c2_column2

)
ORDER BY c1.column1, type, c2_column1

Figure 13: Lateral Outer Union Example

In the "order by" clause of the combined query the main idea is that first we use any or-
dering columns of the parent query, then we use the "type" column and finally we use the
"order by" clauses of the inner queries with the same order that they were encountered
during the training phase. If the inner queries are encountered with different orders dur-
ing the training phase, because of the use of application predicates, then the "LATERAL
OUTER UNION" strategy is not applicable to these specific parent-children queries and
Sqlprefetch considers ONLY the other rewriting strategies as candidates.

3.3 Partitioned Strategies

In contrast to the unified strategies where the combined query is issued upon the opening
of the original outer query, in the partitioned strategies the combined query is submitted
when the inner query is opened for the first time for each distinct opening of the parent
query.

3.3.1 The Client Hash Join Strategy

In this rewriting the parent query is combined with a single child query. The LATERAL
derived tables result into a combined query that is submitted ONLY at the very first time
that the inner query is opened for each individual open of the outer query. The combined
query is submitted by the child context. As can be seen at figure 14 on page 31 the
outer derived table is filtered with its DISTINCT output attributes that participate as input
parameters in the inner query. After the DISTINCT keyword we could have more columns
if more of them were participating as input parameters in the inner query. In the general
case we could assume a tuple of such attributes. Each outer distinct tuple may correspond
to multiple inner query tuples. The retrieved combined result set is stored locally in a main
memory hash table where as keys we use these input parameters that are provided by the

Δημήτρης Ι. Φωτόπουλος 30



Βελτιστοποίηση Ροής Σχεσιακών Επερωτήσεων κατά το Χρόνο Εκτέλεσης

outer relation. Since, each unique combination of input parameter values from the outer
context may result in multiple inner context rows, the value part of the <key, value> hash
table element is a result set class instance.

SELECT
c1.column1 as c1_column1, c2.column1, c2.column2
FROM
(
SELECT DISTINCT column1 FROM
(
select column1, column2, column3, column4
from table1
where column1 >= 1 and column1 <= 5
order by column1 asc

) AS intermediate_relation
) c1 LATERAL
(
SELECT column1, column2
FROM table2 WHERE column1 = c1.column1

) c2
Figure 14: Lateral Client Hash Join Example

For each subsequent fetch request of the outer context that the inner context is reopend,
instead of submitting a new query, it makes a hash table lookup, in order to retrieve any
corresponding result set. Upon a close cursor request by the parent context, the inner
context's hash table is discarded. The hash join rewriting is very similar with the outer
join rewriting. Nevertheless, they do have some major differences. Firstly, the hash join
rewriting combines a parent cotnext with ONLY one child context. Secondly, only the
output columns of the outer context that are used as input parameters in the inner context
are included in the projection list of the lateral combined query. Thirdly, in the current
case we do not need any LATERAL OUTER JOIN semantics since any input parameter
combinations that result in empty result sets are left out of the maimmemory resident hash
table.

It should be noted that under the hash join strategy the inner query is actually opened
and submitted only once (for every parent open) independently to the cardinality of the
outer query. Nonetheless, this rewriting alternative uses more main memory than the
others and is more CPU intensive. These drawbacks and especially the extra memory
consumption should be taken under serious consideration before choosing to apply this
strategy. In coarse grained query workloads (where large result sets are common), this
alternative may be prohibitively expensive. In this case one could suggest some disk
resident hash table, but disk I/O is expensive as well and threfore it may invalidate the
rewriting's usefulness.
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4. QUERY PROCESSOR
Our prototype implementation bears some major differences from that of [4], [5] in various
parts. Some of the major differences are located within the query processor egnine. In
both prototypes the query processing component is found under both the "training" and the
"running" modes. During the "training" mode Sqlprefetch performs 3 major functions in the
following order, the pre-optimisation, the main optimization and the rewriting procedure of
the entire context tree. On ther other side, during the "running" mode Sqlprefetch's query
processing is found within the prefetecher. At the following sections we describe each part
in more depth.

4.1 Pre-Optimization

The pre-optimization component lays the foundation upon which the next query process-
ing components are built. As has already been said Sqlprefetch intercepts all the database
requests during the "training" mode and maintains a list of holding correlations for each
input paramter of a context query. Upon the termination of the training period, the pre-
processing procedure is launched. The entire context tree is traversed in a pre-order fash-
ion and for each context tree node the following operations take place. Firstly, it is ensured
that all the input parameters of the current context are fully predicted. This means that Sql-
prefetch has identified at least one valid correlation for each input parameter binding. If
this is not the case then the optimization process is terminated for the current context and
it is marked as not fully predicted. A context that is not fully predicted cannot be optimized
further and subsequently cannot be rewritten during the run time. Once again, Sqlprefetch
needs to know not only the nesting pattern of a query stream but also the actual values
that will be used for each rewritten query so as to be able to submit a combined query that
will prefetch the correct result sets.

There are three different correlations tracked for an input parameter. Initially, a constant
correlation is considered (i.e. that the specific input binding is always assigned the same
initial value). In addition, we add these output attributes from the ancestor contexts that
match the specific input parameter. The same is done for any input parameters of the an-
cestor contexts. Althought, a correlation may hold initially, it may not hold at some future
request, thus Sqlprefetch monitors the validity of all the initially considered correlations
during the entire training period. If the training period lasts long enough it is highly possi-
ble that only the valid correlations will have remained. Even, if there are false positives,
Sqlprefetch is designed to detect any correlation invalidities during runtime and it will sub-
mit the original unmodified query. Thus, even though it may do some extra work, so as
to prefetch a clustered result set, there will not be any data inconsistencies for the client
code. If for an input parameter all three correlation types hold with multiple ancestors out-
put attributes and input parameters, then we have devised the following priority ordering
(which is different from the [4], [5] prototype).

Δημήτρης Ι. Φωτόπουλος 32



Βελτιστοποίηση Ροής Σχεσιακών Επερωτήσεων κατά το Χρόνο Εκτέλεσης

1. If applicable choose from bottom up an output attribute correlation.

2. If applicable choose from bottom up an input attribute correlation.

3. If applicable choose the constant correlation.

This way we were able to stress the rewriting mechanism to the maximum and study the
performance behavior of the most expensive correlation type. Next, the pre-optimizer con-
cludes whether the current query will return at most one tuple for each fetched tuple from
the parent context. There are possibly many alternatives that can be employed to deter-
mine whether the at-most-one restriction holds. We used as our sole criterion whether
the where clause contains only one equality condition on a candidate key. If this simple
criterion is satisfied we consider that the query of the currently examined context fullfils
the at-most-one restriction and the outer join strategy can be applied on this context. Nev-
ertheless, there is always the possibility that Sqlprefetch may produce false negatives, i.e.
conclude that the at-most-one criterion does not hold when it is. This misestimation does
not pose any inconstistency problems. It is merely preventing Sqlprefetch from utilizing
a possibly more efficient rewriting strategy. After the preoptimization phase is completed
Sqlprefetch uses two critical components, the optimizer and the cost model that will help
it conclude to the most efficient query plan.

4.2 Optimizer

The optimizer is the component that determines which is the most efficent query plan. In
order to do that it makes heavy use of another component, that of the cost model, that
is described in great detail at chapter 5 on page 37. Our query optimizer is much more
simplified than that of the [4], [5]. The main idea is that we rewrite the entire context
tree with the same strategy. Thus, we need to consider only 4 alternative strategies, i.e.
the nested, the outer join, the outer union and the client hash join strategies. For each
candidate strategy the optimizer traverses the context tree in a pre-order fashion. For the
immediate children of the root (sentinel) context tree node, Sqlprefetch considers only the
nested strategy. This is because they do not have an ancestor context with which they can
be combined. For any other context, Sqlprefetch applies the currently evaluated strategy,
if it is applicable. For example, if the outer join strategy is examined (for the entire context
tree) and some nodes do not satisfy the at-most-one criterion, then thsese nodes will not
be rewritten and will be annotated with the nested strategy. However, the rest of the nodes
where the outer join strategy is applicable will be annotated with that.

Nevertheless, by simply annotating a context tree node with a specific strategy is not
enough. For example, under the outer join strategy the leaf context tree nodes will only
need to decode the currently fetched tuple from their parent contexts. In contrast, the
non-leaf nodes will need to submit a combined query that will cater for their children,
subsequently loop over the combined result set so as to allow the children contexts to
retrieve their corresponding attributes and at the same time retrieve any column values for
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themeselves from their parent node. A similar pattern applies for the outer union strategy.
Nonetheless, this is not the case for the nested and the client hash join strategies which
require the same actions, independently of a node's position in the tree. For this reason,
we have chosen to associate each rewrite strategy with one or more actions that guide
the prefetcher on how to act when processing the requests of a specific context. All the
considered strategies along with their associated actions are given at table 1 on page
35. More specifically, we annotate each context tree node with the chosen strategy and
one or more actions that are associated with this strategy. The actions that are chosen
each time somehow describe what is necessary to be done and in what order, so as to
allow Sqlprefetch to process successfully all the possible requests on the currently active
context.

After the completion of the context tree annotation with a specific strategy, the optimizer
traverses once again the context tree in a post-order fashion so as to generate the ap-
propriate actions for each context. Finally, a new pre-order traversal is launched, which
estimates the cost of each context tree node and upon its completion it has caclulated
the total sum. Each alternative strategy is associated with one cost number. The above
procedure is repeated for all the alternative strategies. Therefore, by the end of this esti-
mation algorithm Sqlprefetch may reach the optimum strategy. The optimizer makes use
of the cost estimation component in order to determine the cost of a proposed rewriting for
a specific context tree node. When Sqlprefetch has concluded to the optimum strategy, it
traverses the context tree two times. The first time, it annotates each context tree node
with the selected strategy. The first traversal is performed in a pre-order fashion. The
second time, it generates the necessary actions for each context-strategy pair and uses
them to annotate appropriately the contex tree node. Each action object, if applicable, is
accompanied by a corresponding rewriting. The second pass is performed in a post-order
fashion. The second step is performed by a specialized component, the rewriter, which is
described in depth at section 4.3 on page 34.

4.3 Rewriting the Context Tree

At table 1 on page 35 we have presented all the alternative strategies and their associated
actions. This scheme is exactly the same with the one used by [4], [5]. On the next
paragraphs a short description will be given for each action and its applicability.
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Strategy Context Action Type
nested parent, child ⇒ submit-nest

outer-join parent ⇒ interpret-join
child ⇒ decode-join

outer-union parent ⇒ interpret-union
child ⇒ decode-union

hash-join parent, child ⇒ submit-hash
Table 1: Strategies with associated Actions

The nested and the client hash join strategies are the simplest regarding their associated
actions. Each context that is annotated with the "nested" strategy is also annotated with a
"submit-nest" action. Each "submit-nest" action is equipped with a reference pointer to the
original unmodified query. A similar pattern is followed with the client hash join strategy.
The rewriter traverses the context tree in a post-order fashion and for each context an-
notated with the "hash-join" strategy it adds a "submit-hash" action. Each "submit-hash"
action is populated with a rewritten query that combines the current child query with its
immediate parent query. In all the alternative strategies the immediate children of the root
context tree node are annotated with the "nested" strategy. These children cannot be
rewritten since they do not have an outer query. When the "outer join" strategy is used the
leaf contexts are annotated with the "decode-join" action, whereas the non-leaf contexts
are annotated with the "interpret-join", "decode-join" actions. An "interpret-join" action is
populated with a combined query that includes the current context and all the qualified
children. A "decode-join" action is not populated with some query since it does not involve
one. The "decode-join" action is used to retrieve the current context's corresponding at-
tributes from the currently fetched tuple of its parent context. The same pattern is followed
with the "interpret-union", "decode-union" actions that are used for the implementation of
the "outer-union" strategy.

4.4 Prefetcher

The Prefetcher is the only component of the query processor that is used during the "run-
ning" mode. If the context tree is annotated with the nested strategy, then the prefetcher
merely submits the original, unmodified queries. If the context tree is annotated with the
client "hash join" strategy, then each context is also annotated with the "submit-hash" ac-
tion, except for the immediate children of the root node. The immediate children of the
root node are annotated with the "nested" strategy and the "submit-nest" action. The first
time that a context (annotated with the "hash-join" strategy and the "submit-hash" action)
is opened for each open of its parent context the combined query, that accompanies the
"submit-hash" action, is submitted to the back end RDBMS. The combined result set is
consumed and stored locally in a main memory hash table. Thus, the next times that the
same context will be opened for the same open of its parent cotnext there will be no query
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submission. In theses other opens the anticipated result sets are already stored within the
aforementioned hash table.

If the context tree is annotated with the "outer-join" strategy then we have three distinct
cases, that of the leaf context tree nodes, that of the immediate children of the root context
and that of the rest of the non-leaf context tree nodes. The leaf context nodes do not
submit any query but merely consume their corresponding attributes from the clustered
result set of the parent cotnext. This action is prescribed by the "decode-join" annotation.
Each fetch request on a leaf context results in a retrieval of the corresponding columns
from the currently fetched tuple of the parent context. The second kind of contexts are
annotated with a single "interpret-join" action which submits a combined query and returns
a clustered result set that is used to satisfy the fetch requests of both the current context's
and its immediate children1. The rest of the non-leaf context tree nodes are annotated with
two actions, in the following strict order, the "interpret-join" and the "decode-join" actions.
First is executed the "interpret-join" action, followed by the execution of the "decode-join"
action. These two actions are executed with the exact same manner as in the first two
cases. Somehow, the third case is a combination of the first two cases.

If the context tree is annotated with the "outer-union" strategy then we similarly have three
distinct cases, that of the leaf context tree nodes, that of the immediate children of the root
context and that of the rest of the non-leaf context tree nodes. In the first case, the leaf
context nodes do not submit any query but merely consume a result set that is created
on the fly from the clustered result set of the parent context. It should be noted here that
in the "outer-union" strategy the combined result set exhibits clustering properties at both
the row level and the column level. In addition, each parent row may result in more than
one inner rows. In this case the child context will use the derived result set to loop over
all the returned rows. In the second case, the immediate children of the sentinel context
node are annotated with the "interpret-union" action, which is the one that submits the
combined query. In this case, the combined query involves the current (parent) context
and ALL its children2. Furthermore, the combined result set will be consumed by the
current (parent) context and the participating children contexts. The third case (as in the
"outer-join" strategy), involves both of the above actions, in the following strict order. First
we find the "interpret-union" action and then we execute the "decode-union" action. These
two actions are treated with the exact same fashion as in the first two cases. Apparently,
as in the "outer-join" strategy the third case is a combination of the first two cases.

1By immediate children we mean these children that participated in the combined query. There is always
the case that some children did not satisfied the "at-most-one" restriction.

2Unless some child is not fully predicted. This exception holds for the "outer-join" rewriting as well.
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5. COST MODEL

5.1 Application Predicates Selectivity

Est-P is an estimate of the probability that an inner query will be opened for each outer
query row. Suppose that C is a context with inner query Q and the CP is C's parent in the
context tree, that is C is CP/Q. EST-P(C) is defined as the number times Q is opened
within CP, divided by the number of rows fetched from the inner query of CP . The fraction
that computes the probability EST-P(C) is given below.

EST-P(C) =
# of opens of the child query

# of rows fetched from the parent query
(2)

The above equation is translated as follows in the application code:

EST-P(C) =
currctx.numopens

currctx.parent.numrows
(3)

For C = CP/Q, EST-P0(C) is an estimate of the probability that Q will be opened at least
once whenever context CP is entered.

EST-P0(C) =
# of opens of the parent query for which the child query opened at least once

# of opens of the parent query
(4)

The above equation is translated as follows in the application code:

EST-P0(C) =
currctx.numprtopens

currctx.parent.numopens
(5)

5.2 Ranking Execution Plans

To estimate the cost of an execution plan, Sqlprefetch uses the statistics shown in table3

2 on page 37.

Quantity Source Description
EstTotal(Q) Analytical Estimated total cost for Q in seconds
|Q| Analytical Estimated # of rows returned by Q
InterpretCost(C) Calibration The cost to interpret results for context C
Est− P0, Est− P Training Selectivity of client predicates

Table 2: Statistics used for Ranking Plans

EstTotal(Q) refers to the estimated response time for a query Q that appears in the exe-
3This table is verbatim from [4].
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cution plan. (Each node in the plan is annotated with two queries: the original application
query and a rewritten query. It is the rewritten queries that are used to rank execution
plans). |Q| is the estimated number of rows returned by Q. InterpretCost(C) is an estimate
of Sqlprefetch's costs for interpreting the application's Open, Fetch and Close requests in
context C of the plan. This reflects the cost of decoding the result sets of rewritten queries.
InterpetCost(C) depends on the strategy annotation at C, for example, the interpretation
cost is higher at a "H" node than at a "N" node. Sqlprefetch calibrates InterpetCost(C) for
each strategy prior to training.

Sqlprefetch recursively estimates Rows(C) which is the total number of tuples produced
in context C.

Rows(C) = Open(C)× |Q| (6)

Opens(C) is the number of times C′s query is opened.

Opens(C) = Opens(P)× Rows(P)× Est− P(C) (7)

OneOpens(C) is the number of opens of P for which C′s query is opened at least once.

OneOpens(C) = Opens(P)× Est− P0(C) (8)

The Opens(C) and the Rows(C) are defined to be 1 for the root context.

Weighted Cost for the Nested Strategy

Cost(C) = Opens(C)× (EstTotal(Q) + InterpretCost(C)) (9)

Weighted Cost for the Partitioned Strategies

Under the partitioned strategy, the rewritten query is issued only if the application re-
quests open the inner query at least once after the outer has been opened. Therefore, for
contexts annotated with a partitioned strategy (i.e. 'H' or 'M') the following formula provides
the cost of the specified rewriting.

Cost(C) = OneOpens(C)× EstTotal(Q) +Opens(C)× InterpretCost(C) (10)

Weighted Cost for the Unified Strategies

If a unified strategy is used at C, then no query is issued to the server when C is entered.
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Instead, Sqlprefetch decodes prefetched results from the rewritten outer query. So for
contexts with a unified strategy 'J' or 'U'), we use:

Cost(C) = Opens(C)× InterpetCost(Q) (11)

5.3 Estimating Query Costs and Sizes

This section deals with either the recording or the calculation of the average query times
and the average number of rows fetched per query. Sqlprefetch needs to determine
EstTotal(Q) and |Q| for two different kinds of run time queries that appear in execution
plans. The application queries have been observed by Sqlprefetch during its training pe-
riod. The applicable query rewritings per context have not been observed, therefore there
are no experimental measurements for their costs (i.e. average latency per query rewriting
) and the average number of tuples fetched. For queries that were observed during train-
ing, query cost and query size are relatively easy to estimate, since Sqlprefetch measures
their actual execution times during training.

Table4 3 on page 39 lists the statistics that Sqlprefetch uses for query costing and their
sources.

Quantity Source Description
AvgTot(Q) Training Observed average total cost for Q in seconds
AvgServ(Q) Training Observed average server cost for Q in seconds
AvgRows(Q) Training Observed average # of rows returned by Q
U0 = AvgTot(Q0) Calibration Query-independent overhead

Table 3: Statistics used to estimate Query Costs and Sizes

For a query Q that has been observed during training, we use the averages as our esti-
mate. For the actual application queries, the execution time EstTotal(Q) and the number
of rows |Q| are estimated using the following equations. In addition, Sqlprefetch measures
the average server latency AvgSrv(Q) of each context-query pair. That is the time spend
on the RDBMS server excluding, the network related latencies.

EstTotal(Q) = AvgTot(Q) (12)

|Q| = AvgRows(Q) (13)
4This table is verbatim from [4].
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5.4 Estimating Per-Request Overhead U0

Using an assessment of the per-request overhead that is based on [2] results to a graph
that is unsatisfactorily regressed linearly. Therefore, the simple query of 15 on page 40
is used to estimate the query independent overhead U0. For this simple query, the server
execution costs (apart from per-request overhead) are negligible. Actually, U0 is the min-
imum cost of executing a query. Before Sqlprefetch enters the "training" phase, it first
performs a calibration step (that involves the calibration query) to estimate U0. Sqlprefetch
executes the calibration query a number of times and uses the average execution time as
the estimate of U0 for the current configuration of the tier. Because of the extreme simplic-
ity of the calibration query, it's server side processing cost (D interval - server executes Q)
is considered negligible. In addition, due to lack of returned rows the E, F and G terms
are also considered to be the approximately the same with their corresponding intervals
A, B and C. Therefore, the following equations hold for the calibration query.

AvgTot(Q0) = U0 = 2(A+B + C) (14)

AvgSrv(Q0) = 2C (15)

select t.x from (values(1)) t(x)
Figure 15: Calibration Query.

5.5 Cost Estimation for Result Set Interpretation

When prefetching occurs the returned result set encompasses the combination of the
result sets of the participating queries. During run-time, this encoded result set is processed
and decoded to the correspondingly expected result sets. This way Sqlprefetch operates
in a transparent manner from the view of a client application. This decoding process
bears a significant cost which is proportional to both the number of the combined result
set columns (p) and the number of the returned rows (r). Thus, the decoding procedure
will be represented by a formula of the form EstInterpret(p, r). This interpretation is
an extra overhead for the client process. The interpretation cost formula that is used
is the result of the multiple linear regression on the experimental resutls. These results
are produced by a number of test scenarios for different columns and rows. The same
group of test scenarios is executed for each case (i.e. Nested, Outer-Join, Outer-Union,
Client-Hash-Join). The entire benchmarking was performed in a local shared memory
configuration and the resulted interpretation coefficients are presented at table 4 on page
41.
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Action Columns Coefficient Rows Coefficient Intercept
submit-nest 15.0710 17.4710 -9.1110
interpret-join 1.5030 24.5790 66.1490
decode-join 19.4110 7.1980 -20.1840
interpret-union 2.2080 20.6700 20.2220
decode-union 22.4390 9.2910 -73.3130
submit-hash 31.1600 11.1700 -139.0600

Table 4: Interpretation Coefficients in LSM Configuration (microsecond)

5.6 Cost Estimation for Alternative Strategies

The estimates of the U0 and the EstInterpret(p, r) are not adequate by themselves. The
query optimizer needs to estimate both the cost of the queries along with the number of
rows they will return. These estimations are needed both for the original queries and for
the re-written ones.

The methodology that we followed was similar to [4], [5]. For the part of the application that
it is feasible we have taken experimental measurements, i.e. for the original queries we
track various cost related parameters like average total execution time and selectivities.
In contrast, for the run-time mode where some queries will be re-written we have used
an analytical model that takes into account measurements taken for the original queries
during the training mode and RDBMS specific cost functions. More specifically, during the
training mode we observe the average running time of an unmodified query (AvgTot(Q))
and the average number of rows (AvgRows(Q)) returned for this query. The observed
average values are used in the analytical model as adequately accurate estimations.

EstCost(Q) = AvgTot(Q) (16)

EstRows(Q) = AvgRows(Q) (17)

The chosen analytical model calculates predicted costs for any possible re-writing of
the original queries, since it is infeasible to execute all the possible re-writings and
benchmark them. If a more accurate estimation was desired we would have to measure
any cost parameters during the execution of the application with all the possible re-writing
combinations. Although, this could be a feasible option in our case, it would not be an
option for a more sophisticated plan enumeration algorithm like the one used by [4], [5].

Essentially, the 3 rewritings are based on the same concept of the lateral derived tables.
The simplest one is the client hash join which is a lateral based inner join. For simplification
reasons the classic symbol of the inner join relation operator will be overloaded with the
lateral semantics as well. Thus, the lateral inner join of Q1, Q2, ... , Qn is expressed with
the Q1 ./ Q2 ./ ... ./ Qn. Similarly, the outer join rewriting is a lateral enhanced outer join
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and is expressed with the Q1 n Q2 n ... n Qn. Applying the same reasoning, the lateral
outer union strategy is expressed with the Q1 ]Q2 ] ... ]Qn.

5.6.1 Estimating Client Hash Join

A client hash join is essentially a lateral inner join. This means that the combined result
set contains columns in each row from both joined queries. However, if an outer row (that
provides the outer bindings to the inner query) does not match with an inner row, then it is
omitted from the combined result set. This rewriting is characterized by clustering at the
column level. A simple and naive evaluation technique for this essentially inner join is the
nested loops join. We chose to use this as an upper bound for the estimate of the total cost
of the rewriting. This estimation along with the estimated number of rows in the returned
combined result set are given in equations 18, 26 and use experimental measurements
taken during the trainingmode. The costU0 is subtracted from theEstCost(Qj) in equation
18 because the inner query is not submitted separately but combinedwith the outer derived
relation.

JnlCost(Qi ./ Qj) = EstCost(Qi) + EstRows(Qi)× (EstCost(Qj)− U0) (18)

JnlRows(Qi ./ Qj) = EstRows(Qi)× EstRows(Qj) (19)

In addition, we considered a correction factor for the case where this inner join is handled
more efficiently by the query processor of the back-end RDBMS. Equation 20 calculates
the relative gain the server may accomplish by executing the lateral inner join with a better
plan than the simple nested loops join.

SrvSavings(Qi ./ Qj) =
AvgCost(Qi ./ Qj)

AvgCost(Qi) + AvgRows(Qi)× AvgCost(Qj)
(20)

The function AvgCost(Q) is RDBMS specific and takes into account only the server part of
a query execution, i.e. it omits any communication costs and client side query processing
overhead. In addition, its measurement unit neither corresponds nor fits with the operating
system perception of the time. This cost estimation function is internally used by the
RDBMS to merely provide a convenient unit for the ranking of all the considered query
execution plans. Consequently, its usage is performed in a way that can provide an
estimation of the relative gain that can be accomplished if a more sophisticated plan is
chosen compared to the naive nested loops join. A value close to 1 signifies that the
chosen execution plan is similar to the nested loops join and therefore no extra gain may
be accomplished. However, a value close to zero denotes that a more efficient execution
plan has been chosen that will outperform the nested loops join.
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As has been mentioned before, the average cost of a query could be represented by
a vector of three elements AvgClntCost(Q) (client processing cost), AvgCommCost(Q)

(communication cost), AvgSrvCost(Q) (server side execution cost) and expressed like
the equation 21. All these 3 costs may overlap (but we do not consider this case) and are
measured in time units.

AvgCost(Q) = AvgClntCost(Q) + AvgCommCost(Q) + AvgSrvCost(Q) (21)

The SrvSavings(Q) correction factor should be applied ONLY on the AvgSrvCost(Q),
but this is not possible in our case since we have an estimation of the total average
cost for a query, i.e. for all 3 terms and we cannot decompose it to its compositing
terms. As a consequence, we apply the correction factor to all 3 terms and since this
is a significant approximation we correct it by using a weighted sum of the experimentally
based estimation of Sqlprefetch (originated by measurements taken during the training
mode) and the database based estimation delivered by the RDBMS itself. We denote the
weighting term with K and its values range between 0 and 1, i.e. 0 ≤ K ≤ 1.

J = JnlCost(Qi ./ Qj)− U0 (22)

S = SrvSaving(Qi ./ Qj) (23)

EstCost(Qi ./ Qj) = K × S × J + (1−K)× J + U0 (24)

The equation 24 provides a blending of estimates from the Sqlprefetch performancemodule
tracking and the RDBMS back-end. The main assumption in this reasoning is that the
worst query execution plan that the RDBMS can come up with is the nested loops join. A
value of 0 zero rejects the contribution of the RDBMS estimation, whereas a value of 1
considers it in its entirety. The K parameter weights the credence of the RDBMS server
cost estimator.

5.6.2 Estimating Outer Join Queries

The lateral outer join rewriting is an extension of the client hash join with the major
difference that keeps the rows of the outer derived relation that have not matched with
some row from the inner relation. These unmatched outer rows fill the inner query's
corresponding columns with NULLs. Although, these NULLs bear an extra cost during
both result set transmission and interpretation, we have chosen to not account this extra
cost, as it is insignificant compared with other approximations. As far as the estimated
total query cost is considered we have used the same formula with the client hash join
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(as can be seen by equation 25). However, the estimated rows formula of the combined
result set is altered so as to take into consideration the fact that the outer join preserves
all the tuples of the outer relation. This difference is expressed with the equation 26.

JnlCost(Qi nQj) = JnlCost(Qi ./ Qj) (25)

JnlRows(Qi nQj) = max(JnlRows(Qi ./ Qj), EstRows(Qi)) (26)

Anothermajor difference is that the outer join rewriting can combinemore than two queries.
For example, if a parent context has n children contexts then the combined query will place
the parent query in the derived outer relation and the children queries in the inner places.
This difference results in equations 27, 28.

JnlCost(Q0 nQ1 n ...nQn) = EstCost(Q0) +
n∑

i=1

[|Q0| × (EstCost(Qi)− U0)] (27)

|Q0 nQ1 nQ2 n ...nQn| = max(|Q0 ./ Q1|, ..., |Q0 ./ Qn|, |Q0|) (28)

5.6.3 Estimating Outer Union Queries

The combined result set contains a type column and the columns of each participating
query. The total number of columns in the result set affects to overall cost of the result set
interpretation. Similarly, to [4], [5] we chose to ignore this extra cost because its omission
is insignificant compared to the other approximations that have been made. Thus, we
estimate the average cost of a lateral outer union and the average number of rows returned
by the combined query as if it was a lateral inner union. The difference between a lateral
outer union and a lateral inner union is that the former is characterized by clustering at both
the row level and the column level. In contrast, a lateral inner union does not use clustering
at the column level. The following equations represent the aforementioned reasoning.

EstCost(Qi ]Qj) = EstCost(Qi) + EstCost(Qj)− U0 (29)

EstRows(Qi ]Qj) = EstRows(Qi) + EstRows(Qj) (30)

Similarly, with the outer join strategy the outer union can involve one parent and n of its
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children. Thus, the above equations become.

EstCost(Q0 ]Q1 ] ... ]Qn) = EstCost(Q0) +
n∑

i=1

[|Q0| × (EstCost(Qi)− U0)] (31)

EstRows(Q0 ]Q1 ] ... ]Qn) =
n∑

i=0

EstRows(Qi) (32)
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6. PROTOTYPE IMPLEMENTATION
Sqlprefetch is implemented in Java and is written in a highly modular and layered
architecture. It consists of an SQL parser, the core engine, a command line processor,
various convenience utilities, along with an extensive automatic unit test suite based on
JUnit ([13]). The SQL parser has been implemented with the help of the ANTLR framework
([14]) and the ANTLRWorks IDE ([15]). The foundation software layers of Sqlprefetch are
RDBMS agnostic. The implemented optimizations have targeted a specific commercial
RDBMS. However, because of the agnosticity of the low level layers it is quite easy to
extend Sqlprefetch so as to support another RDBMS.The modular part means that some
layers can be easily provided by different implementations. For example, although, there
is one cost model implementation, if another cost model was devised and we needed to
test it, then it could be easily plugged in. The various layers abstract the functionality that
they serve. A simplified bottom-up list of the various software layers and in which mode
they are used is given in the following list.

• JDBC Vendor Abstraction Layer (both)

• JDBC plain wrapper (both)

• JDBC training wrapper (training)

• JDBC running wrapper (running)

• Patter Detector (both)

• Pre-Optimizer (training)

• Optimizer (training)

• Prefetcher (running)

6.1 JDBC Vendor Abstraction Layer

This layer is used under both running modes. This layer attempts to hide from the upper
layers any RDBMS vendor specific behavior as far as the JDBC layer is concerned.
Furthermore, this layer has been developed and completed successfully for 4 prominent
commercial RDBMS vendors. One of these DBMS is PostgreSQL 9.0.3 ([16]), which has
not implemented the LATERAL feature. Sqlprefetch uses PostgreSQL so as to persistenly
store any bookkeeping information and benchmarking results. The other three RDBMSs
implement the LATERAL semantics either with the same syntax as the ISO's specification
or with some vendor specific syntax. Finally, as all the other layers it includes a number
of convenience APIs.

6.2 JDBC Plain Wrapper

This layer is used under both running modes. As has been mentioned before Sqlprefetch
intercepts all the JDBC API calls. This layer allows for JDBC requests to be submitted to
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the back-end RDBMS without being intercepted. It is a convenience API that facilitates
the out of band submission of SQL queries. This API has been used in various places and
quiet extensively in a large number of unit, integration test cases.

6.3 JDBC Training Wrapper

This is the JDBC wrapper API that is used to monitor all the JDBC method invocations
during the training mode so as to construct the context tree and update various
performance related counters per context, like total number of one opens, total number of
opens, total number of rows fetched, total interpretation cost, total query execution cost,
selectivity predicates and other bookkeeping information. An additional major task of this
API is to track any parameter correlations and verify that they hold for the entire training
period.

6.4 JDBC Running Wrapper

This is the JDBC wrapper API that is used to monitor all the JDBC method invocations
during the running mode so as to keep the current context pointer on the correct context.
If a submitted query has never been observed during the training mode then the current
context pointer moves to the sentinel node and points it. This API updates almost the
same performance counters as the JDBC training wrapper.

6.5 Pattern Detector

This layer is used under both running modes. The pattern detector is used extensively
within both training and running JDBC wrappers. Its main task is to construct the context
tree (in the training mode) and traverse the context tree (in the running mode).

6.6 Pre-optimizer

This layer is used only under the training mode. The pre-optimizer traverses the context
tree in a pre-order fashion and ensures that a context-query pair is fully predicted. In
addition, it specifies whether the current context-query will return at most one tuple for
each fetched tuple of its parent context-query pair. The fulfillment of the at-most-one
requirement determines whether the outer join strategy is applicable or not for the
currently examined context-query pair. Finally, it chooses for each input parameter of
a context-query pair the optimum correlation value.

6.7 Optimizer

This layer is used only under the training mode. The optimizer applies sequentially each
strategy to the entire context tree and for each rewritten context tree it estimates its cost.
The strategy with the minimum cost is the optimum one and is the one that is chosen to
be used during the running mode.
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6.8 Prefetcher

The prefetcher is used during the running mode, as expected. If a context tree node is
annotated with the nested strategy it submits the original unmodified query. If a context is
annotated with a unified strategy then it either submits a combined query (of the current
query with its children queries) or it decodes the prefetched combined result set of its
parent context or both. If a context is annotated with a partitioned strategy then the first
time that is opened for each open of its parent context it submits a combined query (of
itself with its parent query). The returned combined result set is stored locally in a hash
table and used by the child context as long as the parent context's cursor is open. When
the parent context closes its cursor then the locally stored hash table is discarded.
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7. EXPERIMENTAL EVALUATION AND CONCLUSIONS
So as to identify our prototype's strengths andwicknesses, we developed a comprehensive
benchmarking suite where the maximum depth is usually 3, except for one case where
it is 4. 100 distinct queries were employed corresponding to 100 distinct tables. Some
of the queries were reused in different contexts resulting in 106 distinct contexts. The
benchmarked client code contained no application predicates since we wanted to explore
what could be the maximum benefit from applying the proposed rewitings. Each fetched
tuple from an outer query results to at most one inner tuple. This restriction was enforced
on the underlying database so as to allow us to use and compare all the alternative
strategies.

In addition, we executed the same benchmark for two different scaling factors of the
underlying database. This way we could observe any performace differences between
two quite different workloads regarding the scale size. On all the following bar diagrams
SF1 means "scaling factor 1" and this is the reference populated database, where each
query will return a result set of 100 tuples. Apparently, SF10 means "scaling factor 10" and
each context query returns 1000 tuples. Once again with these different scaling factors
we attempted to observe the perfromance implications on both the interpretation cost of
a combined result set and the query execution time spend on the back end RDBMS.
These two runs were conducted under a local shared memory (LSM) configuration, i.e.
the client code, the Sqlprefetch library and the RDBMS server were running on the same
workstation.

Furthermore, we run the same benchmark for 4 different network settings given at table 5
on page 49. All these 4 runs where performed for SF0.1, i.e. each original context-query
pair returned 10 tuples during an entire individual run. For each run, we recorded the
total execution time of the entire benchmark. Each network setting is characterized by
a different nominal throughput rate and therefore by a different latency. Thus, in network
configurations where the latency is higher, the alternative rewriting strategies are expected
to pay off more for the increased CPU usage of their combined queries. This expectation
is confirmed by the resulted total duration bar diagrams.

Network Configuration Communication Rate (Mbps)
LCL inf
LAN 100
WIFI 10
WAN 1

Table 5: Different Network Settings

For all the experiments we used one of the commercial RDBMSs whose name will not
be disclosed because of license restrictions. We suspect that the produced perfromance
results will be proportionally the same with the results that we would have seen from the
other two commercial RDBMSs. For all the RDBMSs we installed and used the developer
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edition which was locked on 1 single core. All the experiments were conducted with an
Intel Core i7 CPU 960 3.20GHz hyper threaded processor, 8 GB memory and running
a 64-bit Debian Wheezy (testing) 3.0.0-1 kernel. All the performance results were taken
during the "running" mode and the entire database schema was cached inside the main
memory, so as to eliminate any disk I/O related time overheads.

7.1 Local Shared Memory (LSM)

We chose to track the total interpretation cost, the query ONLY execution cost on the
database server and the total query cost. The 3 different metrics were taken for a
leaf context tree node and for a non-leaf context tree node. This interpretation of the
benchmarking results allowed us to adequately understand and explain any unexpected
performace bottlenecks and any possible performance benefits that a future work could
consider.

At figure 16 on page 51 we observe that the interpretation cost is always higher for the
nested strategy and when the number of fetched rows increases the nested strategy
interpretation cost increases much more faster than the other alternative strategies. We
should note here that the recorded interpretation cost refers to the total interpretation cost
for a specific leaf node during the running of the corresponding benchmarking scenario.
The interpretation costs for the alternative strategies remain close at the same levels.
This is because all of them "fetch" each tuple from the main memory where it has been
buffered in some Sqlprefetch internal data structure. We should recall here the associated
actions for each alternative strategy. In the outer join strategy a leaf context tree node
is annotated with a single "decode-join" action that retrieves the inner query's attributes
from the currently fetched tuple of the parent context. In the outer union strategy a leaf
context tree node is annotated with a single "decode-union" action that retrieves the inner
query's tuples and attributes from a buffered resutl set that was created from the clustered
result set of the parent cotnext. Finally, in the client hash join strategy a leaf context tree
node is annotated with the "submit-hash" action that retrieves the inner query's tuples
and attributes from the locally stored in main memory hash table. As can be seen, in
all the alternative rewiting strategies there is no network communication to which we can
attribute the lower interpretation, retrieval costs. In contrast, the nested strategy has to
perform more round trips since it fetched the result set rows from the back end database
server.
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Figure 16: Total Interpretation Cost for a Leaf Context (msec)

Most database access APIs provide the capability to set a batch number of result set
rows that should be fetched with a single round-trip. In the worst case this parameter
is zero and each fetch request results in a distinct round trip. This parameter cannot
be extremely large so as to cater for huge result sets, since it would risk to exhaust the
memory resources of the client machine. In all our experiments, we keep the default
value of the corresponding JDBC driver vendor. Someone could set this JDBC protocol
parameter high enough so as to greatly limit the occuring round trips. We chose no to
do that, because generally, an application cannot make safe assumptions for the size of
the returned result sets. Setting this value high could exhaust the client's main memory
as it would have to store locally a huge result set. Actually, this problem is similarly dealt
with by two of the three suggested alternatives. In contrast, the third alternative rewriting,
the "client-hash-join" strategy, stores on the client machine the entire combined result set,
preassuming that there is enough main memory.

An additional note that needs to bemade is that since each outer tuple results in EXACTLY
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one inner tuple, then under the hash join rewriting each open request at the child query
(creation, population of the hash table) results in one fetch tuple (hash table lookup). And
this pattern is repeated for each fetched tuple. Although, the interpretation cost seems to
be low, this is somehow misleading, since as can be seen by the bar diagram 17 on page
52 the execution cost at the back end database server is the highest of all the strategies.
This cost does not represent ONLY the execution cost of the combined query but includes
the additional cost of the creation and population of the main memory resident hash table.

Figure 17: Total Query Execution ONLY Cost for a Leaf Context (msec)
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Therefore, we have concluded that the client hash join rewriting is very expensive and the
ONLY possibility to payoff is to be used in cases where one outer tuple results in a large
number of inner tuples. This way it may amortize the initially high cost of the hash table
creation and population with a large enough number of fetch requests.

The very low costs of the query executions on the database server for both unified
strategies are due to the fact that there is not actual query submission and execution! The
parent context has catered for its children contexts by prefetching a clustered result set.
Moving from the scaling factor 1 to 10 seems to have little effect on the query execution
costs of the unified strategies. Since, these costs in fact represent interpretation costs
we may assume that the interpretation costs of the unified strategies are not essentially
contributing to the prefetching cost. This is also the case for the partitioned strategy if we
could separate the query submission, execution and hash table creation from the hash
table lookups. Because of practical reasons this was not possible but we may safely
assume that the hash table lookups are quite cheap and do not contribute significantly to
the hash join cost. These conclusions are verified by the diagram at 18 on page 54. It is
apparent that the total cost is overwhelmingly contributed by the query execution cost.
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Figure 18: Total Execution Cost for a Leaf Context (msec)

Apart from the hash join strategy, the nested execution strategy remains more expensive
from the unified strategies. Once again due to the fact that both the outer join and the
outer union strategies do not submit and execute an actual query.

In the next diagrams we move to the study of the same metrics for a specific non-leaf
context tree node. At bar diagram 19 on page 55 we can see the interpration costs for two
different scaling factors and all the alternative strategies. A non-leaf context is annotated
with an "interpret-join" action and a "decode-join" action for the outer join rewriting. This
means that it submits a combined query (with the "interpret-join" action) that it will cater
for its children and it uses the "decode-action" so as to retrieve the currently fetched
columns from its parent context's row. Thus, this time the outer join strategy does not
avoid the network communication. In fact, its network communication follows the same
pattern with that of the nested strategy. This similarity explains the approximately similar
communications costs. This is the case for the outer union strategy as well. In this diagram
the less interpretation cost is attributed to the client hash join. This is expected, as the
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hash join in this case is not performing any network communications but only in main
memory hash table lookups.

Figure 19: Total Interpretation Cost for a Non-Leaf Context (msec)
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The total query only execution cost for a non-leaf context is depicted at diagram 20 on
page 56. These query execution costs have revealed two game changing factors. Firstly,
the query submission and execution costs of the unified strategies are by far the most
expensive. In part this may be attributed to the fact that these queries are much more
complex than the original unmodiffied query. Despite the fact that the hash join is more
complex that the original query, it is not that complex as the unified queries. This explains
why the hash join is more expensive than the nested strategy but by far more efficient than
the unified strategies.

Figure 20: Total Query ONLY Execution Cost for a Non-leaf Context (msec)
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Secondly, as has beenmentioned in a previous point all the usedRDBMswere "developer"
editions. Thus, they were restricted to use limited system resources even if more hardware
resources were available. For example the database server that was used for the
experiments was "locked" on a single CPU core. Thus, the database engine could not
employ any parallelization where ever this could have been both possible and beneficial.
This statement is backed by the observation that during the benchmarking period one of
the cores, of the 4-core processor, was experiencing extremely high usage, above 90%,
whereas the other 3 cores were used at maximum 20%.

Figure 21: Total Execution Cost for a Non-Leaf Context (msec)
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The bar diagran at 21 on page 57 unveils an already met pattern. As was the case with
the leaf context tree node also in the non-leaf context tree node the total execution is
dominated by the query execution cost on the back end database server. This conclusion
signifies that the interpretation cost is not a key factor in the determination of the total cost.
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Figure 22: Total Duration under the LSM Network Configuration (sec)

In order to provide an aggregated view of each strategy's performance, we recorded the
time that was needed by the benchmarking suite to run under each alternative strategy.
The recorded times are depicted at the bar diagram 22 on page 59. The most important
conclusion is that the nested strategy is always the cheapest. Although, these unexpected
results refute the experimental results of [4], [5], they could be attributed to the fact
that our database server was a developer, trial edition limited to use a single core.
Thus, the RDBMS could not take advantage of any parallelization opportunities. Another
observation is that the unified strategies exhibit similar perfromance behavior which is
attributed to the fact that they create and consume their clustered result sets in a very
similar fashion. In fact, the outer union strategy is always more expesnive because it
is desgined to return many more rows clustered at both the tuple and the column level.
The hash join rewriting seems to be the most expensive. Somehow, this was expected
since it stores locally, in main memory the entire result set and then performs a hast
table lookup for each inner query open request. These two operations cause significant
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memory consumption and CPU unitlization. As has been mentioned before, the high client
CPU cost of the hash join strategy could be amortized with more inner context tuples
for each outer cotnext tuple. Another reason that may explain the bad performance of
the unified, partitioned strategies versus the original nested strategy is that the entire
benchmarking experiment was run under a local shared memory configuration. This
means that the client, the Sqlprefetch library and the back end RDBMS were running
on the same workstation. Even the prototype of [4], [5] experienced only marginal total
latency benefits unfer the same configuration. Client-server communication on the same
workstation is characterized by extremely low latency round-trips. The increased CPU
usage of the combined queries is not payed off by a large number of round-trips with
significant latency. Thus, the problem that the above algorithms attempt to alleviate is not
significant under the deployed configuration.

7.2 Different Network Configurations

So far, the experimental data of figure 22 on page 59 have demonstrated that under a
local shared memory network configuration, the original, unmodified queries outerperform
all the alternative rewriting strategies. This result is mainly attributed to the fact that the
network latency is not large enough so as to pay of for the increased CPU usage of the
combined queries. Although, this experimental result was the outcome of a benchmark
on a real system, we chose to simulate the network latency of various other network
settings with smaller bandwidth specifications. The networks whose latency we attempted
to simulate are given at table 5 on page 49. In order to do that we developed a trivial
network latency simulator in Java (a Java API) that we invoked within every Sqlprefetch
API what was communicating with the back end RDBMS through some JDBC API call.
The "injected" latency was calculated with the following reasoning. We assumed that all
the JDBC API calls that would hit the network were sending 1 TCP packet and receiving 1
TCP packet with both packets having MSS (Maximum Segment Size) 1500 bytes in size.
This assumption is quite reasonable, especially if we assume that each result set tuple
requires one round-trip so as to be fetched. If we symbolize the bandwidth specification
of each network setting with R, the total "injected" latency of each wrapped JDBC API call
(D) is calculated with the help of the equation 33 on page 60.

D = 2× 1500× 8

R
(sec) (33)

With the aforementioned network latency simulator we repeated our benchmarking test
for 3 different network settings and for each case we recorded the total duration of the
benchmark. The results are given at figure 23 on page 61. In the aforementioned figure
we have included the "total duration" for the Local Shared Memory (LSM) configuration
as well. In this figure, we present not only the performance of each alternative rewriting
under some specified network configuration, but also the impact of each network latency
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on all the considered strategies.

Figure 23: Total Duration under Different Network Configurations (sec)

As can be seen from figure 23 at page 61, all the network configurations except for the
LSM network setting, exhibit proportionaly the same behavior. More specifically, for the
LAN, WIFI and WAN network settings the unified strategies are four times faster than the
nested strategy, whereas the client-hash-join strategy is two times faster than the nested
strategy. In addition, the LAN andWIFI settings exhibit almost identical behavior, although
the latter's bandwidth is ten times faster than the formers. However, both bandwidths are
usually, categorized under very similar cost ranges. The client-hash-join stragegy is two
times slower than the unified strategies and this is attributed to the high CPU usage that it
exhibits at the initial creation and population of the result sets hash table storage (in main
memory). A very useful conclusion that can be drawn from figure 23 at page 61 is that
optimizing a relational query stream with semantic prefetching will pay off only only for
networks with adequate latency, like LANs, WIFIs and WANs. In other cases it can even
hurt performance. This is were the optimizer comes in, who takes into account runtime
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parameters like the network's latency, the CPU overhead of the combined queries and it
is capable to conclude to the most optimum query plan for the current hardware setting.
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8. FUTURE WORK
Ivan Bowman presented in [4], [5] three relational query patterns that they thought were
commonly found in a variety of enterprise applications. These are the Nested Request
Pattern, the Batch Request Pattern and the Data Structure Correlated Pattern. They
proposed a number of alternative run time optimizations for the first two. In the third pattern
a client code method submits a query on the database server and stores the retrieved
results within some custom data structure. Afterwards, the method code loops over the
collection data structure with the help of an iterator and for each item it submits a new query
on the back end RDBMS. Despite the fact that the third pattern resembles the second, it
is not a trivial procedure to observe it during some training period and then optimize it
appropriately during runtime. However, it seems that this query stream pattern is used
more often than not and it could payoff significantly if instead of "nested" like queries, the
intermediate middleware was submitting combined queries that would aim to minimize the
total round trips.

Nowdays, the object oriented paradigm is most popular than ever. Nevertheless, most
back end persistent storage engines are relational. Both the academic and the research
community have attempted to integrate more closely these quite different worlds with
the help of the Object Relational Mappers (ORM). An ORM hides from the application
developer the SQL featured database access API (e.g. ODBC, JDBC) and presents him
application specified classes which correspond to database relations. Subsequently, a
collection class with items belonging to an aforementioned class represents a retrieved
result set from the back end database server. The query submission and the retrieval of the
produced result set are fully transaprent to the application programmer. For small result
sets some optimized ORMs prefer to use somemain memory buffering, whereas for larger
result sets the keep an open cursor through which they fetch any remaing tuples. ORMs
are notorious for their badly formed and inefficient queries. This is where an Sqlprefetch
like component library could come in and provide some sophisticated runtime SQL query
rewriting.

Our prototype has been developed to operate with ACID semantics under a single
user environment. More specifically, it supports multiple users but it does not provide
any concurrency egnine that will enforce the known ACID properties of a mature
RDBMS. Thus, we cannot gurantee any kind of serializability, which can lead to the
observation of data view inconsistencies. A multi-process or multi-threaded Sqlprefetch
like middleware could enforce any of the ANSI SQL's isolation levels. This would require
some enhacements on the context tree with a number of well defined locking primitives.
Providing a number of serializability levels through some concurrency manager operating
on the context tree is certain that it would exhibit the classic headaches of RDBMS
concurrency managers. These would be lock contention, CPU overhead, handling of
deadlocks and livelocks. This enhancement would be critical for enterprise customers
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requiring some strictly defined concurrency levels.

Sqlprefetch is equipped to identify interesting nested patterns, that may result into more
efficient combined queries. These queries could be transformed into materialized views
on the back end database server. Although, this is not a trivial process, especially when
it comes to keeping these materialized views up to date under the precense of intensive
write dominated periods, it could payoff significantly for read dominated workloads. In
addition, a future work could consider to move the materialized views functionality on
the middleware side and implement it with some form of caching, resulting in partially
materialized views. A resembling approach has been researched extensively by [10],
[11] where they developed a peer-to-peer middleware that is installed at the edges of
a core CDN network caching entire result set queries. Their setting is consisted of a
relational back end database server, that acts as the master and a number of peripheral
result set caching slave database servers. They attempt to handle various mixes of
read and write workloads. Nonetheless, they do not employ materialized views but
instead they are based on a sophisticated invalidation algorithm that is supported by a
peer-to-peer publish-susbscribe multicast network. An architecturally similar example
on the web servers field is the Apache Traffic Server [12]. The Apache Traffic Server
attempts to shift the web request hot spots on the edges of a CDN core network so as
to alleviate the back end web servers from any excessively high load and distribute client
requests more evenly and closer to the actual requesters. In a similar fashion, observing
the parts of a candidate materialized view that receive the vast majority of the read
requests, an enhanced Sqlprefetch engine could materialize them locally on the edges of
a core network, closer to the clients, thus providing both individual latency optimizations
and throughput gains. Although, this architectural design is quite common on various
application servers it poses significant difficulties in a relational database setting, where
the ACID properties are expected to be strictly enforced. A possible solution could be to
propagate the write requests directly to the master, back end database server, like [10],
[11] and at the same time, through some multicasting infrastructure, publish them on all
the slave middlewares, so as to incrementally update any already cached materialized
views.
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TERMINOLOGY TABLE

Ξενόγλωσσος όρος Ελληνικός Όρος
Semantic Prefetching Σημασιολογική Προανάκληση
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ABBREVIATIONS, INITIALS AND ACRONYMS

TCP Transmission Control Protocol
MSS Maximum Segment Size
LAN Local Area Network
MAN Metropolitan Area Network
API Application Programming Interface
RDBMS Relational DatabaseManagement System
LSM Local Shared Memory
ODBC Open Database Connectivity
JDBC Java Database Connectivity
ORM Object Relational Mapper
CDN Content Distribution Network
SSD Solid State Disk
ERP Enterprise Resource Planning
CRM Customer Relationship Management
CMS Content Management System
BPM Business Process Management
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